memcontrol.c 191.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
B
Balbir Singh 已提交
2 3 4 5 6
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
7 8 9
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
10 11 12 13
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
14 15 16 17
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 24 25
 *
 * Per memcg lru locking
 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
B
Balbir Singh 已提交
26 27
 */

28
#include <linux/page_counter.h>
B
Balbir Singh 已提交
29 30
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/pagewalk.h>
32
#include <linux/sched/mm.h>
33
#include <linux/shmem_fs.h>
34
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
35
#include <linux/pagemap.h>
36
#include <linux/vm_event_item.h>
37
#include <linux/smp.h>
38
#include <linux/page-flags.h>
39
#include <linux/backing-dev.h>
40 41
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
42
#include <linux/limits.h>
43
#include <linux/export.h>
44
#include <linux/mutex.h>
45
#include <linux/rbtree.h>
46
#include <linux/slab.h>
47
#include <linux/swap.h>
48
#include <linux/swapops.h>
49
#include <linux/spinlock.h>
50
#include <linux/eventfd.h>
51
#include <linux/poll.h>
52
#include <linux/sort.h>
53
#include <linux/fs.h>
54
#include <linux/seq_file.h>
55
#include <linux/vmpressure.h>
56
#include <linux/mm_inline.h>
57
#include <linux/swap_cgroup.h>
58
#include <linux/cpu.h>
59
#include <linux/oom.h>
60
#include <linux/lockdep.h>
61
#include <linux/file.h>
62
#include <linux/tracehook.h>
63
#include <linux/psi.h>
64
#include <linux/seq_buf.h>
K
KAMEZAWA Hiroyuki 已提交
65
#include "internal.h"
G
Glauber Costa 已提交
66
#include <net/sock.h>
M
Michal Hocko 已提交
67
#include <net/ip.h>
68
#include "slab.h"
B
Balbir Singh 已提交
69

70
#include <linux/uaccess.h>
71

72 73
#include <trace/events/vmscan.h>

74 75
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
76

77 78
struct mem_cgroup *root_mem_cgroup __read_mostly;

79 80
/* Active memory cgroup to use from an interrupt context */
DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81
EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
82

83
/* Socket memory accounting disabled? */
84
static bool cgroup_memory_nosocket __ro_after_init;
85

86
/* Kernel memory accounting disabled? */
87
bool cgroup_memory_nokmem __ro_after_init;
88

89
/* Whether the swap controller is active */
A
Andrew Morton 已提交
90
#ifdef CONFIG_MEMCG_SWAP
91
bool cgroup_memory_noswap __ro_after_init;
92
#else
93
#define cgroup_memory_noswap		1
94
#endif
95

96 97 98 99
#ifdef CONFIG_CGROUP_WRITEBACK
static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
#endif

100 101 102
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
103
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
104 105
}

106 107 108 109 110
/* memcg and lruvec stats flushing */
static void flush_memcg_stats_dwork(struct work_struct *w);
static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
static DEFINE_SPINLOCK(stats_flush_lock);

111 112
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
113

114 115 116 117 118
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

119
struct mem_cgroup_tree_per_node {
120
	struct rb_root rb_root;
121
	struct rb_node *rb_rightmost;
122 123 124 125 126 127 128 129 130
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
131 132 133 134 135
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
136

137 138 139
/*
 * cgroup_event represents events which userspace want to receive.
 */
140
struct mem_cgroup_event {
141
	/*
142
	 * memcg which the event belongs to.
143
	 */
144
	struct mem_cgroup *memcg;
145 146 147 148 149 150 151 152
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
153 154 155 156 157
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
158
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
159
			      struct eventfd_ctx *eventfd, const char *args);
160 161 162 163 164
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
165
	void (*unregister_event)(struct mem_cgroup *memcg,
166
				 struct eventfd_ctx *eventfd);
167 168 169 170 171 172
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
173
	wait_queue_entry_t wait;
174 175 176
	struct work_struct remove;
};

177 178
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
179

180 181
/* Stuffs for move charges at task migration. */
/*
182
 * Types of charges to be moved.
183
 */
184 185 186
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
187

188 189
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
190
	spinlock_t	  lock; /* for from, to */
191
	struct mm_struct  *mm;
192 193
	struct mem_cgroup *from;
	struct mem_cgroup *to;
194
	unsigned long flags;
195
	unsigned long precharge;
196
	unsigned long moved_charge;
197
	unsigned long moved_swap;
198 199 200
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
201
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
202 203
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
204

205 206 207 208
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
209
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
210
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
211

212
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
213 214 215 216
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
217
	_KMEM,
V
Vladimir Davydov 已提交
218
	_TCP,
G
Glauber Costa 已提交
219 220
};

221 222
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
223
#define MEMFILE_ATTR(val)	((val) & 0xffff)
I
Ingo Molnar 已提交
224
/* Used for OOM notifier */
K
KAMEZAWA Hiroyuki 已提交
225
#define OOM_CONTROL		(0)
226

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(root, iter, NULL))

#define for_each_mem_cgroup(iter)			\
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(NULL, iter, NULL))

242 243 244 245 246 247
static inline bool should_force_charge(void)
{
	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
		(current->flags & PF_EXITING);
}

248 249 250 251 252 253 254 255
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

256
struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
257
{
258
	return container_of(vmpr, struct mem_cgroup, vmpressure);
259 260
}

261
#ifdef CONFIG_MEMCG_KMEM
R
Roman Gushchin 已提交
262 263
extern spinlock_t css_set_lock;

264 265 266 267 268
bool mem_cgroup_kmem_disabled(void)
{
	return cgroup_memory_nokmem;
}

269 270
static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
				      unsigned int nr_pages);
271

R
Roman Gushchin 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
static void obj_cgroup_release(struct percpu_ref *ref)
{
	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
	unsigned int nr_bytes;
	unsigned int nr_pages;
	unsigned long flags;

	/*
	 * At this point all allocated objects are freed, and
	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
	 *
	 * The following sequence can lead to it:
	 * 1) CPU0: objcg == stock->cached_objcg
	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
	 *          PAGE_SIZE bytes are charged
	 * 3) CPU1: a process from another memcg is allocating something,
	 *          the stock if flushed,
	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
	 * 5) CPU0: we do release this object,
	 *          92 bytes are added to stock->nr_bytes
	 * 6) CPU0: stock is flushed,
	 *          92 bytes are added to objcg->nr_charged_bytes
	 *
	 * In the result, nr_charged_bytes == PAGE_SIZE.
	 * This page will be uncharged in obj_cgroup_release().
	 */
	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
	nr_pages = nr_bytes >> PAGE_SHIFT;

	if (nr_pages)
304
		obj_cgroup_uncharge_pages(objcg, nr_pages);
305 306

	spin_lock_irqsave(&css_set_lock, flags);
R
Roman Gushchin 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
	list_del(&objcg->list);
	spin_unlock_irqrestore(&css_set_lock, flags);

	percpu_ref_exit(ref);
	kfree_rcu(objcg, rcu);
}

static struct obj_cgroup *obj_cgroup_alloc(void)
{
	struct obj_cgroup *objcg;
	int ret;

	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
	if (!objcg)
		return NULL;

	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
			      GFP_KERNEL);
	if (ret) {
		kfree(objcg);
		return NULL;
	}
	INIT_LIST_HEAD(&objcg->list);
	return objcg;
}

static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
				  struct mem_cgroup *parent)
{
	struct obj_cgroup *objcg, *iter;

	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);

	spin_lock_irq(&css_set_lock);

342 343 344 345 346 347
	/* 1) Ready to reparent active objcg. */
	list_add(&objcg->list, &memcg->objcg_list);
	/* 2) Reparent active objcg and already reparented objcgs to parent. */
	list_for_each_entry(iter, &memcg->objcg_list, list)
		WRITE_ONCE(iter->memcg, parent);
	/* 3) Move already reparented objcgs to the parent's list */
R
Roman Gushchin 已提交
348 349 350 351 352 353 354
	list_splice(&memcg->objcg_list, &parent->objcg_list);

	spin_unlock_irq(&css_set_lock);

	percpu_ref_kill(&objcg->refcnt);
}

355
/*
356
 * This will be used as a shrinker list's index.
L
Li Zefan 已提交
357 358 359 360 361
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
362
 *
363 364
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
365
 */
366 367
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
368

369 370 371 372 373 374 375 376 377 378 379 380 381
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

382 383 384 385 386 387
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
388
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
389 390
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
391
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
392 393 394
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
395
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
396

397 398
/*
 * A lot of the calls to the cache allocation functions are expected to be
399
 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
400 401 402
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
403
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
404
EXPORT_SYMBOL(memcg_kmem_enabled_key);
405
#endif
406

407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

422
	memcg = page_memcg(page);
423

424
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
425 426 427 428 429
		memcg = root_mem_cgroup;

	return &memcg->css;
}

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
449
	memcg = page_memcg_check(page);
450

451 452 453 454 455 456 457 458
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

459 460
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
461
					 unsigned long new_usage_in_excess)
462 463 464
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
465
	struct mem_cgroup_per_node *mz_node;
466
	bool rightmost = true;
467 468 469 470 471 472 473 474 475

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
476
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
477
					tree_node);
478
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
479
			p = &(*p)->rb_left;
480
			rightmost = false;
481
		} else {
482
			p = &(*p)->rb_right;
483
		}
484
	}
485 486 487 488

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

489 490 491 492 493
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

494 495
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
496 497 498
{
	if (!mz->on_tree)
		return;
499 500 501 502

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

503 504 505 506
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

507 508
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
509
{
510 511 512
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
513
	__mem_cgroup_remove_exceeded(mz, mctz);
514
	spin_unlock_irqrestore(&mctz->lock, flags);
515 516
}

517 518 519
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
520
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
521 522 523 524 525 526 527
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
528

529
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
530
{
531
	unsigned long excess;
532 533
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
534

535
	mctz = soft_limit_tree.rb_tree_per_node[nid];
536 537
	if (!mctz)
		return;
538 539 540 541 542
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
543
		mz = memcg->nodeinfo[nid];
544
		excess = soft_limit_excess(memcg);
545 546 547 548 549
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
550 551 552
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
553 554
			/* if on-tree, remove it */
			if (mz->on_tree)
555
				__mem_cgroup_remove_exceeded(mz, mctz);
556 557 558 559
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
560
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
561
			spin_unlock_irqrestore(&mctz->lock, flags);
562 563 564 565 566 567
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
568 569 570
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
571

572
	for_each_node(nid) {
573
		mz = memcg->nodeinfo[nid];
574
		mctz = soft_limit_tree.rb_tree_per_node[nid];
575 576
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
577 578 579
	}
}

580 581
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
582
{
583
	struct mem_cgroup_per_node *mz;
584 585 586

retry:
	mz = NULL;
587
	if (!mctz->rb_rightmost)
588 589
		goto done;		/* Nothing to reclaim from */

590 591
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
592 593 594 595 596
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
597
	__mem_cgroup_remove_exceeded(mz, mctz);
598
	if (!soft_limit_excess(mz->memcg) ||
S
Shakeel Butt 已提交
599
	    !css_tryget(&mz->memcg->css))
600 601 602 603 604
		goto retry;
done:
	return mz;
}

605 606
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
607
{
608
	struct mem_cgroup_per_node *mz;
609

610
	spin_lock_irq(&mctz->lock);
611
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
612
	spin_unlock_irq(&mctz->lock);
613 614 615
	return mz;
}

616 617 618 619 620 621 622 623 624 625 626
/**
 * __mod_memcg_state - update cgroup memory statistics
 * @memcg: the memory cgroup
 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 * @val: delta to add to the counter, can be negative
 */
void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
{
	if (mem_cgroup_disabled())
		return;

627 628
	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
629 630
}

631
/* idx can be of type enum memcg_stat_item or node_stat_item. */
632 633 634 635 636 637
static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
{
	long x = 0;
	int cpu;

	for_each_possible_cpu(cpu)
638
		x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
639 640 641 642 643 644 645
#ifdef CONFIG_SMP
	if (x < 0)
		x = 0;
#endif
	return x;
}

646 647
void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			      int val)
648 649
{
	struct mem_cgroup_per_node *pn;
650
	struct mem_cgroup *memcg;
651 652

	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
653
	memcg = pn->memcg;
654 655

	/* Update memcg */
656
	__mod_memcg_state(memcg, idx, val);
657

658
	/* Update lruvec */
659
	__this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
660 661
}

662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
/**
 * __mod_lruvec_state - update lruvec memory statistics
 * @lruvec: the lruvec
 * @idx: the stat item
 * @val: delta to add to the counter, can be negative
 *
 * The lruvec is the intersection of the NUMA node and a cgroup. This
 * function updates the all three counters that are affected by a
 * change of state at this level: per-node, per-cgroup, per-lruvec.
 */
void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			int val)
{
	/* Update node */
	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);

	/* Update memcg and lruvec */
	if (!mem_cgroup_disabled())
		__mod_memcg_lruvec_state(lruvec, idx, val);
}

683 684 685 686
void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
			     int val)
{
	struct page *head = compound_head(page); /* rmap on tail pages */
687
	struct mem_cgroup *memcg;
688 689 690
	pg_data_t *pgdat = page_pgdat(page);
	struct lruvec *lruvec;

691 692
	rcu_read_lock();
	memcg = page_memcg(head);
693
	/* Untracked pages have no memcg, no lruvec. Update only the node */
694
	if (!memcg) {
695
		rcu_read_unlock();
696 697 698 699
		__mod_node_page_state(pgdat, idx, val);
		return;
	}

700
	lruvec = mem_cgroup_lruvec(memcg, pgdat);
701
	__mod_lruvec_state(lruvec, idx, val);
702
	rcu_read_unlock();
703
}
704
EXPORT_SYMBOL(__mod_lruvec_page_state);
705

