memcontrol.c 145.2 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
G
Glauber Costa 已提交
53 54
#include <net/sock.h>
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
55

56 57
#include <asm/uaccess.h>

58 59
#include <trace/events/vmscan.h>

60 61
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
62
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
63

64
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
65
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66
int do_swap_account __read_mostly;
67 68 69 70 71 72 73 74

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

75 76 77 78 79
#else
#define do_swap_account		(0)
#endif


80 81 82 83 84 85 86 87
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
93 94 95
	MEM_CGROUP_STAT_NSTATS,
};

96 97 98 99
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
100 101
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
102 103
	MEM_CGROUP_EVENTS_NSTATS,
};
104 105 106 107 108 109 110 111 112
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
113
	MEM_CGROUP_TARGET_NUMAINFO,
114 115 116 117
	MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET (128)
#define SOFTLIMIT_EVENTS_TARGET (1024)
118
#define NUMAINFO_EVENTS_TARGET	(1024)
119

120
struct mem_cgroup_stat_cpu {
121
	long count[MEM_CGROUP_STAT_NSTATS];
122
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
123
	unsigned long targets[MEM_CGROUP_NTARGETS];
124 125
};

126 127 128 129 130 131 132
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

133 134 135 136
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
137
	struct lruvec		lruvec;
138
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
139

140 141
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

K
KOSAKI Motohiro 已提交
142
	struct zone_reclaim_stat reclaim_stat;
143 144 145 146
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
147 148
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
149 150 151 152 153 154 155 156 157 158 159 160
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

181 182 183 184 185
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
186
/* For threshold */
187 188
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
189
	int current_threshold;
190 191 192 193 194
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
195 196 197 198 199 200 201 202 203 204 205 206

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
207 208 209 210 211
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
212

213 214
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
215

B
Balbir Singh 已提交
216 217 218 219 220 221 222
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
223 224 225
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
226 227 228 229 230 231 232
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
233 234 235 236
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
237 238 239 240
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
241
	struct mem_cgroup_lru_info info;
242 243 244
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
245 246
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
247
#endif
248 249 250 251
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
252 253 254 255

	bool		oom_lock;
	atomic_t	under_oom;

256
	atomic_t	refcnt;
257

258
	int	swappiness;
259 260
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
261

262 263 264
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

265 266 267 268
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
269
	struct mem_cgroup_thresholds thresholds;
270

271
	/* thresholds for mem+swap usage. RCU-protected */
272
	struct mem_cgroup_thresholds memsw_thresholds;
273

K
KAMEZAWA Hiroyuki 已提交
274 275
	/* For oom notifier event fd */
	struct list_head oom_notify;
276

277 278 279 280 281
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
282
	/*
283
	 * percpu counter.
284
	 */
285
	struct mem_cgroup_stat_cpu *stat;
286 287 288 289 290 291
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
292 293 294 295

#ifdef CONFIG_INET
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
296 297
};

298 299 300 301 302 303
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
304
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
305
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
306 307 308
	NR_MOVE_TYPE,
};

309 310
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
311
	spinlock_t	  lock; /* for from, to */
312 313 314
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
315
	unsigned long moved_charge;
316
	unsigned long moved_swap;
317 318 319
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
320
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
321 322
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
323

D
Daisuke Nishimura 已提交
324 325 326 327 328 329
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

330 331 332 333 334 335
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

336 337 338 339 340 341 342
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

343 344 345
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
346
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
347
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
348
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
349
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
350 351 352
	NR_CHARGE_TYPE,
};

353
/* for encoding cft->private value on file */
354 355 356
#define _MEM			(0)
#define _MEMSWAP		(1)
#define _OOM_TYPE		(2)
357 358 359
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
360 361
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
362

363 364 365 366 367 368 369 370
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

371 372
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
373 374 375 376 377

/* Writing them here to avoid exposing memcg's inner layout */
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
#ifdef CONFIG_INET
#include <net/sock.h>
G
Glauber Costa 已提交
378
#include <net/ip.h>
G
Glauber Costa 已提交
379 380 381 382 383 384 385 386 387

static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
void sock_update_memcg(struct sock *sk)
{
	if (static_branch(&memcg_socket_limit_enabled)) {
		struct mem_cgroup *memcg;

		BUG_ON(!sk->sk_prot->proto_cgroup);

388 389 390 391 392 393 394 395 396 397 398 399 400 401
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
		if (!mem_cgroup_is_root(memcg)) {
			mem_cgroup_get(memcg);
			sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
	if (static_branch(&memcg_socket_limit_enabled) && sk->sk_cgrp) {
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
422 423 424 425 426 427 428 429 430

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
431 432 433
#endif /* CONFIG_INET */
#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */

434
static void drain_all_stock_async(struct mem_cgroup *memcg);
435

436
static struct mem_cgroup_per_zone *
437
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
438
{
439
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
440 441
}

442
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
443
{
444
	return &memcg->css;
445 446
}

447
static struct mem_cgroup_per_zone *
448
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
449
{
450 451
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
452

453
	return mem_cgroup_zoneinfo(memcg, nid, zid);
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
472
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
473
				struct mem_cgroup_per_zone *mz,
474 475
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
476 477 478 479 480 481 482 483
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

484 485 486
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
503 504 505
}

static void
506
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
507 508 509 510 511 512 513 514 515
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

516
static void
517
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
518 519 520 521
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
522
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
523 524 525 526
	spin_unlock(&mctz->lock);
}


527
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
528
{
529
	unsigned long long excess;
530 531
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
532 533
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
534 535 536
	mctz = soft_limit_tree_from_page(page);

	/*
537 538
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
539
	 */
540 541 542
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
543 544 545 546
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
547
		if (excess || mz->on_tree) {
548 549 550
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
551
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
552
			/*
553 554
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
555
			 */
556
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
557 558
			spin_unlock(&mctz->lock);
		}
559 560 561
	}
}

562
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
563 564 565 566 567 568 569
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
570
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
571
			mctz = soft_limit_tree_node_zone(node, zone);
572
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
573 574 575 576
		}
	}
}

577 578 579 580
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
581
	struct mem_cgroup_per_zone *mz;
582 583

retry:
584
	mz = NULL;
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
633
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
634
				 enum mem_cgroup_stat_index idx)
635
{
636
	long val = 0;
637 638
	int cpu;

639 640
	get_online_cpus();
	for_each_online_cpu(cpu)
641
		val += per_cpu(memcg->stat->count[idx], cpu);
642
#ifdef CONFIG_HOTPLUG_CPU
643 644 645
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
646 647
#endif
	put_online_cpus();
648 649 650
	return val;
}

651
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
652 653 654
					 bool charge)
{
	int val = (charge) ? 1 : -1;
655
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
656 657
}

658
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
659 660 661 662 663 664
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
665
		val += per_cpu(memcg->stat->events[idx], cpu);
666
#ifdef CONFIG_HOTPLUG_CPU
667 668 669
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
670 671 672 673
#endif
	return val;
}

674
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
675
					 bool file, int nr_pages)
676
{
677 678
	preempt_disable();

679
	if (file)
680 681
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
				nr_pages);
682
	else
683 684
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
				nr_pages);
685

686 687
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
688
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
689
	else {
690
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
691 692
		nr_pages = -nr_pages; /* for event */
	}
693

694
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
695

696
	preempt_enable();
697 698
}

699
unsigned long
700
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
701
			unsigned int lru_mask)
702 703
{
	struct mem_cgroup_per_zone *mz;
704 705 706
	enum lru_list l;
	unsigned long ret = 0;

707
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
708 709 710 711 712 713 714 715 716

	for_each_lru(l) {
		if (BIT(l) & lru_mask)
			ret += MEM_CGROUP_ZSTAT(mz, l);
	}
	return ret;
}

static unsigned long
717
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
718 719
			int nid, unsigned int lru_mask)
{
720 721 722
	u64 total = 0;
	int zid;

723
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
724 725
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
726

727 728
	return total;
}
729

730
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
731
			unsigned int lru_mask)
732
{
733
	int nid;
734 735
	u64 total = 0;

736
	for_each_node_state(nid, N_HIGH_MEMORY)
737
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
738
	return total;
739 740
}

741 742
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
743 744 745
{
	unsigned long val, next;

746 747
	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = __this_cpu_read(memcg->stat->targets[target]);
748
	/* from time_after() in jiffies.h */
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
765
	}
766
	return false;
767 768 769 770 771 772
}

/*
 * Check events in order.
 *
 */
773
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
774
{
775
	preempt_disable();
776
	/* threshold event is triggered in finer grain than soft limit */
777 778 779 780 781 782 783 784 785 786 787 788
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
		bool do_softlimit, do_numainfo;

		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

789
		mem_cgroup_threshold(memcg);
790
		if (unlikely(do_softlimit))
791
			mem_cgroup_update_tree(memcg, page);
792
#if MAX_NUMNODES > 1
793
		if (unlikely(do_numainfo))
794
			atomic_inc(&memcg->numainfo_events);
795
#endif
796 797
	} else
		preempt_enable();
798 799
}

G
Glauber Costa 已提交
800
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
801 802 803 804 805 806
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

807
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
808
{
809 810 811 812 813 814 815 816
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

817 818 819 820
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

821
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
822
{
823
	struct mem_cgroup *memcg = NULL;
824 825 826

	if (!mm)
		return NULL;
827 828 829 830 831 832 833
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
834 835
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
836
			break;
837
	} while (!css_tryget(&memcg->css));
838
	rcu_read_unlock();
839
	return memcg;
840 841
}

842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
862
{
863 864
	struct mem_cgroup *memcg = NULL;
	int id = 0;
865

866 867 868
	if (mem_cgroup_disabled())
		return NULL;

869 870
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
871

872 873
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
874

875 876
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
877

878 879 880 881 882
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
883

884
	while (!memcg) {
885
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
886
		struct cgroup_subsys_state *css;
887

888 889 890 891 892 893 894 895 896 897 898
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
899

900 901 902 903 904 905 906 907
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
				memcg = container_of(css,
						     struct mem_cgroup, css);
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
908 909
		rcu_read_unlock();

910 911 912 913 914 915 916
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
917 918 919 920 921

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
922
}
K
KAMEZAWA Hiroyuki 已提交
923

924 925 926 927 928 929 930
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
931 932 933 934 935 936
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
937

938 939 940 941 942 943
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
944
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
945
	     iter != NULL;				\
946
	     iter = mem_cgroup_iter(root, iter, NULL))
947

