memcontrol.c 145.2 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/export.h>
37
#include <linux/mutex.h>
38
#include <linux/rbtree.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
G
Glauber Costa 已提交
53 54
#include <net/sock.h>
#include <net/tcp_memcontrol.h>
B
Balbir Singh 已提交
55

56 57
#include <asm/uaccess.h>

58 59
#include <trace/events/vmscan.h>

60 61
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
62
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
63

64
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
65
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66
int do_swap_account __read_mostly;
67 68 69 70 71 72 73 74

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

75 76 77 78 79
#else
#define do_swap_account		(0)
#endif


80 81 82 83 84 85 86 87
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
93 94 95
	MEM_CGROUP_STAT_NSTATS,
};

96 97 98 99
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
100 101
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
102 103
	MEM_CGROUP_EVENTS_NSTATS,
};
104 105 106 107 108 109 110 111 112
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
113
	MEM_CGROUP_TARGET_NUMAINFO,
114 115 116 117
	MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET (128)
#define SOFTLIMIT_EVENTS_TARGET (1024)
118
#define NUMAINFO_EVENTS_TARGET	(1024)
119

120
struct mem_cgroup_stat_cpu {
121
	long count[MEM_CGROUP_STAT_NSTATS];
122
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
123
	unsigned long targets[MEM_CGROUP_NTARGETS];
124 125
};

126 127 128 129 130 131 132
struct mem_cgroup_reclaim_iter {
	/* css_id of the last scanned hierarchy member */
	int position;
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

133 134 135 136
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
137 138 139
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
140 141
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
142

143 144
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

K
KOSAKI Motohiro 已提交
145
	struct zone_reclaim_stat reclaim_stat;
146 147 148 149
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
150 151
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
152 153 154 155 156 157 158 159 160 161 162 163
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

184 185 186 187 188
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
189
/* For threshold */
190 191
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
192
	int current_threshold;
193 194 195 196 197
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
198 199 200 201 202 203 204 205 206 207 208 209

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
210 211 212 213 214
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
215

216 217
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
218

B
Balbir Singh 已提交
219 220 221 222 223 224 225
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
226 227 228
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
229 230 231 232 233 234 235
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
236 237 238 239
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
240 241 242 243
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
244
	struct mem_cgroup_lru_info info;
245 246 247
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
248 249
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
250
#endif
251 252 253 254
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
255 256 257 258

	bool		oom_lock;
	atomic_t	under_oom;

259
	atomic_t	refcnt;
260

261
	int	swappiness;
262 263
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
264

265 266 267
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

268 269 270 271
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
272
	struct mem_cgroup_thresholds thresholds;
273

274
	/* thresholds for mem+swap usage. RCU-protected */
275
	struct mem_cgroup_thresholds memsw_thresholds;
276

K
KAMEZAWA Hiroyuki 已提交
277 278
	/* For oom notifier event fd */
	struct list_head oom_notify;
279

280 281 282 283 284
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
285
	/*
286
	 * percpu counter.
287
	 */
288
	struct mem_cgroup_stat_cpu *stat;
289 290 291 292 293 294
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
295 296 297 298

#ifdef CONFIG_INET
	struct tcp_memcontrol tcp_mem;
#endif
B
Balbir Singh 已提交
299 300
};

301 302 303 304 305 306
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
307
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
308
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
309 310 311
	NR_MOVE_TYPE,
};

312 313
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
314
	spinlock_t	  lock; /* for from, to */
315 316 317
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
318
	unsigned long moved_charge;
319
	unsigned long moved_swap;
320 321 322
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
323
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
324 325
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
326

D
Daisuke Nishimura 已提交
327 328 329 330 331 332
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

333 334 335 336 337 338
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

339 340 341 342 343 344 345
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

346 347 348
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
349
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
350
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
351
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
352
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
353 354 355
	NR_CHARGE_TYPE,
};

356
/* for encoding cft->private value on file */
357 358 359
#define _MEM			(0)
#define _MEMSWAP		(1)
#define _OOM_TYPE		(2)
360 361 362
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
363 364
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
365

366 367 368 369 370 371 372 373
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

374 375
static void mem_cgroup_get(struct mem_cgroup *memcg);
static void mem_cgroup_put(struct mem_cgroup *memcg);
G
Glauber Costa 已提交
376 377 378 379 380

/* Writing them here to avoid exposing memcg's inner layout */
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
#ifdef CONFIG_INET
#include <net/sock.h>
G
Glauber Costa 已提交
381
#include <net/ip.h>
G
Glauber Costa 已提交
382 383 384 385 386 387 388 389 390

static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
void sock_update_memcg(struct sock *sk)
{
	if (static_branch(&memcg_socket_limit_enabled)) {
		struct mem_cgroup *memcg;

		BUG_ON(!sk->sk_prot->proto_cgroup);

391 392 393 394 395 396 397 398 399 400 401 402 403 404
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
			mem_cgroup_get(sk->sk_cgrp->memcg);
			return;
		}

G
Glauber Costa 已提交
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
		if (!mem_cgroup_is_root(memcg)) {
			mem_cgroup_get(memcg);
			sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
	if (static_branch(&memcg_socket_limit_enabled) && sk->sk_cgrp) {
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
		mem_cgroup_put(memcg);
	}
}
G
Glauber Costa 已提交
425 426 427 428 429 430 431 432 433

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
434 435 436
#endif /* CONFIG_INET */
#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */

437
static void drain_all_stock_async(struct mem_cgroup *memcg);
438

439
static struct mem_cgroup_per_zone *
440
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
441
{
442
	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
443 444
}

445
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
446
{
447
	return &memcg->css;
448 449
}

450
static struct mem_cgroup_per_zone *
451
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
452
{
453 454
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
455

456
	return mem_cgroup_zoneinfo(memcg, nid, zid);
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
475
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
476
				struct mem_cgroup_per_zone *mz,
477 478
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
479 480 481 482 483 484 485 486
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

487 488 489
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
506 507 508
}

static void
509
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
510 511 512 513 514 515 516 517 518
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

519
static void
520
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
521 522 523 524
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
525
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
526 527 528 529
	spin_unlock(&mctz->lock);
}


530
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
531
{
532
	unsigned long long excess;
533 534
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
535 536
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
537 538 539
	mctz = soft_limit_tree_from_page(page);

	/*
540 541
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
542
	 */
543 544 545
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
546 547 548 549
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
550
		if (excess || mz->on_tree) {
551 552 553
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
554
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
555
			/*
556 557
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
558
			 */
559
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
560 561
			spin_unlock(&mctz->lock);
		}
562 563 564
	}
}

565
static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
566 567 568 569 570 571 572
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
573
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
574
			mctz = soft_limit_tree_node_zone(node, zone);
575
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
576 577 578 579
		}
	}
}

580 581 582 583
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
584
	struct mem_cgroup_per_zone *mz;
585 586

retry:
587
	mz = NULL;
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
636
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
637
				 enum mem_cgroup_stat_index idx)
638
{
639
	long val = 0;
640 641
	int cpu;

642 643
	get_online_cpus();
	for_each_online_cpu(cpu)
644
		val += per_cpu(memcg->stat->count[idx], cpu);
645
#ifdef CONFIG_HOTPLUG_CPU
646 647 648
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
649 650
#endif
	put_online_cpus();
651 652 653
	return val;
}

654
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
655 656 657
					 bool charge)
{
	int val = (charge) ? 1 : -1;
658
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
659 660
}

661
void mem_cgroup_pgfault(struct mem_cgroup *memcg, int val)
662
{
663
	this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
664 665
}

666
void mem_cgroup_pgmajfault(struct mem_cgroup *memcg, int val)
667
{
668
	this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
669 670
}

671
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
672 673 674 675 676 677
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
678
		val += per_cpu(memcg->stat->events[idx], cpu);
679
#ifdef CONFIG_HOTPLUG_CPU
680 681 682
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
683 684 685 686
#endif
	return val;
}

687
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
688
					 bool file, int nr_pages)
689
{
690 691
	preempt_disable();

692
	if (file)
693 694
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
				nr_pages);
695
	else
696 697
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
				nr_pages);
698

699 700
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
701
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
702
	else {
703
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
704 705
		nr_pages = -nr_pages; /* for event */
	}
706

707
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
708

709
	preempt_enable();
710 711
}

712
unsigned long
713
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
714
			unsigned int lru_mask)
715 716
{
	struct mem_cgroup_per_zone *mz;
717 718 719
	enum lru_list l;
	unsigned long ret = 0;

720
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
721 722 723 724 725 726 727 728 729

	for_each_lru(l) {
		if (BIT(l) & lru_mask)
			ret += MEM_CGROUP_ZSTAT(mz, l);
	}
	return ret;
}

static unsigned long
730
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
731 732
			int nid, unsigned int lru_mask)
{
733 734 735
	u64 total = 0;
	int zid;

736
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
737 738
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
739

740 741
	return total;
}
742

743
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
744
			unsigned int lru_mask)
745
{
746
	int nid;
747 748
	u64 total = 0;

749
	for_each_node_state(nid, N_HIGH_MEMORY)
750
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
751
	return total;
752 753
}

754
static bool __memcg_event_check(struct mem_cgroup *memcg, int target)
755 756 757
{
	unsigned long val, next;

758 759
	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = __this_cpu_read(memcg->stat->targets[target]);
760 761 762 763
	/* from time_after() in jiffies.h */
	return ((long)next - (long)val < 0);
}

764
static void __mem_cgroup_target_update(struct mem_cgroup *memcg, int target)
765
{
766
	unsigned long val, next;
767

768
	val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
769

770 771 772 773 774 775 776
	switch (target) {
	case MEM_CGROUP_TARGET_THRESH:
		next = val + THRESHOLDS_EVENTS_TARGET;
		break;
	case MEM_CGROUP_TARGET_SOFTLIMIT:
		next = val + SOFTLIMIT_EVENTS_TARGET;
		break;
777 778 779
	case MEM_CGROUP_TARGET_NUMAINFO:
		next = val + NUMAINFO_EVENTS_TARGET;
		break;
780 781 782 783
	default:
		return;
	}

784
	__this_cpu_write(memcg->stat->targets[target], next);
785 786 787 788 789 790
}

/*
 * Check events in order.
 *
 */
791
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
792
{
793
	preempt_disable();
794
	/* threshold event is triggered in finer grain than soft limit */
795 796 797 798
	if (unlikely(__memcg_event_check(memcg, MEM_CGROUP_TARGET_THRESH))) {
		mem_cgroup_threshold(memcg);
		__mem_cgroup_target_update(memcg, MEM_CGROUP_TARGET_THRESH);
		if (unlikely(__memcg_event_check(memcg,
799
			     MEM_CGROUP_TARGET_SOFTLIMIT))) {
800 801
			mem_cgroup_update_tree(memcg, page);
			__mem_cgroup_target_update(memcg,
802 803 804
						   MEM_CGROUP_TARGET_SOFTLIMIT);
		}
#if MAX_NUMNODES > 1
805
		if (unlikely(__memcg_event_check(memcg,
806
			MEM_CGROUP_TARGET_NUMAINFO))) {
807 808
			atomic_inc(&memcg->numainfo_events);
			__mem_cgroup_target_update(memcg,
809
				MEM_CGROUP_TARGET_NUMAINFO);
810
		}
811
#endif
812
	}
813
	preempt_enable();
814 815
}