706
void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
707
{
708
	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
709 710 711 712
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;

	rcu_read_lock();
713
	memcg = mem_cgroup_from_obj(p);
714

715 716 717 718 719 720 721
	/*
	 * Untracked pages have no memcg, no lruvec. Update only the
	 * node. If we reparent the slab objects to the root memcg,
	 * when we free the slab object, we need to update the per-memcg
	 * vmstats to keep it correct for the root memcg.
	 */
	if (!memcg) {
722 723
		__mod_node_page_state(pgdat, idx, val);
	} else {
724
		lruvec = mem_cgroup_lruvec(memcg, pgdat);
725 726 727 728 729
		__mod_lruvec_state(lruvec, idx, val);
	}
	rcu_read_unlock();
}

730 731 732 733
/*
 * mod_objcg_mlstate() may be called with irq enabled, so
 * mod_memcg_lruvec_state() should be used.
 */
734 735 736
static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
				     struct pglist_data *pgdat,
				     enum node_stat_item idx, int nr)
737 738 739 740 741 742 743
{
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;

	rcu_read_lock();
	memcg = obj_cgroup_memcg(objcg);
	lruvec = mem_cgroup_lruvec(memcg, pgdat);
744
	mod_memcg_lruvec_state(lruvec, idx, nr);
745 746 747
	rcu_read_unlock();
}

748 749 750 751
/**
 * __count_memcg_events - account VM events in a cgroup
 * @memcg: the memory cgroup
 * @idx: the event item
I
Ingo Molnar 已提交
752
 * @count: the number of events that occurred
753 754 755 756 757 758 759
 */
void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
			  unsigned long count)
{
	if (mem_cgroup_disabled())
		return;

760 761
	__this_cpu_add(memcg->vmstats_percpu->events[idx], count);
	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
762 763
}

764
static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
765
{
766
	return READ_ONCE(memcg->vmstats.events[event]);
767 768
}

769 770
static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
{
771 772 773 774
	long x = 0;
	int cpu;

	for_each_possible_cpu(cpu)
775
		x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
776
	return x;
777 778
}

779
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
780
					 int nr_pages)
781
{
782 783
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
784
		__count_memcg_events(memcg, PGPGIN, 1);
785
	else {
786
		__count_memcg_events(memcg, PGPGOUT, 1);
787 788
		nr_pages = -nr_pages; /* for event */
	}
789

790
	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
791 792
}

793 794
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
795 796 797
{
	unsigned long val, next;

798 799
	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
800
	/* from time_after() in jiffies.h */
801
	if ((long)(next - val) < 0) {
802 803 804 805
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
806 807 808
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
809 810 811
		default:
			break;
		}
812
		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
813
		return true;
814
	}
815
	return false;
816 817 818 819 820 821
}

/*
 * Check events in order.
 *
 */
822
static void memcg_check_events(struct mem_cgroup *memcg, int nid)
823 824
{
	/* threshold event is triggered in finer grain than soft limit */
825 826
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
827
		bool do_softlimit;
828

829 830
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
831
		mem_cgroup_threshold(memcg);
832
		if (unlikely(do_softlimit))
833
			mem_cgroup_update_tree(memcg, nid);
834
	}
835 836
}

837
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
838
{
839 840 841 842 843 844 845 846
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

847
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
848
}
M
Michal Hocko 已提交
849
EXPORT_SYMBOL(mem_cgroup_from_task);
850

851 852
static __always_inline struct mem_cgroup *active_memcg(void)
{
853
	if (!in_task())
854 855 856 857 858
		return this_cpu_read(int_active_memcg);
	else
		return current->active_memcg;
}

859 860 861 862
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
863 864 865 866 867 868
 * Obtain a reference on mm->memcg and returns it if successful. If mm
 * is NULL, then the memcg is chosen as follows:
 * 1) The active memcg, if set.
 * 2) current->mm->memcg, if available
 * 3) root memcg
 * If mem_cgroup is disabled, NULL is returned.
869 870
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
871
{
872 873 874 875
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
876

877 878 879 880 881 882 883 884 885
	/*
	 * Page cache insertions can happen without an
	 * actual mm context, e.g. during disk probing
	 * on boot, loopback IO, acct() writes etc.
	 *
	 * No need to css_get on root memcg as the reference
	 * counting is disabled on the root level in the
	 * cgroup core. See CSS_NO_REF.
	 */
886 887 888 889 890 891 892 893 894 895 896
	if (unlikely(!mm)) {
		memcg = active_memcg();
		if (unlikely(memcg)) {
			/* remote memcg must hold a ref */
			css_get(&memcg->css);
			return memcg;
		}
		mm = current->mm;
		if (unlikely(!mm))
			return root_mem_cgroup;
	}
897

898 899
	rcu_read_lock();
	do {
900 901
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
902
			memcg = root_mem_cgroup;
903
	} while (!css_tryget(&memcg->css));
904
	rcu_read_unlock();
905
	return memcg;
906
}
907 908
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

909 910 911 912 913 914 915
static __always_inline bool memcg_kmem_bypass(void)
{
	/* Allow remote memcg charging from any context. */
	if (unlikely(active_memcg()))
		return false;

	/* Memcg to charge can't be determined. */
916
	if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
917 918 919 920 921
		return true;

	return false;
}

922 923 924 925 926 927 928 929 930 931 932 933 934
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
935 936 937
 * Reclaimers can specify a node in @reclaim to divide up the memcgs
 * in the hierarchy among all concurrent reclaimers operating on the
 * same node.
938
 */
939
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
940
				   struct mem_cgroup *prev,
941
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
942
{
943
	struct mem_cgroup_reclaim_iter *iter;
944
	struct cgroup_subsys_state *css = NULL;
945
	struct mem_cgroup *memcg = NULL;
946
	struct mem_cgroup *pos = NULL;
947

948 949
	if (mem_cgroup_disabled())
		return NULL;
950

951 952
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
953

954
	if (prev && !reclaim)
955
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
956

957
	rcu_read_lock();
M
Michal Hocko 已提交
958

959
	if (reclaim) {
960
		struct mem_cgroup_per_node *mz;
961

962
		mz = root->nodeinfo[reclaim->pgdat->node_id];
963
		iter = &mz->iter;
964 965 966 967

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

968
		while (1) {
969
			pos = READ_ONCE(iter->position);
970 971
			if (!pos || css_tryget(&pos->css))
				break;
972
			/*
973 974 975 976 977 978
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
979
			 */
980 981
			(void)cmpxchg(&iter->position, pos, NULL);
		}
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
999
		}
K
KAMEZAWA Hiroyuki 已提交
1000

1001 1002 1003 1004 1005 1006
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1007

1008 1009
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1010

1011 1012
		if (css_tryget(css))
			break;
1013

1014
		memcg = NULL;
1015
	}
1016 1017 1018

	if (reclaim) {
		/*
1019 1020 1021
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
1022
		 */
1023 1024
		(void)cmpxchg(&iter->position, pos, memcg);

1025 1026 1027 1028 1029 1030 1031
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1032
	}
1033

1034 1035
out_unlock:
	rcu_read_unlock();
1036 1037 1038
	if (prev && prev != root)
		css_put(&prev->css);

1039
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1040
}
K
KAMEZAWA Hiroyuki 已提交
1041

1042 1043 1044 1045 1046 1047 1048
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1049 1050 1051 1052 1053 1054
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1055

1056 1057
static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
					struct mem_cgroup *dead_memcg)
1058 1059
{
	struct mem_cgroup_reclaim_iter *iter;
1060 1061
	struct mem_cgroup_per_node *mz;
	int nid;
1062

1063
	for_each_node(nid) {
1064
		mz = from->nodeinfo[nid];
1065 1066
		iter = &mz->iter;
		cmpxchg(&iter->position, dead_memcg, NULL);
1067 1068 1069
	}
}

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup *last;

	do {
		__invalidate_reclaim_iterators(memcg, dead_memcg);
		last = memcg;
	} while ((memcg = parent_mem_cgroup(memcg)));

	/*
	 * When cgruop1 non-hierarchy mode is used,
	 * parent_mem_cgroup() does not walk all the way up to the
	 * cgroup root (root_mem_cgroup). So we have to handle
	 * dead_memcg from cgroup root separately.
	 */
	if (last != root_mem_cgroup)
		__invalidate_reclaim_iterators(root_mem_cgroup,
						dead_memcg);
}

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

1116
		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
#ifdef CONFIG_DEBUG_VM
void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
{
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return;

	memcg = page_memcg(page);

	if (!memcg)
		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
	else
		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
}
#endif

/**
 * lock_page_lruvec - lock and return lruvec for a given page.
 * @page: the page
 *
1149 1150 1151 1152 1153
 * These functions are safe to use under any of the following conditions:
 * - page locked
 * - PageLRU cleared
 * - lock_page_memcg()
 * - page->_refcount is zero
1154 1155 1156
 */
struct lruvec *lock_page_lruvec(struct page *page)
{
1157
	struct folio *folio = page_folio(page);
1158 1159
	struct lruvec *lruvec;

1160
	lruvec = folio_lruvec(folio);
1161 1162 1163 1164 1165 1166 1167 1168 1169
	spin_lock(&lruvec->lru_lock);

	lruvec_memcg_debug(lruvec, page);

	return lruvec;
}

struct lruvec *lock_page_lruvec_irq(struct page *page)
{
1170
	struct folio *folio = page_folio(page);
1171 1172
	struct lruvec *lruvec;

1173
	lruvec = folio_lruvec(folio);
1174 1175 1176 1177 1178 1179 1180 1181 1182
	spin_lock_irq(&lruvec->lru_lock);

	lruvec_memcg_debug(lruvec, page);

	return lruvec;
}

struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
{
1183
	struct folio *folio = page_folio(page);
1184 1185
	struct lruvec *lruvec;

1186
	lruvec = folio_lruvec(folio);
1187 1188 1189 1190 1191 1192 1193
	spin_lock_irqsave(&lruvec->lru_lock, *flags);

	lruvec_memcg_debug(lruvec, page);

	return lruvec;
}

1194
/**
1195 1196 1197
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1198
 * @zid: zone id of the accounted pages
1199
 * @nr_pages: positive when adding or negative when removing
1200
 *
1201 1202 1203
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1204
 */
1205
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1206
				int zid, int nr_pages)
1207
{
1208
	struct mem_cgroup_per_node *mz;
1209
	unsigned long *lru_size;
1210
	long size;
1211 1212 1213 1214

	if (mem_cgroup_disabled())
		return;

1215
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1216
	lru_size = &mz->lru_zone_size[zid][lru];
1217 1218 1219 1220 1221

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1222 1223 1224
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1225 1226 1227 1228 1229 1230
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1231
}
1232

1233
/**
1234
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1235
 * @memcg: the memory cgroup
1236
 *
1237
 * Returns the maximum amount of memory @mem can be charged with, in
1238
 * pages.
1239
 */
1240
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1241
{
1242 1243 1244
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1245

1246
	count = page_counter_read(&memcg->memory);
1247
	limit = READ_ONCE(memcg->memory.max);
1248 1249 1250
	if (count < limit)
		margin = limit - count;

1251
	if (do_memsw_account()) {
1252
		count = page_counter_read(&memcg->memsw);
1253
		limit = READ_ONCE(memcg->memsw.max);
1254
		if (count < limit)
1255
			margin = min(margin, limit - count);
1256 1257
		else
			margin = 0;
1258 1259 1260
	}

	return margin;
1261 1262
}

1263
/*
Q
Qiang Huang 已提交
1264
 * A routine for checking "mem" is under move_account() or not.
1265
 *
Q
Qiang Huang 已提交
1266 1267 1268
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1269
 */
1270
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1271
{
1272 1273
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1274
	bool ret = false;
1275 1276 1277 1278 1279 1280 1281 1282 1283
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1284

1285 1286
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1287 1288
unlock:
	spin_unlock(&mc.lock);
1289 1290 1291
	return ret;
}

1292
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1293 1294
{
	if (mc.moving_task && current != mc.moving_task) {
1295
		if (mem_cgroup_under_move(memcg)) {
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1308 1309 1310 1311 1312
struct memory_stat {
	const char *name;
	unsigned int idx;
};

1313
static const struct memory_stat memory_stats[] = {
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
	{ "anon",			NR_ANON_MAPPED			},
	{ "file",			NR_FILE_PAGES			},
	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
	{ "pagetables",			NR_PAGETABLE			},
	{ "percpu",			MEMCG_PERCPU_B			},
	{ "sock",			MEMCG_SOCK			},
	{ "shmem",			NR_SHMEM			},
	{ "file_mapped",		NR_FILE_MAPPED			},
	{ "file_dirty",			NR_FILE_DIRTY			},
	{ "file_writeback",		NR_WRITEBACK			},
1324 1325 1326
#ifdef CONFIG_SWAP
	{ "swapcached",			NR_SWAPCACHE			},
#endif
1327
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1328 1329 1330
	{ "anon_thp",			NR_ANON_THPS			},
	{ "file_thp",			NR_FILE_THPS			},
	{ "shmem_thp",			NR_SHMEM_THPS			},
1331
#endif
1332 1333 1334 1335 1336 1337 1338
	{ "inactive_anon",		NR_INACTIVE_ANON		},
	{ "active_anon",		NR_ACTIVE_ANON			},
	{ "inactive_file",		NR_INACTIVE_FILE		},
	{ "active_file",		NR_ACTIVE_FILE			},
	{ "unevictable",		NR_UNEVICTABLE			},
	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1339 1340

	/* The memory events */
1341 1342 1343 1344 1345 1346 1347
	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1348 1349
};

