blk-mq.c 75.9 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 42 43
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

44 45 46 47
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
48
	ddir = rq_data_dir(rq);
49 50 51 52 53 54 55 56 57 58 59 60
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

61 62 63
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
64
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65
{
66 67
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
68
			blk_mq_sched_has_work(hctx);
69 70
}

71 72 73 74 75 76
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
77 78
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 80 81 82 83
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
84
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 86
}

87 88 89 90 91 92 93 94 95 96 97 98 99 100
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

	if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
	    !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
		/*
101 102 103 104
		 * index[0] counts the specific partition that was asked
		 * for. index[1] counts the ones that are active on the
		 * whole device, so increment that if mi->part is indeed
		 * a partition, and not a whole device.
105
		 */
106
		if (rq->part == mi->part)
107
			mi->inflight[0]++;
108 109
		if (mi->part->partno)
			mi->inflight[1]++;
110 111 112 113 114 115 116 117
	}
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

118
	inflight[0] = inflight[1] = 0;
119 120 121
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

122
void blk_freeze_queue_start(struct request_queue *q)
123
{
124
	int freeze_depth;
125

126 127
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
128
		percpu_ref_kill(&q->q_usage_counter);
129 130
		if (q->mq_ops)
			blk_mq_run_hw_queues(q, false);
131
	}
132
}
133
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
134

135
void blk_mq_freeze_queue_wait(struct request_queue *q)
136
{
137
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
138
}
139
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
140

141 142 143 144 145 146 147 148
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
149

150 151 152 153
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
154
void blk_freeze_queue(struct request_queue *q)
155
{
156 157 158 159 160 161 162
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
163
	blk_freeze_queue_start(q);
164 165
	blk_mq_freeze_queue_wait(q);
}
166 167 168 169 170 171 172 173 174

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
175
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
176

177
void blk_mq_unfreeze_queue(struct request_queue *q)
178
{
179
	int freeze_depth;
180

181 182 183
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
184
		percpu_ref_reinit(&q->q_usage_counter);
185
		wake_up_all(&q->mq_freeze_wq);
186
	}
187
}
188
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
189

190 191 192 193 194 195 196 197 198 199 200 201 202 203
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
	queue_flag_set(QUEUE_FLAG_QUIESCED, q);
	spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

204
/**
205
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
206 207 208
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
209 210 211
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
212 213 214 215 216 217 218
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

219
	blk_mq_quiesce_queue_nowait(q);
220

221 222
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
223
			synchronize_srcu(hctx->queue_rq_srcu);
224 225 226 227 228 229 230 231
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

232 233 234 235 236 237 238 239 240
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
241 242 243
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
244
	queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
245
	spin_unlock_irqrestore(q->queue_lock, flags);
246

247 248
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
249 250 251
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

252 253 254 255 256 257 258 259 260 261
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

262 263 264 265 266 267
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

268 269
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
270
{
271 272 273
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];

274 275
	rq->rq_flags = 0;

276 277 278 279 280 281 282 283 284 285 286 287 288
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
			rq->rq_flags = RQF_MQ_INFLIGHT;
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

289 290
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
291 292
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
293
	rq->cmd_flags = op;
294 295
	if (data->flags & BLK_MQ_REQ_PREEMPT)
		rq->rq_flags |= RQF_PREEMPT;
296
	if (blk_queue_io_stat(data->q))
297
		rq->rq_flags |= RQF_IO_STAT;
298 299 300 301 302 303
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
304
	rq->start_time = jiffies;
305 306
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
307
	set_start_time_ns(rq);
308 309 310 311 312 313 314 315 316 317 318
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
319 320
	rq->timeout = 0;

321 322 323 324
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

325 326
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
327 328
}

329 330 331 332 333 334
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
335
	unsigned int tag;
336
	bool put_ctx_on_error = false;
337 338 339

	blk_queue_enter_live(q);
	data->q = q;
340 341 342 343
	if (likely(!data->ctx)) {
		data->ctx = blk_mq_get_ctx(q);
		put_ctx_on_error = true;
	}
344 345
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
346 347
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
348 349 350 351 352 353 354 355

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
356 357
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
358 359
	}

360 361
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
362 363
		if (put_ctx_on_error) {
			blk_mq_put_ctx(data->ctx);
364 365
			data->ctx = NULL;
		}
366 367
		blk_queue_exit(q);
		return NULL;
368 369
	}

370
	rq = blk_mq_rq_ctx_init(data, tag, op);
371 372
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
373
		if (e && e->type->ops.mq.prepare_request) {
374 375 376
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

377 378
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
379
		}
380 381 382
	}
	data->hctx->queued++;
	return rq;
383 384
}

385
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
386
		blk_mq_req_flags_t flags)
387
{
388
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
389
	struct request *rq;
390
	int ret;
391

392
	ret = blk_queue_enter(q, flags);
393 394
	if (ret)
		return ERR_PTR(ret);
395

396
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
397
	blk_queue_exit(q);
398

399
	if (!rq)
400
		return ERR_PTR(-EWOULDBLOCK);
401

402 403
	blk_mq_put_ctx(alloc_data.ctx);

404 405 406
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
407 408
	return rq;
}
409
EXPORT_SYMBOL(blk_mq_alloc_request);
410

411
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
412
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
413
{
414
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
415
	struct request *rq;
416
	unsigned int cpu;
M
Ming Lin 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

431
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
432 433 434
	if (ret)
		return ERR_PTR(ret);

435 436 437 438
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
439 440 441 442
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
443
	}
444 445
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
446

447
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
448
	blk_queue_exit(q);
449

450 451 452 453
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
454 455 456
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

457
void blk_mq_free_request(struct request *rq)
458 459
{
	struct request_queue *q = rq->q;
460 461 462 463 464
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

465
	if (rq->rq_flags & RQF_ELVPRIV) {
466 467 468 469 470 471 472
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
473

474
	ctx->rq_completed[rq_is_sync(rq)]++;
475
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
476
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
477

