blk-mq.c 77.9 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 42 43
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

44 45 46 47
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
48
	ddir = rq_data_dir(rq);
49 50 51 52 53 54 55 56 57 58 59 60
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

61 62 63
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
64
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65
{
66 67
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
68
			blk_mq_sched_has_work(hctx);
69 70
}

71 72 73 74 75 76
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
77 78
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 80 81 82 83
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
84
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 86
}

87 88 89 90 91 92 93 94 95 96 97
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

98
	if (blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) {
99
		/*
100 101 102 103
		 * index[0] counts the specific partition that was asked
		 * for. index[1] counts the ones that are active on the
		 * whole device, so increment that if mi->part is indeed
		 * a partition, and not a whole device.
104
		 */
105
		if (rq->part == mi->part)
106
			mi->inflight[0]++;
107 108
		if (mi->part->partno)
			mi->inflight[1]++;
109 110 111 112 113 114 115 116
	}
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

117
	inflight[0] = inflight[1] = 0;
118 119 120
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

121
void blk_freeze_queue_start(struct request_queue *q)
122
{
123
	int freeze_depth;
124

125 126
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
127
		percpu_ref_kill(&q->q_usage_counter);
128 129
		if (q->mq_ops)
			blk_mq_run_hw_queues(q, false);
130
	}
131
}
132
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
133

134
void blk_mq_freeze_queue_wait(struct request_queue *q)
135
{
136
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
137
}
138
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
139

140 141 142 143 144 145 146 147
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
148

149 150 151 152
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
153
void blk_freeze_queue(struct request_queue *q)
154
{
155 156 157 158 159 160 161
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
162
	blk_freeze_queue_start(q);
163 164
	if (!q->mq_ops)
		blk_drain_queue(q);
165 166
	blk_mq_freeze_queue_wait(q);
}
167 168 169 170 171 172 173 174 175

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
176
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
177

178
void blk_mq_unfreeze_queue(struct request_queue *q)
179
{
180
	int freeze_depth;
181

182 183 184
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
185
		percpu_ref_reinit(&q->q_usage_counter);
186
		wake_up_all(&q->mq_freeze_wq);
187
	}
188
}
189
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
190

191 192 193 194 195 196
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
197
	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
198 199 200
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

201
/**
202
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
203 204 205
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
206 207 208
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
209 210 211 212 213 214 215
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

216
	blk_mq_quiesce_queue_nowait(q);
217

218 219
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
220
			synchronize_srcu(hctx->srcu);
221 222 223 224 225 226 227 228
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

229 230 231 232 233 234 235 236 237
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
238
	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
239

240 241
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
242 243 244
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

245 246 247 248 249 250 251 252 253 254
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

255 256 257 258 259 260
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

261 262
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
263
{
264 265
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];
266
	req_flags_t rq_flags = 0;
267

268 269 270 271 272
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
273
			rq_flags = RQF_MQ_INFLIGHT;
274 275 276 277 278 279 280
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

281
	/* csd/requeue_work/fifo_time is initialized before use */
282 283
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
284
	rq->rq_flags = rq_flags;
285
	rq->cpu = -1;
286
	rq->cmd_flags = op;
287 288
	if (data->flags & BLK_MQ_REQ_PREEMPT)
		rq->rq_flags |= RQF_PREEMPT;
289
	if (blk_queue_io_stat(data->q))
290
		rq->rq_flags |= RQF_IO_STAT;
291
	INIT_LIST_HEAD(&rq->queuelist);
292 293 294 295
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
296
	rq->start_time = jiffies;
297 298 299 300 301 302 303
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;
304
	rq->__deadline = 0;
305 306

	INIT_LIST_HEAD(&rq->timeout_list);
307 308
	rq->timeout = 0;

309 310 311 312
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

313 314 315 316 317 318
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
	set_start_time_ns(rq);
	rq->io_start_time_ns = 0;
#endif

319 320
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
321 322
}

323 324 325 326 327 328
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
329
	unsigned int tag;
330
	bool put_ctx_on_error = false;
331 332 333

	blk_queue_enter_live(q);
	data->q = q;
334 335 336 337
	if (likely(!data->ctx)) {
		data->ctx = blk_mq_get_ctx(q);
		put_ctx_on_error = true;
	}
338 339
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
340 341
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
342 343 344 345 346 347 348 349

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
350 351
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
352 353
	}

354 355
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
356 357
		if (put_ctx_on_error) {
			blk_mq_put_ctx(data->ctx);
358 359
			data->ctx = NULL;
		}
360 361
		blk_queue_exit(q);
		return NULL;
362 363
	}

364
	rq = blk_mq_rq_ctx_init(data, tag, op);
365 366
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
367
		if (e && e->type->ops.mq.prepare_request) {
368 369 370
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

371 372
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
373
		}
374 375 376
	}
	data->hctx->queued++;
	return rq;
377 378
}

379
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
380
		blk_mq_req_flags_t flags)
381
{
382
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
383
	struct request *rq;
384
	int ret;
385

386
	ret = blk_queue_enter(q, flags);
387 388
	if (ret)
		return ERR_PTR(ret);
389

390
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
391
	blk_queue_exit(q);
392

393
	if (!rq)
394
		return ERR_PTR(-EWOULDBLOCK);
395

396 397
	blk_mq_put_ctx(alloc_data.ctx);

398 399 400
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
401 402
	return rq;
}
403
EXPORT_SYMBOL(blk_mq_alloc_request);
404

405
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
406
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
407
{
408
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
409
	struct request *rq;
410
	unsigned int cpu;
M
Ming Lin 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

425
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
426 427 428
	if (ret)
		return ERR_PTR(ret);

429 430 431 432
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
433 434 435 436
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
437
	}
438
	cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
439
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
440

441
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
442
	blk_queue_exit(q);
443

444 445 446 447
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
448 449 450
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

451
void blk_mq_free_request(struct request *rq)
452 453
{
	struct request_queue *q = rq->q;
454 455 456 457 458
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

459
	if (rq->rq_flags & RQF_ELVPRIV) {
460 461 462 463 464 465 466
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
467

468
	ctx->rq_completed[rq_is_sync(rq)]++;
469
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
470
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
471

472 473 474
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

J
Jens Axboe 已提交
475
	wbt_done(q->rq_wb, &rq->issue_stat);
476

S
Shaohua Li 已提交
477 478 479
	if (blk_rq_rl(rq))
		blk_put_rl(blk_rq_rl(rq));

480
	blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
481 482 483
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
484
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
485
	blk_mq_sched_restart(hctx);
486
	blk_queue_exit(q);
487
}
J
Jens Axboe 已提交
488
EXPORT_SYMBOL_GPL(blk_mq_free_request);
489

490
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
491
{
M
Ming Lei 已提交
492 493
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
494
	if (rq->end_io) {
J
Jens Axboe 已提交
495
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
496
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
497 498 499
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
500
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
501
	}
502
}
503
EXPORT_SYMBOL(__blk_mq_end_request);
504

