blk-mq.c 77.0 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 42 43
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

44 45 46 47
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
48
	ddir = rq_data_dir(rq);
49 50 51 52 53 54 55 56 57 58 59 60
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

61 62 63
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
64
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65
{
66 67
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
68
			blk_mq_sched_has_work(hctx);
69 70
}

71 72 73 74 75 76
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
77 78
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 80 81 82 83
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
84
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 86
}

87 88 89 90 91 92 93 94 95 96 97
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

98
	if (blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) {
99
		/*
100 101 102 103
		 * index[0] counts the specific partition that was asked
		 * for. index[1] counts the ones that are active on the
		 * whole device, so increment that if mi->part is indeed
		 * a partition, and not a whole device.
104
		 */
105
		if (rq->part == mi->part)
106
			mi->inflight[0]++;
107 108
		if (mi->part->partno)
			mi->inflight[1]++;
109 110 111 112 113 114 115 116
	}
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

117
	inflight[0] = inflight[1] = 0;
118 119 120
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

121
void blk_freeze_queue_start(struct request_queue *q)
122
{
123
	int freeze_depth;
124

125 126
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
127
		percpu_ref_kill(&q->q_usage_counter);
128 129
		if (q->mq_ops)
			blk_mq_run_hw_queues(q, false);
130
	}
131
}
132
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
133

134
void blk_mq_freeze_queue_wait(struct request_queue *q)
135
{
136
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
137
}
138
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
139

140 141 142 143 144 145 146 147
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
148

149 150 151 152
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
153
void blk_freeze_queue(struct request_queue *q)
154
{
155 156 157 158 159 160 161
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
162
	blk_freeze_queue_start(q);
163 164
	if (!q->mq_ops)
		blk_drain_queue(q);
165 166
	blk_mq_freeze_queue_wait(q);
}
167 168 169 170 171 172 173 174 175

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
176
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
177

178
void blk_mq_unfreeze_queue(struct request_queue *q)
179
{
180
	int freeze_depth;
181

182 183 184
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
185
		percpu_ref_reinit(&q->q_usage_counter);
186
		wake_up_all(&q->mq_freeze_wq);
187
	}
188
}
189
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
190

191 192 193 194 195 196
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
197
	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
198 199 200
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

201
/**
202
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
203 204 205
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
206 207 208
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
209 210 211 212 213 214 215
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

216
	blk_mq_quiesce_queue_nowait(q);
217

218 219
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
220
			synchronize_srcu(hctx->srcu);
221 222 223 224 225 226 227 228
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

229 230 231 232 233 234 235 236 237
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
238
	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
239

240 241
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
242 243 244
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

245 246 247 248 249 250 251 252 253 254
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

255 256 257 258 259 260
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

261 262
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
263
{
264 265
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];
266
	req_flags_t rq_flags = 0;
267

268 269 270 271 272
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
273
			rq_flags = RQF_MQ_INFLIGHT;
274 275 276 277 278 279 280
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

281
	/* csd/requeue_work/fifo_time is initialized before use */
282 283
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
284
	rq->rq_flags = rq_flags;
285
	rq->cpu = -1;
286
	rq->cmd_flags = op;
287 288
	if (data->flags & BLK_MQ_REQ_PREEMPT)
		rq->rq_flags |= RQF_PREEMPT;
289
	if (blk_queue_io_stat(data->q))
290
		rq->rq_flags |= RQF_IO_STAT;
291
	INIT_LIST_HEAD(&rq->queuelist);
292 293 294 295
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
296
	rq->start_time = jiffies;
297 298 299 300 301 302 303
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;
304
	rq->__deadline = 0;
305 306

	INIT_LIST_HEAD(&rq->timeout_list);
307 308
	rq->timeout = 0;

309 310 311 312
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

313 314 315 316 317 318
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
	set_start_time_ns(rq);
	rq->io_start_time_ns = 0;
#endif

319 320
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
321 322
}

323 324 325 326 327 328
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
329
	unsigned int tag;
330
	bool put_ctx_on_error = false;
331 332 333

	blk_queue_enter_live(q);
	data->q = q;
334 335 336 337
	if (likely(!data->ctx)) {
		data->ctx = blk_mq_get_ctx(q);
		put_ctx_on_error = true;
	}
338 339
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
340 341
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
342 343 344 345 346 347 348 349

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
350 351
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
352 353
	}

354 355
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
356 357
		if (put_ctx_on_error) {
			blk_mq_put_ctx(data->ctx);
358 359
			data->ctx = NULL;
		}
360 361
		blk_queue_exit(q);
		return NULL;
362 363
	}

364
	rq = blk_mq_rq_ctx_init(data, tag, op);
365 366
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
367
		if (e && e->type->ops.mq.prepare_request) {
368 369 370
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

371 372
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
373
		}
374 375 376
	}
	data->hctx->queued++;
	return rq;
377 378
}

379
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
380
		blk_mq_req_flags_t flags)
381
{
382
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
383
	struct request *rq;
384
	int ret;
385

386
	ret = blk_queue_enter(q, flags);
387 388
	if (ret)
		return ERR_PTR(ret);
389

390
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
391
	blk_queue_exit(q);
392

393
	if (!rq)
394
		return ERR_PTR(-EWOULDBLOCK);
395

396 397
	blk_mq_put_ctx(alloc_data.ctx);

398 399 400
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
401 402
	return rq;
}
403
EXPORT_SYMBOL(blk_mq_alloc_request);
404

405
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
406
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
407
{
408
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
409
	struct request *rq;
410
	unsigned int cpu;
M
Ming Lin 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

425
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
426 427 428
	if (ret)
		return ERR_PTR(ret);

429 430 431 432
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
433 434 435 436
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
437
	}
438
	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
439
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
440

441
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
442
	blk_queue_exit(q);
443

444 445 446 447
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
448 449 450
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

451
void blk_mq_free_request(struct request *rq)
452 453
{
	struct request_queue *q = rq->q;
454 455 456 457 458
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

459
	if (rq->rq_flags & RQF_ELVPRIV) {
460 461 462 463 464 465 466
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
467

468
	ctx->rq_completed[rq_is_sync(rq)]++;
469
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
470
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
471

472 473 474
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

J
Jens Axboe 已提交
475
	wbt_done(q->rq_wb, &rq->issue_stat);
476

S
Shaohua Li 已提交
477 478 479
	if (blk_rq_rl(rq))
		blk_put_rl(blk_rq_rl(rq));

480
	blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
481 482 483
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
484
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
485
	blk_mq_sched_restart(hctx);
486
	blk_queue_exit(q);
487
}
J
Jens Axboe 已提交
488
EXPORT_SYMBOL_GPL(blk_mq_free_request);
489

