memcontrol.c 185.8 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/page_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
59
#include "internal.h"
G
Glauber Costa 已提交
60
#include <net/sock.h>
M
Michal Hocko 已提交
61
#include <net/ip.h>
G
Glauber Costa 已提交
62
#include <net/tcp_memcontrol.h>
63
#include "slab.h"
B
Balbir Singh 已提交
64

65 66
#include <asm/uaccess.h>

67 68
#include <trace/events/vmscan.h>

69 70
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
71

72
#define MEM_CGROUP_RECLAIM_RETRIES	5
73
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
74

A
Andrew Morton 已提交
75
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
76
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77
int do_swap_account __read_mostly;
78 79

/* for remember boot option*/
A
Andrew Morton 已提交
80
#ifdef CONFIG_MEMCG_SWAP_ENABLED
81 82
static int really_do_swap_account __initdata = 1;
#else
83
static int really_do_swap_account __initdata;
84 85
#endif

86
#else
87
#define do_swap_account		0
88 89 90
#endif


91 92 93
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
94
	"rss_huge",
95
	"mapped_file",
96
	"writeback",
97 98 99
	"swap",
};

100 101 102
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
103 104
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
105 106
	MEM_CGROUP_EVENTS_NSTATS,
};
107 108 109 110 111 112 113 114

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

115 116 117 118 119 120 121 122
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

123 124 125 126 127 128 129 130
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
131
	MEM_CGROUP_TARGET_SOFTLIMIT,
132
	MEM_CGROUP_TARGET_NUMAINFO,
133 134
	MEM_CGROUP_NTARGETS,
};
135 136 137
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
138

139
struct mem_cgroup_stat_cpu {
140
	long count[MEM_CGROUP_STAT_NSTATS];
141
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142
	unsigned long nr_page_events;
143
	unsigned long targets[MEM_CGROUP_NTARGETS];
144 145
};

146
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
147 148 149 150
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
151
	struct mem_cgroup *last_visited;
152
	int last_dead_count;
M
Michal Hocko 已提交
153

154 155 156 157
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

158 159 160 161
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
162
	struct lruvec		lruvec;
163
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
164

165 166
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

167 168 169 170
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
171
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
172
						/* use container_of	   */
173 174 175 176 177 178
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

199 200 201 202 203
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
204
/* For threshold */
205
struct mem_cgroup_threshold_ary {
206
	/* An array index points to threshold just below or equal to usage. */
207
	int current_threshold;
208 209 210 211 212
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
213 214 215 216 217 218 219 220 221 222 223 224

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
225 226 227 228 229
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
230

231 232 233
/*
 * cgroup_event represents events which userspace want to receive.
 */
234
struct mem_cgroup_event {
235
	/*
236
	 * memcg which the event belongs to.
237
	 */
238
	struct mem_cgroup *memcg;
239 240 241 242 243 244 245 246
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
247 248 249 250 251
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
252
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
253
			      struct eventfd_ctx *eventfd, const char *args);
254 255 256 257 258
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
259
	void (*unregister_event)(struct mem_cgroup *memcg,
260
				 struct eventfd_ctx *eventfd);
261 262 263 264 265 266 267 268 269 270
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

271 272
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
273

B
Balbir Singh 已提交
274 275 276 277 278 279 280
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
281 282 283
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
284 285 286 287 288 289 290
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
291

292 293 294
	/* vmpressure notifications */
	struct vmpressure vmpressure;

295 296 297 298
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
299

300 301 302 303
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
304 305 306 307
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
308
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
309 310 311

	bool		oom_lock;
	atomic_t	under_oom;
312
	atomic_t	oom_wakeups;
313

314
	int	swappiness;
315 316
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
317

318 319 320
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

321 322 323 324
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
325
	struct mem_cgroup_thresholds thresholds;
326

327
	/* thresholds for mem+swap usage. RCU-protected */
328
	struct mem_cgroup_thresholds memsw_thresholds;
329

K
KAMEZAWA Hiroyuki 已提交
330 331
	/* For oom notifier event fd */
	struct list_head oom_notify;
332

333 334 335 336
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
337
	unsigned long move_charge_at_immigrate;
338 339 340 341
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
342 343
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
344
	/*
345
	 * percpu counter.
346
	 */
347
	struct mem_cgroup_stat_cpu __percpu *stat;
348 349 350 351 352 353
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
354

M
Michal Hocko 已提交
355
	atomic_t	dead_count;
M
Michal Hocko 已提交
356
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
357
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
358
#endif
359
#if defined(CONFIG_MEMCG_KMEM)
360 361
	/* analogous to slab_common's slab_caches list, but per-memcg;
	 * protected by memcg_slab_mutex */
362 363 364 365
	struct list_head memcg_slab_caches;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
366 367 368 369 370 371 372

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
373

374 375 376 377
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

378 379
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
380 381
};

382 383
/* internal only representation about the status of kmem accounting. */
enum {
384
	KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
385
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
386 387 388 389 390 391 392
};

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
393 394 395 396 397 398 399 400

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
401 402 403 404 405
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
406 407 408 409 410 411 412 413 414
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
415 416
#endif

417 418
/* Stuffs for move charges at task migration. */
/*
419 420
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
421 422
 */
enum move_type {
423
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
424
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
425 426 427
	NR_MOVE_TYPE,
};

428 429
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
430
	spinlock_t	  lock; /* for from, to */
431 432
	struct mem_cgroup *from;
	struct mem_cgroup *to;
433
	unsigned long immigrate_flags;
434
	unsigned long precharge;
435
	unsigned long moved_charge;
436
	unsigned long moved_swap;
437 438 439
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
440
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
441 442
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
443

D
Daisuke Nishimura 已提交
444 445
static bool move_anon(void)
{
446
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
447 448
}

449 450
static bool move_file(void)
{
451
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
452 453
}

454 455 456 457
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
458
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
459
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
460

461 462
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
463
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
464
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
465
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
466 467 468
	NR_CHARGE_TYPE,
};

469
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
470 471 472 473
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
474
	_KMEM,
G
Glauber Costa 已提交
475 476
};

477 478
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
479
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
480 481
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
482

483 484 485 486 487 488 489 490
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

491 492 493 494 495 496 497
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

498 499
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
500
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
501 502
}

503 504 505 506 507 508 509 510 511 512 513 514 515
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

516 517 518 519 520
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

521 522 523 524 525 526
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
527 528 529 530 531 532 533 534 535 536 537 538 539
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
	/*
	 * The ID of the root cgroup is 0, but memcg treat 0 as an
	 * invalid ID, so we return (cgroup_id + 1).
	 */
	return memcg->css.cgroup->id + 1;
}

static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

540
	css = css_from_id(id - 1, &memory_cgrp_subsys);
L
Li Zefan 已提交
541 542 543
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
544
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
545
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
546 547 548

void sock_update_memcg(struct sock *sk)
{
549
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
550
		struct mem_cgroup *memcg;
551
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
552 553 554

		BUG_ON(!sk->sk_prot->proto_cgroup);

555 556 557 558 559 560 561 562 563 564
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
565
			css_get(&sk->sk_cgrp->memcg->css);
566 567 568
			return;
		}

G
Glauber Costa 已提交
569 570
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
571
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
572 573
		if (!mem_cgroup_is_root(memcg) &&
		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
574
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
575 576 577 578 579 580 581 582
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
583
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
584 585 586
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
587
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
588 589
	}
}
G
Glauber Costa 已提交
590 591 592 593 594 595

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

596
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
597 598
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
599

600 601
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
602
	if (!memcg_proto_activated(&memcg->tcp_mem))
603 604 605 606 607 608 609 610 611
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

612
#ifdef CONFIG_MEMCG_KMEM
613 614
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
L
Li Zefan 已提交
615 616 617 618 619
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
620 621 622 623 624 625
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
626 627
int memcg_limited_groups_array_size;

628 629 630 631 632 633
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
634
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
635 636
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
637
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
638 639 640
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
641
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
642

643 644 645 646 647 648
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
649
struct static_key memcg_kmem_enabled_key;
650
EXPORT_SYMBOL(memcg_kmem_enabled_key);
651 652 653

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
654
	if (memcg_kmem_is_active(memcg)) {
655
		static_key_slow_dec(&memcg_kmem_enabled_key);
656 657
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
658 659 660 661 662
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
663 664 665 666 667 668 669 670 671 672 673 674 675
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

676
static void drain_all_stock_async(struct mem_cgroup *memcg);
677

678
static struct mem_cgroup_per_zone *
679
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
680
{
681 682 683
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

684
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
685 686
}

687
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
688
{
689
	return &memcg->css;
690 691
}

692
static struct mem_cgroup_per_zone *
693
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
694
{
695 696
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
697

698
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
699 700
}

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

716 717 718
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
					 unsigned long long new_usage_in_excess)
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

748 749
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
750 751 752 753 754 755 756
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

757 758
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
759 760
{
	spin_lock(&mctz->lock);
761
	__mem_cgroup_remove_exceeded(mz, mctz);
762 763 764 765 766 767 768 769 770 771
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
	unsigned long long excess;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

772
	mctz = soft_limit_tree_from_page(page);
773 774 775 776 777
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
778
		mz = mem_cgroup_page_zoneinfo(memcg, page);
779 780 781 782 783 784 785 786 787
		excess = res_counter_soft_limit_excess(&memcg->res);
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
788
				__mem_cgroup_remove_exceeded(mz, mctz);
789 790 791 792
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
793
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
794 795 796 797 798 799 800 801
			spin_unlock(&mctz->lock);
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
802 803
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
804

805 806 807 808
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
809
			mem_cgroup_remove_exceeded(mz, mctz);
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
832
	__mem_cgroup_remove_exceeded(mz, mctz);
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
870
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
871
				 enum mem_cgroup_stat_index idx)
872
{
873
	long val = 0;
874 875
	int cpu;

876 877
	get_online_cpus();
	for_each_online_cpu(cpu)
878
		val += per_cpu(memcg->stat->count[idx], cpu);
879
#ifdef CONFIG_HOTPLUG_CPU
880 881 882
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
883 884
#endif
	put_online_cpus();
885 886 887
	return val;
}

888
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
889 890 891
					 bool charge)
{
	int val = (charge) ? 1 : -1;
892
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
893 894
}

895
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
896 897 898 899 900
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

901
	get_online_cpus();
902
	for_each_online_cpu(cpu)
903
		val += per_cpu(memcg->stat->events[idx], cpu);
904
#ifdef CONFIG_HOTPLUG_CPU
905 906 907
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
908
#endif
909
	put_online_cpus();
910 911 912
	return val;
}

913
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
914
					 struct page *page,
915
					 bool anon, int nr_pages)
916
{
917 918 919 920 921 922
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
923
				nr_pages);
924
	else
925
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
926
				nr_pages);
927

928 929 930 931
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

932 933
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
934
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
935
	else {
936
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
937 938
		nr_pages = -nr_pages; /* for event */
	}
939

940
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
941 942
}

943
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
944 945 946 947 948 949 950
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

951 952 953
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
954
{
955
	unsigned long nr = 0;
956 957
	int zid;

958
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
959

960 961 962 963 964 965 966 967 968 969 970 971
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
972
}
973

974
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
975
			unsigned int lru_mask)
976
{
977
	unsigned long nr = 0;
978
	int nid;
979

980
	for_each_node_state(nid, N_MEMORY)
981 982
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
983 984
}

985 986
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
987 988 989
{
	unsigned long val, next;

990
	val = __this_cpu_read(memcg->stat->nr_page_events);
991
	next = __this_cpu_read(memcg->stat->targets[target]);
992
	/* from time_after() in jiffies.h */
993 994 995 996 997
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
998 999 1000
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
1001 1002 1003 1004 1005 1006 1007 1008
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
1009
	}
1010
	return false;
1011 1012 1013 1014 1015 1016
}

/*
 * Check events in order.
 *
 */
1017
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1018
{
1019
	preempt_disable();
1020
	/* threshold event is triggered in finer grain than soft limit */
1021 1022
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1023
		bool do_softlimit;
1024
		bool do_numainfo __maybe_unused;
1025

1026 1027
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
1028 1029 1030 1031 1032 1033
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1034
		mem_cgroup_threshold(memcg);
1035 1036
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
1037
#if MAX_NUMNODES > 1
1038
		if (unlikely(do_numainfo))
1039
			atomic_inc(&memcg->numainfo_events);
1040
#endif
1041 1042
	} else
		preempt_enable();
1043 1044
}

1045
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1046
{
1047 1048 1049 1050 1051 1052 1053 1054
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1055
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1056 1057
}

1058
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1059
{
1060
	struct mem_cgroup *memcg = NULL;
1061

1062 1063
	rcu_read_lock();
	do {
1064 1065 1066 1067 1068 1069
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1070
			memcg = root_mem_cgroup;
1071 1072 1073 1074 1075
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1076
	} while (!css_tryget(&memcg->css));
1077
	rcu_read_unlock();
1078
	return memcg;
1079 1080
}

1081 1082 1083 1084 1085 1086 1087
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1088
		struct mem_cgroup *last_visited)
1089
{
1090
	struct cgroup_subsys_state *prev_css, *next_css;
1091

1092
	prev_css = last_visited ? &last_visited->css : NULL;
1093
skip_node:
1094
	next_css = css_next_descendant_pre(prev_css, &root->css);
1095 1096 1097 1098 1099 1100 1101