505
void blk_mq_end_request(struct request *rq, blk_status_t error)
506 507 508
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
509
	__blk_mq_end_request(rq, error);
510
}
511
EXPORT_SYMBOL(blk_mq_end_request);
512

513
static void __blk_mq_complete_request_remote(void *data)
514
{
515
	struct request *rq = data;
516

517
	rq->q->softirq_done_fn(rq);
518 519
}

520
static void __blk_mq_complete_request(struct request *rq)
521 522
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
523
	bool shared = false;
524 525
	int cpu;

526
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT);
T
Tejun Heo 已提交
527
	blk_mq_rq_update_state(rq, MQ_RQ_COMPLETE);
528

529 530 531 532 533 534 535
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
536
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
537 538 539
		rq->q->softirq_done_fn(rq);
		return;
	}
540 541

	cpu = get_cpu();
C
Christoph Hellwig 已提交
542 543 544 545
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
546
		rq->csd.func = __blk_mq_complete_request_remote;
547 548
		rq->csd.info = rq;
		rq->csd.flags = 0;
549
		smp_call_function_single_async(ctx->cpu, &rq->csd);
550
	} else {
551
		rq->q->softirq_done_fn(rq);
552
	}
553 554
	put_cpu();
}
555

556
static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
557
	__releases(hctx->srcu)
558 559 560 561
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
		rcu_read_unlock();
	else
562
		srcu_read_unlock(hctx->srcu, srcu_idx);
563 564 565
}

static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
566
	__acquires(hctx->srcu)
567
{
568 569 570
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		/* shut up gcc false positive */
		*srcu_idx = 0;
571
		rcu_read_lock();
572
	} else
573
		*srcu_idx = srcu_read_lock(hctx->srcu);
574 575
}

576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
static void blk_mq_rq_update_aborted_gstate(struct request *rq, u64 gstate)
{
	unsigned long flags;

	/*
	 * blk_mq_rq_aborted_gstate() is used from the completion path and
	 * can thus be called from irq context.  u64_stats_fetch in the
	 * middle of update on the same CPU leads to lockup.  Disable irq
	 * while updating.
	 */
	local_irq_save(flags);
	u64_stats_update_begin(&rq->aborted_gstate_sync);
	rq->aborted_gstate = gstate;
	u64_stats_update_end(&rq->aborted_gstate_sync);
	local_irq_restore(flags);
}

static u64 blk_mq_rq_aborted_gstate(struct request *rq)
{
	unsigned int start;
	u64 aborted_gstate;

	do {
		start = u64_stats_fetch_begin(&rq->aborted_gstate_sync);
		aborted_gstate = rq->aborted_gstate;
	} while (u64_stats_fetch_retry(&rq->aborted_gstate_sync, start));

	return aborted_gstate;
}

606 607 608 609 610 611 612 613
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
614
void blk_mq_complete_request(struct request *rq)
615
{
616
	struct request_queue *q = rq->q;
617 618
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
	int srcu_idx;
619 620

	if (unlikely(blk_should_fake_timeout(q)))
621
		return;
622

623 624 625 626 627 628 629 630 631 632 633
	/*
	 * If @rq->aborted_gstate equals the current instance, timeout is
	 * claiming @rq and we lost.  This is synchronized through
	 * hctx_lock().  See blk_mq_timeout_work() for details.
	 *
	 * Completion path never blocks and we can directly use RCU here
	 * instead of hctx_lock() which can be either RCU or SRCU.
	 * However, that would complicate paths which want to synchronize
	 * against us.  Let stay in sync with the issue path so that
	 * hctx_lock() covers both issue and completion paths.
	 */
634
	hctx_lock(hctx, &srcu_idx);
635
	if (blk_mq_rq_aborted_gstate(rq) != rq->gstate)
636
		__blk_mq_complete_request(rq);
637
	hctx_unlock(hctx, srcu_idx);
638 639
}
EXPORT_SYMBOL(blk_mq_complete_request);
640

641 642
int blk_mq_request_started(struct request *rq)
{
T
Tejun Heo 已提交
643
	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
644 645 646
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

647
void blk_mq_start_request(struct request *rq)
648 649 650
{
	struct request_queue *q = rq->q;

651 652
	blk_mq_sched_started_request(rq);

653 654
	trace_block_rq_issue(q, rq);

655
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
656
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
657
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
658
		wbt_issue(q->rq_wb, &rq->issue_stat);
659 660
	}

661
	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
662

663
	/*
664 665 666 667
	 * Mark @rq in-flight which also advances the generation number,
	 * and register for timeout.  Protect with a seqcount to allow the
	 * timeout path to read both @rq->gstate and @rq->deadline
	 * coherently.
668
	 *
669 670 671 672
	 * This is the only place where a request is marked in-flight.  If
	 * the timeout path reads an in-flight @rq->gstate, the
	 * @rq->deadline it reads together under @rq->gstate_seq is
	 * guaranteed to be the matching one.
673
	 */
674 675 676 677 678 679 680 681
	preempt_disable();
	write_seqcount_begin(&rq->gstate_seq);

	blk_mq_rq_update_state(rq, MQ_RQ_IN_FLIGHT);
	blk_add_timer(rq);

	write_seqcount_end(&rq->gstate_seq);
	preempt_enable();
682 683 684 685 686 687 688 689 690

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
691
}
692
EXPORT_SYMBOL(blk_mq_start_request);
693

694
/*
T
Tejun Heo 已提交
695 696 697
 * When we reach here because queue is busy, it's safe to change the state
 * to IDLE without checking @rq->aborted_gstate because we should still be
 * holding the RCU read lock and thus protected against timeout.
698
 */
699
static void __blk_mq_requeue_request(struct request *rq)
700 701 702
{
	struct request_queue *q = rq->q;

703 704
	blk_mq_put_driver_tag(rq);

705
	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
706
	wbt_requeue(q->rq_wb, &rq->issue_stat);
707

T
Tejun Heo 已提交
708
	if (blk_mq_rq_state(rq) != MQ_RQ_IDLE) {
709
		blk_mq_rq_update_state(rq, MQ_RQ_IDLE);
710 711 712
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
713 714
}

715
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
716 717 718
{
	__blk_mq_requeue_request(rq);

719 720 721
	/* this request will be re-inserted to io scheduler queue */
	blk_mq_sched_requeue_request(rq);

722
	BUG_ON(blk_queued_rq(rq));
723
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
724 725 726
}
EXPORT_SYMBOL(blk_mq_requeue_request);

727 728 729
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
730
		container_of(work, struct request_queue, requeue_work.work);
731 732 733
	LIST_HEAD(rq_list);
	struct request *rq, *next;

734
	spin_lock_irq(&q->requeue_lock);
735
	list_splice_init(&q->requeue_list, &rq_list);
736
	spin_unlock_irq(&q->requeue_lock);
737 738

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
739
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
740 741
			continue;