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
/* Translate stat items to the correct unit for memory.stat output */
static int memcg_page_state_unit(int item)
{
	switch (item) {
	case MEMCG_PERCPU_B:
	case NR_SLAB_RECLAIMABLE_B:
	case NR_SLAB_UNRECLAIMABLE_B:
	case WORKINGSET_REFAULT_ANON:
	case WORKINGSET_REFAULT_FILE:
	case WORKINGSET_ACTIVATE_ANON:
	case WORKINGSET_ACTIVATE_FILE:
	case WORKINGSET_RESTORE_ANON:
	case WORKINGSET_RESTORE_FILE:
	case WORKINGSET_NODERECLAIM:
		return 1;
	case NR_KERNEL_STACK_KB:
		return SZ_1K;
	default:
		return PAGE_SIZE;
	}
}

static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
						    int item)
{
	return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
}

1378 1379 1380 1381
static char *memory_stat_format(struct mem_cgroup *memcg)
{
	struct seq_buf s;
	int i;
1382

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
	if (!s.buffer)
		return NULL;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */
1397
	cgroup_rstat_flush(memcg->css.cgroup);
1398

1399 1400
	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
		u64 size;
1401

1402
		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1403
		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1404

1405
		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1406 1407
			size += memcg_page_state_output(memcg,
							NR_SLAB_RECLAIMABLE_B);
1408 1409 1410
			seq_buf_printf(&s, "slab %llu\n", size);
		}
	}
1411 1412 1413

	/* Accumulated memory events */

1414 1415 1416 1417 1418 1419
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
		       memcg_events(memcg, PGFAULT));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
		       memcg_events(memcg, PGMAJFAULT));
	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
		       memcg_events(memcg, PGREFILL));
1420 1421 1422 1423 1424 1425
	seq_buf_printf(&s, "pgscan %lu\n",
		       memcg_events(memcg, PGSCAN_KSWAPD) +
		       memcg_events(memcg, PGSCAN_DIRECT));
	seq_buf_printf(&s, "pgsteal %lu\n",
		       memcg_events(memcg, PGSTEAL_KSWAPD) +
		       memcg_events(memcg, PGSTEAL_DIRECT));
1426 1427 1428 1429 1430 1431 1432 1433
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
		       memcg_events(memcg, PGACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
		       memcg_events(memcg, PGDEACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
		       memcg_events(memcg, PGLAZYFREE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
		       memcg_events(memcg, PGLAZYFREED));
1434 1435

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1436
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1437
		       memcg_events(memcg, THP_FAULT_ALLOC));
1438
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1439 1440 1441 1442 1443 1444 1445 1446
		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

	/* The above should easily fit into one page */
	WARN_ON_ONCE(seq_buf_has_overflowed(&s));

	return s.buffer;
}
1447

1448
#define K(x) ((x) << (PAGE_SHIFT-10))
1449
/**
1450 1451
 * mem_cgroup_print_oom_context: Print OOM information relevant to
 * memory controller.
1452 1453 1454 1455 1456 1457
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
1458
void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1459 1460 1461
{
	rcu_read_lock();

1462 1463 1464 1465 1466
	if (memcg) {
		pr_cont(",oom_memcg=");
		pr_cont_cgroup_path(memcg->css.cgroup);
	} else
		pr_cont(",global_oom");
1467
	if (p) {
1468
		pr_cont(",task_memcg=");
1469 1470
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	}
1471
	rcu_read_unlock();
1472 1473 1474 1475 1476 1477 1478 1479 1480
}

/**
 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
 * memory controller.
 * @memcg: The memory cgroup that went over limit
 */
void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
1481
	char *buf;
1482

1483 1484
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1485
		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1486 1487 1488
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->swap)),
1489
			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1490 1491 1492 1493 1494 1495 1496
	else {
		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->memsw)),
			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->kmem)),
			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1497
	}
1498 1499 1500 1501 1502 1503 1504 1505 1506

	pr_info("Memory cgroup stats for ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(":");
	buf = memory_stat_format(memcg);
	if (!buf)
		return;
	pr_info("%s", buf);
	kfree(buf);
1507 1508
}

D
David Rientjes 已提交
1509 1510 1511
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1512
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1513
{
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
	unsigned long max = READ_ONCE(memcg->memory.max);

	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
		if (mem_cgroup_swappiness(memcg))
			max += min(READ_ONCE(memcg->swap.max),
				   (unsigned long)total_swap_pages);
	} else { /* v1 */
		if (mem_cgroup_swappiness(memcg)) {
			/* Calculate swap excess capacity from memsw limit */
			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;

			max += min(swap, (unsigned long)total_swap_pages);
		}
1527
	}
1528
	return max;
D
David Rientjes 已提交
1529 1530
}

1531 1532 1533 1534 1535
unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
{
	return page_counter_read(&memcg->memory);
}

1536
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1537
				     int order)
1538
{
1539 1540 1541
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1542
		.memcg = memcg,
1543 1544 1545
		.gfp_mask = gfp_mask,
		.order = order,
	};
1546
	bool ret = true;
1547

1548 1549
	if (mutex_lock_killable(&oom_lock))
		return true;
1550 1551 1552 1553

	if (mem_cgroup_margin(memcg) >= (1 << order))
		goto unlock;

1554 1555 1556 1557 1558
	/*
	 * A few threads which were not waiting at mutex_lock_killable() can
	 * fail to bail out. Therefore, check again after holding oom_lock.
	 */
	ret = should_force_charge() || out_of_memory(&oc);
1559 1560

unlock:
1561
	mutex_unlock(&oom_lock);
1562
	return ret;
1563 1564
}

1565
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1566
				   pg_data_t *pgdat,
1567 1568 1569 1570 1571 1572 1573 1574 1575
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1576
		.pgdat = pgdat,
1577 1578
	};

1579
	excess = soft_limit_excess(root_memcg);
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1605
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1606
					pgdat, &nr_scanned);
1607
		*total_scanned += nr_scanned;
1608
		if (!soft_limit_excess(root_memcg))
1609
			break;
1610
	}
1611 1612
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1613 1614
}

1615 1616 1617 1618 1619 1620
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1621 1622
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1623 1624 1625 1626
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1627
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1628
{
1629
	struct mem_cgroup *iter, *failed = NULL;
1630

1631 1632
	spin_lock(&memcg_oom_lock);

1633
	for_each_mem_cgroup_tree(iter, memcg) {
1634
		if (iter->oom_lock) {
1635 1636 1637 1638 1639
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1640 1641
			mem_cgroup_iter_break(memcg, iter);
			break;
1642 1643
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1644
	}
K
KAMEZAWA Hiroyuki 已提交
1645

1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1657
		}
1658 1659
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1660 1661 1662 1663

	spin_unlock(&memcg_oom_lock);

	return !failed;
1664
}
1665

1666
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1667
{
K
KAMEZAWA Hiroyuki 已提交
1668 1669
	struct mem_cgroup *iter;

1670
	spin_lock(&memcg_oom_lock);
1671
	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1672
	for_each_mem_cgroup_tree(iter, memcg)
1673
		iter->oom_lock = false;
1674
	spin_unlock(&memcg_oom_lock);
1675 1676
}

1677
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1678 1679 1680
{
	struct mem_cgroup *iter;

1681
	spin_lock(&memcg_oom_lock);
1682
	for_each_mem_cgroup_tree(iter, memcg)
1683 1684
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1685 1686
}

1687
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1688 1689 1690
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1691
	/*
I
Ingo Molnar 已提交
1692
	 * Be careful about under_oom underflows because a child memcg
1693
	 * could have been added after mem_cgroup_mark_under_oom.
K
KAMEZAWA Hiroyuki 已提交
1694
	 */
1695
	spin_lock(&memcg_oom_lock);
1696
	for_each_mem_cgroup_tree(iter, memcg)
1697 1698 1699
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1700 1701
}

K
KAMEZAWA Hiroyuki 已提交
1702 1703
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1704
struct oom_wait_info {
1705
	struct mem_cgroup *memcg;
1706
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1707 1708
};

1709
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1710 1711
	unsigned mode, int sync, void *arg)
{
1712 1713
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1714 1715 1716
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1717
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1718

1719 1720
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1721 1722 1723 1724
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1725
static void memcg_oom_recover(struct mem_cgroup *memcg)
1726
{
1727 1728 1729 1730 1731 1732 1733 1734 1735
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1736
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1737 1738
}

1739 1740 1741 1742 1743 1744 1745 1746
enum oom_status {
	OOM_SUCCESS,
	OOM_FAILED,
	OOM_ASYNC,
	OOM_SKIPPED
};

static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1747
{
1748 1749 1750
	enum oom_status ret;
	bool locked;

1751 1752 1753
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		return OOM_SKIPPED;

1754 1755
	memcg_memory_event(memcg, MEMCG_OOM);

K
KAMEZAWA Hiroyuki 已提交
1756
	/*
1757 1758 1759 1760
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1761 1762 1763 1764
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1765
	 *
1766 1767 1768 1769 1770 1771 1772
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
K
KAMEZAWA Hiroyuki 已提交
1773
	 */
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
	if (memcg->oom_kill_disable) {
		if (!current->in_user_fault)
			return OOM_SKIPPED;
		css_get(&memcg->css);
		current->memcg_in_oom = memcg;
		current->memcg_oom_gfp_mask = mask;
		current->memcg_oom_order = order;

		return OOM_ASYNC;
	}

1785 1786 1787 1788 1789 1790 1791 1792
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	mem_cgroup_unmark_under_oom(memcg);
1793
	if (mem_cgroup_out_of_memory(memcg, mask, order))
1794 1795 1796 1797 1798 1799
		ret = OOM_SUCCESS;
	else
		ret = OOM_FAILED;

	if (locked)
		mem_cgroup_oom_unlock(memcg);
1800

1801
	return ret;
1802 1803 1804 1805
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1806
 * @handle: actually kill/wait or just clean up the OOM state
1807
 *
1808 1809
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1810
 *
1811
 * Memcg supports userspace OOM handling where failed allocations must
1812 1813 1814 1815
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1816
 * the end of the page fault to complete the OOM handling.
1817 1818
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1819
 * completed, %false otherwise.
1820
 */
1821
bool mem_cgroup_oom_synchronize(bool handle)
1822
{
T
Tejun Heo 已提交
1823
	struct mem_cgroup *memcg = current->memcg_in_oom;
1824
	struct oom_wait_info owait;
1825
	bool locked;
1826 1827 1828

	/* OOM is global, do not handle */
	if (!memcg)
1829
		return false;
1830

1831
	if (!handle)
1832
		goto cleanup;
1833 1834 1835 1836 1837

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
1838
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
1839

1840
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1851 1852
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1853
	} else {
1854
		schedule();
1855 1856 1857 1858 1859
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1860 1861 1862 1863
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
I
Ingo Molnar 已提交
1864
		 * uncharges.  Wake any sleepers explicitly.
1865 1866 1867
		 */
		memcg_oom_recover(memcg);
	}
1868
cleanup:
T
Tejun Heo 已提交
1869
	current->memcg_in_oom = NULL;
1870
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1871
	return true;
1872 1873
}

1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
/**
 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 * @victim: task to be killed by the OOM killer
 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 *
 * Returns a pointer to a memory cgroup, which has to be cleaned up
 * by killing all belonging OOM-killable tasks.
 *
 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 */
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
					    struct mem_cgroup *oom_domain)
{
	struct mem_cgroup *oom_group = NULL;
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return NULL;

	if (!oom_domain)
		oom_domain = root_mem_cgroup;

	rcu_read_lock();

	memcg = mem_cgroup_from_task(victim);
	if (memcg == root_mem_cgroup)
		goto out;

1902 1903 1904 1905 1906 1907 1908 1909
	/*
	 * If the victim task has been asynchronously moved to a different
	 * memory cgroup, we might end up killing tasks outside oom_domain.
	 * In this case it's better to ignore memory.group.oom.
	 */
	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
		goto out;

1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
	/*
	 * Traverse the memory cgroup hierarchy from the victim task's
	 * cgroup up to the OOMing cgroup (or root) to find the
	 * highest-level memory cgroup with oom.group set.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		if (memcg->oom_group)
			oom_group = memcg;

		if (memcg == oom_domain)
			break;
	}

	if (oom_group)
		css_get(&oom_group->css);
out:
	rcu_read_unlock();

	return oom_group;
}

void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
	pr_info("Tasks in ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(" are going to be killed due to memory.oom.group set\n");
}

1938
/**
1939 1940
 * folio_memcg_lock - Bind a folio to its memcg.
 * @folio: The folio.
1941
 *
1942
 * This function prevents unlocked LRU folios from being moved to
1943 1944
 * another cgroup.
 *
1945 1946
 * It ensures lifetime of the bound memcg.  The caller is responsible
 * for the lifetime of the folio.
1947
 */
1948
void folio_memcg_lock(struct folio *folio)
1949 1950
{
	struct mem_cgroup *memcg;
1951
	unsigned long flags;
1952

1953 1954 1955 1956
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
1957
         */
1958 1959 1960
	rcu_read_lock();

	if (mem_cgroup_disabled())
1961
		return;
1962
again:
1963
	memcg = folio_memcg(folio);
1964
	if (unlikely(!memcg))
1965
		return;
1966

1967 1968 1969 1970 1971 1972
#ifdef CONFIG_PROVE_LOCKING
	local_irq_save(flags);
	might_lock(&memcg->move_lock);
	local_irq_restore(flags);
#endif

Q
Qiang Huang 已提交
1973
	if (atomic_read(&memcg->moving_account) <= 0)
1974
		return;
1975

1976
	spin_lock_irqsave(&memcg->move_lock, flags);
1977
	if (memcg != folio_memcg(folio)) {
1978
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1979 1980
		goto again;
	}
1981 1982

	/*
1983 1984 1985 1986
	 * When charge migration first begins, we can have multiple
	 * critical sections holding the fast-path RCU lock and one
	 * holding the slowpath move_lock. Track the task who has the
	 * move_lock for unlock_page_memcg().
1987 1988 1989
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1990
}
1991 1992 1993 1994 1995 1996
EXPORT_SYMBOL(folio_memcg_lock);

void lock_page_memcg(struct page *page)
{
	folio_memcg_lock(page_folio(page));
}
1997
EXPORT_SYMBOL(lock_page_memcg);
1998

