memcontrol.c 179.6 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47 48
#include <linux/eventfd.h>
#include <linux/sort.h>
49
#include <linux/fs.h>
50
#include <linux/seq_file.h>
51
#include <linux/vmalloc.h>
52
#include <linux/mm_inline.h>
53
#include <linux/page_cgroup.h>
54
#include <linux/cpu.h>
55
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
56
#include "internal.h"
G
Glauber Costa 已提交
57
#include <net/sock.h>
M
Michal Hocko 已提交
58
#include <net/ip.h>
G
Glauber Costa 已提交
59
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
60

61 62
#include <asm/uaccess.h>

63 64
#include <trace/events/vmscan.h>

65
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66 67
EXPORT_SYMBOL(mem_cgroup_subsys);

68
#define MEM_CGROUP_RECLAIM_RETRIES	5
69
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
70

A
Andrew Morton 已提交
71
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
72
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73
int do_swap_account __read_mostly;
74 75

/* for remember boot option*/
A
Andrew Morton 已提交
76
#ifdef CONFIG_MEMCG_SWAP_ENABLED
77 78 79 80 81
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

82
#else
83
#define do_swap_account		0
84 85 86
#endif


87 88 89 90 91 92 93 94
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
95
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
96
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
97
	MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
98 99 100
	MEM_CGROUP_STAT_NSTATS,
};

101 102 103 104 105 106 107
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
	"mapped_file",
	"swap",
};

108 109 110
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
111 112
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
113 114
	MEM_CGROUP_EVENTS_NSTATS,
};
115 116 117 118 119 120 121 122

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

123 124 125 126 127 128 129 130
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

131 132 133 134 135 136 137 138 139
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
140
	MEM_CGROUP_TARGET_NUMAINFO,
141 142
	MEM_CGROUP_NTARGETS,
};
143 144 145
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
146

147
struct mem_cgroup_stat_cpu {
148
	long count[MEM_CGROUP_STAT_NSTATS];
149
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
150
	unsigned long nr_page_events;
151
	unsigned long targets[MEM_CGROUP_NTARGETS];
152 153
};

154 155 156 157 158 159 160
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

161 162 163 164
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
165
	struct lruvec		lruvec;
166
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
167

168 169
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

170 171 172 173
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
174
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
175
						/* use container_of	   */
176 177 178 179 180 181 182
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
183
	struct mem_cgroup_per_node *nodeinfo[0];
184 185
};

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

206 207 208 209 210
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
211
/* For threshold */
212
struct mem_cgroup_threshold_ary {
213
	/* An array index points to threshold just below or equal to usage. */
214
	int current_threshold;
215 216 217 218 219
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
220 221 222 223 224 225 226 227 228 229 230 231

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
232 233 234 235 236
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
237

238 239
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
240

B
Balbir Singh 已提交
241 242 243 244 245 246 247
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
248 249 250
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
251 252 253 254 255 256 257
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
276 277
		 * We also need some space for a worker in deferred freeing.
		 * By the time we call it, rcu_freeing is no longer in use.
278 279 280 281
		 */
		struct work_struct work_freeing;
	};

282 283 284 285
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
286 287 288 289
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
290
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
291 292 293 294

	bool		oom_lock;
	atomic_t	under_oom;

295
	atomic_t	refcnt;
296

297
	int	swappiness;
298 299
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
300

301 302 303
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

304 305 306 307
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
308
	struct mem_cgroup_thresholds thresholds;
309

310
	/* thresholds for mem+swap usage. RCU-protected */
311
	struct mem_cgroup_thresholds memsw_thresholds;
312

K
KAMEZAWA Hiroyuki 已提交
313 314
	/* For oom notifier event fd */
	struct list_head oom_notify;
315

316 317 318 319 320
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
321 322 323 324
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
325 326
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
327
	/*
328
	 * percpu counter.
329
	 */
330
	struct mem_cgroup_stat_cpu __percpu *stat;
331 332 333 334 335 336
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
337

M
Michal Hocko 已提交
338
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
339 340
	struct tcp_memcontrol tcp_mem;
#endif
341 342 343 344 345 346 347 348
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 *
	 * WARNING: This has to be the last element of the struct. Don't
	 * add new fields after this point.
	 */
	struct mem_cgroup_lru_info info;
B
Balbir Singh 已提交
364 365
};

366 367 368 369 370 371
static size_t memcg_size(void)
{
	return sizeof(struct mem_cgroup) +
		nr_node_ids * sizeof(struct mem_cgroup_per_node);
}

372 373 374
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
375
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
376
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
377 378
};

379 380 381
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
382 383 384 385 386 387

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
388 389 390 391 392 393

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

394 395 396 397 398
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

399 400 401 402 403
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

404 405 406 407 408 409 410 411 412 413 414
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
415 416
#endif

417 418 419 420 421 422
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
423
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
424
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
425 426 427
	NR_MOVE_TYPE,
};

428 429
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
430
	spinlock_t	  lock; /* for from, to */
431 432 433
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
434
	unsigned long moved_charge;
435
	unsigned long moved_swap;
436 437 438
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
439
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
440 441
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
442

D
Daisuke Nishimura 已提交
443 444 445 446 447 448
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

449 450 451 452 453 454
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

455 456 457 458
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
459 460
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
461

462 463
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
464
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
465
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
466
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
467 468 469
	NR_CHARGE_TYPE,
};

470
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
471 472 473 474
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
475
	_KMEM,
G
Glauber Costa 已提交
476 477
};

478 479
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
480
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
481 482
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
483

484 485 486 487 488 489 490 491
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

492 493
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
494

495 496 497 498 499 500
static inline
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
	return container_of(s, struct mem_cgroup, css);
}

501 502 503 504 505
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
506
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
507
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
508 509 510

void sock_update_memcg(struct sock *sk)
{
511
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
512
		struct mem_cgroup *memcg;
513
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
514 515 516

		BUG_ON(!sk->sk_prot->proto_cgroup);

517 518 519 520 521 522 523 524 525 526 527 528 529 530
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
531 532
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
533 534
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
G
Glauber Costa 已提交
535
			mem_cgroup_get(memcg);
536
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
537 538 539 540 541 542 543 544
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
545
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
546 547 548 549 550 551
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
552 553 554 555 556 557 558 559 560

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
561

562 563 564 565 566 567 568 569 570 571 572 573
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

574
#ifdef CONFIG_MEMCG_KMEM
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
593 594
int memcg_limited_groups_array_size;

595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

610 611 612 613 614 615
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
616
struct static_key memcg_kmem_enabled_key;
617
EXPORT_SYMBOL(memcg_kmem_enabled_key);
618 619 620

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
621
	if (memcg_kmem_is_active(memcg)) {
622
		static_key_slow_dec(&memcg_kmem_enabled_key);
623 624
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
625 626 627 628 629
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
630 631 632 633 634 635 636 637 638 639 640 641 642
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

643
static void drain_all_stock_async(struct mem_cgroup *memcg);
644

645
static struct mem_cgroup_per_zone *
646
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
647
{
648
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
649
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
650 651
}

652
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
653
{
654
	return &memcg->css;
655 656
}

657
static struct mem_cgroup_per_zone *
658
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
659
{
660 661
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
662

663
	return mem_cgroup_zoneinfo(memcg, nid, zid);
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
682
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
683
				struct mem_cgroup_per_zone *mz,
684 685
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
686 687 688 689 690 691 692 693
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

694 695 696
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
713 714 715
}

static void
716
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
717 718 719 720 721 722 723 724 725
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

726
static void
727
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
728 729 730 731
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
732
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
733 734 735 736
	spin_unlock(&mctz->lock);
}


737
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
738
{
739
	unsigned long long excess;
740 741
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
742 743
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
744 745 746
	mctz = soft_limit_tree_from_page(page);

	/*
747 748
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
749
	 */
750 751 752
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
753 754 755 756
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
757
		if (excess || mz->on_tree) {
758 759 760
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
761
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
762
			/*
763 764
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
765
			 */
766
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
767 768
			spin_unlock(&mctz->lock);
		}
769 770 771
	}
}

772
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
773 774 775 776 777
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
778
	for_each_node(node) {
779
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
780
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
781
			mctz = soft_limit_tree_node_zone(node, zone);
782
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
783 784 785 786
		}
	}
}

787 788 789 790
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
791
	struct mem_cgroup_per_zone *mz;
792 793

retry:
794
	mz = NULL;
795 796 797 798 799 800 801 802 803 804
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
805 806 807
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
843
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
844
				 enum mem_cgroup_stat_index idx)
845
{
846
	long val = 0;
847 848
	int cpu;

849 850
	get_online_cpus();
	for_each_online_cpu(cpu)
851
		val += per_cpu(memcg->stat->count[idx], cpu);
852
#ifdef CONFIG_HOTPLUG_CPU
853 854 855
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
856 857
#endif
	put_online_cpus();
858 859 860
	return val;
}

861
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
862 863 864
					 bool charge)
{
	int val = (charge) ? 1 : -1;
865
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
866 867
}

868
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
869 870 871 872 873 874
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
875
		val += per_cpu(memcg->stat->events[idx], cpu);
876
#ifdef CONFIG_HOTPLUG_CPU
877 878 879
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
880 881 882 883
#endif
	return val;
}

884
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
885
					 bool anon, int nr_pages)
886
{
887 888
	preempt_disable();

889 890 891 892 893 894
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
895
				nr_pages);
896
	else
897
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
898
				nr_pages);
899

900 901
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
902
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
903
	else {
904
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
905 906
		nr_pages = -nr_pages; /* for event */
	}
907

908
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
909

910
	preempt_enable();
911 912
}

913
unsigned long
914
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
915 916 917 918 919 920 921 922
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
923
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
924
			unsigned int lru_mask)
925 926
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
927
	enum lru_list lru;
928 929
	unsigned long ret = 0;

930
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
931

H
Hugh Dickins 已提交
932 933 934
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
935 936 937 938 939
	}
	return ret;
}

static unsigned long
940
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
941 942
			int nid, unsigned int lru_mask)
{
943 944 945
	u64 total = 0;
	int zid;

946
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
947 948
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
949

950 951
	return total;
}
952

953
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
954
			unsigned int lru_mask)
955
{
956
	int nid;
957 958
	u64 total = 0;

959
	for_each_node_state(nid, N_MEMORY)
960
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
961
	return total;
962 963
}

964 965
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
966 967 968
{
	unsigned long val, next;

969
	val = __this_cpu_read(memcg->stat->nr_page_events);
970
	next = __this_cpu_read(memcg->stat->targets[target]);
971
	/* from time_after() in jiffies.h */
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
988
	}
989
	return false;
990 991 992 993 994 995
}

/*
 * Check events in order.
 *
 */
996
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
997
{
998
	preempt_disable();
999
	/* threshold event is triggered in finer grain than soft limit */
1000 1001
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1002 1003
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
1004 1005 1006 1007 1008 1009 1010 1011 1012

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1013
		mem_cgroup_threshold(memcg);
1014
		if (unlikely(do_softlimit))
1015
			mem_cgroup_update_tree(memcg, page);
1016
#if MAX_NUMNODES > 1
1017
		if (unlikely(do_numainfo))
1018
			atomic_inc(&memcg->numainfo_events);
1019
#endif
1020 1021
	} else
		preempt_enable();
1022 1023
}

