memcontrol.c 146.1 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
G
Glauber Costa 已提交
53 54
#include <net/sock.h>
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
55

56 57
#include <asm/uaccess.h>

58 59
#include <trace/events/vmscan.h>

60 61
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
62
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
63

64
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
65
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66
int do_swap_account __read_mostly;
67 68 69 70 71 72 73 74

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

75
#else
76
#define do_swap_account		0
77 78 79
#endif


80 81 82 83 84 85 86 87
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92 93 94
	MEM_CGROUP_STAT_NSTATS,
};

95 96 97 98
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
99 100
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
101 102
	MEM_CGROUP_EVENTS_NSTATS,
};
103 104 105 106 107 108 109 110 111
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
112
	MEM_CGROUP_TARGET_NUMAINFO,
113 114
	MEM_CGROUP_NTARGETS,
};
115 116 117
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
118

119
struct mem_cgroup_stat_cpu {
120
	long count[MEM_CGROUP_STAT_NSTATS];
121
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
122
	unsigned long targets[MEM_CGROUP_NTARGETS];
123 124
};

125 126 127 128 129 130 131
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

132 133 134 135
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
136
	struct lruvec		lruvec;
137
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
138

139 140
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

141 142 143 144
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
145
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
146
						/* use container_of	   */
147 148 149 150 151 152 153 154 155 156
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

177 178 179 180 181
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
182
/* For threshold */
183
struct mem_cgroup_threshold_ary {
184
	/* An array index points to threshold just below or equal to usage. */
185
	int current_threshold;
186 187 188 189 190
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
191 192 193 194 195 196 197 198 199 200 201 202

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
203 204 205 206 207
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
208

209 210
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
211

B
Balbir Singh 已提交
212 213 214 215 216 217 218
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
219 220 221
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
222 223 224 225 226 227 228
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252

	union {
		/*
		 * the counter to account for mem+swap usage.
		 */
		struct res_counter memsw;

		/*
		 * rcu_freeing is used only when freeing struct mem_cgroup,
		 * so put it into a union to avoid wasting more memory.
		 * It must be disjoint from the css field.  It could be
		 * in a union with the res field, but res plays a much
		 * larger part in mem_cgroup life than memsw, and might
		 * be of interest, even at time of free, when debugging.
		 * So share rcu_head with the less interesting memsw.
		 */
		struct rcu_head rcu_freeing;
		/*
		 * But when using vfree(), that cannot be done at
		 * interrupt time, so we must then queue the work.
		 */
		struct work_struct work_freeing;
	};

253 254 255 256
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
257
	struct mem_cgroup_lru_info info;
258 259 260
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
261 262
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
263
#endif
264 265 266 267
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
268 269 270 271

	bool		oom_lock;
	atomic_t	under_oom;

272
	atomic_t	refcnt;
273

274
	int	swappiness;
275 276
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
277

278 279 280
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

281 282 283 284
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
285
	struct mem_cgroup_thresholds thresholds;
286

287
	/* thresholds for mem+swap usage. RCU-protected */
288
	struct mem_cgroup_thresholds memsw_thresholds;
289

K
KAMEZAWA Hiroyuki 已提交
290 291
	/* For oom notifier event fd */
	struct list_head oom_notify;
292

293 294 295 296 297
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
298 299 300 301
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
302 303
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
304
	/*
305
	 * percpu counter.
306
	 */
307
	struct mem_cgroup_stat_cpu __percpu *stat;
308 309 310 311 312 313
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
314 315 316 317

#ifdef CONFIG_INET
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
318 319
};

320 321 322 323 324 325
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
326
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
327
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
328 329 330
	NR_MOVE_TYPE,
};

331 332
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
333
	spinlock_t	  lock; /* for from, to */
334 335 336
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
337
	unsigned long moved_charge;
338
	unsigned long moved_swap;
339 340 341
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
342
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
343 344
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
345

D
Daisuke Nishimura 已提交
346 347 348 349 350 351
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

352 353 354 355 356 357
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

358 359 360 361
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
362 363
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
364

365 366 367
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
368
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
369
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
370
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
371
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
372 373 374
	NR_CHARGE_TYPE,
};

375
/* for encoding cft->private value on file */
376 377 378
#define _MEM			(0)
#define _MEMSWAP		(1)
#define _OOM_TYPE		(2)
379 380
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
381
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
382 383
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
384

385 386 387 388 389 390 391 392
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

393 394
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
395 396 397 398

/* Writing them here to avoid exposing memcg's inner layout */
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
#include <net/sock.h>
G
Glauber Costa 已提交
399
#include <net/ip.h>
G
Glauber Costa 已提交
400 401 402 403

static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
void sock_update_memcg(struct sock *sk)
{
404
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
405 406 407 408
		struct mem_cgroup *memcg;

		BUG_ON(!sk->sk_prot->proto_cgroup);

409 410 411 412 413 414 415 416 417 418 419 420 421 422
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
		if (!mem_cgroup_is_root(memcg)) {
			mem_cgroup_get(memcg);
			sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
436
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
437 438 439 440 441 442
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
443

444
#ifdef CONFIG_INET
G
Glauber Costa 已提交
445 446 447 448 449 450 451 452
struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
453 454 455
#endif /* CONFIG_INET */
#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */

456
static void drain_all_stock_async(struct mem_cgroup *memcg);
457

458
static struct mem_cgroup_per_zone *
459
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
460
{
461
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
462 463
}

464
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
465
{
466
	return &memcg->css;
467 468
}

469
static struct mem_cgroup_per_zone *
470
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
471
{
472 473
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
474

475
	return mem_cgroup_zoneinfo(memcg, nid, zid);
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
494
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
495
				struct mem_cgroup_per_zone *mz,
496 497
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
498 499 500 501 502 503 504 505
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

506 507 508
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
525 526 527
}

static void
528
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
529 530 531 532 533 534 535 536 537
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

538
static void
539
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
540 541 542 543
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
544
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
545 546 547 548
	spin_unlock(&mctz->lock);
}


549
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
550
{
551
	unsigned long long excess;
552 553
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
554 555
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
556 557 558
	mctz = soft_limit_tree_from_page(page);

	/*
559 560
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
561
	 */
562 563 564
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
565 566 567 568
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
569
		if (excess || mz->on_tree) {
570 571 572
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
573
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
574
			/*
575 576
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
577
			 */
578
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
579 580
			spin_unlock(&mctz->lock);
		}
581 582 583
	}
}

584
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
585 586 587 588 589
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

B
Bob Liu 已提交
590
	for_each_node(node) {
591
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
592
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
593
			mctz = soft_limit_tree_node_zone(node, zone);
594
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
595 596 597 598
		}
	}
}

599 600 601 602
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
603
	struct mem_cgroup_per_zone *mz;
604 605

retry:
606
	mz = NULL;
607 608 609 610 611 612 613 614 615 616
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
617 618 619
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
655
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
656
				 enum mem_cgroup_stat_index idx)
657
{
658
	long val = 0;
659 660
	int cpu;

661 662
	get_online_cpus();
	for_each_online_cpu(cpu)
663
		val += per_cpu(memcg->stat->count[idx], cpu);
664
#ifdef CONFIG_HOTPLUG_CPU
665 666 667
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
668 669
#endif
	put_online_cpus();
670 671 672
	return val;
}

673
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
674 675 676
					 bool charge)
{
	int val = (charge) ? 1 : -1;
677
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
678 679
}

680
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
681 682 683 684 685 686
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
687
		val += per_cpu(memcg->stat->events[idx], cpu);
688
#ifdef CONFIG_HOTPLUG_CPU
689 690 691
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
692 693 694 695
#endif
	return val;
}

696
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
697
					 bool anon, int nr_pages)
698
{
699 700
	preempt_disable();

701 702 703 704 705 706
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
707
				nr_pages);
708
	else
709
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
710
				nr_pages);
711

712 713
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
714
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
715
	else {
716
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
717 718
		nr_pages = -nr_pages; /* for event */
	}
719

720
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
721

722
	preempt_enable();
723 724
}

725
unsigned long
726 727 728 729 730 731 732 733 734
mem_cgroup_get_lruvec_size(struct lruvec *lruvec, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
735
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
736
			unsigned int lru_mask)
737 738
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
739
	enum lru_list lru;
740 741
	unsigned long ret = 0;

742
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
743

H
Hugh Dickins 已提交
744 745 746
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
747 748 749 750 751
	}
	return ret;
}

static unsigned long
752
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
753 754
			int nid, unsigned int lru_mask)
{
755 756 757
	u64 total = 0;
	int zid;

758
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
759 760
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
761

762 763
	return total;
}
764

765
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
766
			unsigned int lru_mask)
767
{
768
	int nid;
769 770
	u64 total = 0;

771
	for_each_node_state(nid, N_HIGH_MEMORY)
772
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
773
	return total;
774 775
}

776 777
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
778 779 780
{
	unsigned long val, next;

781 782
	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = __this_cpu_read(memcg->stat->targets[target]);
783
	/* from time_after() in jiffies.h */
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
800
	}
801
	return false;
802 803 804 805 806 807
}

/*
 * Check events in order.
 *
 */
808
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
809
{
810
	preempt_disable();
811
	/* threshold event is triggered in finer grain than soft limit */
812 813
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
814 815
		bool do_softlimit;
		bool do_numainfo __maybe_unused;
816 817 818 819 820 821 822 823 824

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

825
		mem_cgroup_threshold(memcg);
826
		if (unlikely(do_softlimit))
827
			mem_cgroup_update_tree(memcg, page);
828
#if MAX_NUMNODES > 1
829
		if (unlikely(do_numainfo))
830
			atomic_inc(&memcg->numainfo_events);
831
#endif
832 833
	} else
		preempt_enable();
834 835
}

G
Glauber Costa 已提交
836
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
837 838 839 840 841 842
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

843
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
844
{
845 846 847 848 849 850 851 852
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

853 854 855 856
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

857
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
858
{
859
	struct mem_cgroup *memcg = NULL;
860 861 862

	if (!mm)
		return NULL;
863 864 865 866 867 868 869
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
870 871
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
872
			break;
873
	} while (!css_tryget(&memcg->css));
874
	rcu_read_unlock();
875
	return memcg;
876 877
}

878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
898
{
899 900
	struct mem_cgroup *memcg = NULL;
	int id = 0;
901

902 903 904
	if (mem_cgroup_disabled())
		return NULL;

