memcontrol.c 142.3 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
G
Glauber Costa 已提交
53 54
#include <net/sock.h>
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
55

56 57
#include <asm/uaccess.h>

58 59
#include <trace/events/vmscan.h>

60 61
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
62
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
63

64
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
65
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66
int do_swap_account __read_mostly;
67 68 69 70 71 72 73 74

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

75 76 77 78 79
#else
#define do_swap_account		(0)
#endif


80 81 82 83 84 85 86 87
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
93 94 95
	MEM_CGROUP_STAT_NSTATS,
};

96 97 98 99
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
100 101
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
102 103
	MEM_CGROUP_EVENTS_NSTATS,
};
104 105 106 107 108 109 110 111 112
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
113
	MEM_CGROUP_TARGET_NUMAINFO,
114 115 116 117
	MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET (128)
#define SOFTLIMIT_EVENTS_TARGET (1024)
118
#define NUMAINFO_EVENTS_TARGET	(1024)
119

120
struct mem_cgroup_stat_cpu {
121
	long count[MEM_CGROUP_STAT_NSTATS];
122
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
123
	unsigned long targets[MEM_CGROUP_NTARGETS];
124 125
};

126 127 128 129 130 131 132
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

133 134 135 136
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
137
	struct lruvec		lruvec;
138
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
139

140 141
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

K
KOSAKI Motohiro 已提交
142
	struct zone_reclaim_stat reclaim_stat;
143 144 145 146
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
147 148
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
149 150 151 152 153 154 155 156 157 158 159 160
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

181 182 183 184 185
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
186
/* For threshold */
187 188
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
189
	int current_threshold;
190 191 192 193 194
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
195 196 197 198 199 200 201 202 203 204 205 206

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
207 208 209 210 211
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
212

213 214
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
215

B
Balbir Singh 已提交
216 217 218 219 220 221 222
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
223 224 225
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
226 227 228 229 230 231 232
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
233 234 235 236
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
237 238 239 240
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
241
	struct mem_cgroup_lru_info info;
242 243 244
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
245 246
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
247
#endif
248 249 250 251
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
252 253 254 255

	bool		oom_lock;
	atomic_t	under_oom;

256
	atomic_t	refcnt;
257

258
	int	swappiness;
259 260
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
261

262 263 264
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

265 266 267 268
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
269
	struct mem_cgroup_thresholds thresholds;
270

271
	/* thresholds for mem+swap usage. RCU-protected */
272
	struct mem_cgroup_thresholds memsw_thresholds;
273

K
KAMEZAWA Hiroyuki 已提交
274 275
	/* For oom notifier event fd */
	struct list_head oom_notify;
276

277 278 279 280 281
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
282
	/*
283
	 * percpu counter.
284
	 */
285
	struct mem_cgroup_stat_cpu *stat;
286 287 288 289 290 291
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
292 293 294 295

#ifdef CONFIG_INET
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
296 297
};

298 299 300 301 302 303
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
304
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
305
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
306 307 308
	NR_MOVE_TYPE,
};

309 310
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
311
	spinlock_t	  lock; /* for from, to */
312 313 314
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
315
	unsigned long moved_charge;
316
	unsigned long moved_swap;
317 318 319
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
320
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
321 322
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
323

D
Daisuke Nishimura 已提交
324 325 326 327 328 329
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

330 331 332 333 334 335
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

336 337 338 339 340 341 342
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

343 344 345
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
346
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
347
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
348
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
349
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
350 351 352
	NR_CHARGE_TYPE,
};

353
/* for encoding cft->private value on file */
354 355 356
#define _MEM			(0)
#define _MEMSWAP		(1)
#define _OOM_TYPE		(2)
357 358 359
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
360 361
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
362

363 364 365 366 367 368 369 370
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

371 372
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
373 374 375 376

/* Writing them here to avoid exposing memcg's inner layout */
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
#include <net/sock.h>
G
Glauber Costa 已提交
377
#include <net/ip.h>
G
Glauber Costa 已提交
378 379 380 381

static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
void sock_update_memcg(struct sock *sk)
{
382
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
383 384 385 386
		struct mem_cgroup *memcg;

		BUG_ON(!sk->sk_prot->proto_cgroup);

387 388 389 390 391 392 393 394 395 396 397 398 399 400
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
		if (!mem_cgroup_is_root(memcg)) {
			mem_cgroup_get(memcg);
			sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
414
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
415 416 417 418 419 420
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
421

422
#ifdef CONFIG_INET
G
Glauber Costa 已提交
423 424 425 426 427 428 429 430
struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
431 432 433
#endif /* CONFIG_INET */
#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */

434
static void drain_all_stock_async(struct mem_cgroup *memcg);
435

436
static struct mem_cgroup_per_zone *
437
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
438
{
439
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
440 441
}

442
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
443
{
444
	return &memcg->css;
445 446
}

447
static struct mem_cgroup_per_zone *
448
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
449
{
450 451
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
452

453
	return mem_cgroup_zoneinfo(memcg, nid, zid);
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
472
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
473
				struct mem_cgroup_per_zone *mz,
474 475
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
476 477 478 479 480 481 482 483
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

484 485 486
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
503 504 505
}

static void
506
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
507 508 509 510 511 512 513 514 515
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

516
static void
517
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
518 519 520 521
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
522
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
523 524 525 526
	spin_unlock(&mctz->lock);
}


527
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
528
{
529
	unsigned long long excess;
530 531
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
532 533
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
534 535 536
	mctz = soft_limit_tree_from_page(page);

	/*
537 538
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
539
	 */
540 541 542
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
543 544 545 546
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
547
		if (excess || mz->on_tree) {
548 549 550
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
551
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
552
			/*
553 554
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
555
			 */
556
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
557 558
			spin_unlock(&mctz->lock);
		}
559 560 561
	}
}

562
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
563 564 565 566 567
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
568
	for_each_node(node) {
569
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
570
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
571
			mctz = soft_limit_tree_node_zone(node, zone);
572
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
573 574 575 576
		}
	}
}

577 578 579 580
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
581
	struct mem_cgroup_per_zone *mz;
582 583

retry:
584
	mz = NULL;
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
633
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
634
				 enum mem_cgroup_stat_index idx)
635
{
636
	long val = 0;
637 638
	int cpu;

639 640
	get_online_cpus();
	for_each_online_cpu(cpu)
641
		val += per_cpu(memcg->stat->count[idx], cpu);
642
#ifdef CONFIG_HOTPLUG_CPU
643 644 645
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
646 647
#endif
	put_online_cpus();
648 649 650
	return val;
}

651
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
652 653 654
					 bool charge)
{
	int val = (charge) ? 1 : -1;
655
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
656 657
}

658
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
659 660 661 662 663 664
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
665
		val += per_cpu(memcg->stat->events[idx], cpu);
666
#ifdef CONFIG_HOTPLUG_CPU
667 668 669
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
670 671 672 673
#endif
	return val;
}

674
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
675
					 bool file, int nr_pages)
676
{
677 678
	preempt_disable();

679
	if (file)
680 681
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
				nr_pages);
682
	else
683 684
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
				nr_pages);
685

686 687
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
688
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
689
	else {
690
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
691 692
		nr_pages = -nr_pages; /* for event */
	}
693

694
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
695

696
	preempt_enable();
697 698
}

699
unsigned long
700
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
701
			unsigned int lru_mask)
702 703
{
	struct mem_cgroup_per_zone *mz;
704 705 706
	enum lru_list l;
	unsigned long ret = 0;

707
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
708 709 710 711 712 713 714 715 716

	for_each_lru(l) {
		if (BIT(l) & lru_mask)
			ret += MEM_CGROUP_ZSTAT(mz, l);
	}
	return ret;
}

static unsigned long
717
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
718 719
			int nid, unsigned int lru_mask)
{
720 721 722
	u64 total = 0;
	int zid;

723
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
724 725
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
726

727 728
	return total;
}
729

730
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
731
			unsigned int lru_mask)
732
{
733
	int nid;
734 735
	u64 total = 0;

736
	for_each_node_state(nid, N_HIGH_MEMORY)
737
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
738
	return total;
739 740
}

741 742
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
743 744 745
{
	unsigned long val, next;

746 747
	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = __this_cpu_read(memcg->stat->targets[target]);
748
	/* from time_after() in jiffies.h */
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
765
	}
766
	return false;
767 768 769 770 771 772
}

/*
 * Check events in order.
 *
 */
773
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
774
{
775
	preempt_disable();
776
	/* threshold event is triggered in finer grain than soft limit */
777 778
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
779 780
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
781 782 783 784 785 786 787 788 789

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

790
		mem_cgroup_threshold(memcg);
791
		if (unlikely(do_softlimit))
792
			mem_cgroup_update_tree(memcg, page);
793
#if MAX_NUMNODES > 1
794
		if (unlikely(do_numainfo))
795
			atomic_inc(&memcg->numainfo_events);
796
#endif
797 798
	} else
		preempt_enable();
799 800
}

G
Glauber Costa 已提交
801
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
802 803 804 805 806 807
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

808
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
809
{
810 811 812 813 814 815 816 817
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

818 819 820 821
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

822
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
823
{
824
	struct mem_cgroup *memcg = NULL;
825 826 827

	if (!mm)
		return NULL;
828 829 830 831 832 833 834
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
835 836
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
837
			break;
838
	} while (!css_tryget(&memcg->css));
839
	rcu_read_unlock();
840
	return memcg;
841 842
}

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
863
{
864 865
	struct mem_cgroup *memcg = NULL;
	int id = 0;
866

867 868 869
	if (mem_cgroup_disabled())
		return NULL;

870 871
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
872

873 874
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
875

876 877
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
878

879 880 881 882 883
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
884

885
	while (!memcg) {
886
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
887
		struct cgroup_subsys_state *css;
888

889 890 891 892 893 894 895 896 897 898 899
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
900