478 479 480
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

J
Jens Axboe 已提交
481
	wbt_done(q->rq_wb, &rq->issue_stat);
482

S
Shaohua Li 已提交
483 484 485
	if (blk_rq_rl(rq))
		blk_put_rl(blk_rq_rl(rq));

486
	blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
487
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
488
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
489 490 491
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
492
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
493
	blk_mq_sched_restart(hctx);
494
	blk_queue_exit(q);
495
}
J
Jens Axboe 已提交
496
EXPORT_SYMBOL_GPL(blk_mq_free_request);
497

498
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
499
{
M
Ming Lei 已提交
500 501
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
502
	if (rq->end_io) {
J
Jens Axboe 已提交
503
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
504
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
505 506 507
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
508
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
509
	}
510
}
511
EXPORT_SYMBOL(__blk_mq_end_request);
512

513
void blk_mq_end_request(struct request *rq, blk_status_t error)
514 515 516
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
517
	__blk_mq_end_request(rq, error);
518
}
519
EXPORT_SYMBOL(blk_mq_end_request);
520

521
static void __blk_mq_complete_request_remote(void *data)
522
{
523
	struct request *rq = data;
524

525
	rq->q->softirq_done_fn(rq);
526 527
}

528
static void __blk_mq_complete_request(struct request *rq)
529 530
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
531
	bool shared = false;
532 533
	int cpu;

534 535
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT);

536 537 538 539 540 541 542
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
543
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
544 545 546
		rq->q->softirq_done_fn(rq);
		return;
	}
547 548

	cpu = get_cpu();
C
Christoph Hellwig 已提交
549 550 551 552
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
553
		rq->csd.func = __blk_mq_complete_request_remote;
554 555
		rq->csd.info = rq;
		rq->csd.flags = 0;
556
		smp_call_function_single_async(ctx->cpu, &rq->csd);
557
	} else {
558
		rq->q->softirq_done_fn(rq);
559
	}
560 561
	put_cpu();
}
562

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_unlock();
	else
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
}

static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_lock();
	else
		*srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
}

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate)
{
	unsigned long flags;

	/*
	 * blk_mq_rq_aborted_gstate() is used from the completion path and
	 * can thus be called from irq context.  u64_stats_fetch in the
	 * middle of update on the same CPU leads to lockup.  Disable irq
	 * while updating.
	 */
	local_irq_save(flags);
	u64_stats_update_begin(&rq->aborted_gstate_sync);
	rq->aborted_gstate = gstate;
	u64_stats_update_end(&rq->aborted_gstate_sync);
	local_irq_restore(flags);
}

static u64 blk_mq_rq_aborted_gstate(struct request *rq)
{
	unsigned int start;
	u64 aborted_gstate;

	do {
		start = u64_stats_fetch_begin(&rq->aborted_gstate_sync);
		aborted_gstate = rq->aborted_gstate;
	} while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start));

	return aborted_gstate;
}

609 610 611 612 613 614 615 616
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
617
void blk_mq_complete_request(struct request *rq)
618
{
619
	struct request_queue *q = rq->q;
620 621
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
	int srcu_idx;
622 623

	if (unlikely(blk_should_fake_timeout(q)))
624
		return;
625

626 627 628 629 630 631 632 633 634 635 636
	/*
	 * If @rq->aborted_gstate equals the current instance, timeout is
	 * claiming @rq and we lost.  This is synchronized through
	 * hctx_lock().  See blk_mq_timeout_work() for details.
	 *
	 * Completion path never blocks and we can directly use RCU here
	 * instead of hctx_lock() which can be either RCU or SRCU.
	 * However, that would complicate paths which want to synchronize
	 * against us.  Let stay in sync with the issue path so that
	 * hctx_lock() covers both issue and completion paths.
	 */
637
	hctx_lock(hctx, &srcu_idx);
638 639
	if (blk_mq_rq_aborted_gstate(rq) != rq->gstate &&
	    !blk_mark_rq_complete(rq))
640
		__blk_mq_complete_request(rq);
641
	hctx_unlock(hctx, srcu_idx);
642 643
}
EXPORT_SYMBOL(blk_mq_complete_request);
644

645 646 647 648 649 650
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

651
void blk_mq_start_request(struct request *rq)
652 653 654
{
	struct request_queue *q = rq->q;

655 656
	blk_mq_sched_started_request(rq);

657 658
	trace_block_rq_issue(q, rq);

659
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
660
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
661
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
662
		wbt_issue(q->rq_wb, &rq->issue_stat);
663 664
	}

665
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
666
	WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
667

668
	/*
669 670 671 672
	 * Mark @rq in-flight which also advances the generation number,
	 * and register for timeout.  Protect with a seqcount to allow the
	 * timeout path to read both @rq->gstate and @rq->deadline
	 * coherently.
673
	 *
674 675 676 677
	 * This is the only place where a request is marked in-flight.  If
	 * the timeout path reads an in-flight @rq->gstate, the
	 * @rq->deadline it reads together under @rq->gstate_seq is
	 * guaranteed to be the matching one.
678
	 */
679 680 681 682 683 684 685 686 687
	preempt_disable();
	write_seqcount_begin(&rq->gstate_seq);

	blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT);
	blk_add_timer(rq);

	write_seqcount_end(&rq->gstate_seq);
	preempt_enable();

688
	set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
689
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
690
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
691 692 693 694 695 696 697 698 699

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
700
}
701
EXPORT_SYMBOL(blk_mq_start_request);
702

703 704
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
705
 * flag isn't set yet, so there may be race with timeout handler,
706 707 708 709 710 711
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
712
static void __blk_mq_requeue_request(struct request *rq)
713 714 715
{
	struct request_queue *q = rq->q;

716 717
	blk_mq_put_driver_tag(rq);

718
	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
719
	wbt_requeue(q->rq_wb, &rq->issue_stat);
720
	blk_mq_sched_requeue_request(rq);
721

722
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
723
		blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
724 725 726
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
727 728
}

729
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
730 731 732 733
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
734
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
735 736 737
}
EXPORT_SYMBOL(blk_mq_requeue_request);