905 906
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
907

908 909
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
910

911 912
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
913

914 915 916 917 918
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
919

920
	while (!memcg) {
921
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
922
		struct cgroup_subsys_state *css;
923

924 925 926 927 928 929 930 931 932 933 934
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
935

936 937 938 939 940 941 942 943
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
				memcg = container_of(css,
						     struct mem_cgroup, css);
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
944 945
		rcu_read_unlock();

946 947 948 949 950 951 952
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
953 954 955 956 957

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
958
}
K
KAMEZAWA Hiroyuki 已提交
959

960 961 962 963 964 965 966
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
967 968 969 970 971 972
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
973

974 975 976 977 978 979
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
980
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
981
	     iter != NULL;				\
982
	     iter = mem_cgroup_iter(root, iter, NULL))
983

984
#define for_each_mem_cgroup(iter)			\
985
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
986
	     iter != NULL;				\
987
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
988

989
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
990
{
991
	return (memcg == root_mem_cgroup);
992 993
}

994 995
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
996
	struct mem_cgroup *memcg;
997 998 999 1000 1001

	if (!mm)
		return;

	rcu_read_lock();
1002 1003
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1004 1005 1006 1007
		goto out;

	switch (idx) {
	case PGFAULT:
1008 1009 1010 1011
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1012 1013 1014 1015 1016 1017 1018 1019 1020
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
 * @mem: memcg of the wanted lruvec
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return &zone->lruvec;

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
	return &mz->lruvec;
}

K
KAMEZAWA Hiroyuki 已提交
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1055

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
/**
 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
 * @zone: zone of the page
 * @page: the page
 * @lru: current lru
 *
 * This function accounts for @page being added to @lru, and returns
 * the lruvec for the given @zone and the memcg @page is charged to.
 *
 * The callsite is then responsible for physically linking the page to
 * the returned lruvec->lists[@lru].
 */
struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
				       enum lru_list lru)
K
KAMEZAWA Hiroyuki 已提交
1070 1071
{
	struct mem_cgroup_per_zone *mz;
1072 1073
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1074

1075
	if (mem_cgroup_disabled())
1076 1077
		return &zone->lruvec;

K
KAMEZAWA Hiroyuki 已提交
1078
	pc = lookup_page_cgroup(page);
1079
	memcg = pc->mem_cgroup;
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092

	/*
	 * Surreptitiously switch any uncharged page to root:
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
	if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
		pc->mem_cgroup = memcg = root_mem_cgroup;

1093 1094
	mz = page_cgroup_zoneinfo(memcg, page);
	/* compound_order() is stabilized through lru_lock */
1095
	mz->lru_size[lru] += 1 << compound_order(page);
1096
	return &mz->lruvec;
K
KAMEZAWA Hiroyuki 已提交
1097
}
1098

1099 1100 1101 1102 1103 1104 1105 1106 1107
/**
 * mem_cgroup_lru_del_list - account for removing an lru page
 * @page: the page
 * @lru: target lru
 *
 * This function accounts for @page being removed from @lru.
 *
 * The callsite is then responsible for physically unlinking
 * @page->lru.
1108
 */
1109
void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1110 1111
{
	struct mem_cgroup_per_zone *mz;
1112
	struct mem_cgroup *memcg;
1113 1114 1115 1116 1117 1118
	struct page_cgroup *pc;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
1119 1120
	memcg = pc->mem_cgroup;
	VM_BUG_ON(!memcg);
1121 1122
	mz = page_cgroup_zoneinfo(memcg, page);
	/* huge page split is done under lru_lock. so, we have no races. */
1123 1124
	VM_BUG_ON(mz->lru_size[lru] < (1 << compound_order(page)));
	mz->lru_size[lru] -= 1 << compound_order(page);
1125 1126
}

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
/**
 * mem_cgroup_lru_move_lists - account for moving a page between lrus
 * @zone: zone of the page
 * @page: the page
 * @from: current lru
 * @to: target lru
 *
 * This function accounts for @page being moved between the lrus @from
 * and @to, and returns the lruvec for the given @zone and the memcg
 * @page is charged to.
 *
 * The callsite is then responsible for physically relinking
 * @page->lru to the returned lruvec->lists[@to].
 */
struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
					 struct page *page,
					 enum lru_list from,
					 enum lru_list to)
1145
{
1146 1147 1148
	/* XXX: Optimize this, especially for @from == @to */
	mem_cgroup_lru_del_list(page, from);
	return mem_cgroup_lru_add_list(zone, page, to);
K
KAMEZAWA Hiroyuki 已提交
1149
}
1150

1151
/*
1152
 * Checks whether given mem is same or in the root_mem_cgroup's
1153 1154
 * hierarchy subtree
 */
1155 1156
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1157
{
1158 1159 1160 1161
	if (root_memcg == memcg)
		return true;
	if (!root_memcg->use_hierarchy)
		return false;
1162 1163 1164 1165 1166 1167 1168 1169
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1170
	rcu_read_lock();
1171
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1172 1173
	rcu_read_unlock();
	return ret;
1174 1175
}

1176
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1177 1178
{
	int ret;
1179
	struct mem_cgroup *curr = NULL;
1180
	struct task_struct *p;
1181

1182
	p = find_lock_task_mm(task);
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
		task_lock(task);
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
		task_unlock(task);
	}
1198 1199
	if (!curr)
		return 0;
1200
	/*
1201
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1202
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1203 1204
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1205
	 */
1206
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1207
	css_put(&curr->css);
1208 1209 1210
	return ret;
}

1211
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1212
{
1213
	unsigned long inactive_ratio;
1214
	unsigned long inactive;
1215
	unsigned long active;
1216
	unsigned long gb;
1217

1218 1219
	inactive = mem_cgroup_get_lruvec_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lruvec_size(lruvec, LRU_ACTIVE_ANON);
1220

1221 1222 1223 1224 1225 1226
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1227
	return inactive * inactive_ratio < active;
1228 1229
}

1230
int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1231 1232 1233 1234
{
	unsigned long active;
	unsigned long inactive;

1235 1236
	inactive = mem_cgroup_get_lruvec_size(lruvec, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_lruvec_size(lruvec, LRU_ACTIVE_FILE);
1237 1238 1239 1240

	return (active > inactive);
}

K
KOSAKI Motohiro 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1251 1252
	if (!PageCgroupUsed(pc))
		return NULL;
1253 1254
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1255
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1256
	return &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
1257 1258
}

1259 1260 1261
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1262
/**
1263 1264
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1265
 *
1266
 * Returns the maximum amount of memory @mem can be charged with, in
1267
 * pages.
1268
 */
1269
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1270
{
1271 1272
	unsigned long long margin;

1273
	margin = res_counter_margin(&memcg->res);
1274
	if (do_swap_account)
1275
		margin = min(margin, res_counter_margin(&memcg->memsw));
1276
	return margin >> PAGE_SHIFT;
1277 1278
}

1279
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1280 1281 1282 1283 1284 1285 1286
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1287
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1288 1289
}

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1304 1305 1306 1307

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1308
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1309
{
1310
	atomic_inc(&memcg_moving);
1311
	atomic_inc(&memcg->moving_account);
1312 1313 1314
	synchronize_rcu();
}

1315
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1316
{
1317 1318 1319 1320
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1321 1322
	if (memcg) {
		atomic_dec(&memcg_moving);
1323
		atomic_dec(&memcg->moving_account);
1324
	}
1325
}
1326

1327 1328 1329
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1330 1331
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1332 1333 1334 1335 1336 1337 1338
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1339
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1340 1341
{
	VM_BUG_ON(!rcu_read_lock_held());
1342
	return atomic_read(&memcg->moving_account) > 0;
1343
}
1344

1345
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1346
{
1347 1348
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1349
	bool ret = false;
1350 1351 1352 1353 1354 1355 1356 1357 1358
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1359

1360 1361
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1362 1363
unlock:
	spin_unlock(&mc.lock);
1364 1365 1366
	return ret;
}

1367
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1368 1369
{
	if (mc.moving_task && current != mc.moving_task) {
1370
		if (mem_cgroup_under_move(memcg)) {
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1383 1384 1385 1386
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1387
 * see mem_cgroup_stolen(), too.
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1401
/**
1402
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1421
	if (!memcg || !p)
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1467 1468 1469 1470
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1471
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1472 1473
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1474 1475
	struct mem_cgroup *iter;

1476
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1477
		num++;
1478 1479 1480
	return num;
}

D
David Rientjes 已提交
1481 1482 1483 1484 1485 1486 1487 1488
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1489 1490 1491
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1492 1493 1494 1495 1496 1497 1498 1499
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1546
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1547 1548
		int nid, bool noswap)
{
1549
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1550 1551 1552
		return true;
	if (noswap || !total_swap_pages)
		return false;
1553
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1554 1555 1556 1557
		return true;
	return false;

}
1558 1559 1560 1561 1562 1563 1564 1565
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1566
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1567 1568
{
	int nid;
1569 1570 1571 1572
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1573
	if (!atomic_read(&memcg->numainfo_events))
1574
		return;
1575
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1576 1577 1578
		return;

	/* make a nodemask where this memcg uses memory from */
1579
	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1580 1581 1582

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1583 1584
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1585
	}
1586

1587 1588
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1603
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1604 1605 1606
{
	int node;

1607 1608
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1609

1610
	node = next_node(node, memcg->scan_nodes);
1611
	if (node == MAX_NUMNODES)
1612
		node = first_node(memcg->scan_nodes);
1613 1614 1615 1616 1617 1618 1619 1620 1621
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1622
	memcg->last_scanned_node = node;
1623 1624 1625
	return node;
}

1626 1627 1628 1629 1630 1631
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1632
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1633 1634 1635 1636 1637 1638 1639
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1640 1641
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1642
		     nid < MAX_NUMNODES;
1643
		     nid = next_node(nid, memcg->scan_nodes)) {
1644

1645
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1646 1647 1648 1649 1650 1651 1652
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
1653
		if (node_isset(nid, memcg->scan_nodes))
1654
			continue;
1655
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1656 1657 1658 1659 1660
			return true;
	}
	return false;
}

1661
#else
1662
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1663 1664 1665
{
	return 0;
}
1666

1667
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1668
{
1669
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1670
}
1671 1672
#endif

1673 1674 1675 1676
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1677
{
1678
	struct mem_cgroup *victim = NULL;
1679
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1680
	int loop = 0;
1681
	unsigned long excess;
1682
	unsigned long nr_scanned;
1683 1684 1685 1686
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1687