490
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
491
{
M
Ming Lei 已提交
492 493
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
494
	if (rq->end_io) {
J
Jens Axboe 已提交
495
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
496
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
497 498 499
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
500
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
501
	}
502
}
503
EXPORT_SYMBOL(__blk_mq_end_request);
504

505
void blk_mq_end_request(struct request *rq, blk_status_t error)
506 507 508
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
509
	__blk_mq_end_request(rq, error);
510
}
511
EXPORT_SYMBOL(blk_mq_end_request);
512

513
static void __blk_mq_complete_request_remote(void *data)
514
{
515
	struct request *rq = data;
516

517
	rq->q->softirq_done_fn(rq);
518 519
}

520
static void __blk_mq_complete_request(struct request *rq)
521 522
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
523
	bool shared = false;
524 525
	int cpu;

526
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT);
T
Tejun Heo 已提交
527
	blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE);
528

529 530 531 532 533 534 535
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
536
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
537 538 539
		rq->q->softirq_done_fn(rq);
		return;
	}
540 541

	cpu = get_cpu();
C
Christoph Hellwig 已提交
542 543 544 545
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
546
		rq->csd.func = __blk_mq_complete_request_remote;
547 548
		rq->csd.info = rq;
		rq->csd.flags = 0;
549
		smp_call_function_single_async(ctx->cpu, &rq->csd);
550
	} else {
551
		rq->q->softirq_done_fn(rq);
552
	}
553 554
	put_cpu();
}
555

556
static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
557
	__releases(hctx->srcu)
558 559 560 561
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_unlock();
	else
562
		srcu_read_unlock(hctx->srcu, srcu_idx);
563 564 565
}

static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
566
	__acquires(hctx->srcu)
567
{
568 569 570
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		/* shut up gcc false positive */
		*srcu_idx = 0;
571
		rcu_read_lock();
572
	} else
573
		*srcu_idx = srcu_read_lock(hctx->srcu);
574 575
}

576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate)
{
	unsigned long flags;

	/*
	 * blk_mq_rq_aborted_gstate() is used from the completion path and
	 * can thus be called from irq context.  u64_stats_fetch in the
	 * middle of update on the same CPU leads to lockup.  Disable irq
	 * while updating.
	 */
	local_irq_save(flags);
	u64_stats_update_begin(&rq->aborted_gstate_sync);
	rq->aborted_gstate = gstate;
	u64_stats_update_end(&rq->aborted_gstate_sync);
	local_irq_restore(flags);
}

static u64 blk_mq_rq_aborted_gstate(struct request *rq)
{
	unsigned int start;
	u64 aborted_gstate;

	do {
		start = u64_stats_fetch_begin(&rq->aborted_gstate_sync);
		aborted_gstate = rq->aborted_gstate;
	} while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start));

	return aborted_gstate;
}

606 607 608 609 610 611 612 613
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
614
void blk_mq_complete_request(struct request *rq)
615
{
616
	struct request_queue *q = rq->q;
617 618
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
	int srcu_idx;
619 620

	if (unlikely(blk_should_fake_timeout(q)))
621
		return;
622

623 624 625 626 627 628 629 630 631 632 633
	/*
	 * If @rq->aborted_gstate equals the current instance, timeout is
	 * claiming @rq and we lost.  This is synchronized through
	 * hctx_lock().  See blk_mq_timeout_work() for details.
	 *
	 * Completion path never blocks and we can directly use RCU here
	 * instead of hctx_lock() which can be either RCU or SRCU.
	 * However, that would complicate paths which want to synchronize
	 * against us.  Let stay in sync with the issue path so that
	 * hctx_lock() covers both issue and completion paths.
	 */
634
	hctx_lock(hctx, &srcu_idx);
635
	if (blk_mq_rq_aborted_gstate(rq) != rq->gstate)
636
		__blk_mq_complete_request(rq);
637
	hctx_unlock(hctx, srcu_idx);
638 639
}
EXPORT_SYMBOL(blk_mq_complete_request);
640

641 642
int blk_mq_request_started(struct request *rq)
{
T
Tejun Heo 已提交
643
	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
644 645 646
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

647
void blk_mq_start_request(struct request *rq)
648 649 650
{
	struct request_queue *q = rq->q;

651 652
	blk_mq_sched_started_request(rq);

653 654
	trace_block_rq_issue(q, rq);

655
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
656
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
657
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
658
		wbt_issue(q->rq_wb, &rq->issue_stat);
659 660
	}

661
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
662

663
	/*
664 665 666 667
	 * Mark @rq in-flight which also advances the generation number,
	 * and register for timeout.  Protect with a seqcount to allow the
	 * timeout path to read both @rq->gstate and @rq->deadline
	 * coherently.
668
	 *
669 670 671 672
	 * This is the only place where a request is marked in-flight.  If
	 * the timeout path reads an in-flight @rq->gstate, the
	 * @rq->deadline it reads together under @rq->gstate_seq is
	 * guaranteed to be the matching one.
673
	 */
674 675 676 677 678 679 680 681
	preempt_disable();
	write_seqcount_begin(&rq->gstate_seq);

	blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT);
	blk_add_timer(rq);

	write_seqcount_end(&rq->gstate_seq);
	preempt_enable();
682 683 684 685 686 687 688 689 690

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
691
}
692
EXPORT_SYMBOL(blk_mq_start_request);
693

694
/*
T
Tejun Heo 已提交
695 696 697
 * When we reach here because queue is busy, it's safe to change the state
 * to IDLE without checking @rq->aborted_gstate because we should still be
 * holding the RCU read lock and thus protected against timeout.
698
 */
699
static void __blk_mq_requeue_request(struct request *rq)
700 701 702
{
	struct request_queue *q = rq->q;

703 704
	blk_mq_put_driver_tag(rq);

705
	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
706
	wbt_requeue(q->rq_wb, &rq->issue_stat);
707

T
Tejun Heo 已提交
708
	if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) {
709
		blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
710 711 712
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
713 714
}

715
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
716 717 718
{
	__blk_mq_requeue_request(rq);

719 720 721
	/* this request will be re-inserted to io scheduler queue */
	blk_mq_sched_requeue_request(rq);

722
	BUG_ON(blk_queued_rq(rq));
723
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
724 725 726
}
EXPORT_SYMBOL(blk_mq_requeue_request);

727 728 729
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
730
		container_of(work, struct request_queue, requeue_work.work);
731 732 733
	LIST_HEAD(rq_list);
	struct request *rq, *next;

734
	spin_lock_irq(&q->requeue_lock);
735
	list_splice_init(&q->requeue_list, &rq_list);
736
	spin_unlock_irq(&q->requeue_lock);
737 738