901 902 903 904 905 906 907 908
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
				memcg = container_of(css,
						     struct mem_cgroup, css);
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
909 910
		rcu_read_unlock();

911 912 913 914 915 916 917
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
918 919 920 921 922

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
923
}
K
KAMEZAWA Hiroyuki 已提交
924

925 926 927 928 929 930 931
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
932 933 934 935 936 937
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
938

939 940 941 942 943 944
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
945
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
946
	     iter != NULL;				\
947
	     iter = mem_cgroup_iter(root, iter, NULL))
948

949
#define for_each_mem_cgroup(iter)			\
950
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
951
	     iter != NULL;				\
952
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
953

954
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
955
{
956
	return (memcg == root_mem_cgroup);
957 958
}

959 960
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
961
	struct mem_cgroup *memcg;
962 963 964 965 966

	if (!mm)
		return;

	rcu_read_lock();
967 968
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
969 970 971 972
		goto out;

	switch (idx) {
	case PGFAULT:
973 974 975 976
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
977 978 979 980 981 982 983 984 985
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
 * @mem: memcg of the wanted lruvec
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return &zone->lruvec;

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
	return &mz->lruvec;
}

K
KAMEZAWA Hiroyuki 已提交
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1020

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
/**
 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
 * @zone: zone of the page
 * @page: the page
 * @lru: current lru
 *
 * This function accounts for @page being added to @lru, and returns
 * the lruvec for the given @zone and the memcg @page is charged to.
 *
 * The callsite is then responsible for physically linking the page to
 * the returned lruvec->lists[@lru].
 */
struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
				       enum lru_list lru)
K
KAMEZAWA Hiroyuki 已提交
1035 1036
{
	struct mem_cgroup_per_zone *mz;
1037 1038
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1039

1040
	if (mem_cgroup_disabled())
1041 1042
		return &zone->lruvec;

K
KAMEZAWA Hiroyuki 已提交
1043
	pc = lookup_page_cgroup(page);
1044
	memcg = pc->mem_cgroup;
1045 1046 1047 1048
	mz = page_cgroup_zoneinfo(memcg, page);
	/* compound_order() is stabilized through lru_lock */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
	return &mz->lruvec;
K
KAMEZAWA Hiroyuki 已提交
1049
}
1050

1051 1052 1053 1054 1055 1056 1057 1058 1059
/**
 * mem_cgroup_lru_del_list - account for removing an lru page
 * @page: the page
 * @lru: target lru
 *
 * This function accounts for @page being removed from @lru.
 *
 * The callsite is then responsible for physically unlinking
 * @page->lru.
1060
 */
1061
void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1062 1063
{
	struct mem_cgroup_per_zone *mz;
1064
	struct mem_cgroup *memcg;
1065 1066 1067 1068 1069 1070
	struct page_cgroup *pc;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
1071 1072
	memcg = pc->mem_cgroup;
	VM_BUG_ON(!memcg);
1073 1074
	mz = page_cgroup_zoneinfo(memcg, page);
	/* huge page split is done under lru_lock. so, we have no races. */
1075
	VM_BUG_ON(MEM_CGROUP_ZSTAT(mz, lru) < (1 << compound_order(page)));
1076
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
1077 1078
}

1079
void mem_cgroup_lru_del(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
1080
{
1081
	mem_cgroup_lru_del_list(page, page_lru(page));
1082 1083
}

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
/**
 * mem_cgroup_lru_move_lists - account for moving a page between lrus
 * @zone: zone of the page
 * @page: the page
 * @from: current lru
 * @to: target lru
 *
 * This function accounts for @page being moved between the lrus @from
 * and @to, and returns the lruvec for the given @zone and the memcg
 * @page is charged to.
 *
 * The callsite is then responsible for physically relinking
 * @page->lru to the returned lruvec->lists[@to].
 */
struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
					 struct page *page,
					 enum lru_list from,
					 enum lru_list to)
1102
{
1103 1104 1105
	/* XXX: Optimize this, especially for @from == @to */
	mem_cgroup_lru_del_list(page, from);
	return mem_cgroup_lru_add_list(zone, page, to);
K
KAMEZAWA Hiroyuki 已提交
1106
}
1107

1108
/*
1109
 * Checks whether given mem is same or in the root_mem_cgroup's
1110 1111
 * hierarchy subtree
 */
1112 1113
static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
		struct mem_cgroup *memcg)
1114
{
1115 1116 1117
	if (root_memcg != memcg) {
		return (root_memcg->use_hierarchy &&
			css_is_ancestor(&memcg->css, &root_memcg->css));
1118 1119 1120 1121 1122
	}

	return true;
}

1123
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1124 1125
{
	int ret;
1126
	struct mem_cgroup *curr = NULL;
1127
	struct task_struct *p;
1128

1129
	p = find_lock_task_mm(task);
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1145 1146
	if (!curr)
		return 0;
1147
	/*
1148
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1149
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1150 1151
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1152
	 */
1153
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1154
	css_put(&curr->css);
1155 1156 1157
	return ret;
}

1158
int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1159
{
1160 1161 1162
	unsigned long inactive_ratio;
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);
1163
	unsigned long inactive;
1164
	unsigned long active;
1165
	unsigned long gb;
1166

1167 1168 1169 1170
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_ANON));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_ANON));
1171

1172 1173 1174 1175 1176 1177
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1178
	return inactive * inactive_ratio < active;
1179 1180
}

1181
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1182 1183 1184
{
	unsigned long active;
	unsigned long inactive;
1185 1186
	int zid = zone_idx(zone);
	int nid = zone_to_nid(zone);
1187

1188 1189 1190 1191
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_FILE));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_FILE));
1192 1193 1194 1195

	return (active > inactive);
}

K
KOSAKI Motohiro 已提交
1196 1197 1198
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1199
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1216 1217
	if (!PageCgroupUsed(pc))
		return NULL;
1218 1219
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1220
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1221 1222 1223
	return &mz->reclaim_stat;
}

1224 1225 1226
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1227
/**
1228 1229
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1230
 *
1231
 * Returns the maximum amount of memory @mem can be charged with, in
1232
 * pages.
1233
 */
1234
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1235
{
1236 1237
	unsigned long long margin;

1238
	margin = res_counter_margin(&memcg->res);
1239
	if (do_swap_account)
1240
		margin = min(margin, res_counter_margin(&memcg->memsw));
1241
	return margin >> PAGE_SHIFT;
1242 1243
}

1244
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1245 1246 1247 1248 1249 1250 1251
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1252
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1253 1254
}

1255
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1256 1257
{
	int cpu;
1258 1259

	get_online_cpus();
1260
	spin_lock(&memcg->pcp_counter_lock);
1261
	for_each_online_cpu(cpu)
1262 1263 1264
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&memcg->pcp_counter_lock);
1265
	put_online_cpus();
1266 1267 1268 1269

	synchronize_rcu();
}

1270
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1271 1272 1273
{
	int cpu;

1274
	if (!memcg)
1275
		return;
1276
	get_online_cpus();
1277
	spin_lock(&memcg->pcp_counter_lock);
1278
	for_each_online_cpu(cpu)
1279 1280 1281
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&memcg->pcp_counter_lock);
1282
	put_online_cpus();
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1296
static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1297 1298
{
	VM_BUG_ON(!rcu_read_lock_held());
1299
	return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1300
}
1301

1302
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1303
{
1304 1305
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1306
	bool ret = false;
1307 1308 1309 1310 1311 1312 1313 1314 1315
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1316

1317 1318
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1319 1320
unlock:
	spin_unlock(&mc.lock);
1321 1322 1323
	return ret;
}

1324
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1325 1326
{
	if (mc.moving_task && current != mc.moving_task) {
1327
		if (mem_cgroup_under_move(memcg)) {
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1340
/**
1341
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1360
	if (!memcg || !p)
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1407 1408 1409 1410
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1411
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1412 1413
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1414 1415
	struct mem_cgroup *iter;

1416
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1417
		num++;
1418 1419 1420
	return num;
}

D
David Rientjes 已提交
1421 1422 1423 1424 1425 1426 1427 1428
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1429 1430 1431
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1432 1433 1434 1435 1436 1437 1438 1439
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1486
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1487 1488
		int nid, bool noswap)
{
1489
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1490 1491 1492
		return true;
	if (noswap || !total_swap_pages)
		return false;
1493
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1494 1495 1496 1497
		return true;
	return false;

}
1498 1499 1500 1501 1502 1503 1504 1505
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1506
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1507 1508
{
	int nid;
1509 1510 1511 1512
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1513
	if (!atomic_read(&memcg->numainfo_events))
1514
		return;
1515
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1516 1517 1518
		return;

	/* make a nodemask where this memcg uses memory from */
1519
	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1520 1521 1522

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1523 1524
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1525
	}
1526

1527 1528
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1543
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1544 1545 1546
{
	int node;

1547 1548
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1549

1550
	node = next_node(node, memcg->scan_nodes);
1551
	if (node == MAX_NUMNODES)
1552
		node = first_node(memcg->scan_nodes);
1553 1554 1555 1556 1557 1558 1559 1560 1561
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1562
	memcg->last_scanned_node = node;
1563 1564 1565
	return node;
}

1566 1567 1568 1569 1570 1571
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1572
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1573 1574 1575 1576 1577 1578 1579
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1580 1581
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1582
		     nid < MAX_NUMNODES;
1583
		     nid = next_node(nid, memcg->scan_nodes)) {
1584

1585
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1586 1587 1588 1589 1590 1591 1592
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
1593
		if (node_isset(nid, memcg->scan_nodes))
1594
			continue;
1595
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1596 1597 1598 1599 1600
			return true;
	}
	return false;
}

1601
#else
1602
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1603 1604 1605
{
	return 0;
}
1606

1607
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1608
{
1609
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1610
}
1611 1612
#endif

