memcontrol.c 158.2 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47 48
#include <linux/eventfd.h>
#include <linux/sort.h>
49
#include <linux/fs.h>
50
#include <linux/seq_file.h>
51
#include <linux/vmalloc.h>
52
#include <linux/mm_inline.h>
53
#include <linux/page_cgroup.h>
54
#include <linux/cpu.h>
55
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
56
#include "internal.h"
G
Glauber Costa 已提交
57
#include <net/sock.h>
M
Michal Hocko 已提交
58
#include <net/ip.h>
G
Glauber Costa 已提交
59
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
60

61 62
#include <asm/uaccess.h>

63 64
#include <trace/events/vmscan.h>

65
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66 67
EXPORT_SYMBOL(mem_cgroup_subsys);

68
#define MEM_CGROUP_RECLAIM_RETRIES	5
69
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
70

A
Andrew Morton 已提交
71
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
72
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73
int do_swap_account __read_mostly;
74 75

/* for remember boot option*/
A
Andrew Morton 已提交
76
#ifdef CONFIG_MEMCG_SWAP_ENABLED
77 78 79 80 81
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

82
#else
83
#define do_swap_account		0
84 85 86
#endif


87 88 89 90 91 92 93 94
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
95
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
96
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
97
	MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
98 99 100
	MEM_CGROUP_STAT_NSTATS,
};

101 102 103 104 105 106 107
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
	"mapped_file",
	"swap",
};

108 109 110
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
111 112
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
113 114
	MEM_CGROUP_EVENTS_NSTATS,
};
115 116 117 118 119 120 121 122

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

123 124 125 126 127 128 129 130 131
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
132
	MEM_CGROUP_TARGET_NUMAINFO,
133 134
	MEM_CGROUP_NTARGETS,
};
135 136 137
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
138

139
struct mem_cgroup_stat_cpu {
140
	long count[MEM_CGROUP_STAT_NSTATS];
141
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142
	unsigned long nr_page_events;
143
	unsigned long targets[MEM_CGROUP_NTARGETS];
144 145
};

146 147 148 149 150 151 152
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

153 154 155 156
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
157
	struct lruvec		lruvec;
158
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
159

160 161
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

162 163 164 165
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
166
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
167
						/* use container_of	   */
168 169 170 171 172 173 174 175 176 177
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

198 199 200 201 202
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
203
/* For threshold */
204
struct mem_cgroup_threshold_ary {
205
	/* An array index points to threshold just below or equal to usage. */
206
	int current_threshold;
207 208 209 210 211
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
212 213 214 215 216 217 218 219 220 221 222 223

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
224 225 226 227 228
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
229

230 231
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
232

B
Balbir Singh 已提交
233 234 235 236 237 238 239
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
240 241 242
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
243 244 245 246 247 248 249
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
268 269
		 * We also need some space for a worker in deferred freeing.
		 * By the time we call it, rcu_freeing is no longer in use.
270 271 272 273
		 */
		struct work_struct work_freeing;
	};

274 275 276 277
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
278 279 280 281
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
282
	struct mem_cgroup_lru_info info;
283 284 285
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
286 287
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
288
#endif
289 290 291 292
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
293
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
294 295 296 297

	bool		oom_lock;
	atomic_t	under_oom;

298
	atomic_t	refcnt;
299

300
	int	swappiness;
301 302
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
303

304 305 306
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

307 308 309 310
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
311
	struct mem_cgroup_thresholds thresholds;
312

313
	/* thresholds for mem+swap usage. RCU-protected */
314
	struct mem_cgroup_thresholds memsw_thresholds;
315

K
KAMEZAWA Hiroyuki 已提交
316 317
	/* For oom notifier event fd */
	struct list_head oom_notify;
318

319 320 321 322 323
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
324 325 326 327
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
328 329
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
330
	/*
331
	 * percpu counter.
332
	 */
333
	struct mem_cgroup_stat_cpu __percpu *stat;
334 335 336 337 338 339
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
340

M
Michal Hocko 已提交
341
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
342 343
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
344 345
};

346 347 348
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
349
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
350
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
351 352
};

353 354 355
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
356 357 358 359 360 361

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
362 363 364 365 366 367

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

368 369 370 371 372
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

373 374 375 376 377 378 379 380 381 382 383
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
384 385
#endif

386 387 388 389 390 391
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
392
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
393
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
394 395 396
	NR_MOVE_TYPE,
};

397 398
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
399
	spinlock_t	  lock; /* for from, to */
400 401 402
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
403
	unsigned long moved_charge;
404
	unsigned long moved_swap;
405 406 407
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
408
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
409 410
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
411

D
Daisuke Nishimura 已提交
412 413 414 415 416 417
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

418 419 420 421 422 423
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

424 425 426 427
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
428 429
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
430

431 432
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
433
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
434
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
435
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
436 437 438
	NR_CHARGE_TYPE,
};

439
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
440 441 442 443
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
444
	_KMEM,
G
Glauber Costa 已提交
445 446
};

447 448
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
449
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
450 451
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
452

453 454 455 456 457 458 459 460
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

461 462
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
463

464 465 466 467 468 469
static inline
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
	return container_of(s, struct mem_cgroup, css);
}

470 471 472 473 474
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
475
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
476
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
477 478 479

void sock_update_memcg(struct sock *sk)
{
480
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
481
		struct mem_cgroup *memcg;
482
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
483 484 485

		BUG_ON(!sk->sk_prot->proto_cgroup);

486 487 488 489 490 491 492 493 494 495 496 497 498 499
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
500 501
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
502 503
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
G
Glauber Costa 已提交
504
			mem_cgroup_get(memcg);
505
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
506 507 508 509 510 511 512 513
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
514
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
515 516 517 518 519 520
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
521 522 523 524 525 526 527 528 529

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
530

531 532 533 534 535 536 537 538 539 540 541 542
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
#ifdef CONFIG_MEMCG_KMEM
struct static_key memcg_kmem_enabled_key;

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
	if (memcg_kmem_is_active(memcg))
		static_key_slow_dec(&memcg_kmem_enabled_key);
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

563
static void drain_all_stock_async(struct mem_cgroup *memcg);
564

565
static struct mem_cgroup_per_zone *
566
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
567
{
568
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
569 570
}

571
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
572
{
573
	return &memcg->css;
574 575
}

576
static struct mem_cgroup_per_zone *
577
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
578
{
579 580
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
581

582
	return mem_cgroup_zoneinfo(memcg, nid, zid);
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
601
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
602
				struct mem_cgroup_per_zone *mz,
603 604
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
605 606 607 608 609 610 611 612
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

613 614 615
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
632 633 634
}

static void
635
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
636 637 638 639 640 641 642 643 644
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

645
static void
646
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
647 648 649 650
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
651
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
652 653 654 655
	spin_unlock(&mctz->lock);
}


656
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
657
{
658
	unsigned long long excess;
659 660
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
661 662
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
663 664 665
	mctz = soft_limit_tree_from_page(page);

	/*
666 667
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
668
	 */
669 670 671
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
672 673 674 675
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
676
		if (excess || mz->on_tree) {
677 678 679
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
680
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
681
			/*
682 683
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
684
			 */
685
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
686 687
			spin_unlock(&mctz->lock);
		}
688 689 690
	}
}

691
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
692 693 694 695 696
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
697
	for_each_node(node) {
698
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
699
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
700
			mctz = soft_limit_tree_node_zone(node, zone);
701
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
702 703 704 705
		}
	}
}

706 707 708 709
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
710
	struct mem_cgroup_per_zone *mz;
711 712

retry:
713
	mz = NULL;
714 715 716 717 718 719 720 721 722 723
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
724 725 726
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
762
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
763
				 enum mem_cgroup_stat_index idx)
764
{
765
	long val = 0;
766 767
	int cpu;

768 769
	get_online_cpus();
	for_each_online_cpu(cpu)
770
		val += per_cpu(memcg->stat->count[idx], cpu);
771
#ifdef CONFIG_HOTPLUG_CPU
772 773 774
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
775 776
#endif
	put_online_cpus();
777 778 779
	return val;
}

780
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
781 782 783
					 bool charge)
{
	int val = (charge) ? 1 : -1;
784
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
785 786
}

787
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
788 789 790 791 792 793
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
794
		val += per_cpu(memcg->stat->events[idx], cpu);
795
#ifdef CONFIG_HOTPLUG_CPU
796 797 798
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
799 800 801 802
#endif
	return val;
}

803
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
804
					 bool anon, int nr_pages)
805
{
806 807
	preempt_disable();

808 809 810 811 812 813
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
814
				nr_pages);
815
	else
816
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
817
				nr_pages);
818

819 820
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
821
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
822
	else {
823
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
824 825
		nr_pages = -nr_pages; /* for event */
	}
826

827
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
828

829
	preempt_enable();
830 831
}

832
unsigned long
833
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
834 835 836 837 838 839 840 841
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
842
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
843
			unsigned int lru_mask)
844 845
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
846
	enum lru_list lru;
847 848
	unsigned long ret = 0;

849
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
850

H
Hugh Dickins 已提交
851 852 853
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
854 855 856 857 858
	}
	return ret;
}

static unsigned long
859
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
860 861
			int nid, unsigned int lru_mask)
{
862 863 864
	u64 total = 0;
	int zid;

865
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
866 867
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
868

869 870
	return total;
}
871

872
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
873
			unsigned int lru_mask)
874
{
875
	int nid;
876 877
	u64 total = 0;

878
	for_each_node_state(nid, N_MEMORY)
879
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
880
	return total;
881 882
}

883 884
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
885 886 887
{
	unsigned long val, next;

888
	val = __this_cpu_read(memcg->stat->nr_page_events);
889
	next = __this_cpu_read(memcg->stat->targets[target]);
890
	/* from time_after() in jiffies.h */
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
907
	}
908
	return false;
909 910 911 912 913 914
}

/*
 * Check events in order.
 *
 */
915
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
916
{
917
	preempt_disable();
918
	/* threshold event is triggered in finer grain than soft limit */
919 920
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
921 922
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
923 924 925 926 927 928 929 930 931

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

932
		mem_cgroup_threshold(memcg);
933
		if (unlikely(do_softlimit))
934
			mem_cgroup_update_tree(memcg, page);
935
#if MAX_NUMNODES > 1
936
		if (unlikely(do_numainfo))
937
			atomic_inc(&memcg->numainfo_events);
938
#endif
939 940
	} else
		preempt_enable();
941 942
}