738 739 740
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
741
		container_of(work, struct request_queue, requeue_work.work);
742 743 744
	LIST_HEAD(rq_list);
	struct request *rq, *next;

745
	spin_lock_irq(&q->requeue_lock);
746
	list_splice_init(&q->requeue_list, &rq_list);
747
	spin_unlock_irq(&q->requeue_lock);
748 749

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
750
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
751 752
			continue;

753
		rq->rq_flags &= ~RQF_SOFTBARRIER;
754
		list_del_init(&rq->queuelist);
755
		blk_mq_sched_insert_request(rq, true, false, false, true);
756 757 758 759 760
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
761
		blk_mq_sched_insert_request(rq, false, false, false, true);
762 763
	}

764
	blk_mq_run_hw_queues(q, false);
765 766
}

767 768
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
769 770 771 772 773 774
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
775
	 * request head insertion from the workqueue.
776
	 */
777
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
778 779 780

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
781
		rq->rq_flags |= RQF_SOFTBARRIER;
782 783 784 785 786
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
787 788 789

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
790 791 792 793 794
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
795
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
796 797 798
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

799 800 801
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
802 803
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
804 805 806
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

807 808
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
809 810
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
811
		return tags->rqs[tag];
812
	}
813 814

	return NULL;
815 816 817
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

818
struct blk_mq_timeout_data {
819 820
	unsigned long next;
	unsigned int next_set;
821
	unsigned int nr_expired;
822 823
};

824
void blk_mq_rq_timed_out(struct request *req, bool reserved)
825
{
J
Jens Axboe 已提交
826
	const struct blk_mq_ops *ops = req->q->mq_ops;
827
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
828 829 830 831 832 833 834

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
835
	 * both flags will get cleared. So check here again, and ignore
836 837
	 * a timeout event with a request that isn't active.
	 */
838 839
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
840

841
	if (ops->timeout)
842
		ret = ops->timeout(req, reserved);
843 844 845 846 847 848

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
849 850 851 852 853 854
		/*
		 * As nothing prevents from completion happening while
		 * ->aborted_gstate is set, this may lead to ignored
		 * completions and further spurious timeouts.
		 */
		blk_mq_rq_update_aborted_gstate(req, 0);
855 856 857 858 859 860 861 862 863
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
864
}
865

866 867 868 869
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
870 871 872 873
	unsigned long gstate, deadline;
	int start;

	might_sleep();
874

875
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
876
		return;
877

878 879 880 881 882 883 884 885 886
	/* read coherent snapshots of @rq->state_gen and @rq->deadline */
	while (true) {
		start = read_seqcount_begin(&rq->gstate_seq);
		gstate = READ_ONCE(rq->gstate);
		deadline = rq->deadline;
		if (!read_seqcount_retry(&rq->gstate_seq, start))
			break;
		cond_resched();
	}
887

888 889 890 891 892 893
	/* if in-flight && overdue, mark for abortion */
	if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT &&
	    time_after_eq(jiffies, deadline)) {
		blk_mq_rq_update_aborted_gstate(rq, gstate);
		data->nr_expired++;
		hctx->nr_expired++;
894 895
	} else if (!data->next_set || time_after(data->next, deadline)) {
		data->next = deadline;
896 897
		data->next_set = 1;
	}
898 899
}

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	/*
	 * We marked @rq->aborted_gstate and waited for RCU.  If there were
	 * completions that we lost to, they would have finished and
	 * updated @rq->gstate by now; otherwise, the completion path is
	 * now guaranteed to see @rq->aborted_gstate and yield.  If
	 * @rq->aborted_gstate still matches @rq->gstate, @rq is ours.
	 */
	if (READ_ONCE(rq->gstate) == rq->aborted_gstate &&
	    !blk_mark_rq_complete(rq))
		blk_mq_rq_timed_out(rq, reserved);
}

915
static void blk_mq_timeout_work(struct work_struct *work)
916
{
917 918
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
919 920 921
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
922
		.nr_expired	= 0,
923
	};
924
	struct blk_mq_hw_ctx *hctx;
925
	int i;
926

927 928 929 930 931 932 933 934 935
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
936
	 * blk_freeze_queue_start, and the moment the last request is
937 938 939 940
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
941 942
		return;

943
	/* scan for the expired ones and set their ->aborted_gstate */
944
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
945

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
	if (data.nr_expired) {
		bool has_rcu = false;

		/*
		 * Wait till everyone sees ->aborted_gstate.  The
		 * sequential waits for SRCUs aren't ideal.  If this ever
		 * becomes a problem, we can add per-hw_ctx rcu_head and
		 * wait in parallel.
		 */
		queue_for_each_hw_ctx(q, hctx, i) {
			if (!hctx->nr_expired)
				continue;

			if (!(hctx->flags & BLK_MQ_F_BLOCKING))
				has_rcu = true;
			else
				synchronize_srcu(hctx->queue_rq_srcu);

			hctx->nr_expired = 0;
		}
		if (has_rcu)
			synchronize_rcu();

		/* terminate the ones we won */
		blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL);
	}

973 974 975
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
976
	} else {
977 978 979 980 981
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
982
	}
983
	blk_queue_exit(q);
984 985
}

986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

1004 1005 1006 1007
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
1008
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1009
{
1010 1011 1012 1013
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
1014

1015
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1016
}
1017
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1018

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	if (unlikely(!list_empty(&ctx->rq_list))) {
		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
		list_del_init(&dispatch_data->rq->queuelist);
		if (list_empty(&ctx->rq_list))
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
	unsigned off = start ? start->index_hw : 0;
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

1058 1059 1060 1061
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
1062

1063
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1064 1065
}

1066 1067
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
1068 1069 1070 1071 1072 1073 1074
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

1075 1076
	might_sleep_if(wait);

1077 1078
	if (rq->tag != -1)
		goto done;
1079

1080 1081 1082
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

1083 1084
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
1085 1086 1087 1088
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
1089 1090 1091
		data.hctx->tags->rqs[rq->tag] = rq;
	}

1092 1093 1094 1095
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
1096 1097
}