G
Glauber Costa 已提交
816
struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
817 818 819 820 821 822
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

823
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
824
{
825 826 827 828 829 830 831 832
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

833 834 835 836
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

837
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
838
{
839
	struct mem_cgroup *memcg = NULL;
840 841 842

	if (!mm)
		return NULL;
843 844 845 846 847 848 849
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
850 851
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
852
			break;
853
	} while (!css_tryget(&memcg->css));
854
	rcu_read_unlock();
855
	return memcg;
856 857
}

858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
				   struct mem_cgroup *prev,
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
878
{
879 880
	struct mem_cgroup *memcg = NULL;
	int id = 0;
881

882 883 884
	if (mem_cgroup_disabled())
		return NULL;

885 886
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
887

888 889
	if (prev && !reclaim)
		id = css_id(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
890

891 892
	if (prev && prev != root)
		css_put(&prev->css);
K
KAMEZAWA Hiroyuki 已提交
893

894 895 896 897 898
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
			return NULL;
		return root;
	}
K
KAMEZAWA Hiroyuki 已提交
899

900
	while (!memcg) {
901
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
902
		struct cgroup_subsys_state *css;
903

904 905 906 907 908 909 910 911 912 913 914
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
			if (prev && reclaim->generation != iter->generation)
				return NULL;
			id = iter->position;
		}
K
KAMEZAWA Hiroyuki 已提交
915

916 917 918 919 920 921 922 923
		rcu_read_lock();
		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
		if (css) {
			if (css == &root->css || css_tryget(css))
				memcg = container_of(css,
						     struct mem_cgroup, css);
		} else
			id = 0;
K
KAMEZAWA Hiroyuki 已提交
924 925
		rcu_read_unlock();

926 927 928 929 930 931 932
		if (reclaim) {
			iter->position = id;
			if (!css)
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
933 934 935 936 937

		if (prev && !css)
			return NULL;
	}
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
938
}
K
KAMEZAWA Hiroyuki 已提交
939

940 941 942 943 944 945 946
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
947 948 949 950 951 952
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
953

954 955 956 957 958 959
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
960
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
961
	     iter != NULL;				\
962
	     iter = mem_cgroup_iter(root, iter, NULL))
963

964
#define for_each_mem_cgroup(iter)			\
965
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
966
	     iter != NULL;				\
967
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
968

969
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
970
{
971
	return (memcg == root_mem_cgroup);
972 973
}

974 975
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
976
	struct mem_cgroup *memcg;
977 978 979 980 981

	if (!mm)
		return;

	rcu_read_lock();
982 983
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
984 985 986 987
		goto out;

	switch (idx) {
	case PGMAJFAULT:
988
		mem_cgroup_pgmajfault(memcg, 1);
989 990
		break;
	case PGFAULT:
991
		mem_cgroup_pgfault(memcg, 1);
992 993 994 995 996 997 998 999 1000
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

K
KAMEZAWA Hiroyuki 已提交
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1014

K
KAMEZAWA Hiroyuki 已提交
1015 1016 1017 1018
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
1019

1020
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1021 1022 1023
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
1024
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
1025
		return;
1026
	VM_BUG_ON(!pc->mem_cgroup);
1027 1028 1029 1030
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
1031
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1032 1033
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
1034
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
1035
	list_del_init(&pc->lru);
1036 1037
}

K
KAMEZAWA Hiroyuki 已提交
1038
void mem_cgroup_del_lru(struct page *page)
1039
{
K
KAMEZAWA Hiroyuki 已提交
1040 1041
	mem_cgroup_del_lru_list(page, page_lru(page));
}
1042

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
/*
 * Writeback is about to end against a page which has been marked for immediate
 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 * inactive list.
 */
void mem_cgroup_rotate_reclaimable_page(struct page *page)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
	enum lru_list lru = page_lru(page);

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
1058
	/* unused page is not rotated. */
1059 1060 1061 1062
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1063
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1064 1065 1066
	list_move_tail(&pc->lru, &mz->lists[lru]);
}

K
KAMEZAWA Hiroyuki 已提交
1067 1068 1069 1070
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
1071

1072
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1073
		return;
1074

K
KAMEZAWA Hiroyuki 已提交
1075
	pc = lookup_page_cgroup(page);
1076
	/* unused page is not rotated. */
1077 1078 1079 1080
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1081
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KAMEZAWA Hiroyuki 已提交
1082
	list_move(&pc->lru, &mz->lists[lru]);
1083 1084
}

K
KAMEZAWA Hiroyuki 已提交
1085
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
1086
{
K
KAMEZAWA Hiroyuki 已提交
1087 1088
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
1089

1090
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1091 1092
		return;
	pc = lookup_page_cgroup(page);
1093
	VM_BUG_ON(PageCgroupAcctLRU(pc));
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
	/*
	 * putback:				charge:
	 * SetPageLRU				SetPageCgroupUsed
	 * smp_mb				smp_mb
	 * PageCgroupUsed && add to memcg LRU	PageLRU && add to memcg LRU
	 *
	 * Ensure that one of the two sides adds the page to the memcg
	 * LRU during a race.
	 */
	smp_mb();
K
KAMEZAWA Hiroyuki 已提交
1104
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
1105
		return;
1106 1107
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1108
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1109 1110
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1111
	SetPageCgroupAcctLRU(pc);
K
KAMEZAWA Hiroyuki 已提交
1112 1113
	list_add(&pc->lru, &mz->lists[lru]);
}
1114

K
KAMEZAWA Hiroyuki 已提交
1115
/*
1116 1117 1118 1119
 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
 * while it's linked to lru because the page may be reused after it's fully
 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
 * It's done under lock_page and expected that zone->lru_lock isnever held.
K
KAMEZAWA Hiroyuki 已提交
1120
 */
1121
static void mem_cgroup_lru_del_before_commit(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
1122
{
1123 1124 1125 1126
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
	/*
	 * Doing this check without taking ->lru_lock seems wrong but this
	 * is safe. Because if page_cgroup's USED bit is unset, the page
	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
	 * set, the commit after this will fail, anyway.
	 * This all charge/uncharge is done under some mutual execustion.
	 * So, we don't need to taking care of changes in USED bit.
	 */
	if (likely(!PageLRU(page)))
		return;

1138 1139 1140 1141 1142 1143 1144 1145
	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
1146 1147
}

1148
static void mem_cgroup_lru_add_after_commit(struct page *page)
1149 1150 1151 1152
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
	/*
	 * putback:				charge:
	 * SetPageLRU				SetPageCgroupUsed
	 * smp_mb				smp_mb
	 * PageCgroupUsed && add to memcg LRU	PageLRU && add to memcg LRU
	 *
	 * Ensure that one of the two sides adds the page to the memcg
	 * LRU during a race.
	 */
	smp_mb();
1163 1164 1165
	/* taking care of that the page is added to LRU while we commit it */
	if (likely(!PageLRU(page)))
		return;
1166 1167
	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
1168
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1169 1170 1171 1172 1173
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
1174 1175 1176
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
1177
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1178 1179 1180
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
1181 1182
}

1183
/*
1184
 * Checks whether given mem is same or in the root_mem_cgroup's
1185 1186
 * hierarchy subtree
 */
1187 1188
static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
		struct mem_cgroup *memcg)
1189
{
1190 1191 1192
	if (root_memcg != memcg) {
		return (root_memcg->use_hierarchy &&
			css_is_ancestor(&memcg->css, &root_memcg->css));
1193 1194 1195 1196 1197
	}

	return true;
}

1198
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1199 1200
{
	int ret;
1201
	struct mem_cgroup *curr = NULL;
1202
	struct task_struct *p;
1203

1204 1205 1206 1207 1208
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
1209 1210
	if (!curr)
		return 0;
1211
	/*
1212
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1213
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1214 1215
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1216
	 */
1217
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1218
	css_put(&curr->css);
1219 1220 1221
	return ret;
}

1222
int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1223
{
1224 1225 1226
	unsigned long inactive_ratio;
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);
1227
	unsigned long inactive;
1228
	unsigned long active;
1229
	unsigned long gb;
1230

1231 1232 1233 1234
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_ANON));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_ANON));
1235

1236 1237 1238 1239 1240 1241
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1242
	return inactive * inactive_ratio < active;
1243 1244
}

1245
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1246 1247 1248
{
	unsigned long active;
	unsigned long inactive;
1249 1250
	int zid = zone_idx(zone);
	int nid = zone_to_nid(zone);
1251

1252 1253 1254 1255
	inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
						BIT(LRU_INACTIVE_FILE));
	active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
					      BIT(LRU_ACTIVE_FILE));
1256 1257 1258 1259

	return (active > inactive);
}

K
KOSAKI Motohiro 已提交
1260 1261 1262
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1263
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1280 1281
	if (!PageCgroupUsed(pc))
		return NULL;
1282 1283
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1284
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1285 1286 1287
	return &mz->reclaim_stat;
}

1288 1289 1290
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
1291 1292
					isolate_mode_t mode,
					struct zone *z,
1293
					struct mem_cgroup *mem_cont,
1294
					int active, int file)
1295 1296 1297 1298 1299 1300
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
1301
	struct page_cgroup *pc, *tmp;
1302
	int nid = zone_to_nid(z);
1303 1304
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
1305
	int lru = LRU_FILE * file + active;
1306
	int ret;
1307

1308
	BUG_ON(!mem_cont);
1309
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1310
	src = &mz->lists[lru];
1311

1312 1313
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1314
		if (scan >= nr_to_scan)
1315
			break;
K
KAMEZAWA Hiroyuki 已提交
1316

1317 1318
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
1319

1320
		page = lookup_cgroup_page(pc);
1321

H
Hugh Dickins 已提交
1322
		if (unlikely(!PageLRU(page)))
1323 1324
			continue;

H
Hugh Dickins 已提交
1325
		scan++;
1326 1327 1328
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1329
			list_move(&page->lru, dst);
1330
			mem_cgroup_del_lru(page);
1331
			nr_taken += hpage_nr_pages(page);
1332 1333 1334 1335 1336 1337 1338
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1339 1340 1341 1342
		}
	}

	*scanned = scan;
1343 1344 1345 1346

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1347 1348 1349
	return nr_taken;
}