1688
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1689

1690
	while (1) {
1691
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1692
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1693
			loop++;
1694 1695 1696 1697 1698 1699
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1700
				if (!total)
1701 1702
					break;
				/*
L
Lucas De Marchi 已提交
1703
				 * We want to do more targeted reclaim.
1704 1705 1706 1707 1708
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1709
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1710 1711
					break;
			}
1712
			continue;
1713
		}
1714
		if (!mem_cgroup_reclaimable(victim, false))
1715
			continue;
1716 1717 1718 1719
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1720
			break;
1721
	}
1722
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1723
	return total;
1724 1725
}

K
KAMEZAWA Hiroyuki 已提交
1726 1727 1728
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1729
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1730
 */
1731
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1732
{
1733
	struct mem_cgroup *iter, *failed = NULL;
1734

1735
	for_each_mem_cgroup_tree(iter, memcg) {
1736
		if (iter->oom_lock) {
1737 1738 1739 1740 1741
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1742 1743
			mem_cgroup_iter_break(memcg, iter);
			break;
1744 1745
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1746
	}
K
KAMEZAWA Hiroyuki 已提交
1747

1748
	if (!failed)
1749
		return true;
1750 1751 1752 1753 1754

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1755
	for_each_mem_cgroup_tree(iter, memcg) {
1756
		if (iter == failed) {
1757 1758
			mem_cgroup_iter_break(memcg, iter);
			break;
1759 1760 1761
		}
		iter->oom_lock = false;
	}
1762
	return false;
1763
}
1764

1765
/*
1766
 * Has to be called with memcg_oom_lock
1767
 */
1768
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1769
{
K
KAMEZAWA Hiroyuki 已提交
1770 1771
	struct mem_cgroup *iter;

1772
	for_each_mem_cgroup_tree(iter, memcg)
1773 1774 1775 1776
		iter->oom_lock = false;
	return 0;
}

1777
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1778 1779 1780
{
	struct mem_cgroup *iter;

1781
	for_each_mem_cgroup_tree(iter, memcg)
1782 1783 1784
		atomic_inc(&iter->under_oom);
}

1785
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1786 1787 1788
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1789 1790 1791 1792 1793
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1794
	for_each_mem_cgroup_tree(iter, memcg)
1795
		atomic_add_unless(&iter->under_oom, -1, 0);
1796 1797
}

1798
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1799 1800
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1801
struct oom_wait_info {
1802
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1803 1804 1805 1806 1807 1808
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1809 1810
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1811 1812 1813
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1814
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1815 1816

	/*
1817
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
1818 1819
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1820 1821
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1822 1823 1824 1825
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1826
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1827
{
1828 1829
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1830 1831
}

1832
static void memcg_oom_recover(struct mem_cgroup *memcg)
1833
{
1834 1835
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1836 1837
}

K
KAMEZAWA Hiroyuki 已提交
1838 1839 1840
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1841 1842
static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
				  int order)
1843
{
K
KAMEZAWA Hiroyuki 已提交
1844
	struct oom_wait_info owait;
1845
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1846

1847
	owait.memcg = memcg;
K
KAMEZAWA Hiroyuki 已提交
1848 1849 1850 1851
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1852
	need_to_kill = true;
1853
	mem_cgroup_mark_under_oom(memcg);
1854

1855
	/* At first, try to OOM lock hierarchy under memcg.*/
1856
	spin_lock(&memcg_oom_lock);
1857
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1858 1859 1860 1861 1862
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1863
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1864
	if (!locked || memcg->oom_kill_disable)
1865 1866
		need_to_kill = false;
	if (locked)
1867
		mem_cgroup_oom_notify(memcg);
1868
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1869

1870 1871
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1872
		mem_cgroup_out_of_memory(memcg, mask, order);
1873
	} else {
K
KAMEZAWA Hiroyuki 已提交
1874
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1875
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1876
	}
1877
	spin_lock(&memcg_oom_lock);
1878
	if (locked)
1879 1880
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1881
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1882

1883
	mem_cgroup_unmark_under_oom(memcg);
1884

K
KAMEZAWA Hiroyuki 已提交
1885 1886 1887
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1888
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1889
	return true;
1890 1891
}

1892 1893 1894
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
1912 1913
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
1914
 */
1915

1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
	 * need to take move_lock_page_cgroup(). Because we already hold
	 * rcu_read_lock(), any calls to move_account will be delayed until
1931
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1932
	 */
1933
	if (!mem_cgroup_stolen(memcg))
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
	 * should take move_lock_page_cgroup().
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

1956 1957
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1958
{
1959
	struct mem_cgroup *memcg;
1960
	struct page_cgroup *pc = lookup_page_cgroup(page);
1961
	unsigned long uninitialized_var(flags);
1962

1963
	if (mem_cgroup_disabled())
1964
		return;
1965

1966 1967
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1968
		return;
1969 1970

	switch (idx) {
1971 1972
	case MEMCG_NR_FILE_MAPPED:
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1973 1974 1975
		break;
	default:
		BUG();
1976
	}
1977

1978
	this_cpu_add(memcg->stat->count[idx], val);
1979
}
1980

1981 1982 1983 1984
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1985
#define CHARGE_BATCH	32U
1986 1987
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1988
	unsigned int nr_pages;
1989
	struct work_struct work;
1990
	unsigned long flags;
1991
#define FLUSHING_CACHED_CHARGE	0
1992 1993
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1994
static DEFINE_MUTEX(percpu_charge_mutex);
1995 1996

/*
1997
 * Try to consume stocked charge on this cpu. If success, one page is consumed
1998 1999 2000 2001
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
2002
static bool consume_stock(struct mem_cgroup *memcg)
2003 2004 2005 2006 2007
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
2008
	if (memcg == stock->cached && stock->nr_pages)
2009
		stock->nr_pages--;
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2023 2024 2025 2026
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2027
		if (do_swap_account)
2028 2029
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2042
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2043 2044 2045 2046
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2047
 * This will be consumed by consume_stock() function, later.
2048
 */
2049
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2050 2051 2052
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2053
	if (stock->cached != memcg) { /* reset if necessary */
2054
		drain_stock(stock);
2055
		stock->cached = memcg;
2056
	}
2057
	stock->nr_pages += nr_pages;
2058 2059 2060 2061
	put_cpu_var(memcg_stock);
}

/*
2062
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2063 2064
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2065
 */
2066
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2067
{
2068
	int cpu, curcpu;
2069

2070 2071
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2072
	curcpu = get_cpu();
2073 2074
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2075
		struct mem_cgroup *memcg;
2076

2077 2078
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2079
			continue;
2080
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2081
			continue;
2082 2083 2084 2085 2086 2087
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2088
	}
2089
	put_cpu();
2090 2091 2092 2093 2094 2095

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2096
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2097 2098 2099
			flush_work(&stock->work);
	}
out:
2100
 	put_online_cpus();
2101 2102 2103 2104 2105 2106 2107 2108
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2109
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2110
{
2111 2112 2113 2114 2115
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2116
	drain_all_stock(root_memcg, false);
2117
	mutex_unlock(&percpu_charge_mutex);
2118 2119 2120
}

/* This is a synchronous drain interface. */
2121
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2122 2123
{
	/* called when force_empty is called */
2124
	mutex_lock(&percpu_charge_mutex);
2125
	drain_all_stock(root_memcg, true);
2126
	mutex_unlock(&percpu_charge_mutex);
2127 2128
}

2129 2130 2131 2132
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2133
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2134 2135 2136
{
	int i;

2137
	spin_lock(&memcg->pcp_counter_lock);
2138
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2139
		long x = per_cpu(memcg->stat->count[i], cpu);
2140

2141 2142
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2143
	}
2144
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2145
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2146

2147 2148
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2149
	}
2150
	spin_unlock(&memcg->pcp_counter_lock);
2151 2152 2153
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2154 2155 2156 2157 2158
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2159
	struct mem_cgroup *iter;
2160

2161
	if (action == CPU_ONLINE)
2162 2163
		return NOTIFY_OK;

2164
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2165
		return NOTIFY_OK;
2166

2167
	for_each_mem_cgroup(iter)
2168 2169
		mem_cgroup_drain_pcp_counter(iter, cpu);

2170 2171 2172 2173 2174
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2175 2176 2177 2178 2179 2180 2181 2182 2183 2184

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2185
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2186
				unsigned int nr_pages, bool oom_check)
2187
{
2188
	unsigned long csize = nr_pages * PAGE_SIZE;
2189 2190 2191 2192 2193
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2194
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2195 2196 2197 2198

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2199
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2200 2201 2202
		if (likely(!ret))
			return CHARGE_OK;

2203
		res_counter_uncharge(&memcg->res, csize);
2204 2205 2206 2207
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2208
	/*
2209 2210
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2211 2212 2213 2214
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2215
	if (nr_pages == CHARGE_BATCH)
2216 2217 2218 2219 2220
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2221
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2222
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2223
		return CHARGE_RETRY;
2224
	/*
2225 2226 2227 2228 2229 2230 2231
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2232
	 */
2233
	if (nr_pages == 1 && ret)
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
2247
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2248 2249 2250 2251 2252
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2253
/*
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2273
 */
2274
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2275
				   gfp_t gfp_mask,
2276
				   unsigned int nr_pages,
2277
				   struct mem_cgroup **ptr,
2278
				   bool oom)
2279
{
2280
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2281
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2282
	struct mem_cgroup *memcg = NULL;
2283
	int ret;
2284

K
KAMEZAWA Hiroyuki 已提交
2285 2286 2287 2288 2289 2290 2291 2292
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2293

2294
	/*
2295 2296
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2297 2298 2299
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
2300
	if (!*ptr && !mm)
2301
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2302
again:
2303 2304 2305 2306
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		VM_BUG_ON(css_is_removed(&memcg->css));
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2307
			goto done;
2308
		if (nr_pages == 1 && consume_stock(memcg))
K
KAMEZAWA Hiroyuki 已提交
2309
			goto done;
2310
		css_get(&memcg->css);
2311
	} else {
K
KAMEZAWA Hiroyuki 已提交
2312
		struct task_struct *p;
2313