948
#define for_each_mem_cgroup(iter)			\
949
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
950
	     iter != NULL;				\
951
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
952

953
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
954
{
955
	return (memcg == root_mem_cgroup);
956 957
}

958 959
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
960
	struct mem_cgroup *memcg;
961 962 963 964 965

	if (!mm)
		return;

	rcu_read_lock();
966 967
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
968 969 970 971
		goto out;

	switch (idx) {
	case PGFAULT:
972 973 974 975
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
976 977 978 979 980 981 982 983 984
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
 * @mem: memcg of the wanted lruvec
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return &zone->lruvec;

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
	return &mz->lruvec;
}

K
KAMEZAWA Hiroyuki 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1019

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
/**
 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
 * @zone: zone of the page
 * @page: the page
 * @lru: current lru
 *
 * This function accounts for @page being added to @lru, and returns
 * the lruvec for the given @zone and the memcg @page is charged to.
 *
 * The callsite is then responsible for physically linking the page to
 * the returned lruvec->lists[@lru].
 */
struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
				       enum lru_list lru)
K
KAMEZAWA Hiroyuki 已提交
1034 1035
{
	struct mem_cgroup_per_zone *mz;
1036 1037
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1038

1039
	if (mem_cgroup_disabled())
1040 1041
		return &zone->lruvec;

K
KAMEZAWA Hiroyuki 已提交
1042
	pc = lookup_page_cgroup(page);
1043
	VM_BUG_ON(PageCgroupAcctLRU(pc));
1044
	/*
1045 1046 1047 1048 1049 1050 1051
	 * putback:				charge:
	 * SetPageLRU				SetPageCgroupUsed
	 * smp_mb				smp_mb
	 * PageCgroupUsed && add to memcg LRU	PageLRU && add to memcg LRU
	 *
	 * Ensure that one of the two sides adds the page to the memcg
	 * LRU during a race.
1052
	 */
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
	smp_mb();
	/*
	 * If the page is uncharged, it may be freed soon, but it
	 * could also be swap cache (readahead, swapoff) that needs to
	 * be reclaimable in the future.  root_mem_cgroup will babysit
	 * it for the time being.
	 */
	if (PageCgroupUsed(pc)) {
		/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
		smp_rmb();
		memcg = pc->mem_cgroup;
		SetPageCgroupAcctLRU(pc);
	} else
		memcg = root_mem_cgroup;
	mz = page_cgroup_zoneinfo(memcg, page);
	/* compound_order() is stabilized through lru_lock */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
	return &mz->lruvec;
K
KAMEZAWA Hiroyuki 已提交
1071
}
1072

1073 1074 1075 1076 1077 1078 1079 1080 1081
/**
 * mem_cgroup_lru_del_list - account for removing an lru page
 * @page: the page
 * @lru: target lru
 *
 * This function accounts for @page being removed from @lru.
 *
 * The callsite is then responsible for physically unlinking
 * @page->lru.
1082
 */
1083
void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1084 1085
{
	struct mem_cgroup_per_zone *mz;
1086
	struct mem_cgroup *memcg;
1087 1088 1089 1090 1091 1092
	struct page_cgroup *pc;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	/*
	 * root_mem_cgroup babysits uncharged LRU pages, but
	 * PageCgroupUsed is cleared when the page is about to get
	 * freed.  PageCgroupAcctLRU remembers whether the
	 * LRU-accounting happened against pc->mem_cgroup or
	 * root_mem_cgroup.
	 */
	if (TestClearPageCgroupAcctLRU(pc)) {
		VM_BUG_ON(!pc->mem_cgroup);
		memcg = pc->mem_cgroup;
	} else
		memcg = root_mem_cgroup;
	mz = page_cgroup_zoneinfo(memcg, page);
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
1108 1109
}

1110
void mem_cgroup_lru_del(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
1111
{
1112
	mem_cgroup_lru_del_list(page, page_lru(page));
1113 1114
}

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
/**
 * mem_cgroup_lru_move_lists - account for moving a page between lrus
 * @zone: zone of the page
 * @page: the page
 * @from: current lru
 * @to: target lru
 *
 * This function accounts for @page being moved between the lrus @from
 * and @to, and returns the lruvec for the given @zone and the memcg
 * @page is charged to.
 *
 * The callsite is then responsible for physically relinking
 * @page->lru to the returned lruvec->lists[@to].
 */
struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
					 struct page *page,
					 enum lru_list from,
					 enum lru_list to)
1133
{
1134 1135 1136
	/* XXX: Optimize this, especially for @from == @to */
	mem_cgroup_lru_del_list(page, from);
	return mem_cgroup_lru_add_list(zone, page, to);
K
KAMEZAWA Hiroyuki 已提交
1137
}
1138

K
KAMEZAWA Hiroyuki 已提交
1139
/*
1140 1141 1142 1143
 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
 * while it's linked to lru because the page may be reused after it's fully
 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
 * It's done under lock_page and expected that zone->lru_lock isnever held.
K
KAMEZAWA Hiroyuki 已提交
1144
 */
1145
static void mem_cgroup_lru_del_before_commit(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
1146
{
1147
	enum lru_list lru;
1148 1149 1150 1151
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
	/*
	 * Doing this check without taking ->lru_lock seems wrong but this
	 * is safe. Because if page_cgroup's USED bit is unset, the page
	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
	 * set, the commit after this will fail, anyway.
	 * This all charge/uncharge is done under some mutual execustion.
	 * So, we don't need to taking care of changes in USED bit.
	 */
	if (likely(!PageLRU(page)))
		return;

1163
	spin_lock_irqsave(&zone->lru_lock, flags);
1164
	lru = page_lru(page);
1165
	/*
1166 1167 1168 1169 1170 1171 1172 1173 1174
	 * The uncharged page could still be registered to the LRU of
	 * the stale pc->mem_cgroup.
	 *
	 * As pc->mem_cgroup is about to get overwritten, the old LRU
	 * accounting needs to be taken care of.  Let root_mem_cgroup
	 * babysit the page until the new memcg is responsible for it.
	 *
	 * The PCG_USED bit is guarded by lock_page() as the page is
	 * swapcache/pagecache.
1175
	 */
1176 1177 1178 1179
	if (PageLRU(page) && PageCgroupAcctLRU(pc) && !PageCgroupUsed(pc)) {
		del_page_from_lru_list(zone, page, lru);
		add_page_to_lru_list(zone, page, lru);
	}
1180
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
1181 1182
}

1183
static void mem_cgroup_lru_add_after_commit(struct page *page)
1184
{
1185
	enum lru_list lru;
1186 1187 1188
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
	/*
	 * putback:				charge:
	 * SetPageLRU				SetPageCgroupUsed
	 * smp_mb				smp_mb
	 * PageCgroupUsed && add to memcg LRU	PageLRU && add to memcg LRU
	 *
	 * Ensure that one of the two sides adds the page to the memcg
	 * LRU during a race.
	 */
	smp_mb();
1199 1200 1201
	/* taking care of that the page is added to LRU while we commit it */
	if (likely(!PageLRU(page)))
		return;
1202
	spin_lock_irqsave(&zone->lru_lock, flags);
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
	lru = page_lru(page);
	/*
	 * If the page is not on the LRU, someone will soon put it
	 * there.  If it is, and also already accounted for on the
	 * memcg-side, it must be on the right lruvec as setting
	 * pc->mem_cgroup and PageCgroupUsed is properly ordered.
	 * Otherwise, root_mem_cgroup has been babysitting the page
	 * during the charge.  Move it to the new memcg now.
	 */
	if (PageLRU(page) && !PageCgroupAcctLRU(pc)) {
		del_page_from_lru_list(zone, page, lru);
		add_page_to_lru_list(zone, page, lru);
	}
1216 1217 1218
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}

1219
/*
1220
 * Checks whether given mem is same or in the root_mem_cgroup's
1221 1222
 * hierarchy subtree
 */
1223 1224
static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
		struct mem_cgroup *memcg)
1225
{
1226 1227 1228
	if (root_memcg != memcg) {
		return (root_memcg->use_hierarchy &&
			css_is_ancestor(&memcg->css, &root_memcg->css));
1229 1230 1231 1232 1233
	}

	return true;
}

1234
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1235 1236
{
	int ret;
1237
	struct mem_cgroup *curr = NULL;
1238
	struct task_struct *p;
1239

1240 1241 1242 1243 1244
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
1245 1246
	if (!curr)
		return 0;
1247
	/*
1248
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1249
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1250 1251
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1252
	 */
1253
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1254
	css_put(&curr->css);
1255 1256 1257
	return ret;
}

1258
int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1259
{
1260 1261 1262
	unsigned long inactive_ratio;
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);
1263
	unsigned long inactive;
1264
	unsigned long active;
1265
	unsigned long gb;
1266

1267 1268 1269 1270
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_ANON));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_ANON));
1271

1272 1273 1274 1275 1276 1277
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1278
	return inactive * inactive_ratio < active;
1279 1280
}

1281
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1282 1283 1284
{
	unsigned long active;
	unsigned long inactive;
1285 1286
	int zid = zone_idx(zone);
	int nid = zone_to_nid(zone);
1287

1288 1289 1290 1291
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_FILE));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_FILE));
1292 1293 1294 1295

	return (active > inactive);
}

K
KOSAKI Motohiro 已提交
1296 1297 1298
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1299
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1316 1317
	if (!PageCgroupUsed(pc))
		return NULL;
1318 1319
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1320
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1321 1322 1323
	return &mz->reclaim_stat;
}

1324 1325 1326
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1327
/**
1328 1329
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1330
 *
1331
 * Returns the maximum amount of memory @mem can be charged with, in
1332
 * pages.
1333
 */
1334
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1335
{
1336 1337
	unsigned long long margin;

1338
	margin = res_counter_margin(&memcg->res);
1339
	if (do_swap_account)
1340
		margin = min(margin, res_counter_margin(&memcg->memsw));
1341
	return margin >> PAGE_SHIFT;
1342 1343
}

1344
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1345 1346 1347 1348 1349 1350 1351
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1352
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1353 1354
}

1355
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1356 1357
{
	int cpu;
1358 1359

	get_online_cpus();
1360
	spin_lock(&memcg->pcp_counter_lock);
1361
	for_each_online_cpu(cpu)
1362 1363 1364
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&memcg->pcp_counter_lock);
1365
	put_online_cpus();
1366 1367 1368 1369

	synchronize_rcu();
}

1370
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1371 1372 1373
{
	int cpu;