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
739
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
740 741
			continue;

742
		rq->rq_flags &= ~RQF_SOFTBARRIER;
743
		list_del_init(&rq->queuelist);
744
		blk_mq_sched_insert_request(rq, true, false, false);
745 746 747 748 749
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
750
		blk_mq_sched_insert_request(rq, false, false, false);
751 752
	}

753
	blk_mq_run_hw_queues(q, false);
754 755
}

756 757
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
758 759 760 761 762 763
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
764
	 * request head insertion from the workqueue.
765
	 */
766
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
767 768 769

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
770
		rq->rq_flags |= RQF_SOFTBARRIER;
771 772 773 774 775
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
776 777 778

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
779 780 781 782 783
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
784
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
785 786 787
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

788 789 790
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
791 792
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
793 794 795
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

796 797
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
798 799
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
800
		return tags->rqs[tag];
801
	}
802 803

	return NULL;
804 805 806
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

807
struct blk_mq_timeout_data {
808 809
	unsigned long next;
	unsigned int next_set;
810
	unsigned int nr_expired;
811 812
};

813
static void blk_mq_rq_timed_out(struct request *req, bool reserved)
814
{
J
Jens Axboe 已提交
815
	const struct blk_mq_ops *ops = req->q->mq_ops;
816
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
817

818
	req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED;
819

820
	if (ops->timeout)
821
		ret = ops->timeout(req, reserved);
822 823 824 825 826 827

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
828 829 830 831 832 833
		/*
		 * As nothing prevents from completion happening while
		 * ->aborted_gstate is set, this may lead to ignored
		 * completions and further spurious timeouts.
		 */
		blk_mq_rq_update_aborted_gstate(req, 0);
834 835 836 837 838 839 840 841
		blk_add_timer(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
842
}
843

844 845 846 847
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
848 849
	unsigned long gstate, deadline;
	int start;
850

851
	might_sleep();
852

T
Tejun Heo 已提交
853
	if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED)
854
		return;
855

856 857 858 859
	/* read coherent snapshots of @rq->state_gen and @rq->deadline */
	while (true) {
		start = read_seqcount_begin(&rq->gstate_seq);
		gstate = READ_ONCE(rq->gstate);
860
		deadline = blk_rq_deadline(rq);
861 862 863 864
		if (!read_seqcount_retry(&rq->gstate_seq, start))
			break;
		cond_resched();
	}
865

866 867 868 869 870 871
	/* if in-flight && overdue, mark for abortion */
	if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT &&
	    time_after_eq(jiffies, deadline)) {
		blk_mq_rq_update_aborted_gstate(rq, gstate);
		data->nr_expired++;
		hctx->nr_expired++;
872 873
	} else if (!data->next_set || time_after(data->next, deadline)) {
		data->next = deadline;
874 875
		data->next_set = 1;
	}
876 877
}

878 879 880 881 882 883 884 885 886 887
static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	/*
	 * We marked @rq->aborted_gstate and waited for RCU.  If there were
	 * completions that we lost to, they would have finished and
	 * updated @rq->gstate by now; otherwise, the completion path is
	 * now guaranteed to see @rq->aborted_gstate and yield.  If
	 * @rq->aborted_gstate still matches @rq->gstate, @rq is ours.
	 */
888 889
	if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) &&
	    READ_ONCE(rq->gstate) == rq->aborted_gstate)
890 891 892
		blk_mq_rq_timed_out(rq, reserved);
}

893
static void blk_mq_timeout_work(struct work_struct *work)
894
{
895 896
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
897 898 899
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
900
		.nr_expired	= 0,
901
	};
902
	struct blk_mq_hw_ctx *hctx;
903
	int i;
904

905 906 907 908 909 910 911 912 913
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
914
	 * blk_freeze_queue_start, and the moment the last request is
915 916 917 918
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
919 920
		return;

921
	/* scan for the expired ones and set their ->aborted_gstate */
922
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
923

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
	if (data.nr_expired) {
		bool has_rcu = false;

		/*
		 * Wait till everyone sees ->aborted_gstate.  The
		 * sequential waits for SRCUs aren't ideal.  If this ever
		 * becomes a problem, we can add per-hw_ctx rcu_head and
		 * wait in parallel.
		 */
		queue_for_each_hw_ctx(q, hctx, i) {
			if (!hctx->nr_expired)
				continue;

			if (!(hctx->flags & BLK_MQ_F_BLOCKING))
				has_rcu = true;
			else
940
				synchronize_srcu(hctx->srcu);
941 942 943 944 945 946 947 948 949 950

			hctx->nr_expired = 0;
		}
		if (has_rcu)
			synchronize_rcu();

		/* terminate the ones we won */
		blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL);
	}

951 952 953
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
954
	} else {
955 956 957 958 959 960
		/*
		 * Request timeouts are handled as a forward rolling timer. If
		 * we end up here it means that no requests are pending and
		 * also that no request has been pending for a while. Mark
		 * each hctx as idle.
		 */
961 962 963 964 965
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
966
	}
967
	blk_queue_exit(q);
968 969
}

970 971 972 973 974 975 976 977 978 979 980 981 982
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
983
	sbitmap_clear_bit(sb, bitnr);
984 985 986 987
	spin_unlock(&ctx->lock);
	return true;
}

988 989 990 991
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
992
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
993
{
994 995 996 997
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
998

999
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1000
}
1001
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1002

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	if (unlikely(!list_empty(&ctx->rq_list))) {
		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
		list_del_init(&dispatch_data->rq->queuelist);
		if (list_empty(&ctx->rq_list))
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
	unsigned off = start ? start->index_hw : 0;
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

1042 1043 1044 1045
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
1046

1047
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1048 1049
}

1050 1051
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
1052 1053 1054 1055 1056 1057 1058
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

1059 1060
	might_sleep_if(wait);

1061 1062
	if (rq->tag != -1)
		goto done;
1063

1064 1065 1066
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

1067 1068
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
1069 1070 1071 1072
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
1073 1074 1075
		data.hctx->tags->rqs[rq->tag] = rq;
	}

1076 1077 1078 1079
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
1080 1081
}

1082 1083
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
1084 1085 1086 1087 1088
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1089
	list_del_init(&wait->entry);
1090 1091 1092 1093
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1094 1095
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1096 1097
 * the tag wakeups. For non-shared tags, we can simply mark us needing a
 * restart. For both cases, take care to check the condition again after
1098 1099 1100 1101
 * marking us as waiting.
 */
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
				 struct request *rq)
1102
{
1103
	struct blk_mq_hw_ctx *this_hctx = *hctx;
1104
	struct sbq_wait_state *ws;
1105 1106
	wait_queue_entry_t *wait;
	bool ret;
1107