G
Glauber Costa 已提交
1024
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
1025
{
1026 1027
	return mem_cgroup_from_css(
		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
B
Balbir Singh 已提交
1028 1029
}

1030
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1031
{
1032 1033 1034 1035 1036 1037 1038 1039
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1040
	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
1041 1042
}

1043
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1044
{
1045
	struct mem_cgroup *memcg = NULL;
1046 1047 1048

	if (!mm)
		return NULL;
1049 1050 1051 1052 1053 1054 1055
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
1056 1057
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1058
			break;
1059
	} while (!css_tryget(&memcg->css));
1060
	rcu_read_unlock();
1061
	return memcg;
1062 1063
}

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1084
{
1085 1086
	struct mem_cgroup *memcg = NULL;
	int id = 0;
1087

1088 1089 1090
	if (mem_cgroup_disabled())
		return NULL;

1091 1092
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1093

1094 1095
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
1096

1097 1098
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
1099

1100 1101 1102 1103 1104
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
1105

1106
	while (!memcg) {
1107
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1108
		struct cgroup_subsys_state *css;
1109

1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
1121

1122 1123 1124 1125
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
1126
				memcg = mem_cgroup_from_css(css);
1127 1128
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
1129 1130
		rcu_read_unlock();

1131 1132 1133 1134 1135 1136 1137
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1138 1139 1140 1141 1142

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1143
}
K
KAMEZAWA Hiroyuki 已提交
1144

1145 1146 1147 1148 1149 1150 1151
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1152 1153 1154 1155 1156 1157
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1158

1159 1160 1161 1162 1163 1164
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1165
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1166
	     iter != NULL;				\
1167
	     iter = mem_cgroup_iter(root, iter, NULL))
1168

1169
#define for_each_mem_cgroup(iter)			\
1170
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1171
	     iter != NULL;				\
1172
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1173

1174
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1175
{
1176
	struct mem_cgroup *memcg;
1177 1178

	rcu_read_lock();
1179 1180
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1181 1182 1183 1184
		goto out;

	switch (idx) {
	case PGFAULT:
1185 1186 1187 1188
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1189 1190 1191 1192 1193 1194 1195
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1196
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1197

1198 1199 1200
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1201
 * @memcg: memcg of the wanted lruvec
1202 1203 1204 1205 1206 1207 1208 1209 1210
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1211
	struct lruvec *lruvec;
1212

1213 1214 1215 1216
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1217 1218

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1229 1230
}

K
KAMEZAWA Hiroyuki 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1244

1245
/**
1246
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1247
 * @page: the page
1248
 * @zone: zone of the page
1249
 */
1250
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1251 1252
{
	struct mem_cgroup_per_zone *mz;
1253 1254
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1255
	struct lruvec *lruvec;
1256

1257 1258 1259 1260
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1261

K
KAMEZAWA Hiroyuki 已提交
1262
	pc = lookup_page_cgroup(page);
1263
	memcg = pc->mem_cgroup;
1264 1265

	/*
1266
	 * Surreptitiously switch any uncharged offlist page to root:
1267 1268 1269 1270 1271 1272 1273
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1274
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1275 1276
		pc->mem_cgroup = memcg = root_mem_cgroup;

1277
	mz = page_cgroup_zoneinfo(memcg, page);
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1288
}
1289

1290
/**
1291 1292 1293 1294
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1295
 *
1296 1297
 * This function must be called when a page is added to or removed from an
 * lru list.
1298
 */
1299 1300
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1301 1302
{
	struct mem_cgroup_per_zone *mz;
1303
	unsigned long *lru_size;
1304 1305 1306 1307

	if (mem_cgroup_disabled())
		return;

1308 1309 1310 1311
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1312
}
1313

1314
/*
1315
 * Checks whether given mem is same or in the root_mem_cgroup's
1316 1317
 * hierarchy subtree
 */
1318 1319
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1320
{
1321 1322
	if (root_memcg == memcg)
		return true;
1323
	if (!root_memcg->use_hierarchy || !memcg)
1324
		return false;
1325 1326 1327 1328 1329 1330 1331 1332
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1333
	rcu_read_lock();
1334
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1335 1336
	rcu_read_unlock();
	return ret;
1337 1338
}

1339
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1340 1341
{
	int ret;
1342
	struct mem_cgroup *curr = NULL;
1343
	struct task_struct *p;
1344

1345
	p = find_lock_task_mm(task);
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1361 1362
	if (!curr)
		return 0;
1363
	/*
1364
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1365
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1366 1367
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1368
	 */
1369
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1370
	css_put(&curr->css);
1371 1372 1373
	return ret;
}

1374
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1375
{
1376
	unsigned long inactive_ratio;
1377
	unsigned long inactive;
1378
	unsigned long active;
1379
	unsigned long gb;
1380

1381 1382
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1383

1384 1385 1386 1387 1388 1389
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1390
	return inactive * inactive_ratio < active;
1391 1392
}

1393
int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1394 1395 1396 1397
{
	unsigned long active;
	unsigned long inactive;

1398 1399
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1400 1401 1402 1403

	return (active > inactive);
}

1404 1405 1406
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1407
/**
1408
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1409
 * @memcg: the memory cgroup
1410
 *
1411
 * Returns the maximum amount of memory @mem can be charged with, in
1412
 * pages.
1413
 */
1414
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1415
{
1416 1417
	unsigned long long margin;

1418
	margin = res_counter_margin(&memcg->res);
1419
	if (do_swap_account)
1420
		margin = min(margin, res_counter_margin(&memcg->memsw));
1421
	return margin >> PAGE_SHIFT;
1422 1423
}

1424
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1425 1426 1427 1428 1429 1430 1431
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1432
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1433 1434
}

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1449 1450 1451 1452

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1453
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1454
{
1455
	atomic_inc(&memcg_moving);
1456
	atomic_inc(&memcg->moving_account);
1457 1458 1459
	synchronize_rcu();
}

1460
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1461
{
1462 1463 1464 1465
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1466 1467
	if (memcg) {
		atomic_dec(&memcg_moving);
1468
		atomic_dec(&memcg->moving_account);
1469
	}
1470
}
1471

1472 1473 1474
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1475 1476
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1477 1478 1479 1480 1481 1482 1483
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1484
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1485 1486
{
	VM_BUG_ON(!rcu_read_lock_held());
1487
	return atomic_read(&memcg->moving_account) > 0;
1488
}
1489

1490
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1491
{
1492 1493
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1494
	bool ret = false;
1495 1496 1497 1498 1499 1500 1501 1502 1503
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1504

1505 1506
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1507 1508
unlock:
	spin_unlock(&mc.lock);
1509 1510 1511
	return ret;
}

1512
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1513 1514
{
	if (mc.moving_task && current != mc.moving_task) {
1515
		if (mem_cgroup_under_move(memcg)) {
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1528 1529 1530 1531
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1532
 * see mem_cgroup_stolen(), too.
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1546
#define K(x) ((x) << (PAGE_SHIFT-10))
1547
/**
1548
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;
1566 1567
	struct mem_cgroup *iter;
	unsigned int i;
1568

1569
	if (!p)
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1588
	pr_info("Task in %s killed", memcg_name);
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1601
	pr_cont(" as a result of limit of %s\n", memcg_name);
1602 1603
done:

1604
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1605 1606 1607
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1608
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1609 1610 1611
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1612
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1613 1614 1615
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1640 1641
}

1642 1643 1644 1645
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1646
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1647 1648
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1649 1650
	struct mem_cgroup *iter;

1651
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1652
		num++;
1653 1654 1655
	return num;
}

D
David Rientjes 已提交
1656 1657 1658
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1659
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1660 1661 1662
{
	u64 limit;

1663 1664
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1665
	/*
1666
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1667
	 */
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1682 1683
}

1684 1685
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1686 1687 1688 1689 1690 1691 1692
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
	/*
	 * If current has a pending SIGKILL, then automatically select it.  The
	 * goal is to allow it to allocate so that it may quickly exit and free
	 * its memory.
	 */
	if (fatal_signal_pending(current)) {
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
		struct cgroup *cgroup = iter->css.cgroup;
		struct cgroup_iter it;
		struct task_struct *task;

		cgroup_iter_start(cgroup, &it);
		while ((task = cgroup_iter_next(cgroup, &it))) {
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
				cgroup_iter_end(cgroup, &it);
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
		cgroup_iter_end(cgroup, &it);
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1787 1788
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1789
 * @memcg: the target memcg
1790 1791 1792 1793 1794 1795 1796
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1797
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1798 1799
		int nid, bool noswap)
{
1800
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1801 1802 1803
		return true;
	if (noswap || !total_swap_pages)
		return false;
1804
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1805 1806 1807 1808
		return true;
	return false;

}
1809 1810 1811 1812 1813 1814 1815 1816
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1817
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1818 1819
{
	int nid;
1820 1821 1822 1823
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1824
	if (!atomic_read(&memcg->numainfo_events))
1825
		return;
1826
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1827 1828 1829
		return;

	/* make a nodemask where this memcg uses memory from */
1830
	memcg->scan_nodes = node_states[N_MEMORY];
1831

1832
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1833

1834 1835
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1836
	}
1837

1838 1839
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1854
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1855 1856 1857
{
	int node;

1858 1859
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1860

1861
	node = next_node(node, memcg->scan_nodes);
1862
	if (node == MAX_NUMNODES)
1863
		node = first_node(memcg->scan_nodes);
1864 1865 1866 1867 1868 1869 1870 1871 1872
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1873
	memcg->last_scanned_node = node;
1874 1875 1876
	return node;
}

1877 1878 1879 1880 1881 1882
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1883
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1884 1885 1886 1887 1888 1889 1890
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1891 1892
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1893
		     nid < MAX_NUMNODES;
1894
		     nid = next_node(nid, memcg->scan_nodes)) {
1895

1896
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1897 1898 1899 1900 1901 1902
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
1903
	for_each_node_state(nid, N_MEMORY) {
1904
		if (node_isset(nid, memcg->scan_nodes))
1905
			continue;
1906
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1907 1908 1909 1910 1911
			return true;
	}
	return false;
}

1912
#else
1913
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1914 1915 1916
{
	return 0;
}
1917

1918
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1919
{
1920
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1921
}
1922 1923
#endif

1924 1925 1926 1927
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1928
{
1929
	struct mem_cgroup *victim = NULL;
1930
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1931
	int loop = 0;
1932
	unsigned long excess;
1933
	unsigned long nr_scanned;
1934 1935 1936 1937
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1938

1939
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1940

1941
	while (1) {
1942
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1943
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1944
			loop++;
1945 1946 1947 1948 1949 1950
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1951
				if (!total)
1952 1953
					break;
				/*
L
Lucas De Marchi 已提交
1954
				 * We want to do more targeted reclaim.
1955 1956 1957 1958 1959
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1960
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1961 1962
					break;
			}
1963
			continue;
1964
		}
1965
		if (!mem_cgroup_reclaimable(victim, false))
1966
			continue;
1967 1968 1969 1970
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1971
			break;
1972
	}
1973
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1974
	return total;
1975 1976
}