1098 1099
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
1100 1101 1102 1103 1104
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1105
	list_del_init(&wait->entry);
1106 1107 1108 1109
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1110 1111 1112 1113 1114 1115 1116 1117
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
 * the tag wakeups. For non-shared tags, we can simply mark us nedeing a
 * restart. For both caes, take care to check the condition again after
 * marking us as waiting.
 */
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
				 struct request *rq)
1118
{
1119
	struct blk_mq_hw_ctx *this_hctx = *hctx;
1120
	bool shared_tags = (this_hctx->flags & BLK_MQ_F_TAG_SHARED) != 0;
1121
	struct sbq_wait_state *ws;
1122 1123
	wait_queue_entry_t *wait;
	bool ret;
1124

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
	if (!shared_tags) {
		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
			set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);
	} else {
		wait = &this_hctx->dispatch_wait;
		if (!list_empty_careful(&wait->entry))
			return false;

		spin_lock(&this_hctx->lock);
		if (!list_empty(&wait->entry)) {
			spin_unlock(&this_hctx->lock);
			return false;
		}
1138

1139 1140
		ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
		add_wait_queue(&ws->wait, wait);
1141 1142
	}

1143
	/*
1144 1145 1146
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1147
	 */
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
	ret = blk_mq_get_driver_tag(rq, hctx, false);

	if (!shared_tags) {
		/*
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
		return ret;
	} else {
		if (!ret) {
			spin_unlock(&this_hctx->lock);
			return false;
		}

		/*
		 * We got a tag, remove ourselves from the wait queue to ensure
		 * someone else gets the wakeup.
		 */
		spin_lock_irq(&ws->wait.lock);
		list_del_init(&wait->entry);
		spin_unlock_irq(&ws->wait.lock);
1169
		spin_unlock(&this_hctx->lock);
1170
		return true;
1171
	}
1172 1173
}

1174
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1175
			     bool got_budget)
1176
{
1177
	struct blk_mq_hw_ctx *hctx;
1178
	struct request *rq, *nxt;
1179
	bool no_tag = false;
1180
	int errors, queued;
1181

1182 1183 1184
	if (list_empty(list))
		return false;

1185 1186
	WARN_ON(!list_is_singular(list) && got_budget);

1187 1188 1189
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1190
	errors = queued = 0;
1191
	do {
1192
		struct blk_mq_queue_data bd;
1193
		blk_status_t ret;
1194

1195
		rq = list_first_entry(list, struct request, queuelist);
1196
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1197
			/*
1198
			 * The initial allocation attempt failed, so we need to
1199 1200 1201 1202
			 * rerun the hardware queue when a tag is freed. The
			 * waitqueue takes care of that. If the queue is run
			 * before we add this entry back on the dispatch list,
			 * we'll re-run it below.
1203
			 */
1204
			if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1205 1206
				if (got_budget)
					blk_mq_put_dispatch_budget(hctx);
1207 1208 1209 1210 1211 1212
				/*
				 * For non-shared tags, the RESTART check
				 * will suffice.
				 */
				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
					no_tag = true;
1213 1214 1215 1216
				break;
			}
		}

1217 1218
		if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
			blk_mq_put_driver_tag(rq);
1219
			break;
1220
		}
1221

1222 1223
		list_del_init(&rq->queuelist);

1224
		bd.rq = rq;
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1236 1237

		ret = q->mq_ops->queue_rq(hctx, &bd);
1238
		if (ret == BLK_STS_RESOURCE) {
1239 1240
			/*
			 * If an I/O scheduler has been configured and we got a
1241 1242
			 * driver tag for the next request already, free it
			 * again.
1243 1244 1245 1246 1247
			 */
			if (!list_empty(list)) {
				nxt = list_first_entry(list, struct request, queuelist);
				blk_mq_put_driver_tag(nxt);
			}
1248
			list_add(&rq->queuelist, list);
1249
			__blk_mq_requeue_request(rq);
1250
			break;
1251 1252 1253
		}

		if (unlikely(ret != BLK_STS_OK)) {
1254
			errors++;
1255
			blk_mq_end_request(rq, BLK_STS_IOERR);
1256
			continue;
1257 1258
		}

1259
		queued++;
1260
	} while (!list_empty(list));
1261

1262
	hctx->dispatched[queued_to_index(queued)]++;
1263 1264 1265 1266 1267

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1268
	if (!list_empty(list)) {
1269
		spin_lock(&hctx->lock);
1270
		list_splice_init(list, &hctx->dispatch);
1271
		spin_unlock(&hctx->lock);
1272

1273
		/*
1274 1275 1276
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1277
		 *
1278 1279 1280 1281
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1282
		 *
1283 1284 1285 1286 1287 1288 1289
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1290
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1291
		 *   and dm-rq.
1292
		 */
1293 1294
		if (!blk_mq_sched_needs_restart(hctx) ||
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1295
			blk_mq_run_hw_queue(hctx, true);
1296
	}
1297

1298
	return (queued + errors) != 0;
1299 1300
}

1301 1302 1303 1304
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1305 1306 1307 1308
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
	 */
1309 1310 1311
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

1312 1313 1314 1315 1316 1317
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1318
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1319

1320 1321 1322
	hctx_lock(hctx, &srcu_idx);
	blk_mq_sched_dispatch_requests(hctx);
	hctx_unlock(hctx, srcu_idx);
1323 1324
}

1325 1326 1327 1328 1329 1330 1331 1332
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1333 1334
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1335 1336

	if (--hctx->next_cpu_batch <= 0) {
1337
		int next_cpu;
1338 1339 1340 1341 1342 1343 1344 1345 1346

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1347
	return hctx->next_cpu;
1348 1349
}

1350 1351
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1352
{
1353 1354 1355 1356
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
		return;

	if (unlikely(blk_mq_hctx_stopped(hctx)))
1357 1358
		return;

1359
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1360 1361
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1362
			__blk_mq_run_hw_queue(hctx);
1363
			put_cpu();
1364 1365
			return;
		}
1366

1367
		put_cpu();
1368
	}
1369

1370 1371 1372
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work,
					 msecs_to_jiffies(msecs));
1373 1374 1375 1376 1377 1378 1379 1380
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