742
		rq->rq_flags &= ~RQF_SOFTBARRIER;
743
		list_del_init(&rq->queuelist);
744
		blk_mq_sched_insert_request(rq, true, false, false);
745 746 747 748 749
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
750
		blk_mq_sched_insert_request(rq, false, false, false);
751 752
	}

753
	blk_mq_run_hw_queues(q, false);
754 755
}

756 757
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
758 759 760 761 762 763
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
764
	 * request head insertion from the workqueue.
765
	 */
766
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
767 768 769

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
770
		rq->rq_flags |= RQF_SOFTBARRIER;
771 772 773 774 775
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
776 777 778

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
779 780 781 782 783
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
784
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
785 786 787
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

788 789 790
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
791 792
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
793 794 795
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

796 797
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
798 799
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
800
		return tags->rqs[tag];
801
	}
802 803

	return NULL;
804 805 806
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

807
struct blk_mq_timeout_data {
808 809
	unsigned long next;
	unsigned int next_set;
810
	unsigned int nr_expired;
811 812
};

813
static void blk_mq_rq_timed_out(struct request *req, bool reserved)
814
{
J
Jens Axboe 已提交
815
	const struct blk_mq_ops *ops = req->q->mq_ops;
816
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
817

818
	req->rq_flags |= RQF_MQ_TIMEOUT_EXPIRED;
819

820
	if (ops->timeout)
821
		ret = ops->timeout(req, reserved);
822 823 824 825 826 827

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
828 829 830 831 832 833
		/*
		 * As nothing prevents from completion happening while
		 * ->aborted_gstate is set, this may lead to ignored
		 * completions and further spurious timeouts.
		 */
		blk_mq_rq_update_aborted_gstate(req, 0);
834 835 836 837 838 839 840 841
		blk_add_timer(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
842
}
843

844 845 846 847
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
848 849
	unsigned long gstate, deadline;
	int start;
850

851
	might_sleep();
852

T
Tejun Heo 已提交
853
	if (rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED)
854
		return;
855

856 857 858 859
	/* read coherent snapshots of @rq->state_gen and @rq->deadline */
	while (true) {
		start = read_seqcount_begin(&rq->gstate_seq);
		gstate = READ_ONCE(rq->gstate);
860
		deadline = blk_rq_deadline(rq);
861 862 863 864
		if (!read_seqcount_retry(&rq->gstate_seq, start))
			break;
		cond_resched();
	}
865

866 867 868 869 870 871
	/* if in-flight && overdue, mark for abortion */
	if ((gstate & MQ_RQ_STATE_MASK) == MQ_RQ_IN_FLIGHT &&
	    time_after_eq(jiffies, deadline)) {
		blk_mq_rq_update_aborted_gstate(rq, gstate);
		data->nr_expired++;
		hctx->nr_expired++;
872 873
	} else if (!data->next_set || time_after(data->next, deadline)) {
		data->next = deadline;
874 875
		data->next_set = 1;
	}
876 877
}

878 879 880 881 882 883 884 885 886 887
static void blk_mq_terminate_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	/*
	 * We marked @rq->aborted_gstate and waited for RCU.  If there were
	 * completions that we lost to, they would have finished and
	 * updated @rq->gstate by now; otherwise, the completion path is
	 * now guaranteed to see @rq->aborted_gstate and yield.  If
	 * @rq->aborted_gstate still matches @rq->gstate, @rq is ours.
	 */
888 889
	if (!(rq->rq_flags & RQF_MQ_TIMEOUT_EXPIRED) &&
	    READ_ONCE(rq->gstate) == rq->aborted_gstate)
890 891 892
		blk_mq_rq_timed_out(rq, reserved);
}

893
static void blk_mq_timeout_work(struct work_struct *work)
894
{
895 896
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
897 898 899
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
900
		.nr_expired	= 0,
901
	};
902
	struct blk_mq_hw_ctx *hctx;
903
	int i;
904

905 906 907 908 909 910 911 912 913
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
914
	 * blk_freeze_queue_start, and the moment the last request is
915 916 917 918
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
919 920
		return;

921
	/* scan for the expired ones and set their ->aborted_gstate */
922
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
923

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
	if (data.nr_expired) {
		bool has_rcu = false;

		/*
		 * Wait till everyone sees ->aborted_gstate.  The
		 * sequential waits for SRCUs aren't ideal.  If this ever
		 * becomes a problem, we can add per-hw_ctx rcu_head and
		 * wait in parallel.
		 */
		queue_for_each_hw_ctx(q, hctx, i) {
			if (!hctx->nr_expired)
				continue;

			if (!(hctx->flags & BLK_MQ_F_BLOCKING))
				has_rcu = true;
			else
940
				synchronize_srcu(hctx->srcu);
941 942 943 944 945 946 947 948 949 950

			hctx->nr_expired = 0;
		}
		if (has_rcu)
			synchronize_rcu();

		/* terminate the ones we won */
		blk_mq_queue_tag_busy_iter(q, blk_mq_terminate_expired, NULL);
	}

951 952 953
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
954
	} else {
955 956 957 958 959 960
		/*
		 * Request timeouts are handled as a forward rolling timer. If
		 * we end up here it means that no requests are pending and
		 * also that no request has been pending for a while. Mark
		 * each hctx as idle.
		 */
961 962 963 964 965
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
966
	}
967
	blk_queue_exit(q);
968 969
}

970 971 972 973 974 975 976 977 978 979 980 981 982
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
983
	sbitmap_clear_bit(sb, bitnr);
984 985 986 987
	spin_unlock(&ctx->lock);
	return true;
}

988 989 990 991
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
992
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
993
{
994 995 996 997
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
998

999
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1000
}
1001
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1002

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	if (unlikely(!list_empty(&ctx->rq_list))) {
		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
		list_del_init(&dispatch_data->rq->queuelist);
		if (list_empty(&ctx->rq_list))
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
	unsigned off = start ? start->index_hw : 0;
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

1042 1043 1044 1045
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
1046

1047
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1048 1049
}

1050 1051
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
1052 1053 1054 1055 1056 1057 1058
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

1059 1060
	might_sleep_if(wait);

1061 1062
	if (rq->tag != -1)
		goto done;
1063

1064 1065 1066
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

1067 1068
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
1069 1070 1071 1072
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
1073 1074 1075
		data.hctx->tags->rqs[rq->tag] = rq;
	}

1076 1077 1078 1079
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
1080 1081
}

1082 1083
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
1084 1085 1086 1087 1088
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1089
	list_del_init(&wait->entry);
1090 1091 1092 1093
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1094 1095
/*
 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1096 1097
 * the tag wakeups. For non-shared tags, we can simply mark us needing a
 * restart. For both cases, take care to check the condition again after
1098 1099 1100 1101
 * marking us as waiting.
 */
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx **hctx,
				 struct request *rq)
1102
{
1103
	struct blk_mq_hw_ctx *this_hctx = *hctx;
1104
	struct sbq_wait_state *ws;
1105 1106
	wait_queue_entry_t *wait;
	bool ret;
1107