1374
	if (!memcg)
1375
		return;
1376
	get_online_cpus();
1377
	spin_lock(&memcg->pcp_counter_lock);
1378
	for_each_online_cpu(cpu)
1379 1380 1381
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&memcg->pcp_counter_lock);
1382
	put_online_cpus();
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1396
static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1397 1398
{
	VM_BUG_ON(!rcu_read_lock_held());
1399
	return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1400
}
1401

1402
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1403
{
1404 1405
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1406
	bool ret = false;
1407 1408 1409 1410 1411 1412 1413 1414 1415
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1416

1417 1418
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1419 1420
unlock:
	spin_unlock(&mc.lock);
1421 1422 1423
	return ret;
}

1424
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1425 1426
{
	if (mc.moving_task && current != mc.moving_task) {
1427
		if (mem_cgroup_under_move(memcg)) {
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1440
/**
1441
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1460
	if (!memcg || !p)
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1507 1508 1509 1510
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1511
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1512 1513
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1514 1515
	struct mem_cgroup *iter;

1516
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1517
		num++;
1518 1519 1520
	return num;
}

D
David Rientjes 已提交
1521 1522 1523 1524 1525 1526 1527 1528
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1529 1530 1531
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1532 1533 1534 1535 1536 1537 1538 1539
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1586
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1587 1588
		int nid, bool noswap)
{
1589
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1590 1591 1592
		return true;
	if (noswap || !total_swap_pages)
		return false;
1593
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1594 1595 1596 1597
		return true;
	return false;

}
1598 1599 1600 1601 1602 1603 1604 1605
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1606
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1607 1608
{
	int nid;
1609 1610 1611 1612
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1613
	if (!atomic_read(&memcg->numainfo_events))
1614
		return;
1615
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1616 1617 1618
		return;

	/* make a nodemask where this memcg uses memory from */
1619
	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1620 1621 1622

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1623 1624
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1625
	}
1626

1627 1628
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1643
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1644 1645 1646
{
	int node;

1647 1648
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1649

1650
	node = next_node(node, memcg->scan_nodes);
1651
	if (node == MAX_NUMNODES)
1652
		node = first_node(memcg->scan_nodes);
1653 1654 1655 1656 1657 1658 1659 1660 1661
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1662
	memcg->last_scanned_node = node;
1663 1664 1665
	return node;
}

1666 1667 1668 1669 1670 1671
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1672
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1673 1674 1675 1676 1677 1678 1679
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1680 1681
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1682
		     nid < MAX_NUMNODES;
1683
		     nid = next_node(nid, memcg->scan_nodes)) {
1684

1685
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1686 1687 1688 1689 1690 1691 1692
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
1693
		if (node_isset(nid, memcg->scan_nodes))
1694
			continue;
1695
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1696 1697 1698 1699 1700
			return true;
	}
	return false;
}

1701
#else
1702
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1703 1704 1705
{
	return 0;
}
1706

1707
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1708
{
1709
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1710
}
1711 1712
#endif

1713 1714 1715 1716
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1717
{
1718
	struct mem_cgroup *victim = NULL;
1719
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1720
	int loop = 0;
1721
	unsigned long excess;
1722
	unsigned long nr_scanned;
1723 1724 1725 1726
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1727

1728
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1729

1730
	while (1) {
1731
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1732
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1733
			loop++;
1734 1735 1736 1737 1738 1739
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1740
				if (!total)
1741 1742
					break;
				/*
L
Lucas De Marchi 已提交
1743
				 * We want to do more targeted reclaim.
1744 1745 1746 1747 1748
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1749
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1750 1751
					break;
			}
1752
			continue;
1753
		}
1754
		if (!mem_cgroup_reclaimable(victim, false))
1755
			continue;
1756 1757 1758 1759
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1760
			break;
1761
	}
1762
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1763
	return total;
1764 1765
}

K
KAMEZAWA Hiroyuki 已提交
1766 1767 1768
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1769
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1770
 */
1771
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1772
{
1773
	struct mem_cgroup *iter, *failed = NULL;
1774

1775
	for_each_mem_cgroup_tree(iter, memcg) {
1776
		if (iter->oom_lock) {
1777 1778 1779 1780 1781
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1782 1783
			mem_cgroup_iter_break(memcg, iter);
			break;
1784 1785
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1786
	}
K
KAMEZAWA Hiroyuki 已提交
1787

1788
	if (!failed)
1789
		return true;
1790 1791 1792 1793 1794

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1795
	for_each_mem_cgroup_tree(iter, memcg) {
1796
		if (iter == failed) {
1797 1798
			mem_cgroup_iter_break(memcg, iter);
			break;
1799 1800 1801
		}
		iter->oom_lock = false;
	}
1802
	return false;
1803
}
1804

1805
/*
1806
 * Has to be called with memcg_oom_lock
1807
 */
1808
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1809
{
K
KAMEZAWA Hiroyuki 已提交
1810 1811
	struct mem_cgroup *iter;

1812
	for_each_mem_cgroup_tree(iter, memcg)
1813 1814 1815 1816
		iter->oom_lock = false;
	return 0;
}

1817
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1818 1819 1820
{
	struct mem_cgroup *iter;

1821
	for_each_mem_cgroup_tree(iter, memcg)
1822 1823 1824
		atomic_inc(&iter->under_oom);
}

1825
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1826 1827 1828
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1829 1830 1831 1832 1833
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1834
	for_each_mem_cgroup_tree(iter, memcg)
1835
		atomic_add_unless(&iter->under_oom, -1, 0);
1836 1837
}

1838
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1839 1840
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1841 1842 1843 1844 1845 1846 1847 1848
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1849 1850
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
			  *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1851 1852 1853
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1854
	oom_wait_memcg = oom_wait_info->mem;
K
KAMEZAWA Hiroyuki 已提交
1855 1856 1857 1858 1859

	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1860 1861
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1862 1863 1864 1865
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1866
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1867
{
1868 1869
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1870 1871
}

1872
static void memcg_oom_recover(struct mem_cgroup *memcg)
1873
{
1874 1875
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1876 1877
}

K
KAMEZAWA Hiroyuki 已提交
1878 1879 1880
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1881
bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1882
{
K
KAMEZAWA Hiroyuki 已提交
1883
	struct oom_wait_info owait;
1884
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1885

1886
	owait.mem = memcg;
K
KAMEZAWA Hiroyuki 已提交
1887 1888 1889 1890
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1891
	need_to_kill = true;
1892
	mem_cgroup_mark_under_oom(memcg);
1893

1894
	/* At first, try to OOM lock hierarchy under memcg.*/
1895
	spin_lock(&memcg_oom_lock);
1896
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1897 1898 1899 1900 1901
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1902
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1903
	if (!locked || memcg->oom_kill_disable)
1904 1905
		need_to_kill = false;
	if (locked)
1906
		mem_cgroup_oom_notify(memcg);
1907
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1908

1909 1910
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1911
		mem_cgroup_out_of_memory(memcg, mask);
1912
	} else {
K
KAMEZAWA Hiroyuki 已提交
1913
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1914
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1915
	}
1916
	spin_lock(&memcg_oom_lock);
1917
	if (locked)
1918 1919
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1920
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1921

1922
	mem_cgroup_unmark_under_oom(memcg);
1923

K
KAMEZAWA Hiroyuki 已提交
1924 1925 1926
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1927
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1928
	return true;
1929 1930
}

1931 1932 1933
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1953
 */
1954

1955 1956
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1957
{
1958
	struct mem_cgroup *memcg;
1959 1960
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1961
	unsigned long uninitialized_var(flags);
1962

1963
	if (mem_cgroup_disabled())
1964 1965
		return;

1966
	rcu_read_lock();
1967 1968
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1969 1970
		goto out;
	/* pc->mem_cgroup is unstable ? */
1971
	if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
1972
		/* take a lock against to access pc->mem_cgroup */
1973
		move_lock_page_cgroup(pc, &flags);
1974
		need_unlock = true;
1975 1976
		memcg = pc->mem_cgroup;
		if (!memcg || !PageCgroupUsed(pc))
1977 1978
			goto out;
	}
1979 1980

	switch (idx) {
1981
	case MEMCG_NR_FILE_MAPPED:
1982 1983 1984
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
1985
			ClearPageCgroupFileMapped(pc);
1986
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1987 1988 1989
		break;
	default:
		BUG();
1990
	}
1991

1992
	this_cpu_add(memcg->stat->count[idx], val);
1993

1994 1995
out:
	if (unlikely(need_unlock))
1996
		move_unlock_page_cgroup(pc, &flags);
1997 1998
	rcu_read_unlock();
	return;
1999
}
2000
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
2001

2002 2003 2004 2005
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2006
#define CHARGE_BATCH	32U
2007 2008
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2009
	unsigned int nr_pages;
2010
	struct work_struct work;
2011 2012
	unsigned long flags;
#define FLUSHING_CACHED_CHARGE	(0)
2013 2014
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2015
static DEFINE_MUTEX(percpu_charge_mutex);
2016 2017

/*
2018
 * Try to consume stocked charge on this cpu. If success, one page is consumed
2019 2020 2021 2022
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
2023
static bool consume_stock(struct mem_cgroup *memcg)
2024 2025 2026 2027 2028
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
2029
	if (memcg == stock->cached && stock->nr_pages)
2030
		stock->nr_pages--;
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2044 2045 2046 2047
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2048
		if (do_swap_account)
2049 2050
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2063
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2064 2065 2066 2067
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2068
 * This will be consumed by consume_stock() function, later.
2069
 */
2070
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2071 2072 2073
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2074
	if (stock->cached != memcg) { /* reset if necessary */
2075
		drain_stock(stock);
2076
		stock->cached = memcg;
2077
	}
2078
	stock->nr_pages += nr_pages;
2079 2080 2081 2082
	put_cpu_var(memcg_stock);
}

/*
2083
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2084 2085
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2086
 */
2087
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2088
{
2089
	int cpu, curcpu;
2090

2091 2092
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2093
	curcpu = get_cpu();
2094 2095
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2096
		struct mem_cgroup *memcg;
2097

2098 2099
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2100
			continue;
2101
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2102
			continue;
2103 2104 2105 2106 2107 2108
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2109
	}
2110
	put_cpu();
2111 2112 2113 2114 2115 2116