1999
static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2000
{
2001 2002 2003 2004 2005 2006 2007 2008
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2009

2010
	rcu_read_unlock();
2011
}
2012 2013

/**
2014 2015 2016 2017 2018 2019
 * folio_memcg_unlock - Release the binding between a folio and its memcg.
 * @folio: The folio.
 *
 * This releases the binding created by folio_memcg_lock().  This does
 * not change the accounting of this folio to its memcg, but it does
 * permit others to change it.
2020
 */
2021
void folio_memcg_unlock(struct folio *folio)
2022
{
2023 2024 2025
	__folio_memcg_unlock(folio_memcg(folio));
}
EXPORT_SYMBOL(folio_memcg_unlock);
2026

2027 2028 2029
void unlock_page_memcg(struct page *page)
{
	folio_memcg_unlock(page_folio(page));
2030
}
2031
EXPORT_SYMBOL(unlock_page_memcg);
2032

2033
struct obj_stock {
R
Roman Gushchin 已提交
2034 2035
#ifdef CONFIG_MEMCG_KMEM
	struct obj_cgroup *cached_objcg;
2036
	struct pglist_data *cached_pgdat;
R
Roman Gushchin 已提交
2037
	unsigned int nr_bytes;
2038 2039
	int nr_slab_reclaimable_b;
	int nr_slab_unreclaimable_b;
2040 2041
#else
	int dummy[0];
R
Roman Gushchin 已提交
2042
#endif
2043 2044 2045 2046 2047 2048 2049
};

struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
	unsigned int nr_pages;
	struct obj_stock task_obj;
	struct obj_stock irq_obj;
R
Roman Gushchin 已提交
2050

2051
	struct work_struct work;
2052
	unsigned long flags;
2053
#define FLUSHING_CACHED_CHARGE	0
2054 2055
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2056
static DEFINE_MUTEX(percpu_charge_mutex);
2057

R
Roman Gushchin 已提交
2058
#ifdef CONFIG_MEMCG_KMEM
2059
static void drain_obj_stock(struct obj_stock *stock);
R
Roman Gushchin 已提交
2060 2061 2062 2063
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg);

#else
2064
static inline void drain_obj_stock(struct obj_stock *stock)
R
Roman Gushchin 已提交
2065 2066 2067 2068 2069 2070 2071 2072 2073
{
}
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	return false;
}
#endif

2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
/*
 * Most kmem_cache_alloc() calls are from user context. The irq disable/enable
 * sequence used in this case to access content from object stock is slow.
 * To optimize for user context access, there are now two object stocks for
 * task context and interrupt context access respectively.
 *
 * The task context object stock can be accessed by disabling preemption only
 * which is cheap in non-preempt kernel. The interrupt context object stock
 * can only be accessed after disabling interrupt. User context code can
 * access interrupt object stock, but not vice versa.
 */
static inline struct obj_stock *get_obj_stock(unsigned long *pflags)
{
	struct memcg_stock_pcp *stock;

	if (likely(in_task())) {
		*pflags = 0UL;
		preempt_disable();
		stock = this_cpu_ptr(&memcg_stock);
		return &stock->task_obj;
	}

	local_irq_save(*pflags);
	stock = this_cpu_ptr(&memcg_stock);
	return &stock->irq_obj;
}

static inline void put_obj_stock(unsigned long flags)
{
	if (likely(in_task()))
		preempt_enable();
	else
		local_irq_restore(flags);
}

2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2119
 */
2120
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2121 2122
{
	struct memcg_stock_pcp *stock;
2123
	unsigned long flags;
2124
	bool ret = false;
2125

2126
	if (nr_pages > MEMCG_CHARGE_BATCH)
2127
		return ret;
2128

2129 2130 2131
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2132
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2133
		stock->nr_pages -= nr_pages;
2134 2135
		ret = true;
	}
2136 2137 2138

	local_irq_restore(flags);

2139 2140 2141 2142
	return ret;
}

/*
2143
 * Returns stocks cached in percpu and reset cached information.
2144 2145 2146 2147 2148
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2149 2150 2151
	if (!old)
		return;

2152
	if (stock->nr_pages) {
2153
		page_counter_uncharge(&old->memory, stock->nr_pages);
2154
		if (do_memsw_account())
2155
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2156
		stock->nr_pages = 0;
2157
	}
2158 2159

	css_put(&old->css);
2160 2161 2162 2163 2164
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
2165 2166 2167
	struct memcg_stock_pcp *stock;
	unsigned long flags;

2168
	/*
2169 2170 2171
	 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
	 * drain_stock races is that we always operate on local CPU stock
	 * here with IRQ disabled
2172
	 */
2173 2174 2175
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2176 2177 2178
	drain_obj_stock(&stock->irq_obj);
	if (in_task())
		drain_obj_stock(&stock->task_obj);
2179
	drain_stock(stock);
2180
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2181 2182

	local_irq_restore(flags);
2183 2184 2185
}

/*
2186
 * Cache charges(val) to local per_cpu area.
2187
 * This will be consumed by consume_stock() function, later.
2188
 */
2189
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2190
{
2191 2192 2193 2194
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
2195

2196
	stock = this_cpu_ptr(&memcg_stock);
2197
	if (stock->cached != memcg) { /* reset if necessary */
2198
		drain_stock(stock);
2199
		css_get(&memcg->css);
2200
		stock->cached = memcg;
2201
	}
2202
	stock->nr_pages += nr_pages;
2203

2204
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2205 2206
		drain_stock(stock);

2207
	local_irq_restore(flags);
2208 2209 2210
}

/*
2211
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2212
 * of the hierarchy under it.
2213
 */
2214
static void drain_all_stock(struct mem_cgroup *root_memcg)
2215
{
2216
	int cpu, curcpu;
2217

2218 2219 2220
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2221 2222 2223 2224 2225 2226
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
2227
	curcpu = get_cpu();
2228 2229
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2230
		struct mem_cgroup *memcg;
2231
		bool flush = false;
2232

2233
		rcu_read_lock();
2234
		memcg = stock->cached;
2235 2236 2237
		if (memcg && stock->nr_pages &&
		    mem_cgroup_is_descendant(memcg, root_memcg))
			flush = true;
2238
		else if (obj_stock_flush_required(stock, root_memcg))
R
Roman Gushchin 已提交
2239
			flush = true;
2240 2241 2242 2243
		rcu_read_unlock();

		if (flush &&
		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2244 2245 2246 2247 2248
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2249
	}
2250
	put_cpu();
2251
	mutex_unlock(&percpu_charge_mutex);
2252 2253
}

2254 2255 2256
static int memcg_hotplug_cpu_dead(unsigned int cpu)
{
	struct memcg_stock_pcp *stock;
2257

2258 2259
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
2260

2261
	return 0;
2262 2263
}

2264 2265 2266
static unsigned long reclaim_high(struct mem_cgroup *memcg,
				  unsigned int nr_pages,
				  gfp_t gfp_mask)
2267
{
2268 2269
	unsigned long nr_reclaimed = 0;

2270
	do {
2271 2272
		unsigned long pflags;

2273 2274
		if (page_counter_read(&memcg->memory) <=
		    READ_ONCE(memcg->memory.high))
2275
			continue;
2276

2277
		memcg_memory_event(memcg, MEMCG_HIGH);
2278 2279

		psi_memstall_enter(&pflags);
2280 2281
		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
							     gfp_mask, true);
2282
		psi_memstall_leave(&pflags);
2283 2284
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));
2285 2286

	return nr_reclaimed;
2287 2288 2289 2290 2291 2292 2293
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
2294
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2295 2296
}

2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
/*
 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
 * enough to still cause a significant slowdown in most cases, while still
 * allowing diagnostics and tracing to proceed without becoming stuck.
 */
#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)

/*
 * When calculating the delay, we use these either side of the exponentiation to
 * maintain precision and scale to a reasonable number of jiffies (see the table
 * below.
 *
 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
 *   overage ratio to a delay.
2311
 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
 *   to produce a reasonable delay curve.
 *
 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
 * reasonable delay curve compared to precision-adjusted overage, not
 * penalising heavily at first, but still making sure that growth beyond the
 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
 * example, with a high of 100 megabytes:
 *
 *  +-------+------------------------+
 *  | usage | time to allocate in ms |
 *  +-------+------------------------+
 *  | 100M  |                      0 |
 *  | 101M  |                      6 |
 *  | 102M  |                     25 |
 *  | 103M  |                     57 |
 *  | 104M  |                    102 |
 *  | 105M  |                    159 |
 *  | 106M  |                    230 |
 *  | 107M  |                    313 |
 *  | 108M  |                    409 |
 *  | 109M  |                    518 |
 *  | 110M  |                    639 |
 *  | 111M  |                    774 |
 *  | 112M  |                    921 |
 *  | 113M  |                   1081 |
 *  | 114M  |                   1254 |
 *  | 115M  |                   1439 |
 *  | 116M  |                   1638 |
 *  | 117M  |                   1849 |
 *  | 118M  |                   2000 |
 *  | 119M  |                   2000 |
 *  | 120M  |                   2000 |
 *  +-------+------------------------+
 */
 #define MEMCG_DELAY_PRECISION_SHIFT 20
 #define MEMCG_DELAY_SCALING_SHIFT 14

2350
static u64 calculate_overage(unsigned long usage, unsigned long high)
2351
{
2352
	u64 overage;
2353

2354 2355
	if (usage <= high)
		return 0;
2356

2357 2358 2359 2360 2361
	/*
	 * Prevent division by 0 in overage calculation by acting as if
	 * it was a threshold of 1 page
	 */
	high = max(high, 1UL);
2362

2363 2364 2365 2366
	overage = usage - high;
	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
	return div64_u64(overage, high);
}
2367

2368 2369 2370
static u64 mem_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;
2371

2372 2373
	do {
		overage = calculate_overage(page_counter_read(&memcg->memory),
2374
					    READ_ONCE(memcg->memory.high));
2375
		max_overage = max(overage, max_overage);
2376 2377 2378
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

2379 2380 2381
	return max_overage;
}

2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
static u64 swap_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;

	do {
		overage = calculate_overage(page_counter_read(&memcg->swap),
					    READ_ONCE(memcg->swap.high));
		if (overage)
			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
		max_overage = max(overage, max_overage);
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

	return max_overage;
}

2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
/*
 * Get the number of jiffies that we should penalise a mischievous cgroup which
 * is exceeding its memory.high by checking both it and its ancestors.
 */
static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
					  unsigned int nr_pages,
					  u64 max_overage)
{
	unsigned long penalty_jiffies;

2408 2409
	if (!max_overage)
		return 0;
2410 2411 2412 2413 2414 2415 2416 2417 2418

	/*
	 * We use overage compared to memory.high to calculate the number of
	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
	 * fairly lenient on small overages, and increasingly harsh when the
	 * memcg in question makes it clear that it has no intention of stopping
	 * its crazy behaviour, so we exponentially increase the delay based on
	 * overage amount.
	 */
2419 2420 2421
	penalty_jiffies = max_overage * max_overage * HZ;
	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2422 2423 2424 2425 2426 2427 2428 2429 2430

	/*
	 * Factor in the task's own contribution to the overage, such that four
	 * N-sized allocations are throttled approximately the same as one
	 * 4N-sized allocation.
	 *
	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
	 * larger the current charge patch is than that.
	 */
2431
	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
}

/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned long penalty_jiffies;
	unsigned long pflags;
2442
	unsigned long nr_reclaimed;
2443
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2444
	int nr_retries = MAX_RECLAIM_RETRIES;
2445
	struct mem_cgroup *memcg;
2446
	bool in_retry = false;
2447 2448 2449 2450 2451 2452 2453

	if (likely(!nr_pages))
		return;

	memcg = get_mem_cgroup_from_mm(current->mm);
	current->memcg_nr_pages_over_high = 0;

2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
retry_reclaim:
	/*
	 * The allocating task should reclaim at least the batch size, but for
	 * subsequent retries we only want to do what's necessary to prevent oom
	 * or breaching resource isolation.
	 *
	 * This is distinct from memory.max or page allocator behaviour because
	 * memory.high is currently batched, whereas memory.max and the page
	 * allocator run every time an allocation is made.
	 */
	nr_reclaimed = reclaim_high(memcg,
				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
				    GFP_KERNEL);

2468 2469 2470 2471
	/*
	 * memory.high is breached and reclaim is unable to keep up. Throttle
	 * allocators proactively to slow down excessive growth.
	 */
2472 2473
	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
					       mem_find_max_overage(memcg));
2474

2475 2476 2477
	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
						swap_find_max_overage(memcg));

2478 2479 2480 2481 2482 2483 2484
	/*
	 * Clamp the max delay per usermode return so as to still keep the
	 * application moving forwards and also permit diagnostics, albeit
	 * extremely slowly.
	 */
	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);

2485 2486 2487 2488 2489 2490 2491 2492 2493
	/*
	 * Don't sleep if the amount of jiffies this memcg owes us is so low
	 * that it's not even worth doing, in an attempt to be nice to those who
	 * go only a small amount over their memory.high value and maybe haven't
	 * been aggressively reclaimed enough yet.
	 */
	if (penalty_jiffies <= HZ / 100)
		goto out;

2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
	/*
	 * If reclaim is making forward progress but we're still over
	 * memory.high, we want to encourage that rather than doing allocator
	 * throttling.
	 */
	if (nr_reclaimed || nr_retries--) {
		in_retry = true;
		goto retry_reclaim;
	}