1381
bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1382
{
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
	int srcu_idx;
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
1394 1395 1396 1397
	hctx_lock(hctx, &srcu_idx);
	need_run = !blk_queue_quiesced(hctx->queue) &&
		blk_mq_hctx_has_pending(hctx);
	hctx_unlock(hctx, srcu_idx);
1398 1399

	if (need_run) {
1400 1401 1402 1403 1404
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
		return true;
	}

	return false;
1405
}
O
Omar Sandoval 已提交
1406
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1407

1408
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1409 1410 1411 1412 1413
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1414
		if (blk_mq_hctx_stopped(hctx))
1415 1416
			continue;

1417
		blk_mq_run_hw_queue(hctx, async);
1418 1419
	}
}
1420
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1421

1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1442 1443 1444
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1445
 * BLK_STS_RESOURCE is usually returned.
1446 1447 1448 1449 1450
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1451 1452
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1453
	cancel_delayed_work(&hctx->run_work);
1454

1455
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1456
}
1457
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1458

1459 1460 1461
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1462
 * BLK_STS_RESOURCE is usually returned.
1463 1464 1465 1466 1467
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1468 1469
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1470 1471 1472 1473 1474
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1475 1476 1477
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1478 1479 1480
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1481

1482
	blk_mq_run_hw_queue(hctx, false);
1483 1484 1485
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1506
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1507 1508 1509 1510
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1511 1512
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1513 1514 1515
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1516
static void blk_mq_run_work_fn(struct work_struct *work)
1517 1518 1519
{
	struct blk_mq_hw_ctx *hctx;

1520
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1521

1522 1523 1524 1525 1526 1527 1528 1529
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1530

1531 1532 1533
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1534 1535 1536 1537

	__blk_mq_run_hw_queue(hctx);
}

1538 1539 1540

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1541
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1542
		return;
1543

1544 1545 1546 1547 1548
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1549
	blk_mq_stop_hw_queue(hctx);
1550 1551 1552 1553
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1554 1555 1556
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1557 1558 1559
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1560
{
J
Jens Axboe 已提交
1561 1562
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1563 1564
	lockdep_assert_held(&ctx->lock);

1565 1566
	trace_block_rq_insert(hctx->queue, rq);

1567 1568 1569 1570
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1571
}
1572

1573 1574
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1575 1576 1577
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1578 1579
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1580
	__blk_mq_insert_req_list(hctx, rq, at_head);
1581 1582 1583
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1584 1585 1586 1587
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
1588
void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1589 1590 1591 1592 1593 1594 1595 1596
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

1597 1598
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
1599 1600
}

1601 1602
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1614
		BUG_ON(rq->mq_ctx != ctx);
1615
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1616
		__blk_mq_insert_req_list(hctx, rq, false);
1617
	}
1618
	blk_mq_hctx_mark_pending(hctx, ctx);
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1655 1656 1657 1658
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1675 1676 1677
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1678 1679 1680 1681 1682
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1683
	blk_init_request_from_bio(rq, bio);
1684

S
Shaohua Li 已提交
1685 1686
	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));

1687
	blk_account_io_start(rq, true);
1688 1689
}

1690 1691 1692 1693 1694 1695 1696
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1697
}
1698

1699 1700
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1701 1702 1703 1704
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1705 1706
}

M
Ming Lei 已提交
1707 1708
static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
					struct request *rq,
1709
					blk_qc_t *cookie)
1710 1711 1712 1713
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1714
		.last = true,
1715
	};
1716
	blk_qc_t new_cookie;
1717
	blk_status_t ret;
M
Ming Lei 已提交
1718 1719
	bool run_queue = true;

1720 1721
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1722 1723 1724
		run_queue = false;
		goto insert;
	}
1725

1726
	if (q->elevator)
1727 1728
		goto insert;

M
Ming Lei 已提交
1729
	if (!blk_mq_get_driver_tag(rq, NULL, false))
1730 1731
		goto insert;

1732
	if (!blk_mq_get_dispatch_budget(hctx)) {
1733 1734
		blk_mq_put_driver_tag(rq);
		goto insert;
1735
	}
1736

1737 1738
	new_cookie = request_to_qc_t(hctx, rq);

1739 1740 1741 1742 1743 1744
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1745 1746
	switch (ret) {
	case BLK_STS_OK:
1747
		*cookie = new_cookie;
1748
		return;
1749 1750 1751 1752
	case BLK_STS_RESOURCE:
		__blk_mq_requeue_request(rq);
		goto insert;
	default:
1753
		*cookie = BLK_QC_T_NONE;
1754
		blk_mq_end_request(rq, ret);
1755
		return;
1756
	}
1757

1758
insert:
1759 1760
	blk_mq_sched_insert_request(rq, false, run_queue, false,
					hctx->flags & BLK_MQ_F_BLOCKING);
1761 1762
}

1763 1764 1765
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
1766
	int srcu_idx;
1767

1768
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1769

1770 1771 1772
	hctx_lock(hctx, &srcu_idx);
	__blk_mq_try_issue_directly(hctx, rq, cookie);
	hctx_unlock(hctx, srcu_idx);
1773 1774
}

1775
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1776
{
1777
	const int is_sync = op_is_sync(bio->bi_opf);
1778
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1779
	struct blk_mq_alloc_data data = { .flags = 0 };
1780
	struct request *rq;
1781
	unsigned int request_count = 0;
1782
	struct blk_plug *plug;
1783
	struct request *same_queue_rq = NULL;
1784
	blk_qc_t cookie;
J
Jens Axboe 已提交
1785
	unsigned int wb_acct;
1786 1787 1788

	blk_queue_bounce(q, &bio);

1789
	blk_queue_split(q, &bio);
1790

1791
	if (!bio_integrity_prep(bio))
1792
		return BLK_QC_T_NONE;
1793

1794 1795 1796
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1797

1798 1799 1800
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1801 1802
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1803 1804
	trace_block_getrq(q, bio, bio->bi_opf);