K
KAMEZAWA Hiroyuki 已提交
2314 2315 2316
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2317
		 * Because we don't have task_lock(), "p" can exit.
2318
		 * In that case, "memcg" can point to root or p can be NULL with
2319 2320 2321 2322 2323 2324
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2325
		 */
2326
		memcg = mem_cgroup_from_task(p);
2327 2328 2329
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2330 2331 2332
			rcu_read_unlock();
			goto done;
		}
2333
		if (nr_pages == 1 && consume_stock(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2346
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2347 2348 2349 2350 2351
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2352

2353 2354
	do {
		bool oom_check;
2355

2356
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2357
		if (fatal_signal_pending(current)) {
2358
			css_put(&memcg->css);
2359
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2360
		}
2361

2362 2363 2364 2365
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2366
		}
2367

2368
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2369 2370 2371 2372
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2373
			batch = nr_pages;
2374 2375
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2376
			goto again;
2377
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2378
			css_put(&memcg->css);
2379 2380
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2381
			if (!oom) {
2382
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2383
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2384
			}
2385 2386 2387 2388
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2389
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2390
			goto bypass;
2391
		}
2392 2393
	} while (ret != CHARGE_OK);

2394
	if (batch > nr_pages)
2395 2396
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2397
done:
2398
	*ptr = memcg;
2399 2400
	return 0;
nomem:
2401
	*ptr = NULL;
2402
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2403
bypass:
2404 2405
	*ptr = root_mem_cgroup;
	return -EINTR;
2406
}
2407

2408 2409 2410 2411 2412
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2413
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2414
				       unsigned int nr_pages)
2415
{
2416
	if (!mem_cgroup_is_root(memcg)) {
2417 2418
		unsigned long bytes = nr_pages * PAGE_SIZE;

2419
		res_counter_uncharge(&memcg->res, bytes);
2420
		if (do_swap_account)
2421
			res_counter_uncharge(&memcg->memsw, bytes);
2422
	}
2423 2424
}

2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2462
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2463
{
2464
	struct mem_cgroup *memcg = NULL;
2465
	struct page_cgroup *pc;
2466
	unsigned short id;
2467 2468
	swp_entry_t ent;

2469 2470 2471
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2472
	lock_page_cgroup(pc);
2473
	if (PageCgroupUsed(pc)) {
2474 2475 2476
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2477
	} else if (PageSwapCache(page)) {
2478
		ent.val = page_private(page);
2479
		id = lookup_swap_cgroup_id(ent);
2480
		rcu_read_lock();
2481 2482 2483
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2484
		rcu_read_unlock();
2485
	}
2486
	unlock_page_cgroup(pc);
2487
	return memcg;
2488 2489
}

2490
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2491
				       struct page *page,
2492
				       unsigned int nr_pages,
2493 2494
				       enum charge_type ctype,
				       bool lrucare)
2495
{
2496
	struct page_cgroup *pc = lookup_page_cgroup(page);
2497 2498
	struct zone *uninitialized_var(zone);
	bool was_on_lru = false;
2499
	bool anon;
2500

2501 2502 2503
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2504
		__mem_cgroup_cancel_charge(memcg, nr_pages);
2505 2506 2507 2508 2509 2510
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
			ClearPageLRU(page);
			del_page_from_lru_list(zone, page, page_lru(page));
			was_on_lru = true;
		}
	}

2526
	pc->mem_cgroup = memcg;
2527 2528 2529 2530 2531 2532 2533
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2534
	smp_wmb();
2535
	SetPageCgroupUsed(pc);
2536

2537 2538 2539 2540 2541 2542 2543 2544 2545
	if (lrucare) {
		if (was_on_lru) {
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
			add_page_to_lru_list(zone, page, page_lru(page));
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2546 2547 2548 2549 2550 2551
	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
		anon = true;
	else
		anon = false;

	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2552
	unlock_page_cgroup(pc);
2553

2554 2555 2556 2557 2558
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2559
	memcg_check_events(memcg, page);
2560
}
2561

2562 2563
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

2564
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2565 2566
/*
 * Because tail pages are not marked as "used", set it. We're under
2567 2568 2569
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2570
 */
2571
void mem_cgroup_split_huge_fixup(struct page *head)
2572 2573
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2574 2575
	struct page_cgroup *pc;
	int i;
2576

2577 2578
	if (mem_cgroup_disabled())
		return;
2579 2580 2581 2582 2583 2584
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
2585
}
2586
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2587

2588
/**
2589
 * mem_cgroup_move_account - move account of the page
2590
 * @page: the page
2591
 * @nr_pages: number of regular pages (>1 for huge pages)
2592 2593 2594
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2595
 * @uncharge: whether we should call uncharge and css_put against @from.
2596 2597
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2598
 * - page is not on LRU (isolate_page() is useful.)
2599
 * - compound_lock is held when nr_pages > 1
2600
 *
2601
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2602
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2603 2604
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2605
 */
2606 2607 2608 2609 2610 2611
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2612
{
2613 2614
	unsigned long flags;
	int ret;
2615
	bool anon = PageAnon(page);
2616

2617
	VM_BUG_ON(from == to);
2618
	VM_BUG_ON(PageLRU(page));
2619 2620 2621 2622 2623 2624 2625
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2626
	if (nr_pages > 1 && !PageTransHuge(page))
2627 2628 2629 2630 2631 2632 2633 2634
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

2635
	move_lock_mem_cgroup(from, &flags);
2636

2637
	if (!anon && page_mapped(page)) {
2638 2639 2640 2641 2642
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2643
	}
2644
	mem_cgroup_charge_statistics(from, anon, -nr_pages);
2645 2646
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2647
		__mem_cgroup_cancel_charge(from, nr_pages);
2648

2649
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2650
	pc->mem_cgroup = to;
2651
	mem_cgroup_charge_statistics(to, anon, nr_pages);
2652 2653 2654
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2655
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2656
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2657
	 * status here.
2658
	 */
2659
	move_unlock_mem_cgroup(from, &flags);
2660 2661
	ret = 0;
unlock:
2662
	unlock_page_cgroup(pc);
2663 2664 2665
	/*
	 * check events
	 */
2666 2667
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2668
out:
2669 2670 2671 2672 2673 2674 2675
	return ret;
}

/*
 * move charges to its parent.
 */

2676 2677
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2678 2679 2680 2681
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct mem_cgroup *parent;
2682
	unsigned int nr_pages;
2683
	unsigned long uninitialized_var(flags);
2684 2685 2686
	int ret;

	/* Is ROOT ? */
2687
	if (mem_cgroup_is_root(child))
2688 2689
		return -EINVAL;

2690 2691 2692 2693 2694
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2695

2696
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2697

2698 2699 2700 2701 2702 2703
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
2704

2705
	if (nr_pages > 1)
2706 2707
		flags = compound_lock_irqsave(page);

2708 2709 2710 2711
	ret = mem_cgroup_move_account(page, nr_pages,
				pc, child, parent, false);
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
2712

2713
	if (nr_pages > 1)
2714
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
2715
	putback_lru_page(page);
2716
put:
2717
	put_page(page);
2718
out:
2719 2720 2721
	return ret;
}

2722 2723 2724 2725 2726 2727 2728
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2729
				gfp_t gfp_mask, enum charge_type ctype)
2730
{
2731
	struct mem_cgroup *memcg = NULL;
2732
	unsigned int nr_pages = 1;
2733
	bool oom = true;
2734
	int ret;
A
Andrea Arcangeli 已提交
2735

A
Andrea Arcangeli 已提交
2736
	if (PageTransHuge(page)) {
2737
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2738
		VM_BUG_ON(!PageTransHuge(page));
2739 2740 2741 2742 2743
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2744
	}
2745

2746
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2747
	if (ret == -ENOMEM)
2748
		return ret;
2749
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2750 2751 2752
	return 0;
}

2753 2754
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2755
{
2756
	if (mem_cgroup_disabled())
2757
		return 0;
2758 2759 2760
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
2761
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2762
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2763 2764
}

D
Daisuke Nishimura 已提交
2765 2766 2767 2768
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2769 2770
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2771
{
2772
	struct mem_cgroup *memcg = NULL;
2773
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2774 2775
	int ret;

2776
	if (mem_cgroup_disabled())
2777
		return 0;
2778 2779
	if (PageCompound(page))
		return 0;
2780

2781
	if (unlikely(!mm))
2782
		mm = &init_mm;
2783 2784
	if (!page_is_file_cache(page))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2785

2786
	if (!PageSwapCache(page))
2787
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2788
	else { /* page is swapcache/shmem */
2789
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
D
Daisuke Nishimura 已提交
2790
		if (!ret)
2791 2792
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
2793
	return ret;
2794 2795
}

2796 2797 2798
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2799
 * struct page_cgroup is acquired. This refcnt will be consumed by
2800 2801
 * "commit()" or removed by "cancel()"
 */
2802 2803
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
2804
				 gfp_t mask, struct mem_cgroup **memcgp)
2805
{
2806
	struct mem_cgroup *memcg;
2807
	int ret;
2808

2809
	*memcgp = NULL;
2810

2811
	if (mem_cgroup_disabled())
2812 2813 2814 2815 2816 2817
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2818 2819 2820
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2821 2822
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2823
		goto charge_cur_mm;
2824 2825
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2826
		goto charge_cur_mm;
2827 2828
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2829
	css_put(&memcg->css);
2830 2831
	if (ret == -EINTR)
		ret = 0;
2832
	return ret;
2833 2834 2835
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2836 2837 2838 2839
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
2840 2841
}

D
Daisuke Nishimura 已提交
2842
static void
2843
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
2844
					enum charge_type ctype)
2845
{
2846
	if (mem_cgroup_disabled())
2847
		return;
2848
	if (!memcg)
2849
		return;
2850
	cgroup_exclude_rmdir(&memcg->css);
2851

2852
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2853 2854 2855
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2856 2857 2858
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2859
	 */
2860
	if (do_swap_account && PageSwapCache(page)) {
2861
		swp_entry_t ent = {.val = page_private(page)};
2862
		mem_cgroup_uncharge_swap(ent);
2863
	}
2864 2865 2866 2867 2868
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
2869
	cgroup_release_and_wakeup_rmdir(&memcg->css);
2870 2871
}

2872 2873
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
2874
{
2875 2876
	__mem_cgroup_commit_charge_swapin(page, memcg,
					  MEM_CGROUP_CHARGE_TYPE_MAPPED);
D
Daisuke Nishimura 已提交
2877 2878
}