G
Glauber Costa 已提交
943
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
944
{
945 946
	return mem_cgroup_from_css(
		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
B
Balbir Singh 已提交
947 948
}

949
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
950
{
951 952 953 954 955 956 957 958
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

959
	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
960 961
}

962
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
963
{
964
	struct mem_cgroup *memcg = NULL;
965 966 967

	if (!mm)
		return NULL;
968 969 970 971 972 973 974
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
975 976
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
977
			break;
978
	} while (!css_tryget(&memcg->css));
979
	rcu_read_unlock();
980
	return memcg;
981 982
}

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1003
{
1004 1005
	struct mem_cgroup *memcg = NULL;
	int id = 0;
1006

1007 1008 1009
	if (mem_cgroup_disabled())
		return NULL;

1010 1011
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1012

1013 1014
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
1015

1016 1017
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
1018

1019 1020 1021 1022 1023
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
1024

1025
	while (!memcg) {
1026
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1027
		struct cgroup_subsys_state *css;
1028

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
1040

1041 1042 1043 1044
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
1045
				memcg = mem_cgroup_from_css(css);
1046 1047
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
1048 1049
		rcu_read_unlock();

1050 1051 1052 1053 1054 1055 1056
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1057 1058 1059 1060 1061

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1062
}
K
KAMEZAWA Hiroyuki 已提交
1063

1064 1065 1066 1067 1068 1069 1070
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1071 1072 1073 1074 1075 1076
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1077

1078 1079 1080 1081 1082 1083
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1084
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1085
	     iter != NULL;				\
1086
	     iter = mem_cgroup_iter(root, iter, NULL))
1087

1088
#define for_each_mem_cgroup(iter)			\
1089
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1090
	     iter != NULL;				\
1091
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1092

1093
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1094
{
1095
	struct mem_cgroup *memcg;
1096 1097

	rcu_read_lock();
1098 1099
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1100 1101 1102 1103
		goto out;

	switch (idx) {
	case PGFAULT:
1104 1105 1106 1107
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1108 1109 1110 1111 1112 1113 1114
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1115
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1116

1117 1118 1119
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1120
 * @memcg: memcg of the wanted lruvec
1121 1122 1123 1124 1125 1126 1127 1128 1129
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1130
	struct lruvec *lruvec;
1131

1132 1133 1134 1135
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1136 1137

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1148 1149
}

K
KAMEZAWA Hiroyuki 已提交
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1163

1164
/**
1165
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1166
 * @page: the page
1167
 * @zone: zone of the page
1168
 */
1169
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1170 1171
{
	struct mem_cgroup_per_zone *mz;
1172 1173
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1174
	struct lruvec *lruvec;
1175

1176 1177 1178 1179
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1180

K
KAMEZAWA Hiroyuki 已提交
1181
	pc = lookup_page_cgroup(page);
1182
	memcg = pc->mem_cgroup;
1183 1184

	/*
1185
	 * Surreptitiously switch any uncharged offlist page to root:
1186 1187 1188 1189 1190 1191 1192
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1193
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1194 1195
		pc->mem_cgroup = memcg = root_mem_cgroup;

1196
	mz = page_cgroup_zoneinfo(memcg, page);
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1207
}
1208

1209
/**
1210 1211 1212 1213
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1214
 *
1215 1216
 * This function must be called when a page is added to or removed from an
 * lru list.
1217
 */
1218 1219
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1220 1221
{
	struct mem_cgroup_per_zone *mz;
1222
	unsigned long *lru_size;
1223 1224 1225 1226

	if (mem_cgroup_disabled())
		return;

1227 1228 1229 1230
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1231
}
1232

1233
/*
1234
 * Checks whether given mem is same or in the root_mem_cgroup's
1235 1236
 * hierarchy subtree
 */
1237 1238
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1239
{
1240 1241
	if (root_memcg == memcg)
		return true;
1242
	if (!root_memcg->use_hierarchy || !memcg)
1243
		return false;
1244 1245 1246 1247 1248 1249 1250 1251
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1252
	rcu_read_lock();
1253
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1254 1255
	rcu_read_unlock();
	return ret;
1256 1257
}

1258
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1259 1260
{
	int ret;
1261
	struct mem_cgroup *curr = NULL;
1262
	struct task_struct *p;
1263

1264
	p = find_lock_task_mm(task);
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1280 1281
	if (!curr)
		return 0;
1282
	/*
1283
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1284
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1285 1286
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1287
	 */
1288
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1289
	css_put(&curr->css);
1290 1291 1292
	return ret;
}

1293
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1294
{
1295
	unsigned long inactive_ratio;
1296
	unsigned long inactive;
1297
	unsigned long active;
1298
	unsigned long gb;
1299

1300 1301
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1302

1303 1304 1305 1306 1307 1308
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1309
	return inactive * inactive_ratio < active;
1310 1311
}

1312
int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1313 1314 1315 1316
{
	unsigned long active;
	unsigned long inactive;

1317 1318
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1319 1320 1321 1322

	return (active > inactive);
}

1323 1324 1325
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1326
/**
1327
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1328
 * @memcg: the memory cgroup
1329
 *
1330
 * Returns the maximum amount of memory @mem can be charged with, in
1331
 * pages.
1332
 */
1333
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1334
{
1335 1336
	unsigned long long margin;

1337
	margin = res_counter_margin(&memcg->res);
1338
	if (do_swap_account)
1339
		margin = min(margin, res_counter_margin(&memcg->memsw));
1340
	return margin >> PAGE_SHIFT;
1341 1342
}

1343
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1344 1345 1346 1347 1348 1349 1350
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1351
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1352 1353
}

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1368 1369 1370 1371

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1372
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1373
{
1374
	atomic_inc(&memcg_moving);
1375
	atomic_inc(&memcg->moving_account);
1376 1377 1378
	synchronize_rcu();
}

1379
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1380
{
1381 1382 1383 1384
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1385 1386
	if (memcg) {
		atomic_dec(&memcg_moving);
1387
		atomic_dec(&memcg->moving_account);
1388
	}
1389
}
1390

1391 1392 1393
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1394 1395
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1396 1397 1398 1399 1400 1401 1402
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1403
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1404 1405
{
	VM_BUG_ON(!rcu_read_lock_held());
1406
	return atomic_read(&memcg->moving_account) > 0;
1407
}
1408

1409
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1410
{
1411 1412
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1413
	bool ret = false;
1414 1415 1416 1417 1418 1419 1420 1421 1422
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1423

1424 1425
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1426 1427
unlock:
	spin_unlock(&mc.lock);
1428 1429 1430
	return ret;
}

1431
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1432 1433
{
	if (mc.moving_task && current != mc.moving_task) {
1434
		if (mem_cgroup_under_move(memcg)) {
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1447 1448 1449 1450
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1451
 * see mem_cgroup_stolen(), too.
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1465
/**
1466
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1485
	if (!memcg || !p)
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1529 1530 1531 1532
	printk(KERN_INFO "kmem: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1533 1534
}

1535 1536 1537 1538
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1539
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1540 1541
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1542 1543
	struct mem_cgroup *iter;

1544
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1545
		num++;
1546 1547 1548
	return num;
}

D
David Rientjes 已提交
1549 1550 1551
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1552
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1553 1554 1555
{
	u64 limit;

1556 1557
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1558
	/*
1559
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1560
	 */
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1575 1576
}

1577 1578
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1579 1580 1581 1582 1583 1584 1585
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
	/*
	 * If current has a pending SIGKILL, then automatically select it.  The
	 * goal is to allow it to allocate so that it may quickly exit and free
	 * its memory.
	 */
	if (fatal_signal_pending(current)) {
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
		struct cgroup *cgroup = iter->css.cgroup;
		struct cgroup_iter it;
		struct task_struct *task;

		cgroup_iter_start(cgroup, &it);
		while ((task = cgroup_iter_next(cgroup, &it))) {
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
				cgroup_iter_end(cgroup, &it);
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
		cgroup_iter_end(cgroup, &it);
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1680 1681
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1682
 * @memcg: the target memcg
1683 1684 1685 1686 1687 1688 1689
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1690
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1691 1692
		int nid, bool noswap)
{
1693
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1694 1695 1696
		return true;
	if (noswap || !total_swap_pages)
		return false;
1697
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1698 1699 1700 1701
		return true;
	return false;

}
1702 1703 1704 1705 1706 1707 1708 1709
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1710
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1711 1712
{
	int nid;
1713 1714 1715 1716
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1717
	if (!atomic_read(&memcg->numainfo_events))
1718
		return;
1719
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1720 1721 1722
		return;

	/* make a nodemask where this memcg uses memory from */
1723
	memcg->scan_nodes = node_states[N_MEMORY];
1724

1725
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1726

1727 1728
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1729
	}
1730

1731 1732
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1747
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1748 1749 1750
{
	int node;

1751 1752
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1753

1754
	node = next_node(node, memcg->scan_nodes);
1755
	if (node == MAX_NUMNODES)
1756
		node = first_node(memcg->scan_nodes);
1757 1758 1759 1760 1761 1762 1763 1764 1765
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1766
	memcg->last_scanned_node = node;
1767 1768 1769
	return node;
}

1770 1771 1772 1773 1774 1775
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1776
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1777 1778 1779 1780 1781 1782 1783
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1784 1785
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1786
		     nid < MAX_NUMNODES;
1787
		     nid = next_node(nid, memcg->scan_nodes)) {
1788

1789
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1790 1791 1792 1793 1794 1795
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
1796
	for_each_node_state(nid, N_MEMORY) {
1797
		if (node_isset(nid, memcg->scan_nodes))
1798
			continue;
1799
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1800 1801 1802 1803 1804
			return true;
	}
	return false;
}

1805
#else
1806
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1807 1808 1809
{
	return 0;
}
1810

1811
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1812
{
1813
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1814
}
1815 1816
#endif

1817 1818 1819 1820
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1821
{
1822
	struct mem_cgroup *victim = NULL;
1823
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1824
	int loop = 0;
1825
	unsigned long excess;
1826
	unsigned long nr_scanned;
1827 1828 1829 1830
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1831

1832
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1833

1834
	while (1) {
1835
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1836
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1837
			loop++;
1838 1839 1840 1841 1842 1843
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1844
				if (!total)
1845 1846
					break;
				/*
L
Lucas De Marchi 已提交
1847
				 * We want to do more targeted reclaim.
1848 1849 1850 1851 1852
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1853
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1854 1855
					break;
			}
1856
			continue;
1857
		}
1858
		if (!mem_cgroup_reclaimable(victim, false))
1859
			continue;
1860 1861 1862 1863
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1864
			break;
1865
	}
1866
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1867
	return total;
1868 1869
}