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
1102 1103 1104 1105 1106 1107 1108 1109
	 *
	 * We do not take a reference on the root of the tree walk
	 * because we might race with the root removal when it would
	 * be the only node in the iterated hierarchy and mem_cgroup_iter
	 * would end up in an endless loop because it expects that at
	 * least one valid node will be returned. Root cannot disappear
	 * because caller of the iterator should hold it already so
	 * skipping css reference should be safe.
1110
	 */
1111
	if (next_css) {
1112 1113
		if ((next_css == &root->css) ||
		    ((next_css->flags & CSS_ONLINE) && css_tryget(next_css)))
1114
			return mem_cgroup_from_css(next_css);
1115 1116 1117

		prev_css = next_css;
		goto skip_node;
1118 1119 1120 1121 1122
	}

	return NULL;
}

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
1151 1152 1153 1154 1155 1156 1157 1158 1159

		/*
		 * We cannot take a reference to root because we might race
		 * with root removal and returning NULL would end up in
		 * an endless loop on the iterator user level when root
		 * would be returned all the time.
		 */
		if (position && position != root &&
				!css_tryget(&position->css))
1160 1161 1162 1163 1164 1165 1166 1167
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
1168
				   struct mem_cgroup *root,
1169 1170
				   int sequence)
{
1171 1172
	/* root reference counting symmetric to mem_cgroup_iter_load */
	if (last_visited && last_visited != root)
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1202
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1203
				   struct mem_cgroup *prev,
1204
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1205
{
1206
	struct mem_cgroup *memcg = NULL;
1207
	struct mem_cgroup *last_visited = NULL;
1208

1209 1210
	if (mem_cgroup_disabled())
		return NULL;
1211

1212 1213
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1214

1215
	if (prev && !reclaim)
1216
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1217

1218 1219
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1220
			goto out_css_put;
1221
		return root;
1222
	}
K
KAMEZAWA Hiroyuki 已提交
1223

1224
	rcu_read_lock();
1225
	while (!memcg) {
1226
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1227
		int uninitialized_var(seq);
1228

1229 1230 1231
		if (reclaim) {
			struct mem_cgroup_per_zone *mz;

1232
			mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1233
			iter = &mz->reclaim_iter[reclaim->priority];
1234
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1235
				iter->last_visited = NULL;
1236 1237
				goto out_unlock;
			}
M
Michal Hocko 已提交
1238

1239
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1240
		}
K
KAMEZAWA Hiroyuki 已提交
1241

1242
		memcg = __mem_cgroup_iter_next(root, last_visited);
K
KAMEZAWA Hiroyuki 已提交
1243

1244
		if (reclaim) {
1245 1246
			mem_cgroup_iter_update(iter, last_visited, memcg, root,
					seq);
1247

M
Michal Hocko 已提交
1248
			if (!memcg)
1249 1250 1251 1252
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1253

1254
		if (prev && !memcg)
1255
			goto out_unlock;
1256
	}
1257 1258
out_unlock:
	rcu_read_unlock();
1259 1260 1261 1262
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1263
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1264
}
K
KAMEZAWA Hiroyuki 已提交
1265

1266 1267 1268 1269 1270 1271 1272
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1273 1274 1275 1276 1277 1278
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1279

1280 1281 1282 1283 1284 1285
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1286
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1287
	     iter != NULL;				\
1288
	     iter = mem_cgroup_iter(root, iter, NULL))
1289

1290
#define for_each_mem_cgroup(iter)			\
1291
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1292
	     iter != NULL;				\
1293
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1294

1295
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1296
{
1297
	struct mem_cgroup *memcg;
1298 1299

	rcu_read_lock();
1300 1301
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1302 1303 1304 1305
		goto out;

	switch (idx) {
	case PGFAULT:
1306 1307 1308 1309
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1310 1311 1312 1313 1314 1315 1316
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1317
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1318

1319 1320 1321
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1322
 * @memcg: memcg of the wanted lruvec
1323 1324 1325 1326 1327 1328 1329 1330 1331
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1332
	struct lruvec *lruvec;
1333

1334 1335 1336 1337
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1338

1339
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1350 1351
}

K
KAMEZAWA Hiroyuki 已提交
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1365

1366
/**
1367
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1368
 * @page: the page
1369
 * @zone: zone of the page
1370
 */
1371
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1372 1373
{
	struct mem_cgroup_per_zone *mz;
1374 1375
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1376
	struct lruvec *lruvec;
1377

1378 1379 1380 1381
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1382

K
KAMEZAWA Hiroyuki 已提交
1383
	pc = lookup_page_cgroup(page);
1384
	memcg = pc->mem_cgroup;
1385 1386

	/*
1387
	 * Surreptitiously switch any uncharged offlist page to root:
1388 1389 1390 1391 1392 1393 1394
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1395
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1396 1397
		pc->mem_cgroup = memcg = root_mem_cgroup;

1398
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1409
}
1410

1411
/**
1412 1413 1414 1415
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1416
 *
1417 1418
 * This function must be called when a page is added to or removed from an
 * lru list.
1419
 */
1420 1421
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1422 1423
{
	struct mem_cgroup_per_zone *mz;
1424
	unsigned long *lru_size;
1425 1426 1427 1428

	if (mem_cgroup_disabled())
		return;

1429 1430 1431 1432
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1433
}
1434

1435
/*
1436
 * Checks whether given mem is same or in the root_mem_cgroup's
1437 1438
 * hierarchy subtree
 */
1439 1440
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1441
{
1442 1443
	if (root_memcg == memcg)
		return true;
1444
	if (!root_memcg->use_hierarchy || !memcg)
1445
		return false;
1446
	return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1447 1448 1449 1450 1451 1452 1453
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1454
	rcu_read_lock();
1455
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1456 1457
	rcu_read_unlock();
	return ret;
1458 1459
}

1460 1461
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1462
{
1463
	struct mem_cgroup *curr = NULL;
1464
	struct task_struct *p;
1465
	bool ret;
1466

1467
	p = find_lock_task_mm(task);
1468
	if (p) {
1469
		curr = get_mem_cgroup_from_mm(p->mm);
1470 1471 1472 1473 1474 1475 1476
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1477
		rcu_read_lock();
1478 1479 1480
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1481
		rcu_read_unlock();
1482
	}
1483
	/*
1484
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1485
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1486 1487
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1488
	 */
1489
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1490
	css_put(&curr->css);
1491 1492 1493
	return ret;
}

1494
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1495
{
1496
	unsigned long inactive_ratio;
1497
	unsigned long inactive;
1498
	unsigned long active;
1499
	unsigned long gb;
1500

1501 1502
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1503

1504 1505 1506 1507 1508 1509
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1510
	return inactive * inactive_ratio < active;
1511 1512
}

1513 1514 1515
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1516
/**
1517
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1518
 * @memcg: the memory cgroup
1519
 *
1520
 * Returns the maximum amount of memory @mem can be charged with, in
1521
 * pages.
1522
 */
1523
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1524
{
1525 1526
	unsigned long long margin;

1527
	margin = res_counter_margin(&memcg->res);
1528
	if (do_swap_account)
1529
		margin = min(margin, res_counter_margin(&memcg->memsw));
1530
	return margin >> PAGE_SHIFT;
1531 1532
}

1533
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1534 1535
{
	/* root ? */
1536
	if (mem_cgroup_disabled() || !css_parent(&memcg->css))
K
KOSAKI Motohiro 已提交
1537 1538
		return vm_swappiness;

1539
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1540 1541
}

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1556 1557 1558 1559

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1560
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1561
{
1562
	atomic_inc(&memcg_moving);
1563
	atomic_inc(&memcg->moving_account);
1564 1565 1566
	synchronize_rcu();
}

1567
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1568
{
1569 1570 1571 1572
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1573 1574
	if (memcg) {
		atomic_dec(&memcg_moving);
1575
		atomic_dec(&memcg->moving_account);
1576
	}
1577
}
1578

1579
/*
Q
Qiang Huang 已提交
1580
 * A routine for checking "mem" is under move_account() or not.
1581
 *
Q
Qiang Huang 已提交
1582 1583 1584
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1585
 */
1586
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1587
{
1588 1589
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1590
	bool ret = false;
1591 1592 1593 1594 1595 1596 1597 1598 1599
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1600

1601 1602
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1603 1604
unlock:
	spin_unlock(&mc.lock);
1605 1606 1607
	return ret;
}

1608
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1609 1610
{
	if (mc.moving_task && current != mc.moving_task) {
1611
		if (mem_cgroup_under_move(memcg)) {
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1641
#define K(x) ((x) << (PAGE_SHIFT-10))
1642
/**
1643
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1644 1645 1646 1647 1648 1649 1650 1651
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1652
	/* oom_info_lock ensures that parallel ooms do not interleave */
1653
	static DEFINE_MUTEX(oom_info_lock);
1654 1655
	struct mem_cgroup *iter;
	unsigned int i;
1656

1657
	if (!p)
1658 1659
		return;

1660
	mutex_lock(&oom_info_lock);
1661 1662
	rcu_read_lock();

T
Tejun Heo 已提交
1663 1664 1665 1666 1667
	pr_info("Task in ");
	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	pr_info(" killed as a result of limit of ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_info("\n");
1668 1669 1670

	rcu_read_unlock();

1671
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1672 1673 1674
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1675
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1676 1677 1678
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1679
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1680 1681 1682
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1683 1684

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1685 1686
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1702
	mutex_unlock(&oom_info_lock);
1703 1704
}

1705 1706 1707 1708
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1709
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1710 1711
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1712 1713
	struct mem_cgroup *iter;

1714
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1715
		num++;
1716 1717 1718
	return num;
}

D
David Rientjes 已提交
1719 1720 1721
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1722
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1723 1724 1725
{
	u64 limit;

1726 1727
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1728
	/*
1729
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1730
	 */
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1745 1746
}

1747 1748
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1749 1750 1751 1752 1753 1754 1755
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1756
	/*
1757 1758 1759
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1760
	 */
1761
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1762 1763 1764 1765 1766
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1767 1768
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
1769
		struct css_task_iter it;
1770 1771
		struct task_struct *task;

1772 1773
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1786
				css_task_iter_end(&it);
1787 1788 1789 1790 1791 1792 1793 1794
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1807
		}
1808
		css_task_iter_end(&it);
1809 1810 1811 1812 1813 1814 1815 1816 1817
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1854 1855
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1856
 * @memcg: the target memcg
1857 1858 1859 1860 1861 1862 1863
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1864
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1865 1866
		int nid, bool noswap)
{
1867
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1868 1869 1870
		return true;
	if (noswap || !total_swap_pages)
		return false;
1871
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1872 1873 1874 1875
		return true;
	return false;

}
1876
#if MAX_NUMNODES > 1
1877 1878 1879 1880 1881 1882 1883

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1884
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1885 1886
{
	int nid;
1887 1888 1889 1890
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1891
	if (!atomic_read(&memcg->numainfo_events))
1892
		return;
1893
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1894 1895 1896
		return;

	/* make a nodemask where this memcg uses memory from */
1897
	memcg->scan_nodes = node_states[N_MEMORY];
1898

1899
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1900

1901 1902
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1903
	}
1904

1905 1906
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1921
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1922 1923 1924
{
	int node;

1925 1926
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1927

1928
	node = next_node(node, memcg->scan_nodes);
1929
	if (node == MAX_NUMNODES)
1930
		node = first_node(memcg->scan_nodes);
1931 1932 1933 1934 1935 1936 1937 1938 1939
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1940
	memcg->last_scanned_node = node;
1941 1942 1943
	return node;
}

1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, memcg->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_MEMORY) {
		if (node_isset(nid, memcg->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
			return true;
	}
	return false;
}

1979
#else
1980
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1981 1982 1983
{
	return 0;
}
1984

1985 1986 1987 1988
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
}
1989 1990
#endif

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		if (!mem_cgroup_reclaimable(victim, false))
			continue;
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
			break;
2039
	}
2040 2041
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
2042 2043
}

2044 2045 2046 2047 2048 2049
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

2050 2051
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
2052 2053 2054 2055
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
2056
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2057
{
2058
	struct mem_cgroup *iter, *failed = NULL;
2059

2060 2061
	spin_lock(&memcg_oom_lock);

2062
	for_each_mem_cgroup_tree(iter, memcg) {
2063
		if (iter->oom_lock) {
2064 2065 2066 2067 2068
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
2069 2070
			mem_cgroup_iter_break(memcg, iter);
			break;
2071 2072
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
2073
	}
K
KAMEZAWA Hiroyuki 已提交
2074

2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
2086
		}
2087 2088
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2089 2090 2091 2092

	spin_unlock(&memcg_oom_lock);

	return !failed;
2093
}
2094

2095
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2096
{
K
KAMEZAWA Hiroyuki 已提交
2097 2098
	struct mem_cgroup *iter;

2099
	spin_lock(&memcg_oom_lock);
2100
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2101
	for_each_mem_cgroup_tree(iter, memcg)
2102
		iter->oom_lock = false;
2103
	spin_unlock(&memcg_oom_lock);
2104 2105
}

2106
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2107 2108 2109
{
	struct mem_cgroup *iter;

2110
	for_each_mem_cgroup_tree(iter, memcg)
2111 2112 2113
		atomic_inc(&iter->under_oom);
}

2114
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2115 2116 2117
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2118 2119 2120 2121 2122
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2123
	for_each_mem_cgroup_tree(iter, memcg)
2124
		atomic_add_unless(&iter->under_oom, -1, 0);
2125 2126
}