2879
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2880
{
2881
	if (mem_cgroup_disabled())
2882
		return;
2883
	if (!memcg)
2884
		return;
2885
	__mem_cgroup_cancel_charge(memcg, 1);
2886 2887
}

2888
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2889 2890
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2891 2892 2893
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2894

2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2906
		batch->memcg = memcg;
2907 2908
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2909
	 * In those cases, all pages freed continuously can be expected to be in
2910 2911 2912 2913 2914 2915 2916 2917
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2918
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2919 2920
		goto direct_uncharge;

2921 2922 2923 2924 2925
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
2926
	if (batch->memcg != memcg)
2927 2928
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2929
	batch->nr_pages++;
2930
	if (uncharge_memsw)
2931
		batch->memsw_nr_pages++;
2932 2933
	return;
direct_uncharge:
2934
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2935
	if (uncharge_memsw)
2936 2937 2938
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
2939
}
2940

2941
/*
2942
 * uncharge if !page_mapped(page)
2943
 */
2944
static struct mem_cgroup *
2945
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2946
{
2947
	struct mem_cgroup *memcg = NULL;
2948 2949
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
2950
	bool anon;
2951

2952
	if (mem_cgroup_disabled())
2953
		return NULL;
2954

K
KAMEZAWA Hiroyuki 已提交
2955
	if (PageSwapCache(page))
2956
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2957

A
Andrea Arcangeli 已提交
2958
	if (PageTransHuge(page)) {
2959
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2960 2961
		VM_BUG_ON(!PageTransHuge(page));
	}
2962
	/*
2963
	 * Check if our page_cgroup is valid
2964
	 */
2965
	pc = lookup_page_cgroup(page);
2966
	if (unlikely(!PageCgroupUsed(pc)))
2967
		return NULL;
2968

2969
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2970

2971
	memcg = pc->mem_cgroup;
2972

K
KAMEZAWA Hiroyuki 已提交
2973 2974 2975
	if (!PageCgroupUsed(pc))
		goto unlock_out;

2976 2977
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
2978 2979
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2980 2981 2982 2983 2984
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
2985 2986
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
2987
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2988 2989
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3001
	}
K
KAMEZAWA Hiroyuki 已提交
3002

3003
	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3004

3005
	ClearPageCgroupUsed(pc);
3006 3007 3008 3009 3010 3011
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3012

3013
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3014
	/*
3015
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
3016 3017
	 * will never be freed.
	 */
3018
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3019
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3020 3021
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
3022
	}
3023 3024
	if (!mem_cgroup_is_root(memcg))
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3025

3026
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
3027 3028 3029

unlock_out:
	unlock_page_cgroup(pc);
3030
	return NULL;
3031 3032
}

3033 3034
void mem_cgroup_uncharge_page(struct page *page)
{
3035 3036 3037
	/* early check. */
	if (page_mapped(page))
		return;
3038
	VM_BUG_ON(page->mapping && !PageAnon(page));
3039 3040 3041 3042 3043 3044
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3045
	VM_BUG_ON(page->mapping);
3046 3047 3048
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3063 3064
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3085 3086 3087 3088 3089 3090
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3091
	memcg_oom_recover(batch->memcg);
3092 3093 3094 3095
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3096
#ifdef CONFIG_SWAP
3097
/*
3098
 * called after __delete_from_swap_cache() and drop "page" account.
3099 3100
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3101 3102
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3103 3104
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3105 3106 3107 3108 3109 3110
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3111

K
KAMEZAWA Hiroyuki 已提交
3112 3113 3114 3115 3116
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3117
		swap_cgroup_record(ent, css_id(&memcg->css));
3118
}
3119
#endif
3120 3121 3122 3123 3124 3125 3126

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3127
{
3128
	struct mem_cgroup *memcg;
3129
	unsigned short id;
3130 3131 3132 3133

	if (!do_swap_account)
		return;

3134 3135 3136
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3137
	if (memcg) {
3138 3139 3140 3141
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3142
		if (!mem_cgroup_is_root(memcg))
3143
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3144
		mem_cgroup_swap_statistics(memcg, false);
3145 3146
		mem_cgroup_put(memcg);
	}
3147
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3148
}
3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3165
				struct mem_cgroup *from, struct mem_cgroup *to)
3166 3167 3168 3169 3170 3171 3172 3173
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3174
		mem_cgroup_swap_statistics(to, true);
3175
		/*
3176 3177 3178 3179 3180 3181
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3182 3183 3184 3185 3186 3187 3188 3189
		 */
		mem_cgroup_get(to);
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3190
				struct mem_cgroup *from, struct mem_cgroup *to)
3191 3192 3193
{
	return -EINVAL;
}
3194
#endif
K
KAMEZAWA Hiroyuki 已提交
3195

3196
/*
3197 3198
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3199
 */
3200
int mem_cgroup_prepare_migration(struct page *page,
3201
	struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3202
{
3203
	struct mem_cgroup *memcg = NULL;
3204
	struct page_cgroup *pc;
3205
	enum charge_type ctype;
3206
	int ret = 0;
3207

3208
	*memcgp = NULL;
3209

A
Andrea Arcangeli 已提交
3210
	VM_BUG_ON(PageTransHuge(page));
3211
	if (mem_cgroup_disabled())
3212 3213
		return 0;

3214 3215 3216
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3217 3218
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3250
	}
3251
	unlock_page_cgroup(pc);
3252 3253 3254 3255
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3256
	if (!memcg)
3257
		return 0;
3258

3259 3260
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3261
	css_put(&memcg->css);/* drop extra refcnt */
3262
	if (ret) {
3263 3264 3265 3266 3267 3268 3269 3270 3271
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
3272
		/* we'll need to revisit this error code (we have -EINTR) */
3273
		return -ENOMEM;
3274
	}
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3287
	__mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3288
	return ret;
3289
}
3290

3291
/* remove redundant charge if migration failed*/
3292
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3293
	struct page *oldpage, struct page *newpage, bool migration_ok)
3294
{
3295
	struct page *used, *unused;
3296
	struct page_cgroup *pc;
3297
	bool anon;
3298

3299
	if (!memcg)
3300
		return;
3301
	/* blocks rmdir() */
3302
	cgroup_exclude_rmdir(&memcg->css);
3303
	if (!migration_ok) {
3304 3305
		used = oldpage;
		unused = newpage;
3306
	} else {
3307
		used = newpage;
3308 3309
		unused = oldpage;
	}
3310
	/*
3311 3312 3313
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3314
	 */
3315 3316 3317 3318
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3319 3320 3321 3322
	anon = PageAnon(used);
	__mem_cgroup_uncharge_common(unused,
		anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
		     : MEM_CGROUP_CHARGE_TYPE_CACHE);
3323

3324
	/*
3325 3326 3327 3328 3329 3330
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3331
	 */
3332
	if (anon)
3333
		mem_cgroup_uncharge_page(used);
3334
	/*
3335 3336
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3337 3338 3339
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
3340
	cgroup_release_and_wakeup_rmdir(&memcg->css);
3341
}
3342

3343 3344 3345 3346 3347 3348 3349 3350
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
3351
	struct mem_cgroup *memcg = NULL;
3352 3353 3354 3355 3356 3357 3358 3359 3360
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
3361 3362 3363 3364 3365
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		mem_cgroup_charge_statistics(memcg, false, -1);
		ClearPageCgroupUsed(pc);
	}
3366 3367
	unlock_page_cgroup(pc);

3368 3369 3370 3371 3372 3373 3374
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;

3375 3376 3377 3378 3379 3380 3381 3382
	if (PageSwapBacked(oldpage))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
3383
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3384 3385
}

3386 3387 3388 3389 3390 3391
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3392 3393 3394 3395 3396
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
3416
		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3417 3418 3419 3420 3421
		       pc, pc->flags, pc->mem_cgroup);
	}
}
#endif

3422 3423
static DEFINE_MUTEX(set_limit_mutex);

3424
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3425
				unsigned long long val)
3426
{
3427
	int retry_count;
3428
	u64 memswlimit, memlimit;
3429
	int ret = 0;
3430 3431
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3432
	int enlarge;
3433 3434 3435 3436 3437 3438 3439 3440 3441

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3442

3443
	enlarge = 0;
3444
	while (retry_count) {
3445 3446 3447 3448
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3449 3450 3451
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3452
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3453 3454 3455 3456 3457 3458
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3459 3460
			break;
		}
3461 3462 3463 3464 3465

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3466
		ret = res_counter_set_limit(&memcg->res, val);
3467 3468 3469 3470 3471 3472
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3473 3474 3475 3476 3477
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3478 3479
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3480 3481 3482 3483 3484 3485
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3486
	}
3487 3488
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3489

3490 3491 3492
	return ret;
}

L
Li Zefan 已提交
3493 3494
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3495
{
3496
	int retry_count;
3497
	u64 memlimit, memswlimit, oldusage, curusage;
3498 3499
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3500
	int enlarge = 0;
3501

3502 3503 3504
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3505 3506 3507 3508 3509 3510 3511 3512
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3513
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3514 3515 3516 3517 3518 3519 3520 3521
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3522 3523 3524
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3525
		ret = res_counter_set_limit(&memcg->memsw, val);
3526 3527 3528 3529 3530 3531
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3532 3533 3534 3535 3536
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3537 3538 3539
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3540
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3541
		/* Usage is reduced ? */
3542
		if (curusage >= oldusage)
3543
			retry_count--;
3544 3545
		else
			oldusage = curusage;
3546
	}
3547 3548
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3549 3550 3551
	return ret;
}

3552
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3553 3554
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3555 3556 3557 3558 3559 3560
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3561
	unsigned long long excess;
3562
	unsigned long nr_scanned;
3563 3564 3565 3566

	if (order > 0)
		return 0;

3567
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3581
		nr_scanned = 0;
3582
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3583
						    gfp_mask, &nr_scanned);
3584
		nr_reclaimed += reclaimed;
3585
		*total_scanned += nr_scanned;
3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3608
				if (next_mz == mz)
3609
					css_put(&next_mz->memcg->css);
3610
				else /* next_mz == NULL or other memcg */
3611 3612 3613
					break;
			} while (1);
		}
3614 3615
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3616 3617 3618 3619 3620 3621 3622 3623
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3624
		/* If excess == 0, no tree ops */
3625
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3626
		spin_unlock(&mctz->lock);
3627
		css_put(&mz->memcg->css);
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
3640
		css_put(&next_mz->memcg->css);
3641 3642 3643
	return nr_reclaimed;
}