K
KAMEZAWA Hiroyuki 已提交
1870 1871 1872
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1873
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1874
 */
1875
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1876
{
1877
	struct mem_cgroup *iter, *failed = NULL;
1878

1879
	for_each_mem_cgroup_tree(iter, memcg) {
1880
		if (iter->oom_lock) {
1881 1882 1883 1884 1885
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1886 1887
			mem_cgroup_iter_break(memcg, iter);
			break;
1888 1889
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1890
	}
K
KAMEZAWA Hiroyuki 已提交
1891

1892
	if (!failed)
1893
		return true;
1894 1895 1896 1897 1898

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1899
	for_each_mem_cgroup_tree(iter, memcg) {
1900
		if (iter == failed) {
1901 1902
			mem_cgroup_iter_break(memcg, iter);
			break;
1903 1904 1905
		}
		iter->oom_lock = false;
	}
1906
	return false;
1907
}
1908

1909
/*
1910
 * Has to be called with memcg_oom_lock
1911
 */
1912
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1913
{
K
KAMEZAWA Hiroyuki 已提交
1914 1915
	struct mem_cgroup *iter;

1916
	for_each_mem_cgroup_tree(iter, memcg)
1917 1918 1919 1920
		iter->oom_lock = false;
	return 0;
}

1921
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1922 1923 1924
{
	struct mem_cgroup *iter;

1925
	for_each_mem_cgroup_tree(iter, memcg)
1926 1927 1928
		atomic_inc(&iter->under_oom);
}

1929
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1930 1931 1932
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1933 1934 1935 1936 1937
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1938
	for_each_mem_cgroup_tree(iter, memcg)
1939
		atomic_add_unless(&iter->under_oom, -1, 0);
1940 1941
}

1942
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1943 1944
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1945
struct oom_wait_info {
1946
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1947 1948 1949 1950 1951 1952
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1953 1954
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1955 1956 1957
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1958
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1959 1960

	/*
1961
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
1962 1963
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1964 1965
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1966 1967 1968 1969
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1970
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1971
{
1972 1973
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1974 1975
}

1976
static void memcg_oom_recover(struct mem_cgroup *memcg)
1977
{
1978 1979
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1980 1981
}

K
KAMEZAWA Hiroyuki 已提交
1982 1983 1984
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1985 1986
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
1987
{
K
KAMEZAWA Hiroyuki 已提交
1988
	struct oom_wait_info owait;
1989
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1990

1991
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
1992 1993 1994 1995
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1996
	need_to_kill = true;
1997
	mem_cgroup_mark_under_oom(memcg);
1998

1999
	/* At first, try to OOM lock hierarchy under memcg.*/
2000
	spin_lock(&memcg_oom_lock);
2001
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
2002 2003 2004 2005 2006
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
2007
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2008
	if (!locked || memcg->oom_kill_disable)
2009 2010
		need_to_kill = false;
	if (locked)
2011
		mem_cgroup_oom_notify(memcg);
2012
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2013

2014 2015
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
2016
		mem_cgroup_out_of_memory(memcg, mask, order);
2017
	} else {
K
KAMEZAWA Hiroyuki 已提交
2018
		schedule();
K
KAMEZAWA Hiroyuki 已提交
2019
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
2020
	}
2021
	spin_lock(&memcg_oom_lock);
2022
	if (locked)
2023 2024
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
2025
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2026

2027
	mem_cgroup_unmark_under_oom(memcg);
2028

K
KAMEZAWA Hiroyuki 已提交
2029 2030 2031
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
2032
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
2033
	return true;
2034 2035
}

2036 2037 2038
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2056 2057
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2058
 */
2059

2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2073
	 * need to take move_lock_mem_cgroup(). Because we already hold
2074
	 * rcu_read_lock(), any calls to move_account will be delayed until
2075
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2076
	 */
2077
	if (!mem_cgroup_stolen(memcg))
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2095
	 * should take move_lock_mem_cgroup().
2096 2097 2098 2099
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2100 2101
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2102
{
2103
	struct mem_cgroup *memcg;
2104
	struct page_cgroup *pc = lookup_page_cgroup(page);
2105
	unsigned long uninitialized_var(flags);
2106

2107
	if (mem_cgroup_disabled())
2108
		return;
2109

2110 2111
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2112
		return;
2113 2114

	switch (idx) {
2115 2116
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2117 2118 2119
		break;
	default:
		BUG();
2120
	}
2121

2122
	this_cpu_add(memcg->stat->count[idx], val);
2123
}
2124

2125 2126 2127 2128
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2129
#define CHARGE_BATCH	32U
2130 2131
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2132
	unsigned int nr_pages;
2133
	struct work_struct work;
2134
	unsigned long flags;
2135
#define FLUSHING_CACHED_CHARGE	0
2136 2137
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2138
static DEFINE_MUTEX(percpu_charge_mutex);
2139

2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2150
 */
2151
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2152 2153 2154 2155
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2156 2157 2158
	if (nr_pages > CHARGE_BATCH)
		return false;

2159
	stock = &get_cpu_var(memcg_stock);
2160 2161
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2175 2176 2177 2178
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2179
		if (do_swap_account)
2180 2181
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2194
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2195 2196 2197 2198
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2199
 * This will be consumed by consume_stock() function, later.
2200
 */
2201
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2202 2203 2204
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2205
	if (stock->cached != memcg) { /* reset if necessary */
2206
		drain_stock(stock);
2207
		stock->cached = memcg;
2208
	}
2209
	stock->nr_pages += nr_pages;
2210 2211 2212 2213
	put_cpu_var(memcg_stock);
}

/*
2214
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2215 2216
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2217
 */
2218
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2219
{
2220
	int cpu, curcpu;
2221

2222 2223
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2224
	curcpu = get_cpu();
2225 2226
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2227
		struct mem_cgroup *memcg;
2228

2229 2230
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2231
			continue;
2232
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2233
			continue;
2234 2235 2236 2237 2238 2239
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2240
	}
2241
	put_cpu();
2242 2243 2244 2245 2246 2247

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2248
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2249 2250 2251
			flush_work(&stock->work);
	}
out:
2252
 	put_online_cpus();
2253 2254 2255 2256 2257 2258 2259 2260
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2261
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2262
{
2263 2264 2265 2266 2267
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2268
	drain_all_stock(root_memcg, false);
2269
	mutex_unlock(&percpu_charge_mutex);
2270 2271 2272
}

/* This is a synchronous drain interface. */
2273
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2274 2275
{
	/* called when force_empty is called */
2276
	mutex_lock(&percpu_charge_mutex);
2277
	drain_all_stock(root_memcg, true);
2278
	mutex_unlock(&percpu_charge_mutex);
2279 2280
}

2281 2282 2283 2284
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2285
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2286 2287 2288
{
	int i;

2289
	spin_lock(&memcg->pcp_counter_lock);
2290
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2291
		long x = per_cpu(memcg->stat->count[i], cpu);
2292

2293 2294
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2295
	}
2296
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2297
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2298

2299 2300
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2301
	}
2302
	spin_unlock(&memcg->pcp_counter_lock);
2303 2304 2305
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2306 2307 2308 2309 2310
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2311
	struct mem_cgroup *iter;
2312

2313
	if (action == CPU_ONLINE)
2314 2315
		return NOTIFY_OK;

2316
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2317
		return NOTIFY_OK;
2318

2319
	for_each_mem_cgroup(iter)
2320 2321
		mem_cgroup_drain_pcp_counter(iter, cpu);

2322 2323 2324 2325 2326
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2327 2328 2329 2330 2331 2332 2333 2334 2335 2336

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2337
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2338 2339
				unsigned int nr_pages, unsigned int min_pages,
				bool oom_check)
2340
{
2341
	unsigned long csize = nr_pages * PAGE_SIZE;
2342 2343 2344 2345 2346
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2347
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2348 2349 2350 2351

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2352
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2353 2354 2355
		if (likely(!ret))
			return CHARGE_OK;

2356
		res_counter_uncharge(&memcg->res, csize);
2357 2358 2359 2360
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2361 2362 2363 2364
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2365
	if (nr_pages > min_pages)
2366 2367 2368 2369 2370
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2371 2372 2373
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2374
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2375
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2376
		return CHARGE_RETRY;
2377
	/*
2378 2379 2380 2381 2382 2383 2384
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2385
	 */
2386
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2400
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2401 2402 2403 2404 2405
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2406
/*
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2426
 */
2427
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2428
				   gfp_t gfp_mask,
2429
				   unsigned int nr_pages,
2430
				   struct mem_cgroup **ptr,
2431
				   bool oom)
2432
{
2433
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2434
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2435
	struct mem_cgroup *memcg = NULL;
2436
	int ret;
2437

K
KAMEZAWA Hiroyuki 已提交
2438 2439 2440 2441 2442 2443 2444 2445
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2446

2447
	/*
2448 2449
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2450
	 * thread group leader migrates. It's possible that mm is not
2451
	 * set, if so charge the root memcg (happens for pagecache usage).
2452
	 */
2453
	if (!*ptr && !mm)
2454
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2455
again:
2456 2457 2458
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2459
			goto done;
2460
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2461
			goto done;
2462
		css_get(&memcg->css);
2463
	} else {
K
KAMEZAWA Hiroyuki 已提交
2464
		struct task_struct *p;
2465

K
KAMEZAWA Hiroyuki 已提交
2466 2467 2468
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2469
		 * Because we don't have task_lock(), "p" can exit.
2470
		 * In that case, "memcg" can point to root or p can be NULL with
2471 2472 2473 2474 2475 2476
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2477
		 */
2478
		memcg = mem_cgroup_from_task(p);
2479 2480 2481
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2482 2483 2484
			rcu_read_unlock();
			goto done;
		}
2485
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2498
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2499 2500 2501 2502 2503
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2504

2505 2506
	do {
		bool oom_check;
2507

2508
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2509
		if (fatal_signal_pending(current)) {
2510
			css_put(&memcg->css);
2511
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2512
		}
2513

2514 2515 2516 2517
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2518
		}
2519

2520 2521
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
		    oom_check);
2522 2523 2524 2525
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2526
			batch = nr_pages;
2527 2528
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2529
			goto again;
2530
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2531
			css_put(&memcg->css);
2532 2533
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2534
			if (!oom) {
2535
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2536
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2537
			}
2538 2539 2540 2541
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2542
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2543
			goto bypass;
2544
		}
2545 2546
	} while (ret != CHARGE_OK);