1350 1351 1352
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1353
/**
1354 1355
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1356
 *
1357
 * Returns the maximum amount of memory @mem can be charged with, in
1358
 * pages.
1359
 */
1360
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1361
{
1362 1363
	unsigned long long margin;

1364
	margin = res_counter_margin(&memcg->res);
1365
	if (do_swap_account)
1366
		margin = min(margin, res_counter_margin(&memcg->memsw));
1367
	return margin >> PAGE_SHIFT;
1368 1369
}

1370
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1371 1372 1373 1374 1375 1376 1377
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1378
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1379 1380
}

1381
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1382 1383
{
	int cpu;
1384 1385

	get_online_cpus();
1386
	spin_lock(&memcg->pcp_counter_lock);
1387
	for_each_online_cpu(cpu)
1388 1389 1390
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&memcg->pcp_counter_lock);
1391
	put_online_cpus();
1392 1393 1394 1395

	synchronize_rcu();
}

1396
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1397 1398 1399
{
	int cpu;

1400
	if (!memcg)
1401
		return;
1402
	get_online_cpus();
1403
	spin_lock(&memcg->pcp_counter_lock);
1404
	for_each_online_cpu(cpu)
1405 1406 1407
		per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
	memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&memcg->pcp_counter_lock);
1408
	put_online_cpus();
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1422
static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1423 1424
{
	VM_BUG_ON(!rcu_read_lock_held());
1425
	return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1426
}
1427

1428
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1429
{
1430 1431
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1432
	bool ret = false;
1433 1434 1435 1436 1437 1438 1439 1440 1441
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1442

1443 1444
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1445 1446
unlock:
	spin_unlock(&mc.lock);
1447 1448 1449
	return ret;
}

1450
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1451 1452
{
	if (mc.moving_task && current != mc.moving_task) {
1453
		if (mem_cgroup_under_move(memcg)) {
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1466
/**
1467
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1486
	if (!memcg || !p)
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1533 1534 1535 1536
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1537
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1538 1539
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1540 1541
	struct mem_cgroup *iter;

1542
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1543
		num++;
1544 1545 1546
	return num;
}

D
David Rientjes 已提交
1547 1548 1549 1550 1551 1552 1553 1554
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1555 1556 1557
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1558 1559 1560 1561 1562 1563 1564 1565
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1612
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1613 1614
		int nid, bool noswap)
{
1615
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1616 1617 1618
		return true;
	if (noswap || !total_swap_pages)
		return false;
1619
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1620 1621 1622 1623
		return true;
	return false;

}
1624 1625 1626 1627 1628 1629 1630 1631
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1632
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1633 1634
{
	int nid;
1635 1636 1637 1638
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1639
	if (!atomic_read(&memcg->numainfo_events))
1640
		return;
1641
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1642 1643 1644
		return;

	/* make a nodemask where this memcg uses memory from */
1645
	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1646 1647 1648

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1649 1650
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1651
	}
1652

1653 1654
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1669
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1670 1671 1672
{
	int node;

1673 1674
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1675

1676
	node = next_node(node, memcg->scan_nodes);
1677
	if (node == MAX_NUMNODES)
1678
		node = first_node(memcg->scan_nodes);
1679 1680 1681 1682 1683 1684 1685 1686 1687
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1688
	memcg->last_scanned_node = node;
1689 1690 1691
	return node;
}

1692 1693 1694 1695 1696 1697
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
1698
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1699 1700 1701 1702 1703 1704 1705
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
1706 1707
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
1708
		     nid < MAX_NUMNODES;
1709
		     nid = next_node(nid, memcg->scan_nodes)) {
1710

1711
			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1712 1713 1714 1715 1716 1717 1718
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
1719
		if (node_isset(nid, memcg->scan_nodes))
1720
			continue;
1721
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1722 1723 1724 1725 1726
			return true;
	}
	return false;
}

1727
#else
1728
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1729 1730 1731
{
	return 0;
}
1732

1733
bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1734
{
1735
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1736
}
1737 1738
#endif

1739 1740 1741 1742
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
1743
{
1744
	struct mem_cgroup *victim = NULL;
1745
	int total = 0;
K
KAMEZAWA Hiroyuki 已提交
1746
	int loop = 0;
1747
	unsigned long excess;
1748
	unsigned long nr_scanned;
1749 1750 1751 1752
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};
1753

1754
	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1755

1756
	while (1) {
1757
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1758
		if (!victim) {
K
KAMEZAWA Hiroyuki 已提交
1759
			loop++;
1760 1761 1762 1763 1764 1765
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
1766
				if (!total)
1767 1768
					break;
				/*
L
Lucas De Marchi 已提交
1769
				 * We want to do more targeted reclaim.
1770 1771 1772 1773 1774
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
1775
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1776 1777
					break;
			}
1778
			continue;
1779
		}
1780
		if (!mem_cgroup_reclaimable(victim, false))
1781
			continue;
1782 1783 1784 1785
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
1786
			break;
1787
	}
1788
	mem_cgroup_iter_break(root_memcg, victim);
K
KAMEZAWA Hiroyuki 已提交
1789
	return total;
1790 1791
}

K
KAMEZAWA Hiroyuki 已提交
1792 1793 1794
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
1795
 * Has to be called with memcg_oom_lock
K
KAMEZAWA Hiroyuki 已提交
1796
 */
1797
static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1798
{
1799
	struct mem_cgroup *iter, *failed = NULL;
1800

1801
	for_each_mem_cgroup_tree(iter, memcg) {
1802
		if (iter->oom_lock) {
1803 1804 1805 1806 1807
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1808 1809
			mem_cgroup_iter_break(memcg, iter);
			break;
1810 1811
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1812
	}
K
KAMEZAWA Hiroyuki 已提交
1813

1814
	if (!failed)
1815
		return true;
1816 1817 1818 1819 1820

	/*
	 * OK, we failed to lock the whole subtree so we have to clean up
	 * what we set up to the failing subtree
	 */
1821
	for_each_mem_cgroup_tree(iter, memcg) {
1822
		if (iter == failed) {
1823 1824
			mem_cgroup_iter_break(memcg, iter);
			break;
1825 1826 1827
		}
		iter->oom_lock = false;
	}
1828
	return false;
1829
}
1830

1831
/*
1832
 * Has to be called with memcg_oom_lock
1833
 */
1834
static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1835
{
K
KAMEZAWA Hiroyuki 已提交
1836 1837
	struct mem_cgroup *iter;

1838
	for_each_mem_cgroup_tree(iter, memcg)
1839 1840 1841 1842
		iter->oom_lock = false;
	return 0;
}

1843
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1844 1845 1846
{
	struct mem_cgroup *iter;

1847
	for_each_mem_cgroup_tree(iter, memcg)
1848 1849 1850
		atomic_inc(&iter->under_oom);
}

1851
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1852 1853 1854
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1855 1856 1857 1858 1859
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1860
	for_each_mem_cgroup_tree(iter, memcg)
1861
		atomic_add_unless(&iter->under_oom, -1, 0);
1862 1863
}

1864
static DEFINE_SPINLOCK(memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1865 1866
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1867 1868 1869 1870 1871 1872 1873 1874
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1875 1876
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
			  *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1877 1878 1879
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1880
	oom_wait_memcg = oom_wait_info->mem;
K
KAMEZAWA Hiroyuki 已提交
1881 1882 1883 1884 1885

	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1886 1887
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1888 1889 1890 1891
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1892
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1893
{
1894 1895
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1896 1897
}

1898
static void memcg_oom_recover(struct mem_cgroup *memcg)
1899
{
1900 1901
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1902 1903
}

K
KAMEZAWA Hiroyuki 已提交
1904 1905 1906
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
1907
bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1908
{
K
KAMEZAWA Hiroyuki 已提交
1909
	struct oom_wait_info owait;
1910
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1911

1912
	owait.mem = memcg;
K
KAMEZAWA Hiroyuki 已提交
1913 1914 1915 1916
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1917
	need_to_kill = true;
1918
	mem_cgroup_mark_under_oom(memcg);
1919

1920
	/* At first, try to OOM lock hierarchy under memcg.*/
1921
	spin_lock(&memcg_oom_lock);
1922
	locked = mem_cgroup_oom_lock(memcg);
K
KAMEZAWA Hiroyuki 已提交
1923 1924 1925 1926 1927
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1928
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1929
	if (!locked || memcg->oom_kill_disable)
1930 1931
		need_to_kill = false;
	if (locked)
1932
		mem_cgroup_oom_notify(memcg);
1933
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1934

1935 1936
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
1937
		mem_cgroup_out_of_memory(memcg, mask);
1938
	} else {
K
KAMEZAWA Hiroyuki 已提交
1939
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1940
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1941
	}
1942
	spin_lock(&memcg_oom_lock);
1943
	if (locked)
1944 1945
		mem_cgroup_oom_unlock(memcg);
	memcg_wakeup_oom(memcg);
1946
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
1947

1948
	mem_cgroup_unmark_under_oom(memcg);
1949

K
KAMEZAWA Hiroyuki 已提交
1950 1951 1952
	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
1953
	schedule_timeout_uninterruptible(1);
K
KAMEZAWA Hiroyuki 已提交
1954
	return true;
1955 1956
}

1957 1958 1959
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1979
 */
1980

1981 1982
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1983
{
1984
	struct mem_cgroup *memcg;
1985 1986
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1987
	unsigned long uninitialized_var(flags);
1988 1989 1990 1991

	if (unlikely(!pc))
		return;

1992
	rcu_read_lock();
1993 1994
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1995 1996
		goto out;
	/* pc->mem_cgroup is unstable ? */
1997
	if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
1998
		/* take a lock against to access pc->mem_cgroup */
1999
		move_lock_page_cgroup(pc, &flags);
2000
		need_unlock = true;
2001 2002
		memcg = pc->mem_cgroup;
		if (!memcg || !PageCgroupUsed(pc))
2003 2004
			goto out;
	}
2005 2006

	switch (idx) {
2007
	case MEMCG_NR_FILE_MAPPED:
2008 2009 2010
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
2011
			ClearPageCgroupFileMapped(pc);
2012
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2013 2014 2015
		break;
	default:
		BUG();
2016
	}
2017

2018
	this_cpu_add(memcg->stat->count[idx], val);
2019

2020 2021
out:
	if (unlikely(need_unlock))
2022
		move_unlock_page_cgroup(pc, &flags);
2023 2024
	rcu_read_unlock();
	return;
2025
}
2026
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
2027

2028 2029 2030 2031
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2032
#define CHARGE_BATCH	32U
2033 2034
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2035
	unsigned int nr_pages;
2036
	struct work_struct work;
2037 2038
	unsigned long flags;
#define FLUSHING_CACHED_CHARGE	(0)
2039 2040
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2041
static DEFINE_MUTEX(percpu_charge_mutex);
2042 2043