1108
	if (!(this_hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1109 1110 1111
		if (!test_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state))
			set_bit(BLK_MQ_S_SCHED_RESTART, &this_hctx->state);

1112 1113 1114 1115 1116 1117 1118 1119 1120
		/*
		 * It's possible that a tag was freed in the window between the
		 * allocation failure and adding the hardware queue to the wait
		 * queue.
		 *
		 * Don't clear RESTART here, someone else could have set it.
		 * At most this will cost an extra queue run.
		 */
		return blk_mq_get_driver_tag(rq, hctx, false);
1121 1122
	}

1123 1124 1125 1126 1127 1128 1129 1130
	wait = &this_hctx->dispatch_wait;
	if (!list_empty_careful(&wait->entry))
		return false;

	spin_lock(&this_hctx->lock);
	if (!list_empty(&wait->entry)) {
		spin_unlock(&this_hctx->lock);
		return false;
1131 1132
	}

1133 1134 1135
	ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
	add_wait_queue(&ws->wait, wait);

1136
	/*
1137 1138 1139
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1140
	 */
1141
	ret = blk_mq_get_driver_tag(rq, hctx, false);
1142
	if (!ret) {
1143
		spin_unlock(&this_hctx->lock);
1144
		return false;
1145
	}
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156

	/*
	 * We got a tag, remove ourselves from the wait queue to ensure
	 * someone else gets the wakeup.
	 */
	spin_lock_irq(&ws->wait.lock);
	list_del_init(&wait->entry);
	spin_unlock_irq(&ws->wait.lock);
	spin_unlock(&this_hctx->lock);

	return true;
1157 1158
}

1159 1160
#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */

1161
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1162
			     bool got_budget)
1163
{
1164
	struct blk_mq_hw_ctx *hctx;
1165
	struct request *rq, *nxt;
1166
	bool no_tag = false;
1167
	int errors, queued;
1168
	blk_status_t ret = BLK_STS_OK;
1169

1170 1171 1172
	if (list_empty(list))
		return false;

1173 1174
	WARN_ON(!list_is_singular(list) && got_budget);

1175 1176 1177
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1178
	errors = queued = 0;
1179
	do {
1180
		struct blk_mq_queue_data bd;
1181

1182
		rq = list_first_entry(list, struct request, queuelist);
1183
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1184
			/*
1185
			 * The initial allocation attempt failed, so we need to
1186 1187 1188 1189
			 * rerun the hardware queue when a tag is freed. The
			 * waitqueue takes care of that. If the queue is run
			 * before we add this entry back on the dispatch list,
			 * we'll re-run it below.
1190
			 */
1191
			if (!blk_mq_mark_tag_wait(&hctx, rq)) {
1192 1193
				if (got_budget)
					blk_mq_put_dispatch_budget(hctx);
1194 1195 1196 1197 1198 1199
				/*
				 * For non-shared tags, the RESTART check
				 * will suffice.
				 */
				if (hctx->flags & BLK_MQ_F_TAG_SHARED)
					no_tag = true;
1200 1201 1202 1203
				break;
			}
		}

1204 1205
		if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
			blk_mq_put_driver_tag(rq);
1206
			break;
1207
		}
1208

1209 1210
		list_del_init(&rq->queuelist);

1211
		bd.rq = rq;
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1223 1224

		ret = q->mq_ops->queue_rq(hctx, &bd);
1225
		if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1226 1227
			/*
			 * If an I/O scheduler has been configured and we got a
1228 1229
			 * driver tag for the next request already, free it
			 * again.
1230 1231 1232 1233 1234
			 */
			if (!list_empty(list)) {
				nxt = list_first_entry(list, struct request, queuelist);
				blk_mq_put_driver_tag(nxt);
			}
1235
			list_add(&rq->queuelist, list);
1236
			__blk_mq_requeue_request(rq);
1237
			break;
1238 1239 1240
		}

		if (unlikely(ret != BLK_STS_OK)) {
1241
			errors++;
1242
			blk_mq_end_request(rq, BLK_STS_IOERR);
1243
			continue;
1244 1245
		}

1246
		queued++;
1247
	} while (!list_empty(list));
1248

1249
	hctx->dispatched[queued_to_index(queued)]++;
1250 1251 1252 1253 1254

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1255
	if (!list_empty(list)) {
1256 1257
		bool needs_restart;

1258
		spin_lock(&hctx->lock);
1259
		list_splice_init(list, &hctx->dispatch);
1260
		spin_unlock(&hctx->lock);
1261

1262
		/*
1263 1264 1265
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1266
		 *
1267 1268 1269 1270
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1271
		 *
1272 1273 1274 1275 1276 1277 1278
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1279
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1280
		 *   and dm-rq.
1281 1282 1283 1284
		 *
		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
		 * bit is set, run queue after a delay to avoid IO stalls
		 * that could otherwise occur if the queue is idle.
1285
		 */
1286 1287
		needs_restart = blk_mq_sched_needs_restart(hctx);
		if (!needs_restart ||
1288
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1289
			blk_mq_run_hw_queue(hctx, true);
1290 1291
		else if (needs_restart && (ret == BLK_STS_RESOURCE))
			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1292
	}
1293

1294
	return (queued + errors) != 0;
1295 1296
}

1297 1298 1299 1300
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1301 1302 1303
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
	 *
	 * There are at least two related races now between setting
	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
	 * __blk_mq_run_hw_queue():
	 *
	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
	 *   but later it becomes online, then this warning is harmless
	 *   at all
	 *
	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
	 *   but later it becomes offline, then the warning can't be
	 *   triggered, and we depend on blk-mq timeout handler to
	 *   handle dispatched requests to this hctx
1317
	 */
1318 1319 1320 1321 1322 1323 1324
	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu)) {
		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
			raw_smp_processor_id(),
			cpumask_empty(hctx->cpumask) ? "inactive": "active");
		dump_stack();
	}
1325

1326 1327 1328 1329 1330 1331
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1332
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1333

1334 1335 1336
	hctx_lock(hctx, &srcu_idx);
	blk_mq_sched_dispatch_requests(hctx);
	hctx_unlock(hctx, srcu_idx);
1337 1338
}

1339 1340 1341 1342 1343 1344 1345 1346
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1347 1348
	bool tried = false;

1349 1350
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1351 1352

	if (--hctx->next_cpu_batch <= 0) {
1353
		int next_cpu;
1354
select_cpu:
1355 1356
		next_cpu = cpumask_next_and(hctx->next_cpu, hctx->cpumask,
				cpu_online_mask);
1357
		if (next_cpu >= nr_cpu_ids)
1358
			next_cpu = cpumask_first_and(hctx->cpumask,cpu_online_mask);
1359