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2117
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2118 2119 2120
			flush_work(&stock->work);
	}
out:
2121
 	put_online_cpus();
2122 2123 2124 2125 2126 2127 2128 2129
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2130
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2131
{
2132 2133 2134 2135 2136
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2137
	drain_all_stock(root_memcg, false);
2138
	mutex_unlock(&percpu_charge_mutex);
2139 2140 2141
}

/* This is a synchronous drain interface. */
2142
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2143 2144
{
	/* called when force_empty is called */
2145
	mutex_lock(&percpu_charge_mutex);
2146
	drain_all_stock(root_memcg, true);
2147
	mutex_unlock(&percpu_charge_mutex);
2148 2149
}

2150 2151 2152 2153
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2154
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2155 2156 2157
{
	int i;

2158
	spin_lock(&memcg->pcp_counter_lock);
2159
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2160
		long x = per_cpu(memcg->stat->count[i], cpu);
2161

2162 2163
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2164
	}
2165
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2166
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2167

2168 2169
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2170
	}
2171
	/* need to clear ON_MOVE value, works as a kind of lock. */
2172 2173
	per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&memcg->pcp_counter_lock);
2174 2175
}

2176
static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2177 2178 2179
{
	int idx = MEM_CGROUP_ON_MOVE;

2180 2181 2182
	spin_lock(&memcg->pcp_counter_lock);
	per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
2183 2184 2185
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2186 2187 2188 2189 2190
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2191
	struct mem_cgroup *iter;
2192

2193
	if ((action == CPU_ONLINE)) {
2194
		for_each_mem_cgroup(iter)
2195 2196 2197 2198
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

2199
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2200
		return NOTIFY_OK;
2201

2202
	for_each_mem_cgroup(iter)
2203 2204
		mem_cgroup_drain_pcp_counter(iter, cpu);

2205 2206 2207 2208 2209
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2210 2211 2212 2213 2214 2215 2216 2217 2218 2219

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2220
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2221
				unsigned int nr_pages, bool oom_check)
2222
{
2223
	unsigned long csize = nr_pages * PAGE_SIZE;
2224 2225 2226 2227 2228
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2229
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2230 2231 2232 2233

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2234
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2235 2236 2237
		if (likely(!ret))
			return CHARGE_OK;

2238
		res_counter_uncharge(&memcg->res, csize);
2239 2240 2241 2242
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2243
	/*
2244 2245
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2246 2247 2248 2249
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2250
	if (nr_pages == CHARGE_BATCH)
2251 2252 2253 2254 2255
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2256
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2257
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2258
		return CHARGE_RETRY;
2259
	/*
2260 2261 2262 2263 2264 2265 2266
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2267
	 */
2268
	if (nr_pages == 1 && ret)
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2288 2289 2290
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
2291
 */
2292
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2293
				   gfp_t gfp_mask,
2294
				   unsigned int nr_pages,
2295
				   struct mem_cgroup **ptr,
2296
				   bool oom)
2297
{
2298
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2299
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2300
	struct mem_cgroup *memcg = NULL;
2301
	int ret;
2302

K
KAMEZAWA Hiroyuki 已提交
2303 2304 2305 2306 2307 2308 2309 2310
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2311

2312
	/*
2313 2314
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2315 2316 2317
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
2318
	if (!*ptr && !mm)
K
KAMEZAWA Hiroyuki 已提交
2319 2320
		goto bypass;
again:
2321 2322 2323 2324
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		VM_BUG_ON(css_is_removed(&memcg->css));
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2325
			goto done;
2326
		if (nr_pages == 1 && consume_stock(memcg))
K
KAMEZAWA Hiroyuki 已提交
2327
			goto done;
2328
		css_get(&memcg->css);
2329
	} else {
K
KAMEZAWA Hiroyuki 已提交
2330
		struct task_struct *p;
2331

K
KAMEZAWA Hiroyuki 已提交
2332 2333 2334
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2335
		 * Because we don't have task_lock(), "p" can exit.
2336
		 * In that case, "memcg" can point to root or p can be NULL with
2337 2338 2339 2340 2341 2342
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2343
		 */
2344 2345
		memcg = mem_cgroup_from_task(p);
		if (!memcg || mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2346 2347 2348
			rcu_read_unlock();
			goto done;
		}
2349
		if (nr_pages == 1 && consume_stock(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2362
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2363 2364 2365 2366 2367
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2368

2369 2370
	do {
		bool oom_check;
2371

2372
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2373
		if (fatal_signal_pending(current)) {
2374
			css_put(&memcg->css);
2375
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2376
		}
2377

2378 2379 2380 2381
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2382
		}
2383

2384
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2385 2386 2387 2388
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2389
			batch = nr_pages;
2390 2391
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2392
			goto again;
2393
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2394
			css_put(&memcg->css);
2395 2396
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2397
			if (!oom) {
2398
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2399
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2400
			}
2401 2402 2403 2404
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2405
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2406
			goto bypass;
2407
		}
2408 2409
	} while (ret != CHARGE_OK);

2410
	if (batch > nr_pages)
2411 2412
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2413
done:
2414
	*ptr = memcg;
2415 2416
	return 0;
nomem:
2417
	*ptr = NULL;
2418
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2419
bypass:
2420
	*ptr = NULL;
K
KAMEZAWA Hiroyuki 已提交
2421
	return 0;
2422
}
2423

2424 2425 2426 2427 2428
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2429
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2430
				       unsigned int nr_pages)
2431
{
2432
	if (!mem_cgroup_is_root(memcg)) {
2433 2434
		unsigned long bytes = nr_pages * PAGE_SIZE;

2435
		res_counter_uncharge(&memcg->res, bytes);
2436
		if (do_swap_account)
2437
			res_counter_uncharge(&memcg->memsw, bytes);
2438
	}
2439 2440
}

2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2460
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2461
{
2462
	struct mem_cgroup *memcg = NULL;
2463
	struct page_cgroup *pc;
2464
	unsigned short id;
2465 2466
	swp_entry_t ent;

2467 2468 2469
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2470
	lock_page_cgroup(pc);
2471
	if (PageCgroupUsed(pc)) {
2472 2473 2474
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2475
	} else if (PageSwapCache(page)) {
2476
		ent.val = page_private(page);
2477 2478
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
2479 2480 2481
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2482
		rcu_read_unlock();
2483
	}
2484
	unlock_page_cgroup(pc);
2485
	return memcg;
2486 2487
}

2488
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2489
				       struct page *page,
2490
				       unsigned int nr_pages,
2491
				       struct page_cgroup *pc,
2492
				       enum charge_type ctype)
2493
{
2494 2495 2496
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2497
		__mem_cgroup_cancel_charge(memcg, nr_pages);
2498 2499 2500 2501 2502 2503
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2504
	pc->mem_cgroup = memcg;
2505 2506 2507 2508 2509 2510 2511
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2512
	smp_wmb();
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2526

2527
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2528
	unlock_page_cgroup(pc);
2529 2530 2531 2532 2533
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2534
	memcg_check_events(memcg, page);
2535
}
2536

2537 2538 2539 2540 2541 2542
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
/*
 * Because tail pages are not marked as "used", set it. We're under
2543 2544 2545
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2546
 */
2547
void mem_cgroup_split_huge_fixup(struct page *head)
2548 2549
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2550 2551
	struct page_cgroup *pc;
	int i;
2552

2553 2554
	if (mem_cgroup_disabled())
		return;
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
		pc->mem_cgroup = head_pc->mem_cgroup;
		smp_wmb();/* see __commit_charge() */
		/*
		 * LRU flags cannot be copied because we need to add tail
		 * page to LRU by generic call and our hooks will be called.
		 */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
2565

2566 2567 2568 2569 2570 2571 2572
	if (PageCgroupAcctLRU(head_pc)) {
		enum lru_list lru;
		struct mem_cgroup_per_zone *mz;
		/*
		 * We hold lru_lock, then, reduce counter directly.
		 */
		lru = page_lru(head);
2573
		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2574
		MEM_CGROUP_ZSTAT(mz, lru) -= HPAGE_PMD_NR - 1;
2575
	}
2576 2577 2578
}
#endif

2579
/**
2580
 * mem_cgroup_move_account - move account of the page
2581
 * @page: the page
2582
 * @nr_pages: number of regular pages (>1 for huge pages)
2583 2584 2585
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2586
 * @uncharge: whether we should call uncharge and css_put against @from.
2587 2588
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2589
 * - page is not on LRU (isolate_page() is useful.)
2590
 * - compound_lock is held when nr_pages > 1
2591
 *
2592
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2593
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2594 2595
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2596
 */
2597 2598 2599 2600 2601 2602
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2603
{
2604 2605
	unsigned long flags;
	int ret;
2606

2607
	VM_BUG_ON(from == to);
2608
	VM_BUG_ON(PageLRU(page));
2609 2610 2611 2612 2613 2614 2615
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2616
	if (nr_pages > 1 && !PageTransHuge(page))
2617 2618 2619 2620 2621 2622 2623 2624 2625
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

	move_lock_page_cgroup(pc, &flags);
2626

2627
	if (PageCgroupFileMapped(pc)) {
2628 2629 2630 2631 2632
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2633
	}
2634
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2635 2636
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2637
		__mem_cgroup_cancel_charge(from, nr_pages);
2638

2639
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2640
	pc->mem_cgroup = to;
2641
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2642 2643 2644
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2645
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2646
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2647
	 * status here.
2648
	 */
2649 2650 2651
	move_unlock_page_cgroup(pc, &flags);
	ret = 0;
unlock:
2652
	unlock_page_cgroup(pc);
2653 2654 2655
	/*
	 * check events
	 */
2656 2657
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2658
out:
2659 2660 2661 2662 2663 2664 2665
	return ret;
}

/*
 * move charges to its parent.
 */

2666 2667
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2668 2669 2670 2671 2672 2673
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2674
	unsigned int nr_pages;
2675
	unsigned long uninitialized_var(flags);
2676 2677 2678 2679 2680 2681
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2682 2683 2684 2685 2686
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2687

2688
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2689

2690
	parent = mem_cgroup_from_cont(pcg);
2691
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2692
	if (ret || !parent)
2693
		goto put_back;
2694

2695
	if (nr_pages > 1)
2696 2697
		flags = compound_lock_irqsave(page);

2698
	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2699
	if (ret)
2700
		__mem_cgroup_cancel_charge(parent, nr_pages);
2701

2702
	if (nr_pages > 1)
2703
		compound_unlock_irqrestore(page, flags);
2704
put_back:
K
KAMEZAWA Hiroyuki 已提交
2705
	putback_lru_page(page);
2706
put:
2707
	put_page(page);
2708
out:
2709 2710 2711
	return ret;
}