K
KAMEZAWA Hiroyuki 已提交
1977 1978 1979
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1980
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1981
 */
1982
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1983
{
1984
	struct mem_cgroup *iter, *failed = NULL;
1985

1986
	for_each_mem_cgroup_tree(iter, memcg) {
1987
		if (iter->oom_lock) {
1988 1989 1990 1991 1992
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1993 1994
			mem_cgroup_iter_break(memcg, iter);
			break;
1995 1996
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1997
	}
K
KAMEZAWA Hiroyuki 已提交
1998

1999
	if (!failed)
2000
		return true;
2001 2002 2003 2004 2005

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
2006
	for_each_mem_cgroup_tree(iter, memcg) {
2007
		if (iter == failed) {
2008 2009
			mem_cgroup_iter_break(memcg, iter);
			break;
2010 2011 2012
		}
		iter->oom_lock = false;
	}
2013
	return false;
2014
}
2015

2016
/*
2017
 * Has to be called with memcg_oom_lock
2018
 */
2019
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2020
{
K
KAMEZAWA Hiroyuki 已提交
2021 2022
	struct mem_cgroup *iter;

2023
	for_each_mem_cgroup_tree(iter, memcg)
2024 2025 2026 2027
		iter->oom_lock = false;
	return 0;
}

2028
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2029 2030 2031
{
	struct mem_cgroup *iter;

2032
	for_each_mem_cgroup_tree(iter, memcg)
2033 2034 2035
		atomic_inc(&iter->under_oom);
}

2036
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2037 2038 2039
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2040 2041 2042 2043 2044
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2045
	for_each_mem_cgroup_tree(iter, memcg)
2046
		atomic_add_unless(&iter->under_oom, -1, 0);
2047 2048
}

2049
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2050 2051
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2052
struct oom_wait_info {
2053
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2054 2055 2056 2057 2058 2059
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2060 2061
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2062 2063 2064
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2065
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2066 2067

	/*
2068
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2069 2070
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2071 2072
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2073 2074 2075 2076
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2077
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2078
{
2079 2080
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2081 2082
}

2083
static void memcg_oom_recover(struct mem_cgroup *memcg)
2084
{
2085 2086
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2087 2088
}

K
KAMEZAWA Hiroyuki 已提交
2089 2090 2091
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
2092 2093
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
2094
{
K
KAMEZAWA Hiroyuki 已提交
2095
	struct oom_wait_info owait;
2096
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
2097

2098
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
2099 2100 2101 2102
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
2103
	need_to_kill = true;
2104
	mem_cgroup_mark_under_oom(memcg);
2105

2106
	/* At first, try to OOM lock hierarchy under memcg.*/
2107
	spin_lock(&memcg_oom_lock);
2108
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
2109 2110 2111 2112 2113
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
2114
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2115
	if (!locked || memcg->oom_kill_disable)
2116 2117
		need_to_kill = false;
	if (locked)
2118
		mem_cgroup_oom_notify(memcg);
2119
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2120

2121 2122
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
2123
		mem_cgroup_out_of_memory(memcg, mask, order);
2124
	} else {
K
KAMEZAWA Hiroyuki 已提交
2125
		schedule();
K
KAMEZAWA Hiroyuki 已提交
2126
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
2127
	}
2128
	spin_lock(&memcg_oom_lock);
2129
	if (locked)
2130 2131
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
2132
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
2133

2134
	mem_cgroup_unmark_under_oom(memcg);
2135

K
KAMEZAWA Hiroyuki 已提交
2136 2137 2138
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
2139
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
2140
	return true;
2141 2142
}

2143 2144 2145
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2163 2164
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2165
 */
2166

2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2180
	 * need to take move_lock_mem_cgroup(). Because we already hold
2181
	 * rcu_read_lock(), any calls to move_account will be delayed until
2182
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2183
	 */
2184
	if (!mem_cgroup_stolen(memcg))
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2202
	 * should take move_lock_mem_cgroup().
2203 2204 2205 2206
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2207 2208
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
2209
{
2210
	struct mem_cgroup *memcg;
2211
	struct page_cgroup *pc = lookup_page_cgroup(page);
2212
	unsigned long uninitialized_var(flags);
2213

2214
	if (mem_cgroup_disabled())
2215
		return;
2216

2217 2218
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2219
		return;
2220 2221

	switch (idx) {
2222 2223
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2224 2225 2226
		break;
	default:
		BUG();
2227
	}
2228

2229
	this_cpu_add(memcg->stat->count[idx], val);
2230
}
2231

2232 2233 2234 2235
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2236
#define CHARGE_BATCH	32U
2237 2238
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2239
	unsigned int nr_pages;
2240
	struct work_struct work;
2241
	unsigned long flags;
2242
#define FLUSHING_CACHED_CHARGE	0
2243 2244
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2245
static DEFINE_MUTEX(percpu_charge_mutex);
2246

2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2257
 */
2258
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2259 2260 2261 2262
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2263 2264 2265
	if (nr_pages > CHARGE_BATCH)
		return false;

2266
	stock = &get_cpu_var(memcg_stock);
2267 2268
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2282 2283 2284 2285
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2286
		if (do_swap_account)
2287 2288
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2301
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2302 2303 2304 2305
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2306
 * This will be consumed by consume_stock() function, later.
2307
 */
2308
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2309 2310 2311
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2312
	if (stock->cached != memcg) { /* reset if necessary */
2313
		drain_stock(stock);
2314
		stock->cached = memcg;
2315
	}
2316
	stock->nr_pages += nr_pages;
2317 2318 2319 2320
	put_cpu_var(memcg_stock);
}

/*
2321
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2322 2323
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2324
 */
2325
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2326
{
2327
	int cpu, curcpu;
2328

2329 2330
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2331
	curcpu = get_cpu();
2332 2333
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2334
		struct mem_cgroup *memcg;
2335

2336 2337
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2338
			continue;
2339
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2340
			continue;
2341 2342 2343 2344 2345 2346
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2347
	}
2348
	put_cpu();
2349 2350 2351 2352 2353 2354

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2355
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2356 2357 2358
			flush_work(&stock->work);
	}
out:
2359
 	put_online_cpus();
2360 2361 2362 2363 2364 2365 2366 2367
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2368
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2369
{
2370 2371 2372 2373 2374
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2375
	drain_all_stock(root_memcg, false);
2376
	mutex_unlock(&percpu_charge_mutex);
2377 2378 2379
}

/* This is a synchronous drain interface. */
2380
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2381 2382
{
	/* called when force_empty is called */
2383
	mutex_lock(&percpu_charge_mutex);
2384
	drain_all_stock(root_memcg, true);
2385
	mutex_unlock(&percpu_charge_mutex);
2386 2387
}

2388 2389 2390 2391
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2392
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2393 2394 2395
{
	int i;

2396
	spin_lock(&memcg->pcp_counter_lock);
2397
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2398
		long x = per_cpu(memcg->stat->count[i], cpu);
2399

2400 2401
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2402
	}
2403
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2404
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2405

2406 2407
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2408
	}
2409
	spin_unlock(&memcg->pcp_counter_lock);
2410 2411 2412
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2413 2414 2415 2416 2417
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2418
	struct mem_cgroup *iter;
2419

2420
	if (action == CPU_ONLINE)
2421 2422
		return NOTIFY_OK;

2423
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2424
		return NOTIFY_OK;
2425

2426
	for_each_mem_cgroup(iter)
2427 2428
		mem_cgroup_drain_pcp_counter(iter, cpu);

2429 2430 2431 2432 2433
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2434 2435 2436 2437 2438 2439 2440 2441 2442 2443

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2444
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2445 2446
				unsigned int nr_pages, unsigned int min_pages,
				bool oom_check)
2447
{
2448
	unsigned long csize = nr_pages * PAGE_SIZE;
2449 2450 2451 2452 2453
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2454
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2455 2456 2457 2458

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2459
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2460 2461 2462
		if (likely(!ret))
			return CHARGE_OK;

2463
		res_counter_uncharge(&memcg->res, csize);
2464 2465 2466 2467
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2468 2469 2470 2471
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2472
	if (nr_pages > min_pages)
2473 2474 2475 2476 2477
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2478 2479 2480
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2481
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2482
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2483
		return CHARGE_RETRY;
2484
	/*
2485 2486 2487 2488 2489 2490 2491
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2492
	 */
2493
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2507
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2508 2509 2510 2511 2512
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2513
/*
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2533
 */
2534
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2535
				   gfp_t gfp_mask,
2536
				   unsigned int nr_pages,
2537
				   struct mem_cgroup **ptr,
2538
				   bool oom)
2539
{
2540
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2541
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2542
	struct mem_cgroup *memcg = NULL;
2543
	int ret;
2544

K
KAMEZAWA Hiroyuki 已提交
2545 2546 2547 2548 2549 2550 2551 2552
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2553

2554
	/*
2555 2556
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2557
	 * thread group leader migrates. It's possible that mm is not
2558
	 * set, if so charge the root memcg (happens for pagecache usage).
2559
	 */
2560
	if (!*ptr && !mm)
2561
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2562
again:
2563 2564 2565
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2566
			goto done;
2567
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2568
			goto done;
2569
		css_get(&memcg->css);
2570
	} else {
K
KAMEZAWA Hiroyuki 已提交
2571
		struct task_struct *p;
2572

K
KAMEZAWA Hiroyuki 已提交
2573 2574 2575
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2576
		 * Because we don't have task_lock(), "p" can exit.
2577
		 * In that case, "memcg" can point to root or p can be NULL with
2578 2579 2580 2581 2582 2583
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2584
		 */
2585
		memcg = mem_cgroup_from_task(p);
2586 2587 2588
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2589 2590 2591
			rcu_read_unlock();
			goto done;
		}
2592
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2605
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2606 2607 2608 2609 2610
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2611

2612 2613
	do {
		bool oom_check;
2614

2615
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2616
		if (fatal_signal_pending(current)) {
2617
			css_put(&memcg->css);
2618
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2619
		}
2620

2621 2622 2623 2624
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2625
		}
2626

2627 2628
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
		    oom_check);
2629 2630 2631 2632
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2633
			batch = nr_pages;
2634 2635
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2636
			goto again;
2637
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2638
			css_put(&memcg->css);
2639 2640
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2641
			if (!oom) {
2642
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2643
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2644
			}
2645 2646 2647 2648
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2649
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2650
			goto bypass;
2651
		}
2652 2653
	} while (ret != CHARGE_OK);

2654
	if (batch > nr_pages)
2655 2656
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2657
done:
2658
	*ptr = memcg;
2659 2660
	return 0;
nomem:
2661
	*ptr = NULL;
2662
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2663
bypass:
2664 2665
	*ptr = root_mem_cgroup;
	return -EINTR;
2666
}
2667

2668 2669 2670 2671 2672
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2673
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2674
				       unsigned int nr_pages)
2675
{
2676
	if (!mem_cgroup_is_root(memcg)) {
2677 2678
		unsigned long bytes = nr_pages * PAGE_SIZE;