/*
2044
 * Try to consume stocked charge on this cpu. If success, one page is consumed
2045 2046 2047 2048
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
2049
static bool consume_stock(struct mem_cgroup *memcg)
2050 2051 2052 2053 2054
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
2055
	if (memcg == stock->cached && stock->nr_pages)
2056
		stock->nr_pages--;
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2070 2071 2072 2073
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2074
		if (do_swap_account)
2075 2076
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2089
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2090 2091 2092 2093
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2094
 * This will be consumed by consume_stock() function, later.
2095
 */
2096
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2097 2098 2099
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2100
	if (stock->cached != memcg) { /* reset if necessary */
2101
		drain_stock(stock);
2102
		stock->cached = memcg;
2103
	}
2104
	stock->nr_pages += nr_pages;
2105 2106 2107 2108
	put_cpu_var(memcg_stock);
}

/*
2109
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2110 2111
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2112
 */
2113
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2114
{
2115
	int cpu, curcpu;
2116

2117 2118
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2119
	curcpu = get_cpu();
2120 2121
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2122
		struct mem_cgroup *memcg;
2123

2124 2125
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2126
			continue;
2127
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2128
			continue;
2129 2130 2131 2132 2133 2134
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2135
	}
2136
	put_cpu();
2137 2138 2139 2140 2141 2142

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2143
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2144 2145 2146
			flush_work(&stock->work);
	}
out:
2147
 	put_online_cpus();
2148 2149 2150 2151 2152 2153 2154 2155
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2156
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2157
{
2158 2159 2160 2161 2162
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2163
	drain_all_stock(root_memcg, false);
2164
	mutex_unlock(&percpu_charge_mutex);
2165 2166 2167
}

/* This is a synchronous drain interface. */
2168
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2169 2170
{
	/* called when force_empty is called */
2171
	mutex_lock(&percpu_charge_mutex);
2172
	drain_all_stock(root_memcg, true);
2173
	mutex_unlock(&percpu_charge_mutex);
2174 2175
}

2176 2177 2178 2179
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2180
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2181 2182 2183
{
	int i;

2184
	spin_lock(&memcg->pcp_counter_lock);
2185
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2186
		long x = per_cpu(memcg->stat->count[i], cpu);
2187

2188 2189
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2190
	}
2191
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2192
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2193

2194 2195
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2196
	}
2197
	/* need to clear ON_MOVE value, works as a kind of lock. */
2198 2199
	per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&memcg->pcp_counter_lock);
2200 2201
}

2202
static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2203 2204 2205
{
	int idx = MEM_CGROUP_ON_MOVE;

2206 2207 2208
	spin_lock(&memcg->pcp_counter_lock);
	per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
2209 2210 2211
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2212 2213 2214 2215 2216
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2217
	struct mem_cgroup *iter;
2218

2219
	if ((action == CPU_ONLINE)) {
2220
		for_each_mem_cgroup(iter)
2221 2222 2223 2224
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

2225
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2226
		return NOTIFY_OK;
2227

2228
	for_each_mem_cgroup(iter)
2229 2230
		mem_cgroup_drain_pcp_counter(iter, cpu);

2231 2232 2233 2234 2235
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2236 2237 2238 2239 2240 2241 2242 2243 2244 2245

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2246
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2247
				unsigned int nr_pages, bool oom_check)
2248
{
2249
	unsigned long csize = nr_pages * PAGE_SIZE;
2250 2251 2252 2253 2254
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2255
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2256 2257 2258 2259

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2260
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2261 2262 2263
		if (likely(!ret))
			return CHARGE_OK;

2264
		res_counter_uncharge(&memcg->res, csize);
2265 2266 2267 2268
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2269
	/*
2270 2271
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2272 2273 2274 2275
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2276
	if (nr_pages == CHARGE_BATCH)
2277 2278 2279 2280 2281
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2282
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2283
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2284
		return CHARGE_RETRY;
2285
	/*
2286 2287 2288 2289 2290 2291 2292
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2293
	 */
2294
	if (nr_pages == 1 && ret)
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2314 2315 2316
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
2317
 */
2318
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2319
				   gfp_t gfp_mask,
2320
				   unsigned int nr_pages,
2321
				   struct mem_cgroup **ptr,
2322
				   bool oom)
2323
{
2324
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2325
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2326
	struct mem_cgroup *memcg = NULL;
2327
	int ret;
2328

K
KAMEZAWA Hiroyuki 已提交
2329 2330 2331 2332 2333 2334 2335 2336
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2337

2338
	/*
2339 2340
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2341 2342 2343
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
2344
	if (!*ptr && !mm)
K
KAMEZAWA Hiroyuki 已提交
2345 2346
		goto bypass;
again:
2347 2348 2349 2350
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		VM_BUG_ON(css_is_removed(&memcg->css));
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2351
			goto done;
2352
		if (nr_pages == 1 && consume_stock(memcg))
K
KAMEZAWA Hiroyuki 已提交
2353
			goto done;
2354
		css_get(&memcg->css);
2355
	} else {
K
KAMEZAWA Hiroyuki 已提交
2356
		struct task_struct *p;
2357

K
KAMEZAWA Hiroyuki 已提交
2358 2359 2360
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2361
		 * Because we don't have task_lock(), "p" can exit.
2362
		 * In that case, "memcg" can point to root or p can be NULL with
2363 2364 2365 2366 2367 2368
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2369
		 */
2370 2371
		memcg = mem_cgroup_from_task(p);
		if (!memcg || mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2372 2373 2374
			rcu_read_unlock();
			goto done;
		}
2375
		if (nr_pages == 1 && consume_stock(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2388
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2389 2390 2391 2392 2393
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2394

2395 2396
	do {
		bool oom_check;
2397

2398
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2399
		if (fatal_signal_pending(current)) {
2400
			css_put(&memcg->css);
2401
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2402
		}
2403

2404 2405 2406 2407
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2408
		}
2409

2410
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2411 2412 2413 2414
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2415
			batch = nr_pages;
2416 2417
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2418
			goto again;
2419
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2420
			css_put(&memcg->css);
2421 2422
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2423
			if (!oom) {
2424
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2425
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2426
			}
2427 2428 2429 2430
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2431
			css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2432
			goto bypass;
2433
		}
2434 2435
	} while (ret != CHARGE_OK);

2436
	if (batch > nr_pages)
2437 2438
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2439
done:
2440
	*ptr = memcg;
2441 2442
	return 0;
nomem:
2443
	*ptr = NULL;
2444
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2445
bypass:
2446
	*ptr = NULL;
K
KAMEZAWA Hiroyuki 已提交
2447
	return 0;
2448
}
2449

2450 2451 2452 2453 2454
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2455
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2456
				       unsigned int nr_pages)
2457
{
2458
	if (!mem_cgroup_is_root(memcg)) {
2459 2460
		unsigned long bytes = nr_pages * PAGE_SIZE;

2461
		res_counter_uncharge(&memcg->res, bytes);
2462
		if (do_swap_account)
2463
			res_counter_uncharge(&memcg->memsw, bytes);
2464
	}
2465 2466
}

2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2486
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2487
{
2488
	struct mem_cgroup *memcg = NULL;
2489
	struct page_cgroup *pc;
2490
	unsigned short id;
2491 2492
	swp_entry_t ent;

2493 2494 2495
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2496
	lock_page_cgroup(pc);
2497
	if (PageCgroupUsed(pc)) {
2498 2499 2500
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2501
	} else if (PageSwapCache(page)) {
2502
		ent.val = page_private(page);
2503 2504
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
2505 2506 2507
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2508
		rcu_read_unlock();
2509
	}
2510
	unlock_page_cgroup(pc);
2511
	return memcg;
2512 2513
}

2514
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2515
				       struct page *page,
2516
				       unsigned int nr_pages,
2517
				       struct page_cgroup *pc,
2518
				       enum charge_type ctype)
2519
{
2520 2521 2522
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2523
		__mem_cgroup_cancel_charge(memcg, nr_pages);
2524 2525 2526 2527 2528 2529
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2530
	pc->mem_cgroup = memcg;
2531 2532 2533 2534 2535 2536 2537
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2538
	smp_wmb();
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2552

2553
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2554
	unlock_page_cgroup(pc);
2555 2556 2557 2558 2559
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2560
	memcg_check_events(memcg, page);
2561
}
2562

2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
/*
 * Because tail pages are not marked as "used", set it. We're under
 * zone->lru_lock, 'splitting on pmd' and compund_lock.
 */
void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
	unsigned long flags;

2577 2578
	if (mem_cgroup_disabled())
		return;
2579
	/*
2580
	 * We have no races with charge/uncharge but will have races with
2581 2582 2583 2584 2585 2586
	 * page state accounting.
	 */
	move_lock_page_cgroup(head_pc, &flags);

	tail_pc->mem_cgroup = head_pc->mem_cgroup;
	smp_wmb(); /* see __commit_charge() */
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
	if (PageCgroupAcctLRU(head_pc)) {
		enum lru_list lru;
		struct mem_cgroup_per_zone *mz;

		/*
		 * LRU flags cannot be copied because we need to add tail
		 *.page to LRU by generic call and our hook will be called.
		 * We hold lru_lock, then, reduce counter directly.
		 */
		lru = page_lru(head);
2597
		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2598 2599
		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
	}
2600 2601 2602 2603 2604
	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	move_unlock_page_cgroup(head_pc, &flags);
}
#endif

2605
/**
2606
 * mem_cgroup_move_account - move account of the page
2607
 * @page: the page
2608
 * @nr_pages: number of regular pages (>1 for huge pages)
2609 2610 2611
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2612
 * @uncharge: whether we should call uncharge and css_put against @from.
2613 2614
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2615
 * - page is not on LRU (isolate_page() is useful.)
2616
 * - compound_lock is held when nr_pages > 1
2617
 *
2618
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2619
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2620 2621
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2622
 */
2623 2624 2625 2626 2627 2628
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2629
{
2630 2631
	unsigned long flags;
	int ret;
2632

2633
	VM_BUG_ON(from == to);
2634
	VM_BUG_ON(PageLRU(page));
2635 2636 2637 2638 2639 2640 2641
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2642
	if (nr_pages > 1 && !PageTransHuge(page))
2643 2644 2645 2646 2647 2648 2649 2650 2651
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

	move_lock_page_cgroup(pc, &flags);
2652

2653
	if (PageCgroupFileMapped(pc)) {
2654 2655 2656 2657 2658
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2659
	}
2660
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2661 2662
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2663
		__mem_cgroup_cancel_charge(from, nr_pages);
2664

2665
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2666
	pc->mem_cgroup = to;
2667
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2668 2669 2670
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2671
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2672
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2673
	 * status here.
2674
	 */
2675 2676 2677
	move_unlock_page_cgroup(pc, &flags);
	ret = 0;
unlock:
2678
	unlock_page_cgroup(pc);
2679 2680 2681
	/*
	 * check events
	 */
2682 2683
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2684
out:
2685 2686 2687 2688 2689 2690 2691
	return ret;
}