2712 2713 2714 2715 2716 2717 2718
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2719
				gfp_t gfp_mask, enum charge_type ctype)
2720
{
2721
	struct mem_cgroup *memcg = NULL;
2722
	unsigned int nr_pages = 1;
2723
	struct page_cgroup *pc;
2724
	bool oom = true;
2725
	int ret;
A
Andrea Arcangeli 已提交
2726

A
Andrea Arcangeli 已提交
2727
	if (PageTransHuge(page)) {
2728
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2729
		VM_BUG_ON(!PageTransHuge(page));
2730 2731 2732 2733 2734
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2735
	}
2736 2737

	pc = lookup_page_cgroup(page);
2738 2739
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
	if (ret || !memcg)
2740 2741
		return ret;

2742
	__mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2743 2744 2745
	return 0;
}

2746 2747
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2748
{
2749
	if (mem_cgroup_disabled())
2750
		return 0;
2751 2752 2753
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
2754
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2755
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2756 2757
}

D
Daisuke Nishimura 已提交
2758 2759 2760 2761
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2762
static void
2763
__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2764 2765 2766 2767 2768 2769 2770 2771 2772
					enum charge_type ctype)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);
	/*
	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
	 * is already on LRU. It means the page may on some other page_cgroup's
	 * LRU. Take care of it.
	 */
	mem_cgroup_lru_del_before_commit(page);
2773
	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2774 2775 2776 2777
	mem_cgroup_lru_add_after_commit(page);
	return;
}

2778 2779
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2780
{
2781
	struct mem_cgroup *memcg = NULL;
2782 2783
	int ret;

2784
	if (mem_cgroup_disabled())
2785
		return 0;
2786 2787
	if (PageCompound(page))
		return 0;
2788

2789
	if (unlikely(!mm))
2790
		mm = &init_mm;
2791

2792
	if (page_is_file_cache(page)) {
2793 2794
		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &memcg, true);
		if (ret || !memcg)
2795
			return ret;
2796

2797 2798 2799 2800 2801
		/*
		 * FUSE reuses pages without going through the final
		 * put that would remove them from the LRU list, make
		 * sure that they get relinked properly.
		 */
2802
		__mem_cgroup_commit_charge_lrucare(page, memcg,
2803 2804 2805
					MEM_CGROUP_CHARGE_TYPE_CACHE);
		return ret;
	}
D
Daisuke Nishimura 已提交
2806 2807
	/* shmem */
	if (PageSwapCache(page)) {
2808
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
D
Daisuke Nishimura 已提交
2809
		if (!ret)
2810
			__mem_cgroup_commit_charge_swapin(page, memcg,
D
Daisuke Nishimura 已提交
2811 2812 2813
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2814
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2815 2816

	return ret;
2817 2818
}

2819 2820 2821
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2822
 * struct page_cgroup is acquired. This refcnt will be consumed by
2823 2824
 * "commit()" or removed by "cancel()"
 */
2825 2826
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
2827
				 gfp_t mask, struct mem_cgroup **memcgp)
2828
{
2829
	struct mem_cgroup *memcg;
2830
	int ret;
2831

2832
	*memcgp = NULL;
2833

2834
	if (mem_cgroup_disabled())
2835 2836 2837 2838 2839 2840
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2841 2842 2843
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2844 2845
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2846
		goto charge_cur_mm;
2847 2848
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2849
		goto charge_cur_mm;
2850 2851
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2852
	css_put(&memcg->css);
2853
	return ret;
2854 2855 2856
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2857
	return __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2858 2859
}

D
Daisuke Nishimura 已提交
2860
static void
2861
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
2862
					enum charge_type ctype)
2863
{
2864
	if (mem_cgroup_disabled())
2865
		return;
2866
	if (!memcg)
2867
		return;
2868
	cgroup_exclude_rmdir(&memcg->css);
2869

2870
	__mem_cgroup_commit_charge_lrucare(page, memcg, ctype);
2871 2872 2873
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2874 2875 2876
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2877
	 */
2878
	if (do_swap_account && PageSwapCache(page)) {
2879
		swp_entry_t ent = {.val = page_private(page)};
2880
		struct mem_cgroup *swap_memcg;
2881 2882 2883 2884
		unsigned short id;

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
2885 2886
		swap_memcg = mem_cgroup_lookup(id);
		if (swap_memcg) {
2887 2888 2889 2890
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2891 2892 2893 2894 2895
			if (!mem_cgroup_is_root(swap_memcg))
				res_counter_uncharge(&swap_memcg->memsw,
						     PAGE_SIZE);
			mem_cgroup_swap_statistics(swap_memcg, false);
			mem_cgroup_put(swap_memcg);
2896
		}
2897
		rcu_read_unlock();
2898
	}
2899 2900 2901 2902 2903
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
2904
	cgroup_release_and_wakeup_rmdir(&memcg->css);
2905 2906
}

2907 2908
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
2909
{
2910 2911
	__mem_cgroup_commit_charge_swapin(page, memcg,
					  MEM_CGROUP_CHARGE_TYPE_MAPPED);
D
Daisuke Nishimura 已提交
2912 2913
}

2914
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2915
{
2916
	if (mem_cgroup_disabled())
2917
		return;
2918
	if (!memcg)
2919
		return;
2920
	__mem_cgroup_cancel_charge(memcg, 1);
2921 2922
}

2923
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2924 2925
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2926 2927 2928
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2929

2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2941
		batch->memcg = memcg;
2942 2943
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2944
	 * In those cases, all pages freed continuously can be expected to be in
2945 2946 2947 2948 2949 2950 2951 2952
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2953
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2954 2955
		goto direct_uncharge;

2956 2957 2958 2959 2960
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
2961
	if (batch->memcg != memcg)
2962 2963
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2964
	batch->nr_pages++;
2965
	if (uncharge_memsw)
2966
		batch->memsw_nr_pages++;
2967 2968
	return;
direct_uncharge:
2969
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2970
	if (uncharge_memsw)
2971 2972 2973
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
2974 2975
	return;
}
2976

2977
/*
2978
 * uncharge if !page_mapped(page)
2979
 */
2980
static struct mem_cgroup *
2981
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2982
{
2983
	struct mem_cgroup *memcg = NULL;
2984 2985
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
2986

2987
	if (mem_cgroup_disabled())
2988
		return NULL;
2989

K
KAMEZAWA Hiroyuki 已提交
2990
	if (PageSwapCache(page))
2991
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2992

A
Andrea Arcangeli 已提交
2993
	if (PageTransHuge(page)) {
2994
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2995 2996
		VM_BUG_ON(!PageTransHuge(page));
	}
2997
	/*
2998
	 * Check if our page_cgroup is valid
2999
	 */
3000
	pc = lookup_page_cgroup(page);
3001
	if (unlikely(!PageCgroupUsed(pc)))
3002
		return NULL;
3003

3004
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3005

3006
	memcg = pc->mem_cgroup;
3007

K
KAMEZAWA Hiroyuki 已提交
3008 3009 3010 3011 3012
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
3013
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3014 3015
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3027
	}
K
KAMEZAWA Hiroyuki 已提交
3028

3029
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3030

3031
	ClearPageCgroupUsed(pc);
3032 3033 3034 3035 3036 3037
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3038

3039
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3040
	/*
3041
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
3042 3043
	 * will never be freed.
	 */
3044
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3045
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3046 3047
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
3048
	}
3049 3050
	if (!mem_cgroup_is_root(memcg))
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3051

3052
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
3053 3054 3055

unlock_out:
	unlock_page_cgroup(pc);
3056
	return NULL;
3057 3058
}

3059 3060
void mem_cgroup_uncharge_page(struct page *page)
{
3061 3062 3063 3064 3065
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
3066 3067 3068 3069 3070 3071
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3072
	VM_BUG_ON(page->mapping);
3073 3074 3075
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3090 3091
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3112 3113 3114 3115 3116 3117
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3118
	memcg_oom_recover(batch->memcg);
3119 3120 3121 3122
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3123
#ifdef CONFIG_SWAP
3124
/*
3125
 * called after __delete_from_swap_cache() and drop "page" account.
3126 3127
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3128 3129
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3130 3131
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3132 3133 3134 3135 3136 3137
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3138

K
KAMEZAWA Hiroyuki 已提交
3139 3140 3141 3142 3143
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3144
		swap_cgroup_record(ent, css_id(&memcg->css));
3145
}
3146
#endif
3147 3148 3149 3150 3151 3152 3153

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3154
{
3155
	struct mem_cgroup *memcg;
3156
	unsigned short id;
3157 3158 3159 3160

	if (!do_swap_account)
		return;

3161 3162 3163
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3164
	if (memcg) {
3165 3166 3167 3168
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3169
		if (!mem_cgroup_is_root(memcg))
3170
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3171
		mem_cgroup_swap_statistics(memcg, false);
3172 3173
		mem_cgroup_put(memcg);
	}
3174
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3175
}
3176 3177 3178 3179 3180 3181

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
3182
 * @need_fixup: whether we should fixup res_counters and refcounts.
3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3193
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3194 3195 3196 3197 3198 3199 3200 3201
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3202
		mem_cgroup_swap_statistics(to, true);
3203
		/*
3204 3205 3206 3207 3208 3209
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3210 3211
		 */
		mem_cgroup_get(to);
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
3223 3224 3225 3226 3227 3228
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3229
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3230 3231 3232
{
	return -EINVAL;
}
3233
#endif
K
KAMEZAWA Hiroyuki 已提交
3234

3235
/*
3236 3237
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3238
 */
3239
int mem_cgroup_prepare_migration(struct page *page,
3240
	struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3241
{
3242
	struct mem_cgroup *memcg = NULL;
3243
	struct page_cgroup *pc;
3244
	enum charge_type ctype;
3245
	int ret = 0;
3246

3247
	*memcgp = NULL;
3248

A
Andrea Arcangeli 已提交
3249
	VM_BUG_ON(PageTransHuge(page));
3250
	if (mem_cgroup_disabled())
3251 3252
		return 0;

3253 3254 3255
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3256 3257
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3289
	}
3290
	unlock_page_cgroup(pc);
3291 3292 3293 3294
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3295
	if (!memcg)
3296
		return 0;
3297

3298 3299
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3300
	css_put(&memcg->css);/* drop extra refcnt */
3301
	if (ret || *memcgp == NULL) {
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
3312
	}
3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3326
	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
3327
	return ret;
3328
}
3329