1108
	if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1109 1110 1111
		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
			set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);

1112 1113 1114 1115 1116 1117 1118 1119 1120
		/*
		 * It's possible that a tag was freed in the window between the
		 * allocation failure and adding the hardware queue to the wait
		 * queue.
		 *
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
		return blk_mq_get_driver_tag(rq, hctx, false);
1121 1122
	}

1123 1124 1125 1126 1127 1128 1129 1130
	wait = &this_hctx->dispatch_wait;
	if (!list_empty_careful(&wait->entry))
		return false;

	spin_lock(&this_hctx->lock);
	if (!list_empty(&wait->entry)) {
		spin_unlock(&this_hctx->lock);
		return false;
1131 1132
	}

1133 1134 1135
	ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
	add_wait_queue(&ws->wait, wait);

1136
	/*
1137 1138 1139
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1140
	 */
1141
	ret = blk_mq_get_driver_tag(rq, hctx, false);
1142
	if (!ret) {
1143
		spin_unlock(&this_hctx->lock);
1144
		return false;
1145
	}
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156

	/*
	 * We got a tag, remove ourselves from the wait queue to ensure
	 * someone else gets the wakeup.
	 */
	spin_lock_irq(&ws->wait.lock);
	list_del_init(&wait->entry);
	spin_unlock_irq(&ws->wait.lock);
	spin_unlock(&this_hctx->lock);

	return true;
1157 1158
}

1159 1160
#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */

1161
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1162
			     bool got_budget)
1163
{
1164
	struct blk_mq_hw_ctx *hctx;
1165
	struct request *rq, *nxt;
1166
	bool no_tag = false;
1167
	int errors, queued;
1168
	blk_status_t ret = BLK_STS_OK;
1169

1170 1171 1172
	if (list_empty(list))
		return false;

1173 1174
	WARN_ON(!list_is_singular(list) && got_budget);

1175 1176 1177
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1178
	errors = queued = 0;
1179
	do {
1180
		struct blk_mq_queue_data bd;
1181

1182
		rq = list_first_entry(list, struct request, queuelist);
1183 1184 1185 1186 1187 1188

		hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
		if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
			break;

		if (!blk_mq_get_driver_tag(rq, NULL, false)) {
1189
			/*
1190
			 * The initial allocation attempt failed, so we need to
1191 1192 1193 1194
			 * rerun the hardware queue when a tag is freed. The
			 * waitqueue takes care of that. If the queue is run
			 * before we add this entry back on the dispatch list,
			 * we'll re-run it below.
1195
			 */
1196
			if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1197
				blk_mq_put_dispatch_budget(hctx);
1198 1199 1200 1201 1202 1203
				/*
				 * For non-shared tags, the RESTART check
				 * will suffice.
				 */
				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
					no_tag = true;
1204 1205 1206 1207
				break;
			}
		}

1208 1209
		list_del_init(&rq->queuelist);

1210
		bd.rq = rq;
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1222 1223

		ret = q->mq_ops->queue_rq(hctx, &bd);
1224
		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1225 1226
			/*
			 * If an I/O scheduler has been configured and we got a
1227 1228
			 * driver tag for the next request already, free it
			 * again.
1229 1230 1231 1232 1233
			 */
			if (!list_empty(list)) {
				nxt = list_first_entry(list, struct request, queuelist);
				blk_mq_put_driver_tag(nxt);
			}
1234
			list_add(&rq->queuelist, list);
1235
			__blk_mq_requeue_request(rq);
1236
			break;
1237 1238 1239
		}

		if (unlikely(ret != BLK_STS_OK)) {
1240
			errors++;
1241
			blk_mq_end_request(rq, BLK_STS_IOERR);
1242
			continue;
1243 1244
		}

1245
		queued++;
1246
	} while (!list_empty(list));
1247

1248
	hctx->dispatched[queued_to_index(queued)]++;
1249 1250 1251 1252 1253

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1254
	if (!list_empty(list)) {
1255 1256
		bool needs_restart;

1257
		spin_lock(&hctx->lock);
1258
		list_splice_init(list, &hctx->dispatch);
1259
		spin_unlock(&hctx->lock);
1260

1261
		/*
1262 1263 1264
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1265
		 *
1266 1267 1268 1269
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1270
		 *
1271 1272 1273 1274 1275 1276 1277
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1278
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1279
		 *   and dm-rq.
1280 1281 1282 1283
		 *
		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
		 * bit is set, run queue after a delay to avoid IO stalls
		 * that could otherwise occur if the queue is idle.
1284
		 */
1285 1286
		needs_restart = blk_mq_sched_needs_restart(hctx);
		if (!needs_restart ||
1287
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1288
			blk_mq_run_hw_queue(hctx, true);
1289 1290
		else if (needs_restart && (ret == BLK_STS_RESOURCE))
			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1291
	}
1292

1293
	return (queued + errors) != 0;
1294 1295
}

1296 1297 1298 1299
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1300 1301 1302
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
	 *
	 * There are at least two related races now between setting
	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
	 * __blk_mq_run_hw_queue():
	 *
	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
	 *   but later it becomes online, then this warning is harmless
	 *   at all
	 *
	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
	 *   but later it becomes offline, then the warning can't be
	 *   triggered, and we depend on blk-mq timeout handler to
	 *   handle dispatched requests to this hctx
1316
	 */
1317 1318 1319 1320 1321 1322 1323
	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu)) {
		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
			raw_smp_processor_id(),
			cpumask_empty(hctx->cpumask) ? "inactive": "active");
		dump_stack();
	}
1324

1325 1326 1327 1328 1329 1330
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1331
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1332

1333 1334 1335
	hctx_lock(hctx, &srcu_idx);
	blk_mq_sched_dispatch_requests(hctx);
	hctx_unlock(hctx, srcu_idx);
1336 1337
}

1338 1339 1340 1341 1342 1343 1344 1345 1346
static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);

	if (cpu >= nr_cpu_ids)
		cpu = cpumask_first(hctx->cpumask);
	return cpu;
}

1347 1348 1349 1350 1351 1352 1353 1354
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1355
	bool tried = false;
1356
	int next_cpu = hctx->next_cpu;
1357