1360 1361 1362 1363 1364 1365 1366 1367
		/*
		 * No online CPU is found, so have to make sure hctx->next_cpu
		 * is set correctly for not breaking workqueue.
		 */
		if (next_cpu >= nr_cpu_ids)
			hctx->next_cpu = cpumask_first(hctx->cpumask);
		else
			hctx->next_cpu = next_cpu;
1368 1369 1370
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
	/*
	 * Do unbound schedule if we can't find a online CPU for this hctx,
	 * and it should only happen in the path of handling CPU DEAD.
	 */
	if (!cpu_online(hctx->next_cpu)) {
		if (!tried) {
			tried = true;
			goto select_cpu;
		}

		/*
		 * Make sure to re-select CPU next time once after CPUs
		 * in hctx->cpumask become online again.
		 */
		hctx->next_cpu_batch = 1;
		return WORK_CPU_UNBOUND;
	}
1388
	return hctx->next_cpu;
1389 1390
}

1391 1392
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1393
{
1394 1395 1396 1397
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
		return;

	if (unlikely(blk_mq_hctx_stopped(hctx)))
1398 1399
		return;

1400
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1401 1402
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1403
			__blk_mq_run_hw_queue(hctx);
1404
			put_cpu();
1405 1406
			return;
		}
1407

1408
		put_cpu();
1409
	}
1410

1411 1412
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
				    msecs_to_jiffies(msecs));
1413 1414 1415 1416 1417 1418 1419 1420
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

1421
bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1422
{
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
	int srcu_idx;
	bool need_run;

	/*
	 * When queue is quiesced, we may be switching io scheduler, or
	 * updating nr_hw_queues, or other things, and we can't run queue
	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
	 *
	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
	 * quiesced.
	 */
1434 1435 1436 1437
	hctx_lock(hctx, &srcu_idx);
	need_run = !blk_queue_quiesced(hctx->queue) &&
		blk_mq_hctx_has_pending(hctx);
	hctx_unlock(hctx, srcu_idx);
1438 1439

	if (need_run) {
1440 1441 1442 1443 1444
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
		return true;
	}

	return false;
1445
}
O
Omar Sandoval 已提交
1446
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1447

1448
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1449 1450 1451 1452 1453
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1454
		if (blk_mq_hctx_stopped(hctx))
1455 1456
			continue;

1457
		blk_mq_run_hw_queue(hctx, async);
1458 1459
	}
}
1460
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1461

1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1482 1483 1484
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1485
 * BLK_STS_RESOURCE is usually returned.
1486 1487 1488 1489 1490
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1491 1492
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1493
	cancel_delayed_work(&hctx->run_work);
1494

1495
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1496
}
1497
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1498

1499 1500 1501
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1502
 * BLK_STS_RESOURCE is usually returned.
1503 1504 1505 1506 1507
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1508 1509
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1510 1511 1512 1513 1514
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1515 1516 1517
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1518 1519 1520
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1521

1522
	blk_mq_run_hw_queue(hctx, false);
1523 1524 1525
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1546
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1547 1548 1549 1550
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1551 1552
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1553 1554 1555
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1556
static void blk_mq_run_work_fn(struct work_struct *work)
1557 1558 1559
{
	struct blk_mq_hw_ctx *hctx;

1560
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1561

1562 1563 1564 1565 1566 1567 1568 1569
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1570

1571 1572 1573
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1574 1575 1576 1577

	__blk_mq_run_hw_queue(hctx);
}

1578 1579 1580

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1581
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1582
		return;
1583

1584 1585 1586 1587 1588
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1589
	blk_mq_stop_hw_queue(hctx);
1590 1591 1592 1593
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1594 1595 1596
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1597 1598 1599
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1600
{
J
Jens Axboe 已提交
1601 1602
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1603 1604
	lockdep_assert_held(&ctx->lock);

1605 1606
	trace_block_rq_insert(hctx->queue, rq);

1607 1608 1609 1610
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1611
}
1612

1613 1614
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1615 1616 1617
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1618 1619
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1620
	__blk_mq_insert_req_list(hctx, rq, at_head);
1621 1622 1623
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1624 1625 1626 1627
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
1628
void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1629 1630 1631 1632 1633 1634 1635 1636
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

1637 1638
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
1639 1640
}

1641 1642
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1654
		BUG_ON(rq->mq_ctx != ctx);
1655
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1656
		__blk_mq_insert_req_list(hctx, rq, false);
1657
	}
1658
	blk_mq_hctx_mark_pending(hctx, ctx);
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1695 1696 1697 1698
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1715 1716 1717
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1718 1719 1720 1721 1722
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1723
	blk_init_request_from_bio(rq, bio);
1724

S
Shaohua Li 已提交
1725 1726
	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));

1727
	blk_account_io_start(rq, true);
1728 1729
}

1730 1731 1732 1733 1734 1735 1736
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1737
}
1738

1739 1740
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1741 1742 1743 1744
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1745 1746
}

1747 1748 1749
static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    blk_qc_t *cookie)
1750 1751 1752 1753
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1754
		.last = true,
1755
	};
1756
	blk_qc_t new_cookie;
1757
	blk_status_t ret;
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771

	new_cookie = request_to_qc_t(hctx, rq);

	/*
	 * For OK queue, we are done. For error, caller may kill it.
	 * Any other error (busy), just add it to our list as we
	 * previously would have done.
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	switch (ret) {
	case BLK_STS_OK:
		*cookie = new_cookie;
		break;
	case BLK_STS_RESOURCE:
1772
	case BLK_STS_DEV_RESOURCE:
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
		__blk_mq_requeue_request(rq);
		break;
	default:
		*cookie = BLK_QC_T_NONE;
		break;
	}

	return ret;
}

static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
						struct request *rq,
1785 1786
						blk_qc_t *cookie,
						bool bypass_insert)
1787 1788
{
	struct request_queue *q = rq->q;
M
Ming Lei 已提交
1789 1790
	bool run_queue = true;

1791 1792 1793 1794
	/*
	 * RCU or SRCU read lock is needed before checking quiesced flag.
	 *
	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1795
	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1796 1797
	 * and avoid driver to try to dispatch again.
	 */
1798
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1799
		run_queue = false;
1800
		bypass_insert = false;
M
Ming Lei 已提交
1801 1802
		goto insert;
	}
1803

1804
	if (q->elevator && !bypass_insert)
1805 1806
		goto insert;

M
Ming Lei 已提交
1807
	if (!blk_mq_get_driver_tag(rq, NULL, false))
1808 1809
		goto insert;

1810
	if (!blk_mq_get_dispatch_budget(hctx)) {
1811 1812
		blk_mq_put_driver_tag(rq);
		goto insert;
1813
	}
1814

1815
	return __blk_mq_issue_directly(hctx, rq, cookie);
1816
insert:
1817 1818
	if (bypass_insert)
		return BLK_STS_RESOURCE;
1819

1820
	blk_mq_sched_insert_request(rq, false, run_queue, false);
1821
	return BLK_STS_OK;
1822 1823
}

1824 1825 1826
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
1827
	blk_status_t ret;
1828
	int srcu_idx;
1829