2679
		res_counter_uncharge(&memcg->res, bytes);
2680
		if (do_swap_account)
2681
			res_counter_uncharge(&memcg->memsw, bytes);
2682
	}
2683 2684
}

2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2703 2704
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2705 2706 2707
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2719
	return mem_cgroup_from_css(css);
2720 2721
}

2722
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2723
{
2724
	struct mem_cgroup *memcg = NULL;
2725
	struct page_cgroup *pc;
2726
	unsigned short id;
2727 2728
	swp_entry_t ent;

2729 2730 2731
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2732
	lock_page_cgroup(pc);
2733
	if (PageCgroupUsed(pc)) {
2734 2735 2736
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2737
	} else if (PageSwapCache(page)) {
2738
		ent.val = page_private(page);
2739
		id = lookup_swap_cgroup_id(ent);
2740
		rcu_read_lock();
2741 2742 2743
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2744
		rcu_read_unlock();
2745
	}
2746
	unlock_page_cgroup(pc);
2747
	return memcg;
2748 2749
}

2750
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2751
				       struct page *page,
2752
				       unsigned int nr_pages,
2753 2754
				       enum charge_type ctype,
				       bool lrucare)
2755
{
2756
	struct page_cgroup *pc = lookup_page_cgroup(page);
2757
	struct zone *uninitialized_var(zone);
2758
	struct lruvec *lruvec;
2759
	bool was_on_lru = false;
2760
	bool anon;
2761

2762
	lock_page_cgroup(pc);
2763
	VM_BUG_ON(PageCgroupUsed(pc));
2764 2765 2766 2767
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2768 2769 2770 2771 2772 2773 2774 2775 2776

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2777
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2778
			ClearPageLRU(page);
2779
			del_page_from_lru_list(page, lruvec, page_lru(page));
2780 2781 2782 2783
			was_on_lru = true;
		}
	}

2784
	pc->mem_cgroup = memcg;
2785 2786 2787 2788 2789 2790 2791
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2792
	smp_wmb();
2793
	SetPageCgroupUsed(pc);
2794

2795 2796
	if (lrucare) {
		if (was_on_lru) {
2797
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2798 2799
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2800
			add_page_to_lru_list(page, lruvec, page_lru(page));
2801 2802 2803 2804
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2805
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2806 2807 2808 2809 2810
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2811
	unlock_page_cgroup(pc);
2812

2813 2814 2815 2816 2817
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2818
	memcg_check_events(memcg, page);
2819
}
2820

2821 2822
static DEFINE_MUTEX(set_limit_mutex);

2823 2824 2825 2826 2827 2828 2829
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
}

2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
#ifdef CONFIG_SLABINFO
static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
					struct seq_file *m)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;
	bool may_oom;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	/*
	 * Conditions under which we can wait for the oom_killer. Those are
	 * the same conditions tested by the core page allocator
	 */
	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
				      &_memcg, may_oom);

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
2917 2918 2919 2920 2921 2922 2923

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
		mem_cgroup_put(memcg);
2924 2925
}

2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
		size += sizeof(struct memcg_cache_params);

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
3060 3061
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
3062 3063 3064 3065 3066 3067
{
	size_t size = sizeof(struct memcg_cache_params);

	if (!memcg_kmem_enabled())
		return 0;

3068 3069 3070
	if (!memcg)
		size += memcg_limited_groups_array_size * sizeof(void *);

3071 3072 3073 3074
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

G
Glauber Costa 已提交
3075
	if (memcg) {
3076
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3077
		s->memcg_params->root_cache = root_cache;
3078 3079 3080
	} else
		s->memcg_params->is_root_cache = true;

3081 3082 3083 3084 3085
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;
	mem_cgroup_put(memcg);

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

out:
3112 3113 3114
	kfree(s->memcg_params);
}

3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3146 3147 3148 3149 3150 3151 3152 3153 3154
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3176 3177 3178 3179 3180 3181 3182 3183
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3204 3205 3206 3207 3208 3209 3210
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
static char *memcg_cache_name(struct mem_cgroup *memcg, struct kmem_cache *s)
{
	char *name;
	struct dentry *dentry;

	rcu_read_lock();
	dentry = rcu_dereference(memcg->css.cgroup->dentry);
	rcu_read_unlock();

	BUG_ON(dentry == NULL);

	name = kasprintf(GFP_KERNEL, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), dentry->d_name.name);

	return name;
}

static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	char *name;
	struct kmem_cache *new;

	name = memcg_cache_name(memcg, s);
	if (!name)
		return NULL;

	new = kmem_cache_create_memcg(memcg, name, s->object_size, s->align,
G
Glauber Costa 已提交
3239
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3240

3241 3242 3243
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
	kfree(name);
	return new;
}

/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
	if (new_cachep)
		goto out;

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
		goto out;
	}

	mem_cgroup_get(memcg);
G
Glauber Costa 已提交
3279
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
	for (i = 0; i < memcg_limited_groups_array_size; i++) {
		c = s->memcg_params->memcg_caches[i];
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3331
		cancel_work_sync(&c->memcg_params->destroy);
3332 3333 3334 3335 3336
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3337 3338 3339 3340 3341 3342
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		INIT_WORK(&cachep->memcg_params->destroy,
G
Glauber Costa 已提交
3356
				  kmem_cache_destroy_work_func);
G
Glauber Costa 已提交
3357 3358 3359 3360 3361
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	/* Drop the reference gotten when we enqueued. */
	css_put(&cw->memcg->css);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 * Called with rcu_read_lock.
 */
3377 3378
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
	if (cw == NULL)
		return;

	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css)) {
		kfree(cw);
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3439 3440 3441
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
	rcu_read_unlock();

	if (!memcg_can_account_kmem(memcg))
		return cachep;

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
	if (unlikely(cachep->memcg_params->memcg_caches[idx] == NULL)) {
		/*
		 * If we are in a safe context (can wait, and not in interrupt
		 * context), we could be be predictable and return right away.
		 * This would guarantee that the allocation being performed
		 * already belongs in the new cache.
		 *
		 * However, there are some clashes that can arrive from locking.
		 * For instance, because we acquire the slab_mutex while doing
		 * kmem_cache_dup, this means no further allocation could happen
		 * with the slab_mutex held.
		 *
		 * Also, because cache creation issue get_online_cpus(), this
		 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
		 * that ends up reversed during cpu hotplug. (cpuset allocates
		 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
		 * better to defer everything.
		 */
		memcg_create_cache_enqueue(memcg, cachep);
		return cachep;
	}

	return cachep->memcg_params->memcg_caches[idx];
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3577 3578 3579 3580
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3581 3582
#endif /* CONFIG_MEMCG_KMEM */

3583 3584
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3585
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3586 3587
/*
 * Because tail pages are not marked as "used", set it. We're under
3588 3589 3590
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3591
 */
3592
void mem_cgroup_split_huge_fixup(struct page *head)
3593 3594
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3595 3596
	struct page_cgroup *pc;
	int i;
3597

3598 3599
	if (mem_cgroup_disabled())
		return;
3600 3601 3602 3603 3604 3605
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3606
}
3607
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3608

3609
/**
3610
 * mem_cgroup_move_account - move account of the page
3611
 * @page: the page
3612
 * @nr_pages: number of regular pages (>1 for huge pages)
3613 3614 3615 3616 3617
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3618
 * - page is not on LRU (isolate_page() is useful.)
3619
 * - compound_lock is held when nr_pages > 1
3620
 *
3621 3622
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3623
 */
3624 3625 3626 3627
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3628
				   struct mem_cgroup *to)
3629
{
3630 3631
	unsigned long flags;
	int ret;
3632
	bool anon = PageAnon(page);
3633

3634
	VM_BUG_ON(from == to);
3635
	VM_BUG_ON(PageLRU(page));
3636 3637 3638 3639 3640 3641 3642
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3643
	if (nr_pages > 1 && !PageTransHuge(page))
3644 3645 3646 3647 3648 3649 3650 3651
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3652
	move_lock_mem_cgroup(from, &flags);
3653

3654
	if (!anon && page_mapped(page)) {
3655 3656 3657 3658 3659
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
3660
	}
3661
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
3662

3663
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3664
	pc->mem_cgroup = to;
3665
	mem_cgroup_charge_statistics(to, anon, nr_pages);
3666
	move_unlock_mem_cgroup(from, &flags);
3667 3668
	ret = 0;
unlock:
3669
	unlock_page_cgroup(pc);
3670 3671 3672
	/*
	 * check events
	 */
3673 3674
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3675
out:
3676 3677 3678
	return ret;
}

3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3699
 */
3700 3701
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3702
				  struct mem_cgroup *child)
3703 3704
{
	struct mem_cgroup *parent;
3705
	unsigned int nr_pages;
3706
	unsigned long uninitialized_var(flags);
3707 3708
	int ret;

3709
	VM_BUG_ON(mem_cgroup_is_root(child));
3710

3711 3712 3713 3714 3715
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3716

3717
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3718

3719 3720 3721 3722 3723 3724
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3725

3726 3727
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3728
		flags = compound_lock_irqsave(page);
3729
	}
3730

3731
	ret = mem_cgroup_move_account(page, nr_pages,
3732
				pc, child, parent);
3733 3734
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3735

3736
	if (nr_pages > 1)
3737
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3738
	putback_lru_page(page);
3739
put:
3740
	put_page(page);
3741
out:
3742 3743 3744
	return ret;
}

3745 3746 3747 3748 3749 3750 3751
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3752
				gfp_t gfp_mask, enum charge_type ctype)
3753
{
3754
	struct mem_cgroup *memcg = NULL;
3755
	unsigned int nr_pages = 1;
3756
	bool oom = true;
3757
	int ret;
A
Andrea Arcangeli 已提交
3758

A
Andrea Arcangeli 已提交
3759
	if (PageTransHuge(page)) {
3760
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3761
		VM_BUG_ON(!PageTransHuge(page));
3762 3763 3764 3765 3766
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3767
	}
3768

3769
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3770
	if (ret == -ENOMEM)
3771
		return ret;
3772
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3773 3774 3775
	return 0;
}

3776 3777
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3778
{
3779
	if (mem_cgroup_disabled())
3780
		return 0;
3781 3782 3783
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3784
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3785
					MEM_CGROUP_CHARGE_TYPE_ANON);
3786 3787
}

3788 3789 3790
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3791
 * struct page_cgroup is acquired. This refcnt will be consumed by
3792 3793
 * "commit()" or removed by "cancel()"
 */
3794 3795 3796 3797
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3798
{
3799
	struct mem_cgroup *memcg;
3800
	struct page_cgroup *pc;
3801
	int ret;
3802

3803 3804 3805 3806 3807 3808 3809 3810 3811 3812
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3813 3814
	if (!do_swap_account)
		goto charge_cur_mm;
3815 3816
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3817
		goto charge_cur_mm;
3818 3819
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3820
	css_put(&memcg->css);
3821 3822
	if (ret == -EINTR)
		ret = 0;
3823
	return ret;
3824
charge_cur_mm:
3825 3826 3827 3828
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
3829 3830
}

3831 3832 3833 3834 3835 3836
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
3851 3852 3853
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