1613 1614 1615 1616
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1617
{
1618
	struct mem_cgroup *victim = NULL;
1619
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1620
	int loop = 0;
1621
	unsigned long excess;
1622
	unsigned long nr_scanned;
1623 1624 1625 1626
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1627

1628
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1629

1630
	while (1) {
1631
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1632
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1633
			loop++;
1634 1635 1636 1637 1638 1639
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1640
				if (!total)
1641 1642
					break;
				/*
L
Lucas De Marchi 已提交
1643
				 * We want to do more targeted reclaim.
1644 1645 1646 1647 1648
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1649
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1650 1651
					break;
			}
1652
			continue;
1653
		}
1654
		if (!mem_cgroup_reclaimable(victim, false))
1655
			continue;
1656 1657 1658 1659
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1660
			break;
1661
	}
1662
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1663
	return total;
1664 1665
}

K
KAMEZAWA Hiroyuki 已提交
1666 1667 1668
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1669
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1670
 */
1671
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1672
{
1673
	struct mem_cgroup *iter, *failed = NULL;
1674

1675
	for_each_mem_cgroup_tree(iter, memcg) {
1676
		if (iter->oom_lock) {
1677 1678 1679 1680 1681
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1682 1683
			mem_cgroup_iter_break(memcg, iter);
			break;
1684 1685
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1686
	}
K
KAMEZAWA Hiroyuki 已提交
1687

1688
	if (!failed)
1689
		return true;
1690 1691 1692 1693 1694

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1695
	for_each_mem_cgroup_tree(iter, memcg) {
1696
		if (iter == failed) {
1697 1698
			mem_cgroup_iter_break(memcg, iter);
			break;
1699 1700 1701
		}
		iter->oom_lock = false;
	}
1702
	return false;
1703
}
1704

1705
/*
1706
 * Has to be called with memcg_oom_lock
1707
 */
1708
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1709
{
K
KAMEZAWA Hiroyuki 已提交
1710 1711
	struct mem_cgroup *iter;

1712
	for_each_mem_cgroup_tree(iter, memcg)
1713 1714 1715 1716
		iter->oom_lock = false;
	return 0;
}

1717
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1718 1719 1720
{
	struct mem_cgroup *iter;

1721
	for_each_mem_cgroup_tree(iter, memcg)
1722 1723 1724
		atomic_inc(&iter->under_oom);
}

1725
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1726 1727 1728
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1729 1730 1731 1732 1733
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1734
	for_each_mem_cgroup_tree(iter, memcg)
1735
		atomic_add_unless(&iter->under_oom, -1, 0);
1736 1737
}

1738
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1739 1740
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1741 1742 1743 1744 1745 1746 1747 1748
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1749 1750
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
			  *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1751 1752 1753
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1754
	oom_wait_memcg = oom_wait_info->mem;
K
KAMEZAWA Hiroyuki 已提交
1755 1756 1757 1758 1759

	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1760 1761
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1762 1763 1764 1765
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1766
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1767
{
1768 1769
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1770 1771
}

1772
static void memcg_oom_recover(struct mem_cgroup *memcg)
1773
{
1774 1775
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1776 1777
}

K
KAMEZAWA Hiroyuki 已提交
1778 1779 1780
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1781
bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1782
{
K
KAMEZAWA Hiroyuki 已提交
1783
	struct oom_wait_info owait;
1784
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1785

1786
	owait.mem = memcg;
K
KAMEZAWA Hiroyuki 已提交
1787 1788 1789 1790
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1791
	need_to_kill = true;
1792
	mem_cgroup_mark_under_oom(memcg);
1793

1794
	/* At first, try to OOM lock hierarchy under memcg.*/
1795
	spin_lock(&memcg_oom_lock);
1796
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1797 1798 1799 1800 1801
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1802
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1803
	if (!locked || memcg->oom_kill_disable)
1804 1805
		need_to_kill = false;
	if (locked)
1806
		mem_cgroup_oom_notify(memcg);
1807
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1808

1809 1810
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1811
		mem_cgroup_out_of_memory(memcg, mask);
1812
	} else {
K
KAMEZAWA Hiroyuki 已提交
1813
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1814
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1815
	}
1816
	spin_lock(&memcg_oom_lock);
1817
	if (locked)
1818 1819
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1820
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1821

1822
	mem_cgroup_unmark_under_oom(memcg);
1823

K
KAMEZAWA Hiroyuki 已提交
1824 1825 1826
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1827
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1828
	return true;
1829 1830
}

1831 1832 1833
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1853
 */
1854

1855 1856
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1857
{
1858
	struct mem_cgroup *memcg;
1859 1860
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1861
	unsigned long uninitialized_var(flags);
1862

1863
	if (mem_cgroup_disabled())
1864 1865
		return;

1866
	rcu_read_lock();
1867 1868
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1869 1870
		goto out;
	/* pc->mem_cgroup is unstable ? */
1871
	if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
1872
		/* take a lock against to access pc->mem_cgroup */
1873
		move_lock_page_cgroup(pc, &flags);
1874
		need_unlock = true;
1875 1876
		memcg = pc->mem_cgroup;
		if (!memcg || !PageCgroupUsed(pc))
1877 1878
			goto out;
	}
1879 1880

	switch (idx) {
1881
	case MEMCG_NR_FILE_MAPPED:
1882 1883 1884
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
1885
			ClearPageCgroupFileMapped(pc);
1886
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1887 1888 1889
		break;
	default:
		BUG();
1890
	}
1891

1892
	this_cpu_add(memcg->stat->count[idx], val);
1893

1894 1895
out:
	if (unlikely(need_unlock))
1896
		move_unlock_page_cgroup(pc, &flags);
1897 1898
	rcu_read_unlock();
	return;
1899
}
1900
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1901

1902 1903 1904 1905
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1906
#define CHARGE_BATCH	32U
1907 1908
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1909
	unsigned int nr_pages;
1910
	struct work_struct work;
1911 1912
	unsigned long flags;
#define FLUSHING_CACHED_CHARGE	(0)
1913 1914
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1915
static DEFINE_MUTEX(percpu_charge_mutex);
1916 1917

/*
1918
 * Try to consume stocked charge on this cpu. If success, one page is consumed
1919 1920 1921 1922
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
1923
static bool consume_stock(struct mem_cgroup *memcg)
1924 1925 1926 1927 1928
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
1929
	if (memcg == stock->cached && stock->nr_pages)
1930
		stock->nr_pages--;
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1944 1945 1946 1947
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
1948
		if (do_swap_account)
1949 1950
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
1963
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1964 1965 1966 1967
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
1968
 * This will be consumed by consume_stock() function, later.
1969
 */
1970
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1971 1972 1973
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

1974
	if (stock->cached != memcg) { /* reset if necessary */
1975
		drain_stock(stock);
1976
		stock->cached = memcg;
1977
	}
1978
	stock->nr_pages += nr_pages;
1979 1980 1981 1982
	put_cpu_var(memcg_stock);
}

/*
1983
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1984 1985
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
1986
 */
1987
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
1988
{
1989
	int cpu, curcpu;
1990

1991 1992
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1993
	curcpu = get_cpu();
1994 1995
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1996
		struct mem_cgroup *memcg;
1997

1998 1999
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2000
			continue;
2001
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2002
			continue;
2003 2004 2005 2006 2007 2008
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2009
	}
2010
	put_cpu();
2011 2012 2013 2014 2015 2016

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2017
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2018 2019 2020
			flush_work(&stock->work);
	}
out:
2021
 	put_online_cpus();
2022 2023 2024 2025 2026 2027 2028 2029
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2030
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2031
{
2032 2033 2034 2035 2036
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2037
	drain_all_stock(root_memcg, false);
2038
	mutex_unlock(&percpu_charge_mutex);
2039 2040 2041
}

/* This is a synchronous drain interface. */
2042
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2043 2044
{
	/* called when force_empty is called */
2045
	mutex_lock(&percpu_charge_mutex);
2046
	drain_all_stock(root_memcg, true);
2047
	mutex_unlock(&percpu_charge_mutex);
2048 2049
}

2050 2051 2052 2053
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2054
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2055 2056 2057
{
	int i;

2058
	spin_lock(&memcg->pcp_counter_lock);
2059
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2060
		long x = per_cpu(memcg->stat->count[i], cpu);
2061

2062 2063
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2064
	}
2065
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2066
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2067

2068 2069
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2070
	}
2071
	/* need to clear ON_MOVE value, works as a kind of lock. */
2072 2073
	per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&memcg->pcp_counter_lock);
2074 2075
}

2076
static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2077 2078 2079
{
	int idx = MEM_CGROUP_ON_MOVE;

2080 2081 2082
	spin_lock(&memcg->pcp_counter_lock);
	per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
2083 2084 2085
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2086 2087 2088 2089 2090
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2091
	struct mem_cgroup *iter;
2092

2093
	if ((action == CPU_ONLINE)) {
2094
		for_each_mem_cgroup(iter)
2095 2096 2097 2098
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

2099
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2100
		return NOTIFY_OK;
2101

2102
	for_each_mem_cgroup(iter)
2103 2104
		mem_cgroup_drain_pcp_counter(iter, cpu);

2105 2106 2107 2108 2109
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2110 2111 2112 2113 2114 2115 2116 2117 2118 2119

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2120
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2121
				unsigned int nr_pages, bool oom_check)
2122
{
2123
	unsigned long csize = nr_pages * PAGE_SIZE;
2124 2125 2126 2127 2128
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2129
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2130 2131 2132 2133

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2134
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2135 2136 2137
		if (likely(!ret))
			return CHARGE_OK;

2138
		res_counter_uncharge(&memcg->res, csize);
2139 2140 2141 2142
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2143
	/*
2144 2145
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2146 2147 2148 2149
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2150
	if (nr_pages == CHARGE_BATCH)
2151 2152 2153 2154 2155
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2156
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2157
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2158
		return CHARGE_RETRY;
2159
	/*
2160 2161 2162 2163 2164 2165 2166
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2167
	 */
2168
	if (nr_pages == 1 && ret)
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2188
/*
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2208
 */
2209
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2210
				   gfp_t gfp_mask,
2211
				   unsigned int nr_pages,
2212
				   struct mem_cgroup **ptr,
2213
				   bool oom)
2214
{
2215
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2216
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2217
	struct mem_cgroup *memcg = NULL;
2218
	int ret;
2219