1830
	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1831

1832
	hctx_lock(hctx, &srcu_idx);
1833

1834
	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1835
	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1836
		blk_mq_sched_insert_request(rq, false, true, false);
1837 1838 1839
	else if (ret != BLK_STS_OK)
		blk_mq_end_request(rq, ret);

1840
	hctx_unlock(hctx, srcu_idx);
1841 1842
}

1843
blk_status_t blk_mq_request_issue_directly(struct request *rq)
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
{
	blk_status_t ret;
	int srcu_idx;
	blk_qc_t unused_cookie;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	hctx_lock(hctx, &srcu_idx);
	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
	hctx_unlock(hctx, srcu_idx);

	return ret;
1856 1857
}

1858
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1859
{
1860
	const int is_sync = op_is_sync(bio->bi_opf);
1861
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1862
	struct blk_mq_alloc_data data = { .flags = 0 };
1863
	struct request *rq;
1864
	unsigned int request_count = 0;
1865
	struct blk_plug *plug;
1866
	struct request *same_queue_rq = NULL;
1867
	blk_qc_t cookie;
J
Jens Axboe 已提交
1868
	unsigned int wb_acct;
1869 1870 1871

	blk_queue_bounce(q, &bio);

1872
	blk_queue_split(q, &bio);
1873

1874
	if (!bio_integrity_prep(bio))
1875
		return BLK_QC_T_NONE;
1876

1877 1878 1879
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1880

1881 1882 1883
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1884 1885
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1886 1887
	trace_block_getrq(q, bio, bio->bi_opf);

1888
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1889 1890
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1891 1892
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1893
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1894 1895 1896
	}

	wbt_track(&rq->issue_stat, wb_acct);
1897

1898
	cookie = request_to_qc_t(data.hctx, rq);
1899

1900
	plug = current->plug;
1901
	if (unlikely(is_flush_fua)) {
1902
		blk_mq_put_ctx(data.ctx);
1903
		blk_mq_bio_to_request(rq, bio);
1904 1905 1906 1907

		/* bypass scheduler for flush rq */
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(data.hctx, true);
1908
	} else if (plug && q->nr_hw_queues == 1) {
1909 1910
		struct request *last = NULL;

1911
		blk_mq_put_ctx(data.ctx);
1912
		blk_mq_bio_to_request(rq, bio);
1913 1914 1915 1916 1917 1918 1919

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1920 1921 1922
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1923
		if (!request_count)
1924
			trace_block_plug(q);
1925 1926
		else
			last = list_entry_rq(plug->mq_list.prev);
1927

1928 1929
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1930 1931
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1932
		}
1933

1934
		list_add_tail(&rq->queuelist, &plug->mq_list);
1935
	} else if (plug && !blk_queue_nomerges(q)) {
1936
		blk_mq_bio_to_request(rq, bio);
1937 1938

		/*
1939
		 * We do limited plugging. If the bio can be merged, do that.
1940 1941
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1942 1943
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1944
		 */
1945 1946 1947 1948 1949 1950
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1951 1952
		blk_mq_put_ctx(data.ctx);

1953 1954 1955
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1956 1957
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1958
		}
1959
	} else if (q->nr_hw_queues > 1 && is_sync) {
1960
		blk_mq_put_ctx(data.ctx);
1961 1962
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1963
	} else if (q->elevator) {
1964
		blk_mq_put_ctx(data.ctx);
1965
		blk_mq_bio_to_request(rq, bio);
1966
		blk_mq_sched_insert_request(rq, false, true, true);
1967
	} else {
1968
		blk_mq_put_ctx(data.ctx);
1969 1970
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1971
		blk_mq_run_hw_queue(data.hctx, true);
1972
	}
1973

1974
	return cookie;
1975 1976
}

1977 1978
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1979
{
1980
	struct page *page;
1981

1982
	if (tags->rqs && set->ops->exit_request) {
1983
		int i;
1984

1985
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1986 1987 1988
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1989
				continue;
1990
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1991
			tags->static_rqs[i] = NULL;
1992
		}
1993 1994
	}

1995 1996
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1997
		list_del_init(&page->lru);
1998 1999 2000 2001 2002
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
2003 2004
		__free_pages(page, page->private);
	}
2005
}
2006

2007 2008
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
2009
	kfree(tags->rqs);
2010
	tags->rqs = NULL;
J
Jens Axboe 已提交
2011 2012
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
2013

2014
	blk_mq_free_tags(tags);
2015 2016
}

2017 2018 2019 2020
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
2021
{
2022
	struct blk_mq_tags *tags;
2023
	int node;
2024

2025 2026 2027 2028 2029
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
2030
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2031 2032
	if (!tags)
		return NULL;
2033

2034
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
2035
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2036
				 node);
2037 2038 2039 2040
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
2041

J
Jens Axboe 已提交
2042 2043
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2044
				 node);
J
Jens Axboe 已提交
2045 2046 2047 2048 2049 2050
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

2051 2052 2053 2054 2055 2056 2057 2058
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
			       unsigned int hctx_idx, int node)
{
	int ret;

	if (set->ops->init_request) {
		ret = set->ops->init_request(set, rq, hctx_idx, node);
		if (ret)
			return ret;
	}

	seqcount_init(&rq->gstate_seq);
	u64_stats_init(&rq->aborted_gstate_sync);
	return 0;
}

2075 2076 2077 2078 2079
int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
2080 2081 2082 2083 2084
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
2085 2086 2087

	INIT_LIST_HEAD(&tags->page_list);

2088 2089 2090 2091
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
2092
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2093
				cache_line_size());
2094
	left = rq_size * depth;
2095

2096
	for (i = 0; i < depth; ) {
2097 2098 2099 2100 2101
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

2102
		while (this_order && left < order_to_size(this_order - 1))
2103 2104 2105
			this_order--;

		do {
2106
			page = alloc_pages_node(node,
2107
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2108
				this_order);
2109 2110 2111 2112 2113 2114 2115 2116 2117
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
2118
			goto fail;
2119 2120

		page->private = this_order;
2121
		list_add_tail(&page->lru, &tags->page_list);
2122 2123

		p = page_address(page);
2124 2125 2126 2127
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
2128
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2129
		entries_per_page = order_to_size(this_order) / rq_size;
2130
		to_do = min(entries_per_page, depth - i);
2131 2132
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
2133 2134 2135
			struct request *rq = p;

			tags->static_rqs[i] = rq;
2136 2137 2138
			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
				tags->static_rqs[i] = NULL;
				goto fail;
2139 2140
			}

2141 2142 2143 2144
			p += rq_size;
			i++;
		}
	}
2145
	return 0;
2146

2147
fail:
2148 2149
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
2150 2151
}

J
Jens Axboe 已提交
2152 2153 2154 2155 2156
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
2157
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2158
{
2159
	struct blk_mq_hw_ctx *hctx;
2160 2161 2162
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