2547
	if (batch > nr_pages)
2548 2549
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2550
done:
2551
	*ptr = memcg;
2552 2553
	return 0;
nomem:
2554
	*ptr = NULL;
2555
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2556
bypass:
2557 2558
	*ptr = root_mem_cgroup;
	return -EINTR;
2559
}
2560

2561 2562 2563 2564 2565
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2566
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2567
				       unsigned int nr_pages)
2568
{
2569
	if (!mem_cgroup_is_root(memcg)) {
2570 2571
		unsigned long bytes = nr_pages * PAGE_SIZE;

2572
		res_counter_uncharge(&memcg->res, bytes);
2573
		if (do_swap_account)
2574
			res_counter_uncharge(&memcg->memsw, bytes);
2575
	}
2576 2577
}

2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2596 2597
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2598 2599 2600
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2612
	return mem_cgroup_from_css(css);
2613 2614
}

2615
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2616
{
2617
	struct mem_cgroup *memcg = NULL;
2618
	struct page_cgroup *pc;
2619
	unsigned short id;
2620 2621
	swp_entry_t ent;

2622 2623 2624
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2625
	lock_page_cgroup(pc);
2626
	if (PageCgroupUsed(pc)) {
2627 2628 2629
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2630
	} else if (PageSwapCache(page)) {
2631
		ent.val = page_private(page);
2632
		id = lookup_swap_cgroup_id(ent);
2633
		rcu_read_lock();
2634 2635 2636
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2637
		rcu_read_unlock();
2638
	}
2639
	unlock_page_cgroup(pc);
2640
	return memcg;
2641 2642
}

2643
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2644
				       struct page *page,
2645
				       unsigned int nr_pages,
2646 2647
				       enum charge_type ctype,
				       bool lrucare)
2648
{
2649
	struct page_cgroup *pc = lookup_page_cgroup(page);
2650
	struct zone *uninitialized_var(zone);
2651
	struct lruvec *lruvec;
2652
	bool was_on_lru = false;
2653
	bool anon;
2654

2655
	lock_page_cgroup(pc);
2656
	VM_BUG_ON(PageCgroupUsed(pc));
2657 2658 2659 2660
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2661 2662 2663 2664 2665 2666 2667 2668 2669

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2670
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2671
			ClearPageLRU(page);
2672
			del_page_from_lru_list(page, lruvec, page_lru(page));
2673 2674 2675 2676
			was_on_lru = true;
		}
	}

2677
	pc->mem_cgroup = memcg;
2678 2679 2680 2681 2682 2683 2684
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2685
	smp_wmb();
2686
	SetPageCgroupUsed(pc);
2687

2688 2689
	if (lrucare) {
		if (was_on_lru) {
2690
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2691 2692
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2693
			add_page_to_lru_list(page, lruvec, page_lru(page));
2694 2695 2696 2697
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2698
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2699 2700 2701 2702 2703
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2704
	unlock_page_cgroup(pc);
2705

2706 2707 2708 2709 2710
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2711
	memcg_check_events(memcg, page);
2712
}
2713

2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
2774 2775 2776 2777 2778 2779 2780

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
		mem_cgroup_put(memcg);
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
}

/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
#endif /* CONFIG_MEMCG_KMEM */

2880 2881
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

2882
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2883 2884
/*
 * Because tail pages are not marked as "used", set it. We're under
2885 2886 2887
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2888
 */
2889
void mem_cgroup_split_huge_fixup(struct page *head)
2890 2891
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2892 2893
	struct page_cgroup *pc;
	int i;
2894

2895 2896
	if (mem_cgroup_disabled())
		return;
2897 2898 2899 2900 2901 2902
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
2903
}
2904
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2905

2906
/**
2907
 * mem_cgroup_move_account - move account of the page
2908
 * @page: the page
2909
 * @nr_pages: number of regular pages (>1 for huge pages)
2910 2911 2912 2913 2914
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2915
 * - page is not on LRU (isolate_page() is useful.)
2916
 * - compound_lock is held when nr_pages > 1
2917
 *
2918 2919
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
2920
 */
2921 2922 2923 2924
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
2925
				   struct mem_cgroup *to)
2926
{
2927 2928
	unsigned long flags;
	int ret;
2929
	bool anon = PageAnon(page);
2930

2931
	VM_BUG_ON(from == to);
2932
	VM_BUG_ON(PageLRU(page));
2933 2934 2935 2936 2937 2938 2939
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2940
	if (nr_pages > 1 && !PageTransHuge(page))
2941 2942 2943 2944 2945 2946 2947 2948
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

2949
	move_lock_mem_cgroup(from, &flags);
2950

2951
	if (!anon && page_mapped(page)) {
2952 2953 2954 2955 2956
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2957
	}
2958
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
2959

2960
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2961
	pc->mem_cgroup = to;
2962
	mem_cgroup_charge_statistics(to, anon, nr_pages);
2963
	move_unlock_mem_cgroup(from, &flags);
2964 2965
	ret = 0;
unlock:
2966
	unlock_page_cgroup(pc);
2967 2968 2969
	/*
	 * check events
	 */
2970 2971
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2972
out:
2973 2974 2975
	return ret;
}

2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
2996
 */
2997 2998
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2999
				  struct mem_cgroup *child)
3000 3001
{
	struct mem_cgroup *parent;
3002
	unsigned int nr_pages;
3003
	unsigned long uninitialized_var(flags);
3004 3005
	int ret;

3006
	VM_BUG_ON(mem_cgroup_is_root(child));
3007

3008 3009 3010 3011 3012
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3013

3014
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3015

3016 3017 3018 3019 3020 3021
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3022

3023 3024
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3025
		flags = compound_lock_irqsave(page);
3026
	}
3027

3028
	ret = mem_cgroup_move_account(page, nr_pages,
3029
				pc, child, parent);
3030 3031
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3032

3033
	if (nr_pages > 1)
3034
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3035
	putback_lru_page(page);
3036
put:
3037
	put_page(page);
3038
out:
3039 3040 3041
	return ret;
}

3042 3043 3044 3045 3046 3047 3048
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3049
				gfp_t gfp_mask, enum charge_type ctype)
3050
{
3051
	struct mem_cgroup *memcg = NULL;
3052
	unsigned int nr_pages = 1;
3053
	bool oom = true;
3054
	int ret;
A
Andrea Arcangeli 已提交
3055

A
Andrea Arcangeli 已提交
3056
	if (PageTransHuge(page)) {
3057
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3058
		VM_BUG_ON(!PageTransHuge(page));
3059 3060 3061 3062 3063
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3064
	}
3065

3066
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3067
	if (ret == -ENOMEM)
3068
		return ret;
3069
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3070 3071 3072
	return 0;
}

3073 3074
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3075
{
3076
	if (mem_cgroup_disabled())
3077
		return 0;
3078 3079 3080
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3081
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3082
					MEM_CGROUP_CHARGE_TYPE_ANON);
3083 3084
}

3085 3086 3087
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3088
 * struct page_cgroup is acquired. This refcnt will be consumed by
3089 3090
 * "commit()" or removed by "cancel()"
 */
3091 3092 3093 3094
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3095
{
3096
	struct mem_cgroup *memcg;
3097
	struct page_cgroup *pc;
3098
	int ret;
3099

3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3110 3111
	if (!do_swap_account)
		goto charge_cur_mm;
3112 3113
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3114
		goto charge_cur_mm;
3115 3116
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3117
	css_put(&memcg->css);
3118 3119
	if (ret == -EINTR)
		ret = 0;
3120
	return ret;
3121
charge_cur_mm:
3122 3123 3124 3125
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
3126 3127
}

3128 3129 3130 3131 3132 3133
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
3148 3149 3150
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

3151 3152 3153 3154 3155 3156 3157 3158 3159
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
3160
static void
3161
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
3162
					enum charge_type ctype)
3163
{
3164
	if (mem_cgroup_disabled())
3165
		return;
3166
	if (!memcg)
3167
		return;
3168

3169
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3170 3171 3172
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
3173 3174 3175
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
3176
	 */
3177
	if (do_swap_account && PageSwapCache(page)) {
3178
		swp_entry_t ent = {.val = page_private(page)};
3179
		mem_cgroup_uncharge_swap(ent);
3180
	}
3181 3182
}

3183 3184
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
3185
{
3186
	__mem_cgroup_commit_charge_swapin(page, memcg,
3187
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
3188 3189
}

3190 3191
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
3192
{
3193 3194 3195 3196
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

3197
	if (mem_cgroup_disabled())
3198 3199 3200 3201 3202 3203 3204
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
3205 3206
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
3207 3208 3209 3210
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
3211 3212
}

3213
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3214 3215
				   unsigned int nr_pages,
				   const enum charge_type ctype)
3216 3217 3218
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
3219

3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
3231
		batch->memcg = memcg;
3232 3233
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
3234
	 * In those cases, all pages freed continuously can be expected to be in
3235 3236 3237 3238 3239 3240 3241 3242
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

3243
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
3244 3245
		goto direct_uncharge;

3246 3247 3248 3249 3250
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
3251
	if (batch->memcg != memcg)
3252 3253
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
3254
	batch->nr_pages++;
3255
	if (uncharge_memsw)
3256
		batch->memsw_nr_pages++;
3257 3258
	return;
direct_uncharge:
3259
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3260
	if (uncharge_memsw)
3261 3262 3263
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
3264
}
3265

3266
/*
3267
 * uncharge if !page_mapped(page)
3268
 */
3269
static struct mem_cgroup *
3270 3271
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
3272
{
3273
	struct mem_cgroup *memcg = NULL;
3274 3275
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3276
	bool anon;
3277

3278
	if (mem_cgroup_disabled())
3279
		return NULL;
3280

3281
	VM_BUG_ON(PageSwapCache(page));
K
KAMEZAWA Hiroyuki 已提交
3282

A
Andrea Arcangeli 已提交
3283
	if (PageTransHuge(page)) {
3284
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3285 3286
		VM_BUG_ON(!PageTransHuge(page));
	}
3287
	/*
3288
	 * Check if our page_cgroup is valid
3289
	 */
3290
	pc = lookup_page_cgroup(page);
3291
	if (unlikely(!PageCgroupUsed(pc)))
3292
		return NULL;
3293