/*
 * move charges to its parent.
 */

2692 2693
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2694 2695 2696 2697 2698 2699
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2700
	unsigned int nr_pages;
2701
	unsigned long uninitialized_var(flags);
2702 2703 2704 2705 2706 2707
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2708 2709 2710 2711 2712
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2713

2714
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2715

2716
	parent = mem_cgroup_from_cont(pcg);
2717
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2718
	if (ret || !parent)
2719
		goto put_back;
2720

2721
	if (nr_pages > 1)
2722 2723
		flags = compound_lock_irqsave(page);

2724
	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2725
	if (ret)
2726
		__mem_cgroup_cancel_charge(parent, nr_pages);
2727

2728
	if (nr_pages > 1)
2729
		compound_unlock_irqrestore(page, flags);
2730
put_back:
K
KAMEZAWA Hiroyuki 已提交
2731
	putback_lru_page(page);
2732
put:
2733
	put_page(page);
2734
out:
2735 2736 2737
	return ret;
}

2738 2739 2740 2741 2742 2743 2744
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2745
				gfp_t gfp_mask, enum charge_type ctype)
2746
{
2747
	struct mem_cgroup *memcg = NULL;
2748
	unsigned int nr_pages = 1;
2749
	struct page_cgroup *pc;
2750
	bool oom = true;
2751
	int ret;
A
Andrea Arcangeli 已提交
2752

A
Andrea Arcangeli 已提交
2753
	if (PageTransHuge(page)) {
2754
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2755
		VM_BUG_ON(!PageTransHuge(page));
2756 2757 2758 2759 2760
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2761
	}
2762 2763

	pc = lookup_page_cgroup(page);
2764
	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2765

2766 2767
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
	if (ret || !memcg)
2768 2769
		return ret;

2770
	__mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2771 2772 2773
	return 0;
}

2774 2775
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2776
{
2777
	if (mem_cgroup_disabled())
2778
		return 0;
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2790
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2791
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2792 2793
}

D
Daisuke Nishimura 已提交
2794 2795 2796 2797
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2798
static void
2799
__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2800 2801 2802 2803 2804 2805 2806 2807 2808
					enum charge_type ctype)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);
	/*
	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
	 * is already on LRU. It means the page may on some other page_cgroup's
	 * LRU. Take care of it.
	 */
	mem_cgroup_lru_del_before_commit(page);
2809
	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2810 2811 2812 2813
	mem_cgroup_lru_add_after_commit(page);
	return;
}

2814 2815
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2816
{
2817
	struct mem_cgroup *memcg = NULL;
2818 2819
	int ret;

2820
	if (mem_cgroup_disabled())
2821
		return 0;
2822 2823
	if (PageCompound(page))
		return 0;
2824

2825
	if (unlikely(!mm))
2826
		mm = &init_mm;
2827

2828
	if (page_is_file_cache(page)) {
2829 2830
		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &memcg, true);
		if (ret || !memcg)
2831
			return ret;
2832

2833 2834 2835 2836 2837
		/*
		 * FUSE reuses pages without going through the final
		 * put that would remove them from the LRU list, make
		 * sure that they get relinked properly.
		 */
2838
		__mem_cgroup_commit_charge_lrucare(page, memcg,
2839 2840 2841
					MEM_CGROUP_CHARGE_TYPE_CACHE);
		return ret;
	}
D
Daisuke Nishimura 已提交
2842 2843
	/* shmem */
	if (PageSwapCache(page)) {
2844
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
D
Daisuke Nishimura 已提交
2845
		if (!ret)
2846
			__mem_cgroup_commit_charge_swapin(page, memcg,
D
Daisuke Nishimura 已提交
2847 2848 2849
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2850
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2851 2852

	return ret;
2853 2854
}

2855 2856 2857
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2858
 * struct page_cgroup is acquired. This refcnt will be consumed by
2859 2860
 * "commit()" or removed by "cancel()"
 */
2861 2862 2863 2864
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
2865
	struct mem_cgroup *memcg;
2866
	int ret;
2867

2868 2869
	*ptr = NULL;

2870
	if (mem_cgroup_disabled())
2871 2872 2873 2874 2875 2876
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2877 2878 2879
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2880 2881
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2882
		goto charge_cur_mm;
2883 2884
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
2885
		goto charge_cur_mm;
2886
	*ptr = memcg;
2887
	ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2888
	css_put(&memcg->css);
2889
	return ret;
2890 2891 2892
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2893
	return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2894 2895
}

D
Daisuke Nishimura 已提交
2896 2897 2898
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2899
{
2900
	if (mem_cgroup_disabled())
2901 2902 2903
		return;
	if (!ptr)
		return;
2904
	cgroup_exclude_rmdir(&ptr->css);
2905 2906

	__mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2907 2908 2909
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2910 2911 2912
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2913
	 */
2914
	if (do_swap_account && PageSwapCache(page)) {
2915
		swp_entry_t ent = {.val = page_private(page)};
2916
		unsigned short id;
2917
		struct mem_cgroup *memcg;
2918 2919 2920 2921

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2922
		if (memcg) {
2923 2924 2925 2926
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2927
			if (!mem_cgroup_is_root(memcg))
2928
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2929
			mem_cgroup_swap_statistics(memcg, false);
2930 2931
			mem_cgroup_put(memcg);
		}
2932
		rcu_read_unlock();
2933
	}
2934 2935 2936 2937 2938 2939
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2940 2941
}

D
Daisuke Nishimura 已提交
2942 2943 2944 2945 2946 2947
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2948
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2949
{
2950
	if (mem_cgroup_disabled())
2951
		return;
2952
	if (!memcg)
2953
		return;
2954
	__mem_cgroup_cancel_charge(memcg, 1);
2955 2956
}

2957
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2958 2959
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2960 2961 2962
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2963

2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
2975
		batch->memcg = memcg;
2976 2977
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2978
	 * In those cases, all pages freed continuously can be expected to be in
2979 2980 2981 2982 2983 2984 2985 2986
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2987
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2988 2989
		goto direct_uncharge;

2990 2991 2992 2993 2994
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
2995
	if (batch->memcg != memcg)
2996 2997
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2998
	batch->nr_pages++;
2999
	if (uncharge_memsw)
3000
		batch->memsw_nr_pages++;
3001 3002
	return;
direct_uncharge:
3003
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3004
	if (uncharge_memsw)
3005 3006 3007
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
3008 3009
	return;
}
3010

3011
/*
3012
 * uncharge if !page_mapped(page)
3013
 */
3014
static struct mem_cgroup *
3015
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
3016
{
3017
	struct mem_cgroup *memcg = NULL;
3018 3019
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3020

3021
	if (mem_cgroup_disabled())
3022
		return NULL;
3023

K
KAMEZAWA Hiroyuki 已提交
3024
	if (PageSwapCache(page))
3025
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
3026

A
Andrea Arcangeli 已提交
3027
	if (PageTransHuge(page)) {
3028
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3029 3030
		VM_BUG_ON(!PageTransHuge(page));
	}
3031
	/*
3032
	 * Check if our page_cgroup is valid
3033
	 */
3034 3035
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
3036
		return NULL;
3037

3038
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3039

3040
	memcg = pc->mem_cgroup;
3041

K
KAMEZAWA Hiroyuki 已提交
3042 3043 3044 3045 3046
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
3047
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3048 3049
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3061
	}
K
KAMEZAWA Hiroyuki 已提交
3062

3063
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3064

3065
	ClearPageCgroupUsed(pc);
3066 3067 3068 3069 3070 3071
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3072

3073
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3074
	/*
3075
	 * even after unlock, we have memcg->res.usage here and this memcg
K
KAMEZAWA Hiroyuki 已提交
3076 3077
	 * will never be freed.
	 */
3078
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3079
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3080 3081
		mem_cgroup_swap_statistics(memcg, true);
		mem_cgroup_get(memcg);
K
KAMEZAWA Hiroyuki 已提交
3082
	}
3083 3084
	if (!mem_cgroup_is_root(memcg))
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3085

3086
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
3087 3088 3089

unlock_out:
	unlock_page_cgroup(pc);
3090
	return NULL;
3091 3092
}

3093 3094
void mem_cgroup_uncharge_page(struct page *page)
{
3095 3096 3097 3098 3099
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
3100 3101 3102 3103 3104 3105
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3106
	VM_BUG_ON(page->mapping);
3107 3108 3109
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3124 3125
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3146 3147 3148 3149 3150 3151
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3152
	memcg_oom_recover(batch->memcg);
3153 3154 3155 3156
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3157
#ifdef CONFIG_SWAP
3158
/*
3159
 * called after __delete_from_swap_cache() and drop "page" account.
3160 3161
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3162 3163
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3164 3165
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3166 3167 3168 3169 3170 3171
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3172

K
KAMEZAWA Hiroyuki 已提交
3173 3174 3175 3176 3177
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3178
		swap_cgroup_record(ent, css_id(&memcg->css));
3179
}
3180
#endif
3181 3182 3183 3184 3185 3186 3187

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3188
{
3189
	struct mem_cgroup *memcg;
3190
	unsigned short id;
3191 3192 3193 3194

	if (!do_swap_account)
		return;

3195 3196 3197
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3198
	if (memcg) {
3199 3200 3201 3202
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3203
		if (!mem_cgroup_is_root(memcg))
3204
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3205
		mem_cgroup_swap_statistics(memcg, false);
3206 3207
		mem_cgroup_put(memcg);
	}
3208
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3209
}
3210 3211 3212 3213 3214 3215

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
3216
 * @need_fixup: whether we should fixup res_counters and refcounts.
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3227
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3228 3229 3230 3231 3232 3233 3234 3235
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3236
		mem_cgroup_swap_statistics(to, true);
3237
		/*
3238 3239 3240 3241 3242 3243
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3244 3245
		 */
		mem_cgroup_get(to);
3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
3257 3258 3259 3260 3261 3262
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3263
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3264 3265 3266
{
	return -EINVAL;
}
3267
#endif
K
KAMEZAWA Hiroyuki 已提交
3268

3269
/*
3270 3271
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3272
 */
3273
int mem_cgroup_prepare_migration(struct page *page,
3274
	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3275
{
3276
	struct mem_cgroup *memcg = NULL;
3277
	struct page_cgroup *pc;
3278
	enum charge_type ctype;
3279
	int ret = 0;
3280

3281 3282
	*ptr = NULL;

A
Andrea Arcangeli 已提交
3283
	VM_BUG_ON(PageTransHuge(page));
3284
	if (mem_cgroup_disabled())
3285 3286
		return 0;

3287 3288 3289
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3290 3291
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3323
	}
3324
	unlock_page_cgroup(pc);
3325 3326 3327 3328
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
3329
	if (!memcg)
3330
		return 0;
3331