K
KAMEZAWA Hiroyuki 已提交
2127 2128
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2129
struct oom_wait_info {
2130
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2131 2132 2133 2134 2135 2136
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2137 2138
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2139 2140 2141
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2142
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2143 2144

	/*
2145
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2146 2147
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2148 2149
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2150 2151 2152 2153
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2154
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2155
{
2156
	atomic_inc(&memcg->oom_wakeups);
2157 2158
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2159 2160
}

2161
static void memcg_oom_recover(struct mem_cgroup *memcg)
2162
{
2163 2164
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2165 2166
}

2167
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2168
{
2169 2170
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
2171
	/*
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
2184
	 */
2185 2186 2187 2188
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
2189 2190 2191 2192
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2193
 * @handle: actually kill/wait or just clean up the OOM state
2194
 *
2195 2196
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
2197
 *
2198
 * Memcg supports userspace OOM handling where failed allocations must
2199 2200 2201 2202
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
2203
 * the end of the page fault to complete the OOM handling.
2204 2205
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
2206
 * completed, %false otherwise.
2207
 */
2208
bool mem_cgroup_oom_synchronize(bool handle)
2209
{
2210
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
2211
	struct oom_wait_info owait;
2212
	bool locked;
2213 2214 2215

	/* OOM is global, do not handle */
	if (!memcg)
2216
		return false;
2217

2218 2219
	if (!handle)
		goto cleanup;
2220 2221 2222 2223 2224 2225

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
2226

2227
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
2241
		schedule();
2242 2243 2244 2245 2246
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
2247 2248 2249 2250 2251 2252 2253 2254
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2255 2256
cleanup:
	current->memcg_oom.memcg = NULL;
2257
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2258
	return true;
2259 2260
}

2261
/*
2262
 * Used to update mapped file or writeback or other statistics.
2263 2264 2265
 *
 * Notes: Race condition
 *
2266
 * We usually use lock_page_cgroup() for accessing page_cgroup member but
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2280 2281
 * small, we check memcg->moving_account and detect there are possibility
 * of race or not. If there is, we take a lock.
2282
 */
2283

2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2297
	 * need to take move_lock_mem_cgroup(). Because we already hold
2298
	 * rcu_read_lock(), any calls to move_account will be delayed until
Q
Qiang Huang 已提交
2299
	 * rcu_read_unlock().
2300
	 */
Q
Qiang Huang 已提交
2301 2302
	VM_BUG_ON(!rcu_read_lock_held());
	if (atomic_read(&memcg->moving_account) <= 0)
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2320
	 * should take move_lock_mem_cgroup().
2321 2322 2323 2324
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2325
void mem_cgroup_update_page_stat(struct page *page,
S
Sha Zhengju 已提交
2326
				 enum mem_cgroup_stat_index idx, int val)
2327
{
2328
	struct mem_cgroup *memcg;
2329
	struct page_cgroup *pc = lookup_page_cgroup(page);
2330
	unsigned long uninitialized_var(flags);
2331

2332
	if (mem_cgroup_disabled())
2333
		return;
2334

2335
	VM_BUG_ON(!rcu_read_lock_held());
2336 2337
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2338
		return;
2339

2340
	this_cpu_add(memcg->stat->count[idx], val);
2341
}
2342

2343 2344 2345 2346
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2347
#define CHARGE_BATCH	32U
2348 2349
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2350
	unsigned int nr_pages;
2351
	struct work_struct work;
2352
	unsigned long flags;
2353
#define FLUSHING_CACHED_CHARGE	0
2354 2355
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2356
static DEFINE_MUTEX(percpu_charge_mutex);
2357

2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2368
 */
2369
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2370 2371 2372 2373
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2374 2375 2376
	if (nr_pages > CHARGE_BATCH)
		return false;

2377
	stock = &get_cpu_var(memcg_stock);
2378 2379
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2393 2394 2395 2396
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2397
		if (do_swap_account)
2398 2399
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
2410
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2411
	drain_stock(stock);
2412
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2413 2414
}

2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2426 2427
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2428
 * This will be consumed by consume_stock() function, later.
2429
 */
2430
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2431 2432 2433
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2434
	if (stock->cached != memcg) { /* reset if necessary */
2435
		drain_stock(stock);
2436
		stock->cached = memcg;
2437
	}
2438
	stock->nr_pages += nr_pages;
2439 2440 2441 2442
	put_cpu_var(memcg_stock);
}

/*
2443
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2444 2445
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2446
 */
2447
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2448
{
2449
	int cpu, curcpu;
2450

2451 2452
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2453
	curcpu = get_cpu();
2454 2455
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2456
		struct mem_cgroup *memcg;
2457

2458 2459
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2460
			continue;
2461
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2462
			continue;
2463 2464 2465 2466 2467 2468
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2469
	}
2470
	put_cpu();
2471 2472 2473 2474 2475 2476

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2477
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2478 2479 2480
			flush_work(&stock->work);
	}
out:
A
Andrew Morton 已提交
2481
	put_online_cpus();
2482 2483 2484 2485 2486 2487 2488 2489
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2490
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2491
{
2492 2493 2494 2495 2496
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2497
	drain_all_stock(root_memcg, false);
2498
	mutex_unlock(&percpu_charge_mutex);
2499 2500 2501
}

/* This is a synchronous drain interface. */
2502
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2503 2504
{
	/* called when force_empty is called */
2505
	mutex_lock(&percpu_charge_mutex);
2506
	drain_all_stock(root_memcg, true);
2507
	mutex_unlock(&percpu_charge_mutex);
2508 2509
}

2510 2511 2512 2513
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2514
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2515 2516 2517
{
	int i;

2518
	spin_lock(&memcg->pcp_counter_lock);
2519
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2520
		long x = per_cpu(memcg->stat->count[i], cpu);
2521

2522 2523
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2524
	}
2525
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2526
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2527

2528 2529
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2530
	}
2531
	spin_unlock(&memcg->pcp_counter_lock);
2532 2533
}

2534
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2535 2536 2537 2538 2539
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2540
	struct mem_cgroup *iter;
2541

2542
	if (action == CPU_ONLINE)
2543 2544
		return NOTIFY_OK;

2545
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2546
		return NOTIFY_OK;
2547

2548
	for_each_mem_cgroup(iter)
2549 2550
		mem_cgroup_drain_pcp_counter(iter, cpu);

2551 2552 2553 2554 2555
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2556

2557
/* See mem_cgroup_try_charge() for details */
2558 2559 2560 2561 2562 2563 2564
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
};

2565
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2566
				unsigned int nr_pages, unsigned int min_pages,
2567
				bool invoke_oom)
2568
{
2569
	unsigned long csize = nr_pages * PAGE_SIZE;
2570 2571 2572 2573 2574
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2575
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2576 2577 2578 2579

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2580
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2581 2582 2583
		if (likely(!ret))
			return CHARGE_OK;

2584
		res_counter_uncharge(&memcg->res, csize);
2585 2586 2587 2588
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2589 2590 2591 2592
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2593
	if (nr_pages > min_pages)
2594 2595 2596 2597 2598
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2599 2600 2601
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2602
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2603
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2604
		return CHARGE_RETRY;
2605
	/*
2606 2607 2608 2609 2610 2611 2612
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2613
	 */
2614
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2615 2616 2617 2618 2619 2620 2621 2622 2623
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

2624 2625
	if (invoke_oom)
		mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2626

2627
	return CHARGE_NOMEM;
2628 2629
}

2630 2631 2632 2633 2634
/**
 * mem_cgroup_try_charge - try charging a memcg
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 * @oom: trigger OOM if reclaim fails
2635
 *
2636 2637
 * Returns 0 if @memcg was charged successfully, -EINTR if the charge
 * was bypassed to root_mem_cgroup, and -ENOMEM if the charge failed.
2638
 */
2639 2640 2641 2642
static int mem_cgroup_try_charge(struct mem_cgroup *memcg,
				 gfp_t gfp_mask,
				 unsigned int nr_pages,
				 bool oom)
2643
{
2644
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2645 2646
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
	int ret;
2647

2648 2649
	if (mem_cgroup_is_root(memcg))
		goto done;
K
KAMEZAWA Hiroyuki 已提交
2650
	/*
2651 2652 2653 2654
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
K
KAMEZAWA Hiroyuki 已提交
2655
	 */
2656
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2657 2658
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
K
KAMEZAWA Hiroyuki 已提交
2659
		goto bypass;
2660

2661
	if (unlikely(task_in_memcg_oom(current)))
2662
		goto nomem;
2663

2664 2665
	if (gfp_mask & __GFP_NOFAIL)
		oom = false;
K
KAMEZAWA Hiroyuki 已提交
2666
again:
2667 2668
	if (consume_stock(memcg, nr_pages))
		goto done;
2669

2670
	do {
2671
		bool invoke_oom = oom && !nr_oom_retries;
2672

2673
		/* If killed, bypass charge */
2674
		if (fatal_signal_pending(current))
2675
			goto bypass;
2676

2677 2678
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
					   nr_pages, invoke_oom);
2679 2680 2681 2682
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2683
			batch = nr_pages;
K
KAMEZAWA Hiroyuki 已提交
2684
			goto again;
2685 2686 2687
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
2688
			if (!oom || invoke_oom)
K
KAMEZAWA Hiroyuki 已提交
2689
				goto nomem;
2690 2691
			nr_oom_retries--;
			break;
2692
		}
2693 2694
	} while (ret != CHARGE_OK);

2695
	if (batch > nr_pages)
2696
		refill_stock(memcg, batch - nr_pages);
2697
done:
2698 2699
	return 0;
nomem:
2700
	if (!(gfp_mask & __GFP_NOFAIL))
2701
		return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2702
bypass:
2703
	return -EINTR;
2704
}
2705

2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
/**
 * mem_cgroup_try_charge_mm - try charging a mm
 * @mm: mm_struct to charge
 * @nr_pages: number of pages to charge
 * @oom: trigger OOM if reclaim fails
 *
 * Returns the charged mem_cgroup associated with the given mm_struct or
 * NULL the charge failed.
 */
static struct mem_cgroup *mem_cgroup_try_charge_mm(struct mm_struct *mm,
				 gfp_t gfp_mask,
				 unsigned int nr_pages,
				 bool oom)

{
	struct mem_cgroup *memcg;
	int ret;

	memcg = get_mem_cgroup_from_mm(mm);
	ret = mem_cgroup_try_charge(memcg, gfp_mask, nr_pages, oom);
	css_put(&memcg->css);
	if (ret == -EINTR)
		memcg = root_mem_cgroup;
	else if (ret)
		memcg = NULL;

	return memcg;
}

2735 2736 2737 2738 2739
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2740
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2741
				       unsigned int nr_pages)
2742
{
2743
	if (!mem_cgroup_is_root(memcg)) {
2744 2745
		unsigned long bytes = nr_pages * PAGE_SIZE;

2746
		res_counter_uncharge(&memcg->res, bytes);
2747
		if (do_swap_account)
2748
			res_counter_uncharge(&memcg->memsw, bytes);
2749
	}
2750 2751
}

2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2770 2771
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2772 2773 2774
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2775 2776 2777 2778 2779 2780
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	/* ID 0 is unused ID */
	if (!id)
		return NULL;
L
Li Zefan 已提交
2781
	return mem_cgroup_from_id(id);
2782 2783
}

2784
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2785
{
2786
	struct mem_cgroup *memcg = NULL;
2787
	struct page_cgroup *pc;
2788
	unsigned short id;
2789 2790
	swp_entry_t ent;

2791
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2792 2793

	pc = lookup_page_cgroup(page);
2794
	lock_page_cgroup(pc);
2795
	if (PageCgroupUsed(pc)) {
2796 2797 2798
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2799
	} else if (PageSwapCache(page)) {
2800
		ent.val = page_private(page);
2801
		id = lookup_swap_cgroup_id(ent);
2802
		rcu_read_lock();
2803 2804 2805
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2806
		rcu_read_unlock();
2807
	}
2808
	unlock_page_cgroup(pc);
2809
	return memcg;
2810 2811
}

2812
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2813
				       struct page *page,
2814
				       unsigned int nr_pages,
2815 2816
				       enum charge_type ctype,
				       bool lrucare)
2817
{
2818
	struct page_cgroup *pc = lookup_page_cgroup(page);
2819
	struct zone *uninitialized_var(zone);
2820
	struct lruvec *lruvec;
2821
	bool was_on_lru = false;
2822
	bool anon;
2823

2824
	lock_page_cgroup(pc);
2825
	VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2826 2827 2828 2829
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2830 2831 2832 2833 2834 2835 2836 2837 2838

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2839
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2840
			ClearPageLRU(page);
2841
			del_page_from_lru_list(page, lruvec, page_lru(page));
2842 2843 2844 2845
			was_on_lru = true;
		}
	}

2846
	pc->mem_cgroup = memcg;
2847 2848 2849 2850 2851 2852
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
A
Andrew Morton 已提交
2853
	 */
K
KAMEZAWA Hiroyuki 已提交
2854
	smp_wmb();
2855
	SetPageCgroupUsed(pc);
2856

2857 2858
	if (lrucare) {
		if (was_on_lru) {
2859
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2860
			VM_BUG_ON_PAGE(PageLRU(page), page);
2861
			SetPageLRU(page);
2862
			add_page_to_lru_list(page, lruvec, page_lru(page));
2863 2864 2865 2866
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2867
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2868 2869 2870 2871
		anon = true;
	else
		anon = false;