2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
	/*
	 * If we exit early, we're guaranteed to die (since
	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
	 * need to account for any ill-begotten jiffies to pay them off later.
	 */
	psi_memstall_enter(&pflags);
	schedule_timeout_killable(penalty_jiffies);
	psi_memstall_leave(&pflags);

out:
	css_put(&memcg->css);
2515 2516
}

2517 2518
static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
			unsigned int nr_pages)
2519
{
2520
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2521
	int nr_retries = MAX_RECLAIM_RETRIES;
2522
	struct mem_cgroup *mem_over_limit;
2523
	struct page_counter *counter;
2524
	enum oom_status oom_status;
2525
	unsigned long nr_reclaimed;
2526 2527
	bool may_swap = true;
	bool drained = false;
2528
	unsigned long pflags;
2529

2530
retry:
2531
	if (consume_stock(memcg, nr_pages))
2532
		return 0;
2533

2534
	if (!do_memsw_account() ||
2535 2536
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2537
			goto done_restock;
2538
		if (do_memsw_account())
2539 2540
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2541
	} else {
2542
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2543
		may_swap = false;
2544
	}
2545

2546 2547 2548 2549
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2550

2551 2552 2553 2554 2555 2556 2557 2558 2559
	/*
	 * Memcg doesn't have a dedicated reserve for atomic
	 * allocations. But like the global atomic pool, we need to
	 * put the burden of reclaim on regular allocation requests
	 * and let these go through as privileged allocations.
	 */
	if (gfp_mask & __GFP_ATOMIC)
		goto force;

2560 2561 2562 2563 2564 2565
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
2566
	if (unlikely(should_force_charge()))
2567
		goto force;
2568

2569 2570 2571 2572 2573 2574 2575 2576 2577
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2578 2579 2580
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2581
	if (!gfpflags_allow_blocking(gfp_mask))
2582
		goto nomem;
2583

2584
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2585

2586
	psi_memstall_enter(&pflags);
2587 2588
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2589
	psi_memstall_leave(&pflags);
2590

2591
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2592
		goto retry;
2593

2594
	if (!drained) {
2595
		drain_all_stock(mem_over_limit);
2596 2597 2598 2599
		drained = true;
		goto retry;
	}

2600 2601
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2602 2603 2604 2605 2606 2607 2608 2609 2610
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2611
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2612 2613 2614 2615 2616 2617 2618 2619
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2620 2621 2622
	if (nr_retries--)
		goto retry;

2623
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2624 2625
		goto nomem;

2626
	if (fatal_signal_pending(current))
2627
		goto force;
2628

2629 2630 2631 2632 2633 2634
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2635
		       get_order(nr_pages * PAGE_SIZE));
2636 2637
	switch (oom_status) {
	case OOM_SUCCESS:
2638
		nr_retries = MAX_RECLAIM_RETRIES;
2639 2640 2641 2642 2643 2644
		goto retry;
	case OOM_FAILED:
		goto force;
	default:
		goto nomem;
	}
2645
nomem:
2646
	if (!(gfp_mask & __GFP_NOFAIL))
2647
		return -ENOMEM;
2648 2649 2650 2651 2652 2653 2654
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2655
	if (do_memsw_account())
2656 2657 2658
		page_counter_charge(&memcg->memsw, nr_pages);

	return 0;
2659 2660 2661 2662

done_restock:
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2663

2664
	/*
2665 2666
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2667
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2668 2669 2670 2671
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2672 2673
	 */
	do {
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
		bool mem_high, swap_high;

		mem_high = page_counter_read(&memcg->memory) >
			READ_ONCE(memcg->memory.high);
		swap_high = page_counter_read(&memcg->swap) >
			READ_ONCE(memcg->swap.high);

		/* Don't bother a random interrupted task */
		if (in_interrupt()) {
			if (mem_high) {
2684 2685 2686
				schedule_work(&memcg->high_work);
				break;
			}
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
			continue;
		}

		if (mem_high || swap_high) {
			/*
			 * The allocating tasks in this cgroup will need to do
			 * reclaim or be throttled to prevent further growth
			 * of the memory or swap footprints.
			 *
			 * Target some best-effort fairness between the tasks,
			 * and distribute reclaim work and delay penalties
			 * based on how much each task is actually allocating.
			 */
V
Vladimir Davydov 已提交
2700
			current->memcg_nr_pages_over_high += batch;
2701 2702 2703
			set_notify_resume(current);
			break;
		}
2704
	} while ((memcg = parent_mem_cgroup(memcg)));
2705 2706

	return 0;
2707
}
2708

2709 2710 2711 2712 2713 2714 2715 2716 2717
static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
			     unsigned int nr_pages)
{
	if (mem_cgroup_is_root(memcg))
		return 0;

	return try_charge_memcg(memcg, gfp_mask, nr_pages);
}

2718
#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2719
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2720
{
2721 2722 2723
	if (mem_cgroup_is_root(memcg))
		return;

2724
	page_counter_uncharge(&memcg->memory, nr_pages);
2725
	if (do_memsw_account())
2726
		page_counter_uncharge(&memcg->memsw, nr_pages);
2727
}
2728
#endif
2729

2730
static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2731
{
2732
	VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2733
	/*
2734
	 * Any of the following ensures page's memcg stability:
2735
	 *
2736 2737 2738 2739
	 * - the page lock
	 * - LRU isolation
	 * - lock_page_memcg()
	 * - exclusive reference
2740
	 */
2741
	folio->memcg_data = (unsigned long)memcg;
2742
}
2743

2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
{
	struct mem_cgroup *memcg;

	rcu_read_lock();
retry:
	memcg = obj_cgroup_memcg(objcg);
	if (unlikely(!css_tryget(&memcg->css)))
		goto retry;
	rcu_read_unlock();

	return memcg;
}

2758
#ifdef CONFIG_MEMCG_KMEM
2759 2760 2761 2762 2763 2764 2765
/*
 * The allocated objcg pointers array is not accounted directly.
 * Moreover, it should not come from DMA buffer and is not readily
 * reclaimable. So those GFP bits should be masked off.
 */
#define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)

2766
int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2767
				 gfp_t gfp, bool new_page)
2768 2769
{
	unsigned int objects = objs_per_slab_page(s, page);
2770
	unsigned long memcg_data;
2771 2772
	void *vec;

2773
	gfp &= ~OBJCGS_CLEAR_MASK;
2774 2775 2776 2777 2778
	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
			   page_to_nid(page));
	if (!vec)
		return -ENOMEM;

2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
	if (new_page) {
		/*
		 * If the slab page is brand new and nobody can yet access
		 * it's memcg_data, no synchronization is required and
		 * memcg_data can be simply assigned.
		 */
		page->memcg_data = memcg_data;
	} else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
		/*
		 * If the slab page is already in use, somebody can allocate
		 * and assign obj_cgroups in parallel. In this case the existing
		 * objcg vector should be reused.
		 */
2793
		kfree(vec);
2794 2795
		return 0;
	}
2796

2797
	kmemleak_not_leak(vec);
2798 2799 2800
	return 0;
}

2801 2802 2803
/*
 * Returns a pointer to the memory cgroup to which the kernel object is charged.
 *
2804 2805 2806 2807 2808 2809
 * A passed kernel object can be a slab object or a generic kernel page, so
 * different mechanisms for getting the memory cgroup pointer should be used.
 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
 * can not know for sure how the kernel object is implemented.
 * mem_cgroup_from_obj() can be safely used in such cases.
 *
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
 * cgroup_mutex, etc.
 */
struct mem_cgroup *mem_cgroup_from_obj(void *p)
{
	struct page *page;

	if (mem_cgroup_disabled())
		return NULL;

	page = virt_to_head_page(p);

	/*
2823 2824 2825
	 * Slab objects are accounted individually, not per-page.
	 * Memcg membership data for each individual object is saved in
	 * the page->obj_cgroups.
2826
	 */
2827
	if (page_objcgs_check(page)) {
2828 2829 2830 2831
		struct obj_cgroup *objcg;
		unsigned int off;

		off = obj_to_index(page->slab_cache, page, p);
2832
		objcg = page_objcgs(page)[off];
2833 2834 2835 2836
		if (objcg)
			return obj_cgroup_memcg(objcg);

		return NULL;
2837
	}
2838

2839 2840 2841 2842 2843 2844 2845 2846
	/*
	 * page_memcg_check() is used here, because page_has_obj_cgroups()
	 * check above could fail because the object cgroups vector wasn't set
	 * at that moment, but it can be set concurrently.
	 * page_memcg_check(page) will guarantee that a proper memory
	 * cgroup pointer or NULL will be returned.
	 */
	return page_memcg_check(page);
2847 2848
}

R
Roman Gushchin 已提交
2849 2850 2851 2852 2853
__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
{
	struct obj_cgroup *objcg = NULL;
	struct mem_cgroup *memcg;

2854 2855 2856
	if (memcg_kmem_bypass())
		return NULL;

R
Roman Gushchin 已提交
2857
	rcu_read_lock();
2858 2859
	if (unlikely(active_memcg()))
		memcg = active_memcg();
R
Roman Gushchin 已提交
2860 2861 2862 2863 2864 2865 2866
	else
		memcg = mem_cgroup_from_task(current);

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		objcg = rcu_dereference(memcg->objcg);
		if (objcg && obj_cgroup_tryget(objcg))
			break;
2867
		objcg = NULL;
R
Roman Gushchin 已提交
2868 2869 2870 2871 2872 2873
	}
	rcu_read_unlock();

	return objcg;
}

2874
static int memcg_alloc_cache_id(void)
2875
{
2876 2877 2878
	int id, size;
	int err;

2879
	id = ida_simple_get(&memcg_cache_ida,
2880 2881 2882
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2883

2884
	if (id < memcg_nr_cache_ids)
2885 2886 2887 2888 2889 2890
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2891
	down_write(&memcg_cache_ids_sem);
2892 2893

	size = 2 * (id + 1);
2894 2895 2896 2897 2898
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2899
	err = memcg_update_all_list_lrus(size);
2900 2901 2902 2903 2904
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2905
	if (err) {
2906
		ida_simple_remove(&memcg_cache_ida, id);
2907 2908 2909 2910 2911 2912 2913
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2914
	ida_simple_remove(&memcg_cache_ida, id);
2915 2916
}

2917 2918 2919 2920 2921
/*
 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
 * @objcg: object cgroup to uncharge
 * @nr_pages: number of pages to uncharge
 */
2922 2923 2924 2925 2926 2927 2928
static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
				      unsigned int nr_pages)
{
	struct mem_cgroup *memcg;

	memcg = get_mem_cgroup_from_objcg(objcg);

2929 2930 2931
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);
	refill_stock(memcg, nr_pages);
2932 2933 2934 2935

	css_put(&memcg->css);
}

2936 2937 2938
/*
 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
 * @objcg: object cgroup to charge
2939
 * @gfp: reclaim mode
2940
 * @nr_pages: number of pages to charge
2941 2942 2943
 *
 * Returns 0 on success, an error code on failure.
 */
2944 2945
static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
				   unsigned int nr_pages)
2946
{
2947
	struct page_counter *counter;
2948
	struct mem_cgroup *memcg;
2949 2950
	int ret;

2951 2952
	memcg = get_mem_cgroup_from_objcg(objcg);

2953
	ret = try_charge_memcg(memcg, gfp, nr_pages);
2954
	if (ret)
2955
		goto out;
2956 2957 2958

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2959 2960 2961 2962 2963 2964 2965 2966

		/*
		 * Enforce __GFP_NOFAIL allocation because callers are not
		 * prepared to see failures and likely do not have any failure
		 * handling code.
		 */
		if (gfp & __GFP_NOFAIL) {
			page_counter_charge(&memcg->kmem, nr_pages);
2967
			goto out;
2968
		}
2969
		cancel_charge(memcg, nr_pages);
2970
		ret = -ENOMEM;
2971
	}
2972 2973
out:
	css_put(&memcg->css);
2974

2975
	return ret;
2976 2977
}

2978
/**
2979
 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2980 2981 2982 2983 2984 2985
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
2986
int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2987
{
2988
	struct obj_cgroup *objcg;
2989
	int ret = 0;
2990

2991 2992 2993
	objcg = get_obj_cgroup_from_current();
	if (objcg) {
		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
2994
		if (!ret) {
2995
			page->memcg_data = (unsigned long)objcg |
2996
				MEMCG_DATA_KMEM;
2997
			return 0;
2998
		}
2999
		obj_cgroup_put(objcg);
3000
	}
3001
	return ret;
3002
}
3003

3004
/**
3005
 * __memcg_kmem_uncharge_page: uncharge a kmem page
3006 3007 3008
 * @page: page to uncharge
 * @order: allocation order
 */
3009
void __memcg_kmem_uncharge_page(struct page *page, int order)
3010
{
3011
	struct folio *folio = page_folio(page);
3012
	struct obj_cgroup *objcg;
3013
	unsigned int nr_pages = 1 << order;
3014

3015
	if (!folio_memcg_kmem(folio))
3016 3017
		return;

3018
	objcg = __folio_objcg(folio);
3019
	obj_cgroup_uncharge_pages(objcg, nr_pages);
3020
	folio->memcg_data = 0;
3021
	obj_cgroup_put(objcg);
3022
}
R
Roman Gushchin 已提交
3023

3024 3025 3026 3027
void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
		     enum node_stat_item idx, int nr)
{
	unsigned long flags;
3028
	struct obj_stock *stock = get_obj_stock(&flags);
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
	int *bytes;

	/*
	 * Save vmstat data in stock and skip vmstat array update unless
	 * accumulating over a page of vmstat data or when pgdat or idx
	 * changes.
	 */
	if (stock->cached_objcg != objcg) {
		drain_obj_stock(stock);
		obj_cgroup_get(objcg);
		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
		stock->cached_objcg = objcg;
		stock->cached_pgdat = pgdat;
	} else if (stock->cached_pgdat != pgdat) {
		/* Flush the existing cached vmstat data */
3045 3046
		struct pglist_data *oldpg = stock->cached_pgdat;