3332
	*ptr = memcg;
3333
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3334
	css_put(&memcg->css);/* drop extra refcnt */
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
3346
	}
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3360
	__mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
3361
	return ret;
3362
}
3363

3364
/* remove redundant charge if migration failed*/
3365
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3366
	struct page *oldpage, struct page *newpage, bool migration_ok)
3367
{
3368
	struct page *used, *unused;
3369 3370
	struct page_cgroup *pc;

3371
	if (!memcg)
3372
		return;
3373
	/* blocks rmdir() */
3374
	cgroup_exclude_rmdir(&memcg->css);
3375
	if (!migration_ok) {
3376 3377
		used = oldpage;
		unused = newpage;
3378
	} else {
3379
		used = newpage;
3380 3381
		unused = oldpage;
	}
3382
	/*
3383 3384 3385
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3386
	 */
3387 3388 3389 3390
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3391

3392 3393
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

3394
	/*
3395 3396 3397 3398 3399 3400
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3401
	 */
3402 3403
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
3404
	/*
3405 3406
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3407 3408 3409
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
3410
	cgroup_release_and_wakeup_rmdir(&memcg->css);
3411
}
3412

3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
	struct zone *zone;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	unsigned long flags;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
	memcg = pc->mem_cgroup;
	mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
	ClearPageCgroupUsed(pc);
	unlock_page_cgroup(pc);

	if (PageSwapBacked(oldpage))
		type = MEM_CGROUP_CHARGE_TYPE_SHMEM;

	zone = page_zone(newpage);
	pc = lookup_page_cgroup(newpage);
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
	spin_lock_irqsave(&zone->lru_lock, flags);
	if (PageLRU(newpage))
		del_page_from_lru_list(zone, newpage, page_lru(newpage));
	__mem_cgroup_commit_charge(memcg, newpage, 1, pc, type);
	if (PageLRU(newpage))
		add_page_to_lru_list(zone, newpage, page_lru(newpage));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}

3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
		int ret = -1;
		char *path;

		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
		       pc, pc->flags, pc->mem_cgroup);

		path = kmalloc(PATH_MAX, GFP_KERNEL);
		if (path) {
			rcu_read_lock();
			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
							path, PATH_MAX);
			rcu_read_unlock();
		}

		printk(KERN_CONT "(%s)\n",
				(ret < 0) ? "cannot get the path" : path);
		kfree(path);
	}
}
#endif

3503 3504
static DEFINE_MUTEX(set_limit_mutex);

3505
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3506
				unsigned long long val)
3507
{
3508
	int retry_count;
3509
	u64 memswlimit, memlimit;
3510
	int ret = 0;
3511 3512
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3513
	int enlarge;
3514 3515 3516 3517 3518 3519 3520 3521 3522

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3523

3524
	enlarge = 0;
3525
	while (retry_count) {
3526 3527 3528 3529
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3530 3531 3532
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3533
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3534 3535 3536 3537 3538 3539
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3540 3541
			break;
		}
3542 3543 3544 3545 3546

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3547
		ret = res_counter_set_limit(&memcg->res, val);
3548 3549 3550 3551 3552 3553
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3554 3555 3556 3557 3558
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3559 3560
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
3561 3562 3563 3564 3565 3566
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3567
	}
3568 3569
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3570

3571 3572 3573
	return ret;
}

L
Li Zefan 已提交
3574 3575
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3576
{
3577
	int retry_count;
3578
	u64 memlimit, memswlimit, oldusage, curusage;
3579 3580
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3581
	int enlarge = 0;
3582

3583 3584 3585
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3586 3587 3588 3589 3590 3591 3592 3593
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
3594
		 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3595 3596 3597 3598 3599 3600 3601 3602
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3603 3604 3605
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3606
		ret = res_counter_set_limit(&memcg->memsw, val);
3607 3608 3609 3610 3611 3612
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3613 3614 3615 3616 3617
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3618 3619 3620
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
3621
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3622
		/* Usage is reduced ? */
3623
		if (curusage >= oldusage)
3624
			retry_count--;
3625 3626
		else
			oldusage = curusage;
3627
	}
3628 3629
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3630 3631 3632
	return ret;
}

3633
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3634 3635
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3636 3637 3638 3639 3640 3641
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3642
	unsigned long long excess;
3643
	unsigned long nr_scanned;
3644 3645 3646 3647

	if (order > 0)
		return 0;

3648
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3662
		nr_scanned = 0;
3663 3664
		reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone,
						    gfp_mask, &nr_scanned);
3665
		nr_reclaimed += reclaimed;
3666
		*total_scanned += nr_scanned;
3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3689
				if (next_mz == mz)
3690
					css_put(&next_mz->mem->css);
3691
				else /* next_mz == NULL or other memcg */
3692 3693 3694 3695
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3696
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3697 3698 3699 3700 3701 3702 3703 3704
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3705 3706
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3725 3726 3727 3728
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3729
static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
3730
				int node, int zid, enum lru_list lru)
3731
{
K
KAMEZAWA Hiroyuki 已提交
3732 3733
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
3734
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
3735
	unsigned long flags, loop;
3736
	struct list_head *list;
3737
	int ret = 0;
3738

K
KAMEZAWA Hiroyuki 已提交
3739
	zone = &NODE_DATA(node)->node_zones[zid];
3740
	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3741
	list = &mz->lists[lru];
3742

3743 3744 3745 3746 3747
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3748 3749
		struct page *page;

3750
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3751
		spin_lock_irqsave(&zone->lru_lock, flags);
3752
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3753
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3754
			break;
3755 3756 3757 3758
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
3759
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3760
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3761 3762
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3763
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3764

3765
		page = lookup_cgroup_page(pc);
3766

3767
		ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3768
		if (ret == -ENOMEM)
3769
			break;
3770 3771 3772 3773 3774 3775 3776

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
3777
	}
K
KAMEZAWA Hiroyuki 已提交
3778

3779 3780 3781
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3782 3783 3784 3785 3786 3787
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3788
static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3789
{
3790 3791 3792
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3793
	struct cgroup *cgrp = memcg->css.cgroup;
3794

3795
	css_get(&memcg->css);
3796 3797

	shrink = 0;
3798 3799 3800
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3801
move_account:
3802
	do {
3803
		ret = -EBUSY;
3804 3805 3806 3807
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3808
			goto out;
3809 3810
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3811
		drain_all_stock_sync(memcg);
3812
		ret = 0;
3813
		mem_cgroup_start_move(memcg);
3814
		for_each_node_state(node, N_HIGH_MEMORY) {
3815
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3816
				enum lru_list l;
3817
				for_each_lru(l) {
3818
					ret = mem_cgroup_force_empty_list(memcg,
K
KAMEZAWA Hiroyuki 已提交
3819
							node, zid, l);
3820 3821 3822
					if (ret)
						break;
				}
3823
			}
3824 3825 3826
			if (ret)
				break;
		}
3827 3828
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
3829 3830 3831
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3832
		cond_resched();
3833
	/* "ret" should also be checked to ensure all lists are empty. */
3834
	} while (memcg->res.usage > 0 || ret);
3835
out:
3836
	css_put(&memcg->css);
3837
	return ret;
3838 3839

try_to_free:
3840 3841
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3842 3843 3844
		ret = -EBUSY;
		goto out;
	}
3845 3846
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3847 3848
	/* try to free all pages in this cgroup */
	shrink = 1;
3849
	while (nr_retries && memcg->res.usage > 0) {
3850
		int progress;
3851 3852 3853 3854 3855

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
3856
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3857
						false);
3858
		if (!progress) {
3859
			nr_retries--;
3860
			/* maybe some writeback is necessary */
3861
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3862
		}
3863 3864

	}
K
KAMEZAWA Hiroyuki 已提交
3865
	lru_add_drain();
3866
	/* try move_account...there may be some *locked* pages. */
3867
	goto move_account;
3868 3869
}

3870 3871 3872 3873 3874 3875
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3876 3877 3878 3879 3880 3881 3882 3883 3884
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
3885
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3886
	struct cgroup *parent = cont->parent;
3887
	struct mem_cgroup *parent_memcg = NULL;
3888 3889

	if (parent)
3890
		parent_memcg = mem_cgroup_from_cont(parent);
3891 3892 3893

	cgroup_lock();
	/*
3894
	 * If parent's use_hierarchy is set, we can't make any modifications
3895 3896 3897 3898 3899 3900
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3901
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3902 3903
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
3904
			memcg->use_hierarchy = val;
3905 3906 3907 3908 3909 3910 3911 3912 3913
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3914

3915
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3916
					       enum mem_cgroup_stat_index idx)
3917
{
K
KAMEZAWA Hiroyuki 已提交
3918
	struct mem_cgroup *iter;
3919
	long val = 0;
3920

3921
	/* Per-cpu values can be negative, use a signed accumulator */
3922
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3923 3924 3925 3926 3927
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3928 3929
}

3930
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3931
{
K
KAMEZAWA Hiroyuki 已提交
3932
	u64 val;
3933

3934
	if (!mem_cgroup_is_root(memcg)) {
3935
		if (!swap)
3936
			return res_counter_read_u64(&memcg->res, RES_USAGE);
3937
		else
3938
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3939 3940
	}

3941 3942
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3943

K
KAMEZAWA Hiroyuki 已提交
3944
	if (swap)
3945
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3946 3947 3948 3949

	return val << PAGE_SHIFT;
}

3950
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3951
{
3952
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3953
	u64 val;
3954 3955 3956 3957 3958 3959
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3960
		if (name == RES_USAGE)
3961
			val = mem_cgroup_usage(memcg, false);
3962
		else
3963
			val = res_counter_read_u64(&memcg->res, name);
3964 3965
		break;
	case _MEMSWAP:
3966
		if (name == RES_USAGE)
3967
			val = mem_cgroup_usage(memcg, true);
3968
		else
3969
			val = res_counter_read_u64(&memcg->memsw, name);
3970 3971 3972 3973 3974 3975
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3976
}
3977 3978 3979 3980
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3981 3982
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3983
{
3984
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3985
	int type, name;
3986 3987 3988
	unsigned long long val;
	int ret;

3989 3990 3991
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3992
	case RES_LIMIT:
3993 3994 3995 3996
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3997 3998
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3999 4000 4001
		if (ret)
			break;
		if (type == _MEM)
4002
			ret = mem_cgroup_resize_limit(memcg, val);
4003 4004
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
4005
		break;
4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
4020 4021 4022 4023 4024
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
4025 4026
}

4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

4055
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4056
{
4057
	struct mem_cgroup *memcg;
4058
	int type, name;
4059