3330
/* remove redundant charge if migration failed*/
3331
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3332
	struct page *oldpage, struct page *newpage, bool migration_ok)
3333
{
3334
	struct page *used, *unused;
3335 3336
	struct page_cgroup *pc;

3337
	if (!memcg)
3338
		return;
3339
	/* blocks rmdir() */
3340
	cgroup_exclude_rmdir(&memcg->css);
3341
	if (!migration_ok) {
3342 3343
		used = oldpage;
		unused = newpage;
3344
	} else {
3345
		used = newpage;
3346 3347
		unused = oldpage;
	}
3348
	/*
3349 3350 3351
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3352
	 */
3353 3354 3355 3356
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3357

3358 3359
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

3360
	/*
3361 3362 3363 3364 3365 3366
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3367
	 */
3368 3369
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
3370
	/*
3371 3372
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3373 3374 3375
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
3376
	cgroup_release_and_wakeup_rmdir(&memcg->css);
3377
}
3378

3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
	struct zone *zone;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	unsigned long flags;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
	memcg = pc->mem_cgroup;
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
	ClearPageCgroupUsed(pc);
	unlock_page_cgroup(pc);

	if (PageSwapBacked(oldpage))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	zone = page_zone(newpage);
	pc = lookup_page_cgroup(newpage);
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
	spin_lock_irqsave(&zone->lru_lock, flags);
	if (PageLRU(newpage))
		del_page_from_lru_list(zone, newpage, page_lru(newpage));
	__mem_cgroup_commit_charge(memcg, newpage, 1, pc, type);
	if (PageLRU(newpage))
		add_page_to_lru_list(zone, newpage, page_lru(newpage));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}

3423 3424 3425 3426 3427 3428
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3429 3430 3431 3432 3433
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
		int ret = -1;
		char *path;

		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
		       pc, pc->flags, pc->mem_cgroup);

		path = kmalloc(PATH_MAX, GFP_KERNEL);
		if (path) {
			rcu_read_lock();
			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
							path, PATH_MAX);
			rcu_read_unlock();
		}

		printk(KERN_CONT "(%s)\n",
				(ret < 0) ? "cannot get the path" : path);
		kfree(path);
	}
}
#endif

3474 3475
static DEFINE_MUTEX(set_limit_mutex);

3476
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3477
				unsigned long long val)
3478
{
3479
	int retry_count;
3480
	u64 memswlimit, memlimit;
3481
	int ret = 0;
3482 3483
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3484
	int enlarge;
3485 3486 3487 3488 3489 3490 3491 3492 3493

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3494

3495
	enlarge = 0;
3496
	while (retry_count) {
3497 3498 3499 3500
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3501 3502 3503
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3504
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3505 3506 3507 3508 3509 3510
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3511 3512
			break;
		}
3513 3514 3515 3516 3517

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3518
		ret = res_counter_set_limit(&memcg->res, val);
3519 3520 3521 3522 3523 3524
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3525 3526 3527 3528 3529
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3530 3531
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3532 3533 3534 3535 3536 3537
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3538
	}
3539 3540
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3541

3542 3543 3544
	return ret;
}

L
Li Zefan 已提交
3545 3546
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3547
{
3548
	int retry_count;
3549
	u64 memlimit, memswlimit, oldusage, curusage;
3550 3551
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3552
	int enlarge = 0;
3553

3554 3555 3556
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3557 3558 3559 3560 3561 3562 3563 3564
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3565
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3566 3567 3568 3569 3570 3571 3572 3573
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3574 3575 3576
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3577
		ret = res_counter_set_limit(&memcg->memsw, val);
3578 3579 3580 3581 3582 3583
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3584 3585 3586 3587 3588
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3589 3590 3591
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3592
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3593
		/* Usage is reduced ? */
3594
		if (curusage >= oldusage)
3595
			retry_count--;
3596 3597
		else
			oldusage = curusage;
3598
	}
3599 3600
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3601 3602 3603
	return ret;
}

3604
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3605 3606
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3607 3608 3609 3610 3611 3612
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3613
	unsigned long long excess;
3614
	unsigned long nr_scanned;
3615 3616 3617 3618

	if (order > 0)
		return 0;

3619
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3633
		nr_scanned = 0;
3634 3635
		reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone,
						    gfp_mask, &nr_scanned);
3636
		nr_reclaimed += reclaimed;
3637
		*total_scanned += nr_scanned;
3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3660
				if (next_mz == mz)
3661
					css_put(&next_mz->mem->css);
3662
				else /* next_mz == NULL or other memcg */
3663 3664 3665 3666
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3667
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3668 3669 3670 3671 3672 3673 3674 3675
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3676 3677
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3696 3697 3698 3699
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3700
static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3701
				int node, int zid, enum lru_list lru)
3702
{
K
KAMEZAWA Hiroyuki 已提交
3703 3704
	struct mem_cgroup_per_zone *mz;
	unsigned long flags, loop;
3705
	struct list_head *list;
3706 3707
	struct page *busy;
	struct zone *zone;
3708
	int ret = 0;
3709

K
KAMEZAWA Hiroyuki 已提交
3710
	zone = &NODE_DATA(node)->node_zones[zid];
3711
	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3712
	list = &mz->lruvec.lists[lru];
3713

3714 3715 3716 3717 3718
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3719
		struct page_cgroup *pc;
3720 3721
		struct page *page;

3722
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3723
		spin_lock_irqsave(&zone->lru_lock, flags);
3724
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3725
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3726
			break;
3727
		}
3728 3729 3730
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
3731
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3732
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3733 3734
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3735
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3736

3737
		pc = lookup_page_cgroup(page);
3738

3739
		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3740
		if (ret == -ENOMEM)
3741
			break;
3742 3743 3744

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
3745
			busy = page;
3746 3747 3748
			cond_resched();
		} else
			busy = NULL;
3749
	}
K
KAMEZAWA Hiroyuki 已提交
3750

3751 3752 3753
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3754 3755 3756 3757 3758 3759
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3760
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3761
{
3762 3763 3764
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3765
	struct cgroup *cgrp = memcg->css.cgroup;
3766

3767
	css_get(&memcg->css);
3768 3769

	shrink = 0;
3770 3771 3772
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3773
move_account:
3774
	do {
3775
		ret = -EBUSY;
3776 3777 3778 3779
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3780
			goto out;
3781 3782
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3783
		drain_all_stock_sync(memcg);
3784
		ret = 0;
3785
		mem_cgroup_start_move(memcg);
3786
		for_each_node_state(node, N_HIGH_MEMORY) {
3787
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3788
				enum lru_list l;
3789
				for_each_lru(l) {
3790
					ret = mem_cgroup_force_empty_list(memcg,
K
KAMEZAWA Hiroyuki 已提交
3791
							node, zid, l);
3792 3793 3794
					if (ret)
						break;
				}
3795
			}
3796 3797 3798
			if (ret)
				break;
		}
3799 3800
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3801 3802 3803
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3804
		cond_resched();
3805
	/* "ret" should also be checked to ensure all lists are empty. */
3806
	} while (memcg->res.usage > 0 || ret);
3807
out:
3808
	css_put(&memcg->css);
3809
	return ret;
3810 3811

try_to_free:
3812 3813
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3814 3815 3816
		ret = -EBUSY;
		goto out;
	}
3817 3818
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3819 3820
	/* try to free all pages in this cgroup */
	shrink = 1;
3821
	while (nr_retries && memcg->res.usage > 0) {
3822
		int progress;
3823 3824 3825 3826 3827

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3828
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3829
						false);
3830
		if (!progress) {
3831
			nr_retries--;
3832
			/* maybe some writeback is necessary */
3833
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3834
		}
3835 3836

	}
K
KAMEZAWA Hiroyuki 已提交
3837
	lru_add_drain();
3838
	/* try move_account...there may be some *locked* pages. */
3839
	goto move_account;
3840 3841
}

3842 3843 3844 3845 3846 3847
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3848 3849 3850 3851 3852 3853 3854 3855 3856
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3857
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3858
	struct cgroup *parent = cont->parent;
3859
	struct mem_cgroup *parent_memcg = NULL;
3860 3861

	if (parent)
3862
		parent_memcg = mem_cgroup_from_cont(parent);
3863 3864 3865

	cgroup_lock();
	/*
3866
	 * If parent's use_hierarchy is set, we can't make any modifications
3867 3868 3869 3870 3871 3872
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3873
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3874 3875
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3876
			memcg->use_hierarchy = val;
3877 3878 3879 3880 3881 3882 3883 3884 3885
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3886

3887
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3888
					       enum mem_cgroup_stat_index idx)
3889
{
K
KAMEZAWA Hiroyuki 已提交
3890
	struct mem_cgroup *iter;
3891
	long val = 0;
3892

3893
	/* Per-cpu values can be negative, use a signed accumulator */
3894
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3895 3896 3897 3898 3899
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3900 3901
}

3902
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3903
{
K
KAMEZAWA Hiroyuki 已提交
3904
	u64 val;
3905

3906
	if (!mem_cgroup_is_root(memcg)) {
3907
		if (!swap)
3908
			return res_counter_read_u64(&memcg->res, RES_USAGE);
3909
		else
3910
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3911 3912
	}

3913 3914
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3915

K
KAMEZAWA Hiroyuki 已提交
3916
	if (swap)
3917
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3918 3919 3920 3921

	return val << PAGE_SHIFT;
}

3922
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3923
{
3924
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3925
	u64 val;
3926 3927 3928 3929 3930 3931
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3932
		if (name == RES_USAGE)
3933
			val = mem_cgroup_usage(memcg, false);
3934
		else
3935
			val = res_counter_read_u64(&memcg->res, name);
3936 3937
		break;
	case _MEMSWAP:
3938
		if (name == RES_USAGE)
3939
			val = mem_cgroup_usage(memcg, true);
3940
		else
3941
			val = res_counter_read_u64(&memcg->memsw, name);
3942 3943 3944 3945 3946 3947
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3948
}
3949 3950 3951 3952
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3953 3954
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3955
{
3956
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3957
	int type, name;
3958 3959 3960
	unsigned long long val;
	int ret;

3961 3962 3963
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3964
	case RES_LIMIT:
3965 3966 3967 3968
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3969 3970
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3971 3972 3973
		if (ret)
			break;
		if (type == _MEM)
3974
			ret = mem_cgroup_resize_limit(memcg, val);
3975 3976
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3977
		break;
3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3992 3993 3994 3995 3996
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3997 3998
}