2872
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2873
	unlock_page_cgroup(pc);
2874

2875
	/*
2876 2877 2878
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
2879
	 */
2880
	memcg_check_events(memcg, page);
2881
}
2882

2883 2884
static DEFINE_MUTEX(set_limit_mutex);

2885
#ifdef CONFIG_MEMCG_KMEM
2886 2887 2888 2889 2890 2891
/*
 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
 */
static DEFINE_MUTEX(memcg_slab_mutex);

2892 2893
static DEFINE_MUTEX(activate_kmem_mutex);

2894 2895 2896
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2897
		memcg_kmem_is_active(memcg);
2898 2899
}

G
Glauber Costa 已提交
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
2910
	return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
G
Glauber Costa 已提交
2911 2912
}

2913
#ifdef CONFIG_SLABINFO
2914
static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2915
{
2916
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2917 2918 2919 2920 2921 2922 2923
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

2924
	mutex_lock(&memcg_slab_mutex);
2925 2926
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
2927
	mutex_unlock(&memcg_slab_mutex);
2928 2929 2930 2931 2932

	return 0;
}
#endif

2933
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2934 2935 2936 2937 2938 2939 2940 2941
{
	struct res_counter *fail_res;
	int ret = 0;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

2942 2943
	ret = mem_cgroup_try_charge(memcg, gfp, size >> PAGE_SHIFT,
				    oom_gfp_allowed(gfp));
2944 2945
	if (ret == -EINTR)  {
		/*
2946
		 * mem_cgroup_try_charge() chosed to bypass to root due to
2947 2948 2949 2950 2951 2952 2953 2954 2955
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
2956
		 * mem_cgroup_try_charge() above. Tasks that were already
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

2971
static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2972 2973 2974 2975
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
2976 2977 2978 2979 2980

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

2981 2982 2983 2984 2985 2986 2987 2988
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
2989
	if (memcg_kmem_test_and_clear_dead(memcg))
2990
		css_put(&memcg->css);
2991 2992
}

2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

3033
	VM_BUG_ON(!is_root_cache(s));
3034 3035 3036

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
3037
		struct memcg_cache_params *new_params;
3038 3039 3040
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
3041
		size += offsetof(struct memcg_cache_params, memcg_caches);
3042

3043 3044
		new_params = kzalloc(size, GFP_KERNEL);
		if (!new_params)
3045 3046
			return -ENOMEM;

3047
		new_params->is_root_cache = true;
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
3061
			new_params->memcg_caches[i] =
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
3074 3075 3076
		rcu_assign_pointer(s->memcg_params, new_params);
		if (cur_params)
			kfree_rcu(cur_params, rcu_head);
3077 3078 3079 3080
	}
	return 0;
}

3081 3082
int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
			     struct kmem_cache *root_cache)
3083
{
3084
	size_t size;
3085 3086 3087 3088

	if (!memcg_kmem_enabled())
		return 0;

3089 3090
	if (!memcg) {
		size = offsetof(struct memcg_cache_params, memcg_caches);
3091
		size += memcg_limited_groups_array_size * sizeof(void *);
3092 3093
	} else
		size = sizeof(struct memcg_cache_params);
3094

3095 3096 3097 3098
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

G
Glauber Costa 已提交
3099
	if (memcg) {
3100
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3101
		s->memcg_params->root_cache = root_cache;
3102
		css_get(&memcg->css);
3103 3104 3105
	} else
		s->memcg_params->is_root_cache = true;

3106 3107 3108
	return 0;
}

3109 3110
void memcg_free_cache_params(struct kmem_cache *s)
{
3111 3112 3113 3114
	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		css_put(&s->memcg_params->memcg->css);
3115 3116 3117
	kfree(s->memcg_params);
}

3118 3119
static void memcg_register_cache(struct mem_cgroup *memcg,
				 struct kmem_cache *root_cache)
3120
{
3121 3122
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by
						     memcg_slab_mutex */
3123
	struct kmem_cache *cachep;
3124 3125
	int id;

3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
	lockdep_assert_held(&memcg_slab_mutex);

	id = memcg_cache_id(memcg);

	/*
	 * Since per-memcg caches are created asynchronously on first
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
	 * create the same cache, but only one of them may succeed.
	 */
	if (cache_from_memcg_idx(root_cache, id))
3136 3137
		return;

3138
	cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
3139
	cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
3140
	/*
3141 3142 3143
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
3144
	 */
3145 3146
	if (!cachep)
		return;
3147

3148
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3149

3150
	/*
3151 3152 3153
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
3154
	 */
3155 3156
	smp_wmb();

3157 3158
	BUG_ON(root_cache->memcg_params->memcg_caches[id]);
	root_cache->memcg_params->memcg_caches[id] = cachep;
3159
}
3160

3161
static void memcg_unregister_cache(struct kmem_cache *cachep)
3162
{
3163
	struct kmem_cache *root_cache;
3164 3165 3166
	struct mem_cgroup *memcg;
	int id;

3167
	lockdep_assert_held(&memcg_slab_mutex);
3168

3169
	BUG_ON(is_root_cache(cachep));
3170

3171 3172
	root_cache = cachep->memcg_params->root_cache;
	memcg = cachep->memcg_params->memcg;
3173
	id = memcg_cache_id(memcg);
3174

3175 3176
	BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
	root_cache->memcg_params->memcg_caches[id] = NULL;
3177

3178 3179 3180
	list_del(&cachep->memcg_params->list);

	kmem_cache_destroy(cachep);
3181 3182
}

3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

3214
int __memcg_cleanup_cache_params(struct kmem_cache *s)
3215 3216
{
	struct kmem_cache *c;
3217
	int i, failed = 0;
3218

3219
	mutex_lock(&memcg_slab_mutex);
3220 3221
	for_each_memcg_cache_index(i) {
		c = cache_from_memcg_idx(s, i);
3222 3223 3224
		if (!c)
			continue;

3225
		memcg_unregister_cache(c);
3226 3227 3228

		if (cache_from_memcg_idx(s, i))
			failed++;
3229
	}
3230
	mutex_unlock(&memcg_slab_mutex);
3231
	return failed;
3232 3233
}

3234
static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
3235 3236
{
	struct kmem_cache *cachep;
3237
	struct memcg_cache_params *params, *tmp;
G
Glauber Costa 已提交
3238 3239 3240 3241

	if (!memcg_kmem_is_active(memcg))
		return;

3242 3243
	mutex_lock(&memcg_slab_mutex);
	list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
G
Glauber Costa 已提交
3244
		cachep = memcg_params_to_cache(params);
3245 3246
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3247
			memcg_unregister_cache(cachep);
G
Glauber Costa 已提交
3248
	}
3249
	mutex_unlock(&memcg_slab_mutex);
G
Glauber Costa 已提交
3250 3251
}

3252
struct memcg_register_cache_work {
3253 3254 3255 3256 3257
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

3258
static void memcg_register_cache_func(struct work_struct *w)
3259
{
3260 3261
	struct memcg_register_cache_work *cw =
		container_of(w, struct memcg_register_cache_work, work);
3262 3263
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
3264

3265
	mutex_lock(&memcg_slab_mutex);
3266
	memcg_register_cache(memcg, cachep);
3267 3268
	mutex_unlock(&memcg_slab_mutex);

3269
	css_put(&memcg->css);
3270 3271 3272 3273 3274 3275
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3276 3277
static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
					    struct kmem_cache *cachep)
3278
{
3279
	struct memcg_register_cache_work *cw;
3280

3281
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
3282 3283
	if (cw == NULL) {
		css_put(&memcg->css);
3284 3285 3286 3287 3288 3289
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

3290
	INIT_WORK(&cw->work, memcg_register_cache_func);
3291 3292 3293
	schedule_work(&cw->work);
}

3294 3295
static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
					  struct kmem_cache *cachep)
3296 3297 3298 3299
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
3300
	 * in __memcg_schedule_register_cache will recurse.
3301 3302 3303 3304 3305 3306 3307 3308
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
3309
	__memcg_schedule_register_cache(memcg, cachep);
3310 3311
	memcg_resume_kmem_account();
}
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329

int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
{
	int res;

	res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp,
				PAGE_SIZE << order);
	if (!res)
		atomic_add(1 << order, &cachep->memcg_params->nr_pages);
	return res;
}

void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
{
	memcg_uncharge_kmem(cachep->memcg_params->memcg, PAGE_SIZE << order);
	atomic_sub(1 << order, &cachep->memcg_params->nr_pages);
}

3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
3347
	struct kmem_cache *memcg_cachep;
3348 3349 3350 3351

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3352 3353 3354
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3355 3356 3357 3358
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3359
		goto out;
3360

3361 3362 3363
	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
	if (likely(memcg_cachep)) {
		cachep = memcg_cachep;
3364
		goto out;
3365 3366
	}

3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css))
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
3380 3381 3382
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
3383
	 */
3384
	memcg_schedule_register_cache(memcg, cachep);
3385 3386 3387 3388
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3389 3390
}

3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3412 3413 3414 3415

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
V
Vladimir Davydov 已提交
3416 3417 3418 3419 3420 3421
	 * check here, since direct calls to the page allocator that are
	 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
	 * outside memcg core. We are mostly concerned with cache allocations,
	 * and by having this test at memcg_kmem_get_cache, we are already able
	 * to relay the allocation to the root cache and bypass the memcg cache
	 * altogether.
3422 3423 3424 3425 3426 3427
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
A
Andrew Morton 已提交
3428 3429 3430
	 *	memcg_stop_kmem_account();
	 *	kmalloc(<large_number>)
	 *	memcg_resume_kmem_account();
3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3441
	memcg = get_mem_cgroup_from_mm(current->mm);
3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

3504
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3505 3506
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3507
#else
3508
static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
3509 3510
{
}
3511 3512
#endif /* CONFIG_MEMCG_KMEM */

3513 3514
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3515
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3516 3517
/*
 * Because tail pages are not marked as "used", set it. We're under
3518 3519 3520
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3521
 */
3522
void mem_cgroup_split_huge_fixup(struct page *head)
3523 3524
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3525
	struct page_cgroup *pc;
3526
	struct mem_cgroup *memcg;
3527
	int i;
3528

3529 3530
	if (mem_cgroup_disabled())
		return;
3531 3532

	memcg = head_pc->mem_cgroup;
3533 3534
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3535
		pc->mem_cgroup = memcg;
3536 3537 3538
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3539 3540
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3541
}
3542
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3543

3544
/**
3545
 * mem_cgroup_move_account - move account of the page
3546
 * @page: the page
3547
 * @nr_pages: number of regular pages (>1 for huge pages)
3548 3549 3550 3551 3552
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3553
 * - page is not on LRU (isolate_page() is useful.)
3554
 * - compound_lock is held when nr_pages > 1
3555
 *
3556 3557
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3558
 */
3559 3560 3561 3562
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3563
				   struct mem_cgroup *to)
3564
{
3565 3566
	unsigned long flags;
	int ret;
3567
	bool anon = PageAnon(page);
3568

3569
	VM_BUG_ON(from == to);
3570
	VM_BUG_ON_PAGE(PageLRU(page), page);
3571 3572 3573 3574 3575 3576 3577
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3578
	if (nr_pages > 1 && !PageTransHuge(page))
3579 3580 3581 3582 3583 3584 3585 3586
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3587
	move_lock_mem_cgroup(from, &flags);
3588

3589 3590 3591 3592 3593 3594
	if (!anon && page_mapped(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}
3595

3596 3597 3598 3599 3600 3601
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}
3602

3603
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3604

3605
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3606
	pc->mem_cgroup = to;
3607
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3608
	move_unlock_mem_cgroup(from, &flags);
3609 3610
	ret = 0;
unlock:
3611
	unlock_page_cgroup(pc);
3612 3613 3614
	/*
	 * check events
	 */
3615 3616
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3617
out:
3618 3619 3620
	return ret;
}

3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3641
 */
3642 3643
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3644
				  struct mem_cgroup *child)
3645 3646
{
	struct mem_cgroup *parent;
3647
	unsigned int nr_pages;
3648
	unsigned long uninitialized_var(flags);
3649 3650
	int ret;

3651
	VM_BUG_ON(mem_cgroup_is_root(child));
3652

3653 3654 3655 3656 3657
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3658

3659
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3660

3661 3662 3663 3664 3665 3666
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3667

3668
	if (nr_pages > 1) {
3669
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3670
		flags = compound_lock_irqsave(page);
3671
	}
3672

3673
	ret = mem_cgroup_move_account(page, nr_pages,
3674
				pc, child, parent);
3675 3676
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3677

3678
	if (nr_pages > 1)
3679
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3680
	putback_lru_page(page);
3681
put:
3682
	put_page(page);
3683
out:
3684 3685 3686
	return ret;
}

3687
int mem_cgroup_charge_anon(struct page *page,
3688
			      struct mm_struct *mm, gfp_t gfp_mask)
3689
{
3690
	unsigned int nr_pages = 1;
3691
	struct mem_cgroup *memcg;
3692
	bool oom = true;
A
Andrea Arcangeli 已提交
3693

3694 3695 3696 3697 3698 3699 3700
	if (mem_cgroup_disabled())
		return 0;

	VM_BUG_ON_PAGE(page_mapped(page), page);
	VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
	VM_BUG_ON(!mm);