1358 1359
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1360 1361

	if (--hctx->next_cpu_batch <= 0) {
1362
select_cpu:
1363
		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1364
				cpu_online_mask);
1365
		if (next_cpu >= nr_cpu_ids)
1366
			next_cpu = blk_mq_first_mapped_cpu(hctx);
1367 1368 1369
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1370 1371 1372 1373
	/*
	 * Do unbound schedule if we can't find a online CPU for this hctx,
	 * and it should only happen in the path of handling CPU DEAD.
	 */
1374
	if (!cpu_online(next_cpu)) {
1375 1376 1377 1378 1379 1380 1381 1382 1383
		if (!tried) {
			tried = true;
			goto select_cpu;
		}

		/*
		 * Make sure to re-select CPU next time once after CPUs
		 * in hctx->cpumask become online again.
		 */
1384
		hctx->next_cpu = next_cpu;
1385 1386 1387
		hctx->next_cpu_batch = 1;
		return WORK_CPU_UNBOUND;
	}
1388 1389 1390

	hctx->next_cpu = next_cpu;
	return next_cpu;
1391 1392
}

1393 1394
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1395
{
1396
	if (unlikely(blk_mq_hctx_stopped(hctx)))
1397 1398
		return;

1399
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1400 1401
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1402
			__blk_mq_run_hw_queue(hctx);
1403
			put_cpu();
1404 1405
			return;
		}
1406

1407
		put_cpu();
1408
	}
1409

1410 1411
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
				    msecs_to_jiffies(msecs));
1412 1413 1414 1415 1416 1417 1418 1419
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

1420
bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1421
{
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
	int srcu_idx;
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
1433 1434 1435 1436
	hctx_lock(hctx, &srcu_idx);
	need_run = !blk_queue_quiesced(hctx->queue) &&
		blk_mq_hctx_has_pending(hctx);
	hctx_unlock(hctx, srcu_idx);
1437 1438

	if (need_run) {
1439 1440 1441 1442 1443
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
		return true;
	}

	return false;
1444
}
O
Omar Sandoval 已提交
1445
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1446

1447
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1448 1449 1450 1451 1452
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1453
		if (blk_mq_hctx_stopped(hctx))
1454 1455
			continue;

1456
		blk_mq_run_hw_queue(hctx, async);
1457 1458
	}
}
1459
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1460

1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1481 1482 1483
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1484
 * BLK_STS_RESOURCE is usually returned.
1485 1486 1487 1488 1489
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1490 1491
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1492
	cancel_delayed_work(&hctx->run_work);
1493

1494
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1495
}
1496
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1497

1498 1499 1500
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1501
 * BLK_STS_RESOURCE is usually returned.
1502 1503 1504 1505 1506
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1507 1508
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1509 1510 1511 1512 1513
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1514 1515 1516
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1517 1518 1519
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1520

1521
	blk_mq_run_hw_queue(hctx, false);
1522 1523 1524
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1545
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1546 1547 1548 1549
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1550 1551
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1552 1553 1554
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1555
static void blk_mq_run_work_fn(struct work_struct *work)
1556 1557 1558
{
	struct blk_mq_hw_ctx *hctx;

1559
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1560

1561
	/*
M
Ming Lei 已提交
1562
	 * If we are stopped, don't run the queue.
1563
	 */
M
Ming Lei 已提交
1564
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1565
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1566 1567 1568 1569

	__blk_mq_run_hw_queue(hctx);
}

1570 1571 1572
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1573
{
J
Jens Axboe 已提交
1574 1575
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1576 1577
	lockdep_assert_held(&ctx->lock);

1578 1579
	trace_block_rq_insert(hctx->queue, rq);

1580 1581 1582 1583
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1584
}
1585

1586 1587
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1588 1589 1590
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1591 1592
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1593
	__blk_mq_insert_req_list(hctx, rq, at_head);
1594 1595 1596
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1597 1598 1599 1600
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
1601
void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1602 1603 1604 1605 1606 1607 1608 1609
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

1610 1611
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
1612 1613
}

1614 1615
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1627
		BUG_ON(rq->mq_ctx != ctx);
1628
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1629
		__blk_mq_insert_req_list(hctx, rq, false);
1630
	}
1631
	blk_mq_hctx_mark_pending(hctx, ctx);
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1668 1669 1670 1671
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1688 1689 1690
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1691 1692 1693 1694 1695
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1696
	blk_init_request_from_bio(rq, bio);
1697

S
Shaohua Li 已提交
1698 1699
	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));

1700
	blk_account_io_start(rq, true);
1701 1702
}

1703 1704 1705 1706 1707 1708 1709
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1710
}
1711

1712 1713
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1714 1715 1716 1717
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1718 1719
}

1720 1721 1722
static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    blk_qc_t *cookie)
1723 1724 1725 1726
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1727
		.last = true,
1728
	};
1729
	blk_qc_t new_cookie;
1730
	blk_status_t ret;
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744

	new_cookie = request_to_qc_t(hctx, rq);

	/*
	 * For OK queue, we are done. For error, caller may kill it.
	 * Any other error (busy), just add it to our list as we
	 * previously would have done.
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	switch (ret) {
	case BLK_STS_OK:
		*cookie = new_cookie;
		break;
	case BLK_STS_RESOURCE:
1745
	case BLK_STS_DEV_RESOURCE:
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
		__blk_mq_requeue_request(rq);
		break;
	default:
		*cookie = BLK_QC_T_NONE;
		break;
	}

	return ret;
}

static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
						struct request *rq,
1758 1759
						blk_qc_t *cookie,
						bool bypass_insert)
1760 1761
{
	struct request_queue *q = rq->q;
M
Ming Lei 已提交
1762 1763
	bool run_queue = true;

1764 1765 1766 1767
	/*
	 * RCU or SRCU read lock is needed before checking quiesced flag.
	 *
	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1768
	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1769 1770
	 * and avoid driver to try to dispatch again.
	 */
1771
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1772
		run_queue = false;
1773
		bypass_insert = false;
M
Ming Lei 已提交
1774 1775
		goto insert;
	}
1776

1777
	if (q->elevator && !bypass_insert)
1778 1779
		goto insert;

1780
	if (!blk_mq_get_dispatch_budget(hctx))
1781 1782
		goto insert;

1783 1784
	if (!blk_mq_get_driver_tag(rq, NULL, false)) {
		blk_mq_put_dispatch_budget(hctx);
1785
		goto insert;
1786
	}
1787

1788
	return __blk_mq_issue_directly(hctx, rq, cookie);
1789
insert:
1790 1791
	if (bypass_insert)
		return BLK_STS_RESOURCE;
1792

1793
	blk_mq_sched_insert_request(rq, false, run_queue, false);
1794
	return BLK_STS_OK;
1795 1796
}

1797 1798 1799
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
1800
	blk_status_t ret;
1801
	int srcu_idx;
1802