3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

4027
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4028
{
4029
	struct mem_cgroup *memcg;
4030
	int type, name;
4031

4032
	memcg = mem_cgroup_from_cont(cont);
4033 4034 4035
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
4036
	case RES_MAX_USAGE:
4037
		if (type == _MEM)
4038
			res_counter_reset_max(&memcg->res);
4039
		else
4040
			res_counter_reset_max(&memcg->memsw);
4041 4042
		break;
	case RES_FAILCNT:
4043
		if (type == _MEM)
4044
			res_counter_reset_failcnt(&memcg->res);
4045
		else
4046
			res_counter_reset_failcnt(&memcg->memsw);
4047 4048
		break;
	}
4049

4050
	return 0;
4051 4052
}

4053 4054 4055 4056 4057 4058
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4059
#ifdef CONFIG_MMU
4060 4061 4062
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
4063
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4064 4065 4066 4067 4068 4069 4070 4071 4072

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
4073
	memcg->move_charge_at_immigrate = val;
4074 4075 4076 4077
	cgroup_unlock();

	return 0;
}
4078 4079 4080 4081 4082 4083 4084
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4085

K
KAMEZAWA Hiroyuki 已提交
4086 4087 4088 4089 4090

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
4091
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
4092 4093
	MCS_PGPGIN,
	MCS_PGPGOUT,
4094
	MCS_SWAP,
4095 4096
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
4097 4098 4099 4100 4101 4102 4103 4104 4105 4106
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4107 4108
};

K
KAMEZAWA Hiroyuki 已提交
4109 4110 4111 4112 4113 4114
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
4115
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
4116 4117
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
4118
	{"swap", "total_swap"},
4119 4120
	{"pgfault", "total_pgfault"},
	{"pgmajfault", "total_pgmajfault"},
K
KAMEZAWA Hiroyuki 已提交
4121 4122 4123 4124 4125 4126 4127 4128
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
4129
static void
4130
mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4131 4132 4133 4134
{
	s64 val;

	/* per cpu stat */
4135
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4136
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4137
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4138
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4139
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4140
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4141
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4142
	s->stat[MCS_PGPGIN] += val;
4143
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4144
	s->stat[MCS_PGPGOUT] += val;
4145
	if (do_swap_account) {
4146
		val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4147 4148
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4149
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4150
	s->stat[MCS_PGFAULT] += val;
4151
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4152
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4153 4154

	/* per zone stat */
4155
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4156
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4157
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4158
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4159
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4160
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4161
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4162
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4163
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
K
KAMEZAWA Hiroyuki 已提交
4164 4165 4166 4167
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
4168
mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4169
{
K
KAMEZAWA Hiroyuki 已提交
4170 4171
	struct mem_cgroup *iter;

4172
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4173
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4174 4175
}

4176 4177 4178 4179 4180 4181 4182 4183 4184
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);

4185
	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4186 4187
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4188
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4189 4190 4191 4192
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4193
	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4194 4195
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4196 4197
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_FILE);
4198 4199 4200 4201
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4202
	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4203 4204
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4205 4206
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_ANON);
4207 4208 4209 4210
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4211
	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4212 4213
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4214 4215
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				BIT(LRU_UNEVICTABLE));
4216 4217 4218 4219 4220 4221 4222
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4223 4224
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4225 4226
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4227
	struct mcs_total_stat mystat;
4228 4229
	int i;

K
KAMEZAWA Hiroyuki 已提交
4230 4231
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
4232

4233

4234 4235 4236
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4237
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4238
	}
L
Lee Schermerhorn 已提交
4239

K
KAMEZAWA Hiroyuki 已提交
4240
	/* Hierarchical information */
4241 4242 4243 4244 4245 4246 4247
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4248

K
KAMEZAWA Hiroyuki 已提交
4249 4250
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
4251 4252 4253
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4254
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4255
	}
K
KAMEZAWA Hiroyuki 已提交
4256

K
KOSAKI Motohiro 已提交
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4284 4285 4286
	return 0;
}

K
KOSAKI Motohiro 已提交
4287 4288 4289 4290
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4291
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4292 4293 4294 4295 4296 4297 4298
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4299

K
KOSAKI Motohiro 已提交
4300 4301 4302 4303 4304 4305 4306
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4307 4308 4309

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4310 4311
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4312 4313
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4314
		return -EINVAL;
4315
	}
K
KOSAKI Motohiro 已提交
4316 4317 4318

	memcg->swappiness = val;

4319 4320
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4321 4322 4323
	return 0;
}

4324 4325 4326 4327 4328 4329 4330 4331
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4332
		t = rcu_dereference(memcg->thresholds.primary);
4333
	else
4334
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4346
	i = t->current_threshold;
4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4370
	t->current_threshold = i - 1;
4371 4372 4373 4374 4375 4376
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4377 4378 4379 4380 4381 4382 4383
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4384 4385 4386 4387 4388 4389 4390 4391 4392 4393
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4394
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4395 4396 4397
{
	struct mem_cgroup_eventfd_list *ev;

4398
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4399 4400 4401 4402
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4403
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4404
{
K
KAMEZAWA Hiroyuki 已提交
4405 4406
	struct mem_cgroup *iter;

4407
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4408
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4409 4410 4411 4412
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4413 4414
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4415 4416
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4417 4418
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4419
	int i, size, ret;
4420 4421 4422 4423 4424 4425

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4426

4427
	if (type == _MEM)
4428
		thresholds = &memcg->thresholds;
4429
	else if (type == _MEMSWAP)
4430
		thresholds = &memcg->memsw_thresholds;
4431 4432 4433 4434 4435 4436
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4437
	if (thresholds->primary)
4438 4439
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4440
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4441 4442

	/* Allocate memory for new array of thresholds */
4443
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4444
			GFP_KERNEL);
4445
	if (!new) {
4446 4447 4448
		ret = -ENOMEM;
		goto unlock;
	}
4449
	new->size = size;
4450 4451

	/* Copy thresholds (if any) to new array */
4452 4453
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4454
				sizeof(struct mem_cgroup_threshold));
4455 4456
	}

4457
	/* Add new threshold */
4458 4459
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4460 4461

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4462
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4463 4464 4465
			compare_thresholds, NULL);

	/* Find current threshold */
4466
	new->current_threshold = -1;
4467
	for (i = 0; i < size; i++) {
4468
		if (new->entries[i].threshold < usage) {
4469
			/*
4470 4471
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4472 4473
			 * it here.
			 */
4474
			++new->current_threshold;
4475 4476 4477
		}
	}

4478 4479 4480 4481 4482
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4483

4484
	/* To be sure that nobody uses thresholds */
4485 4486 4487 4488 4489 4490 4491 4492
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4493
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4494
	struct cftype *cft, struct eventfd_ctx *eventfd)
4495 4496
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4497 4498
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4499 4500
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4501
	int i, j, size;
4502 4503 4504

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4505
		thresholds = &memcg->thresholds;
4506
	else if (type == _MEMSWAP)
4507
		thresholds = &memcg->memsw_thresholds;
4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4523 4524 4525
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4526 4527 4528
			size++;
	}

4529
	new = thresholds->spare;
4530

4531 4532
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4533 4534
		kfree(new);
		new = NULL;
4535
		goto swap_buffers;
4536 4537
	}

4538
	new->size = size;
4539 4540

	/* Copy thresholds and find current threshold */
4541 4542 4543
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4544 4545
			continue;

4546 4547
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4548
			/*
4549
			 * new->current_threshold will not be used
4550 4551 4552
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4553
			++new->current_threshold;
4554 4555 4556 4557
		}
		j++;
	}

4558
swap_buffers:
4559 4560 4561
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4562

4563
	/* To be sure that nobody uses thresholds */
4564 4565 4566 4567
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4568

K
KAMEZAWA Hiroyuki 已提交
4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4581
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4582 4583 4584 4585 4586

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4587
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4588
		eventfd_signal(eventfd, 1);
4589
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4590 4591 4592 4593

	return 0;
}

4594
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4595 4596
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4597
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4598 4599 4600 4601 4602
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4603
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4604

4605
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4606 4607 4608 4609 4610 4611
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4612
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4613 4614
}

4615 4616 4617
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4618
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4619

4620
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4621

4622
	if (atomic_read(&memcg->under_oom))
4623 4624 4625 4626 4627 4628 4629 4630 4631
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4632
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4644
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4645 4646 4647
		cgroup_unlock();
		return -EINVAL;
	}
4648
	memcg->oom_kill_disable = val;
4649
	if (!val)
4650
		memcg_oom_recover(memcg);
4651 4652 4653 4654
	cgroup_unlock();
	return 0;
}

4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

4671 4672 4673
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
G
Glauber Costa 已提交
4674 4675 4676 4677 4678 4679 4680
	/*
	 * Part of this would be better living in a separate allocation
	 * function, leaving us with just the cgroup tree population work.
	 * We, however, depend on state such as network's proto_list that
	 * is only initialized after cgroup creation. I found the less
	 * cumbersome way to deal with it to defer it all to populate time
	 */
4681
	return mem_cgroup_sockets_init(cont, ss);
4682 4683
};

G
Glauber Costa 已提交
4684 4685 4686 4687 4688
static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	mem_cgroup_sockets_destroy(cont, ss);
}
4689 4690 4691 4692 4693
#else
static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
G
Glauber Costa 已提交
4694 4695 4696 4697 4698

static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
}
4699 4700
#endif

B
Balbir Singh 已提交
4701 4702
static struct cftype mem_cgroup_files[] = {
	{
4703
		.name = "usage_in_bytes",
4704
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4705
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4706 4707
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4708
	},
4709 4710
	{
		.name = "max_usage_in_bytes",
4711
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4712
		.trigger = mem_cgroup_reset,
4713 4714
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4715
	{
4716
		.name = "limit_in_bytes",
4717
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4718
		.write_string = mem_cgroup_write,
4719
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4720
	},
4721 4722 4723 4724 4725 4726
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4727 4728
	{
		.name = "failcnt",
4729
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4730
		.trigger = mem_cgroup_reset,
4731
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4732
	},
4733 4734
	{
		.name = "stat",
4735
		.read_map = mem_control_stat_show,
4736
	},
4737 4738 4739 4740
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4741 4742 4743 4744 4745
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4746 4747 4748 4749 4750
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4751 4752 4753 4754 4755
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4756 4757
	{
		.name = "oom_control",
4758 4759
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4760 4761 4762 4763
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4764 4765 4766 4767
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
4768
		.mode = S_IRUGO,
4769 4770
	},
#endif
B
Balbir Singh 已提交
4771 4772
};