3644 3645 3646 3647
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3648
static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3649
				int node, int zid, enum lru_list lru)
3650
{
K
KAMEZAWA Hiroyuki 已提交
3651 3652
	struct mem_cgroup_per_zone *mz;
	unsigned long flags, loop;
3653
	struct list_head *list;
3654 3655
	struct page *busy;
	struct zone *zone;
3656
	int ret = 0;
3657

K
KAMEZAWA Hiroyuki 已提交
3658
	zone = &NODE_DATA(node)->node_zones[zid];
3659
	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3660
	list = &mz->lruvec.lists[lru];
3661

3662
	loop = mz->lru_size[lru];
3663 3664 3665 3666
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3667
		struct page_cgroup *pc;
3668 3669
		struct page *page;

3670
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3671
		spin_lock_irqsave(&zone->lru_lock, flags);
3672
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3673
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3674
			break;
3675
		}
3676 3677 3678
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3679
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3680
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3681 3682
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3683
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3684

3685
		pc = lookup_page_cgroup(page);
3686

3687
		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3688
		if (ret == -ENOMEM || ret == -EINTR)
3689
			break;
3690 3691 3692

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
3693
			busy = page;
3694 3695 3696
			cond_resched();
		} else
			busy = NULL;
3697
	}
K
KAMEZAWA Hiroyuki 已提交
3698

3699 3700 3701
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3702 3703 3704 3705 3706 3707
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3708
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3709
{
3710 3711 3712
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3713
	struct cgroup *cgrp = memcg->css.cgroup;
3714

3715
	css_get(&memcg->css);
3716 3717

	shrink = 0;
3718 3719 3720
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3721
move_account:
3722
	do {
3723
		ret = -EBUSY;
3724 3725 3726 3727
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3728
			goto out;
3729 3730
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3731
		drain_all_stock_sync(memcg);
3732
		ret = 0;
3733
		mem_cgroup_start_move(memcg);
3734
		for_each_node_state(node, N_HIGH_MEMORY) {
3735
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
3736 3737
				enum lru_list lru;
				for_each_lru(lru) {
3738
					ret = mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
3739
							node, zid, lru);
3740 3741 3742
					if (ret)
						break;
				}
3743
			}
3744 3745 3746
			if (ret)
				break;
		}
3747 3748
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3749 3750 3751
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3752
		cond_resched();
3753
	/* "ret" should also be checked to ensure all lists are empty. */
3754
	} while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3755
out:
3756
	css_put(&memcg->css);
3757
	return ret;
3758 3759

try_to_free:
3760 3761
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3762 3763 3764
		ret = -EBUSY;
		goto out;
	}
3765 3766
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3767 3768
	/* try to free all pages in this cgroup */
	shrink = 1;
3769
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3770
		int progress;
3771 3772 3773 3774 3775

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3776
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3777
						false);
3778
		if (!progress) {
3779
			nr_retries--;
3780
			/* maybe some writeback is necessary */
3781
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3782
		}
3783 3784

	}
K
KAMEZAWA Hiroyuki 已提交
3785
	lru_add_drain();
3786
	/* try move_account...there may be some *locked* pages. */
3787
	goto move_account;
3788 3789
}

3790
static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3791 3792 3793 3794 3795
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3796 3797 3798 3799 3800 3801 3802 3803 3804
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3805
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3806
	struct cgroup *parent = cont->parent;
3807
	struct mem_cgroup *parent_memcg = NULL;
3808 3809

	if (parent)
3810
		parent_memcg = mem_cgroup_from_cont(parent);
3811 3812 3813

	cgroup_lock();
	/*
3814
	 * If parent's use_hierarchy is set, we can't make any modifications
3815 3816 3817 3818 3819 3820
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3821
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3822 3823
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3824
			memcg->use_hierarchy = val;
3825 3826 3827 3828 3829 3830 3831 3832 3833
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3834

3835
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3836
					       enum mem_cgroup_stat_index idx)
3837
{
K
KAMEZAWA Hiroyuki 已提交
3838
	struct mem_cgroup *iter;
3839
	long val = 0;
3840

3841
	/* Per-cpu values can be negative, use a signed accumulator */
3842
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3843 3844 3845 3846 3847
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3848 3849
}

3850
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3851
{
K
KAMEZAWA Hiroyuki 已提交
3852
	u64 val;
3853

3854
	if (!mem_cgroup_is_root(memcg)) {
3855
		if (!swap)
3856
			return res_counter_read_u64(&memcg->res, RES_USAGE);
3857
		else
3858
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3859 3860
	}

3861 3862
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3863

K
KAMEZAWA Hiroyuki 已提交
3864
	if (swap)
3865
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3866 3867 3868 3869

	return val << PAGE_SHIFT;
}

3870 3871 3872
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
			       struct file *file, char __user *buf,
			       size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
3873
{
3874
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3875
	char str[64];
3876
	u64 val;
3877
	int type, name, len;
3878 3879 3880

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3881 3882 3883 3884

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3885 3886
	switch (type) {
	case _MEM:
3887
		if (name == RES_USAGE)
3888
			val = mem_cgroup_usage(memcg, false);
3889
		else
3890
			val = res_counter_read_u64(&memcg->res, name);
3891 3892
		break;
	case _MEMSWAP:
3893
		if (name == RES_USAGE)
3894
			val = mem_cgroup_usage(memcg, true);
3895
		else
3896
			val = res_counter_read_u64(&memcg->memsw, name);
3897 3898 3899 3900
		break;
	default:
		BUG();
	}
3901 3902 3903

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
3904
}
3905 3906 3907 3908
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3909 3910
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3911
{
3912
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3913
	int type, name;
3914 3915 3916
	unsigned long long val;
	int ret;

3917 3918
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
3919 3920 3921 3922

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3923
	switch (name) {
3924
	case RES_LIMIT:
3925 3926 3927 3928
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3929 3930
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3931 3932 3933
		if (ret)
			break;
		if (type == _MEM)
3934
			ret = mem_cgroup_resize_limit(memcg, val);
3935 3936
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3937
		break;
3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3952 3953 3954 3955 3956
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3957 3958
}

3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

3986
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3987
{
3988
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3989
	int type, name;
3990

3991 3992
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
3993 3994 3995 3996

	if (!do_swap_account && type == _MEMSWAP)
		return -EOPNOTSUPP;

3997
	switch (name) {
3998
	case RES_MAX_USAGE:
3999
		if (type == _MEM)
4000
			res_counter_reset_max(&memcg->res);
4001
		else
4002
			res_counter_reset_max(&memcg->memsw);
4003 4004
		break;
	case RES_FAILCNT:
4005
		if (type == _MEM)
4006
			res_counter_reset_failcnt(&memcg->res);
4007
		else
4008
			res_counter_reset_failcnt(&memcg->memsw);
4009 4010
		break;
	}
4011

4012
	return 0;
4013 4014
}

4015 4016 4017 4018 4019 4020
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4021
#ifdef CONFIG_MMU
4022 4023 4024
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
4025
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4026 4027 4028 4029 4030 4031 4032 4033 4034

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
4035
	memcg->move_charge_at_immigrate = val;
4036 4037 4038 4039
	cgroup_unlock();

	return 0;
}
4040 4041 4042 4043 4044 4045 4046
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4047

K
KAMEZAWA Hiroyuki 已提交
4048 4049 4050 4051 4052

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
4053
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
4054 4055
	MCS_PGPGIN,
	MCS_PGPGOUT,
4056
	MCS_SWAP,
4057 4058
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4069 4070
};

4071
static struct {
K
KAMEZAWA Hiroyuki 已提交
4072 4073 4074 4075 4076
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
4077
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
4078 4079
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
4080
	{"swap", "total_swap"},
4081 4082
	{"pgfault", "total_pgfault"},
	{"pgmajfault", "total_pgmajfault"},
K
KAMEZAWA Hiroyuki 已提交
4083 4084 4085 4086 4087 4088 4089 4090
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
4091
static void
4092
mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4093 4094 4095 4096
{
	s64 val;

	/* per cpu stat */
4097
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4098
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4099
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4100
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4101
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4102
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4103
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4104
	s->stat[MCS_PGPGIN] += val;
4105
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4106
	s->stat[MCS_PGPGOUT] += val;
4107
	if (do_swap_account) {
4108
		val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4109 4110
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4111
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4112
	s->stat[MCS_PGFAULT] += val;
4113
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4114
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4115 4116

	/* per zone stat */
4117
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4118
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4119
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4120
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4121
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4122
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4123
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4124
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4125
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
K
KAMEZAWA Hiroyuki 已提交
4126 4127 4128 4129
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
4130
mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4131
{
K
KAMEZAWA Hiroyuki 已提交
4132 4133
	struct mem_cgroup *iter;

4134
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4135
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4136 4137
}

4138 4139 4140 4141 4142 4143 4144
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
4145
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4146

4147
	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4148 4149
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4150
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4151 4152 4153 4154
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4155
	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4156 4157
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4158
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4159
				LRU_ALL_FILE);
4160 4161 4162 4163
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4164
	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4165 4166
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4167
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4168
				LRU_ALL_ANON);
4169 4170 4171 4172
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4173
	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4174 4175
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4176
		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4177
				BIT(LRU_UNEVICTABLE));
4178 4179 4180 4181 4182 4183 4184
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4185 4186
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4187
{
4188
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4189
	struct mcs_total_stat mystat;
4190 4191
	int i;

K
KAMEZAWA Hiroyuki 已提交
4192
	memset(&mystat, 0, sizeof(mystat));
4193
	mem_cgroup_get_local_stat(memcg, &mystat);
4194

4195

4196 4197 4198
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4199
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4200
	}
L
Lee Schermerhorn 已提交
4201

K
KAMEZAWA Hiroyuki 已提交
4202
	/* Hierarchical information */
4203 4204
	{
		unsigned long long limit, memsw_limit;
4205
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4206 4207 4208 4209
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4210

K
KAMEZAWA Hiroyuki 已提交
4211
	memset(&mystat, 0, sizeof(mystat));
4212
	mem_cgroup_get_total_stat(memcg, &mystat);
4213 4214 4215
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4216
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4217
	}
K
KAMEZAWA Hiroyuki 已提交
4218

K
KOSAKI Motohiro 已提交
4219 4220 4221 4222
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
4223
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
4224 4225 4226 4227 4228
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4229
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4230
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
4231