A
Andrea Arcangeli 已提交
3701
	if (PageTransHuge(page)) {
3702
		nr_pages <<= compound_order(page);
3703
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3704 3705 3706 3707 3708
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3709
	}
3710

3711 3712 3713
	memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, nr_pages, oom);
	if (!memcg)
		return -ENOMEM;
3714 3715
	__mem_cgroup_commit_charge(memcg, page, nr_pages,
				   MEM_CGROUP_CHARGE_TYPE_ANON, false);
3716 3717 3718
	return 0;
}

3719 3720 3721
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3722
 * struct page_cgroup is acquired. This refcnt will be consumed by
3723 3724
 * "commit()" or removed by "cancel()"
 */
3725 3726 3727 3728
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3729
{
3730
	struct mem_cgroup *memcg = NULL;
3731
	struct page_cgroup *pc;
3732
	int ret;
3733

3734 3735 3736 3737 3738 3739 3740 3741 3742
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
3743 3744 3745
		goto out;
	if (do_swap_account)
		memcg = try_get_mem_cgroup_from_page(page);
3746
	if (!memcg)
3747 3748
		memcg = get_mem_cgroup_from_mm(mm);
	ret = mem_cgroup_try_charge(memcg, mask, 1, true);
3749
	css_put(&memcg->css);
3750
	if (ret == -EINTR)
3751 3752 3753 3754 3755 3756
		memcg = root_mem_cgroup;
	else if (ret)
		return ret;
out:
	*memcgp = memcg;
	return 0;
3757 3758
}

3759 3760 3761
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
3762 3763
	if (mem_cgroup_disabled()) {
		*memcgp = NULL;
3764
		return 0;
3765
	}
3766 3767 3768 3769 3770 3771 3772
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
3773
		struct mem_cgroup *memcg;
3774

3775 3776 3777 3778 3779
		memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
		if (!memcg)
			return -ENOMEM;
		*memcgp = memcg;
		return 0;
3780
	}
3781 3782 3783
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

3784 3785 3786 3787 3788 3789 3790 3791 3792
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
3793
static void
3794
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
3795
					enum charge_type ctype)
3796
{
3797
	if (mem_cgroup_disabled())
3798
		return;
3799
	if (!memcg)
3800
		return;
3801

3802
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3803 3804 3805
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
3806 3807 3808
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
3809
	 */
3810
	if (do_swap_account && PageSwapCache(page)) {
3811
		swp_entry_t ent = {.val = page_private(page)};
3812
		mem_cgroup_uncharge_swap(ent);
3813
	}
3814 3815
}

3816 3817
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
3818
{
3819
	__mem_cgroup_commit_charge_swapin(page, memcg,
3820
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
3821 3822
}

3823
int mem_cgroup_charge_file(struct page *page, struct mm_struct *mm,
3824
				gfp_t gfp_mask)
3825
{
3826
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3827
	struct mem_cgroup *memcg;
3828 3829
	int ret;

3830
	if (mem_cgroup_disabled())
3831 3832 3833 3834
		return 0;
	if (PageCompound(page))
		return 0;

3835
	if (PageSwapCache(page)) { /* shmem */
3836 3837
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
3838 3839 3840 3841
		if (ret)
			return ret;
		__mem_cgroup_commit_charge_swapin(page, memcg, type);
		return 0;
3842
	}
3843

3844 3845 3846
	memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
	if (!memcg)
		return -ENOMEM;
3847 3848
	__mem_cgroup_commit_charge(memcg, page, 1, type, false);
	return 0;
3849 3850
}

3851
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3852 3853
				   unsigned int nr_pages,
				   const enum charge_type ctype)
3854 3855 3856
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
3857

3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
3869
		batch->memcg = memcg;
3870 3871
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
3872
	 * In those cases, all pages freed continuously can be expected to be in
3873 3874 3875 3876 3877 3878 3879 3880
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

3881
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
3882 3883
		goto direct_uncharge;

3884 3885 3886 3887 3888
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
3889
	if (batch->memcg != memcg)
3890 3891
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
3892
	batch->nr_pages++;
3893
	if (uncharge_memsw)
3894
		batch->memsw_nr_pages++;
3895 3896
	return;
direct_uncharge:
3897
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3898
	if (uncharge_memsw)
3899 3900 3901
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
3902
}
3903

3904
/*
3905
 * uncharge if !page_mapped(page)
3906
 */
3907
static struct mem_cgroup *
3908 3909
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
3910
{
3911
	struct mem_cgroup *memcg = NULL;
3912 3913
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3914
	bool anon;
3915

3916
	if (mem_cgroup_disabled())
3917
		return NULL;
3918

A
Andrea Arcangeli 已提交
3919
	if (PageTransHuge(page)) {
3920
		nr_pages <<= compound_order(page);
3921
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
A
Andrea Arcangeli 已提交
3922
	}
3923
	/*
3924
	 * Check if our page_cgroup is valid
3925
	 */
3926
	pc = lookup_page_cgroup(page);
3927
	if (unlikely(!PageCgroupUsed(pc)))
3928
		return NULL;
3929

3930
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3931

3932
	memcg = pc->mem_cgroup;
3933

K
KAMEZAWA Hiroyuki 已提交
3934 3935 3936
	if (!PageCgroupUsed(pc))
		goto unlock_out;

3937 3938
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
3939
	switch (ctype) {
3940
	case MEM_CGROUP_CHARGE_TYPE_ANON:
3941 3942 3943 3944 3945
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
3946 3947
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
3948
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3949
		/* See mem_cgroup_prepare_migration() */
3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3971
	}
K
KAMEZAWA Hiroyuki 已提交
3972

3973
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3974

3975
	ClearPageCgroupUsed(pc);
3976 3977 3978 3979 3980 3981
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3982

3983
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3984
	/*
3985
	 * even after unlock, we have memcg->res.usage here and this memcg
L
Li Zefan 已提交
3986
	 * will never be freed, so it's safe to call css_get().
K
KAMEZAWA Hiroyuki 已提交
3987
	 */
3988
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3989
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3990
		mem_cgroup_swap_statistics(memcg, true);
L
Li Zefan 已提交
3991
		css_get(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
3992
	}
3993 3994 3995 3996 3997 3998
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
3999
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4000

4001
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4002 4003 4004

unlock_out:
	unlock_page_cgroup(pc);
4005
	return NULL;
4006 4007
}

4008 4009
void mem_cgroup_uncharge_page(struct page *page)
{
4010 4011 4012
	/* early check. */
	if (page_mapped(page))
		return;
4013
	VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
	/*
	 * If the page is in swap cache, uncharge should be deferred
	 * to the swap path, which also properly accounts swap usage
	 * and handles memcg lifetime.
	 *
	 * Note that this check is not stable and reclaim may add the
	 * page to swap cache at any time after this.  However, if the
	 * page is not in swap cache by the time page->mapcount hits
	 * 0, there won't be any page table references to the swap
	 * slot, and reclaim will free it and not actually write the
	 * page to disk.
	 */
4026 4027
	if (PageSwapCache(page))
		return;
4028
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4029 4030 4031 4032
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
4033 4034
	VM_BUG_ON_PAGE(page_mapped(page), page);
	VM_BUG_ON_PAGE(page->mapping, page);
4035
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4036 4037
}

4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4052 4053
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4074 4075 4076 4077 4078 4079
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4080
	memcg_oom_recover(batch->memcg);
4081 4082 4083 4084
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4085
#ifdef CONFIG_SWAP
4086
/*
4087
 * called after __delete_from_swap_cache() and drop "page" account.
4088 4089
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4090 4091
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4092 4093
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4094 4095 4096 4097 4098
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4099
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4100

K
KAMEZAWA Hiroyuki 已提交
4101 4102
	/*
	 * record memcg information,  if swapout && memcg != NULL,
L
Li Zefan 已提交
4103
	 * css_get() was called in uncharge().
K
KAMEZAWA Hiroyuki 已提交
4104 4105
	 */
	if (do_swap_account && swapout && memcg)
L
Li Zefan 已提交
4106
		swap_cgroup_record(ent, mem_cgroup_id(memcg));
4107
}
4108
#endif
4109

A
Andrew Morton 已提交
4110
#ifdef CONFIG_MEMCG_SWAP
4111 4112 4113 4114 4115
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4116
{
4117
	struct mem_cgroup *memcg;
4118
	unsigned short id;
4119 4120 4121 4122

	if (!do_swap_account)
		return;

4123 4124 4125
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4126
	if (memcg) {
4127 4128 4129 4130
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4131
		if (!mem_cgroup_is_root(memcg))
4132
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4133
		mem_cgroup_swap_statistics(memcg, false);
L
Li Zefan 已提交
4134
		css_put(&memcg->css);
4135
	}
4136
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4137
}
4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4154
				struct mem_cgroup *from, struct mem_cgroup *to)
4155 4156 4157
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
4158 4159
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
4160 4161 4162

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4163
		mem_cgroup_swap_statistics(to, true);
4164
		/*
4165 4166 4167
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
4168 4169 4170 4171 4172 4173
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
4174
		 */
L
Li Zefan 已提交
4175
		css_get(&to->css);
4176 4177 4178 4179 4180 4181
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4182
				struct mem_cgroup *from, struct mem_cgroup *to)
4183 4184 4185
{
	return -EINVAL;
}
4186
#endif
K
KAMEZAWA Hiroyuki 已提交
4187

4188
/*
4189 4190
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4191
 */
4192 4193
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4194
{
4195
	struct mem_cgroup *memcg = NULL;
4196
	unsigned int nr_pages = 1;
4197
	struct page_cgroup *pc;
4198
	enum charge_type ctype;
4199

4200
	*memcgp = NULL;
4201

4202
	if (mem_cgroup_disabled())
4203
		return;
4204

4205 4206 4207
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4208 4209 4210
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4211 4212
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4244
	}
4245
	unlock_page_cgroup(pc);
4246 4247 4248 4249
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4250
	if (!memcg)
4251
		return;
4252

4253
	*memcgp = memcg;
4254 4255 4256 4257 4258 4259 4260
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4261
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4262
	else
4263
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4264 4265 4266 4267 4268
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4269
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4270
}
4271

4272
/* remove redundant charge if migration failed*/
4273
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4274
	struct page *oldpage, struct page *newpage, bool migration_ok)
4275
{
4276
	struct page *used, *unused;
4277
	struct page_cgroup *pc;
4278
	bool anon;
4279

4280
	if (!memcg)
4281
		return;
4282

4283
	if (!migration_ok) {
4284 4285
		used = oldpage;
		unused = newpage;
4286
	} else {
4287
		used = newpage;
4288 4289
		unused = oldpage;
	}
4290
	anon = PageAnon(used);
4291 4292 4293 4294
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4295
	css_put(&memcg->css);
4296
	/*
4297 4298 4299
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4300
	 */
4301 4302 4303 4304 4305
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4306
	/*
4307 4308 4309 4310 4311 4312
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4313
	 */
4314
	if (anon)
4315
		mem_cgroup_uncharge_page(used);
4316
}
4317

4318 4319 4320 4321 4322 4323 4324 4325
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4326
	struct mem_cgroup *memcg = NULL;
4327 4328 4329 4330 4331 4332 4333 4334 4335
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4336 4337
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4338
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4339 4340
		ClearPageCgroupUsed(pc);
	}
4341 4342
	unlock_page_cgroup(pc);

4343 4344 4345 4346 4347 4348
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4349 4350 4351 4352 4353
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4354
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4355 4356
}

4357 4358 4359 4360 4361 4362
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4363 4364 4365 4366 4367
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4387 4388
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4389 4390 4391 4392
	}
}
#endif

4393
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4394
				unsigned long long val)
4395
{
4396
	int retry_count;
4397
	u64 memswlimit, memlimit;
4398
	int ret = 0;
4399 4400
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4401
	int enlarge;
4402 4403 4404 4405 4406 4407 4408 4409 4410

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4411

4412
	enlarge = 0;
4413
	while (retry_count) {
4414 4415 4416 4417
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4418 4419 4420
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4421
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4422 4423 4424 4425 4426 4427
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4428 4429
			break;
		}
4430 4431 4432 4433 4434

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4435
		ret = res_counter_set_limit(&memcg->res, val);
4436 4437 4438 4439 4440 4441
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4442 4443 4444 4445 4446
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4447 4448
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4449 4450
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
A
Andrew Morton 已提交
4451
		if (curusage >= oldusage)
4452 4453 4454
			retry_count--;
		else
			oldusage = curusage;
4455
	}
4456 4457
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4458

4459 4460 4461
	return ret;
}

L
Li Zefan 已提交
4462 4463
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4464
{
4465
	int retry_count;
4466
	u64 memlimit, memswlimit, oldusage, curusage;
4467 4468
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4469
	int enlarge = 0;
4470

4471
	/* see mem_cgroup_resize_res_limit */
A
Andrew Morton 已提交
4472
	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4473
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4474 4475 4476 4477 4478 4479 4480 4481
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4482
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4483 4484 4485 4486 4487 4488 4489 4490
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4491 4492 4493
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4494
		ret = res_counter_set_limit(&memcg->memsw, val);
4495 4496 4497 4498 4499 4500
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4501 4502 4503 4504 4505
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4506 4507 4508
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4509
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4510
		/* Usage is reduced ? */
4511
		if (curusage >= oldusage)
4512
			retry_count--;
4513 4514
		else
			oldusage = curusage;
4515
	}
4516 4517
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4518 4519 4520
	return ret;
}