3854 3855 3856 3857 3858 3859 3860 3861 3862
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
3863
static void
3864
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
3865
					enum charge_type ctype)
3866
{
3867
	if (mem_cgroup_disabled())
3868
		return;
3869
	if (!memcg)
3870
		return;
3871

3872
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3873 3874 3875
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
3876 3877 3878
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
3879
	 */
3880
	if (do_swap_account && PageSwapCache(page)) {
3881
		swp_entry_t ent = {.val = page_private(page)};
3882
		mem_cgroup_uncharge_swap(ent);
3883
	}
3884 3885
}

3886 3887
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
3888
{
3889
	__mem_cgroup_commit_charge_swapin(page, memcg,
3890
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
3891 3892
}

3893 3894
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
3895
{
3896 3897 3898 3899
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

3900
	if (mem_cgroup_disabled())
3901 3902 3903 3904 3905 3906 3907
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
3908 3909
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
3910 3911 3912 3913
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
3914 3915
}

3916
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3917 3918
				   unsigned int nr_pages,
				   const enum charge_type ctype)
3919 3920 3921
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
3922

3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
3934
		batch->memcg = memcg;
3935 3936
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
3937
	 * In those cases, all pages freed continuously can be expected to be in
3938 3939 3940 3941 3942 3943 3944 3945
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

3946
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
3947 3948
		goto direct_uncharge;

3949 3950 3951 3952 3953
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
3954
	if (batch->memcg != memcg)
3955 3956
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
3957
	batch->nr_pages++;
3958
	if (uncharge_memsw)
3959
		batch->memsw_nr_pages++;
3960 3961
	return;
direct_uncharge:
3962
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3963
	if (uncharge_memsw)
3964 3965 3966
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
3967
}
3968

3969
/*
3970
 * uncharge if !page_mapped(page)
3971
 */
3972
static struct mem_cgroup *
3973 3974
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
3975
{
3976
	struct mem_cgroup *memcg = NULL;
3977 3978
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3979
	bool anon;
3980

3981
	if (mem_cgroup_disabled())
3982
		return NULL;
3983

3984
	VM_BUG_ON(PageSwapCache(page));
K
KAMEZAWA Hiroyuki 已提交
3985

A
Andrea Arcangeli 已提交
3986
	if (PageTransHuge(page)) {
3987
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3988 3989
		VM_BUG_ON(!PageTransHuge(page));
	}
3990
	/*
3991
	 * Check if our page_cgroup is valid
3992
	 */
3993
	pc = lookup_page_cgroup(page);
3994
	if (unlikely(!PageCgroupUsed(pc)))
3995
		return NULL;
3996

3997
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3998

3999
	memcg = pc->mem_cgroup;
4000

K
KAMEZAWA Hiroyuki 已提交
4001 4002 4003
	if (!PageCgroupUsed(pc))
		goto unlock_out;

4004 4005
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
4006
	switch (ctype) {
4007
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4008 4009 4010 4011 4012
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4013 4014
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4015
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4016
		/* See mem_cgroup_prepare_migration() */
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4038
	}
K
KAMEZAWA Hiroyuki 已提交
4039

4040
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4041

4042
	ClearPageCgroupUsed(pc);
4043 4044 4045 4046 4047 4048
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4049

4050
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4051
	/*
4052
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
4053 4054
	 * will never be freed.
	 */
4055
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4056
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4057 4058
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
4059
	}
4060 4061 4062 4063 4064 4065
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4066
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4067

4068
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4069 4070 4071

unlock_out:
	unlock_page_cgroup(pc);
4072
	return NULL;
4073 4074
}

4075 4076
void mem_cgroup_uncharge_page(struct page *page)
{
4077 4078 4079
	/* early check. */
	if (page_mapped(page))
		return;
4080
	VM_BUG_ON(page->mapping && !PageAnon(page));
4081 4082
	if (PageSwapCache(page))
		return;
4083
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4084 4085 4086 4087 4088
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4089
	VM_BUG_ON(page->mapping);
4090
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4091 4092
}

4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4107 4108
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4129 4130 4131 4132 4133 4134
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4135
	memcg_oom_recover(batch->memcg);
4136 4137 4138 4139
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4140
#ifdef CONFIG_SWAP
4141
/*
4142
 * called after __delete_from_swap_cache() and drop "page" account.
4143 4144
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4145 4146
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4147 4148
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4149 4150 4151 4152 4153
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4154
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4155

K
KAMEZAWA Hiroyuki 已提交
4156 4157 4158 4159 4160
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
4161
		swap_cgroup_record(ent, css_id(&memcg->css));
4162
}
4163
#endif
4164

A
Andrew Morton 已提交
4165
#ifdef CONFIG_MEMCG_SWAP
4166 4167 4168 4169 4170
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4171
{
4172
	struct mem_cgroup *memcg;
4173
	unsigned short id;
4174 4175 4176 4177

	if (!do_swap_account)
		return;

4178 4179 4180
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4181
	if (memcg) {
4182 4183 4184 4185
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4186
		if (!mem_cgroup_is_root(memcg))
4187
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4188
		mem_cgroup_swap_statistics(memcg, false);
4189 4190
		mem_cgroup_put(memcg);
	}
4191
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4192
}
4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4209
				struct mem_cgroup *from, struct mem_cgroup *to)
4210 4211 4212 4213 4214 4215 4216 4217
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4218
		mem_cgroup_swap_statistics(to, true);
4219
		/*
4220 4221 4222 4223 4224 4225
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
4226 4227 4228 4229 4230 4231 4232 4233
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4234
				struct mem_cgroup *from, struct mem_cgroup *to)
4235 4236 4237
{
	return -EINVAL;
}
4238
#endif
K
KAMEZAWA Hiroyuki 已提交
4239

4240
/*
4241 4242
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4243
 */
4244 4245
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4246
{
4247
	struct mem_cgroup *memcg = NULL;
4248
	unsigned int nr_pages = 1;
4249
	struct page_cgroup *pc;
4250
	enum charge_type ctype;
4251

4252
	*memcgp = NULL;
4253

4254
	if (mem_cgroup_disabled())
4255
		return;
4256

4257 4258 4259
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4260 4261 4262
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4263 4264
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4296
	}
4297
	unlock_page_cgroup(pc);
4298 4299 4300 4301
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4302
	if (!memcg)
4303
		return;
4304

4305
	*memcgp = memcg;
4306 4307 4308 4309 4310 4311 4312
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4313
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4314
	else
4315
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4316 4317 4318 4319 4320
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4321
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4322
}
4323

4324
/* remove redundant charge if migration failed*/
4325
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4326
	struct page *oldpage, struct page *newpage, bool migration_ok)
4327
{
4328
	struct page *used, *unused;
4329
	struct page_cgroup *pc;
4330
	bool anon;
4331

4332
	if (!memcg)
4333
		return;
4334

4335
	if (!migration_ok) {
4336 4337
		used = oldpage;
		unused = newpage;
4338
	} else {
4339
		used = newpage;
4340 4341
		unused = oldpage;
	}
4342
	anon = PageAnon(used);
4343 4344 4345 4346
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4347
	css_put(&memcg->css);
4348
	/*
4349 4350 4351
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4352
	 */
4353 4354 4355 4356 4357
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4358
	/*
4359 4360 4361 4362 4363 4364
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4365
	 */
4366
	if (anon)
4367
		mem_cgroup_uncharge_page(used);
4368
}
4369

4370 4371 4372 4373 4374 4375 4376 4377
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4378
	struct mem_cgroup *memcg = NULL;
4379 4380 4381 4382 4383 4384 4385 4386 4387
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4388 4389 4390 4391 4392
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		mem_cgroup_charge_statistics(memcg, false, -1);
		ClearPageCgroupUsed(pc);
	}
4393 4394
	unlock_page_cgroup(pc);

4395 4396 4397 4398 4399 4400
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4401 4402 4403 4404 4405
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4406
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4407 4408
}

4409 4410 4411 4412 4413 4414
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4415 4416 4417 4418 4419
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4439 4440
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4441 4442 4443 4444
	}
}
#endif

4445
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4446
				unsigned long long val)
4447
{
4448
	int retry_count;
4449
	u64 memswlimit, memlimit;
4450
	int ret = 0;
4451 4452
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4453
	int enlarge;
4454 4455 4456 4457 4458 4459 4460 4461 4462

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4463

4464
	enlarge = 0;
4465
	while (retry_count) {
4466 4467 4468 4469
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4470 4471 4472
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4473
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4474 4475 4476 4477 4478 4479
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4480 4481
			break;
		}
4482 4483 4484 4485 4486

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4487
		ret = res_counter_set_limit(&memcg->res, val);
4488 4489 4490 4491 4492 4493
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4494 4495 4496 4497 4498
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4499 4500
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4501 4502 4503 4504 4505 4506
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
4507
	}
4508 4509
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4510

4511 4512 4513
	return ret;
}

L
Li Zefan 已提交
4514 4515
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4516
{
4517
	int retry_count;
4518
	u64 memlimit, memswlimit, oldusage, curusage;
4519 4520
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4521
	int enlarge = 0;
4522

4523 4524 4525
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4526 4527 4528 4529 4530 4531 4532 4533
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4534
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4535 4536 4537 4538 4539 4540 4541 4542
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4543 4544 4545
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4546
		ret = res_counter_set_limit(&memcg->memsw, val);
4547 4548 4549 4550 4551 4552
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4553 4554 4555 4556 4557
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4558 4559 4560
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4561
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4562
		/* Usage is reduced ? */
4563
		if (curusage >= oldusage)
4564
			retry_count--;
4565 4566
		else
			oldusage = curusage;
4567
	}
4568 4569
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4570 4571 4572
	return ret;
}

4573
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4574 4575
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
4576 4577 4578 4579 4580 4581
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
4582
	unsigned long long excess;
4583
	unsigned long nr_scanned;
4584 4585 4586 4587

	if (order > 0)
		return 0;

4588
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

4602
		nr_scanned = 0;
4603
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4604
						    gfp_mask, &nr_scanned);
4605
		nr_reclaimed += reclaimed;
4606
		*total_scanned += nr_scanned;
4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
4629
				if (next_mz == mz)
4630
					css_put(&next_mz->memcg->css);
4631
				else /* next_mz == NULL or other memcg */
4632 4633 4634
					break;
			} while (1);
		}
4635 4636
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
4637 4638 4639 4640 4641 4642 4643 4644
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
4645
		/* If excess == 0, no tree ops */
4646
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4647
		spin_unlock(&mctz->lock);
4648
		css_put(&mz->memcg->css);
4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
4661
		css_put(&next_mz->memcg->css);
4662 4663 4664
	return nr_reclaimed;
}

4665 4666 4667 4668 4669 4670 4671
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4672
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4673 4674
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4675
 */
4676
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4677
				int node, int zid, enum lru_list lru)
4678
{
4679
	struct lruvec *lruvec;
4680
	unsigned long flags;
4681
	struct list_head *list;
4682 4683
	struct page *busy;
	struct zone *zone;
4684

K
KAMEZAWA Hiroyuki 已提交
4685
	zone = &NODE_DATA(node)->node_zones[zid];
4686 4687
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4688