3294
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3295

3296
	memcg = pc->mem_cgroup;
3297

K
KAMEZAWA Hiroyuki 已提交
3298 3299 3300
	if (!PageCgroupUsed(pc))
		goto unlock_out;

3301 3302
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
3303
	switch (ctype) {
3304
	case MEM_CGROUP_CHARGE_TYPE_ANON:
3305 3306 3307 3308 3309
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
3310 3311
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
3312
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3313
		/* See mem_cgroup_prepare_migration() */
3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3335
	}
K
KAMEZAWA Hiroyuki 已提交
3336

3337
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3338

3339
	ClearPageCgroupUsed(pc);
3340 3341 3342 3343 3344 3345
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3346

3347
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3348
	/*
3349
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
3350 3351
	 * will never be freed.
	 */
3352
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3353
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3354 3355
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
3356
	}
3357 3358 3359 3360 3361 3362
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
3363
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3364

3365
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
3366 3367 3368

unlock_out:
	unlock_page_cgroup(pc);
3369
	return NULL;
3370 3371
}

3372 3373
void mem_cgroup_uncharge_page(struct page *page)
{
3374 3375 3376
	/* early check. */
	if (page_mapped(page))
		return;
3377
	VM_BUG_ON(page->mapping && !PageAnon(page));
3378 3379
	if (PageSwapCache(page))
		return;
3380
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
3381 3382 3383 3384 3385
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3386
	VM_BUG_ON(page->mapping);
3387
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
3388 3389
}

3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3404 3405
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3426 3427 3428 3429 3430 3431
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3432
	memcg_oom_recover(batch->memcg);
3433 3434 3435 3436
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3437
#ifdef CONFIG_SWAP
3438
/*
3439
 * called after __delete_from_swap_cache() and drop "page" account.
3440 3441
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3442 3443
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3444 3445
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3446 3447 3448 3449 3450
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

3451
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
3452

K
KAMEZAWA Hiroyuki 已提交
3453 3454 3455 3456 3457
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3458
		swap_cgroup_record(ent, css_id(&memcg->css));
3459
}
3460
#endif
3461

A
Andrew Morton 已提交
3462
#ifdef CONFIG_MEMCG_SWAP
3463 3464 3465 3466 3467
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3468
{
3469
	struct mem_cgroup *memcg;
3470
	unsigned short id;
3471 3472 3473 3474

	if (!do_swap_account)
		return;

3475 3476 3477
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3478
	if (memcg) {
3479 3480 3481 3482
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3483
		if (!mem_cgroup_is_root(memcg))
3484
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3485
		mem_cgroup_swap_statistics(memcg, false);
3486 3487
		mem_cgroup_put(memcg);
	}
3488
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3489
}
3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3506
				struct mem_cgroup *from, struct mem_cgroup *to)
3507 3508 3509 3510 3511 3512 3513 3514
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3515
		mem_cgroup_swap_statistics(to, true);
3516
		/*
3517 3518 3519 3520 3521 3522
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3523 3524 3525 3526 3527 3528 3529 3530
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3531
				struct mem_cgroup *from, struct mem_cgroup *to)
3532 3533 3534
{
	return -EINVAL;
}
3535
#endif
K
KAMEZAWA Hiroyuki 已提交
3536

3537
/*
3538 3539
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3540
 */
3541 3542
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
3543
{
3544
	struct mem_cgroup *memcg = NULL;
3545
	unsigned int nr_pages = 1;
3546
	struct page_cgroup *pc;
3547
	enum charge_type ctype;
3548

3549
	*memcgp = NULL;
3550

3551
	if (mem_cgroup_disabled())
3552
		return;
3553

3554 3555 3556
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

3557 3558 3559
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3560 3561
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3593
	}
3594
	unlock_page_cgroup(pc);
3595 3596 3597 3598
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3599
	if (!memcg)
3600
		return;
3601

3602
	*memcgp = memcg;
3603 3604 3605 3606 3607 3608 3609
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
3610
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
3611
	else
3612
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3613 3614 3615 3616 3617
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
3618
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
3619
}
3620

3621
/* remove redundant charge if migration failed*/
3622
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3623
	struct page *oldpage, struct page *newpage, bool migration_ok)
3624
{
3625
	struct page *used, *unused;
3626
	struct page_cgroup *pc;
3627
	bool anon;
3628

3629
	if (!memcg)
3630
		return;
3631

3632
	if (!migration_ok) {
3633 3634
		used = oldpage;
		unused = newpage;
3635
	} else {
3636
		used = newpage;
3637 3638
		unused = oldpage;
	}
3639
	anon = PageAnon(used);
3640 3641 3642 3643
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
3644
	css_put(&memcg->css);
3645
	/*
3646 3647 3648
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3649
	 */
3650 3651 3652 3653 3654
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

3655
	/*
3656 3657 3658 3659 3660 3661
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3662
	 */
3663
	if (anon)
3664
		mem_cgroup_uncharge_page(used);
3665
}
3666

3667 3668 3669 3670 3671 3672 3673 3674
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
3675
	struct mem_cgroup *memcg = NULL;
3676 3677 3678 3679 3680 3681 3682 3683 3684
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
3685 3686 3687 3688 3689
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		mem_cgroup_charge_statistics(memcg, false, -1);
		ClearPageCgroupUsed(pc);
	}
3690 3691
	unlock_page_cgroup(pc);

3692 3693 3694 3695 3696 3697
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
3698 3699 3700 3701 3702
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
3703
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3704 3705
}

3706 3707 3708 3709 3710 3711
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3712 3713 3714 3715 3716
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
3736
		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3737 3738 3739 3740 3741
		       pc, pc->flags, pc->mem_cgroup);
	}
}
#endif

3742 3743
static DEFINE_MUTEX(set_limit_mutex);

3744
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3745
				unsigned long long val)
3746
{
3747
	int retry_count;
3748
	u64 memswlimit, memlimit;
3749
	int ret = 0;
3750 3751
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3752
	int enlarge;
3753 3754 3755 3756 3757 3758 3759 3760 3761

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3762

3763
	enlarge = 0;
3764
	while (retry_count) {
3765 3766 3767 3768
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3769 3770 3771
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3772
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3773 3774 3775 3776 3777 3778
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3779 3780
			break;
		}
3781 3782 3783 3784 3785

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3786
		ret = res_counter_set_limit(&memcg->res, val);
3787 3788 3789 3790 3791 3792
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3793 3794 3795 3796 3797
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3798 3799
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3800 3801 3802 3803 3804 3805
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3806
	}
3807 3808
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3809

3810 3811 3812
	return ret;
}

L
Li Zefan 已提交
3813 3814
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3815
{
3816
	int retry_count;
3817
	u64 memlimit, memswlimit, oldusage, curusage;
3818 3819
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3820
	int enlarge = 0;
3821

3822 3823 3824
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3825 3826 3827 3828 3829 3830 3831 3832
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3833
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3834 3835 3836 3837 3838 3839 3840 3841
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3842 3843 3844
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3845
		ret = res_counter_set_limit(&memcg->memsw, val);
3846 3847 3848 3849 3850 3851
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3852 3853 3854 3855 3856
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3857 3858 3859
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3860
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3861
		/* Usage is reduced ? */
3862
		if (curusage >= oldusage)
3863
			retry_count--;
3864 3865
		else
			oldusage = curusage;
3866
	}
3867 3868
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3869 3870 3871
	return ret;
}

3872
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3873 3874
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3875 3876 3877 3878 3879 3880
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3881
	unsigned long long excess;
3882
	unsigned long nr_scanned;
3883 3884 3885 3886

	if (order > 0)
		return 0;

3887
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3901
		nr_scanned = 0;
3902
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3903
						    gfp_mask, &nr_scanned);
3904
		nr_reclaimed += reclaimed;
3905
		*total_scanned += nr_scanned;
3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3928
				if (next_mz == mz)
3929
					css_put(&next_mz->memcg->css);
3930
				else /* next_mz == NULL or other memcg */
3931 3932 3933
					break;
			} while (1);
		}
3934 3935
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3936 3937 3938 3939 3940 3941 3942 3943
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3944
		/* If excess == 0, no tree ops */
3945
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3946
		spin_unlock(&mctz->lock);
3947
		css_put(&mz->memcg->css);
3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
3960
		css_put(&next_mz->memcg->css);
3961 3962 3963
	return nr_reclaimed;
}

3964 3965 3966 3967 3968 3969 3970
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
3971
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
3972 3973
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
3974
 */
3975
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3976
				int node, int zid, enum lru_list lru)
3977
{
3978
	struct lruvec *lruvec;
3979
	unsigned long flags;
3980
	struct list_head *list;
3981 3982
	struct page *busy;
	struct zone *zone;
3983

K
KAMEZAWA Hiroyuki 已提交
3984
	zone = &NODE_DATA(node)->node_zones[zid];
3985 3986
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
3987

3988
	busy = NULL;
3989
	do {
3990
		struct page_cgroup *pc;
3991 3992
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
3993
		spin_lock_irqsave(&zone->lru_lock, flags);
3994
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3995
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3996
			break;
3997
		}
3998 3999 4000
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4001
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4002
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4003 4004
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4005
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4006

4007
		pc = lookup_page_cgroup(page);
4008

4009
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4010
			/* found lock contention or "pc" is obsolete. */
4011
			busy = page;
4012 4013 4014
			cond_resched();
		} else
			busy = NULL;
4015
	} while (!list_empty(list));
4016 4017 4018
}

/*
4019 4020
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4021
 * This enables deleting this mem_cgroup.
4022 4023
 *
 * Caller is responsible for holding css reference on the memcg.
4024
 */
4025
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4026
{
4027
	int node, zid;
4028

4029
	do {
4030 4031
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4032 4033
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4034
		for_each_node_state(node, N_MEMORY) {
4035
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4036 4037
				enum lru_list lru;
				for_each_lru(lru) {
4038
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4039
							node, zid, lru);
4040
				}
4041
			}
4042
		}
4043 4044
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4045
		cond_resched();
4046

4047 4048 4049 4050 4051 4052 4053 4054
		/*
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
	} while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0);
4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066
}

/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4067

4068
	/* returns EBUSY if there is a task or if we come here twice. */
4069 4070 4071
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4072 4073
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4074
	/* try to free all pages in this cgroup */
4075
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4076
		int progress;
4077

4078 4079 4080
		if (signal_pending(current))
			return -EINTR;

4081
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4082
						false);
4083
		if (!progress) {
4084
			nr_retries--;
4085
			/* maybe some writeback is necessary */
4086
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4087
		}
4088 4089