4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
	unsigned long long excess;
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz)
					css_put(&next_mz->memcg->css);
				else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
4583
		__mem_cgroup_remove_exceeded(mz, mctz);
4584 4585 4586 4587 4588 4589 4590 4591 4592 4593
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
4594
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612
		spin_unlock(&mctz->lock);
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

4613 4614 4615 4616 4617 4618 4619
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4620
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4621 4622
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4623
 */
4624
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4625
				int node, int zid, enum lru_list lru)
4626
{
4627
	struct lruvec *lruvec;
4628
	unsigned long flags;
4629
	struct list_head *list;
4630 4631
	struct page *busy;
	struct zone *zone;
4632

K
KAMEZAWA Hiroyuki 已提交
4633
	zone = &NODE_DATA(node)->node_zones[zid];
4634 4635
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4636

4637
	busy = NULL;
4638
	do {
4639
		struct page_cgroup *pc;
4640 4641
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4642
		spin_lock_irqsave(&zone->lru_lock, flags);
4643
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4644
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4645
			break;
4646
		}
4647 4648 4649
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4650
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4651
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4652 4653
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4654
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4655

4656
		pc = lookup_page_cgroup(page);
4657

4658
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4659
			/* found lock contention or "pc" is obsolete. */
4660
			busy = page;
4661 4662
		} else
			busy = NULL;
4663
		cond_resched();
4664
	} while (!list_empty(list));
4665 4666 4667
}

/*
4668 4669
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4670
 * This enables deleting this mem_cgroup.
4671 4672
 *
 * Caller is responsible for holding css reference on the memcg.
4673
 */
4674
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4675
{
4676
	int node, zid;
4677
	u64 usage;
4678

4679
	do {
4680 4681
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4682 4683
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4684
		for_each_node_state(node, N_MEMORY) {
4685
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4686 4687
				enum lru_list lru;
				for_each_lru(lru) {
4688
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4689
							node, zid, lru);
4690
				}
4691
			}
4692
		}
4693 4694
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4695
		cond_resched();
4696

4697
		/*
4698 4699 4700 4701 4702
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4703 4704 4705 4706 4707 4708
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4709 4710 4711
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4712 4713
}

4714 4715
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
4716 4717 4718 4719 4720 4721 4722 4723 4724 4725
	lockdep_assert_held(&memcg_create_mutex);
	/*
	 * The lock does not prevent addition or deletion to the list
	 * of children, but it prevents a new child from being
	 * initialized based on this parent in css_online(), so it's
	 * enough to decide whether hierarchically inherited
	 * attributes can still be changed or not.
	 */
	return memcg->use_hierarchy &&
		!list_empty(&memcg->css.cgroup->children);
4726 4727
}

4728 4729 4730 4731 4732 4733 4734 4735 4736 4737
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4738

4739
	/* returns EBUSY if there is a task or if we come here twice. */
4740
	if (cgroup_has_tasks(cgrp) || !list_empty(&cgrp->children))
4741 4742
		return -EBUSY;

4743 4744
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4745
	/* try to free all pages in this cgroup */
4746
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4747
		int progress;
4748

4749 4750 4751
		if (signal_pending(current))
			return -EINTR;

4752
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4753
						false);
4754
		if (!progress) {
4755
			nr_retries--;
4756
			/* maybe some writeback is necessary */
4757
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4758
		}
4759 4760

	}
K
KAMEZAWA Hiroyuki 已提交
4761
	lru_add_drain();
4762 4763 4764
	mem_cgroup_reparent_charges(memcg);

	return 0;
4765 4766
}

4767 4768
static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
					unsigned int event)
4769
{
4770
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4771

4772 4773
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4774
	return mem_cgroup_force_empty(memcg);
4775 4776
}

4777 4778
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
4779
{
4780
	return mem_cgroup_from_css(css)->use_hierarchy;
4781 4782
}

4783 4784
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
4785 4786
{
	int retval = 0;
4787
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4788
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
4789

4790
	mutex_lock(&memcg_create_mutex);
4791 4792 4793 4794

	if (memcg->use_hierarchy == val)
		goto out;

4795
	/*
4796
	 * If parent's use_hierarchy is set, we can't make any modifications
4797 4798 4799 4800 4801 4802
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
4803
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4804
				(val == 1 || val == 0)) {
4805
		if (list_empty(&memcg->css.cgroup->children))
4806
			memcg->use_hierarchy = val;
4807 4808 4809 4810
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
4811 4812

out:
4813
	mutex_unlock(&memcg_create_mutex);
4814 4815 4816 4817

	return retval;
}

4818

4819
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4820
					       enum mem_cgroup_stat_index idx)
4821
{
K
KAMEZAWA Hiroyuki 已提交
4822
	struct mem_cgroup *iter;
4823
	long val = 0;
4824

4825
	/* Per-cpu values can be negative, use a signed accumulator */
4826
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4827 4828 4829 4830 4831
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
4832 4833
}

4834
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4835
{
K
KAMEZAWA Hiroyuki 已提交
4836
	u64 val;
4837

4838
	if (!mem_cgroup_is_root(memcg)) {
4839
		if (!swap)
4840
			return res_counter_read_u64(&memcg->res, RES_USAGE);
4841
		else
4842
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4843 4844
	}

4845 4846 4847 4848
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
4849 4850
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4851

K
KAMEZAWA Hiroyuki 已提交
4852
	if (swap)
4853
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4854 4855 4856 4857

	return val << PAGE_SHIFT;
}

4858 4859
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
B
Balbir Singh 已提交
4860
{
4861
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4862
	u64 val;
4863
	int name;
G
Glauber Costa 已提交
4864
	enum res_type type;
4865 4866 4867

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4868

4869 4870
	switch (type) {
	case _MEM:
4871
		if (name == RES_USAGE)
4872
			val = mem_cgroup_usage(memcg, false);
4873
		else
4874
			val = res_counter_read_u64(&memcg->res, name);
4875 4876
		break;
	case _MEMSWAP:
4877
		if (name == RES_USAGE)
4878
			val = mem_cgroup_usage(memcg, true);
4879
		else
4880
			val = res_counter_read_u64(&memcg->memsw, name);
4881
		break;
4882 4883 4884
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
4885 4886 4887
	default:
		BUG();
	}
4888

4889
	return val;
B
Balbir Singh 已提交
4890
}
4891 4892

#ifdef CONFIG_MEMCG_KMEM
4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908
/* should be called with activate_kmem_mutex held */
static int __memcg_activate_kmem(struct mem_cgroup *memcg,
				 unsigned long long limit)
{
	int err = 0;
	int memcg_id;

	if (memcg_kmem_is_active(memcg))
		return 0;

	/*
	 * We are going to allocate memory for data shared by all memory
	 * cgroups so let's stop accounting here.
	 */
	memcg_stop_kmem_account();

4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
4921
	mutex_lock(&memcg_create_mutex);
4922
	if (cgroup_has_tasks(memcg->css.cgroup) || memcg_has_children(memcg))
4923 4924 4925 4926
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
4927

4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938
	memcg_id = ida_simple_get(&kmem_limited_groups,
				  0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
	 * Make sure we have enough space for this cgroup in each root cache's
	 * memcg_params.
	 */
4939
	mutex_lock(&memcg_slab_mutex);
4940
	err = memcg_update_all_caches(memcg_id + 1);
4941
	mutex_unlock(&memcg_slab_mutex);
4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961
	if (err)
		goto out_rmid;

	memcg->kmemcg_id = memcg_id;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);

	/*
	 * We couldn't have accounted to this cgroup, because it hasn't got the
	 * active bit set yet, so this should succeed.
	 */
	err = res_counter_set_limit(&memcg->kmem, limit);
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
	 * Setting the active bit after enabling static branching will
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
	memcg_kmem_set_active(memcg);
4962
out:
4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990
	memcg_resume_kmem_account();
	return err;

out_rmid:
	ida_simple_remove(&kmem_limited_groups, memcg_id);
	goto out;
}

static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long long limit)
{
	int ret;

	mutex_lock(&activate_kmem_mutex);
	ret = __memcg_activate_kmem(memcg, limit);
	mutex_unlock(&activate_kmem_mutex);
	return ret;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
				   unsigned long long val)
{
	int ret;

	if (!memcg_kmem_is_active(memcg))
		ret = memcg_activate_kmem(memcg, val);
	else
		ret = res_counter_set_limit(&memcg->kmem, val);
4991 4992 4993
	return ret;
}

4994
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4995
{
4996
	int ret = 0;
4997
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4998

4999 5000
	if (!parent)
		return 0;
5001

5002
	mutex_lock(&activate_kmem_mutex);
5003
	/*
5004 5005
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
5006
	 */
5007 5008 5009
	if (memcg_kmem_is_active(parent))
		ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
	mutex_unlock(&activate_kmem_mutex);
5010
	return ret;
5011
}
5012 5013 5014 5015 5016 5017
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
				   unsigned long long val)
{
	return -EINVAL;
}
5018
#endif /* CONFIG_MEMCG_KMEM */
5019

5020 5021 5022 5023
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5024
static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5025
			    char *buffer)
B
Balbir Singh 已提交
5026
{
5027
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5028 5029
	enum res_type type;
	int name;
5030 5031 5032
	unsigned long long val;
	int ret;

5033 5034
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5035

5036
	switch (name) {
5037
	case RES_LIMIT:
5038 5039 5040 5041
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5042 5043
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5044 5045 5046
		if (ret)
			break;
		if (type == _MEM)
5047
			ret = mem_cgroup_resize_limit(memcg, val);
5048
		else if (type == _MEMSWAP)
5049
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5050
		else if (type == _KMEM)
5051
			ret = memcg_update_kmem_limit(memcg, val);
5052 5053
		else
			return -EINVAL;
5054
		break;
5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5069 5070 5071 5072 5073
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5074 5075
}

5076 5077 5078 5079 5080 5081 5082 5083 5084 5085
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
5086 5087
	while (css_parent(&memcg->css)) {
		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5100
static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5101
{
5102
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5103 5104
	int name;
	enum res_type type;
5105

5106 5107
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5108

5109
	switch (name) {
5110
	case RES_MAX_USAGE:
5111
		if (type == _MEM)
5112
			res_counter_reset_max(&memcg->res);
5113
		else if (type == _MEMSWAP)
5114
			res_counter_reset_max(&memcg->memsw);
5115 5116 5117 5118
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5119 5120
		break;
	case RES_FAILCNT:
5121
		if (type == _MEM)
5122
			res_counter_reset_failcnt(&memcg->res);
5123
		else if (type == _MEMSWAP)
5124
			res_counter_reset_failcnt(&memcg->memsw);
5125 5126 5127 5128
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5129 5130
		break;
	}
5131

5132
	return 0;
5133 5134
}

5135
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5136 5137
					struct cftype *cft)
{
5138
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5139 5140
}

5141
#ifdef CONFIG_MMU
5142
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5143 5144
					struct cftype *cft, u64 val)
{
5145
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5146 5147 5148

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5149

5150
	/*
5151 5152 5153 5154
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5155
	 */
5156
	memcg->move_charge_at_immigrate = val;
5157 5158
	return 0;
}
5159
#else
5160
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5161 5162 5163 5164 5165
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5166

5167
#ifdef CONFIG_NUMA
5168
static int memcg_numa_stat_show(struct seq_file *m, void *v)
5169
{
5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
5182
	int nid;
5183
	unsigned long nr;
5184
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5185

5186 5187 5188 5189 5190 5191 5192 5193 5194
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
5195 5196
	}

5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
5212 5213 5214 5215 5216 5217
	}

	return 0;
}
#endif /* CONFIG_NUMA */

5218 5219 5220 5221 5222
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5223
static int memcg_stat_show(struct seq_file *m, void *v)
5224
{
5225
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5226 5227
	struct mem_cgroup *mi;
	unsigned int i;
5228

5229
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5230
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5231
			continue;
5232 5233
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5234
	}
L
Lee Schermerhorn 已提交
5235

5236 5237 5238 5239 5240 5241 5242 5243
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5244
	/* Hierarchical information */
5245 5246
	{
		unsigned long long limit, memsw_limit;
5247
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5248
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5249
		if (do_swap_account)
5250 5251
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5252
	}
K
KOSAKI Motohiro 已提交
5253

5254 5255 5256
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5257
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5258
			continue;
5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5279
	}
K
KAMEZAWA Hiroyuki 已提交
5280

K
KOSAKI Motohiro 已提交
5281 5282 5283 5284
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5285
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5286 5287 5288 5289 5290
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5291
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
5292
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5293

5294 5295 5296 5297
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5298
			}
5299 5300 5301 5302
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5303 5304 5305
	}
#endif

5306 5307 5308
	return 0;
}

5309 5310
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
5311
{
5312
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
5313

5314
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5315 5316
}

5317 5318
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
5319
{
5320
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
5321

5322
	if (val > 100)
K
KOSAKI Motohiro 已提交
5323 5324
		return -EINVAL;

5325 5326 5327 5328
	if (css_parent(css))
		memcg->swappiness = val;
	else
		vm_swappiness = val;
5329

K
KOSAKI Motohiro 已提交
5330 5331 5332
	return 0;
}

5333 5334 5335 5336 5337 5338 5339 5340
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5341
		t = rcu_dereference(memcg->thresholds.primary);
5342
	else
5343
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5344 5345 5346 5347 5348 5349 5350