1805
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1806 1807
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1808 1809
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1810
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1811 1812 1813
	}

	wbt_track(&rq->issue_stat, wb_acct);
1814

1815
	cookie = request_to_qc_t(data.hctx, rq);
1816

1817
	plug = current->plug;
1818
	if (unlikely(is_flush_fua)) {
1819
		blk_mq_put_ctx(data.ctx);
1820
		blk_mq_bio_to_request(rq, bio);
1821 1822 1823 1824

		/* bypass scheduler for flush rq */
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(data.hctx, true);
1825
	} else if (plug && q->nr_hw_queues == 1) {
1826 1827
		struct request *last = NULL;

1828
		blk_mq_put_ctx(data.ctx);
1829
		blk_mq_bio_to_request(rq, bio);
1830 1831 1832 1833 1834 1835 1836

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1837 1838 1839
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1840
		if (!request_count)
1841
			trace_block_plug(q);
1842 1843
		else
			last = list_entry_rq(plug->mq_list.prev);
1844

1845 1846
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1847 1848
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1849
		}
1850

1851
		list_add_tail(&rq->queuelist, &plug->mq_list);
1852
	} else if (plug && !blk_queue_nomerges(q)) {
1853
		blk_mq_bio_to_request(rq, bio);
1854 1855

		/*
1856
		 * We do limited plugging. If the bio can be merged, do that.
1857 1858
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1859 1860
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1861
		 */
1862 1863 1864 1865 1866 1867
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1868 1869
		blk_mq_put_ctx(data.ctx);

1870 1871 1872
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1873 1874
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1875
		}
1876
	} else if (q->nr_hw_queues > 1 && is_sync) {
1877
		blk_mq_put_ctx(data.ctx);
1878 1879
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1880
	} else if (q->elevator) {
1881
		blk_mq_put_ctx(data.ctx);
1882
		blk_mq_bio_to_request(rq, bio);
1883
		blk_mq_sched_insert_request(rq, false, true, true, true);
1884
	} else {
1885
		blk_mq_put_ctx(data.ctx);
1886 1887
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1888
		blk_mq_run_hw_queue(data.hctx, true);
1889
	}
1890

1891
	return cookie;
1892 1893
}

1894 1895
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1896
{
1897
	struct page *page;
1898

1899
	if (tags->rqs && set->ops->exit_request) {
1900
		int i;
1901

1902
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1903 1904 1905
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1906
				continue;
1907
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1908
			tags->static_rqs[i] = NULL;
1909
		}
1910 1911
	}

1912 1913
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1914
		list_del_init(&page->lru);
1915 1916 1917 1918 1919
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1920 1921
		__free_pages(page, page->private);
	}
1922
}
1923

1924 1925
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1926
	kfree(tags->rqs);
1927
	tags->rqs = NULL;
J
Jens Axboe 已提交
1928 1929
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1930

1931
	blk_mq_free_tags(tags);
1932 1933
}

1934 1935 1936 1937
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1938
{
1939
	struct blk_mq_tags *tags;
1940
	int node;
1941

1942 1943 1944 1945 1946
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1947
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1948 1949
	if (!tags)
		return NULL;
1950

1951
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1952
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1953
				 node);
1954 1955 1956 1957
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1958

J
Jens Axboe 已提交
1959 1960
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1961
				 node);
J
Jens Axboe 已提交
1962 1963 1964 1965 1966 1967
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1968 1969 1970 1971 1972 1973 1974 1975
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
			       unsigned int hctx_idx, int node)
{
	int ret;

	if (set->ops->init_request) {
		ret = set->ops->init_request(set, rq, hctx_idx, node);
		if (ret)
			return ret;
	}

	seqcount_init(&rq->gstate_seq);
	u64_stats_init(&rq->aborted_gstate_sync);
	return 0;
}

1992 1993 1994 1995 1996
int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1997 1998 1999 2000 2001
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
2002 2003 2004

	INIT_LIST_HEAD(&tags->page_list);

2005 2006 2007 2008
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
2009
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2010
				cache_line_size());
2011
	left = rq_size * depth;
2012

2013
	for (i = 0; i < depth; ) {
2014 2015 2016 2017 2018
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

2019
		while (this_order && left < order_to_size(this_order - 1))
2020 2021 2022
			this_order--;

		do {
2023
			page = alloc_pages_node(node,
2024
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2025
				this_order);
2026 2027 2028 2029 2030 2031 2032 2033 2034
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
2035
			goto fail;
2036 2037

		page->private = this_order;
2038
		list_add_tail(&page->lru, &tags->page_list);
2039 2040

		p = page_address(page);
2041 2042 2043 2044
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
2045
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2046
		entries_per_page = order_to_size(this_order) / rq_size;
2047
		to_do = min(entries_per_page, depth - i);
2048 2049
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
2050 2051 2052
			struct request *rq = p;

			tags->static_rqs[i] = rq;
2053 2054 2055
			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
				tags->static_rqs[i] = NULL;
				goto fail;
2056 2057
			}

2058 2059 2060 2061
			p += rq_size;
			i++;
		}
	}
2062
	return 0;
2063

2064
fail:
2065 2066
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
2067 2068
}

J
Jens Axboe 已提交
2069 2070 2071 2072 2073
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
2074
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2075
{
2076
	struct blk_mq_hw_ctx *hctx;
2077 2078 2079
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

2080
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
2081
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2082 2083 2084 2085 2086 2087 2088 2089 2090

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
2091
		return 0;
2092

J
Jens Axboe 已提交
2093 2094 2095
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2096 2097

	blk_mq_run_hw_queue(hctx, true);
2098
	return 0;
2099 2100
}

2101
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2102
{
2103 2104
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2105 2106
}

2107
/* hctx->ctxs will be freed in queue's release handler */
2108 2109 2110 2111
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2112 2113
	blk_mq_debugfs_unregister_hctx(hctx);

2114 2115
	if (blk_mq_hw_queue_mapped(hctx))
		blk_mq_tag_idle(hctx);
2116

2117
	if (set->ops->exit_request)
2118
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2119