	}
K
KAMEZAWA Hiroyuki 已提交
4090
	lru_add_drain();
4091 4092 4093
	mem_cgroup_reparent_charges(memcg);

	return 0;
4094 4095
}

4096
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
4097
{
4098 4099 4100
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	int ret;

4101 4102
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4103 4104 4105 4106 4107
	css_get(&memcg->css);
	ret = mem_cgroup_force_empty(memcg);
	css_put(&memcg->css);

	return ret;
4108 4109 4110
}


4111 4112 4113 4114 4115 4116 4117 4118 4119
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
4120
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4121
	struct cgroup *parent = cont->parent;
4122
	struct mem_cgroup *parent_memcg = NULL;
4123 4124

	if (parent)
4125
		parent_memcg = mem_cgroup_from_cont(parent);
4126 4127

	cgroup_lock();
4128 4129 4130 4131

	if (memcg->use_hierarchy == val)
		goto out;

4132
	/*
4133
	 * If parent's use_hierarchy is set, we can't make any modifications
4134 4135 4136 4137 4138 4139
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
4140
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4141 4142
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
4143
			memcg->use_hierarchy = val;
4144 4145 4146 4147
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
4148 4149

out:
4150 4151 4152 4153 4154
	cgroup_unlock();

	return retval;
}

4155

4156
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4157
					       enum mem_cgroup_stat_index idx)
4158
{
K
KAMEZAWA Hiroyuki 已提交
4159
	struct mem_cgroup *iter;
4160
	long val = 0;
4161

4162
	/* Per-cpu values can be negative, use a signed accumulator */
4163
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4164 4165 4166 4167 4168
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
4169 4170
}

4171
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4172
{
K
KAMEZAWA Hiroyuki 已提交
4173
	u64 val;
4174

4175
	if (!mem_cgroup_is_root(memcg)) {
4176
		if (!swap)
4177
			return res_counter_read_u64(&memcg->res, RES_USAGE);
4178
		else
4179
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4180 4181
	}

4182 4183
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4184

K
KAMEZAWA Hiroyuki 已提交
4185
	if (swap)
4186
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4187 4188 4189 4190

	return val << PAGE_SHIFT;
}

4191 4192 4193
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
4194
{
4195
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4196
	char str[64];
4197
	u64 val;
G
Glauber Costa 已提交
4198 4199
	int name, len;
	enum res_type type;
4200 4201 4202

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4203 4204 4205 4206

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4207 4208
	switch (type) {
	case _MEM:
4209
		if (name == RES_USAGE)
4210
			val = mem_cgroup_usage(memcg, false);
4211
		else
4212
			val = res_counter_read_u64(&memcg->res, name);
4213 4214
		break;
	case _MEMSWAP:
4215
		if (name == RES_USAGE)
4216
			val = mem_cgroup_usage(memcg, true);
4217
		else
4218
			val = res_counter_read_u64(&memcg->memsw, name);
4219
		break;
4220 4221 4222
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
4223 4224 4225
	default:
		BUG();
	}
4226 4227 4228

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
4229
}
4230 4231 4232 4233 4234

static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
4235 4236
	bool must_inc_static_branch = false;

4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 *
	 * Taking the cgroup_lock is really offensive, but it is so far the only
	 * way to guarantee that no children will appear. There are plenty of
	 * other offenders, and they should all go away. Fine grained locking
	 * is probably the way to go here. When we are fully hierarchical, we
	 * can also get rid of the use_hierarchy check.
	 */
	cgroup_lock();
	mutex_lock(&set_limit_mutex);
	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
		if (cgroup_task_count(cont) || (memcg->use_hierarchy &&
						!list_empty(&cont->children))) {
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

4267 4268 4269 4270 4271 4272 4273 4274 4275
		/*
		 * After this point, kmem_accounted (that we test atomically in
		 * the beginning of this conditional), is no longer 0. This
		 * guarantees only one process will set the following boolean
		 * to true. We don't need test_and_set because we're protected
		 * by the set_limit_mutex anyway.
		 */
		memcg_kmem_set_activated(memcg);
		must_inc_static_branch = true;
4276 4277 4278 4279 4280 4281 4282
		/*
		 * kmem charges can outlive the cgroup. In the case of slab
		 * pages, for instance, a page contain objects from various
		 * processes, so it is unfeasible to migrate them away. We
		 * need to reference count the memcg because of that.
		 */
		mem_cgroup_get(memcg);
4283 4284 4285 4286 4287
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
	cgroup_unlock();
4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308

	/*
	 * We are by now familiar with the fact that we can't inc the static
	 * branch inside cgroup_lock. See disarm functions for details. A
	 * worker here is overkill, but also wrong: After the limit is set, we
	 * must start accounting right away. Since this operation can't fail,
	 * we can safely defer it to here - no rollback will be needed.
	 *
	 * The boolean used to control this is also safe, because
	 * KMEM_ACCOUNTED_ACTIVATED guarantees that only one process will be
	 * able to set it to true;
	 */
	if (must_inc_static_branch) {
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);
	}

4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
#endif
	return ret;
}

static void memcg_propagate_kmem(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
		return;
	memcg->kmem_account_flags = parent->kmem_account_flags;
4319
#ifdef CONFIG_MEMCG_KMEM
4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
	if (memcg_kmem_is_active(memcg)) {
4331
		mem_cgroup_get(memcg);
4332 4333
		static_key_slow_inc(&memcg_kmem_enabled_key);
	}
4334
#endif
4335 4336
}

4337 4338 4339 4340
/*
 * The user of this function is...
 * RES_LIMIT.
 */
4341 4342
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
4343
{
4344
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
4345 4346
	enum res_type type;
	int name;
4347 4348 4349
	unsigned long long val;
	int ret;

4350 4351
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4352 4353 4354 4355

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4356
	switch (name) {
4357
	case RES_LIMIT:
4358 4359 4360 4361
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
4362 4363
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
4364 4365 4366
		if (ret)
			break;
		if (type == _MEM)
4367
			ret = mem_cgroup_resize_limit(memcg, val);
4368
		else if (type == _MEMSWAP)
4369
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
4370 4371 4372 4373
		else if (type == _KMEM)
			ret = memcg_update_kmem_limit(cont, val);
		else
			return -EINVAL;
4374
		break;
4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
4389 4390 4391 4392 4393
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
4394 4395
}

4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

4423
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4424
{
4425
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
4426 4427
	int name;
	enum res_type type;
4428

4429 4430
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
4431 4432 4433 4434

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4435
	switch (name) {
4436
	case RES_MAX_USAGE:
4437
		if (type == _MEM)
4438
			res_counter_reset_max(&memcg->res);
4439
		else if (type == _MEMSWAP)
4440
			res_counter_reset_max(&memcg->memsw);
4441 4442 4443 4444
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
4445 4446
		break;
	case RES_FAILCNT:
4447
		if (type == _MEM)
4448
			res_counter_reset_failcnt(&memcg->res);
4449
		else if (type == _MEMSWAP)
4450
			res_counter_reset_failcnt(&memcg->memsw);
4451 4452 4453 4454
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
4455 4456
		break;
	}
4457

4458
	return 0;
4459 4460
}

4461 4462 4463 4464 4465 4466
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4467
#ifdef CONFIG_MMU
4468 4469 4470
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
4471
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4472 4473 4474 4475 4476 4477 4478 4479 4480

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
4481
	memcg->move_charge_at_immigrate = val;
4482 4483 4484 4485
	cgroup_unlock();

	return 0;
}
4486 4487 4488 4489 4490 4491 4492
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4493

4494
#ifdef CONFIG_NUMA
4495
static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4496
				      struct seq_file *m)
4497 4498 4499 4500
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
4501
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4502

4503
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4504
	seq_printf(m, "total=%lu", total_nr);
4505
	for_each_node_state(nid, N_MEMORY) {
4506
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4507 4508 4509 4510
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4511
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4512
	seq_printf(m, "file=%lu", file_nr);
4513
	for_each_node_state(nid, N_MEMORY) {
4514
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4515
				LRU_ALL_FILE);
4516 4517 4518 4519
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4520
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4521
	seq_printf(m, "anon=%lu", anon_nr);
4522
	for_each_node_state(nid, N_MEMORY) {
4523
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4524
				LRU_ALL_ANON);
4525 4526 4527 4528
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4529
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4530
	seq_printf(m, "unevictable=%lu", unevictable_nr);
4531
	for_each_node_state(nid, N_MEMORY) {
4532
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4533
				BIT(LRU_UNEVICTABLE));
4534 4535 4536 4537 4538 4539 4540
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

4554
static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
4555
				 struct seq_file *m)
4556
{
4557
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4558 4559
	struct mem_cgroup *mi;
	unsigned int i;
4560

4561
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4562
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4563
			continue;
4564 4565
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4566
	}
L
Lee Schermerhorn 已提交
4567

4568 4569 4570 4571 4572 4573 4574 4575
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
4576
	/* Hierarchical information */
4577 4578
	{
		unsigned long long limit, memsw_limit;
4579
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4580
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4581
		if (do_swap_account)
4582 4583
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
4584
	}
K
KOSAKI Motohiro 已提交
4585

4586 4587 4588
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

4589
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4590
			continue;
4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4611
	}
K
KAMEZAWA Hiroyuki 已提交
4612

K
KOSAKI Motohiro 已提交
4613 4614 4615 4616
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
4617
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
4618 4619 4620 4621 4622
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4623
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4624
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
4625

4626 4627 4628 4629
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
4630
			}
4631 4632 4633 4634
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
4635 4636 4637
	}
#endif

4638 4639 4640
	return 0;
}

K
KOSAKI Motohiro 已提交
4641 4642 4643 4644
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4645
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4646 4647 4648 4649 4650 4651 4652
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4653

K
KOSAKI Motohiro 已提交
4654 4655 4656 4657 4658 4659 4660
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4661 4662 4663

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4664 4665
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4666 4667
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4668
		return -EINVAL;
4669
	}
K
KOSAKI Motohiro 已提交
4670 4671 4672

	memcg->swappiness = val;

4673 4674
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4675 4676 4677
	return 0;
}

4678 4679 4680 4681 4682 4683 4684 4685
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4686
		t = rcu_dereference(memcg->thresholds.primary);
4687
	else
4688
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4689 4690 4691 4692 4693 4694 4695