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5351
	 * current_threshold points to threshold just below or equal to usage.
5352 5353 5354
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5355
	i = t->current_threshold;
5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5379
	t->current_threshold = i - 1;
5380 5381 5382 5383 5384 5385
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5386 5387 5388 5389 5390 5391 5392
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5393 5394 5395 5396 5397 5398 5399
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

5400 5401 5402 5403 5404 5405 5406
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
5407 5408
}

5409
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5410 5411 5412
{
	struct mem_cgroup_eventfd_list *ev;

5413
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5414 5415 5416 5417
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5418
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5419
{
K
KAMEZAWA Hiroyuki 已提交
5420 5421
	struct mem_cgroup *iter;

5422
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5423
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5424 5425
}

5426
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5427
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
5428
{
5429 5430
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
5431
	u64 threshold, usage;
5432
	int i, size, ret;
5433 5434 5435 5436 5437 5438

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5439

5440
	if (type == _MEM)
5441
		thresholds = &memcg->thresholds;
5442
	else if (type == _MEMSWAP)
5443
		thresholds = &memcg->memsw_thresholds;
5444 5445 5446 5447 5448 5449
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5450
	if (thresholds->primary)
5451 5452
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5453
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5454 5455

	/* Allocate memory for new array of thresholds */
5456
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5457
			GFP_KERNEL);
5458
	if (!new) {
5459 5460 5461
		ret = -ENOMEM;
		goto unlock;
	}
5462
	new->size = size;
5463 5464

	/* Copy thresholds (if any) to new array */
5465 5466
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5467
				sizeof(struct mem_cgroup_threshold));
5468 5469
	}

5470
	/* Add new threshold */
5471 5472
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5473 5474

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5475
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5476 5477 5478
			compare_thresholds, NULL);

	/* Find current threshold */
5479
	new->current_threshold = -1;
5480
	for (i = 0; i < size; i++) {
5481
		if (new->entries[i].threshold <= usage) {
5482
			/*
5483 5484
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5485 5486
			 * it here.
			 */
5487
			++new->current_threshold;
5488 5489
		} else
			break;
5490 5491
	}

5492 5493 5494 5495 5496
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5497

5498
	/* To be sure that nobody uses thresholds */
5499 5500 5501 5502 5503 5504 5505 5506
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5507
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5508 5509
	struct eventfd_ctx *eventfd, const char *args)
{
5510
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
5511 5512
}

5513
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5514 5515
	struct eventfd_ctx *eventfd, const char *args)
{
5516
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
5517 5518
}

5519
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5520
	struct eventfd_ctx *eventfd, enum res_type type)
5521
{
5522 5523
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
5524
	u64 usage;
5525
	int i, j, size;
5526 5527 5528

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5529
		thresholds = &memcg->thresholds;
5530
	else if (type == _MEMSWAP)
5531
		thresholds = &memcg->memsw_thresholds;
5532 5533 5534
	else
		BUG();

5535 5536 5537
	if (!thresholds->primary)
		goto unlock;

5538 5539 5540 5541 5542 5543
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5544 5545 5546
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5547 5548 5549
			size++;
	}

5550
	new = thresholds->spare;
5551

5552 5553
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5554 5555
		kfree(new);
		new = NULL;
5556
		goto swap_buffers;
5557 5558
	}

5559
	new->size = size;
5560 5561

	/* Copy thresholds and find current threshold */
5562 5563 5564
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5565 5566
			continue;

5567
		new->entries[j] = thresholds->primary->entries[i];
5568
		if (new->entries[j].threshold <= usage) {
5569
			/*
5570
			 * new->current_threshold will not be used
5571 5572 5573
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5574
			++new->current_threshold;
5575 5576 5577 5578
		}
		j++;
	}

5579
swap_buffers:
5580 5581
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5582 5583 5584 5585 5586 5587
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5588
	rcu_assign_pointer(thresholds->primary, new);
5589

5590
	/* To be sure that nobody uses thresholds */
5591
	synchronize_rcu();
5592
unlock:
5593 5594
	mutex_unlock(&memcg->thresholds_lock);
}
5595

5596
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5597 5598
	struct eventfd_ctx *eventfd)
{
5599
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
5600 5601
}

5602
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5603 5604
	struct eventfd_ctx *eventfd)
{
5605
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
5606 5607
}

5608
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5609
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
5610 5611 5612 5613 5614 5615 5616
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5617
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5618 5619 5620 5621 5622

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5623
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5624
		eventfd_signal(eventfd, 1);
5625
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5626 5627 5628 5629

	return 0;
}

5630
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5631
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
5632 5633 5634
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

5635
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5636

5637
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5638 5639 5640 5641 5642 5643
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5644
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5645 5646
}

5647
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
5648
{
5649
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5650

5651 5652
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
5653 5654 5655
	return 0;
}

5656
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5657 5658
	struct cftype *cft, u64 val)
{
5659
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5660 5661

	/* cannot set to root cgroup and only 0 and 1 are allowed */
5662
	if (!css_parent(css) || !((val == 0) || (val == 1)))
5663 5664
		return -EINVAL;

5665
	memcg->oom_kill_disable = val;
5666
	if (!val)
5667
		memcg_oom_recover(memcg);
5668

5669 5670 5671
	return 0;
}

A
Andrew Morton 已提交
5672
#ifdef CONFIG_MEMCG_KMEM
5673
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5674
{
5675 5676
	int ret;

5677
	memcg->kmemcg_id = -1;
5678 5679 5680
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5681

5682
	return mem_cgroup_sockets_init(memcg, ss);
5683
}
5684

5685
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5686
{
5687
	mem_cgroup_sockets_destroy(memcg);
5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
	 * css_offline() when the referencemight have dropped down to 0
	 * and shouldn't be incremented anymore (css_tryget would fail)
	 * we do not have other options because of the kmem allocations
	 * lifetime.
	 */
	css_get(&memcg->css);
5714 5715 5716 5717 5718 5719 5720

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
5721
		css_put(&memcg->css);
G
Glauber Costa 已提交
5722
}
5723
#else
5724
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5725 5726 5727
{
	return 0;
}
G
Glauber Costa 已提交
5728

5729 5730 5731 5732 5733
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5734 5735
{
}
5736 5737
#endif

5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

5751 5752 5753 5754 5755
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
5756
static void memcg_event_remove(struct work_struct *work)
5757
{
5758 5759
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
5760
	struct mem_cgroup *memcg = event->memcg;
5761 5762 5763

	remove_wait_queue(event->wqh, &event->wait);

5764
	event->unregister_event(memcg, event->eventfd);
5765 5766 5767 5768 5769 5770

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
5771
	css_put(&memcg->css);
5772 5773 5774 5775 5776 5777 5778
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
5779 5780
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
5781
{
5782 5783
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
5784
	struct mem_cgroup *memcg = event->memcg;
5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
5797
		spin_lock(&memcg->event_list_lock);
5798 5799 5800 5801 5802 5803 5804 5805
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
5806
		spin_unlock(&memcg->event_list_lock);
5807 5808 5809 5810 5811
	}

	return 0;
}

5812
static void memcg_event_ptable_queue_proc(struct file *file,
5813 5814
		wait_queue_head_t *wqh, poll_table *pt)
{
5815 5816
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
5817 5818 5819 5820 5821 5822

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
5823 5824
 * DO NOT USE IN NEW FILES.
 *
5825 5826 5827 5828 5829
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
5830
static int memcg_write_event_control(struct cgroup_subsys_state *css,
5831
				     struct cftype *cft, char *buffer)
5832
{
5833
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5834
	struct mem_cgroup_event *event;
5835 5836 5837 5838
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
5839
	const char *name;
5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856
	char *endp;
	int ret;

	efd = simple_strtoul(buffer, &endp, 10);
	if (*endp != ' ')
		return -EINVAL;
	buffer = endp + 1;

	cfd = simple_strtoul(buffer, &endp, 10);
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
	buffer = endp + 1;

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5857
	event->memcg = memcg;
5858
	INIT_LIST_HEAD(&event->list);
5859 5860 5861
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

5887 5888 5889 5890 5891
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
5892 5893
	 *
	 * DO NOT ADD NEW FILES.
5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906
	 */
	name = cfile.file->f_dentry->d_name.name;

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
5907 5908
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
5909 5910 5911 5912 5913
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

5914
	/*
5915 5916 5917
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
5918
	 */
5919 5920
	cfile_css = css_tryget_from_dir(cfile.file->f_dentry->d_parent,
					&memory_cgrp_subsys);
5921
	ret = -EINVAL;
5922
	if (IS_ERR(cfile_css))
5923
		goto out_put_cfile;
5924 5925
	if (cfile_css != css) {
		css_put(cfile_css);
5926
		goto out_put_cfile;
5927
	}
5928

5929
	ret = event->register_event(memcg, event->eventfd, buffer);
5930 5931 5932 5933 5934
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

5935 5936 5937
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
5938 5939 5940 5941 5942 5943 5944

	fdput(cfile);
	fdput(efile);

	return 0;

out_put_css:
5945
	css_put(css);
5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

B
Balbir Singh 已提交
5958 5959
static struct cftype mem_cgroup_files[] = {
	{
5960
		.name = "usage_in_bytes",
5961
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5962
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
5963
	},
5964 5965
	{
		.name = "max_usage_in_bytes",
5966
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5967
		.trigger = mem_cgroup_reset,
5968
		.read_u64 = mem_cgroup_read_u64,
5969
	},
B
Balbir Singh 已提交
5970
	{
5971
		.name = "limit_in_bytes",
5972
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5973
		.write_string = mem_cgroup_write,
5974
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
5975
	},
5976 5977 5978 5979
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5980
		.read_u64 = mem_cgroup_read_u64,
5981
	},
B
Balbir Singh 已提交
5982 5983
	{
		.name = "failcnt",
5984
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5985
		.trigger = mem_cgroup_reset,
5986
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
5987
	},
5988 5989
	{
		.name = "stat",
5990
		.seq_show = memcg_stat_show,
5991
	},
5992 5993 5994 5995
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5996 5997
	{
		.name = "use_hierarchy",
5998
		.flags = CFTYPE_INSANE,
5999 6000 6001
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
6002
	{
6003 6004
		.name = "cgroup.event_control",		/* XXX: for compat */
		.write_string = memcg_write_event_control,
6005 6006 6007
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
6008 6009 6010 6011 6012
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
6013 6014 6015 6016 6017
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
6018 6019
	{
		.name = "oom_control",
6020
		.seq_show = mem_cgroup_oom_control_read,
6021
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
6022 6023
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
6024 6025 6026
	{
		.name = "pressure_level",
	},
6027 6028 6029
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
6030
		.seq_show = memcg_numa_stat_show,
6031 6032
	},
#endif
6033 6034 6035 6036 6037
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
6038
		.read_u64 = mem_cgroup_read_u64,
6039 6040 6041 6042
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6043
		.read_u64 = mem_cgroup_read_u64,
6044 6045 6046 6047 6048
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
6049
		.read_u64 = mem_cgroup_read_u64,
6050 6051 6052 6053 6054
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
6055
		.read_u64 = mem_cgroup_read_u64,
6056
	},
6057 6058 6059
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
6060
		.seq_show = mem_cgroup_slabinfo_read,
6061 6062
	},
#endif
6063
#endif
6064
	{ },	/* terminate */
6065
};
6066

6067 6068 6069 6070 6071
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6072
		.read_u64 = mem_cgroup_read_u64,
6073 6074 6075 6076 6077
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
6078
		.read_u64 = mem_cgroup_read_u64,
6079 6080 6081 6082 6083
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
6084
		.read_u64 = mem_cgroup_read_u64,
6085 6086 6087 6088 6089
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
6090
		.read_u64 = mem_cgroup_read_u64,
6091 6092 6093 6094
	},
	{ },	/* terminate */
};
#endif
6095
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6096 6097
{
	struct mem_cgroup_per_node *pn;
6098
	struct mem_cgroup_per_zone *mz;
6099
	int zone, tmp = node;
6100 6101 6102 6103 6104 6105 6106 6107
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
6108 6109
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
6110
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6111 6112
	if (!pn)
		return 1;
6113 6114 6115

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
6116
		lruvec_init(&mz->lruvec);
6117 6118
		mz->usage_in_excess = 0;
		mz->on_tree = false;
6119
		mz->memcg = memcg;
6120
	}
6121
	memcg->nodeinfo[node] = pn;
6122 6123 6124
	return 0;
}

6125
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6126
{
6127
	kfree(memcg->nodeinfo[node]);
6128 6129
}

6130 6131
static struct mem_cgroup *mem_cgroup_alloc(void)
{
6132
	struct mem_cgroup *memcg;
6133
	size_t size;
6134

6135 6136
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
6137

6138
	memcg = kzalloc(size, GFP_KERNEL);
6139
	if (!memcg)
6140 6141
		return NULL;

6142 6143
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
6144
		goto out_free;
6145 6146
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
6147 6148

out_free:
6149
	kfree(memcg);
6150
	return NULL;
6151 6152
}

6153
/*
6154 6155 6156 6157 6158 6159 6160 6161
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
6162
 */
6163 6164

static void __mem_cgroup_free(struct mem_cgroup *memcg)
6165
{
6166
	int node;
6167