4232 4233 4234 4235
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
4236 4237 4238 4239 4240 4241 4242 4243
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4244 4245 4246
	return 0;
}

K
KOSAKI Motohiro 已提交
4247 4248 4249 4250
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4251
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4252 4253 4254 4255 4256 4257 4258
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4259

K
KOSAKI Motohiro 已提交
4260 4261 4262 4263 4264 4265 4266
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4267 4268 4269

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4270 4271
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4272 4273
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4274
		return -EINVAL;
4275
	}
K
KOSAKI Motohiro 已提交
4276 4277 4278

	memcg->swappiness = val;

4279 4280
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4281 4282 4283
	return 0;
}

4284 4285 4286 4287 4288 4289 4290 4291
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4292
		t = rcu_dereference(memcg->thresholds.primary);
4293
	else
4294
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4295 4296 4297 4298 4299 4300 4301

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
4302
	 * current_threshold points to threshold just below or equal to usage.
4303 4304 4305
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4306
	i = t->current_threshold;
4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4330
	t->current_threshold = i - 1;
4331 4332 4333 4334 4335 4336
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4337 4338 4339 4340 4341 4342 4343
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4344 4345 4346 4347 4348 4349 4350 4351 4352 4353
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4354
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4355 4356 4357
{
	struct mem_cgroup_eventfd_list *ev;

4358
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4359 4360 4361 4362
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4363
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4364
{
K
KAMEZAWA Hiroyuki 已提交
4365 4366
	struct mem_cgroup *iter;

4367
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4368
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4369 4370 4371 4372
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4373 4374
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4375 4376
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4377 4378
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4379
	int i, size, ret;
4380 4381 4382 4383 4384 4385

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4386

4387
	if (type == _MEM)
4388
		thresholds = &memcg->thresholds;
4389
	else if (type == _MEMSWAP)
4390
		thresholds = &memcg->memsw_thresholds;
4391 4392 4393 4394 4395 4396
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4397
	if (thresholds->primary)
4398 4399
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4400
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4401 4402

	/* Allocate memory for new array of thresholds */
4403
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4404
			GFP_KERNEL);
4405
	if (!new) {
4406 4407 4408
		ret = -ENOMEM;
		goto unlock;
	}
4409
	new->size = size;
4410 4411

	/* Copy thresholds (if any) to new array */
4412 4413
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4414
				sizeof(struct mem_cgroup_threshold));
4415 4416
	}

4417
	/* Add new threshold */
4418 4419
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4420 4421

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4422
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4423 4424 4425
			compare_thresholds, NULL);

	/* Find current threshold */
4426
	new->current_threshold = -1;
4427
	for (i = 0; i < size; i++) {
4428
		if (new->entries[i].threshold <= usage) {
4429
			/*
4430 4431
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4432 4433
			 * it here.
			 */
4434
			++new->current_threshold;
4435 4436
		} else
			break;
4437 4438
	}

4439 4440 4441 4442 4443
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4444

4445
	/* To be sure that nobody uses thresholds */
4446 4447 4448 4449 4450 4451 4452 4453
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4454
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4455
	struct cftype *cft, struct eventfd_ctx *eventfd)
4456 4457
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4458 4459
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4460 4461
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4462
	int i, j, size;
4463 4464 4465

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4466
		thresholds = &memcg->thresholds;
4467
	else if (type == _MEMSWAP)
4468
		thresholds = &memcg->memsw_thresholds;
4469 4470 4471
	else
		BUG();

4472 4473 4474
	if (!thresholds->primary)
		goto unlock;

4475 4476 4477 4478 4479 4480
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4481 4482 4483
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4484 4485 4486
			size++;
	}

4487
	new = thresholds->spare;
4488

4489 4490
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4491 4492
		kfree(new);
		new = NULL;
4493
		goto swap_buffers;
4494 4495
	}

4496
	new->size = size;
4497 4498

	/* Copy thresholds and find current threshold */
4499 4500 4501
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4502 4503
			continue;

4504
		new->entries[j] = thresholds->primary->entries[i];
4505
		if (new->entries[j].threshold <= usage) {
4506
			/*
4507
			 * new->current_threshold will not be used
4508 4509 4510
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4511
			++new->current_threshold;
4512 4513 4514 4515
		}
		j++;
	}

4516
swap_buffers:
4517 4518
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4519 4520 4521 4522 4523 4524
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

4525
	rcu_assign_pointer(thresholds->primary, new);
4526

4527
	/* To be sure that nobody uses thresholds */
4528
	synchronize_rcu();
4529
unlock:
4530 4531
	mutex_unlock(&memcg->thresholds_lock);
}
4532

K
KAMEZAWA Hiroyuki 已提交
4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4545
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4546 4547 4548 4549 4550

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4551
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4552
		eventfd_signal(eventfd, 1);
4553
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4554 4555 4556 4557

	return 0;
}

4558
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4559 4560
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4561
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4562 4563 4564 4565 4566
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4567
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4568

4569
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4570 4571 4572 4573 4574 4575
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4576
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4577 4578
}

4579 4580 4581
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4582
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4583

4584
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4585

4586
	if (atomic_read(&memcg->under_oom))
4587 4588 4589 4590 4591 4592 4593 4594 4595
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4596
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4608
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4609 4610 4611
		cgroup_unlock();
		return -EINVAL;
	}
4612
	memcg->oom_kill_disable = val;
4613
	if (!val)
4614
		memcg_oom_recover(memcg);
4615 4616 4617 4618
	cgroup_unlock();
	return 0;
}

4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

4635
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4636
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4637
{
4638
	return mem_cgroup_sockets_init(memcg, ss);
4639 4640
};

4641
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4642
{
4643
	mem_cgroup_sockets_destroy(memcg);
G
Glauber Costa 已提交
4644
}
4645
#else
4646
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4647 4648 4649
{
	return 0;
}
G
Glauber Costa 已提交
4650

4651
static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4652 4653
{
}
4654 4655
#endif

B
Balbir Singh 已提交
4656 4657
static struct cftype mem_cgroup_files[] = {
	{
4658
		.name = "usage_in_bytes",
4659
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4660
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4661 4662
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4663
	},
4664 4665
	{
		.name = "max_usage_in_bytes",
4666
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4667
		.trigger = mem_cgroup_reset,
4668
		.read = mem_cgroup_read,
4669
	},
B
Balbir Singh 已提交
4670
	{
4671
		.name = "limit_in_bytes",
4672
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4673
		.write_string = mem_cgroup_write,
4674
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4675
	},
4676 4677 4678 4679
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
4680
		.read = mem_cgroup_read,
4681
	},
B
Balbir Singh 已提交
4682 4683
	{
		.name = "failcnt",
4684
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4685
		.trigger = mem_cgroup_reset,
4686
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
4687
	},
4688 4689
	{
		.name = "stat",
4690
		.read_map = mem_control_stat_show,
4691
	},
4692 4693 4694 4695
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4696 4697 4698 4699 4700
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4701 4702 4703 4704 4705
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4706 4707 4708 4709 4710
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4711 4712
	{
		.name = "oom_control",
4713 4714
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4715 4716 4717 4718
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4719 4720 4721 4722
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
4723
		.mode = S_IRUGO,
4724 4725
	},
#endif
4726 4727 4728 4729
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4730
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4731 4732
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4733 4734 4735 4736 4737
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
4738
		.read = mem_cgroup_read,
4739 4740 4741 4742 4743
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
4744
		.read = mem_cgroup_read,
4745 4746 4747 4748 4749
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
4750
		.read = mem_cgroup_read,
4751 4752
	},
#endif
4753
	{ },	/* terminate */
4754
};
4755

4756
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4757 4758
{
	struct mem_cgroup_per_node *pn;
4759
	struct mem_cgroup_per_zone *mz;
4760
	int zone, tmp = node;
4761 4762 4763 4764 4765 4766 4767 4768
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4769 4770
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4771
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4772 4773
	if (!pn)
		return 1;
4774 4775 4776

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4777
		lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
4778
		mz->usage_in_excess = 0;
4779
		mz->on_tree = false;
4780
		mz->memcg = memcg;
4781
	}
4782
	memcg->info.nodeinfo[node] = pn;
4783 4784 4785
	return 0;
}

4786
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4787
{
4788
	kfree(memcg->info.nodeinfo[node]);
4789 4790
}

4791 4792
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4793
	struct mem_cgroup *memcg;
4794
	int size = sizeof(struct mem_cgroup);
4795

4796
	/* Can be very big if MAX_NUMNODES is very big */
4797
	if (size < PAGE_SIZE)
4798
		memcg = kzalloc(size, GFP_KERNEL);
4799
	else
4800
		memcg = vzalloc(size);
4801

4802
	if (!memcg)
4803 4804
		return NULL;

4805 4806
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4807
		goto out_free;
4808 4809
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4810 4811 4812

out_free:
	if (size < PAGE_SIZE)
4813
		kfree(memcg);
4814
	else
4815
		vfree(memcg);
4816
	return NULL;
4817 4818
}

4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839
/*
 * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
 * but in process context.  The work_freeing structure is overlaid
 * on the rcu_freeing structure, which itself is overlaid on memsw.
 */
static void vfree_work(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, work_freeing);
	vfree(memcg);
}
static void vfree_rcu(struct rcu_head *rcu_head)
{
	struct mem_cgroup *memcg;

	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
	INIT_WORK(&memcg->work_freeing, vfree_work);
	schedule_work(&memcg->work_freeing);
}

4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4851
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4852
{
K
KAMEZAWA Hiroyuki 已提交
4853 4854
	int node;

4855 4856
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4857

B
Bob Liu 已提交
4858
	for_each_node(node)
4859
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4860

4861
	free_percpu(memcg->stat);
4862
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4863
		kfree_rcu(memcg, rcu_freeing);
4864
	else
4865
		call_rcu(&memcg->rcu_freeing, vfree_rcu);
4866 4867
}

4868
static void mem_cgroup_get(struct mem_cgroup *memcg)
4869
{
4870
	atomic_inc(&memcg->refcnt);
4871 4872
}

4873
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4874
{
4875 4876 4877
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4878 4879 4880
		if (parent)
			mem_cgroup_put(parent);
	}
4881 4882
}

4883
static void mem_cgroup_put(struct mem_cgroup *memcg)
4884
{
4885
	__mem_cgroup_put(memcg, 1);
4886 4887
}