2120 2121
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

2122 2123 2124
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2125
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2126
		cleanup_srcu_struct(hctx->queue_rq_srcu);
2127

2128
	blk_mq_remove_cpuhp(hctx);
2129
	blk_free_flush_queue(hctx->fq);
2130
	sbitmap_free(&hctx->ctx_map);
2131 2132
}

M
Ming Lei 已提交
2133 2134 2135 2136 2137 2138 2139 2140 2141
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2142
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2143 2144 2145
	}
}

2146 2147 2148
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2149
{
2150 2151 2152 2153 2154 2155
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

2156
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2157 2158 2159
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2160
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2161

2162
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2163 2164

	hctx->tags = set->tags[hctx_idx];
2165 2166

	/*
2167 2168
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2169
	 */
2170
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2171 2172 2173
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
2174

2175 2176
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
2177
		goto free_ctxs;
2178

2179
	hctx->nr_ctx = 0;
2180

2181 2182 2183
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

2184 2185 2186
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2187

2188 2189 2190
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

2191 2192
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
2193
		goto sched_exit_hctx;
2194

2195
	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2196
		goto free_fq;
2197

2198
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2199
		init_srcu_struct(hctx->queue_rq_srcu);
2200

2201 2202
	blk_mq_debugfs_register_hctx(q, hctx);

2203
	return 0;
2204

2205 2206
 free_fq:
	kfree(hctx->fq);
2207 2208
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2209 2210 2211
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2212
 free_bitmap:
2213
	sbitmap_free(&hctx->ctx_map);
2214 2215 2216
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2217
	blk_mq_remove_cpuhp(hctx);
2218 2219
	return -1;
}
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

2235 2236
		/* If the cpu isn't present, the cpu is mapped to first hctx */
		if (!cpu_present(i))
2237 2238
			continue;

C
Christoph Hellwig 已提交
2239
		hctx = blk_mq_map_queue(q, i);
2240

2241 2242 2243 2244 2245
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2246
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2247 2248 2249
	}
}

2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2272 2273 2274 2275 2276
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2277 2278
}

2279
static void blk_mq_map_swqueue(struct request_queue *q)
2280
{
2281
	unsigned int i, hctx_idx;
2282 2283
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2284
	struct blk_mq_tag_set *set = q->tag_set;
2285

2286 2287 2288 2289 2290
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2291
	queue_for_each_hw_ctx(q, hctx, i) {
2292
		cpumask_clear(hctx->cpumask);
2293 2294 2295 2296
		hctx->nr_ctx = 0;
	}

	/*
2297 2298 2299
	 * Map software to hardware queues.
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2300
	 */
2301
	for_each_present_cpu(i) {
2302 2303
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2304 2305
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2306 2307 2308 2309 2310 2311
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2312
			q->mq_map[i] = 0;
2313 2314
		}

2315
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2316
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2317

2318
		cpumask_set_cpu(i, hctx->cpumask);
2319 2320 2321
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2322

2323 2324
	mutex_unlock(&q->sysfs_lock);

2325
	queue_for_each_hw_ctx(q, hctx, i) {
2326
		/*
2327 2328
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2329 2330
		 */
		if (!hctx->nr_ctx) {
2331 2332 2333 2334
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2335 2336 2337
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2338
			hctx->tags = NULL;
2339 2340 2341
			continue;
		}

M
Ming Lei 已提交
2342 2343 2344
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2345 2346 2347 2348 2349
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2350
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2351

2352 2353 2354
		/*
		 * Initialize batch roundrobin counts
		 */
2355 2356 2357
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2358 2359
}

2360 2361 2362 2363
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2364
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2365 2366 2367 2368
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2369
	queue_for_each_hw_ctx(q, hctx, i) {
2370 2371 2372
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2373
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2374 2375 2376
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2377
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2378
		}
2379 2380 2381
	}
}

2382 2383
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2384 2385
{
	struct request_queue *q;
2386

2387 2388
	lockdep_assert_held(&set->tag_list_lock);

2389 2390
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2391
		queue_set_hctx_shared(q, shared);
2392 2393 2394 2395 2396 2397 2398 2399 2400
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2401 2402
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2403 2404 2405 2406 2407 2408
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2409
	mutex_unlock(&set->tag_list_lock);
2410 2411

	synchronize_rcu();
2412 2413 2414 2415 2416 2417 2418 2419
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2420

2421 2422 2423 2424 2425
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2426 2427 2428 2429 2430 2431
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2432
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2433

2434 2435 2436
	mutex_unlock(&set->tag_list_lock);
}

2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2449 2450 2451
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2452
		kobject_put(&hctx->kobj);
2453
	}
2454

2455 2456
	q->mq_map = NULL;

2457 2458
	kfree(q->queue_hw_ctx);

2459 2460 2461 2462 2463 2464
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2465 2466 2467
	free_percpu(q->queue_ctx);
}

2468
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2498 2499
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2500
{
K
Keith Busch 已提交
2501 2502
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2503

K
Keith Busch 已提交
2504
	blk_mq_sysfs_unregister(q);
2505 2506 2507

	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
2508
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2509
		int node;
2510

K
Keith Busch 已提交
2511 2512 2513 2514
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2515
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2516
					GFP_KERNEL, node);
2517
		if (!hctxs[i])
K
Keith Busch 已提交
2518
			break;
2519

2520
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2521 2522 2523 2524 2525
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2526

2527
		atomic_set(&hctxs[i]->nr_active, 0);
2528
		hctxs[i]->numa_node = node;
2529
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2530 2531 2532 2533 2534 2535 2536 2537

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2538
	}
K
Keith Busch 已提交
2539 2540 2541 2542
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2543 2544
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2545 2546 2547 2548 2549 2550 2551
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
2552
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
2553 2554 2555 2556 2557 2558
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2559 2560 2561
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2562
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2563 2564
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2565 2566 2567
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2568 2569
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2570
		goto err_exit;
K
Keith Busch 已提交
2571

2572 2573 2574
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2575 2576 2577 2578 2579
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2580
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2581 2582 2583 2584