6168
	mem_cgroup_remove_from_trees(memcg);
6169 6170 6171 6172 6173 6174

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
6186
	disarm_static_keys(memcg);
6187
	kfree(memcg);
6188
}
6189

6190 6191 6192
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6193
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6194
{
6195
	if (!memcg->res.parent)
6196
		return NULL;
6197
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6198
}
G
Glauber Costa 已提交
6199
EXPORT_SYMBOL(parent_mem_cgroup);
6200

6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223
static void __init mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node(node) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		BUG_ON(!rtpn);

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
6224
static struct cgroup_subsys_state * __ref
6225
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
6226
{
6227
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6228
	long error = -ENOMEM;
6229
	int node;
B
Balbir Singh 已提交
6230

6231 6232
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6233
		return ERR_PTR(error);
6234

B
Bob Liu 已提交
6235
	for_each_node(node)
6236
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6237
			goto free_out;
6238

6239
	/* root ? */
6240
	if (parent_css == NULL) {
6241
		root_mem_cgroup = memcg;
6242 6243 6244
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6245
	}
6246

6247 6248 6249 6250 6251
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
6252
	vmpressure_init(&memcg->vmpressure);
6253 6254
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
6255 6256 6257 6258 6259 6260 6261 6262 6263

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
6264
mem_cgroup_css_online(struct cgroup_subsys_state *css)
6265
{
6266 6267
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6268

6269 6270 6271
	if (css->cgroup->id > MEM_CGROUP_ID_MAX)
		return -ENOSPC;

T
Tejun Heo 已提交
6272
	if (!parent)
6273 6274
		return 0;

6275
	mutex_lock(&memcg_create_mutex);
6276 6277 6278 6279 6280 6281

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6282 6283
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6284
		res_counter_init(&memcg->kmem, &parent->kmem);
6285

6286
		/*
6287 6288
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
6289
		 */
6290
	} else {
6291 6292
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6293
		res_counter_init(&memcg->kmem, NULL);
6294 6295 6296 6297 6298
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6299
		if (parent != root_mem_cgroup)
6300
			memory_cgrp_subsys.broken_hierarchy = true;
6301
	}
6302
	mutex_unlock(&memcg_create_mutex);
6303

6304
	return memcg_init_kmem(memcg, &memory_cgrp_subsys);
B
Balbir Singh 已提交
6305 6306
}

M
Michal Hocko 已提交
6307 6308 6309 6310 6311 6312 6313 6314
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
6315
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
6316 6317 6318 6319 6320 6321

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
6322
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
6323 6324
}

6325
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6326
{
6327
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6328
	struct mem_cgroup_event *event, *tmp;
6329
	struct cgroup_subsys_state *iter;
6330 6331 6332 6333 6334 6335

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
6336 6337
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
6338 6339 6340
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
6341
	spin_unlock(&memcg->event_list_lock);
6342

6343 6344
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
6345
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6346 6347 6348 6349 6350 6351 6352 6353

	/*
	 * This requires that offlining is serialized.  Right now that is
	 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
	 */
	css_for_each_descendant_post(iter, css)
		mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));

6354
	memcg_unregister_all_caches(memcg);
6355
	vmpressure_cleanup(&memcg->vmpressure);
6356 6357
}

6358
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
6359
{
6360
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396
	/*
	 * XXX: css_offline() would be where we should reparent all
	 * memory to prepare the cgroup for destruction.  However,
	 * memcg does not do css_tryget() and res_counter charging
	 * under the same RCU lock region, which means that charging
	 * could race with offlining.  Offlining only happens to
	 * cgroups with no tasks in them but charges can show up
	 * without any tasks from the swapin path when the target
	 * memcg is looked up from the swapout record and not from the
	 * current task as it usually is.  A race like this can leak
	 * charges and put pages with stale cgroup pointers into
	 * circulation:
	 *
	 * #0                        #1
	 *                           lookup_swap_cgroup_id()
	 *                           rcu_read_lock()
	 *                           mem_cgroup_lookup()
	 *                           css_tryget()
	 *                           rcu_read_unlock()
	 * disable css_tryget()
	 * call_rcu()
	 *   offline_css()
	 *     reparent_charges()
	 *                           res_counter_charge()
	 *                           css_put()
	 *                             css_free()
	 *                           pc->mem_cgroup = dead memcg
	 *                           add page to lru
	 *
	 * The bulk of the charges are still moved in offline_css() to
	 * avoid pinning a lot of pages in case a long-term reference
	 * like a swapout record is deferring the css_free() to long
	 * after offlining.  But this makes sure we catch any charges
	 * made after offlining:
	 */
	mem_cgroup_reparent_charges(memcg);
6397

6398
	memcg_destroy_kmem(memcg);
6399
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
6400 6401
}

6402
#ifdef CONFIG_MMU
6403
/* Handlers for move charge at task migration. */
6404 6405
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6406
{
6407 6408
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6409
	struct mem_cgroup *memcg = mc.to;
6410

6411
	if (mem_cgroup_is_root(memcg)) {
6412 6413 6414 6415 6416 6417 6418 6419
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6420
		 * "memcg" cannot be under rmdir() because we've already checked
6421 6422 6423 6424
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6425
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6426
			goto one_by_one;
6427
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6428
						PAGE_SIZE * count, &dummy)) {
6429
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6446
		ret = mem_cgroup_try_charge(memcg, GFP_KERNEL, 1, false);
6447
		if (ret)
6448
			/* mem_cgroup_clear_mc() will do uncharge later */
6449
			return ret;
6450 6451
		mc.precharge++;
	}
6452 6453 6454 6455
	return ret;
}

/**
6456
 * get_mctgt_type - get target type of moving charge
6457 6458 6459
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6460
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6461 6462 6463 6464 6465 6466
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6467 6468 6469
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6470 6471 6472 6473 6474
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6475
	swp_entry_t	ent;
6476 6477 6478
};

enum mc_target_type {
6479
	MC_TARGET_NONE = 0,
6480
	MC_TARGET_PAGE,
6481
	MC_TARGET_SWAP,
6482 6483
};

D
Daisuke Nishimura 已提交
6484 6485
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6486
{
D
Daisuke Nishimura 已提交
6487
	struct page *page = vm_normal_page(vma, addr, ptent);
6488

D
Daisuke Nishimura 已提交
6489 6490 6491 6492
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6493
		if (!move_anon())
D
Daisuke Nishimura 已提交
6494
			return NULL;
6495 6496
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6497 6498 6499 6500 6501 6502 6503
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6504
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6505 6506 6507 6508 6509 6510 6511 6512
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6513 6514 6515 6516
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6517
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6518 6519 6520 6521 6522
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6523 6524 6525 6526 6527 6528 6529
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6530

6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6550 6551
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
6564
#endif
6565 6566 6567
	return page;
}

6568
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6569 6570 6571 6572
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6573
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6574 6575 6576 6577 6578 6579
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6580 6581
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6582 6583

	if (!page && !ent.val)
6584
		return ret;
6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6600 6601
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
6602
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6603 6604 6605
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6606 6607 6608 6609
	}
	return ret;
}

6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
6624
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6645 6646 6647 6648 6649 6650 6651 6652
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6653
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6654 6655
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
6656
		spin_unlock(ptl);
6657
		return 0;
6658
	}
6659

6660 6661
	if (pmd_trans_unstable(pmd))
		return 0;
6662 6663
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6664
		if (get_mctgt_type(vma, addr, *pte, NULL))
6665 6666 6667 6668
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6669 6670 6671
	return 0;
}

6672 6673 6674 6675 6676
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6677
	down_read(&mm->mmap_sem);
6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6689
	up_read(&mm->mmap_sem);
6690 6691 6692 6693 6694 6695 6696 6697 6698

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6699 6700 6701 6702 6703
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6704 6705
}

6706 6707
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6708
{
6709 6710
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
6711
	int i;
6712

6713
	/* we must uncharge all the leftover precharges from mc.to */
6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6725
	}
6726 6727 6728 6729 6730 6731
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
6732 6733 6734

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
6735 6736 6737 6738 6739 6740 6741 6742 6743

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
L
Li Zefan 已提交
6744
		/* we've already done css_get(mc.to) */
6745 6746
		mc.moved_swap = 0;
	}
6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6762
	spin_lock(&mc.lock);
6763 6764
	mc.from = NULL;
	mc.to = NULL;
6765
	spin_unlock(&mc.lock);
6766
	mem_cgroup_end_move(from);
6767 6768
}

6769
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6770
				 struct cgroup_taskset *tset)
6771
{
6772
	struct task_struct *p = cgroup_taskset_first(tset);
6773
	int ret = 0;
6774
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6775
	unsigned long move_charge_at_immigrate;
6776

6777 6778 6779 6780 6781 6782 6783
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6784 6785 6786
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6787
		VM_BUG_ON(from == memcg);
6788 6789 6790 6791 6792

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6793 6794 6795 6796
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6797
			VM_BUG_ON(mc.moved_charge);
6798
			VM_BUG_ON(mc.moved_swap);
6799
			mem_cgroup_start_move(from);
6800
			spin_lock(&mc.lock);
6801
			mc.from = from;
6802
			mc.to = memcg;
6803
			mc.immigrate_flags = move_charge_at_immigrate;
6804
			spin_unlock(&mc.lock);
6805
			/* We set mc.moving_task later */
6806 6807 6808 6809

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6810 6811
		}
		mmput(mm);
6812 6813 6814 6815
	}
	return ret;
}

6816
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6817
				     struct cgroup_taskset *tset)
6818
{
6819
	mem_cgroup_clear_mc();
6820 6821
}

6822 6823 6824
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6825
{
6826 6827 6828 6829
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6830 6831 6832 6833
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6834

6835 6836 6837 6838 6839 6840 6841 6842 6843 6844
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
6845
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6846
		if (mc.precharge < HPAGE_PMD_NR) {
6847
			spin_unlock(ptl);
6848 6849 6850 6851 6852 6853 6854 6855
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6856
							pc, mc.from, mc.to)) {
6857 6858 6859 6860 6861 6862 6863
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
6864
		spin_unlock(ptl);
6865
		return 0;
6866 6867
	}

6868 6869
	if (pmd_trans_unstable(pmd))
		return 0;
6870 6871 6872 6873
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6874
		swp_entry_t ent;
6875 6876 6877 6878

		if (!mc.precharge)
			break;

6879
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6880 6881 6882 6883 6884
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6885
			if (!mem_cgroup_move_account(page, 1, pc,
6886
						     mc.from, mc.to)) {
6887
				mc.precharge--;
6888 6889
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6890 6891
			}
			putback_lru_page(page);
6892
put:			/* get_mctgt_type() gets the page */
6893 6894
			put_page(page);
			break;
6895 6896
		case MC_TARGET_SWAP:
			ent = target.ent;
6897
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6898
				mc.precharge--;
6899 6900 6901
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6902
			break;
6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6917
		ret = mem_cgroup_do_precharge(1);
6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6961
	up_read(&mm->mmap_sem);
6962 6963
}

6964
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6965
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6966
{
6967
	struct task_struct *p = cgroup_taskset_first(tset);
6968
	struct mm_struct *mm = get_task_mm(p);
6969 6970

	if (mm) {
6971 6972
		if (mc.to)
			mem_cgroup_move_charge(mm);
6973 6974
		mmput(mm);
	}
6975 6976
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6977
}
6978
#else	/* !CONFIG_MMU */
6979
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6980
				 struct cgroup_taskset *tset)
6981 6982 6983
{
	return 0;
}
6984
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6985
				     struct cgroup_taskset *tset)
6986 6987
{
}
6988
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6989
				 struct cgroup_taskset *tset)
6990 6991 6992
{
}
#endif
B
Balbir Singh 已提交
6993

6994 6995 6996 6997
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
6998
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6999 7000 7001 7002 7003 7004
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
7005 7006
	if (cgroup_sane_behavior(root_css->cgroup))
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
7007 7008
}

7009
struct cgroup_subsys memory_cgrp_subsys = {
7010
	.css_alloc = mem_cgroup_css_alloc,
7011
	.css_online = mem_cgroup_css_online,
7012 7013
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
7014 7015
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
7016
	.attach = mem_cgroup_move_task,
7017
	.bind = mem_cgroup_bind,
7018
	.base_cftypes = mem_cgroup_files,
7019
	.early_init = 0,
B
Balbir Singh 已提交
7020
};
7021

A
Andrew Morton 已提交
7022
#ifdef CONFIG_MEMCG_SWAP
7023 7024
static int __init enable_swap_account(char *s)
{
7025
	if (!strcmp(s, "1"))
7026
		really_do_swap_account = 1;
7027
	else if (!strcmp(s, "0"))
7028 7029 7030
		really_do_swap_account = 0;
	return 1;
}
7031
__setup("swapaccount=", enable_swap_account);
7032

7033 7034
static void __init memsw_file_init(void)
{
7035
	WARN_ON(cgroup_add_cftypes(&memory_cgrp_subsys, memsw_cgroup_files));
7036 7037 7038 7039 7040 7041 7042 7043
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
7044
}
7045

7046
#else
7047
static void __init enable_swap_cgroup(void)
7048 7049
{
}
7050
#endif
7051 7052

/*
7053 7054 7055 7056 7057 7058
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
7059 7060 7061 7062
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7063
	enable_swap_cgroup();
7064
	mem_cgroup_soft_limit_tree_init();
7065
	memcg_stock_init();
7066 7067 7068
	return 0;
}
subsys_initcall(mem_cgroup_init);