1803
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1804

1805
	hctx_lock(hctx, &srcu_idx);
1806

1807
	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1808
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1809
		blk_mq_sched_insert_request(rq, false, true, false);
1810 1811 1812
	else if (ret != BLK_STS_OK)
		blk_mq_end_request(rq, ret);

1813
	hctx_unlock(hctx, srcu_idx);
1814 1815
}

1816
blk_status_t blk_mq_request_issue_directly(struct request *rq)
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
{
	blk_status_t ret;
	int srcu_idx;
	blk_qc_t unused_cookie;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	hctx_lock(hctx, &srcu_idx);
	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
	hctx_unlock(hctx, srcu_idx);

	return ret;
1829 1830
}

1831
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1832
{
1833
	const int is_sync = op_is_sync(bio->bi_opf);
1834
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1835
	struct blk_mq_alloc_data data = { .flags = 0 };
1836
	struct request *rq;
1837
	unsigned int request_count = 0;
1838
	struct blk_plug *plug;
1839
	struct request *same_queue_rq = NULL;
1840
	blk_qc_t cookie;
J
Jens Axboe 已提交
1841
	unsigned int wb_acct;
1842 1843 1844

	blk_queue_bounce(q, &bio);

1845
	blk_queue_split(q, &bio);
1846

1847
	if (!bio_integrity_prep(bio))
1848
		return BLK_QC_T_NONE;
1849

1850 1851 1852
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1853

1854 1855 1856
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1857 1858
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1859 1860
	trace_block_getrq(q, bio, bio->bi_opf);

1861
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1862 1863
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1864 1865
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1866
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1867 1868 1869
	}

	wbt_track(&rq->issue_stat, wb_acct);
1870

1871
	cookie = request_to_qc_t(data.hctx, rq);
1872

1873
	plug = current->plug;
1874
	if (unlikely(is_flush_fua)) {
1875
		blk_mq_put_ctx(data.ctx);
1876
		blk_mq_bio_to_request(rq, bio);
1877 1878 1879 1880

		/* bypass scheduler for flush rq */
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(data.hctx, true);
1881
	} else if (plug && q->nr_hw_queues == 1) {
1882 1883
		struct request *last = NULL;

1884
		blk_mq_put_ctx(data.ctx);
1885
		blk_mq_bio_to_request(rq, bio);
1886 1887 1888 1889 1890 1891 1892

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1893 1894 1895
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1896
		if (!request_count)
1897
			trace_block_plug(q);
1898 1899
		else
			last = list_entry_rq(plug->mq_list.prev);
1900

1901 1902
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1903 1904
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1905
		}
1906

1907
		list_add_tail(&rq->queuelist, &plug->mq_list);
1908
	} else if (plug && !blk_queue_nomerges(q)) {
1909
		blk_mq_bio_to_request(rq, bio);
1910 1911

		/*
1912
		 * We do limited plugging. If the bio can be merged, do that.
1913 1914
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1915 1916
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1917
		 */
1918 1919 1920 1921 1922 1923
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1924 1925
		blk_mq_put_ctx(data.ctx);

1926 1927 1928
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1929 1930
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1931
		}
1932
	} else if (q->nr_hw_queues > 1 && is_sync) {
1933
		blk_mq_put_ctx(data.ctx);
1934 1935
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1936
	} else if (q->elevator) {
1937
		blk_mq_put_ctx(data.ctx);
1938
		blk_mq_bio_to_request(rq, bio);
1939
		blk_mq_sched_insert_request(rq, false, true, true);
1940
	} else {
1941
		blk_mq_put_ctx(data.ctx);
1942 1943
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1944
		blk_mq_run_hw_queue(data.hctx, true);
1945
	}
1946

1947
	return cookie;
1948 1949
}

1950 1951
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1952
{
1953
	struct page *page;
1954

1955
	if (tags->rqs && set->ops->exit_request) {
1956
		int i;
1957

1958
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1959 1960 1961
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1962
				continue;
1963
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1964
			tags->static_rqs[i] = NULL;
1965
		}
1966 1967
	}

1968 1969
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1970
		list_del_init(&page->lru);
1971 1972 1973 1974 1975
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1976 1977
		__free_pages(page, page->private);
	}
1978
}
1979

1980 1981
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1982
	kfree(tags->rqs);
1983
	tags->rqs = NULL;
J
Jens Axboe 已提交
1984 1985
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1986

1987
	blk_mq_free_tags(tags);
1988 1989
}

1990 1991 1992 1993
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1994
{
1995
	struct blk_mq_tags *tags;
1996
	int node;
1997

1998 1999 2000 2001 2002
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
2003
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2004 2005
	if (!tags)
		return NULL;
2006

2007
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2008
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2009
				 node);
2010 2011 2012 2013
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
2014

J
Jens Axboe 已提交
2015 2016
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2017
				 node);
J
Jens Axboe 已提交
2018 2019 2020 2021 2022 2023
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

2024 2025 2026 2027 2028 2029 2030 2031
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
			       unsigned int hctx_idx, int node)
{
	int ret;

	if (set->ops->init_request) {
		ret = set->ops->init_request(set, rq, hctx_idx, node);
		if (ret)
			return ret;
	}

	seqcount_init(&rq->gstate_seq);
	u64_stats_init(&rq->aborted_gstate_sync);
	return 0;
}

2048 2049 2050 2051 2052
int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
2053 2054 2055 2056 2057
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
2058 2059 2060

	INIT_LIST_HEAD(&tags->page_list);

2061 2062 2063 2064
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
2065
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2066
				cache_line_size());
2067
	left = rq_size * depth;
2068

2069
	for (i = 0; i < depth; ) {
2070 2071 2072 2073 2074
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

2075
		while (this_order && left < order_to_size(this_order - 1))
2076 2077 2078
			this_order--;

		do {
2079
			page = alloc_pages_node(node,
2080
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2081
				this_order);
2082 2083 2084 2085 2086 2087 2088 2089 2090
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
2091
			goto fail;
2092 2093

		page->private = this_order;
2094
		list_add_tail(&page->lru, &tags->page_list);
2095 2096

		p = page_address(page);
2097 2098 2099 2100
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
2101
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2102
		entries_per_page = order_to_size(this_order) / rq_size;
2103
		to_do = min(entries_per_page, depth - i);
2104 2105
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
2106 2107 2108
			struct request *rq = p;

			tags->static_rqs[i] = rq;
2109 2110 2111
			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
				tags->static_rqs[i] = NULL;
				goto fail;
2112 2113
			}

2114 2115 2116 2117
			p += rq_size;
			i++;
		}
	}
2118
	return 0;
2119

2120
fail:
2121 2122
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
2123 2124
}