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
4696
	 * current_threshold points to threshold just below or equal to usage.
4697 4698 4699
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4700
	i = t->current_threshold;
4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4724
	t->current_threshold = i - 1;
4725 4726 4727 4728 4729 4730
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4731 4732 4733 4734 4735 4736 4737
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4738 4739 4740 4741 4742 4743 4744 4745 4746 4747
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4748
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4749 4750 4751
{
	struct mem_cgroup_eventfd_list *ev;

4752
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4753 4754 4755 4756
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4757
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4758
{
K
KAMEZAWA Hiroyuki 已提交
4759 4760
	struct mem_cgroup *iter;

4761
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4762
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4763 4764 4765 4766
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4767 4768
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4769 4770
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
4771
	enum res_type type = MEMFILE_TYPE(cft->private);
4772
	u64 threshold, usage;
4773
	int i, size, ret;
4774 4775 4776 4777 4778 4779

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4780

4781
	if (type == _MEM)
4782
		thresholds = &memcg->thresholds;
4783
	else if (type == _MEMSWAP)
4784
		thresholds = &memcg->memsw_thresholds;
4785 4786 4787 4788 4789 4790
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4791
	if (thresholds->primary)
4792 4793
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4794
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4795 4796

	/* Allocate memory for new array of thresholds */
4797
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4798
			GFP_KERNEL);
4799
	if (!new) {
4800 4801 4802
		ret = -ENOMEM;
		goto unlock;
	}
4803
	new->size = size;
4804 4805

	/* Copy thresholds (if any) to new array */
4806 4807
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4808
				sizeof(struct mem_cgroup_threshold));
4809 4810
	}

4811
	/* Add new threshold */
4812 4813
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4814 4815

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4816
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4817 4818 4819
			compare_thresholds, NULL);

	/* Find current threshold */
4820
	new->current_threshold = -1;
4821
	for (i = 0; i < size; i++) {
4822
		if (new->entries[i].threshold <= usage) {
4823
			/*
4824 4825
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4826 4827
			 * it here.
			 */
4828
			++new->current_threshold;
4829 4830
		} else
			break;
4831 4832
	}

4833 4834 4835 4836 4837
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4838

4839
	/* To be sure that nobody uses thresholds */
4840 4841 4842 4843 4844 4845 4846 4847
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4848
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4849
	struct cftype *cft, struct eventfd_ctx *eventfd)
4850 4851
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4852 4853
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
4854
	enum res_type type = MEMFILE_TYPE(cft->private);
4855
	u64 usage;
4856
	int i, j, size;
4857 4858 4859

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4860
		thresholds = &memcg->thresholds;
4861
	else if (type == _MEMSWAP)
4862
		thresholds = &memcg->memsw_thresholds;
4863 4864 4865
	else
		BUG();

4866 4867 4868
	if (!thresholds->primary)
		goto unlock;

4869 4870 4871 4872 4873 4874
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4875 4876 4877
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4878 4879 4880
			size++;
	}

4881
	new = thresholds->spare;
4882

4883 4884
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4885 4886
		kfree(new);
		new = NULL;
4887
		goto swap_buffers;
4888 4889
	}

4890
	new->size = size;
4891 4892

	/* Copy thresholds and find current threshold */
4893 4894 4895
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4896 4897
			continue;

4898
		new->entries[j] = thresholds->primary->entries[i];
4899
		if (new->entries[j].threshold <= usage) {
4900
			/*
4901
			 * new->current_threshold will not be used
4902 4903 4904
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4905
			++new->current_threshold;
4906 4907 4908 4909
		}
		j++;
	}

4910
swap_buffers:
4911 4912
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4913 4914 4915 4916 4917 4918
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

4919
	rcu_assign_pointer(thresholds->primary, new);
4920

4921
	/* To be sure that nobody uses thresholds */
4922
	synchronize_rcu();
4923
unlock:
4924 4925
	mutex_unlock(&memcg->thresholds_lock);
}
4926

K
KAMEZAWA Hiroyuki 已提交
4927 4928 4929 4930 4931
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
4932
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
4933 4934 4935 4936 4937 4938

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4939
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4940 4941 4942 4943 4944

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4945
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4946
		eventfd_signal(eventfd, 1);
4947
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4948 4949 4950 4951

	return 0;
}

4952
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4953 4954
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4955
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4956
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
4957
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
4958 4959 4960

	BUG_ON(type != _OOM_TYPE);

4961
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4962

4963
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4964 4965 4966 4967 4968 4969
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4970
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4971 4972
}

4973 4974 4975
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4976
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4977

4978
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4979

4980
	if (atomic_read(&memcg->under_oom))
4981 4982 4983 4984 4985 4986 4987 4988 4989
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4990
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
5002
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
5003 5004 5005
		cgroup_unlock();
		return -EINVAL;
	}
5006
	memcg->oom_kill_disable = val;
5007
	if (!val)
5008
		memcg_oom_recover(memcg);
5009 5010 5011 5012
	cgroup_unlock();
	return 0;
}

A
Andrew Morton 已提交
5013
#ifdef CONFIG_MEMCG_KMEM
5014
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5015
{
5016
	memcg_propagate_kmem(memcg);
5017
	return mem_cgroup_sockets_init(memcg, ss);
5018 5019
};

5020
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5021
{
5022
	mem_cgroup_sockets_destroy(memcg);
5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	/*
	 * Charges already down to 0, undo mem_cgroup_get() done in the charge
	 * path here, being careful not to race with memcg_uncharge_kmem: it is
	 * possible that the charges went down to 0 between mark_dead and the
	 * res_counter read, so in that case, we don't need the put
	 */
	if (memcg_kmem_test_and_clear_dead(memcg))
		mem_cgroup_put(memcg);
G
Glauber Costa 已提交
5037
}
5038
#else
5039
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5040 5041 5042
{
	return 0;
}
G
Glauber Costa 已提交
5043

5044
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5045 5046
{
}
5047 5048
#endif

B
Balbir Singh 已提交
5049 5050
static struct cftype mem_cgroup_files[] = {
	{
5051
		.name = "usage_in_bytes",
5052
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5053
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5054 5055
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5056
	},
5057 5058
	{
		.name = "max_usage_in_bytes",
5059
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5060
		.trigger = mem_cgroup_reset,
5061
		.read = mem_cgroup_read,
5062
	},
B
Balbir Singh 已提交
5063
	{
5064
		.name = "limit_in_bytes",
5065
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5066
		.write_string = mem_cgroup_write,
5067
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5068
	},
5069 5070 5071 5072
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5073
		.read = mem_cgroup_read,
5074
	},
B
Balbir Singh 已提交
5075 5076
	{
		.name = "failcnt",
5077
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5078
		.trigger = mem_cgroup_reset,
5079
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5080
	},
5081 5082
	{
		.name = "stat",
5083
		.read_seq_string = memcg_stat_show,
5084
	},
5085 5086 5087 5088
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5089 5090 5091 5092 5093
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
5094 5095 5096 5097 5098
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5099 5100 5101 5102 5103
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5104 5105
	{
		.name = "oom_control",
5106 5107
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5108 5109 5110 5111
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5112 5113 5114
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5115
		.read_seq_string = memcg_numa_stat_show,
5116 5117
	},
#endif
A
Andrew Morton 已提交
5118
#ifdef CONFIG_MEMCG_SWAP
5119 5120 5121
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5122
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5123 5124
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
5125 5126 5127 5128 5129
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
5130
		.read = mem_cgroup_read,
5131 5132 5133 5134 5135
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
5136
		.read = mem_cgroup_read,
5137 5138 5139 5140 5141
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
5142
		.read = mem_cgroup_read,
5143
	},
5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168
#endif
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
5169
#endif
5170
	{ },	/* terminate */
5171
};
5172

5173
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5174 5175
{
	struct mem_cgroup_per_node *pn;
5176
	struct mem_cgroup_per_zone *mz;
5177
	int zone, tmp = node;
5178 5179 5180 5181 5182 5183 5184 5185
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5186 5187
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5188
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5189 5190
	if (!pn)
		return 1;
5191 5192 5193

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
5194
		lruvec_init(&mz->lruvec);
5195
		mz->usage_in_excess = 0;
5196
		mz->on_tree = false;
5197
		mz->memcg = memcg;
5198
	}
5199
	memcg->info.nodeinfo[node] = pn;
5200 5201 5202
	return 0;
}

5203
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5204
{
5205
	kfree(memcg->info.nodeinfo[node]);
5206 5207
}

5208 5209
static struct mem_cgroup *mem_cgroup_alloc(void)
{
5210
	struct mem_cgroup *memcg;
5211
	int size = sizeof(struct mem_cgroup);
5212

5213
	/* Can be very big if MAX_NUMNODES is very big */
5214
	if (size < PAGE_SIZE)
5215
		memcg = kzalloc(size, GFP_KERNEL);
5216
	else
5217
		memcg = vzalloc(size);
5218

5219
	if (!memcg)
5220 5221
		return NULL;

5222 5223
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
5224
		goto out_free;
5225 5226
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
5227 5228 5229

out_free:
	if (size < PAGE_SIZE)
5230
		kfree(memcg);
5231
	else
5232
		vfree(memcg);
5233
	return NULL;
5234 5235
}

5236
/*
5237
 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
5238 5239 5240
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
 */
5241
static void free_work(struct work_struct *work)
5242 5243
{
	struct mem_cgroup *memcg;
5244
	int size = sizeof(struct mem_cgroup);
5245 5246

	memcg = container_of(work, struct mem_cgroup, work_freeing);
5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
5258
	disarm_static_keys(memcg);
5259 5260 5261 5262
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
5263
}
5264 5265

static void free_rcu(struct rcu_head *rcu_head)
5266 5267 5268 5269
{
	struct mem_cgroup *memcg;

	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
5270
	INIT_WORK(&memcg->work_freeing, free_work);
5271 5272 5273
	schedule_work(&memcg->work_freeing);
}

5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

5285
static void __mem_cgroup_free(struct mem_cgroup *memcg)
5286
{
K
KAMEZAWA Hiroyuki 已提交
5287 5288
	int node;

5289 5290
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
5291

B
Bob Liu 已提交
5292
	for_each_node(node)
5293
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
5294

5295
	free_percpu(memcg->stat);
5296
	call_rcu(&memcg->rcu_freeing, free_rcu);
5297 5298
}

5299
static void mem_cgroup_get(struct mem_cgroup *memcg)
5300
{
5301
	atomic_inc(&memcg->refcnt);
5302 5303
}

5304
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
5305
{
5306 5307 5308
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
5309 5310 5311
		if (parent)
			mem_cgroup_put(parent);
	}
5312 5313
}