4060
	memcg = mem_cgroup_from_cont(cont);
4061 4062 4063
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
4064
	case RES_MAX_USAGE:
4065
		if (type == _MEM)
4066
			res_counter_reset_max(&memcg->res);
4067
		else
4068
			res_counter_reset_max(&memcg->memsw);
4069 4070
		break;
	case RES_FAILCNT:
4071
		if (type == _MEM)
4072
			res_counter_reset_failcnt(&memcg->res);
4073
		else
4074
			res_counter_reset_failcnt(&memcg->memsw);
4075 4076
		break;
	}
4077

4078
	return 0;
4079 4080
}

4081 4082 4083 4084 4085 4086
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4087
#ifdef CONFIG_MMU
4088 4089 4090
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
4091
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4092 4093 4094 4095 4096 4097 4098 4099 4100

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
4101
	memcg->move_charge_at_immigrate = val;
4102 4103 4104 4105
	cgroup_unlock();

	return 0;
}
4106 4107 4108 4109 4110 4111 4112
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4113

K
KAMEZAWA Hiroyuki 已提交
4114 4115 4116 4117 4118

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
4119
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
4120 4121
	MCS_PGPGIN,
	MCS_PGPGOUT,
4122
	MCS_SWAP,
4123 4124
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
4125 4126 4127 4128 4129 4130 4131 4132 4133 4134
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4135 4136
};

K
KAMEZAWA Hiroyuki 已提交
4137 4138 4139 4140 4141 4142
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
4143
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
4144 4145
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
4146
	{"swap", "total_swap"},
4147 4148
	{"pgfault", "total_pgfault"},
	{"pgmajfault", "total_pgmajfault"},
K
KAMEZAWA Hiroyuki 已提交
4149 4150 4151 4152 4153 4154 4155 4156
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
4157
static void
4158
mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4159 4160 4161 4162
{
	s64 val;

	/* per cpu stat */
4163
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4164
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4165
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4166
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4167
	val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4168
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4169
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4170
	s->stat[MCS_PGPGIN] += val;
4171
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4172
	s->stat[MCS_PGPGOUT] += val;
4173
	if (do_swap_account) {
4174
		val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4175 4176
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4177
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4178
	s->stat[MCS_PGFAULT] += val;
4179
	val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4180
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4181 4182

	/* per zone stat */
4183
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4184
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4185
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
K
KAMEZAWA Hiroyuki 已提交
4186
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4187
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4188
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4189
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
K
KAMEZAWA Hiroyuki 已提交
4190
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4191
	val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
K
KAMEZAWA Hiroyuki 已提交
4192 4193 4194 4195
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
4196
mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4197
{
K
KAMEZAWA Hiroyuki 已提交
4198 4199
	struct mem_cgroup *iter;

4200
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4201
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4202 4203
}

4204 4205 4206 4207 4208 4209 4210 4211 4212
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);

4213
	total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4214 4215
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4216
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4217 4218 4219 4220
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4221
	file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4222 4223
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4224 4225
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_FILE);
4226 4227 4228 4229
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4230
	anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4231 4232
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4233 4234
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				LRU_ALL_ANON);
4235 4236 4237 4238
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

4239
	unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4240 4241
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
4242 4243
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
				BIT(LRU_UNEVICTABLE));
4244 4245 4246 4247 4248 4249 4250
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4251 4252
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4253 4254
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4255
	struct mcs_total_stat mystat;
4256 4257
	int i;

K
KAMEZAWA Hiroyuki 已提交
4258 4259
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
4260

4261

4262 4263 4264
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4265
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4266
	}
L
Lee Schermerhorn 已提交
4267

K
KAMEZAWA Hiroyuki 已提交
4268
	/* Hierarchical information */
4269 4270 4271 4272 4273 4274 4275
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4276

K
KAMEZAWA Hiroyuki 已提交
4277 4278
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
4279 4280 4281
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4282
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4283
	}
K
KAMEZAWA Hiroyuki 已提交
4284

K
KOSAKI Motohiro 已提交
4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4312 4313 4314
	return 0;
}

K
KOSAKI Motohiro 已提交
4315 4316 4317 4318
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

4319
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4320 4321 4322 4323 4324 4325 4326
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4327

K
KOSAKI Motohiro 已提交
4328 4329 4330 4331 4332 4333 4334
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4335 4336 4337

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4338 4339
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4340 4341
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4342
		return -EINVAL;
4343
	}
K
KOSAKI Motohiro 已提交
4344 4345 4346

	memcg->swappiness = val;

4347 4348
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4349 4350 4351
	return 0;
}

4352 4353 4354 4355 4356 4357 4358 4359
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4360
		t = rcu_dereference(memcg->thresholds.primary);
4361
	else
4362
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4374
	i = t->current_threshold;
4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4398
	t->current_threshold = i - 1;
4399 4400 4401 4402 4403 4404
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4405 4406 4407 4408 4409 4410 4411
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4412 4413 4414 4415 4416 4417 4418 4419 4420 4421
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

4422
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4423 4424 4425
{
	struct mem_cgroup_eventfd_list *ev;

4426
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4427 4428 4429 4430
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

4431
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4432
{
K
KAMEZAWA Hiroyuki 已提交
4433 4434
	struct mem_cgroup *iter;

4435
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4436
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4437 4438 4439 4440
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4441 4442
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4443 4444
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4445 4446
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4447
	int i, size, ret;
4448 4449 4450 4451 4452 4453

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4454

4455
	if (type == _MEM)
4456
		thresholds = &memcg->thresholds;
4457
	else if (type == _MEMSWAP)
4458
		thresholds = &memcg->memsw_thresholds;
4459 4460 4461 4462 4463 4464
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4465
	if (thresholds->primary)
4466 4467
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4468
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4469 4470

	/* Allocate memory for new array of thresholds */
4471
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4472
			GFP_KERNEL);
4473
	if (!new) {
4474 4475 4476
		ret = -ENOMEM;
		goto unlock;
	}
4477
	new->size = size;
4478 4479

	/* Copy thresholds (if any) to new array */
4480 4481
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4482
				sizeof(struct mem_cgroup_threshold));
4483 4484
	}

4485
	/* Add new threshold */
4486 4487
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4488 4489

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4490
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4491 4492 4493
			compare_thresholds, NULL);

	/* Find current threshold */
4494
	new->current_threshold = -1;
4495
	for (i = 0; i < size; i++) {
4496
		if (new->entries[i].threshold < usage) {
4497
			/*
4498 4499
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4500 4501
			 * it here.
			 */
4502
			++new->current_threshold;
4503 4504 4505
		}
	}

4506 4507 4508 4509 4510
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4511

4512
	/* To be sure that nobody uses thresholds */
4513 4514 4515 4516 4517 4518 4519 4520
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4521
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4522
	struct cftype *cft, struct eventfd_ctx *eventfd)
4523 4524
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4525 4526
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4527 4528
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4529
	int i, j, size;
4530 4531 4532

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4533
		thresholds = &memcg->thresholds;
4534
	else if (type == _MEMSWAP)
4535
		thresholds = &memcg->memsw_thresholds;
4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4551 4552 4553
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4554 4555 4556
			size++;
	}

4557
	new = thresholds->spare;
4558

4559 4560
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4561 4562
		kfree(new);
		new = NULL;
4563
		goto swap_buffers;
4564 4565
	}

4566
	new->size = size;
4567 4568

	/* Copy thresholds and find current threshold */
4569 4570 4571
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4572 4573
			continue;

4574 4575
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4576
			/*
4577
			 * new->current_threshold will not be used
4578 4579 4580
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4581
			++new->current_threshold;
4582 4583 4584 4585
		}
		j++;
	}

4586
swap_buffers:
4587 4588 4589
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4590

4591
	/* To be sure that nobody uses thresholds */
4592 4593 4594 4595
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4596

K
KAMEZAWA Hiroyuki 已提交
4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4609
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4610 4611 4612 4613 4614

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4615
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4616
		eventfd_signal(eventfd, 1);
4617
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4618 4619 4620 4621

	return 0;
}

4622
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4623 4624
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
4625
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
K
KAMEZAWA Hiroyuki 已提交
4626 4627 4628 4629 4630
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

4631
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4632

4633
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4634 4635 4636 4637 4638 4639
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4640
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4641 4642
}

4643 4644 4645
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
4646
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4647

4648
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4649

4650
	if (atomic_read(&memcg->under_oom))
4651 4652 4653 4654 4655 4656 4657 4658 4659
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
4660
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
4672
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4673 4674 4675
		cgroup_unlock();
		return -EINVAL;
	}
4676
	memcg->oom_kill_disable = val;
4677
	if (!val)
4678
		memcg_oom_recover(memcg);
4679 4680 4681 4682
	cgroup_unlock();
	return 0;
}

4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

4699 4700 4701
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
G
Glauber Costa 已提交
4702 4703 4704 4705 4706 4707 4708
	/*
	 * Part of this would be better living in a separate allocation
	 * function, leaving us with just the cgroup tree population work.
	 * We, however, depend on state such as network's proto_list that
	 * is only initialized after cgroup creation. I found the less
	 * cumbersome way to deal with it to defer it all to populate time
	 */
4709
	return mem_cgroup_sockets_init(cont, ss);
4710 4711
};

G
Glauber Costa 已提交
4712 4713 4714 4715 4716
static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
	mem_cgroup_sockets_destroy(cont, ss);
}
4717 4718 4719 4720 4721
#else
static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
G
Glauber Costa 已提交
4722 4723 4724 4725 4726

static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
}
4727 4728
#endif

B
Balbir Singh 已提交
4729 4730
static struct cftype mem_cgroup_files[] = {
	{
4731
		.name = "usage_in_bytes",
4732
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4733
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4734 4735
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4736
	},
4737 4738
	{
		.name = "max_usage_in_bytes",
4739
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4740
		.trigger = mem_cgroup_reset,
4741 4742
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4743
	{
4744
		.name = "limit_in_bytes",
4745
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4746
		.write_string = mem_cgroup_write,
4747
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4748
	},
4749 4750 4751 4752 4753 4754
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4755 4756
	{
		.name = "failcnt",
4757
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4758
		.trigger = mem_cgroup_reset,
4759
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4760
	},
4761 4762
	{
		.name = "stat",
4763
		.read_map = mem_control_stat_show,
4764
	},
4765 4766 4767 4768
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4769 4770 4771 4772 4773
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4774 4775 4776 4777 4778
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4779 4780 4781 4782 4783
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4784 4785
	{
		.name = "oom_control",
4786 4787
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4788 4789 4790 4791
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4792 4793 4794 4795
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
4796
		.mode = S_IRUGO,
4797 4798
	},
#endif
B
Balbir Singh 已提交
4799 4800
};

4801 4802 4803 4804 4805 4806
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4807 4808
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4844
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4845 4846
{
	struct mem_cgroup_per_node *pn;
4847
	struct mem_cgroup_per_zone *mz;
4848
	enum lru_list l;
4849
	int zone, tmp = node;
4850 4851 4852 4853 4854 4855 4856 4857
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4858 4859
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4860
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4861 4862
	if (!pn)
		return 1;
4863 4864 4865