J
Jens Axboe 已提交
2125 2126 2127 2128 2129
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
2130
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2131
{
2132
	struct blk_mq_hw_ctx *hctx;
2133 2134 2135
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

2136
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
2137
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2138 2139 2140 2141 2142 2143 2144 2145 2146

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
2147
		return 0;
2148

J
Jens Axboe 已提交
2149 2150 2151
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2152 2153

	blk_mq_run_hw_queue(hctx, true);
2154
	return 0;
2155 2156
}

2157
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2158
{
2159 2160
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2161 2162
}

2163
/* hctx->ctxs will be freed in queue's release handler */
2164 2165 2166 2167
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2168 2169
	blk_mq_debugfs_unregister_hctx(hctx);

2170 2171
	if (blk_mq_hw_queue_mapped(hctx))
		blk_mq_tag_idle(hctx);
2172

2173
	if (set->ops->exit_request)
2174
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2175

2176 2177
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

2178 2179 2180
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2181
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2182
		cleanup_srcu_struct(hctx->srcu);
2183

2184
	blk_mq_remove_cpuhp(hctx);
2185
	blk_free_flush_queue(hctx->fq);
2186
	sbitmap_free(&hctx->ctx_map);
2187 2188
}

M
Ming Lei 已提交
2189 2190 2191 2192 2193 2194 2195 2196 2197
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2198
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2199 2200 2201
	}
}

2202 2203 2204
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2205
{
2206 2207 2208 2209 2210 2211
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

2212
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2213 2214 2215
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2216
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2217

2218
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2219 2220

	hctx->tags = set->tags[hctx_idx];
2221 2222

	/*
2223 2224
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2225
	 */
2226
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2227 2228 2229
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
2230

2231 2232
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
2233
		goto free_ctxs;
2234

2235
	hctx->nr_ctx = 0;
2236

2237 2238 2239
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

2240 2241 2242
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2243

2244 2245 2246
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

2247 2248
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
2249
		goto sched_exit_hctx;
2250

2251
	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2252
		goto free_fq;
2253

2254
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2255
		init_srcu_struct(hctx->srcu);
2256

2257 2258
	blk_mq_debugfs_register_hctx(q, hctx);

2259
	return 0;
2260

2261 2262
 free_fq:
	kfree(hctx->fq);
2263 2264
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2265 2266 2267
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2268
 free_bitmap:
2269
	sbitmap_free(&hctx->ctx_map);
2270 2271 2272
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2273
	blk_mq_remove_cpuhp(hctx);
2274 2275
	return -1;
}
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
2295
		hctx = blk_mq_map_queue(q, i);
2296
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2297
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2298 2299 2300
	}
}

2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2323 2324 2325 2326 2327
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2328 2329
}

2330
static void blk_mq_map_swqueue(struct request_queue *q)
2331
{
2332
	unsigned int i, hctx_idx;
2333 2334
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2335
	struct blk_mq_tag_set *set = q->tag_set;
2336

2337 2338 2339 2340 2341
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2342
	queue_for_each_hw_ctx(q, hctx, i) {
2343
		cpumask_clear(hctx->cpumask);
2344 2345 2346 2347
		hctx->nr_ctx = 0;
	}

	/*
2348 2349 2350
	 * Map software to hardware queues.
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2351
	 */
2352
	for_each_possible_cpu(i) {
2353 2354
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2355 2356
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2357 2358 2359 2360 2361 2362
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2363
			q->mq_map[i] = 0;
2364 2365
		}

2366
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2367
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2368

2369
		cpumask_set_cpu(i, hctx->cpumask);
2370 2371 2372
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2373

2374 2375
	mutex_unlock(&q->sysfs_lock);

2376
	queue_for_each_hw_ctx(q, hctx, i) {
2377
		/*
2378 2379
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2380 2381
		 */
		if (!hctx->nr_ctx) {
2382 2383 2384 2385
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2386 2387 2388
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2389
			hctx->tags = NULL;
2390 2391 2392
			continue;
		}

M
Ming Lei 已提交
2393 2394 2395
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2396 2397 2398 2399 2400
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2401
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2402

2403 2404 2405
		/*
		 * Initialize batch roundrobin counts
		 */
2406
		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2407 2408
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2409 2410
}

2411 2412 2413 2414
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2415
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2416 2417 2418 2419
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2420
	queue_for_each_hw_ctx(q, hctx, i) {
2421 2422 2423
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2424
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2425 2426 2427
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2428
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2429
		}
2430 2431 2432
	}
}

2433 2434
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2435 2436
{
	struct request_queue *q;
2437

2438 2439
	lockdep_assert_held(&set->tag_list_lock);

2440 2441
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2442
		queue_set_hctx_shared(q, shared);
2443 2444 2445 2446 2447 2448 2449 2450 2451
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2452 2453
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2454 2455 2456 2457 2458 2459
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2460
	mutex_unlock(&set->tag_list_lock);
2461 2462

	synchronize_rcu();
2463 2464 2465 2466 2467 2468 2469 2470
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2471

2472 2473 2474 2475 2476
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2477 2478 2479 2480 2481 2482
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2483
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2484

2485 2486 2487
	mutex_unlock(&set->tag_list_lock);
}

2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2500 2501 2502
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2503
		kobject_put(&hctx->kobj);
2504
	}
2505

2506 2507
	q->mq_map = NULL;

2508 2509
	kfree(q->queue_hw_ctx);

2510 2511 2512 2513 2514 2515
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2516 2517 2518
	free_percpu(q->queue_ctx);
}

2519
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2520 2521 2522
{
	struct request_queue *uninit_q, *q;

2523
	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2535 2536 2537 2538
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

2539
	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2540 2541 2542 2543 2544 2545 2546 2547 2548
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2549 2550
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2551
{
K
Keith Busch 已提交
2552 2553
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2554

K
Keith Busch 已提交
2555
	blk_mq_sysfs_unregister(q);
2556 2557 2558

	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
2559
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2560
		int node;
2561

K
Keith Busch 已提交
2562 2563 2564 2565
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2566
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2567
					GFP_KERNEL, node);
2568
		if (!hctxs[i])
K
Keith Busch 已提交
2569
			break;
2570

2571
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2572 2573 2574 2575 2576
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2577

2578
		atomic_set(&hctxs[i]->nr_active, 0);
2579
		hctxs[i]->numa_node = node;
2580
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2581 2582 2583 2584 2585 2586 2587 2588

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2589
	}
K
Keith Busch 已提交
2590 2591 2592 2593
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2594 2595
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2596 2597 2598 2599 2600 2601 2602
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
2603
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
2604 2605 2606 2607 2608 2609
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2610 2611 2612
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2613
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2614 2615
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2616 2617 2618
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2619 2620
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2621
		goto err_exit;
K
Keith Busch 已提交
2622