K
KAMEZAWA Hiroyuki 已提交
2220 2221 2222 2223 2224 2225 2226 2227
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2228

2229
	/*
2230 2231
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2232 2233 2234
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
2235
	if (!*ptr && !mm)
2236
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2237
again:
2238 2239 2240 2241
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		VM_BUG_ON(css_is_removed(&memcg->css));
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2242
			goto done;
2243
		if (nr_pages == 1 && consume_stock(memcg))
K
KAMEZAWA Hiroyuki 已提交
2244
			goto done;
2245
		css_get(&memcg->css);
2246
	} else {
K
KAMEZAWA Hiroyuki 已提交
2247
		struct task_struct *p;
2248

K
KAMEZAWA Hiroyuki 已提交
2249 2250 2251
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2252
		 * Because we don't have task_lock(), "p" can exit.
2253
		 * In that case, "memcg" can point to root or p can be NULL with
2254 2255 2256 2257 2258 2259
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2260
		 */
2261
		memcg = mem_cgroup_from_task(p);
2262 2263 2264
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2265 2266 2267
			rcu_read_unlock();
			goto done;
		}
2268
		if (nr_pages == 1 && consume_stock(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2281
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2282 2283 2284 2285 2286
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2287

2288 2289
	do {
		bool oom_check;
2290

2291
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2292
		if (fatal_signal_pending(current)) {
2293
			css_put(&memcg->css);
2294
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2295
		}
2296

2297 2298 2299 2300
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2301
		}
2302

2303
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2304 2305 2306 2307
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2308
			batch = nr_pages;
2309 2310
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2311
			goto again;
2312
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2313
			css_put(&memcg->css);
2314 2315
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2316
			if (!oom) {
2317
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2318
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2319
			}
2320 2321 2322 2323
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2324
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2325
			goto bypass;
2326
		}
2327 2328
	} while (ret != CHARGE_OK);

2329
	if (batch > nr_pages)
2330 2331
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2332
done:
2333
	*ptr = memcg;
2334 2335
	return 0;
nomem:
2336
	*ptr = NULL;
2337
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2338
bypass:
2339 2340
	*ptr = root_mem_cgroup;
	return -EINTR;
2341
}
2342

2343 2344 2345 2346 2347
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2348
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2349
				       unsigned int nr_pages)
2350
{
2351
	if (!mem_cgroup_is_root(memcg)) {
2352 2353
		unsigned long bytes = nr_pages * PAGE_SIZE;

2354
		res_counter_uncharge(&memcg->res, bytes);
2355
		if (do_swap_account)
2356
			res_counter_uncharge(&memcg->memsw, bytes);
2357
	}
2358 2359
}

2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2379
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2380
{
2381
	struct mem_cgroup *memcg = NULL;
2382
	struct page_cgroup *pc;
2383
	unsigned short id;
2384 2385
	swp_entry_t ent;

2386 2387 2388
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2389
	lock_page_cgroup(pc);
2390
	if (PageCgroupUsed(pc)) {
2391 2392 2393
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2394
	} else if (PageSwapCache(page)) {
2395
		ent.val = page_private(page);
2396
		id = lookup_swap_cgroup_id(ent);
2397
		rcu_read_lock();
2398 2399 2400
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2401
		rcu_read_unlock();
2402
	}
2403
	unlock_page_cgroup(pc);
2404
	return memcg;
2405 2406
}

2407
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2408
				       struct page *page,
2409
				       unsigned int nr_pages,
2410
				       struct page_cgroup *pc,
2411 2412
				       enum charge_type ctype,
				       bool lrucare)
2413
{
2414 2415 2416
	struct zone *uninitialized_var(zone);
	bool was_on_lru = false;

2417 2418 2419
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2420
		__mem_cgroup_cancel_charge(memcg, nr_pages);
2421 2422 2423 2424 2425 2426
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
			ClearPageLRU(page);
			del_page_from_lru_list(zone, page, page_lru(page));
			was_on_lru = true;
		}
	}

2442
	pc->mem_cgroup = memcg;
2443 2444 2445 2446 2447 2448 2449
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2450
	smp_wmb();
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2464

2465 2466 2467 2468 2469 2470 2471 2472 2473
	if (lrucare) {
		if (was_on_lru) {
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
			add_page_to_lru_list(zone, page, page_lru(page));
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2474
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2475
	unlock_page_cgroup(pc);
2476

2477 2478 2479 2480 2481
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2482
	memcg_check_events(memcg, page);
2483
}
2484

2485 2486 2487
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2488
			(1 << PCG_MIGRATION))
2489 2490
/*
 * Because tail pages are not marked as "used", set it. We're under
2491 2492 2493
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2494
 */
2495
void mem_cgroup_split_huge_fixup(struct page *head)
2496 2497
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2498 2499
	struct page_cgroup *pc;
	int i;
2500

2501 2502
	if (mem_cgroup_disabled())
		return;
2503 2504 2505 2506 2507 2508
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
2509
}
2510
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2511

2512
/**
2513
 * mem_cgroup_move_account - move account of the page
2514
 * @page: the page
2515
 * @nr_pages: number of regular pages (>1 for huge pages)
2516 2517 2518
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2519
 * @uncharge: whether we should call uncharge and css_put against @from.
2520 2521
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2522
 * - page is not on LRU (isolate_page() is useful.)
2523
 * - compound_lock is held when nr_pages > 1
2524
 *
2525
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2526
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2527 2528
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2529
 */
2530 2531 2532 2533 2534 2535
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2536
{
2537 2538
	unsigned long flags;
	int ret;
2539

2540
	VM_BUG_ON(from == to);
2541
	VM_BUG_ON(PageLRU(page));
2542 2543 2544 2545 2546 2547 2548
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2549
	if (nr_pages > 1 && !PageTransHuge(page))
2550 2551 2552 2553 2554 2555 2556 2557 2558
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

	move_lock_page_cgroup(pc, &flags);
2559

2560
	if (PageCgroupFileMapped(pc)) {
2561 2562 2563 2564 2565
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2566
	}
2567
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2568 2569
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2570
		__mem_cgroup_cancel_charge(from, nr_pages);
2571

2572
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2573
	pc->mem_cgroup = to;
2574
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2575 2576 2577
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2578
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2579
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2580
	 * status here.
2581
	 */
2582 2583 2584
	move_unlock_page_cgroup(pc, &flags);
	ret = 0;
unlock:
2585
	unlock_page_cgroup(pc);
2586 2587 2588
	/*
	 * check events
	 */
2589 2590
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2591
out:
2592 2593 2594 2595 2596 2597 2598
	return ret;
}

/*
 * move charges to its parent.
 */

2599 2600
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2601 2602 2603 2604 2605 2606
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2607
	unsigned int nr_pages;
2608
	unsigned long uninitialized_var(flags);
2609 2610 2611 2612 2613 2614
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2615 2616 2617 2618 2619
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2620

2621
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2622

2623
	parent = mem_cgroup_from_cont(pcg);
2624
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2625
	if (ret)
2626
		goto put_back;
2627

2628
	if (nr_pages > 1)
2629 2630
		flags = compound_lock_irqsave(page);

2631
	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2632
	if (ret)
2633
		__mem_cgroup_cancel_charge(parent, nr_pages);
2634

2635
	if (nr_pages > 1)
2636
		compound_unlock_irqrestore(page, flags);
2637
put_back:
K
KAMEZAWA Hiroyuki 已提交
2638
	putback_lru_page(page);
2639
put:
2640
	put_page(page);
2641
out:
2642 2643 2644
	return ret;
}

2645 2646 2647 2648 2649 2650 2651
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2652
				gfp_t gfp_mask, enum charge_type ctype)
2653
{
2654
	struct mem_cgroup *memcg = NULL;
2655
	unsigned int nr_pages = 1;
2656
	struct page_cgroup *pc;
2657
	bool oom = true;
2658
	int ret;
A
Andrea Arcangeli 已提交
2659

A
Andrea Arcangeli 已提交
2660
	if (PageTransHuge(page)) {
2661
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2662
		VM_BUG_ON(!PageTransHuge(page));
2663 2664 2665 2666 2667
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2668
	}
2669 2670

	pc = lookup_page_cgroup(page);
2671
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2672
	if (ret == -ENOMEM)
2673
		return ret;
2674
	__mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype, false);
2675 2676 2677
	return 0;
}

2678 2679
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2680
{
2681
	if (mem_cgroup_disabled())
2682
		return 0;
2683 2684 2685
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
2686
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2687
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2688 2689
}

D
Daisuke Nishimura 已提交
2690 2691 2692 2693
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2694 2695
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2696
{
2697
	struct mem_cgroup *memcg = NULL;
2698
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2699 2700
	int ret;

2701
	if (mem_cgroup_disabled())
2702
		return 0;
2703 2704
	if (PageCompound(page))
		return 0;
2705

2706
	if (unlikely(!mm))
2707
		mm = &init_mm;
2708 2709
	if (!page_is_file_cache(page))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2710

2711
	if (!PageSwapCache(page))
2712
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2713
	else { /* page is swapcache/shmem */
2714
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
D
Daisuke Nishimura 已提交
2715
		if (!ret)
2716 2717
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
2718
	return ret;
2719 2720
}

2721 2722 2723
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2724
 * struct page_cgroup is acquired. This refcnt will be consumed by
2725 2726
 * "commit()" or removed by "cancel()"
 */
2727 2728
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
2729
				 gfp_t mask, struct mem_cgroup **memcgp)
2730
{
2731
	struct mem_cgroup *memcg;
2732
	int ret;
2733