3047
		if (stock->nr_slab_reclaimable_b) {
3048
			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3049 3050 3051 3052
					  stock->nr_slab_reclaimable_b);
			stock->nr_slab_reclaimable_b = 0;
		}
		if (stock->nr_slab_unreclaimable_b) {
3053
			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
					  stock->nr_slab_unreclaimable_b);
			stock->nr_slab_unreclaimable_b = 0;
		}
		stock->cached_pgdat = pgdat;
	}

	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
					       : &stock->nr_slab_unreclaimable_b;
	/*
	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
	 * cached locally at least once before pushing it out.
	 */
	if (!*bytes) {
		*bytes = nr;
		nr = 0;
	} else {
		*bytes += nr;
		if (abs(*bytes) > PAGE_SIZE) {
			nr = *bytes;
			*bytes = 0;
		} else {
			nr = 0;
		}
	}
	if (nr)
		mod_objcg_mlstate(objcg, pgdat, idx, nr);

3081
	put_obj_stock(flags);
3082 3083
}

R
Roman Gushchin 已提交
3084 3085 3086
static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
{
	unsigned long flags;
3087
	struct obj_stock *stock = get_obj_stock(&flags);
R
Roman Gushchin 已提交
3088 3089 3090 3091 3092 3093 3094
	bool ret = false;

	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
		stock->nr_bytes -= nr_bytes;
		ret = true;
	}

3095
	put_obj_stock(flags);
R
Roman Gushchin 已提交
3096 3097 3098 3099

	return ret;
}

3100
static void drain_obj_stock(struct obj_stock *stock)
R
Roman Gushchin 已提交
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
{
	struct obj_cgroup *old = stock->cached_objcg;

	if (!old)
		return;

	if (stock->nr_bytes) {
		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);

3111 3112
		if (nr_pages)
			obj_cgroup_uncharge_pages(old, nr_pages);
R
Roman Gushchin 已提交
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127

		/*
		 * The leftover is flushed to the centralized per-memcg value.
		 * On the next attempt to refill obj stock it will be moved
		 * to a per-cpu stock (probably, on an other CPU), see
		 * refill_obj_stock().
		 *
		 * How often it's flushed is a trade-off between the memory
		 * limit enforcement accuracy and potential CPU contention,
		 * so it might be changed in the future.
		 */
		atomic_add(nr_bytes, &old->nr_charged_bytes);
		stock->nr_bytes = 0;
	}

3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
	/*
	 * Flush the vmstat data in current stock
	 */
	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
		if (stock->nr_slab_reclaimable_b) {
			mod_objcg_mlstate(old, stock->cached_pgdat,
					  NR_SLAB_RECLAIMABLE_B,
					  stock->nr_slab_reclaimable_b);
			stock->nr_slab_reclaimable_b = 0;
		}
		if (stock->nr_slab_unreclaimable_b) {
			mod_objcg_mlstate(old, stock->cached_pgdat,
					  NR_SLAB_UNRECLAIMABLE_B,
					  stock->nr_slab_unreclaimable_b);
			stock->nr_slab_unreclaimable_b = 0;
		}
		stock->cached_pgdat = NULL;
	}

R
Roman Gushchin 已提交
3147 3148 3149 3150 3151 3152 3153 3154 3155
	obj_cgroup_put(old);
	stock->cached_objcg = NULL;
}

static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	struct mem_cgroup *memcg;

3156 3157 3158 3159 3160 3161 3162
	if (in_task() && stock->task_obj.cached_objcg) {
		memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg);
		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
			return true;
	}
	if (stock->irq_obj.cached_objcg) {
		memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg);
R
Roman Gushchin 已提交
3163 3164 3165 3166 3167 3168 3169
		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
			return true;
	}

	return false;
}

3170 3171
static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
			     bool allow_uncharge)
R
Roman Gushchin 已提交
3172 3173
{
	unsigned long flags;
3174
	struct obj_stock *stock = get_obj_stock(&flags);
3175
	unsigned int nr_pages = 0;
R
Roman Gushchin 已提交
3176 3177 3178 3179 3180

	if (stock->cached_objcg != objcg) { /* reset if necessary */
		drain_obj_stock(stock);
		obj_cgroup_get(objcg);
		stock->cached_objcg = objcg;
3181 3182 3183
		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
		allow_uncharge = true;	/* Allow uncharge when objcg changes */
R
Roman Gushchin 已提交
3184 3185 3186
	}
	stock->nr_bytes += nr_bytes;

3187 3188 3189 3190
	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
		stock->nr_bytes &= (PAGE_SIZE - 1);
	}
R
Roman Gushchin 已提交
3191

3192
	put_obj_stock(flags);
3193 3194 3195

	if (nr_pages)
		obj_cgroup_uncharge_pages(objcg, nr_pages);
R
Roman Gushchin 已提交
3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
}

int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
{
	unsigned int nr_pages, nr_bytes;
	int ret;

	if (consume_obj_stock(objcg, size))
		return 0;

	/*
3207
	 * In theory, objcg->nr_charged_bytes can have enough
R
Roman Gushchin 已提交
3208
	 * pre-charged bytes to satisfy the allocation. However,
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
	 * flushing objcg->nr_charged_bytes requires two atomic
	 * operations, and objcg->nr_charged_bytes can't be big.
	 * The shared objcg->nr_charged_bytes can also become a
	 * performance bottleneck if all tasks of the same memcg are
	 * trying to update it. So it's better to ignore it and try
	 * grab some new pages. The stock's nr_bytes will be flushed to
	 * objcg->nr_charged_bytes later on when objcg changes.
	 *
	 * The stock's nr_bytes may contain enough pre-charged bytes
	 * to allow one less page from being charged, but we can't rely
	 * on the pre-charged bytes not being changed outside of
	 * consume_obj_stock() or refill_obj_stock(). So ignore those
	 * pre-charged bytes as well when charging pages. To avoid a
	 * page uncharge right after a page charge, we set the
	 * allow_uncharge flag to false when calling refill_obj_stock()
	 * to temporarily allow the pre-charged bytes to exceed the page
	 * size limit. The maximum reachable value of the pre-charged
	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
	 * race.
R
Roman Gushchin 已提交
3228 3229 3230 3231 3232 3233 3234
	 */
	nr_pages = size >> PAGE_SHIFT;
	nr_bytes = size & (PAGE_SIZE - 1);

	if (nr_bytes)
		nr_pages += 1;

3235
	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
R
Roman Gushchin 已提交
3236
	if (!ret && nr_bytes)
3237
		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
R
Roman Gushchin 已提交
3238 3239 3240 3241 3242 3243

	return ret;
}

void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
{
3244
	refill_obj_stock(objcg, size, true);
R
Roman Gushchin 已提交
3245 3246
}

3247
#endif /* CONFIG_MEMCG_KMEM */
3248

3249
/*
3250
 * Because page_memcg(head) is not set on tails, set it now.
3251
 */
3252
void split_page_memcg(struct page *head, unsigned int nr)
3253
{
3254 3255
	struct folio *folio = page_folio(head);
	struct mem_cgroup *memcg = folio_memcg(folio);
3256
	int i;
3257

3258
	if (mem_cgroup_disabled() || !memcg)
3259
		return;
3260

3261
	for (i = 1; i < nr; i++)
3262
		folio_page(folio, i)->memcg_data = folio->memcg_data;
3263

3264 3265
	if (folio_memcg_kmem(folio))
		obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3266 3267
	else
		css_get_many(&memcg->css, nr - 1);
3268 3269
}

A
Andrew Morton 已提交
3270
#ifdef CONFIG_MEMCG_SWAP
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
3282
 * The caller must have charged to @to, IOW, called page_counter_charge() about
3283 3284 3285
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3286
				struct mem_cgroup *from, struct mem_cgroup *to)
3287 3288 3289
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
3290 3291
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3292 3293

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3294 3295
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
3296 3297 3298 3299 3300 3301
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3302
				struct mem_cgroup *from, struct mem_cgroup *to)
3303 3304 3305
{
	return -EINVAL;
}
3306
#endif
K
KAMEZAWA Hiroyuki 已提交
3307

3308
static DEFINE_MUTEX(memcg_max_mutex);
3309

3310 3311
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
3312
{
3313
	bool enlarge = false;
3314
	bool drained = false;
3315
	int ret;
3316 3317
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3318

3319
	do {
3320 3321 3322 3323
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3324

3325
		mutex_lock(&memcg_max_mutex);
3326 3327
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
3328
		 * break our basic invariant rule memory.max <= memsw.max.
3329
		 */
3330
		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3331
					   max <= memcg->memsw.max;
3332
		if (!limits_invariant) {
3333
			mutex_unlock(&memcg_max_mutex);
3334 3335 3336
			ret = -EINVAL;
			break;
		}
3337
		if (max > counter->max)
3338
			enlarge = true;
3339 3340
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
3341 3342 3343 3344

		if (!ret)
			break;

3345 3346 3347 3348 3349 3350
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

3351 3352 3353 3354 3355 3356
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
3357

3358 3359
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3360

3361 3362 3363
	return ret;
}

3364
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3365 3366 3367 3368
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
3369
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3370 3371
	unsigned long reclaimed;
	int loop = 0;
3372
	struct mem_cgroup_tree_per_node *mctz;
3373
	unsigned long excess;
3374 3375 3376 3377 3378
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

3379
	mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3380 3381 3382 3383 3384 3385

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
3386
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3387 3388
		return 0;

3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
3403
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3404 3405 3406
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3407
		spin_lock_irq(&mctz->lock);
3408
		__mem_cgroup_remove_exceeded(mz, mctz);
3409 3410 3411 3412 3413 3414

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3415 3416 3417
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3418
		excess = soft_limit_excess(mz->memcg);
3419 3420 3421 3422 3423 3424 3425 3426 3427
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3428
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3429
		spin_unlock_irq(&mctz->lock);
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3447
/*
3448
 * Reclaims as many pages from the given memcg as possible.
3449 3450 3451 3452 3453
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
3454
	int nr_retries = MAX_RECLAIM_RETRIES;
3455

3456 3457
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3458 3459 3460

	drain_all_stock(memcg);

3461
	/* try to free all pages in this cgroup */
3462
	while (nr_retries && page_counter_read(&memcg->memory)) {
3463
		int progress;
3464

3465 3466 3467
		if (signal_pending(current))
			return -EINTR;

3468 3469
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3470
		if (!progress) {
3471
			nr_retries--;
3472
			/* maybe some writeback is necessary */
3473
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3474
		}
3475 3476

	}
3477 3478

	return 0;
3479 3480
}

3481 3482 3483
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3484
{
3485
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3486

3487 3488
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3489
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3490 3491
}

3492 3493
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3494
{
3495
	return 1;
3496 3497
}

3498 3499
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3500
{
3501
	if (val == 1)
3502
		return 0;
3503

3504 3505 3506
	pr_warn_once("Non-hierarchical mode is deprecated. "
		     "Please report your usecase to linux-mm@kvack.org if you "
		     "depend on this functionality.\n");
3507

3508
	return -EINVAL;
3509 3510
}

3511
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3512
{
3513
	unsigned long val;
3514

3515
	if (mem_cgroup_is_root(memcg)) {
3516 3517
		/* mem_cgroup_threshold() calls here from irqsafe context */
		cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
3518
		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3519
			memcg_page_state(memcg, NR_ANON_MAPPED);
3520 3521
		if (swap)
			val += memcg_page_state(memcg, MEMCG_SWAP);
3522
	} else {
3523
		if (!swap)
3524
			val = page_counter_read(&memcg->memory);
3525
		else
3526
			val = page_counter_read(&memcg->memsw);
3527
	}
3528
	return val;
3529 3530
}

3531 3532 3533 3534 3535 3536 3537
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3538

3539
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3540
			       struct cftype *cft)
B
Balbir Singh 已提交
3541
{
3542
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3543
	struct page_counter *counter;
3544

3545
	switch (MEMFILE_TYPE(cft->private)) {
3546
	case _MEM:
3547 3548
		counter = &memcg->memory;
		break;
3549
	case _MEMSWAP:
3550 3551
		counter = &memcg->memsw;
		break;
3552
	case _KMEM:
3553
		counter = &memcg->kmem;
3554
		break;
V
Vladimir Davydov 已提交
3555
	case _TCP:
3556
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3557
		break;
3558 3559 3560
	default:
		BUG();
	}
3561 3562 3563 3564

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
3565
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3566
		if (counter == &memcg->memsw)
3567
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3568 3569
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
3570
		return (u64)counter->max * PAGE_SIZE;
3571 3572 3573 3574 3575 3576 3577 3578 3579
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3580
}
3581

3582
#ifdef CONFIG_MEMCG_KMEM
3583
static int memcg_online_kmem(struct mem_cgroup *memcg)
3584
{
R
Roman Gushchin 已提交
3585
	struct obj_cgroup *objcg;
3586 3587
	int memcg_id;

3588 3589 3590
	if (cgroup_memory_nokmem)
		return 0;

3591
	BUG_ON(memcg->kmemcg_id >= 0);
3592
	BUG_ON(memcg->kmem_state);
3593

3594
	memcg_id = memcg_alloc_cache_id();
3595 3596
	if (memcg_id < 0)
		return memcg_id;
3597

R
Roman Gushchin 已提交
3598 3599 3600 3601 3602 3603 3604 3605
	objcg = obj_cgroup_alloc();
	if (!objcg) {
		memcg_free_cache_id(memcg_id);
		return -ENOMEM;
	}
	objcg->memcg = memcg;
	rcu_assign_pointer(memcg->objcg, objcg);

3606 3607
	static_branch_enable(&memcg_kmem_enabled_key);

V
Vladimir Davydov 已提交
3608
	memcg->kmemcg_id = memcg_id;
3609
	memcg->kmem_state = KMEM_ONLINE;
3610 3611

	return 0;
3612 3613
}

3614 3615 3616 3617 3618 3619 3620 3621
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
3622