2623 2624 2625
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2626 2627 2628 2629 2630
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2631
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2632 2633 2634 2635

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2636

2637
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2638
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2639 2640 2641

	q->nr_queues = nr_cpu_ids;

2642
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2643

2644
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2645
		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2646

2647 2648
	q->sg_reserved_size = INT_MAX;

2649
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2650 2651 2652
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2653
	blk_queue_make_request(q, blk_mq_make_request);
2654 2655
	if (q->mq_ops->poll)
		q->poll_fn = blk_mq_poll;
2656

2657 2658 2659 2660 2661
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2662 2663 2664 2665 2666
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2667 2668
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2669

2670
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2671
	blk_mq_add_queue_tag_set(set, q);
2672
	blk_mq_map_swqueue(q);
2673

2674 2675 2676 2677 2678 2679 2680 2681
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2682
	return q;
2683

2684
err_hctxs:
K
Keith Busch 已提交
2685
	kfree(q->queue_hw_ctx);
2686
err_percpu:
K
Keith Busch 已提交
2687
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2688 2689
err_exit:
	q->mq_ops = NULL;
2690 2691
	return ERR_PTR(-ENOMEM);
}
2692
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2693 2694 2695

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2696
	struct blk_mq_tag_set	*set = q->tag_set;
2697

2698
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2699
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2700 2701 2702
}

/* Basically redo blk_mq_init_queue with queue frozen */
2703
static void blk_mq_queue_reinit(struct request_queue *q)
2704
{
2705
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2706

2707
	blk_mq_debugfs_unregister_hctxs(q);
2708 2709
	blk_mq_sysfs_unregister(q);

2710 2711
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2712 2713
	 * we should change hctx numa_node according to the new topology (this
	 * involves freeing and re-allocating memory, worth doing?)
2714
	 */
2715
	blk_mq_map_swqueue(q);
2716

2717
	blk_mq_sysfs_register(q);
2718
	blk_mq_debugfs_register_hctxs(q);
2719 2720
}

2721 2722 2723 2724
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2725 2726
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2727 2728 2729 2730 2731 2732
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2733
		blk_mq_free_rq_map(set->tags[i]);
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2773 2774
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
	if (set->ops->map_queues) {
		int cpu;
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
		 * 		set->mq_map[cpu] = queue;
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
		for_each_possible_cpu(cpu)
			set->mq_map[cpu] = 0;

2794
		return set->ops->map_queues(set);
2795
	} else
2796 2797 2798
		return blk_mq_map_queues(set);
}

2799 2800 2801 2802 2803 2804
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2805 2806
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2807 2808
	int ret;

B
Bart Van Assche 已提交
2809 2810
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2811 2812
	if (!set->nr_hw_queues)
		return -EINVAL;
2813
	if (!set->queue_depth)
2814 2815 2816 2817
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2818
	if (!set->ops->queue_rq)
2819 2820
		return -EINVAL;

2821 2822 2823
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

2824 2825 2826 2827 2828
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2829

2830 2831 2832 2833 2834 2835 2836 2837 2838
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2839 2840 2841 2842 2843
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2844

K
Keith Busch 已提交
2845
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2846 2847
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2848
		return -ENOMEM;
2849

2850 2851 2852
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2853 2854 2855
	if (!set->mq_map)
		goto out_free_tags;

2856
	ret = blk_mq_update_queue_map(set);
2857 2858 2859 2860 2861
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2862
		goto out_free_mq_map;
2863

2864 2865 2866
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2867
	return 0;
2868 2869 2870 2871 2872

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2873 2874
	kfree(set->tags);
	set->tags = NULL;
2875
	return ret;
2876 2877 2878 2879 2880 2881 2882
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2883 2884
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2885

2886 2887 2888
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2889
	kfree(set->tags);
2890
	set->tags = NULL;
2891 2892 2893
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2894 2895 2896 2897 2898 2899
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2900
	if (!set)
2901 2902
		return -EINVAL;

2903
	blk_mq_freeze_queue(q);
2904
	blk_mq_quiesce_queue(q);
2905

2906 2907
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2908 2909
		if (!hctx->tags)
			continue;
2910 2911 2912 2913
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2914
		if (!hctx->sched_tags) {
2915
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2916 2917 2918 2919 2920
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2921 2922 2923 2924 2925 2926 2927
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2928
	blk_mq_unquiesce_queue(q);
2929 2930
	blk_mq_unfreeze_queue(q);

2931 2932 2933
	return ret;
}

2934 2935
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2936 2937 2938
{
	struct request_queue *q;

2939 2940
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2941 2942 2943 2944 2945 2946 2947 2948 2949
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2950
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2951 2952
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2953
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2954 2955 2956 2957 2958
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2959 2960 2961 2962 2963 2964 2965

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2966 2967
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2968 2969 2970 2971
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2972
	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2994
	int bucket;
2995

2996 2997 2998 2999
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
3000 3001
}

3002 3003 3004 3005 3006
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
3007
	int bucket;
3008 3009 3010 3011 3012

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
3013
	if (!blk_poll_stats_enable(q))
3014 3015 3016 3017 3018 3019 3020 3021
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
3022 3023
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
3024
	 */
3025 3026 3027 3028 3029 3030
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
3031 3032 3033 3034

	return ret;
}

3035
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3036
				     struct blk_mq_hw_ctx *hctx,
3037 3038 3039 3040
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
3041
	unsigned int nsecs;
3042 3043
	ktime_t kt;

J
Jens Axboe 已提交
3044
	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
3062 3063
		return false;

J
Jens Axboe 已提交
3064
	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3065 3066 3067 3068 3069

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
3070
	kt = nsecs;
3071 3072 3073 3074 3075 3076 3077

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
T
Tejun Heo 已提交
3078
		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
3093 3094 3095 3096 3097
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

3098 3099 3100 3101 3102 3103 3104
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
3105
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3106 3107
		return true;

J
Jens Axboe 已提交
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

3133
	__set_current_state(TASK_RUNNING);
J
Jens Axboe 已提交
3134 3135 3136
	return false;
}

3137
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
J
Jens Axboe 已提交
3138 3139 3140 3141
{
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;

3142
	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
J
Jens Axboe 已提交
3143 3144 3145
		return false;

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3146 3147
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3148
	else {
3149
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3150 3151 3152 3153 3154 3155 3156 3157 3158
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
3159 3160 3161 3162

	return __blk_mq_poll(hctx, rq);
}

3163 3164
static int __init blk_mq_init(void)
{
3165 3166
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
3167 3168 3169
	return 0;
}
subsys_initcall(blk_mq_init);