2734
	*memcgp = NULL;
2735

2736
	if (mem_cgroup_disabled())
2737 2738 2739 2740 2741 2742
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2743 2744 2745
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2746 2747
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2748
		goto charge_cur_mm;
2749 2750
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2751
		goto charge_cur_mm;
2752 2753
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2754
	css_put(&memcg->css);
2755 2756
	if (ret == -EINTR)
		ret = 0;
2757
	return ret;
2758 2759 2760
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2761 2762 2763 2764
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
2765 2766
}

D
Daisuke Nishimura 已提交
2767
static void
2768
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
2769
					enum charge_type ctype)
2770
{
2771 2772
	struct page_cgroup *pc;

2773
	if (mem_cgroup_disabled())
2774
		return;
2775
	if (!memcg)
2776
		return;
2777
	cgroup_exclude_rmdir(&memcg->css);
2778

2779 2780
	pc = lookup_page_cgroup(page);
	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype, true);
2781 2782 2783
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2784 2785 2786
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2787
	 */
2788
	if (do_swap_account && PageSwapCache(page)) {
2789
		swp_entry_t ent = {.val = page_private(page)};
2790
		struct mem_cgroup *swap_memcg;
2791 2792 2793 2794
		unsigned short id;

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
2795 2796
		swap_memcg = mem_cgroup_lookup(id);
		if (swap_memcg) {
2797 2798 2799 2800
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2801 2802 2803 2804 2805
			if (!mem_cgroup_is_root(swap_memcg))
				res_counter_uncharge(&swap_memcg->memsw,
						     PAGE_SIZE);
			mem_cgroup_swap_statistics(swap_memcg, false);
			mem_cgroup_put(swap_memcg);
2806
		}
2807
		rcu_read_unlock();
2808
	}
2809 2810 2811 2812 2813
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
2814
	cgroup_release_and_wakeup_rmdir(&memcg->css);
2815 2816
}

2817 2818
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
2819
{
2820 2821
	__mem_cgroup_commit_charge_swapin(page, memcg,
					  MEM_CGROUP_CHARGE_TYPE_MAPPED);
D
Daisuke Nishimura 已提交
2822 2823
}

2824
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2825
{
2826
	if (mem_cgroup_disabled())
2827
		return;
2828
	if (!memcg)
2829
		return;
2830
	__mem_cgroup_cancel_charge(memcg, 1);
2831 2832
}

2833
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2834 2835
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2836 2837 2838
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2839

2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2851
		batch->memcg = memcg;
2852 2853
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2854
	 * In those cases, all pages freed continuously can be expected to be in
2855 2856 2857 2858 2859 2860 2861 2862
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2863
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2864 2865
		goto direct_uncharge;

2866 2867 2868 2869 2870
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
2871
	if (batch->memcg != memcg)
2872 2873
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2874
	batch->nr_pages++;
2875
	if (uncharge_memsw)
2876
		batch->memsw_nr_pages++;
2877 2878
	return;
direct_uncharge:
2879
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2880
	if (uncharge_memsw)
2881 2882 2883
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
2884 2885
	return;
}
2886

2887
/*
2888
 * uncharge if !page_mapped(page)
2889
 */
2890
static struct mem_cgroup *
2891
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2892
{
2893
	struct mem_cgroup *memcg = NULL;
2894 2895
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
2896

2897
	if (mem_cgroup_disabled())
2898
		return NULL;
2899

K
KAMEZAWA Hiroyuki 已提交
2900
	if (PageSwapCache(page))
2901
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2902

A
Andrea Arcangeli 已提交
2903
	if (PageTransHuge(page)) {
2904
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2905 2906
		VM_BUG_ON(!PageTransHuge(page));
	}
2907
	/*
2908
	 * Check if our page_cgroup is valid
2909
	 */
2910
	pc = lookup_page_cgroup(page);
2911
	if (unlikely(!PageCgroupUsed(pc)))
2912
		return NULL;
2913

2914
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2915

2916
	memcg = pc->mem_cgroup;
2917

K
KAMEZAWA Hiroyuki 已提交
2918 2919 2920 2921 2922
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2923
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2924 2925
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2937
	}
K
KAMEZAWA Hiroyuki 已提交
2938

2939
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
2940

2941
	ClearPageCgroupUsed(pc);
2942 2943 2944 2945 2946 2947
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2948

2949
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2950
	/*
2951
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
2952 2953
	 * will never be freed.
	 */
2954
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
2955
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2956 2957
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
2958
	}
2959 2960
	if (!mem_cgroup_is_root(memcg))
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
2961

2962
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
2963 2964 2965

unlock_out:
	unlock_page_cgroup(pc);
2966
	return NULL;
2967 2968
}

2969 2970
void mem_cgroup_uncharge_page(struct page *page)
{
2971 2972 2973
	/* early check. */
	if (page_mapped(page))
		return;
2974
	VM_BUG_ON(page->mapping && !PageAnon(page));
2975 2976 2977 2978 2979 2980
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
2981
	VM_BUG_ON(page->mapping);
2982 2983 2984
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
2999 3000
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3021 3022 3023 3024 3025 3026
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3027
	memcg_oom_recover(batch->memcg);
3028 3029 3030 3031
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
/*
 * A function for resetting pc->mem_cgroup for newly allocated pages.
 * This function should be called if the newpage will be added to LRU
 * before start accounting.
 */
void mem_cgroup_reset_owner(struct page *newpage)
{
	struct page_cgroup *pc;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(newpage);
	VM_BUG_ON(PageCgroupUsed(pc));
	pc->mem_cgroup = root_mem_cgroup;
}

3049
#ifdef CONFIG_SWAP
3050
/*
3051
 * called after __delete_from_swap_cache() and drop "page" account.
3052 3053
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3054 3055
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3056 3057
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3058 3059 3060 3061 3062 3063
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3064

K
KAMEZAWA Hiroyuki 已提交
3065 3066 3067 3068 3069
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3070
		swap_cgroup_record(ent, css_id(&memcg->css));
3071
}
3072
#endif
3073 3074 3075 3076 3077 3078 3079

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3080
{
3081
	struct mem_cgroup *memcg;
3082
	unsigned short id;
3083 3084 3085 3086

	if (!do_swap_account)
		return;

3087 3088 3089
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3090
	if (memcg) {
3091 3092 3093 3094
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3095
		if (!mem_cgroup_is_root(memcg))
3096
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3097
		mem_cgroup_swap_statistics(memcg, false);
3098 3099
		mem_cgroup_put(memcg);
	}
3100
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3101
}
3102 3103 3104 3105 3106 3107

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
3108
 * @need_fixup: whether we should fixup res_counters and refcounts.
3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3119
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3120 3121 3122 3123 3124 3125 3126 3127
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3128
		mem_cgroup_swap_statistics(to, true);
3129
		/*
3130 3131 3132 3133 3134 3135
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3136 3137
		 */
		mem_cgroup_get(to);
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
3149 3150 3151 3152 3153 3154
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3155
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3156 3157 3158
{
	return -EINVAL;
}
3159
#endif
K
KAMEZAWA Hiroyuki 已提交
3160

3161
/*
3162 3163
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3164
 */
3165
int mem_cgroup_prepare_migration(struct page *page,
3166
	struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3167
{
3168
	struct mem_cgroup *memcg = NULL;
3169
	struct page_cgroup *pc;
3170
	enum charge_type ctype;
3171
	int ret = 0;
3172

3173
	*memcgp = NULL;
3174

A
Andrea Arcangeli 已提交
3175
	VM_BUG_ON(PageTransHuge(page));
3176
	if (mem_cgroup_disabled())
3177 3178
		return 0;

3179 3180 3181
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3182 3183
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3215
	}
3216
	unlock_page_cgroup(pc);
3217 3218 3219 3220
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3221
	if (!memcg)
3222
		return 0;
3223

3224 3225
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3226
	css_put(&memcg->css);/* drop extra refcnt */
3227
	if (ret) {
3228 3229 3230 3231 3232 3233 3234 3235 3236
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
3237
		/* we'll need to revisit this error code (we have -EINTR) */
3238
		return -ENOMEM;
3239
	}
3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3253
	__mem_cgroup_commit_charge(memcg, newpage, 1, pc, ctype, false);
3254
	return ret;
3255
}
3256

3257
/* remove redundant charge if migration failed*/
3258
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3259
	struct page *oldpage, struct page *newpage, bool migration_ok)
3260
{
3261
	struct page *used, *unused;
3262 3263
	struct page_cgroup *pc;

3264
	if (!memcg)
3265
		return;
3266
	/* blocks rmdir() */
3267
	cgroup_exclude_rmdir(&memcg->css);
3268
	if (!migration_ok) {
3269 3270
		used = oldpage;
		unused = newpage;
3271
	} else {
3272
		used = newpage;
3273 3274
		unused = oldpage;
	}
3275
	/*
3276 3277 3278
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3279
	 */
3280 3281 3282 3283
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3284

3285 3286
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

3287
	/*
3288 3289 3290 3291 3292 3293
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3294
	 */
3295 3296
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
3297
	/*
3298 3299
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3300 3301 3302
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
3303
	cgroup_release_and_wakeup_rmdir(&memcg->css);
3304
}
3305

3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
	memcg = pc->mem_cgroup;
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
	ClearPageCgroupUsed(pc);
	unlock_page_cgroup(pc);

	if (PageSwapBacked(oldpage))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
3337
	__mem_cgroup_commit_charge(memcg, newpage, 1, pc, type, true);
3338 3339
}

3340 3341 3342 3343 3344 3345
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3346 3347 3348 3349 3350
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
3370
		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3371 3372 3373 3374 3375
		       pc, pc->flags, pc->mem_cgroup);
	}
}
#endif

3376 3377
static DEFINE_MUTEX(set_limit_mutex);