4689
	busy = NULL;
4690
	do {
4691
		struct page_cgroup *pc;
4692 4693
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4694
		spin_lock_irqsave(&zone->lru_lock, flags);
4695
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4696
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4697
			break;
4698
		}
4699 4700 4701
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4702
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4703
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4704 4705
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4706
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4707

4708
		pc = lookup_page_cgroup(page);
4709

4710
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4711
			/* found lock contention or "pc" is obsolete. */
4712
			busy = page;
4713 4714 4715
			cond_resched();
		} else
			busy = NULL;
4716
	} while (!list_empty(list));
4717 4718 4719
}

/*
4720 4721
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4722
 * This enables deleting this mem_cgroup.
4723 4724
 *
 * Caller is responsible for holding css reference on the memcg.
4725
 */
4726
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4727
{
4728
	int node, zid;
4729
	u64 usage;
4730

4731
	do {
4732 4733
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4734 4735
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4736
		for_each_node_state(node, N_MEMORY) {
4737
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4738 4739
				enum lru_list lru;
				for_each_lru(lru) {
4740
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4741
							node, zid, lru);
4742
				}
4743
			}
4744
		}
4745 4746
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4747
		cond_resched();
4748

4749
		/*
4750 4751 4752 4753 4754
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4755 4756 4757 4758 4759 4760
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4761 4762 4763
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775
}

/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4776

4777
	/* returns EBUSY if there is a task or if we come here twice. */
4778 4779 4780
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4781 4782
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4783
	/* try to free all pages in this cgroup */
4784
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4785
		int progress;
4786

4787 4788 4789
		if (signal_pending(current))
			return -EINTR;

4790
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4791
						false);
4792
		if (!progress) {
4793
			nr_retries--;
4794
			/* maybe some writeback is necessary */
4795
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4796
		}
4797 4798

	}
K
KAMEZAWA Hiroyuki 已提交
4799
	lru_add_drain();
4800 4801 4802
	mem_cgroup_reparent_charges(memcg);

	return 0;
4803 4804
}

4805
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
4806
{
4807 4808 4809
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	int ret;

4810 4811
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4812 4813 4814 4815 4816
	css_get(&memcg->css);
	ret = mem_cgroup_force_empty(memcg);
	css_put(&memcg->css);

	return ret;
4817 4818 4819
}


4820 4821 4822 4823 4824 4825 4826 4827 4828
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
4829
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4830
	struct cgroup *parent = cont->parent;
4831
	struct mem_cgroup *parent_memcg = NULL;
4832 4833

	if (parent)
4834
		parent_memcg = mem_cgroup_from_cont(parent);
4835 4836

	cgroup_lock();
4837 4838 4839 4840

	if (memcg->use_hierarchy == val)
		goto out;

4841
	/*
4842
	 * If parent's use_hierarchy is set, we can't make any modifications
4843 4844 4845 4846 4847 4848
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
4849
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4850 4851
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
4852
			memcg->use_hierarchy = val;
4853 4854 4855 4856
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
4857 4858

out:
4859 4860 4861 4862 4863
	cgroup_unlock();

	return retval;
}

4864

4865
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4866
					       enum mem_cgroup_stat_index idx)
4867
{
K
KAMEZAWA Hiroyuki 已提交
4868
	struct mem_cgroup *iter;
4869
	long val = 0;
4870

4871
	/* Per-cpu values can be negative, use a signed accumulator */
4872
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4873 4874 4875 4876 4877
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
4878 4879
}

4880
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4881
{
K
KAMEZAWA Hiroyuki 已提交
4882
	u64 val;
4883

4884
	if (!mem_cgroup_is_root(memcg)) {
4885
		if (!swap)
4886
			return res_counter_read_u64(&memcg->res, RES_USAGE);
4887
		else
4888
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4889 4890
	}

4891 4892
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4893

K
KAMEZAWA Hiroyuki 已提交
4894
	if (swap)
4895
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4896 4897 4898 4899

	return val << PAGE_SHIFT;
}

4900 4901 4902
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
4903
{
4904
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4905
	char str[64];
4906
	u64 val;
G
Glauber Costa 已提交
4907 4908
	int name, len;
	enum res_type type;
4909 4910 4911

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4912 4913 4914 4915

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

4916 4917
	switch (type) {
	case _MEM:
4918
		if (name == RES_USAGE)
4919
			val = mem_cgroup_usage(memcg, false);
4920
		else
4921
			val = res_counter_read_u64(&memcg->res, name);
4922 4923
		break;
	case _MEMSWAP:
4924
		if (name == RES_USAGE)
4925
			val = mem_cgroup_usage(memcg, true);
4926
		else
4927
			val = res_counter_read_u64(&memcg->memsw, name);
4928
		break;
4929 4930 4931
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
4932 4933 4934
	default:
		BUG();
	}
4935 4936 4937

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
4938
}
4939 4940 4941 4942 4943

static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
4944 4945
	bool must_inc_static_branch = false;

4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 *
	 * Taking the cgroup_lock is really offensive, but it is so far the only
	 * way to guarantee that no children will appear. There are plenty of
	 * other offenders, and they should all go away. Fine grained locking
	 * is probably the way to go here. When we are fully hierarchical, we
	 * can also get rid of the use_hierarchy check.
	 */
	cgroup_lock();
	mutex_lock(&set_limit_mutex);
	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
		if (cgroup_task_count(cont) || (memcg->use_hierarchy &&
						!list_empty(&cont->children))) {
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

4976 4977 4978 4979 4980
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
			res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
			goto out;
		}
4981
		must_inc_static_branch = true;
4982 4983 4984 4985 4986 4987 4988
		/*
		 * kmem charges can outlive the cgroup. In the case of slab
		 * pages, for instance, a page contain objects from various
		 * processes, so it is unfeasible to migrate them away. We
		 * need to reference count the memcg because of that.
		 */
		mem_cgroup_get(memcg);
4989 4990 4991 4992 4993
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
	cgroup_unlock();
4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014

	/*
	 * We are by now familiar with the fact that we can't inc the static
	 * branch inside cgroup_lock. See disarm functions for details. A
	 * worker here is overkill, but also wrong: After the limit is set, we
	 * must start accounting right away. Since this operation can't fail,
	 * we can safely defer it to here - no rollback will be needed.
	 *
	 * The boolean used to control this is also safe, because
	 * KMEM_ACCOUNTED_ACTIVATED guarantees that only one process will be
	 * able to set it to true;
	 */
	if (must_inc_static_branch) {
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);
	}

5015 5016 5017 5018
#endif
	return ret;
}

5019
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5020
{
5021
	int ret = 0;
5022 5023
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
5024 5025
		goto out;

5026
	memcg->kmem_account_flags = parent->kmem_account_flags;
5027
#ifdef CONFIG_MEMCG_KMEM
5028 5029 5030 5031 5032 5033 5034 5035 5036 5037
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
	 * destroy(), called if we fail, will issue static_key_slow_inc() and
	 * mem_cgroup_put() if kmem is enabled. We have to either call them
	 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
	 * this more consistent, since it always leads to the same destroy path
	 */
	mem_cgroup_get(memcg);
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
	ret = memcg_update_cache_sizes(memcg);
	mutex_unlock(&set_limit_mutex);
5053
#endif
5054 5055
out:
	return ret;
5056 5057
}

5058 5059 5060 5061
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5062 5063
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
5064
{
5065
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
5066 5067
	enum res_type type;
	int name;
5068 5069 5070
	unsigned long long val;
	int ret;

5071 5072
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5073 5074 5075 5076

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

5077
	switch (name) {
5078
	case RES_LIMIT:
5079 5080 5081 5082
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5083 5084
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5085 5086 5087
		if (ret)
			break;
		if (type == _MEM)
5088
			ret = mem_cgroup_resize_limit(memcg, val);
5089
		else if (type == _MEMSWAP)
5090
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5091 5092 5093 5094
		else if (type == _KMEM)
			ret = memcg_update_kmem_limit(cont, val);
		else
			return -EINVAL;
5095
		break;
5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5110 5111 5112 5113 5114
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5115 5116
}

5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5144
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
5145
{
5146
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
G
Glauber Costa 已提交
5147 5148
	int name;
	enum res_type type;
5149

5150 5151
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5152 5153 5154 5155

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

5156
	switch (name) {
5157
	case RES_MAX_USAGE:
5158
		if (type == _MEM)
5159
			res_counter_reset_max(&memcg->res);
5160
		else if (type == _MEMSWAP)
5161
			res_counter_reset_max(&memcg->memsw);
5162 5163 5164 5165
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5166 5167
		break;
	case RES_FAILCNT:
5168
		if (type == _MEM)
5169
			res_counter_reset_failcnt(&memcg->res);
5170
		else if (type == _MEMSWAP)
5171
			res_counter_reset_failcnt(&memcg->memsw);
5172 5173 5174 5175
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5176 5177
		break;
	}
5178

5179
	return 0;
5180 5181
}

5182 5183 5184 5185 5186 5187
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

5188
#ifdef CONFIG_MMU
5189 5190 5191
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
5192
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5193 5194 5195 5196 5197 5198 5199 5200 5201

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
5202
	memcg->move_charge_at_immigrate = val;
5203 5204 5205 5206
	cgroup_unlock();

	return 0;
}
5207 5208 5209 5210 5211 5212 5213
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5214

5215
#ifdef CONFIG_NUMA
5216
static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
5217
				      struct seq_file *m)
5218 5219 5220 5221
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
5222
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5223

5224
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5225
	seq_printf(m, "total=%lu", total_nr);
5226
	for_each_node_state(nid, N_MEMORY) {
5227
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5228 5229 5230 5231
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5232
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5233
	seq_printf(m, "file=%lu", file_nr);
5234
	for_each_node_state(nid, N_MEMORY) {
5235
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5236
				LRU_ALL_FILE);
5237 5238 5239 5240
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5241
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5242
	seq_printf(m, "anon=%lu", anon_nr);
5243
	for_each_node_state(nid, N_MEMORY) {
5244
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5245
				LRU_ALL_ANON);
5246 5247 5248 5249
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

5250
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5251
	seq_printf(m, "unevictable=%lu", unevictable_nr);
5252
	for_each_node_state(nid, N_MEMORY) {
5253
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5254
				BIT(LRU_UNEVICTABLE));
5255 5256 5257 5258 5259 5260 5261
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

5262 5263 5264 5265 5266
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5267
static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
5268
				 struct seq_file *m)
5269
{
5270
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5271 5272
	struct mem_cgroup *mi;
	unsigned int i;
5273

5274
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5275
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5276
			continue;
5277 5278
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5279
	}
L
Lee Schermerhorn 已提交
5280

5281 5282 5283 5284 5285 5286 5287 5288
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5289
	/* Hierarchical information */
5290 5291
	{
		unsigned long long limit, memsw_limit;
5292
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5293
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5294
		if (do_swap_account)
5295 5296
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5297
	}
K
KOSAKI Motohiro 已提交
5298

5299 5300 5301
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5302
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5303
			continue;
5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5324
	}
K
KAMEZAWA Hiroyuki 已提交
5325