2163
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
2164
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2165 2166 2167 2168 2169 2170 2171 2172 2173

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
2174
		return 0;
2175

J
Jens Axboe 已提交
2176 2177 2178
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2179 2180

	blk_mq_run_hw_queue(hctx, true);
2181
	return 0;
2182 2183
}

2184
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2185
{
2186 2187
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2188 2189
}

2190
/* hctx->ctxs will be freed in queue's release handler */
2191 2192 2193 2194
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2195 2196
	blk_mq_debugfs_unregister_hctx(hctx);

2197 2198
	if (blk_mq_hw_queue_mapped(hctx))
		blk_mq_tag_idle(hctx);
2199

2200
	if (set->ops->exit_request)
2201
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2202

2203 2204
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

2205 2206 2207
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2208
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2209
		cleanup_srcu_struct(hctx->srcu);
2210

2211
	blk_mq_remove_cpuhp(hctx);
2212
	blk_free_flush_queue(hctx->fq);
2213
	sbitmap_free(&hctx->ctx_map);
2214 2215
}

M
Ming Lei 已提交
2216 2217 2218 2219 2220 2221 2222 2223 2224
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2225
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2226 2227 2228
	}
}

2229 2230 2231
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2232
{
2233 2234 2235 2236 2237 2238
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

2239
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2240 2241 2242
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2243
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2244

2245
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2246 2247

	hctx->tags = set->tags[hctx_idx];
2248 2249

	/*
2250 2251
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2252
	 */
2253
	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2254 2255 2256
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
2257

2258 2259
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
2260
		goto free_ctxs;
2261

2262
	hctx->nr_ctx = 0;
2263

2264 2265 2266
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

2267 2268 2269
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2270

2271 2272 2273
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

2274 2275
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
2276
		goto sched_exit_hctx;
2277

2278
	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2279
		goto free_fq;
2280

2281
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2282
		init_srcu_struct(hctx->srcu);
2283

2284 2285
	blk_mq_debugfs_register_hctx(q, hctx);

2286
	return 0;
2287

2288 2289
 free_fq:
	kfree(hctx->fq);
2290 2291
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2292 2293 2294
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2295
 free_bitmap:
2296
	sbitmap_free(&hctx->ctx_map);
2297 2298 2299
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2300
	blk_mq_remove_cpuhp(hctx);
2301 2302
	return -1;
}
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
2322
		hctx = blk_mq_map_queue(q, i);
2323
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2324
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2325 2326 2327
	}
}

2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2350 2351 2352 2353 2354
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2355 2356
}

2357
static void blk_mq_map_swqueue(struct request_queue *q)
2358
{
2359
	unsigned int i, hctx_idx;
2360 2361
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2362
	struct blk_mq_tag_set *set = q->tag_set;
2363

2364 2365 2366 2367 2368
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2369
	queue_for_each_hw_ctx(q, hctx, i) {
2370
		cpumask_clear(hctx->cpumask);
2371 2372 2373 2374
		hctx->nr_ctx = 0;
	}

	/*
2375 2376 2377
	 * Map software to hardware queues.
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2378
	 */
2379
	for_each_possible_cpu(i) {
2380 2381
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2382 2383
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2384 2385 2386 2387 2388 2389
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2390
			q->mq_map[i] = 0;
2391 2392
		}

2393
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2394
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2395

2396
		cpumask_set_cpu(i, hctx->cpumask);
2397 2398 2399
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2400

2401 2402
	mutex_unlock(&q->sysfs_lock);

2403
	queue_for_each_hw_ctx(q, hctx, i) {
2404
		/*
2405 2406
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2407 2408
		 */
		if (!hctx->nr_ctx) {
2409 2410 2411 2412
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2413 2414 2415
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2416
			hctx->tags = NULL;
2417 2418 2419
			continue;
		}

M
Ming Lei 已提交
2420 2421 2422
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2423 2424 2425 2426 2427
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2428
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2429

2430 2431 2432
		/*
		 * Initialize batch roundrobin counts
		 */
2433 2434
		hctx->next_cpu = cpumask_first_and(hctx->cpumask,
				cpu_online_mask);
2435 2436
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2437 2438
}

2439 2440 2441 2442
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2443
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2444 2445 2446 2447
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2448
	queue_for_each_hw_ctx(q, hctx, i) {
2449 2450 2451
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2452
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2453 2454 2455
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2456
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2457
		}
2458 2459 2460
	}
}

2461 2462
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2463 2464
{
	struct request_queue *q;
2465

2466 2467
	lockdep_assert_held(&set->tag_list_lock);

2468 2469
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2470
		queue_set_hctx_shared(q, shared);
2471 2472 2473 2474 2475 2476 2477 2478 2479
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2480 2481
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2482 2483 2484 2485 2486 2487
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2488
	mutex_unlock(&set->tag_list_lock);
2489 2490

	synchronize_rcu();
2491 2492 2493 2494 2495 2496 2497 2498
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2499

2500 2501 2502 2503 2504
	/*
	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
	 */
	if (!list_empty(&set->tag_list) &&
	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2505 2506 2507 2508 2509 2510
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2511
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2512

2513 2514 2515
	mutex_unlock(&set->tag_list_lock);
}

2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2528 2529 2530
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2531
		kobject_put(&hctx->kobj);
2532
	}
2533

2534 2535
	q->mq_map = NULL;

2536 2537
	kfree(q->queue_hw_ctx);

2538 2539 2540 2541 2542 2543
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2544 2545 2546
	free_percpu(q->queue_ctx);
}

2547
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2548 2549 2550
{
	struct request_queue *uninit_q, *q;

2551
	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2563 2564 2565 2566
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

2567
	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2568 2569 2570 2571 2572 2573 2574 2575 2576
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2577 2578
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2579
{
K
Keith Busch 已提交
2580 2581
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2582

K
Keith Busch 已提交
2583
	blk_mq_sysfs_unregister(q);
2584 2585 2586

	/* protect against switching io scheduler  */
	mutex_lock(&q->sysfs_lock);
2587
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2588
		int node;
2589

K
Keith Busch 已提交
2590 2591 2592 2593
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2594
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2595
					GFP_KERNEL, node);
2596
		if (!hctxs[i])
K
Keith Busch 已提交
2597
			break;
2598

2599
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2600 2601 2602 2603 2604
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2605

2606
		atomic_set(&hctxs[i]->nr_active, 0);
2607
		hctxs[i]->numa_node = node;
2608
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2609 2610 2611 2612 2613 2614 2615 2616

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2617
	}
K
Keith Busch 已提交
2618 2619 2620 2621
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2622 2623
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2624 2625 2626 2627 2628 2629 2630
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
2631
	mutex_unlock(&q->sysfs_lock);
K
Keith Busch 已提交
2632 2633 2634 2635 2636 2637
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2638 2639 2640
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2641
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2642 2643
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2644 2645 2646
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2647 2648
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2649
		goto err_exit;
K
Keith Busch 已提交
2650