3378
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3379
				unsigned long long val)
3380
{
3381
	int retry_count;
3382
	u64 memswlimit, memlimit;
3383
	int ret = 0;
3384 3385
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3386
	int enlarge;
3387 3388 3389 3390 3391 3392 3393 3394 3395

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3396

3397
	enlarge = 0;
3398
	while (retry_count) {
3399 3400 3401 3402
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3403 3404 3405
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3406
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3407 3408 3409 3410 3411 3412
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3413 3414
			break;
		}
3415 3416 3417 3418 3419

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3420
		ret = res_counter_set_limit(&memcg->res, val);
3421 3422 3423 3424 3425 3426
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3427 3428 3429 3430 3431
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3432 3433
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3434 3435 3436 3437 3438 3439
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3440
	}
3441 3442
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3443

3444 3445 3446
	return ret;
}

L
Li Zefan 已提交
3447 3448
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3449
{
3450
	int retry_count;
3451
	u64 memlimit, memswlimit, oldusage, curusage;
3452 3453
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3454
	int enlarge = 0;
3455

3456 3457 3458
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3459 3460 3461 3462 3463 3464 3465 3466
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3467
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3468 3469 3470 3471 3472 3473 3474 3475
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3476 3477 3478
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3479
		ret = res_counter_set_limit(&memcg->memsw, val);
3480 3481 3482 3483 3484 3485
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3486 3487 3488 3489 3490
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3491 3492 3493
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3494
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3495
		/* Usage is reduced ? */
3496
		if (curusage >= oldusage)
3497
			retry_count--;
3498 3499
		else
			oldusage = curusage;
3500
	}
3501 3502
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3503 3504 3505
	return ret;
}

3506
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3507 3508
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3509 3510 3511 3512 3513 3514
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3515
	unsigned long long excess;
3516
	unsigned long nr_scanned;
3517 3518 3519 3520

	if (order > 0)
		return 0;

3521
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3535
		nr_scanned = 0;
3536 3537
		reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone,
						    gfp_mask, &nr_scanned);
3538
		nr_reclaimed += reclaimed;
3539
		*total_scanned += nr_scanned;
3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3562
				if (next_mz == mz)
3563
					css_put(&next_mz->mem->css);
3564
				else /* next_mz == NULL or other memcg */
3565 3566 3567 3568
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3569
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3570 3571 3572 3573 3574 3575 3576 3577
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3578 3579
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3598 3599 3600 3601
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3602
static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3603
				int node, int zid, enum lru_list lru)
3604
{
K
KAMEZAWA Hiroyuki 已提交
3605 3606
	struct mem_cgroup_per_zone *mz;
	unsigned long flags, loop;
3607
	struct list_head *list;
3608 3609
	struct page *busy;
	struct zone *zone;
3610
	int ret = 0;
3611

K
KAMEZAWA Hiroyuki 已提交
3612
	zone = &NODE_DATA(node)->node_zones[zid];
3613
	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3614
	list = &mz->lruvec.lists[lru];
3615

3616 3617 3618 3619 3620
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3621
		struct page_cgroup *pc;
3622 3623
		struct page *page;

3624
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3625
		spin_lock_irqsave(&zone->lru_lock, flags);
3626
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3627
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3628
			break;
3629
		}
3630 3631 3632
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3633
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3634
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3635 3636
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3637
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3638

3639
		pc = lookup_page_cgroup(page);
3640

3641
		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3642
		if (ret == -ENOMEM || ret == -EINTR)
3643
			break;
3644 3645 3646

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
3647
			busy = page;
3648 3649 3650
			cond_resched();
		} else
			busy = NULL;
3651
	}
K
KAMEZAWA Hiroyuki 已提交
3652

3653 3654 3655
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3656 3657 3658 3659 3660 3661
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3662
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3663
{
3664 3665 3666
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3667
	struct cgroup *cgrp = memcg->css.cgroup;
3668

3669
	css_get(&memcg->css);
3670 3671

	shrink = 0;
3672 3673 3674
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3675
move_account:
3676
	do {
3677
		ret = -EBUSY;
3678 3679 3680 3681
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3682
			goto out;
3683 3684
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3685
		drain_all_stock_sync(memcg);
3686
		ret = 0;
3687
		mem_cgroup_start_move(memcg);
3688
		for_each_node_state(node, N_HIGH_MEMORY) {
3689
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3690
				enum lru_list l;
3691
				for_each_lru(l) {
3692
					ret = mem_cgroup_force_empty_list(memcg,
K
KAMEZAWA Hiroyuki 已提交
3693
							node, zid, l);
3694 3695 3696
					if (ret)
						break;
				}
3697
			}
3698 3699 3700
			if (ret)
				break;
		}
3701 3702
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3703 3704 3705
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3706
		cond_resched();
3707
	/* "ret" should also be checked to ensure all lists are empty. */
3708
	} while (memcg->res.usage > 0 || ret);
3709
out:
3710
	css_put(&memcg->css);
3711
	return ret;
3712 3713

try_to_free:
3714 3715
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3716 3717 3718
		ret = -EBUSY;
		goto out;
	}
3719 3720
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3721 3722
	/* try to free all pages in this cgroup */
	shrink = 1;
3723
	while (nr_retries && memcg->res.usage > 0) {
3724
		int progress;
3725 3726 3727 3728 3729

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3730
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3731
						false);
3732
		if (!progress) {
3733
			nr_retries--;
3734
			/* maybe some writeback is necessary */
3735
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3736
		}
3737 3738

	}
K
KAMEZAWA Hiroyuki 已提交
3739
	lru_add_drain();
3740
	/* try move_account...there may be some *locked* pages. */
3741
	goto move_account;
3742 3743
}

3744 3745 3746 3747 3748 3749
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3750 3751 3752 3753 3754 3755 3756 3757 3758
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3759
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3760
	struct cgroup *parent = cont->parent;
3761
	struct mem_cgroup *parent_memcg = NULL;
3762 3763

	if (parent)
3764
		parent_memcg = mem_cgroup_from_cont(parent);
3765 3766 3767

	cgroup_lock();
	/*
3768
	 * If parent's use_hierarchy is set, we can't make any modifications
3769 3770 3771 3772 3773 3774
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3775
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3776 3777
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3778
			memcg->use_hierarchy = val;
3779 3780 3781 3782 3783 3784 3785 3786 3787
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3788

3789
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3790
					       enum mem_cgroup_stat_index idx)
3791
{
K
KAMEZAWA Hiroyuki 已提交
3792
	struct mem_cgroup *iter;
3793
	long val = 0;
3794

3795
	/* Per-cpu values can be negative, use a signed accumulator */
3796
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3797 3798 3799 3800 3801
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3802 3803
}

3804
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3805
{
K
KAMEZAWA Hiroyuki 已提交
3806
	u64 val;
3807

3808
	if (!mem_cgroup_is_root(memcg)) {
3809
		if (!swap)
3810
			return res_counter_read_u64(&memcg->res, RES_USAGE);
3811
		else
3812
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3813 3814
	}

3815 3816
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3817

K
KAMEZAWA Hiroyuki 已提交
3818
	if (swap)
3819
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3820 3821 3822 3823

	return val << PAGE_SHIFT;
}

3824
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3825
{
3826
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3827
	u64 val;
3828 3829 3830 3831 3832 3833
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3834
		if (name == RES_USAGE)
3835
			val = mem_cgroup_usage(memcg, false);
3836
		else
3837
			val = res_counter_read_u64(&memcg->res, name);
3838 3839
		break;
	case _MEMSWAP:
3840
		if (name == RES_USAGE)
3841
			val = mem_cgroup_usage(memcg, true);
3842
		else
3843
			val = res_counter_read_u64(&memcg->memsw, name);
3844 3845 3846 3847 3848 3849
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3850
}
3851 3852 3853 3854
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3855 3856
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3857
{
3858
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3859
	int type, name;
3860 3861 3862
	unsigned long long val;
	int ret;

3863 3864 3865
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3866
	case RES_LIMIT:
3867 3868 3869 3870
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3871 3872
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3873 3874 3875
		if (ret)
			break;
		if (type == _MEM)
3876
			ret = mem_cgroup_resize_limit(memcg, val);
3877 3878
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3879
		break;
3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3894 3895 3896 3897 3898
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3899 3900
}

3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3929
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3930
{
3931
	struct mem_cgroup *memcg;
3932
	int type, name;
3933

3934
	memcg = mem_cgroup_from_cont(cont);
3935 3936 3937
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3938
	case RES_MAX_USAGE:
3939
		if (type == _MEM)
3940
			res_counter_reset_max(&memcg->res);
3941
		else
3942
			res_counter_reset_max(&memcg->memsw);
3943 3944
		break;
	case RES_FAILCNT:
3945
		if (type == _MEM)
3946
			res_counter_reset_failcnt(&memcg->res);
3947
		else
3948
			res_counter_reset_failcnt(&memcg->memsw);
3949 3950
		break;
	}
3951

3952
	return 0;
3953 3954
}

3955 3956 3957 3958 3959 3960
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3961
#ifdef CONFIG_MMU
3962 3963 3964
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
3965
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3966 3967 3968 3969 3970 3971 3972 3973 3974

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
3975
	memcg->move_charge_at_immigrate = val;
3976 3977 3978 3979
	cgroup_unlock();

	return 0;
}
3980 3981 3982 3983 3984 3985 3986
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3987

K
KAMEZAWA Hiroyuki 已提交
3988 3989 3990 3991 3992

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
3993
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
3994 3995
	MCS_PGPGIN,
	MCS_PGPGOUT,
3996
	MCS_SWAP,
3997 3998
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4009 4010
};

K
KAMEZAWA Hiroyuki 已提交
4011 4012 4013 4014 4015 4016
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
4017
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
4018 4019
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
4020
	{"swap", "total_swap"},
4021 4022
	{"pgfault", "total_pgfault"},
	{"pgmajfault", "total_pgmajfault"},
K
KAMEZAWA Hiroyuki 已提交
4023 4024 4025 4026 4027 4028 4029 4030
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
4031
static void
4032
mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4033 4034 4035 4036
{
	s64 val;