5314
static void mem_cgroup_put(struct mem_cgroup *memcg)
5315
{
5316
	__mem_cgroup_put(memcg, 1);
5317 5318
}

5319 5320 5321
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
5322
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
5323
{
5324
	if (!memcg->res.parent)
5325
		return NULL;
5326
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
5327
}
G
Glauber Costa 已提交
5328
EXPORT_SYMBOL(parent_mem_cgroup);
5329

A
Andrew Morton 已提交
5330
#ifdef CONFIG_MEMCG_SWAP
5331 5332
static void __init enable_swap_cgroup(void)
{
5333
	if (!mem_cgroup_disabled() && really_do_swap_account)
5334 5335 5336 5337 5338 5339 5340 5341
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

5342 5343 5344 5345 5346 5347
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
5348
	for_each_node(node) {
5349 5350 5351 5352 5353
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
5354
			goto err_cleanup;
5355 5356 5357 5358 5359 5360 5361 5362 5363 5364

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
5365 5366

err_cleanup:
B
Bob Liu 已提交
5367
	for_each_node(node) {
5368 5369 5370 5371 5372 5373 5374
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

5375 5376
}

L
Li Zefan 已提交
5377
static struct cgroup_subsys_state * __ref
5378
mem_cgroup_css_alloc(struct cgroup *cont)
B
Balbir Singh 已提交
5379
{
5380
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
5381
	long error = -ENOMEM;
5382
	int node;
B
Balbir Singh 已提交
5383

5384 5385
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
5386
		return ERR_PTR(error);
5387

B
Bob Liu 已提交
5388
	for_each_node(node)
5389
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
5390
			goto free_out;
5391

5392
	/* root ? */
5393
	if (cont->parent == NULL) {
5394
		int cpu;
5395
		enable_swap_cgroup();
5396
		parent = NULL;
5397 5398
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
5399
		root_mem_cgroup = memcg;
5400 5401 5402 5403 5404
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
5405
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5406
	} else {
5407
		parent = mem_cgroup_from_cont(cont->parent);
5408 5409
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
5410
	}
5411

5412
	if (parent && parent->use_hierarchy) {
5413 5414
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
5415
		res_counter_init(&memcg->kmem, &parent->kmem);
5416 5417 5418 5419 5420 5421 5422
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
5423
	} else {
5424 5425
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
5426
		res_counter_init(&memcg->kmem, NULL);
5427 5428 5429 5430 5431 5432 5433
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
		if (parent && parent != root_mem_cgroup)
			mem_cgroup_subsys.broken_hierarchy = true;
5434
	}
5435 5436
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
5437

K
KOSAKI Motohiro 已提交
5438
	if (parent)
5439 5440 5441 5442
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
5443
	spin_lock_init(&memcg->move_lock);
5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
		return ERR_PTR(error);
	}
5455
	return &memcg->css;
5456
free_out:
5457
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
5458
	return ERR_PTR(error);
B
Balbir Singh 已提交
5459 5460
}

5461
static void mem_cgroup_css_offline(struct cgroup *cont)
5462
{
5463
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5464

5465
	mem_cgroup_reparent_charges(memcg);
5466 5467
}

5468
static void mem_cgroup_css_free(struct cgroup *cont)
B
Balbir Singh 已提交
5469
{
5470
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5471

5472
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
5473

5474
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
5475 5476
}

5477
#ifdef CONFIG_MMU
5478
/* Handlers for move charge at task migration. */
5479 5480
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5481
{
5482 5483
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5484
	struct mem_cgroup *memcg = mc.to;
5485

5486
	if (mem_cgroup_is_root(memcg)) {
5487 5488 5489 5490 5491 5492 5493 5494
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5495
		 * "memcg" cannot be under rmdir() because we've already checked
5496 5497 5498 5499
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5500
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5501
			goto one_by_one;
5502
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5503
						PAGE_SIZE * count, &dummy)) {
5504
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5521 5522
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
5523
		if (ret)
5524
			/* mem_cgroup_clear_mc() will do uncharge later */
5525
			return ret;
5526 5527
		mc.precharge++;
	}
5528 5529 5530 5531
	return ret;
}

/**
5532
 * get_mctgt_type - get target type of moving charge
5533 5534 5535
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5536
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5537 5538 5539 5540 5541 5542
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5543 5544 5545
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5546 5547 5548 5549 5550
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5551
	swp_entry_t	ent;
5552 5553 5554
};

enum mc_target_type {
5555
	MC_TARGET_NONE = 0,
5556
	MC_TARGET_PAGE,
5557
	MC_TARGET_SWAP,
5558 5559
};

D
Daisuke Nishimura 已提交
5560 5561
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5562
{
D
Daisuke Nishimura 已提交
5563
	struct page *page = vm_normal_page(vma, addr, ptent);
5564

D
Daisuke Nishimura 已提交
5565 5566 5567 5568
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5569
		if (!move_anon())
D
Daisuke Nishimura 已提交
5570
			return NULL;
5571 5572
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5573 5574 5575 5576 5577 5578 5579
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5580
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
5581 5582 5583 5584 5585 5586 5587 5588
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
5589 5590 5591 5592 5593
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
	page = find_get_page(&swapper_space, ent.val);
D
Daisuke Nishimura 已提交
5594 5595 5596 5597 5598
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
5599 5600 5601 5602 5603 5604 5605
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5606

5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5626 5627 5628 5629 5630 5631
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5632
		if (do_swap_account)
5633 5634
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5635
	}
5636
#endif
5637 5638 5639
	return page;
}

5640
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5641 5642 5643 5644
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
5645
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5646 5647 5648 5649 5650 5651
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5652 5653
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5654 5655

	if (!page && !ent.val)
5656
		return ret;
5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5672 5673
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5674
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5675 5676 5677
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5678 5679 5680 5681
	}
	return ret;
}

5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5717 5718 5719 5720 5721 5722 5723 5724
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5725 5726 5727 5728
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
5729
		return 0;
5730
	}
5731

5732 5733
	if (pmd_trans_unstable(pmd))
		return 0;
5734 5735
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5736
		if (get_mctgt_type(vma, addr, *pte, NULL))
5737 5738 5739 5740
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5741 5742 5743
	return 0;
}

5744 5745 5746 5747 5748
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5749
	down_read(&mm->mmap_sem);
5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5761
	up_read(&mm->mmap_sem);
5762 5763 5764 5765 5766 5767 5768 5769 5770

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5771 5772 5773 5774 5775
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5776 5777
}

5778 5779
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5780
{
5781 5782 5783
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5784
	/* we must uncharge all the leftover precharges from mc.to */
5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5796
	}
5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5831
	spin_lock(&mc.lock);
5832 5833
	mc.from = NULL;
	mc.to = NULL;
5834
	spin_unlock(&mc.lock);
5835
	mem_cgroup_end_move(from);
5836 5837
}

5838 5839
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5840
{
5841
	struct task_struct *p = cgroup_taskset_first(tset);
5842
	int ret = 0;
5843
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5844

5845
	if (memcg->move_charge_at_immigrate) {
5846 5847 5848
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5849
		VM_BUG_ON(from == memcg);
5850 5851 5852 5853 5854

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5855 5856 5857 5858
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5859
			VM_BUG_ON(mc.moved_charge);
5860
			VM_BUG_ON(mc.moved_swap);
5861
			mem_cgroup_start_move(from);
5862
			spin_lock(&mc.lock);
5863
			mc.from = from;
5864
			mc.to = memcg;
5865
			spin_unlock(&mc.lock);
5866
			/* We set mc.moving_task later */
5867 5868 5869 5870

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5871 5872
		}
		mmput(mm);
5873 5874 5875 5876
	}
	return ret;
}

5877 5878
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5879
{
5880
	mem_cgroup_clear_mc();
5881 5882
}

5883 5884 5885
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5886
{
5887 5888 5889 5890
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5891 5892 5893 5894
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
5895

5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5907
		if (mc.precharge < HPAGE_PMD_NR) {
5908 5909 5910 5911 5912 5913 5914 5915 5916
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5917
							pc, mc.from, mc.to)) {
5918 5919 5920 5921 5922 5923 5924 5925
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
5926
		return 0;
5927 5928
	}

5929 5930
	if (pmd_trans_unstable(pmd))
		return 0;
5931 5932 5933 5934
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5935
		swp_entry_t ent;
5936 5937 5938 5939

		if (!mc.precharge)
			break;

5940
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5941 5942 5943 5944 5945
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5946
			if (!mem_cgroup_move_account(page, 1, pc,
5947
						     mc.from, mc.to)) {
5948
				mc.precharge--;
5949 5950
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5951 5952
			}
			putback_lru_page(page);
5953
put:			/* get_mctgt_type() gets the page */
5954 5955
			put_page(page);
			break;
5956 5957
		case MC_TARGET_SWAP:
			ent = target.ent;
5958
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5959
				mc.precharge--;
5960 5961 5962
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5963
			break;
5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5978
		ret = mem_cgroup_do_precharge(1);
5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6022
	up_read(&mm->mmap_sem);
6023 6024
}

6025 6026
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6027
{
6028
	struct task_struct *p = cgroup_taskset_first(tset);
6029
	struct mm_struct *mm = get_task_mm(p);
6030 6031

	if (mm) {
6032 6033
		if (mc.to)
			mem_cgroup_move_charge(mm);
6034 6035
		mmput(mm);
	}
6036 6037
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6038
}
6039
#else	/* !CONFIG_MMU */
6040 6041
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
6042 6043 6044
{
	return 0;
}
6045 6046
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
6047 6048
{
}
6049 6050
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
6051 6052 6053
{
}
#endif
B
Balbir Singh 已提交
6054

B
Balbir Singh 已提交
6055 6056 6057
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6058 6059 6060
	.css_alloc = mem_cgroup_css_alloc,
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6061 6062
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6063
	.attach = mem_cgroup_move_task,
6064
	.base_cftypes = mem_cgroup_files,
6065
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
6066
	.use_id = 1,
B
Balbir Singh 已提交
6067
};
6068

A
Andrew Morton 已提交
6069
#ifdef CONFIG_MEMCG_SWAP
6070 6071 6072
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
6073
	if (!strcmp(s, "1"))
6074
		really_do_swap_account = 1;
6075
	else if (!strcmp(s, "0"))
6076 6077 6078
		really_do_swap_account = 0;
	return 1;
}
6079
__setup("swapaccount=", enable_swap_account);
6080 6081

#endif