K
KOSAKI Motohiro 已提交
5326 5327 5328 5329
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5330
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5331 5332 5333 5334 5335
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5336
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5337
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5338

5339 5340 5341 5342
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5343
			}
5344 5345 5346 5347
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5348 5349 5350
	}
#endif

5351 5352 5353
	return 0;
}

K
KOSAKI Motohiro 已提交
5354 5355 5356 5357
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

5358
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5359 5360 5361 5362 5363 5364 5365
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
5366

K
KOSAKI Motohiro 已提交
5367 5368 5369 5370 5371 5372 5373
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
5374 5375 5376

	cgroup_lock();

K
KOSAKI Motohiro 已提交
5377 5378
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
5379 5380
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
5381
		return -EINVAL;
5382
	}
K
KOSAKI Motohiro 已提交
5383 5384 5385

	memcg->swappiness = val;

5386 5387
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
5388 5389 5390
	return 0;
}

5391 5392 5393 5394 5395 5396 5397 5398
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5399
		t = rcu_dereference(memcg->thresholds.primary);
5400
	else
5401
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5402 5403 5404 5405 5406 5407 5408

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5409
	 * current_threshold points to threshold just below or equal to usage.
5410 5411 5412
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5413
	i = t->current_threshold;
5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5437
	t->current_threshold = i - 1;
5438 5439 5440 5441 5442 5443
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5444 5445 5446 5447 5448 5449 5450
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5451 5452 5453 5454 5455 5456 5457 5458 5459 5460
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

5461
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5462 5463 5464
{
	struct mem_cgroup_eventfd_list *ev;

5465
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5466 5467 5468 5469
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5470
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5471
{
K
KAMEZAWA Hiroyuki 已提交
5472 5473
	struct mem_cgroup *iter;

5474
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5475
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5476 5477 5478 5479
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5480 5481
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5482 5483
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5484
	enum res_type type = MEMFILE_TYPE(cft->private);
5485
	u64 threshold, usage;
5486
	int i, size, ret;
5487 5488 5489 5490 5491 5492

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5493

5494
	if (type == _MEM)
5495
		thresholds = &memcg->thresholds;
5496
	else if (type == _MEMSWAP)
5497
		thresholds = &memcg->memsw_thresholds;
5498 5499 5500 5501 5502 5503
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5504
	if (thresholds->primary)
5505 5506
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5507
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5508 5509

	/* Allocate memory for new array of thresholds */
5510
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5511
			GFP_KERNEL);
5512
	if (!new) {
5513 5514 5515
		ret = -ENOMEM;
		goto unlock;
	}
5516
	new->size = size;
5517 5518

	/* Copy thresholds (if any) to new array */
5519 5520
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5521
				sizeof(struct mem_cgroup_threshold));
5522 5523
	}

5524
	/* Add new threshold */
5525 5526
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5527 5528

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5529
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5530 5531 5532
			compare_thresholds, NULL);

	/* Find current threshold */
5533
	new->current_threshold = -1;
5534
	for (i = 0; i < size; i++) {
5535
		if (new->entries[i].threshold <= usage) {
5536
			/*
5537 5538
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5539 5540
			 * it here.
			 */
5541
			++new->current_threshold;
5542 5543
		} else
			break;
5544 5545
	}

5546 5547 5548 5549 5550
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5551

5552
	/* To be sure that nobody uses thresholds */
5553 5554 5555 5556 5557 5558 5559 5560
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5561
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
5562
	struct cftype *cft, struct eventfd_ctx *eventfd)
5563 5564
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5565 5566
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5567
	enum res_type type = MEMFILE_TYPE(cft->private);
5568
	u64 usage;
5569
	int i, j, size;
5570 5571 5572

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5573
		thresholds = &memcg->thresholds;
5574
	else if (type == _MEMSWAP)
5575
		thresholds = &memcg->memsw_thresholds;
5576 5577 5578
	else
		BUG();

5579 5580 5581
	if (!thresholds->primary)
		goto unlock;

5582 5583 5584 5585 5586 5587
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5588 5589 5590
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5591 5592 5593
			size++;
	}

5594
	new = thresholds->spare;
5595

5596 5597
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5598 5599
		kfree(new);
		new = NULL;
5600
		goto swap_buffers;
5601 5602
	}

5603
	new->size = size;
5604 5605

	/* Copy thresholds and find current threshold */
5606 5607 5608
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5609 5610
			continue;

5611
		new->entries[j] = thresholds->primary->entries[i];
5612
		if (new->entries[j].threshold <= usage) {
5613
			/*
5614
			 * new->current_threshold will not be used
5615 5616 5617
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5618
			++new->current_threshold;
5619 5620 5621 5622
		}
		j++;
	}

5623
swap_buffers:
5624 5625
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5626 5627 5628 5629 5630 5631
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5632
	rcu_assign_pointer(thresholds->primary, new);
5633

5634
	/* To be sure that nobody uses thresholds */
5635
	synchronize_rcu();
5636
unlock:
5637 5638
	mutex_unlock(&memcg->thresholds_lock);
}
5639

K
KAMEZAWA Hiroyuki 已提交
5640 5641 5642 5643 5644
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5645
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5646 5647 5648 5649 5650 5651

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5652
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5653 5654 5655 5656 5657

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5658
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5659
		eventfd_signal(eventfd, 1);
5660
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5661 5662 5663 5664

	return 0;
}

5665
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
5666 5667
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5668
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
5669
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5670
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5671 5672 5673

	BUG_ON(type != _OOM_TYPE);

5674
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5675

5676
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5677 5678 5679 5680 5681 5682
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5683
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5684 5685
}

5686 5687 5688
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5689
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5690

5691
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5692

5693
	if (atomic_read(&memcg->under_oom))
5694 5695 5696 5697 5698 5699 5700 5701 5702
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
5703
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
5715
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
5716 5717 5718
		cgroup_unlock();
		return -EINVAL;
	}
5719
	memcg->oom_kill_disable = val;
5720
	if (!val)
5721
		memcg_oom_recover(memcg);
5722 5723 5724 5725
	cgroup_unlock();
	return 0;
}

A
Andrew Morton 已提交
5726
#ifdef CONFIG_MEMCG_KMEM
5727
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5728
{
5729 5730
	int ret;

5731
	memcg->kmemcg_id = -1;
5732 5733 5734
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5735

5736
	return mem_cgroup_sockets_init(memcg, ss);
5737 5738
};

5739
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5740
{
5741
	mem_cgroup_sockets_destroy(memcg);
5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	/*
	 * Charges already down to 0, undo mem_cgroup_get() done in the charge
	 * path here, being careful not to race with memcg_uncharge_kmem: it is
	 * possible that the charges went down to 0 between mark_dead and the
	 * res_counter read, so in that case, we don't need the put
	 */
	if (memcg_kmem_test_and_clear_dead(memcg))
		mem_cgroup_put(memcg);
G
Glauber Costa 已提交
5756
}
5757
#else
5758
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5759 5760 5761
{
	return 0;
}
G
Glauber Costa 已提交
5762

5763
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5764 5765
{
}
5766 5767
#endif

B
Balbir Singh 已提交
5768 5769
static struct cftype mem_cgroup_files[] = {
	{
5770
		.name = "usage_in_bytes",
5771
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5772
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5773 5774
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5775
	},
5776 5777
	{
		.name = "max_usage_in_bytes",
5778
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5779
		.trigger = mem_cgroup_reset,
5780
		.read = mem_cgroup_read,
5781
	},
B
Balbir Singh 已提交
5782
	{
5783
		.name = "limit_in_bytes",
5784
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5785
		.write_string = mem_cgroup_write,
5786
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5787
	},
5788 5789 5790 5791
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5792
		.read = mem_cgroup_read,
5793
	},
B
Balbir Singh 已提交
5794 5795
	{
		.name = "failcnt",
5796
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5797
		.trigger = mem_cgroup_reset,
5798
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5799
	},
5800 5801
	{
		.name = "stat",
5802
		.read_seq_string = memcg_stat_show,
5803
	},
5804 5805 5806 5807
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5808 5809 5810 5811 5812
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
5813 5814 5815 5816 5817
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5818 5819 5820 5821 5822
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5823 5824
	{
		.name = "oom_control",
5825 5826
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5827 5828 5829 5830
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5831 5832 5833
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5834
		.read_seq_string = memcg_numa_stat_show,
5835 5836
	},
#endif
5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
5861 5862 5863 5864 5865 5866
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
5867
#endif
5868
	{ },	/* terminate */
5869
};
5870

5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read = mem_cgroup_read,
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{ },	/* terminate */
};
#endif
5901
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5902 5903
{
	struct mem_cgroup_per_node *pn;
5904
	struct mem_cgroup_per_zone *mz;
5905
	int zone, tmp = node;
5906 5907 5908 5909 5910 5911 5912 5913
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5914 5915
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5916
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5917 5918
	if (!pn)
		return 1;
5919 5920 5921

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
5922
		lruvec_init(&mz->lruvec);
5923
		mz->usage_in_excess = 0;
5924
		mz->on_tree = false;
5925
		mz->memcg = memcg;
5926
	}
5927
	memcg->info.nodeinfo[node] = pn;
5928 5929 5930
	return 0;
}

5931
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5932
{
5933
	kfree(memcg->info.nodeinfo[node]);
5934 5935
}

5936 5937
static struct mem_cgroup *mem_cgroup_alloc(void)
{
5938
	struct mem_cgroup *memcg;
5939
	size_t size = memcg_size();
5940

5941
	/* Can be very big if nr_node_ids is very big */
5942
	if (size < PAGE_SIZE)
5943
		memcg = kzalloc(size, GFP_KERNEL);
5944
	else
5945
		memcg = vzalloc(size);
5946

5947
	if (!memcg)
5948 5949
		return NULL;

5950 5951
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
5952
		goto out_free;
5953 5954
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
5955 5956 5957

out_free:
	if (size < PAGE_SIZE)
5958
		kfree(memcg);
5959
	else
5960
		vfree(memcg);
5961
	return NULL;
5962 5963
}

5964
/*
5965 5966 5967 5968 5969 5970 5971 5972
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
5973
 */
5974 5975

static void __mem_cgroup_free(struct mem_cgroup *memcg)
5976
{
5977
	int node;
5978
	size_t size = memcg_size();
5979

5980 5981 5982 5983 5984 5985 5986 5987
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
5999
	disarm_static_keys(memcg);
6000 6001 6002 6003
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
6004
}
6005

6006

6007
/*
6008 6009 6010
 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
6011
 */
6012
static void free_work(struct work_struct *work)
6013
{
6014
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6015

6016 6017 6018
	memcg = container_of(work, struct mem_cgroup, work_freeing);
	__mem_cgroup_free(memcg);
}
K
KAMEZAWA Hiroyuki 已提交
6019

6020 6021 6022
static void free_rcu(struct rcu_head *rcu_head)
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6023

6024 6025 6026
	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
	INIT_WORK(&memcg->work_freeing, free_work);
	schedule_work(&memcg->work_freeing);
6027 6028
}

6029
static void mem_cgroup_get(struct mem_cgroup *memcg)
6030
{
6031
	atomic_inc(&memcg->refcnt);
6032 6033
}