3623 3624 3625 3626 3627 3628
	memcg->kmem_state = KMEM_ALLOCATED;

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

R
Roman Gushchin 已提交
3629
	memcg_reparent_objcgs(memcg, parent);
3630 3631 3632 3633

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

3634 3635 3636 3637 3638 3639 3640 3641
	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
3642
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3643 3644 3645 3646 3647
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
	}
3648 3649
	rcu_read_unlock();

3650
	memcg_drain_all_list_lrus(kmemcg_id, parent);
3651 3652 3653 3654 3655 3656

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
3657 3658 3659
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);
3660
}
3661
#else
3662
static int memcg_online_kmem(struct mem_cgroup *memcg)
3663 3664 3665 3666 3667 3668 3669 3670 3671
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
3672
#endif /* CONFIG_MEMCG_KMEM */
3673

3674 3675
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
3676
{
3677
	int ret;
3678

3679 3680 3681
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
3682
	return ret;
3683
}
3684

3685
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
3686 3687 3688
{
	int ret;

3689
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3690

3691
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
3692 3693 3694
	if (ret)
		goto out;

3695
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3696 3697 3698
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3699 3700 3701
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
3702 3703 3704 3705 3706 3707
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3708
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
3709 3710 3711 3712
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3713
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3714 3715
	}
out:
3716
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3717 3718 3719
	return ret;
}

3720 3721 3722 3723
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3724 3725
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3726
{
3727
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3728
	unsigned long nr_pages;
3729 3730
	int ret;

3731
	buf = strstrip(buf);
3732
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3733 3734
	if (ret)
		return ret;
3735

3736
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3737
	case RES_LIMIT:
3738 3739 3740 3741
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3742 3743
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3744
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3745
			break;
3746
		case _MEMSWAP:
3747
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3748
			break;
3749
		case _KMEM:
3750 3751 3752
			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
				     "Please report your usecase to linux-mm@kvack.org if you "
				     "depend on this functionality.\n");
3753
			ret = memcg_update_kmem_max(memcg, nr_pages);
3754
			break;
V
Vladimir Davydov 已提交
3755
		case _TCP:
3756
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
3757
			break;
3758
		}
3759
		break;
3760 3761 3762
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3763 3764
		break;
	}
3765
	return ret ?: nbytes;
B
Balbir Singh 已提交
3766 3767
}

3768 3769
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3770
{
3771
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3772
	struct page_counter *counter;
3773

3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3784
	case _TCP:
3785
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3786
		break;
3787 3788 3789
	default:
		BUG();
	}
3790

3791
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3792
	case RES_MAX_USAGE:
3793
		page_counter_reset_watermark(counter);
3794 3795
		break;
	case RES_FAILCNT:
3796
		counter->failcnt = 0;
3797
		break;
3798 3799
	default:
		BUG();
3800
	}
3801

3802
	return nbytes;
3803 3804
}

3805
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3806 3807
					struct cftype *cft)
{
3808
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3809 3810
}

3811
#ifdef CONFIG_MMU
3812
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3813 3814
					struct cftype *cft, u64 val)
{
3815
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3816

3817
	if (val & ~MOVE_MASK)
3818
		return -EINVAL;
3819

3820
	/*
3821 3822 3823 3824
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3825
	 */
3826
	memcg->move_charge_at_immigrate = val;
3827 3828
	return 0;
}
3829
#else
3830
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3831 3832 3833 3834 3835
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3836

3837
#ifdef CONFIG_NUMA
3838 3839 3840 3841 3842 3843

#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)

static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3844
				int nid, unsigned int lru_mask, bool tree)
3845
{
3846
	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3847 3848 3849 3850 3851 3852 3853 3854
	unsigned long nr = 0;
	enum lru_list lru;

	VM_BUG_ON((unsigned)nid >= nr_node_ids);

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3855 3856 3857 3858
		if (tree)
			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
		else
			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3859 3860 3861 3862 3863
	}
	return nr;
}

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3864 3865
					     unsigned int lru_mask,
					     bool tree)
3866 3867 3868 3869 3870 3871 3872
{
	unsigned long nr = 0;
	enum lru_list lru;

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3873 3874 3875 3876
		if (tree)
			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
		else
			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3877 3878 3879 3880
	}
	return nr;
}

3881
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3882
{
3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3895
	int nid;
3896
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3897

3898 3899
	cgroup_rstat_flush(memcg->css.cgroup);

3900
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3901 3902 3903 3904 3905 3906 3907
		seq_printf(m, "%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   false));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, false));
3908
		seq_putc(m, '\n');
3909 3910
	}

3911
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3912 3913 3914 3915 3916 3917 3918 3919

		seq_printf(m, "hierarchical_%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   true));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, true));
3920
		seq_putc(m, '\n');
3921 3922 3923 3924 3925 3926
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3927
static const unsigned int memcg1_stats[] = {
3928
	NR_FILE_PAGES,
3929
	NR_ANON_MAPPED,
3930 3931 3932
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	NR_ANON_THPS,
#endif
3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
3943
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3944
	"rss_huge",
3945
#endif
3946 3947 3948 3949 3950 3951 3952
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

3953
/* Universal VM events cgroup1 shows, original sort order */
3954
static const unsigned int memcg1_events[] = {
3955 3956 3957 3958 3959 3960
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

3961
static int memcg_stat_show(struct seq_file *m, void *v)
3962
{
3963
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3964
	unsigned long memory, memsw;
3965 3966
	struct mem_cgroup *mi;
	unsigned int i;
3967

3968
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3969

3970 3971
	cgroup_rstat_flush(memcg->css.cgroup);

3972
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3973 3974
		unsigned long nr;

3975
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3976
			continue;
3977 3978
		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
3979
	}
L
Lee Schermerhorn 已提交
3980

3981
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3982
		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3983
			   memcg_events_local(memcg, memcg1_events[i]));
3984 3985

	for (i = 0; i < NR_LRU_LISTS; i++)
3986
		seq_printf(m, "%s %lu\n", lru_list_name(i),
3987
			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3988
			   PAGE_SIZE);
3989

K
KAMEZAWA Hiroyuki 已提交
3990
	/* Hierarchical information */
3991 3992
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3993 3994
		memory = min(memory, READ_ONCE(mi->memory.max));
		memsw = min(memsw, READ_ONCE(mi->memsw.max));
3995
	}
3996 3997
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3998
	if (do_memsw_account())
3999 4000
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
4001

4002
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4003 4004
		unsigned long nr;

4005
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4006
			continue;
4007
		nr = memcg_page_state(memcg, memcg1_stats[i]);
4008
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4009
						(u64)nr * PAGE_SIZE);
4010 4011
	}

4012
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4013 4014
		seq_printf(m, "total_%s %llu\n",
			   vm_event_name(memcg1_events[i]),
4015
			   (u64)memcg_events(memcg, memcg1_events[i]));
4016

4017
	for (i = 0; i < NR_LRU_LISTS; i++)
4018
		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4019 4020
			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			   PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
4021

K
KOSAKI Motohiro 已提交
4022 4023
#ifdef CONFIG_DEBUG_VM
	{
4024 4025
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
4026 4027
		unsigned long anon_cost = 0;
		unsigned long file_cost = 0;
K
KOSAKI Motohiro 已提交
4028

4029
		for_each_online_pgdat(pgdat) {
4030
			mz = memcg->nodeinfo[pgdat->node_id];
K
KOSAKI Motohiro 已提交
4031

4032 4033
			anon_cost += mz->lruvec.anon_cost;
			file_cost += mz->lruvec.file_cost;
4034
		}
4035 4036
		seq_printf(m, "anon_cost %lu\n", anon_cost);
		seq_printf(m, "file_cost %lu\n", file_cost);
K
KOSAKI Motohiro 已提交
4037 4038 4039
	}
#endif

4040 4041 4042
	return 0;
}

4043 4044
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
4045
{
4046
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4047

4048
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4049 4050
}

4051 4052
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
4053
{
4054
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4055

4056
	if (val > 200)
K
KOSAKI Motohiro 已提交
4057 4058
		return -EINVAL;

S
Shakeel Butt 已提交
4059
	if (!mem_cgroup_is_root(memcg))
4060 4061 4062
		memcg->swappiness = val;
	else
		vm_swappiness = val;
4063

K
KOSAKI Motohiro 已提交
4064 4065 4066
	return 0;
}

4067 4068 4069
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
4070
	unsigned long usage;
4071 4072 4073 4074
	int i;

	rcu_read_lock();
	if (!swap)
4075
		t = rcu_dereference(memcg->thresholds.primary);
4076
	else
4077
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4078 4079 4080 4081

	if (!t)
		goto unlock;

4082
	usage = mem_cgroup_usage(memcg, swap);
4083 4084

	/*
4085
	 * current_threshold points to threshold just below or equal to usage.
4086 4087 4088
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4089
	i = t->current_threshold;
4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4113
	t->current_threshold = i - 1;
4114 4115 4116 4117 4118 4119
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4120 4121
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
4122
		if (do_memsw_account())
4123 4124 4125 4126
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4127 4128 4129 4130 4131 4132 4133
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

4134 4135 4136 4137 4138 4139 4140
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
4141 4142
}

4143
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4144 4145 4146
{
	struct mem_cgroup_eventfd_list *ev;

4147 4148
	spin_lock(&memcg_oom_lock);

4149
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4150
		eventfd_signal(ev->eventfd, 1);
4151 4152

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4153 4154 4155
	return 0;
}

4156
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4157
{
K
KAMEZAWA Hiroyuki 已提交
4158 4159
	struct mem_cgroup *iter;

4160
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4161
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4162 4163
}

4164
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4165
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4166
{
4167 4168
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4169 4170
	unsigned long threshold;
	unsigned long usage;
4171
	int i, size, ret;
4172

4173
	ret = page_counter_memparse(args, "-1", &threshold);
4174 4175 4176 4177
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4178

4179
	if (type == _MEM) {
4180
		thresholds = &memcg->thresholds;
4181
		usage = mem_cgroup_usage(memcg, false);
4182
	} else if (type == _MEMSWAP) {
4183
		thresholds = &memcg->memsw_thresholds;
4184
		usage = mem_cgroup_usage(memcg, true);
4185
	} else
4186 4187 4188
		BUG();

	/* Check if a threshold crossed before adding a new one */
4189
	if (thresholds->primary)
4190 4191
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4192
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4193 4194

	/* Allocate memory for new array of thresholds */
4195
	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4196
	if (!new) {
4197 4198 4199
		ret = -ENOMEM;
		goto unlock;
	}
4200
	new->size = size;
4201 4202

	/* Copy thresholds (if any) to new array */
4203 4204 4205
	if (thresholds->primary)
		memcpy(new->entries, thresholds->primary->entries,
		       flex_array_size(new, entries, size - 1));
4206

4207
	/* Add new threshold */
4208 4209
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4210 4211

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4212
	sort(new->entries, size, sizeof(*new->entries),
4213 4214 4215
			compare_thresholds, NULL);

	/* Find current threshold */
4216
	new->current_threshold = -1;
4217
	for (i = 0; i < size; i++) {
4218
		if (new->entries[i].threshold <= usage) {
4219
			/*
4220 4221
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4222 4223
			 * it here.
			 */
4224
			++new->current_threshold;
4225 4226
		} else
			break;
4227 4228
	}

4229 4230 4231 4232 4233
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4234

4235
	/* To be sure that nobody uses thresholds */
4236 4237 4238 4239 4240 4241 4242 4243
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4244
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4245 4246
	struct eventfd_ctx *eventfd, const char *args)
{
4247
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4248 4249
}

4250
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4251 4252
	struct eventfd_ctx *eventfd, const char *args)
{
4253
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4254 4255
}

4256
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4257
	struct eventfd_ctx *eventfd, enum res_type type)
4258
{
4259 4260
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4261
	unsigned long usage;
4262
	int i, j, size, entries;
4263 4264

	mutex_lock(&memcg->thresholds_lock);
4265 4266

	if (type == _MEM) {
4267
		thresholds = &memcg->thresholds;
4268
		usage = mem_cgroup_usage(memcg, false);
4269
	} else if (type == _MEMSWAP) {
4270
		thresholds = &memcg->memsw_thresholds;
4271
		usage = mem_cgroup_usage(memcg, true);
4272
	} else
4273 4274
		BUG();

4275 4276 4277
	if (!thresholds->primary)
		goto unlock;

4278 4279 4280 4281
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4282
	size = entries = 0;
4283 4284
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4285
			size++;
4286 4287
		else
			entries++;
4288 4289
	}

4290
	new = thresholds->spare;
4291

4292 4293 4294 4295
	/* If no items related to eventfd have been cleared, nothing to do */
	if (!entries)
		goto unlock;

4296 4297
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4298 4299
		kfree(new);
		new = NULL;
4300
		goto swap_buffers;
4301 4302
	}

4303
	new->size = size;
4304 4305

	/* Copy thresholds and find current threshold */
4306 4307 4308
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4309 4310
			continue;

4311
		new->entries[j] = thresholds->primary->entries[i];
4312
		if (new->entries[j].threshold <= usage) {
4313
			/*
4314
			 * new->current_threshold will not be used
4315 4316 4317
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4318
			++new->current_threshold;
4319 4320 4321 4322
		}
		j++;
	}

4323
swap_buffers:
4324 4325
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4326

4327
	rcu_assign_pointer(thresholds->primary, new);
4328

4329
	/* To be sure that nobody uses thresholds */
4330
	synchronize_rcu();
4331 4332 4333 4334 4335 4336

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
4337
unlock:
4338 4339
	mutex_unlock(&memcg->thresholds_lock);
}
4340

4341
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4342 4343
	struct eventfd_ctx *eventfd)
{
4344
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4345 4346
}