2651 2652 2653
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2654 2655 2656 2657 2658
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2659
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2660 2661 2662 2663

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2664

2665
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2666
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2667 2668 2669

	q->nr_queues = nr_cpu_ids;

2670
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2671

2672
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2673
		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2674

2675 2676
	q->sg_reserved_size = INT_MAX;

2677
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2678 2679 2680
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2681
	blk_queue_make_request(q, blk_mq_make_request);
2682 2683
	if (q->mq_ops->poll)
		q->poll_fn = blk_mq_poll;
2684

2685 2686 2687 2688 2689
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2690 2691 2692 2693 2694
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2695 2696
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2697

2698
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2699
	blk_mq_add_queue_tag_set(set, q);
2700
	blk_mq_map_swqueue(q);
2701

2702 2703 2704 2705 2706 2707 2708 2709
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2710
	return q;
2711

2712
err_hctxs:
K
Keith Busch 已提交
2713
	kfree(q->queue_hw_ctx);
2714
err_percpu:
K
Keith Busch 已提交
2715
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2716 2717
err_exit:
	q->mq_ops = NULL;
2718 2719
	return ERR_PTR(-ENOMEM);
}
2720
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2721 2722 2723

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2724
	struct blk_mq_tag_set	*set = q->tag_set;
2725

2726
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2727
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2728 2729 2730
}

/* Basically redo blk_mq_init_queue with queue frozen */
2731
static void blk_mq_queue_reinit(struct request_queue *q)
2732
{
2733
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2734

2735
	blk_mq_debugfs_unregister_hctxs(q);
2736 2737
	blk_mq_sysfs_unregister(q);

2738 2739
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2740 2741
	 * we should change hctx numa_node according to the new topology (this
	 * involves freeing and re-allocating memory, worth doing?)
2742
	 */
2743
	blk_mq_map_swqueue(q);
2744

2745
	blk_mq_sysfs_register(q);
2746
	blk_mq_debugfs_register_hctxs(q);
2747 2748
}

2749 2750 2751 2752
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2753 2754
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2755 2756 2757 2758 2759 2760
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2761
		blk_mq_free_rq_map(set->tags[i]);
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2801 2802
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
	if (set->ops->map_queues) {
		int cpu;
		/*
		 * transport .map_queues is usually done in the following
		 * way:
		 *
		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
		 * 	mask = get_cpu_mask(queue)
		 * 	for_each_cpu(cpu, mask)
		 * 		set->mq_map[cpu] = queue;
		 * }
		 *
		 * When we need to remap, the table has to be cleared for
		 * killing stale mapping since one CPU may not be mapped
		 * to any hw queue.
		 */
		for_each_possible_cpu(cpu)
			set->mq_map[cpu] = 0;

2822
		return set->ops->map_queues(set);
2823
	} else
2824 2825 2826
		return blk_mq_map_queues(set);
}

2827 2828 2829 2830 2831 2832
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2833 2834
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2835 2836
	int ret;

B
Bart Van Assche 已提交
2837 2838
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2839 2840
	if (!set->nr_hw_queues)
		return -EINVAL;
2841
	if (!set->queue_depth)
2842 2843 2844 2845
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2846
	if (!set->ops->queue_rq)
2847 2848
		return -EINVAL;

2849 2850 2851
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

2852 2853 2854 2855 2856
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2857

2858 2859 2860 2861 2862 2863 2864 2865 2866
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2867 2868 2869 2870 2871
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2872

K
Keith Busch 已提交
2873
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2874 2875
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2876
		return -ENOMEM;
2877

2878 2879 2880
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2881 2882 2883
	if (!set->mq_map)
		goto out_free_tags;

2884
	ret = blk_mq_update_queue_map(set);
2885 2886 2887 2888 2889
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2890
		goto out_free_mq_map;
2891

2892 2893 2894
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2895
	return 0;
2896 2897 2898 2899 2900

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2901 2902
	kfree(set->tags);
	set->tags = NULL;
2903
	return ret;
2904 2905 2906 2907 2908 2909 2910
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2911 2912
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2913

2914 2915 2916
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2917
	kfree(set->tags);
2918
	set->tags = NULL;
2919 2920 2921
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2922 2923 2924 2925 2926 2927
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2928
	if (!set)
2929 2930
		return -EINVAL;

2931
	blk_mq_freeze_queue(q);
2932
	blk_mq_quiesce_queue(q);
2933

2934 2935
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2936 2937
		if (!hctx->tags)
			continue;
2938 2939 2940 2941
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2942
		if (!hctx->sched_tags) {
2943
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2944 2945 2946 2947 2948
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2949 2950 2951 2952 2953 2954 2955
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2956
	blk_mq_unquiesce_queue(q);
2957 2958
	blk_mq_unfreeze_queue(q);

2959 2960 2961
	return ret;
}

2962 2963
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2964 2965 2966
{
	struct request_queue *q;

2967 2968
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2969 2970 2971 2972 2973 2974 2975 2976 2977
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2978
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2979 2980
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2981
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2982 2983 2984 2985 2986
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2987 2988 2989 2990 2991 2992 2993

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2994 2995
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2996 2997 2998 2999
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3000
	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
3022
	int bucket;
3023

3024 3025 3026 3027
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
3028 3029
}

3030 3031 3032 3033 3034
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
3035
	int bucket;
3036 3037 3038 3039 3040

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
3041
	if (!blk_poll_stats_enable(q))
3042 3043 3044 3045 3046 3047 3048 3049
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
3050 3051
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
3052
	 */
3053 3054 3055 3056 3057 3058
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
3059 3060 3061 3062

	return ret;
}

3063
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3064
				     struct blk_mq_hw_ctx *hctx,
3065 3066 3067 3068
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
3069
	unsigned int nsecs;
3070 3071
	ktime_t kt;

J
Jens Axboe 已提交
3072
	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
3090 3091
		return false;

J
Jens Axboe 已提交
3092
	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3093 3094 3095 3096 3097

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
3098
	kt = nsecs;
3099 3100 3101 3102 3103 3104 3105

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
T
Tejun Heo 已提交
3106
		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
3121 3122 3123 3124 3125
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

3126 3127 3128 3129 3130 3131 3132
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
3133
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3134 3135
		return true;

J
Jens Axboe 已提交
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

3161
	__set_current_state(TASK_RUNNING);
J
Jens Axboe 已提交
3162 3163 3164
	return false;
}

3165
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
J
Jens Axboe 已提交
3166 3167 3168 3169
{
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;

3170
	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
J
Jens Axboe 已提交
3171 3172 3173
		return false;

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3174 3175
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3176
	else {
3177
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3178 3179 3180 3181 3182 3183 3184 3185 3186
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
3187 3188 3189 3190

	return __blk_mq_poll(hctx, rq);
}

3191 3192
static int __init blk_mq_init(void)
{
3193 3194
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
3195 3196 3197
	return 0;
}
subsys_initcall(blk_mq_init);