	/* per cpu stat */
4037
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4038
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4039
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4040
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4041
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4042
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4043
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4044
	s->stat[MCS_PGPGIN] += val;
4045
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4046
	s->stat[MCS_PGPGOUT] += val;
4047
	if (do_swap_account) {
4048
		val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4049 4050
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4051
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4052
	s->stat[MCS_PGFAULT] += val;
4053
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4054
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4055 4056

	/* per zone stat */
4057
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4058
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4059
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4060
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4061
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4062
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4063
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4064
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4065
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
K
KAMEZAWA Hiroyuki 已提交
4066 4067 4068 4069
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
4070
mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4071
{
K
KAMEZAWA Hiroyuki 已提交
4072 4073
	struct mem_cgroup *iter;

4074
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4075
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4076 4077
}

4078 4079 4080 4081 4082 4083 4084 4085 4086
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);

4087
	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4088 4089
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4090
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4091 4092 4093 4094
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4095
	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4096 4097
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4098 4099
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_FILE);
4100 4101 4102 4103
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4104
	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4105 4106
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4107 4108
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_ANON);
4109 4110 4111 4112
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4113
	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4114 4115
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4116 4117
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				BIT(LRU_UNEVICTABLE));
4118 4119 4120 4121 4122 4123 4124
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4125 4126
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4127 4128
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4129
	struct mcs_total_stat mystat;
4130 4131
	int i;

K
KAMEZAWA Hiroyuki 已提交
4132 4133
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
4134

4135

4136 4137 4138
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4139
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4140
	}
L
Lee Schermerhorn 已提交
4141

K
KAMEZAWA Hiroyuki 已提交
4142
	/* Hierarchical information */
4143 4144 4145 4146 4147 4148 4149
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4150

K
KAMEZAWA Hiroyuki 已提交
4151 4152
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
4153 4154 4155
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4156
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4157
	}
K
KAMEZAWA Hiroyuki 已提交
4158

K
KOSAKI Motohiro 已提交
4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4186 4187 4188
	return 0;
}

K
KOSAKI Motohiro 已提交
4189 4190 4191 4192
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4193
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4194 4195 4196 4197 4198 4199 4200
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4201

K
KOSAKI Motohiro 已提交
4202 4203 4204 4205 4206 4207 4208
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4209 4210 4211

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4212 4213
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4214 4215
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4216
		return -EINVAL;
4217
	}
K
KOSAKI Motohiro 已提交
4218 4219 4220

	memcg->swappiness = val;

4221 4222
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4223 4224 4225
	return 0;
}

4226 4227 4228 4229 4230 4231 4232 4233
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4234
		t = rcu_dereference(memcg->thresholds.primary);
4235
	else
4236
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4248
	i = t->current_threshold;
4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4272
	t->current_threshold = i - 1;
4273 4274 4275 4276 4277 4278
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4279 4280 4281 4282 4283 4284 4285
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4296
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4297 4298 4299
{
	struct mem_cgroup_eventfd_list *ev;

4300
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4301 4302 4303 4304
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4305
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4306
{
K
KAMEZAWA Hiroyuki 已提交
4307 4308
	struct mem_cgroup *iter;

4309
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4310
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4311 4312 4313 4314
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4315 4316
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4317 4318
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4319 4320
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4321
	int i, size, ret;
4322 4323 4324 4325 4326 4327

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4328

4329
	if (type == _MEM)
4330
		thresholds = &memcg->thresholds;
4331
	else if (type == _MEMSWAP)
4332
		thresholds = &memcg->memsw_thresholds;
4333 4334 4335 4336 4337 4338
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4339
	if (thresholds->primary)
4340 4341
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4342
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4343 4344

	/* Allocate memory for new array of thresholds */
4345
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4346
			GFP_KERNEL);
4347
	if (!new) {
4348 4349 4350
		ret = -ENOMEM;
		goto unlock;
	}
4351
	new->size = size;
4352 4353

	/* Copy thresholds (if any) to new array */
4354 4355
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4356
				sizeof(struct mem_cgroup_threshold));
4357 4358
	}

4359
	/* Add new threshold */
4360 4361
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4362 4363

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4364
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4365 4366 4367
			compare_thresholds, NULL);

	/* Find current threshold */
4368
	new->current_threshold = -1;
4369
	for (i = 0; i < size; i++) {
4370
		if (new->entries[i].threshold < usage) {
4371
			/*
4372 4373
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4374 4375
			 * it here.
			 */
4376
			++new->current_threshold;
4377 4378 4379
		}
	}

4380 4381 4382 4383 4384
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4385

4386
	/* To be sure that nobody uses thresholds */
4387 4388 4389 4390 4391 4392 4393 4394
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4395
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4396
	struct cftype *cft, struct eventfd_ctx *eventfd)
4397 4398
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4399 4400
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4401 4402
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4403
	int i, j, size;
4404 4405 4406

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4407
		thresholds = &memcg->thresholds;
4408
	else if (type == _MEMSWAP)
4409
		thresholds = &memcg->memsw_thresholds;
4410 4411 4412 4413 4414 4415 4416 4417 4418
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

4419 4420 4421
	if (!thresholds->primary)
		goto unlock;

4422 4423 4424 4425 4426 4427
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4428 4429 4430
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4431 4432 4433
			size++;
	}

4434
	new = thresholds->spare;
4435

4436 4437
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4438 4439
		kfree(new);
		new = NULL;
4440
		goto swap_buffers;
4441 4442
	}

4443
	new->size = size;
4444 4445

	/* Copy thresholds and find current threshold */
4446 4447 4448
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4449 4450
			continue;

4451 4452
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4453
			/*
4454
			 * new->current_threshold will not be used
4455 4456 4457
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4458
			++new->current_threshold;
4459 4460 4461 4462
		}
		j++;
	}

4463
swap_buffers:
4464 4465 4466
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4467

4468
	/* To be sure that nobody uses thresholds */
4469
	synchronize_rcu();
4470
unlock:
4471 4472
	mutex_unlock(&memcg->thresholds_lock);
}
4473

K
KAMEZAWA Hiroyuki 已提交
4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4486
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4487 4488 4489 4490 4491

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4492
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4493
		eventfd_signal(eventfd, 1);
4494
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4495 4496 4497 4498

	return 0;
}

4499
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4500 4501
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4502
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4503 4504 4505 4506 4507
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4508
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4509

4510
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4511 4512 4513 4514 4515 4516
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4517
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4518 4519
}

4520 4521 4522
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4523
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4524

4525
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4526

4527
	if (atomic_read(&memcg->under_oom))
4528 4529 4530 4531 4532 4533 4534 4535 4536
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4537
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4549
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4550 4551 4552
		cgroup_unlock();
		return -EINVAL;
	}
4553
	memcg->oom_kill_disable = val;
4554
	if (!val)
4555
		memcg_oom_recover(memcg);
4556 4557 4558 4559
	cgroup_unlock();
	return 0;
}

4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

4576 4577 4578
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
G
Glauber Costa 已提交
4579 4580 4581 4582 4583 4584 4585
	/*
	 * Part of this would be better living in a separate allocation
	 * function, leaving us with just the cgroup tree population work.
	 * We, however, depend on state such as network's proto_list that
	 * is only initialized after cgroup creation. I found the less
	 * cumbersome way to deal with it to defer it all to populate time
	 */
4586
	return mem_cgroup_sockets_init(cont, ss);
4587 4588
};

G
Glauber Costa 已提交
4589 4590 4591 4592 4593
static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	mem_cgroup_sockets_destroy(cont, ss);
}
4594 4595 4596 4597 4598
#else
static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
G
Glauber Costa 已提交
4599 4600 4601 4602 4603

static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
}
4604 4605
#endif

B
Balbir Singh 已提交
4606 4607
static struct cftype mem_cgroup_files[] = {
	{
4608
		.name = "usage_in_bytes",
4609
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4610
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4611 4612
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4613
	},
4614 4615
	{
		.name = "max_usage_in_bytes",
4616
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4617
		.trigger = mem_cgroup_reset,
4618 4619
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4620
	{
4621
		.name = "limit_in_bytes",
4622
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4623
		.write_string = mem_cgroup_write,
4624
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4625
	},
4626 4627 4628 4629 4630 4631
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4632 4633
	{
		.name = "failcnt",
4634
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4635
		.trigger = mem_cgroup_reset,
4636
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4637
	},
4638 4639
	{
		.name = "stat",
4640
		.read_map = mem_control_stat_show,
4641
	},
4642 4643 4644 4645
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4646 4647 4648 4649 4650
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4651 4652 4653 4654 4655
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4656 4657 4658 4659 4660
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4661 4662
	{
		.name = "oom_control",
4663 4664
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4665 4666 4667 4668
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4669 4670 4671 4672
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
4673
		.mode = S_IRUGO,
4674 4675
	},
#endif
B
Balbir Singh 已提交
4676 4677
};

4678 4679 4680 4681 4682 4683
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4684 4685
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4721
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4722 4723
{
	struct mem_cgroup_per_node *pn;
4724
	struct mem_cgroup_per_zone *mz;
4725
	enum lru_list l;
4726
	int zone, tmp = node;
4727 4728 4729 4730 4731 4732 4733 4734
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4735 4736
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4737
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4738 4739
	if (!pn)
		return 1;
4740 4741 4742

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4743
		for_each_lru(l)
4744
			INIT_LIST_HEAD(&mz->lruvec.lists[l]);
4745
		mz->usage_in_excess = 0;
4746
		mz->on_tree = false;
4747
		mz->mem = memcg;
4748
	}
4749
	memcg->info.nodeinfo[node] = pn;
4750 4751 4752
	return 0;
}

4753
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4754
{
4755
	kfree(memcg->info.nodeinfo[node]);
4756 4757
}