4773 4774 4775 4776 4777 4778
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4779 4780
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4816
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4817 4818
{
	struct mem_cgroup_per_node *pn;
4819
	struct mem_cgroup_per_zone *mz;
4820
	enum lru_list l;
4821
	int zone, tmp = node;
4822 4823 4824 4825 4826 4827 4828 4829
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4830 4831
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4832
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4833 4834
	if (!pn)
		return 1;
4835 4836 4837

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4838
		for_each_lru(l)
4839
			INIT_LIST_HEAD(&mz->lruvec.lists[l]);
4840
		mz->usage_in_excess = 0;
4841
		mz->on_tree = false;
4842
		mz->mem = memcg;
4843
	}
4844
	memcg->info.nodeinfo[node] = pn;
4845 4846 4847
	return 0;
}

4848
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4849
{
4850
	kfree(memcg->info.nodeinfo[node]);
4851 4852
}

4853 4854 4855
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4856
	int size = sizeof(struct mem_cgroup);
4857

4858
	/* Can be very big if MAX_NUMNODES is very big */
4859
	if (size < PAGE_SIZE)
4860
		mem = kzalloc(size, GFP_KERNEL);
4861
	else
4862
		mem = vzalloc(size);
4863

4864 4865 4866
	if (!mem)
		return NULL;

4867
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4868 4869
	if (!mem->stat)
		goto out_free;
4870
	spin_lock_init(&mem->pcp_counter_lock);
4871
	return mem;
4872 4873 4874 4875 4876 4877 4878

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4879 4880
}

4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4892
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4893
{
K
KAMEZAWA Hiroyuki 已提交
4894 4895
	int node;

4896 4897
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4898

K
KAMEZAWA Hiroyuki 已提交
4899
	for_each_node_state(node, N_POSSIBLE)
4900
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4901

4902
	free_percpu(memcg->stat);
4903
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4904
		kfree(memcg);
4905
	else
4906
		vfree(memcg);
4907 4908
}

4909
static void mem_cgroup_get(struct mem_cgroup *memcg)
4910
{
4911
	atomic_inc(&memcg->refcnt);
4912 4913
}

4914
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4915
{
4916 4917 4918
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4919 4920 4921
		if (parent)
			mem_cgroup_put(parent);
	}
4922 4923
}

4924
static void mem_cgroup_put(struct mem_cgroup *memcg)
4925
{
4926
	__mem_cgroup_put(memcg, 1);
4927 4928
}

4929 4930 4931
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4932
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4933
{
4934
	if (!memcg->res.parent)
4935
		return NULL;
4936
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4937
}
G
Glauber Costa 已提交
4938
EXPORT_SYMBOL(parent_mem_cgroup);
4939

4940 4941 4942
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4943
	if (!mem_cgroup_disabled() && really_do_swap_account)
4944 4945 4946 4947 4948 4949 4950 4951
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
4977
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4978 4979
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4980
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
4981
	long error = -ENOMEM;
4982
	int node;
B
Balbir Singh 已提交
4983

4984 4985
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4986
		return ERR_PTR(error);
4987

4988
	for_each_node_state(node, N_POSSIBLE)
4989
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4990
			goto free_out;
4991

4992
	/* root ? */
4993
	if (cont->parent == NULL) {
4994
		int cpu;
4995
		enable_swap_cgroup();
4996
		parent = NULL;
4997 4998
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4999
		root_mem_cgroup = memcg;
5000 5001 5002 5003 5004
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
5005
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5006
	} else {
5007
		parent = mem_cgroup_from_cont(cont->parent);
5008 5009
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
5010
	}
5011

5012
	if (parent && parent->use_hierarchy) {
5013 5014
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
5015 5016 5017 5018 5019 5020 5021
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
5022
	} else {
5023 5024
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
5025
	}
5026 5027
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
5028

K
KOSAKI Motohiro 已提交
5029
	if (parent)
5030 5031 5032 5033 5034
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	return &memcg->css;
5035
free_out:
5036
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
5037
	return ERR_PTR(error);
B
Balbir Singh 已提交
5038 5039
}

5040
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5041 5042
					struct cgroup *cont)
{
5043
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5044

5045
	return mem_cgroup_force_empty(memcg, false);
5046 5047
}

B
Balbir Singh 已提交
5048 5049 5050
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5051
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5052

G
Glauber Costa 已提交
5053 5054
	kmem_cgroup_destroy(ss, cont);

5055
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
5056 5057 5058 5059 5060
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5061 5062 5063 5064 5065 5066 5067
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
5068 5069 5070 5071

	if (!ret)
		ret = register_kmem_files(cont, ss);

5072
	return ret;
B
Balbir Singh 已提交
5073 5074
}

5075
#ifdef CONFIG_MMU
5076
/* Handlers for move charge at task migration. */
5077 5078
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5079
{
5080 5081
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5082
	struct mem_cgroup *memcg = mc.to;
5083

5084
	if (mem_cgroup_is_root(memcg)) {
5085 5086 5087 5088 5089 5090 5091 5092
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5093
		 * "memcg" cannot be under rmdir() because we've already checked
5094 5095 5096 5097
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5098
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5099
			goto one_by_one;
5100
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5101
						PAGE_SIZE * count, &dummy)) {
5102
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5119 5120 5121
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
		if (ret || !memcg)
5122 5123 5124 5125
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
5126 5127 5128 5129 5130 5131 5132 5133
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5134
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5135 5136 5137 5138 5139 5140
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5141 5142 5143
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5144 5145 5146 5147 5148
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5149
	swp_entry_t	ent;
5150 5151 5152 5153 5154
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
5155
	MC_TARGET_SWAP,
5156 5157
};

D
Daisuke Nishimura 已提交
5158 5159
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5160
{
D
Daisuke Nishimura 已提交
5161
	struct page *page = vm_normal_page(vma, addr, ptent);
5162

D
Daisuke Nishimura 已提交
5163 5164 5165 5166 5167 5168
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
5169 5170
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
5189 5190
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
5191
		return NULL;
5192
	}
D
Daisuke Nishimura 已提交
5193 5194 5195 5196 5197 5198
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5220 5221 5222 5223 5224 5225
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5226
		if (do_swap_account)
5227 5228
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5229
	}
5230
#endif
5231 5232 5233
	return page;
}

D
Daisuke Nishimura 已提交
5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5246 5247
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5248 5249 5250

	if (!page && !ent.val)
		return 0;
5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5266 5267
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5268 5269 5270 5271
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5284 5285
	split_huge_page_pmd(walk->mm, pmd);

5286 5287 5288 5289 5290 5291 5292
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5293 5294 5295
	return 0;
}

5296 5297 5298 5299 5300
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5301
	down_read(&mm->mmap_sem);
5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5313
	up_read(&mm->mmap_sem);
5314 5315 5316 5317 5318 5319 5320 5321 5322

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5323 5324 5325 5326 5327
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5328 5329
}

5330 5331
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5332
{
5333 5334 5335
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5336
	/* we must uncharge all the leftover precharges from mc.to */
5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5348
	}
5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5383
	spin_lock(&mc.lock);
5384 5385
	mc.from = NULL;
	mc.to = NULL;
5386
	spin_unlock(&mc.lock);
5387
	mem_cgroup_end_move(from);
5388 5389
}

5390 5391
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5392
				struct cgroup_taskset *tset)
5393
{
5394
	struct task_struct *p = cgroup_taskset_first(tset);
5395
	int ret = 0;
5396
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5397

5398
	if (memcg->move_charge_at_immigrate) {
5399 5400 5401
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5402
		VM_BUG_ON(from == memcg);
5403 5404 5405 5406 5407

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5408 5409 5410 5411
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5412
			VM_BUG_ON(mc.moved_charge);
5413
			VM_BUG_ON(mc.moved_swap);
5414
			mem_cgroup_start_move(from);
5415
			spin_lock(&mc.lock);
5416
			mc.from = from;
5417
			mc.to = memcg;
5418
			spin_unlock(&mc.lock);
5419
			/* We set mc.moving_task later */
5420 5421 5422 5423

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5424 5425
		}
		mmput(mm);
5426 5427 5428 5429 5430 5431
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5432
				struct cgroup_taskset *tset)
5433
{
5434
	mem_cgroup_clear_mc();
5435 5436
}

5437 5438 5439
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5440
{
5441 5442 5443 5444 5445
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5446
	split_huge_page_pmd(walk->mm, pmd);
5447 5448 5449 5450 5451 5452 5453 5454
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
5455
		swp_entry_t ent;
5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5467 5468
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5469
				mc.precharge--;
5470 5471
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5472 5473 5474 5475 5476
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
5477 5478
		case MC_TARGET_SWAP:
			ent = target.ent;
5479 5480
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
5481
				mc.precharge--;
5482 5483 5484
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5485
			break;
5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5500
		ret = mem_cgroup_do_precharge(1);
5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5544
	up_read(&mm->mmap_sem);
5545 5546
}

B
Balbir Singh 已提交
5547 5548
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
5549
				struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5550
{
5551
	struct task_struct *p = cgroup_taskset_first(tset);
5552
	struct mm_struct *mm = get_task_mm(p);
5553 5554

	if (mm) {
5555 5556 5557
		if (mc.to)
			mem_cgroup_move_charge(mm);
		put_swap_token(mm);
5558 5559
		mmput(mm);
	}
5560 5561
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5562
}
5563 5564 5565
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5566
				struct cgroup_taskset *tset)
5567 5568 5569 5570 5571
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5572
				struct cgroup_taskset *tset)
5573 5574 5575 5576
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
5577
				struct cgroup_taskset *tset)
5578 5579 5580
{
}
#endif
B
Balbir Singh 已提交
5581

B
Balbir Singh 已提交
5582 5583 5584 5585
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5586
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5587 5588
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5589 5590
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5591
	.attach = mem_cgroup_move_task,
5592
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5593
	.use_id = 1,
B
Balbir Singh 已提交
5594
};
5595 5596

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5597 5598 5599
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5600
	if (!strcmp(s, "1"))
5601
		really_do_swap_account = 1;
5602
	else if (!strcmp(s, "0"))
5603 5604 5605
		really_do_swap_account = 0;
	return 1;
}
5606
__setup("swapaccount=", enable_swap_account);
5607 5608

#endif