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4866 4867
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
4868
		mz->usage_in_excess = 0;
4869
		mz->on_tree = false;
4870
		mz->mem = memcg;
4871
	}
4872
	memcg->info.nodeinfo[node] = pn;
4873 4874 4875
	return 0;
}

4876
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4877
{
4878
	kfree(memcg->info.nodeinfo[node]);
4879 4880
}

4881 4882 4883
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4884
	int size = sizeof(struct mem_cgroup);
4885

4886
	/* Can be very big if MAX_NUMNODES is very big */
4887
	if (size < PAGE_SIZE)
4888
		mem = kzalloc(size, GFP_KERNEL);
4889
	else
4890
		mem = vzalloc(size);
4891

4892 4893 4894
	if (!mem)
		return NULL;

4895
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4896 4897
	if (!mem->stat)
		goto out_free;
4898
	spin_lock_init(&mem->pcp_counter_lock);
4899
	return mem;
4900 4901 4902 4903 4904 4905 4906

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4907 4908
}

4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4920
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4921
{
K
KAMEZAWA Hiroyuki 已提交
4922 4923
	int node;

4924 4925
	mem_cgroup_remove_from_trees(memcg);
	free_css_id(&mem_cgroup_subsys, &memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4926

K
KAMEZAWA Hiroyuki 已提交
4927
	for_each_node_state(node, N_POSSIBLE)
4928
		free_mem_cgroup_per_zone_info(memcg, node);
K
KAMEZAWA Hiroyuki 已提交
4929

4930
	free_percpu(memcg->stat);
4931
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4932
		kfree(memcg);
4933
	else
4934
		vfree(memcg);
4935 4936
}

4937
static void mem_cgroup_get(struct mem_cgroup *memcg)
4938
{
4939
	atomic_inc(&memcg->refcnt);
4940 4941
}

4942
static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4943
{
4944 4945 4946
	if (atomic_sub_and_test(count, &memcg->refcnt)) {
		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
		__mem_cgroup_free(memcg);
4947 4948 4949
		if (parent)
			mem_cgroup_put(parent);
	}
4950 4951
}

4952
static void mem_cgroup_put(struct mem_cgroup *memcg)
4953
{
4954
	__mem_cgroup_put(memcg, 1);
4955 4956
}

4957 4958 4959
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4960
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4961
{
4962
	if (!memcg->res.parent)
4963
		return NULL;
4964
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4965
}
G
Glauber Costa 已提交
4966
EXPORT_SYMBOL(parent_mem_cgroup);
4967

4968 4969 4970
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4971
	if (!mem_cgroup_disabled() && really_do_swap_account)
4972 4973 4974 4975 4976 4977 4978 4979
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
5005
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
5006 5007
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
5008
	struct mem_cgroup *memcg, *parent;
K
KAMEZAWA Hiroyuki 已提交
5009
	long error = -ENOMEM;
5010
	int node;
B
Balbir Singh 已提交
5011

5012 5013
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
5014
		return ERR_PTR(error);
5015

5016
	for_each_node_state(node, N_POSSIBLE)
5017
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
5018
			goto free_out;
5019

5020
	/* root ? */
5021
	if (cont->parent == NULL) {
5022
		int cpu;
5023
		enable_swap_cgroup();
5024
		parent = NULL;
5025 5026
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
5027
		root_mem_cgroup = memcg;
5028 5029 5030 5031 5032
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
5033
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5034
	} else {
5035
		parent = mem_cgroup_from_cont(cont->parent);
5036 5037
		memcg->use_hierarchy = parent->use_hierarchy;
		memcg->oom_kill_disable = parent->oom_kill_disable;
5038
	}
5039

5040
	if (parent && parent->use_hierarchy) {
5041 5042
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
5043 5044 5045 5046 5047 5048 5049
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
5050
	} else {
5051 5052
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
5053
	}
5054 5055
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
5056

K
KOSAKI Motohiro 已提交
5057
	if (parent)
5058 5059 5060 5061 5062
		memcg->swappiness = mem_cgroup_swappiness(parent);
	atomic_set(&memcg->refcnt, 1);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	return &memcg->css;
5063
free_out:
5064
	__mem_cgroup_free(memcg);
K
KAMEZAWA Hiroyuki 已提交
5065
	return ERR_PTR(error);
B
Balbir Singh 已提交
5066 5067
}

5068
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5069 5070
					struct cgroup *cont)
{
5071
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5072

5073
	return mem_cgroup_force_empty(memcg, false);
5074 5075
}

B
Balbir Singh 已提交
5076 5077 5078
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5079
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5080

G
Glauber Costa 已提交
5081 5082
	kmem_cgroup_destroy(ss, cont);

5083
	mem_cgroup_put(memcg);
B
Balbir Singh 已提交
5084 5085 5086 5087 5088
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5089 5090 5091 5092 5093 5094 5095
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
5096 5097 5098 5099

	if (!ret)
		ret = register_kmem_files(cont, ss);

5100
	return ret;
B
Balbir Singh 已提交
5101 5102
}

5103
#ifdef CONFIG_MMU
5104
/* Handlers for move charge at task migration. */
5105 5106
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5107
{
5108 5109
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5110
	struct mem_cgroup *memcg = mc.to;
5111

5112
	if (mem_cgroup_is_root(memcg)) {
5113 5114 5115 5116 5117 5118 5119 5120
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
5121
		 * "memcg" cannot be under rmdir() because we've already checked
5122 5123 5124 5125
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
5126
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5127
			goto one_by_one;
5128
		if (do_swap_account && res_counter_charge(&memcg->memsw,
5129
						PAGE_SIZE * count, &dummy)) {
5130
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5147 5148 5149
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
		if (ret || !memcg)
5150 5151 5152 5153
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
5154 5155 5156 5157 5158 5159 5160 5161
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5162
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5163 5164 5165 5166 5167 5168
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5169 5170 5171
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5172 5173 5174 5175 5176
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5177
	swp_entry_t	ent;
5178 5179 5180 5181 5182
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
5183
	MC_TARGET_SWAP,
5184 5185
};

D
Daisuke Nishimura 已提交
5186 5187
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5188
{
D
Daisuke Nishimura 已提交
5189
	struct page *page = vm_normal_page(vma, addr, ptent);
5190

D
Daisuke Nishimura 已提交
5191 5192 5193 5194 5195 5196
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
5197 5198
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
5217 5218
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
5219
		return NULL;
5220
	}
D
Daisuke Nishimura 已提交
5221 5222 5223 5224 5225 5226
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5248 5249 5250 5251 5252 5253
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
5254
		if (do_swap_account)
5255 5256
			*entry = swap;
		page = find_get_page(&swapper_space, swap.val);
5257
	}
5258
#endif
5259 5260 5261
	return page;
}

D
Daisuke Nishimura 已提交
5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5274 5275
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5276 5277 5278

	if (!page && !ent.val)
		return 0;
5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5294 5295
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5296 5297 5298 5299
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5312 5313
	split_huge_page_pmd(walk->mm, pmd);

5314 5315 5316 5317 5318 5319 5320
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5321 5322 5323
	return 0;
}

5324 5325 5326 5327 5328
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5329
	down_read(&mm->mmap_sem);
5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5341
	up_read(&mm->mmap_sem);
5342 5343 5344 5345 5346 5347 5348 5349 5350

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5351 5352 5353 5354 5355
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5356 5357
}

5358 5359
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5360
{
5361 5362 5363
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5364
	/* we must uncharge all the leftover precharges from mc.to */
5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5376
	}
5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5411
	spin_lock(&mc.lock);
5412 5413
	mc.from = NULL;
	mc.to = NULL;
5414
	spin_unlock(&mc.lock);
5415
	mem_cgroup_end_move(from);
5416 5417
}

5418 5419
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5420
				struct cgroup_taskset *tset)
5421
{
5422
	struct task_struct *p = cgroup_taskset_first(tset);
5423
	int ret = 0;
5424
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5425

5426
	if (memcg->move_charge_at_immigrate) {
5427 5428 5429
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5430
		VM_BUG_ON(from == memcg);
5431 5432 5433 5434 5435

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5436 5437 5438 5439
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5440
			VM_BUG_ON(mc.moved_charge);
5441
			VM_BUG_ON(mc.moved_swap);
5442
			mem_cgroup_start_move(from);
5443
			spin_lock(&mc.lock);
5444
			mc.from = from;
5445
			mc.to = memcg;
5446
			spin_unlock(&mc.lock);
5447
			/* We set mc.moving_task later */
5448 5449 5450 5451

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5452 5453
		}
		mmput(mm);
5454 5455 5456 5457 5458 5459
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5460
				struct cgroup_taskset *tset)
5461
{
5462
	mem_cgroup_clear_mc();
5463 5464
}

5465 5466 5467
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5468
{
5469 5470 5471 5472 5473
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5474
	split_huge_page_pmd(walk->mm, pmd);
5475 5476 5477 5478 5479 5480 5481 5482
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
5483
		swp_entry_t ent;
5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5495 5496
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5497
				mc.precharge--;
5498 5499
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5500 5501 5502 5503 5504
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
5505 5506
		case MC_TARGET_SWAP:
			ent = target.ent;
5507 5508
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
5509
				mc.precharge--;
5510 5511 5512
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5513
			break;
5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5528
		ret = mem_cgroup_do_precharge(1);
5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5572
	up_read(&mm->mmap_sem);
5573 5574
}

B
Balbir Singh 已提交
5575 5576
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
5577
				struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5578
{
5579
	struct task_struct *p = cgroup_taskset_first(tset);
5580
	struct mm_struct *mm = get_task_mm(p);
5581 5582

	if (mm) {
5583 5584 5585
		if (mc.to)
			mem_cgroup_move_charge(mm);
		put_swap_token(mm);
5586 5587
		mmput(mm);
	}
5588 5589
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5590
}
5591 5592 5593
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5594
				struct cgroup_taskset *tset)
5595 5596 5597 5598 5599
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5600
				struct cgroup_taskset *tset)
5601 5602 5603 5604
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
5605
				struct cgroup_taskset *tset)
5606 5607 5608
{
}
#endif
B
Balbir Singh 已提交
5609

B
Balbir Singh 已提交
5610 5611 5612 5613
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5614
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5615 5616
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5617 5618
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5619
	.attach = mem_cgroup_move_task,
5620
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5621
	.use_id = 1,
B
Balbir Singh 已提交
5622
};
5623 5624

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5625 5626 5627
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5628
	if (!strcmp(s, "1"))
5629
		really_do_swap_account = 1;
5630
	else if (!strcmp(s, "0"))
5631 5632 5633
		really_do_swap_account = 0;
	return 1;
}
5634
__setup("swapaccount=", enable_swap_account);
5635 5636

#endif