4888 4889 4890
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4891
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4892
{
4893
	if (!memcg->res.parent)
4894
		return NULL;
4895
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4896
}
G
Glauber Costa 已提交
4897
EXPORT_SYMBOL(parent_mem_cgroup);
4898

4899 4900 4901
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4902
	if (!mem_cgroup_disabled() && really_do_swap_account)
4903 4904 4905 4906 4907 4908 4909 4910
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4911 4912 4913 4914 4915 4916
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

B
Bob Liu 已提交
4917
	for_each_node(node) {
4918 4919 4920 4921 4922
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
4923
			goto err_cleanup;
4924 4925 4926 4927 4928 4929 4930 4931 4932 4933

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
4934 4935

err_cleanup:
B
Bob Liu 已提交
4936
	for_each_node(node) {
4937 4938 4939 4940 4941 4942 4943
		if (!soft_limit_tree.rb_tree_per_node[node])
			break;
		kfree(soft_limit_tree.rb_tree_per_node[node]);
		soft_limit_tree.rb_tree_per_node[node] = NULL;
	}
	return 1;

4944 4945
}

L
Li Zefan 已提交
4946
static struct cgroup_subsys_state * __ref
4947
mem_cgroup_create(struct cgroup *cont)
B
Balbir Singh 已提交
4948
{
4949
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
4950
	long error = -ENOMEM;
4951
	int node;
B
Balbir Singh 已提交
4952

4953 4954
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4955
		return ERR_PTR(error);
4956

B
Bob Liu 已提交
4957
	for_each_node(node)
4958
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4959
			goto free_out;
4960

4961
	/* root ? */
4962
	if (cont->parent == NULL) {
4963
		int cpu;
4964
		enable_swap_cgroup();
4965
		parent = NULL;
4966 4967
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4968
		root_mem_cgroup = memcg;
4969 4970 4971 4972 4973
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4974
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4975
	} else {
4976
		parent = mem_cgroup_from_cont(cont->parent);
4977 4978
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
4979
	}
4980

4981
	if (parent && parent->use_hierarchy) {
4982 4983
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
4984 4985 4986 4987 4988 4989 4990
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4991
	} else {
4992 4993
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
4994
	}
4995 4996
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
4997

K
KOSAKI Motohiro 已提交
4998
	if (parent)
4999 5000 5001 5002
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
5003
	spin_lock_init(&memcg->move_lock);
5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
	if (error) {
		/*
		 * We call put now because our (and parent's) refcnts
		 * are already in place. mem_cgroup_put() will internally
		 * call __mem_cgroup_free, so return directly
		 */
		mem_cgroup_put(memcg);
		return ERR_PTR(error);
	}
5015
	return &memcg->css;
5016
free_out:
5017
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
5018
	return ERR_PTR(error);
B
Balbir Singh 已提交
5019 5020
}

5021
static int mem_cgroup_pre_destroy(struct cgroup *cont)
5022
{
5023
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5024

5025
	return mem_cgroup_force_empty(memcg, false);
5026 5027
}

5028
static void mem_cgroup_destroy(struct cgroup *cont)
B
Balbir Singh 已提交
5029
{
5030
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5031

5032
	kmem_cgroup_destroy(memcg);
G
Glauber Costa 已提交
5033

5034
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
5035 5036
}

5037
#ifdef CONFIG_MMU
5038
/* Handlers for move charge at task migration. */
5039 5040
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5041
{
5042 5043
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5044
	struct mem_cgroup *memcg = mc.to;
5045

5046
	if (mem_cgroup_is_root(memcg)) {
5047 5048 5049 5050 5051 5052 5053 5054
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5055
		 * "memcg" cannot be under rmdir() because we've already checked
5056 5057 5058 5059
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5060
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5061
			goto one_by_one;
5062
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5063
						PAGE_SIZE * count, &dummy)) {
5064
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5081 5082
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
5083
		if (ret)
5084
			/* mem_cgroup_clear_mc() will do uncharge later */
5085
			return ret;
5086 5087
		mc.precharge++;
	}
5088 5089 5090 5091
	return ret;
}

/**
5092
 * get_mctgt_type - get target type of moving charge
5093 5094 5095
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5096
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5097 5098 5099 5100 5101 5102
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5103 5104 5105
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5106 5107 5108 5109 5110
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5111
	swp_entry_t	ent;
5112 5113 5114
};

enum mc_target_type {
5115
	MC_TARGET_NONE = 0,
5116
	MC_TARGET_PAGE,
5117
	MC_TARGET_SWAP,
5118 5119
};

D
Daisuke Nishimura 已提交
5120 5121
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5122
{
D
Daisuke Nishimura 已提交
5123
	struct page *page = vm_normal_page(vma, addr, ptent);
5124

D
Daisuke Nishimura 已提交
5125 5126 5127 5128
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5129
		if (!move_anon())
D
Daisuke Nishimura 已提交
5130
			return NULL;
5131 5132
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5133 5134 5135 5136 5137 5138 5139
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5140
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
5141 5142 5143 5144 5145 5146 5147 5148
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
5149 5150 5151 5152 5153
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
	page = find_get_page(&swapper_space, ent.val);
D
Daisuke Nishimura 已提交
5154 5155 5156 5157 5158
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
5159 5160 5161 5162 5163 5164 5165
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5166

5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5186 5187 5188 5189 5190 5191
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5192
		if (do_swap_account)
5193 5194
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5195
	}
5196
#endif
5197 5198 5199
	return page;
}

5200
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5201 5202 5203 5204
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
5205
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5206 5207 5208 5209 5210 5211
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5212 5213
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5214 5215

	if (!page && !ent.val)
5216
		return ret;
5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5232 5233
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5234
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5235 5236 5237
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5238 5239 5240 5241
	}
	return ret;
}

5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5277 5278 5279 5280 5281 5282 5283 5284
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5285 5286 5287 5288
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
5289
		return 0;
5290
	}
5291

5292 5293
	if (pmd_trans_unstable(pmd))
		return 0;
5294 5295
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5296
		if (get_mctgt_type(vma, addr, *pte, NULL))
5297 5298 5299 5300
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5301 5302 5303
	return 0;
}

5304 5305 5306 5307 5308
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5309
	down_read(&mm->mmap_sem);
5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5321
	up_read(&mm->mmap_sem);
5322 5323 5324 5325 5326 5327 5328 5329 5330

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5331 5332 5333 5334 5335
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5336 5337
}

5338 5339
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5340
{
5341 5342 5343
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5344
	/* we must uncharge all the leftover precharges from mc.to */
5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5356
	}
5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5391
	spin_lock(&mc.lock);
5392 5393
	mc.from = NULL;
	mc.to = NULL;
5394
	spin_unlock(&mc.lock);
5395
	mem_cgroup_end_move(from);
5396 5397
}

5398 5399
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5400
{
5401
	struct task_struct *p = cgroup_taskset_first(tset);
5402
	int ret = 0;
5403
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5404

5405
	if (memcg->move_charge_at_immigrate) {
5406 5407 5408
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5409
		VM_BUG_ON(from == memcg);
5410 5411 5412 5413 5414

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5415 5416 5417 5418
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5419
			VM_BUG_ON(mc.moved_charge);
5420
			VM_BUG_ON(mc.moved_swap);
5421
			mem_cgroup_start_move(from);
5422
			spin_lock(&mc.lock);
5423
			mc.from = from;
5424
			mc.to = memcg;
5425
			spin_unlock(&mc.lock);
5426
			/* We set mc.moving_task later */
5427 5428 5429 5430

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5431 5432
		}
		mmput(mm);
5433 5434 5435 5436
	}
	return ret;
}

5437 5438
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5439
{
5440
	mem_cgroup_clear_mc();
5441 5442
}

5443 5444 5445
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5446
{
5447 5448 5449 5450
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5451 5452 5453 5454
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
5455

5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5467
		if (mc.precharge < HPAGE_PMD_NR) {
5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
							     pc, mc.from, mc.to,
							     false)) {
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
5487
		return 0;
5488 5489
	}

5490 5491
	if (pmd_trans_unstable(pmd))
		return 0;
5492 5493 5494 5495
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5496
		swp_entry_t ent;
5497 5498 5499 5500

		if (!mc.precharge)
			break;

5501
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5502 5503 5504 5505 5506
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5507 5508
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5509
				mc.precharge--;
5510 5511
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5512 5513
			}
			putback_lru_page(page);
5514
put:			/* get_mctgt_type() gets the page */
5515 5516
			put_page(page);
			break;
5517 5518
		case MC_TARGET_SWAP:
			ent = target.ent;
5519
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5520
				mc.precharge--;
5521 5522 5523
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5524
			break;
5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5539
		ret = mem_cgroup_do_precharge(1);
5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5583
	up_read(&mm->mmap_sem);
5584 5585
}

5586 5587
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5588
{
5589
	struct task_struct *p = cgroup_taskset_first(tset);
5590
	struct mm_struct *mm = get_task_mm(p);
5591 5592

	if (mm) {
5593 5594
		if (mc.to)
			mem_cgroup_move_charge(mm);
5595 5596
		mmput(mm);
	}
5597 5598
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5599
}
5600
#else	/* !CONFIG_MMU */
5601 5602
static int mem_cgroup_can_attach(struct cgroup *cgroup,
				 struct cgroup_taskset *tset)
5603 5604 5605
{
	return 0;
}
5606 5607
static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
				     struct cgroup_taskset *tset)
5608 5609
{
}
5610 5611
static void mem_cgroup_move_task(struct cgroup *cont,
				 struct cgroup_taskset *tset)
5612 5613 5614
{
}
#endif
B
Balbir Singh 已提交
5615

B
Balbir Singh 已提交
5616 5617 5618 5619
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5620
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5621
	.destroy = mem_cgroup_destroy,
5622 5623
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5624
	.attach = mem_cgroup_move_task,
5625
	.base_cftypes = mem_cgroup_files,
5626
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5627
	.use_id = 1,
5628
	.__DEPRECATED_clear_css_refs = true,
B
Balbir Singh 已提交
5629
};
5630 5631

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5632 5633 5634
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5635
	if (!strcmp(s, "1"))
5636
		really_do_swap_account = 1;
5637
	else if (!strcmp(s, "0"))
5638 5639 5640
		really_do_swap_account = 0;
	return 1;
}
5641
__setup("swapaccount=", enable_swap_account);
5642 5643

#endif