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2585

2586
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2587
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2588 2589 2590

	q->nr_queues = nr_cpu_ids;

2591
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2592

2593 2594 2595
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2596 2597
	q->sg_reserved_size = INT_MAX;

2598
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2599 2600 2601
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2602
	blk_queue_make_request(q, blk_mq_make_request);
2603 2604
	if (q->mq_ops->poll)
		q->poll_fn = blk_mq_poll;
2605

2606 2607 2608 2609 2610
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2611 2612 2613 2614 2615
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2616 2617
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2618

2619
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2620
	blk_mq_add_queue_tag_set(set, q);
2621
	blk_mq_map_swqueue(q);
2622

2623 2624 2625 2626 2627 2628 2629 2630
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2631
	return q;
2632

2633
err_hctxs:
K
Keith Busch 已提交
2634
	kfree(q->queue_hw_ctx);
2635
err_percpu:
K
Keith Busch 已提交
2636
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2637 2638
err_exit:
	q->mq_ops = NULL;
2639 2640
	return ERR_PTR(-ENOMEM);
}
2641
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2642 2643 2644

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2645
	struct blk_mq_tag_set	*set = q->tag_set;
2646

2647
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2648
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2649 2650 2651
}

/* Basically redo blk_mq_init_queue with queue frozen */
2652
static void blk_mq_queue_reinit(struct request_queue *q)
2653
{
2654
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2655

2656
	blk_mq_debugfs_unregister_hctxs(q);
2657 2658
	blk_mq_sysfs_unregister(q);

2659 2660
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2661 2662
	 * we should change hctx numa_node according to the new topology (this
	 * involves freeing and re-allocating memory, worth doing?)
2663
	 */
2664
	blk_mq_map_swqueue(q);
2665

2666
	blk_mq_sysfs_register(q);
2667
	blk_mq_debugfs_register_hctxs(q);
2668 2669
}

2670 2671 2672 2673
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2674 2675
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2676 2677 2678 2679 2680 2681
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2682
		blk_mq_free_rq_map(set->tags[i]);
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2722 2723
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
	if (set->ops->map_queues) {
		int cpu;
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
		 * 		set->mq_map[cpu] = queue;
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
		for_each_possible_cpu(cpu)
			set->mq_map[cpu] = 0;

2743
		return set->ops->map_queues(set);
2744
	} else
2745 2746 2747
		return blk_mq_map_queues(set);
}

2748 2749 2750 2751 2752 2753
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2754 2755
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2756 2757
	int ret;

B
Bart Van Assche 已提交
2758 2759
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2760 2761
	if (!set->nr_hw_queues)
		return -EINVAL;
2762
	if (!set->queue_depth)
2763 2764 2765 2766
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2767
	if (!set->ops->queue_rq)
2768 2769
		return -EINVAL;

2770 2771 2772
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

2773 2774 2775 2776 2777
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2778

2779 2780 2781 2782 2783 2784 2785 2786 2787
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2788 2789 2790 2791 2792
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2793

K
Keith Busch 已提交
2794
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2795 2796
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2797
		return -ENOMEM;
2798

2799 2800 2801
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2802 2803 2804
	if (!set->mq_map)
		goto out_free_tags;

2805
	ret = blk_mq_update_queue_map(set);
2806 2807 2808 2809 2810
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2811
		goto out_free_mq_map;
2812

2813 2814 2815
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2816
	return 0;
2817 2818 2819 2820 2821

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2822 2823
	kfree(set->tags);
	set->tags = NULL;
2824
	return ret;
2825 2826 2827 2828 2829 2830 2831
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2832 2833
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2834

2835 2836 2837
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2838
	kfree(set->tags);
2839
	set->tags = NULL;
2840 2841 2842
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2843 2844 2845 2846 2847 2848
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2849
	if (!set)
2850 2851
		return -EINVAL;

2852
	blk_mq_freeze_queue(q);
2853
	blk_mq_quiesce_queue(q);
2854

2855 2856
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2857 2858
		if (!hctx->tags)
			continue;
2859 2860 2861 2862
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2863
		if (!hctx->sched_tags) {
2864
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2865 2866 2867 2868 2869
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2870 2871 2872 2873 2874 2875 2876
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2877
	blk_mq_unquiesce_queue(q);
2878 2879
	blk_mq_unfreeze_queue(q);

2880 2881 2882
	return ret;
}

2883 2884
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2885 2886 2887
{
	struct request_queue *q;

2888 2889
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2890 2891 2892 2893 2894 2895 2896 2897 2898
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2899
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2900 2901
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2902
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2903 2904 2905 2906 2907
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2908 2909 2910 2911 2912 2913 2914

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2915 2916
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2943
	int bucket;
2944

2945 2946 2947 2948
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2949 2950
}

2951 2952 2953 2954 2955
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2956
	int bucket;
2957 2958 2959 2960 2961

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2962
	if (!blk_poll_stats_enable(q))
2963 2964 2965 2966 2967 2968 2969 2970
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2971 2972
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2973
	 */
2974 2975 2976 2977 2978 2979
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2980 2981 2982 2983

	return ret;
}

2984
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2985
				     struct blk_mq_hw_ctx *hctx,
2986 2987 2988 2989
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2990
	unsigned int nsecs;
2991 2992
	ktime_t kt;

2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
3011 3012 3013 3014 3015 3016 3017 3018
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
3019
	kt = nsecs;
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
3042 3043 3044 3045 3046
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

3047 3048 3049 3050 3051 3052 3053
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
3054
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3055 3056
		return true;

J
Jens Axboe 已提交
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

3085
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
J
Jens Axboe 已提交
3086 3087 3088 3089
{
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;

3090
	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
J
Jens Axboe 已提交
3091 3092 3093
		return false;

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3094 3095
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3096
	else {
3097
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3098 3099 3100 3101 3102 3103 3104 3105 3106
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
3107 3108 3109 3110

	return __blk_mq_poll(hctx, rq);
}

3111 3112
static int __init blk_mq_init(void)
{
3113 3114
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
3115 3116 3117
	return 0;
}
subsys_initcall(blk_mq_init);