6034
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
6035
{
6036 6037
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
6038
		call_rcu(&memcg->rcu_freeing, free_rcu);
6039 6040 6041
		if (parent)
			mem_cgroup_put(parent);
	}
6042 6043
}

6044
static void mem_cgroup_put(struct mem_cgroup *memcg)
6045
{
6046
	__mem_cgroup_put(memcg, 1);
6047 6048
}

6049 6050 6051
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6052
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6053
{
6054
	if (!memcg->res.parent)
6055
		return NULL;
6056
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6057
}
G
Glauber Costa 已提交
6058
EXPORT_SYMBOL(parent_mem_cgroup);
6059

6060 6061 6062 6063 6064 6065
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
6066
	for_each_node(node) {
6067 6068 6069 6070 6071
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
6072
			goto err_cleanup;
6073 6074 6075 6076 6077 6078 6079 6080 6081 6082

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
6083 6084

err_cleanup:
B
Bob Liu 已提交
6085
	for_each_node(node) {
6086 6087 6088 6089 6090 6091 6092
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

6093 6094
}

L
Li Zefan 已提交
6095
static struct cgroup_subsys_state * __ref
6096
mem_cgroup_css_alloc(struct cgroup *cont)
B
Balbir Singh 已提交
6097
{
6098
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
6099
	long error = -ENOMEM;
6100
	int node;
B
Balbir Singh 已提交
6101

6102 6103
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6104
		return ERR_PTR(error);
6105

B
Bob Liu 已提交
6106
	for_each_node(node)
6107
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6108
			goto free_out;
6109

6110
	/* root ? */
6111
	if (cont->parent == NULL) {
6112
		int cpu;
6113
		parent = NULL;
6114 6115
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
6116
		root_mem_cgroup = memcg;
6117 6118 6119 6120 6121
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
6122
	} else {
6123
		parent = mem_cgroup_from_cont(cont->parent);
6124 6125
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
6126
	}
6127

6128
	if (parent && parent->use_hierarchy) {
6129 6130
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6131
		res_counter_init(&memcg->kmem, &parent->kmem);
6132

6133 6134 6135 6136 6137 6138 6139
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
6140
	} else {
6141 6142
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6143
		res_counter_init(&memcg->kmem, NULL);
6144 6145 6146 6147 6148 6149 6150
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
		if (parent && parent != root_mem_cgroup)
			mem_cgroup_subsys.broken_hierarchy = true;
6151
	}
6152 6153
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
6154

K
KOSAKI Motohiro 已提交
6155
	if (parent)
6156 6157 6158 6159
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
6160
	spin_lock_init(&memcg->move_lock);
6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
		return ERR_PTR(error);
	}
6172
	return &memcg->css;
6173
free_out:
6174
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
6175
	return ERR_PTR(error);
B
Balbir Singh 已提交
6176 6177
}

6178
static void mem_cgroup_css_offline(struct cgroup *cont)
6179
{
6180
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6181

6182
	mem_cgroup_reparent_charges(memcg);
G
Glauber Costa 已提交
6183
	mem_cgroup_destroy_all_caches(memcg);
6184 6185
}

6186
static void mem_cgroup_css_free(struct cgroup *cont)
B
Balbir Singh 已提交
6187
{
6188
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6189

6190
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
6191

6192
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
6193 6194
}

6195
#ifdef CONFIG_MMU
6196
/* Handlers for move charge at task migration. */
6197 6198
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6199
{
6200 6201
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6202
	struct mem_cgroup *memcg = mc.to;
6203

6204
	if (mem_cgroup_is_root(memcg)) {
6205 6206 6207 6208 6209 6210 6211 6212
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6213
		 * "memcg" cannot be under rmdir() because we've already checked
6214 6215 6216 6217
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6218
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6219
			goto one_by_one;
6220
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6221
						PAGE_SIZE * count, &dummy)) {
6222
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6239 6240
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6241
		if (ret)
6242
			/* mem_cgroup_clear_mc() will do uncharge later */
6243
			return ret;
6244 6245
		mc.precharge++;
	}
6246 6247 6248 6249
	return ret;
}

/**
6250
 * get_mctgt_type - get target type of moving charge
6251 6252 6253
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6254
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6255 6256 6257 6258 6259 6260
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6261 6262 6263
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6264 6265 6266 6267 6268
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6269
	swp_entry_t	ent;
6270 6271 6272
};

enum mc_target_type {
6273
	MC_TARGET_NONE = 0,
6274
	MC_TARGET_PAGE,
6275
	MC_TARGET_SWAP,
6276 6277
};

D
Daisuke Nishimura 已提交
6278 6279
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6280
{
D
Daisuke Nishimura 已提交
6281
	struct page *page = vm_normal_page(vma, addr, ptent);
6282

D
Daisuke Nishimura 已提交
6283 6284 6285 6286
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6287
		if (!move_anon())
D
Daisuke Nishimura 已提交
6288
			return NULL;
6289 6290
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6291 6292 6293 6294 6295 6296 6297
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6298
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6299 6300 6301 6302 6303 6304 6305 6306
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6307 6308 6309 6310
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6311
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6312 6313 6314 6315 6316
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6317 6318 6319 6320 6321 6322 6323
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6324

6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6344 6345 6346 6347 6348 6349
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6350
		if (do_swap_account)
6351
			*entry = swap;
6352
		page = find_get_page(swap_address_space(swap), swap.val);
6353
	}
6354
#endif
6355 6356 6357
	return page;
}

6358
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6359 6360 6361 6362
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6363
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6364 6365 6366 6367 6368 6369
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6370 6371
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6372 6373

	if (!page && !ent.val)
6374
		return ret;
6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6390 6391
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
6392
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6393 6394 6395
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6396 6397 6398 6399
	}
	return ret;
}

6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6435 6436 6437 6438 6439 6440 6441 6442
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6443 6444 6445 6446
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6447
		return 0;
6448
	}
6449

6450 6451
	if (pmd_trans_unstable(pmd))
		return 0;
6452 6453
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6454
		if (get_mctgt_type(vma, addr, *pte, NULL))
6455 6456 6457 6458
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6459 6460 6461
	return 0;
}

6462 6463 6464 6465 6466
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6467
	down_read(&mm->mmap_sem);
6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6479
	up_read(&mm->mmap_sem);
6480 6481 6482 6483 6484 6485 6486 6487 6488

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6489 6490 6491 6492 6493
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6494 6495
}

6496 6497
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6498
{
6499 6500 6501
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

6502
	/* we must uncharge all the leftover precharges from mc.to */
6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6514
	}
6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6549
	spin_lock(&mc.lock);
6550 6551
	mc.from = NULL;
	mc.to = NULL;
6552
	spin_unlock(&mc.lock);
6553
	mem_cgroup_end_move(from);
6554 6555
}

6556 6557
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
6558
{
6559
	struct task_struct *p = cgroup_taskset_first(tset);
6560
	int ret = 0;
6561
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
6562

6563
	if (memcg->move_charge_at_immigrate) {
6564 6565 6566
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6567
		VM_BUG_ON(from == memcg);
6568 6569 6570 6571 6572

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6573 6574 6575 6576
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6577
			VM_BUG_ON(mc.moved_charge);
6578
			VM_BUG_ON(mc.moved_swap);
6579
			mem_cgroup_start_move(from);
6580
			spin_lock(&mc.lock);
6581
			mc.from = from;
6582
			mc.to = memcg;
6583
			spin_unlock(&mc.lock);
6584
			/* We set mc.moving_task later */
6585 6586 6587 6588

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6589 6590
		}
		mmput(mm);
6591 6592 6593 6594
	}
	return ret;
}

6595 6596
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
6597
{
6598
	mem_cgroup_clear_mc();
6599 6600
}

6601 6602 6603
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6604
{
6605 6606 6607 6608
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6609 6610 6611 6612
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6613

6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6625
		if (mc.precharge < HPAGE_PMD_NR) {
6626 6627 6628 6629 6630 6631 6632 6633 6634
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6635
							pc, mc.from, mc.to)) {
6636 6637 6638 6639 6640 6641 6642 6643
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
6644
		return 0;
6645 6646
	}

6647 6648
	if (pmd_trans_unstable(pmd))
		return 0;
6649 6650 6651 6652
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6653
		swp_entry_t ent;
6654 6655 6656 6657

		if (!mc.precharge)
			break;

6658
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6659 6660 6661 6662 6663
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6664
			if (!mem_cgroup_move_account(page, 1, pc,
6665
						     mc.from, mc.to)) {
6666
				mc.precharge--;
6667 6668
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6669 6670
			}
			putback_lru_page(page);
6671
put:			/* get_mctgt_type() gets the page */
6672 6673
			put_page(page);
			break;
6674 6675
		case MC_TARGET_SWAP:
			ent = target.ent;
6676
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6677
				mc.precharge--;
6678 6679 6680
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6681
			break;
6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6696
		ret = mem_cgroup_do_precharge(1);
6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6740
	up_read(&mm->mmap_sem);
6741 6742
}

6743 6744
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6745
{
6746
	struct task_struct *p = cgroup_taskset_first(tset);
6747
	struct mm_struct *mm = get_task_mm(p);
6748 6749

	if (mm) {
6750 6751
		if (mc.to)
			mem_cgroup_move_charge(mm);
6752 6753
		mmput(mm);
	}
6754 6755
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6756
}
6757
#else	/* !CONFIG_MMU */
6758 6759
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
6760 6761 6762
{
	return 0;
}
6763 6764
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
6765 6766
{
}
6767 6768
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
6769 6770 6771
{
}
#endif
B
Balbir Singh 已提交
6772

B
Balbir Singh 已提交
6773 6774 6775
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6776 6777 6778
	.css_alloc = mem_cgroup_css_alloc,
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6779 6780
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6781
	.attach = mem_cgroup_move_task,
6782
	.base_cftypes = mem_cgroup_files,
6783
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
6784
	.use_id = 1,
B
Balbir Singh 已提交
6785
};
6786

A
Andrew Morton 已提交
6787
#ifdef CONFIG_MEMCG_SWAP
6788 6789 6790
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
6791
	if (!strcmp(s, "1"))
6792
		really_do_swap_account = 1;
6793
	else if (!strcmp(s, "0"))
6794 6795 6796
		really_do_swap_account = 0;
	return 1;
}
6797
__setup("swapaccount=", enable_swap_account);
6798

6799 6800
static void __init memsw_file_init(void)
{
6801 6802 6803 6804 6805 6806 6807 6808 6809
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
6810
}
6811

6812
#else
6813
static void __init enable_swap_cgroup(void)
6814 6815
{
}
6816
#endif
6817 6818 6819 6820 6821 6822 6823 6824 6825 6826

/*
 * The rest of init is performed during ->css_alloc() for root css which
 * happens before initcalls.  hotcpu_notifier() can't be done together as
 * it would introduce circular locking by adding cgroup_lock -> cpu hotplug
 * dependency.  Do it from a subsys_initcall().
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6827
	enable_swap_cgroup();
6828 6829 6830
	return 0;
}
subsys_initcall(mem_cgroup_init);