4758 4759 4760
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4761
	int size = sizeof(struct mem_cgroup);
4762

4763
	/* Can be very big if MAX_NUMNODES is very big */
4764
	if (size < PAGE_SIZE)
4765
		mem = kzalloc(size, GFP_KERNEL);
4766
	else
4767
		mem = vzalloc(size);
4768

4769 4770 4771
	if (!mem)
		return NULL;

4772
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4773 4774
	if (!mem->stat)
		goto out_free;
4775
	spin_lock_init(&mem->pcp_counter_lock);
4776
	return mem;
4777 4778 4779 4780 4781 4782 4783

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4784 4785
}

4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4797
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4798
{
K
KAMEZAWA Hiroyuki 已提交
4799 4800
	int node;

4801 4802
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4803

B
Bob Liu 已提交
4804
	for_each_node(node)
4805
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4806

4807
	free_percpu(memcg->stat);
4808
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4809
		kfree(memcg);
4810
	else
4811
		vfree(memcg);
4812 4813
}

4814
static void mem_cgroup_get(struct mem_cgroup *memcg)
4815
{
4816
	atomic_inc(&memcg->refcnt);
4817 4818
}

4819
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4820
{
4821 4822 4823
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4824 4825 4826
		if (parent)
			mem_cgroup_put(parent);
	}
4827 4828
}

4829
static void mem_cgroup_put(struct mem_cgroup *memcg)
4830
{
4831
	__mem_cgroup_put(memcg, 1);
4832 4833
}

4834 4835 4836
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4837
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4838
{
4839
	if (!memcg->res.parent)
4840
		return NULL;
4841
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4842
}
G
Glauber Costa 已提交
4843
EXPORT_SYMBOL(parent_mem_cgroup);
4844

4845 4846 4847
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4848
	if (!mem_cgroup_disabled() && really_do_swap_account)
4849 4850 4851 4852 4853 4854 4855 4856
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4857 4858 4859 4860 4861 4862
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
4863
	for_each_node(node) {
4864 4865 4866 4867 4868
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
4869
			goto err_cleanup;
4870 4871 4872 4873 4874 4875 4876 4877 4878 4879

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
4880 4881

err_cleanup:
B
Bob Liu 已提交
4882
	for_each_node(node) {
4883 4884 4885 4886 4887 4888 4889
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

4890 4891
}

L
Li Zefan 已提交
4892
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4893 4894
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4895
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
4896
	long error = -ENOMEM;
4897
	int node;
B
Balbir Singh 已提交
4898

4899 4900
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4901
		return ERR_PTR(error);
4902

B
Bob Liu 已提交
4903
	for_each_node(node)
4904
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4905
			goto free_out;
4906

4907
	/* root ? */
4908
	if (cont->parent == NULL) {
4909
		int cpu;
4910
		enable_swap_cgroup();
4911
		parent = NULL;
4912 4913
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4914
		root_mem_cgroup = memcg;
4915 4916 4917 4918 4919
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4920
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4921
	} else {
4922
		parent = mem_cgroup_from_cont(cont->parent);
4923 4924
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
4925
	}
4926

4927
	if (parent && parent->use_hierarchy) {
4928 4929
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
4930 4931 4932 4933 4934 4935 4936
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4937
	} else {
4938 4939
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
4940
	}
4941 4942
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
4943

K
KOSAKI Motohiro 已提交
4944
	if (parent)
4945 4946 4947 4948 4949
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	return &memcg->css;
4950
free_out:
4951
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
4952
	return ERR_PTR(error);
B
Balbir Singh 已提交
4953 4954
}

4955
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4956 4957
					struct cgroup *cont)
{
4958
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4959

4960
	return mem_cgroup_force_empty(memcg, false);
4961 4962
}

B
Balbir Singh 已提交
4963 4964 4965
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4966
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4967

G
Glauber Costa 已提交
4968 4969
	kmem_cgroup_destroy(ss, cont);

4970
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
4971 4972 4973 4974 4975
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4976 4977 4978 4979 4980 4981 4982
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
4983 4984 4985 4986

	if (!ret)
		ret = register_kmem_files(cont, ss);

4987
	return ret;
B
Balbir Singh 已提交
4988 4989
}

4990
#ifdef CONFIG_MMU
4991
/* Handlers for move charge at task migration. */
4992 4993
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
4994
{
4995 4996
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4997
	struct mem_cgroup *memcg = mc.to;
4998

4999
	if (mem_cgroup_is_root(memcg)) {
5000 5001 5002 5003 5004 5005 5006 5007
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5008
		 * "memcg" cannot be under rmdir() because we've already checked
5009 5010 5011 5012
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5013
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5014
			goto one_by_one;
5015
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5016
						PAGE_SIZE * count, &dummy)) {
5017
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5034 5035
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
5036
		if (ret)
5037
			/* mem_cgroup_clear_mc() will do uncharge later */
5038
			return ret;
5039 5040
		mc.precharge++;
	}
5041 5042 5043 5044 5045 5046 5047 5048
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5049
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5050 5051 5052 5053 5054 5055
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5056 5057 5058
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5059 5060 5061 5062 5063
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5064
	swp_entry_t	ent;
5065 5066 5067 5068 5069
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
5070
	MC_TARGET_SWAP,
5071 5072
};

D
Daisuke Nishimura 已提交
5073 5074
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5075
{
D
Daisuke Nishimura 已提交
5076
	struct page *page = vm_normal_page(vma, addr, ptent);
5077

D
Daisuke Nishimura 已提交
5078 5079 5080 5081 5082 5083
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
5084 5085
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
5104 5105
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
5106
		return NULL;
5107
	}
D
Daisuke Nishimura 已提交
5108 5109 5110 5111 5112 5113
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5135 5136 5137 5138 5139 5140
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5141
		if (do_swap_account)
5142 5143
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5144
	}
5145
#endif
5146 5147 5148
	return page;
}

D
Daisuke Nishimura 已提交
5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5161 5162
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5163 5164 5165

	if (!page && !ent.val)
		return 0;
5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5181 5182
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5183
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5184 5185 5186
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5199 5200
	split_huge_page_pmd(walk->mm, pmd);

5201 5202 5203 5204 5205 5206 5207
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5208 5209 5210
	return 0;
}

5211 5212 5213 5214 5215
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5216
	down_read(&mm->mmap_sem);
5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5228
	up_read(&mm->mmap_sem);
5229 5230 5231 5232 5233 5234 5235 5236 5237

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5238 5239 5240 5241 5242
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5243 5244
}

5245 5246
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5247
{
5248 5249 5250
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5251
	/* we must uncharge all the leftover precharges from mc.to */
5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5263
	}
5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5298
	spin_lock(&mc.lock);
5299 5300
	mc.from = NULL;
	mc.to = NULL;
5301
	spin_unlock(&mc.lock);
5302
	mem_cgroup_end_move(from);
5303 5304
}

5305 5306
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5307
				struct cgroup_taskset *tset)
5308
{
5309
	struct task_struct *p = cgroup_taskset_first(tset);
5310
	int ret = 0;
5311
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5312

5313
	if (memcg->move_charge_at_immigrate) {
5314 5315 5316
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5317
		VM_BUG_ON(from == memcg);
5318 5319 5320 5321 5322

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5323 5324 5325 5326
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5327
			VM_BUG_ON(mc.moved_charge);
5328
			VM_BUG_ON(mc.moved_swap);
5329
			mem_cgroup_start_move(from);
5330
			spin_lock(&mc.lock);
5331
			mc.from = from;
5332
			mc.to = memcg;
5333
			spin_unlock(&mc.lock);
5334
			/* We set mc.moving_task later */
5335 5336 5337 5338

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5339 5340
		}
		mmput(mm);
5341 5342 5343 5344 5345 5346
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5347
				struct cgroup_taskset *tset)
5348
{
5349
	mem_cgroup_clear_mc();
5350 5351
}

5352 5353 5354
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5355
{
5356 5357 5358 5359 5360
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5361
	split_huge_page_pmd(walk->mm, pmd);
5362 5363 5364 5365 5366 5367 5368 5369
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
5370
		swp_entry_t ent;
5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5382 5383
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5384
				mc.precharge--;
5385 5386
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5387 5388 5389 5390 5391
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
5392 5393
		case MC_TARGET_SWAP:
			ent = target.ent;
5394 5395
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
5396
				mc.precharge--;
5397 5398 5399
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5400
			break;
5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5415
		ret = mem_cgroup_do_precharge(1);
5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5459
	up_read(&mm->mmap_sem);
5460 5461
}

B
Balbir Singh 已提交
5462 5463
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
5464
				struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5465
{
5466
	struct task_struct *p = cgroup_taskset_first(tset);
5467
	struct mm_struct *mm = get_task_mm(p);
5468 5469

	if (mm) {
5470 5471 5472
		if (mc.to)
			mem_cgroup_move_charge(mm);
		put_swap_token(mm);
5473 5474
		mmput(mm);
	}
5475 5476
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5477
}
5478 5479 5480
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5481
				struct cgroup_taskset *tset)
5482 5483 5484 5485 5486
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5487
				struct cgroup_taskset *tset)
5488 5489 5490 5491
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
5492
				struct cgroup_taskset *tset)
5493 5494 5495
{
}
#endif
B
Balbir Singh 已提交
5496

B
Balbir Singh 已提交
5497 5498 5499 5500
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5501
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5502 5503
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5504 5505
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5506
	.attach = mem_cgroup_move_task,
5507
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5508
	.use_id = 1,
B
Balbir Singh 已提交
5509
};
5510 5511

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5512 5513 5514
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5515
	if (!strcmp(s, "1"))
5516
		really_do_swap_account = 1;
5517
	else if (!strcmp(s, "0"))
5518 5519 5520
		really_do_swap_account = 0;
	return 1;
}
5521
__setup("swapaccount=", enable_swap_account);
5522 5523

#endif