4347
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4348 4349
	struct eventfd_ctx *eventfd)
{
4350
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4351 4352
}

4353
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4354
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4355 4356 4357 4358 4359 4360 4361
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4362
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4363 4364 4365 4366 4367

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4368
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
4369
		eventfd_signal(eventfd, 1);
4370
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4371 4372 4373 4374

	return 0;
}

4375
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4376
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4377 4378 4379
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4380
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4381

4382
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4383 4384 4385 4386 4387 4388
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4389
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4390 4391
}

4392
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4393
{
4394
	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4395

4396
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4397
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
R
Roman Gushchin 已提交
4398 4399
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4400 4401 4402
	return 0;
}

4403
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4404 4405
	struct cftype *cft, u64 val)
{
4406
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4407 4408

	/* cannot set to root cgroup and only 0 and 1 are allowed */
S
Shakeel Butt 已提交
4409
	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4410 4411
		return -EINVAL;

4412
	memcg->oom_kill_disable = val;
4413
	if (!val)
4414
		memcg_oom_recover(memcg);
4415

4416 4417 4418
	return 0;
}

4419 4420
#ifdef CONFIG_CGROUP_WRITEBACK

4421 4422
#include <trace/events/writeback.h>

T
Tejun Heo 已提交
4423 4424 4425 4426 4427 4428 4429 4430 4431 4432
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

4433 4434 4435 4436 4437
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
4438 4439 4440 4441 4442 4443 4444 4445 4446 4447
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

4448 4449 4450
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
4451 4452
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
4453 4454 4455
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
4456 4457 4458
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
4459
 *
4460 4461 4462 4463 4464
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
4465
 */
4466 4467 4468
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
4469 4470 4471 4472
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

4473
	cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
4474

4475 4476 4477 4478
	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
			memcg_page_state(memcg, NR_ACTIVE_FILE);
4479

4480
	*pheadroom = PAGE_COUNTER_MAX;
4481
	while ((parent = parent_mem_cgroup(memcg))) {
4482
		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4483
					    READ_ONCE(memcg->memory.high));
4484 4485
		unsigned long used = page_counter_read(&memcg->memory);

4486
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4487 4488 4489 4490
		memcg = parent;
	}
}

4491 4492 4493 4494
/*
 * Foreign dirty flushing
 *
 * There's an inherent mismatch between memcg and writeback.  The former
I
Ingo Molnar 已提交
4495
 * tracks ownership per-page while the latter per-inode.  This was a
4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
 * deliberate design decision because honoring per-page ownership in the
 * writeback path is complicated, may lead to higher CPU and IO overheads
 * and deemed unnecessary given that write-sharing an inode across
 * different cgroups isn't a common use-case.
 *
 * Combined with inode majority-writer ownership switching, this works well
 * enough in most cases but there are some pathological cases.  For
 * example, let's say there are two cgroups A and B which keep writing to
 * different but confined parts of the same inode.  B owns the inode and
 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
 * triggering background writeback.  A will be slowed down without a way to
 * make writeback of the dirty pages happen.
 *
I
Ingo Molnar 已提交
4510
 * Conditions like the above can lead to a cgroup getting repeatedly and
4511
 * severely throttled after making some progress after each
I
Ingo Molnar 已提交
4512
 * dirty_expire_interval while the underlying IO device is almost
4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534
 * completely idle.
 *
 * Solving this problem completely requires matching the ownership tracking
 * granularities between memcg and writeback in either direction.  However,
 * the more egregious behaviors can be avoided by simply remembering the
 * most recent foreign dirtying events and initiating remote flushes on
 * them when local writeback isn't enough to keep the memory clean enough.
 *
 * The following two functions implement such mechanism.  When a foreign
 * page - a page whose memcg and writeback ownerships don't match - is
 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
 * decides that the memcg needs to sleep due to high dirty ratio, it calls
 * mem_cgroup_flush_foreign() which queues writeback on the recorded
 * foreign bdi_writebacks which haven't expired.  Both the numbers of
 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
 * limited to MEMCG_CGWB_FRN_CNT.
 *
 * The mechanism only remembers IDs and doesn't hold any object references.
 * As being wrong occasionally doesn't matter, updates and accesses to the
 * records are lockless and racy.
 */
4535
void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4536 4537
					     struct bdi_writeback *wb)
{
4538
	struct mem_cgroup *memcg = folio_memcg(folio);
4539 4540 4541 4542 4543 4544
	struct memcg_cgwb_frn *frn;
	u64 now = get_jiffies_64();
	u64 oldest_at = now;
	int oldest = -1;
	int i;

4545
	trace_track_foreign_dirty(folio, wb);
4546

4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606
	/*
	 * Pick the slot to use.  If there is already a slot for @wb, keep
	 * using it.  If not replace the oldest one which isn't being
	 * written out.
	 */
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		frn = &memcg->cgwb_frn[i];
		if (frn->bdi_id == wb->bdi->id &&
		    frn->memcg_id == wb->memcg_css->id)
			break;
		if (time_before64(frn->at, oldest_at) &&
		    atomic_read(&frn->done.cnt) == 1) {
			oldest = i;
			oldest_at = frn->at;
		}
	}

	if (i < MEMCG_CGWB_FRN_CNT) {
		/*
		 * Re-using an existing one.  Update timestamp lazily to
		 * avoid making the cacheline hot.  We want them to be
		 * reasonably up-to-date and significantly shorter than
		 * dirty_expire_interval as that's what expires the record.
		 * Use the shorter of 1s and dirty_expire_interval / 8.
		 */
		unsigned long update_intv =
			min_t(unsigned long, HZ,
			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);

		if (time_before64(frn->at, now - update_intv))
			frn->at = now;
	} else if (oldest >= 0) {
		/* replace the oldest free one */
		frn = &memcg->cgwb_frn[oldest];
		frn->bdi_id = wb->bdi->id;
		frn->memcg_id = wb->memcg_css->id;
		frn->at = now;
	}
}

/* issue foreign writeback flushes for recorded foreign dirtying events */
void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
	u64 now = jiffies_64;
	int i;

	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];

		/*
		 * If the record is older than dirty_expire_interval,
		 * writeback on it has already started.  No need to kick it
		 * off again.  Also, don't start a new one if there's
		 * already one in flight.
		 */
		if (time_after64(frn->at, now - intv) &&
		    atomic_read(&frn->done.cnt) == 1) {
			frn->at = 0;
4607
			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4608
			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4609 4610 4611 4612 4613 4614
					       WB_REASON_FOREIGN_FLUSH,
					       &frn->done);
		}
	}
}

T
Tejun Heo 已提交
4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

4626 4627 4628 4629
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

4630 4631
#endif	/* CONFIG_CGROUP_WRITEBACK */

4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4645 4646 4647 4648 4649
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4650
static void memcg_event_remove(struct work_struct *work)
4651
{
4652 4653
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4654
	struct mem_cgroup *memcg = event->memcg;
4655 4656 4657

	remove_wait_queue(event->wqh, &event->wait);

4658
	event->unregister_event(memcg, event->eventfd);
4659 4660 4661 4662 4663 4664

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4665
	css_put(&memcg->css);
4666 4667 4668
}

/*
4669
 * Gets called on EPOLLHUP on eventfd when user closes it.
4670 4671 4672
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4673
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4674
			    int sync, void *key)
4675
{
4676 4677
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4678
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
4679
	__poll_t flags = key_to_poll(key);
4680

4681
	if (flags & EPOLLHUP) {
4682 4683 4684 4685 4686 4687 4688 4689 4690
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4691
		spin_lock(&memcg->event_list_lock);
4692 4693 4694 4695 4696 4697 4698 4699
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4700
		spin_unlock(&memcg->event_list_lock);
4701 4702 4703 4704 4705
	}

	return 0;
}

4706
static void memcg_event_ptable_queue_proc(struct file *file,
4707 4708
		wait_queue_head_t *wqh, poll_table *pt)
{
4709 4710
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4711 4712 4713 4714 4715 4716

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4717 4718
 * DO NOT USE IN NEW FILES.
 *
4719 4720 4721 4722 4723
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4724 4725
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4726
{
4727
	struct cgroup_subsys_state *css = of_css(of);
4728
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4729
	struct mem_cgroup_event *event;
4730 4731 4732 4733
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4734
	const char *name;
4735 4736 4737
	char *endp;
	int ret;

4738 4739 4740
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4741 4742
	if (*endp != ' ')
		return -EINVAL;
4743
	buf = endp + 1;
4744

4745
	cfd = simple_strtoul(buf, &endp, 10);
4746 4747
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4748
	buf = endp + 1;
4749 4750 4751 4752 4753

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4754
	event->memcg = memcg;
4755
	INIT_LIST_HEAD(&event->list);
4756 4757 4758
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
4780
	ret = file_permission(cfile.file, MAY_READ);
4781 4782 4783
	if (ret < 0)
		goto out_put_cfile;

4784 4785 4786 4787 4788
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4789 4790
	 *
	 * DO NOT ADD NEW FILES.
4791
	 */
A
Al Viro 已提交
4792
	name = cfile.file->f_path.dentry->d_name.name;
4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4804 4805
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4806 4807 4808 4809 4810
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4811
	/*
4812 4813 4814
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4815
	 */
A
Al Viro 已提交
4816
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4817
					       &memory_cgrp_subsys);
4818
	ret = -EINVAL;
4819
	if (IS_ERR(cfile_css))
4820
		goto out_put_cfile;
4821 4822
	if (cfile_css != css) {
		css_put(cfile_css);
4823
		goto out_put_cfile;
4824
	}
4825

4826
	ret = event->register_event(memcg, event->eventfd, buf);
4827 4828 4829
	if (ret)
		goto out_put_css;

4830
	vfs_poll(efile.file, &event->pt);
4831

4832
	spin_lock_irq(&memcg->event_list_lock);
4833
	list_add(&event->list, &memcg->event_list);
4834
	spin_unlock_irq(&memcg->event_list_lock);
4835 4836 4837 4838

	fdput(cfile);
	fdput(efile);

4839
	return nbytes;
4840 4841

out_put_css:
4842
	css_put(css);
4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4855
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4856
	{
4857
		.name = "usage_in_bytes",
4858
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4859
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4860
	},
4861 4862
	{
		.name = "max_usage_in_bytes",
4863
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4864
		.write = mem_cgroup_reset,
4865
		.read_u64 = mem_cgroup_read_u64,
4866
	},
B
Balbir Singh 已提交
4867
	{
4868
		.name = "limit_in_bytes",
4869
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4870
		.write = mem_cgroup_write,
4871
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4872
	},
4873 4874 4875
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4876
		.write = mem_cgroup_write,
4877
		.read_u64 = mem_cgroup_read_u64,
4878
	},
B
Balbir Singh 已提交
4879 4880
	{
		.name = "failcnt",
4881
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4882
		.write = mem_cgroup_reset,
4883
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4884
	},
4885 4886
	{
		.name = "stat",
4887
		.seq_show = memcg_stat_show,
4888
	},
4889 4890
	{
		.name = "force_empty",
4891
		.write = mem_cgroup_force_empty_write,
4892
	},
4893 4894 4895 4896 4897
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4898
	{
4899
		.name = "cgroup.event_control",		/* XXX: for compat */
4900
		.write = memcg_write_event_control,
4901
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4902
	},
K
KOSAKI Motohiro 已提交
4903 4904 4905 4906 4907
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4908 4909 4910 4911 4912
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4913 4914
	{
		.name = "oom_control",
4915
		.seq_show = mem_cgroup_oom_control_read,
4916
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4917 4918
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4919 4920 4921
	{
		.name = "pressure_level",
	},
4922 4923 4924
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4925
		.seq_show = memcg_numa_stat_show,
4926 4927
	},
#endif
4928 4929 4930
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4931
		.write = mem_cgroup_write,
4932
		.read_u64 = mem_cgroup_read_u64,
4933 4934 4935 4936
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4937
		.read_u64 = mem_cgroup_read_u64,
4938 4939 4940 4941
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4942
		.write = mem_cgroup_reset,
4943
		.read_u64 = mem_cgroup_read_u64,
4944 4945 4946 4947
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4948
		.write = mem_cgroup_reset,
4949
		.read_u64 = mem_cgroup_read_u64,
4950
	},
4951 4952
#if defined(CONFIG_MEMCG_KMEM) && \
	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4953 4954
	{
		.name = "kmem.slabinfo",
4955
		.seq_show = memcg_slab_show,
4956 4957
	},
#endif
V
Vladimir Davydov 已提交
4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4981
	{ },	/* terminate */
4982
};
4983

4984 4985 4986 4987 4988 4989 4990 4991
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
4992
 * However, there usually are many references to the offline CSS after
4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

5010 5011 5012 5013 5014 5015 5016 5017
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

5018 5019
static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
						  unsigned int n)
5020
{
5021
	refcount_add(n, &memcg->id.ref);
5022 5023
}

5024
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5025
{
5026
	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5027
		mem_cgroup_id_remove(memcg);
5028 5029 5030 5031 5032 5033

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

5034 5035 5036 5037 5038
static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

5051
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5052 5053
{
	struct mem_cgroup_per_node *pn;
5054
	int tmp = node;
5055 5056 5057 5058 5059 5060 5061 5062
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5063 5064
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5065
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5066 5067
	if (!pn)
		return 1;
5068

5069 5070 5071
	pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
						   GFP_KERNEL_ACCOUNT);
	if (!pn->lruvec_stats_percpu) {
5072 5073 5074 5075
		kfree(pn);
		return 1;
	}

5076 5077 5078 5079 5080
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

5081
	memcg->nodeinfo[node] = pn;
5082 5083 5084
	return 0;
}

5085
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5086
{
5087 5088
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
5089 5090 5091
	if (!pn)
		return;

5092
	free_percpu(pn->lruvec_stats_percpu);
5093
	kfree(pn);
5094 5095
}

5096
static void __mem_cgroup_free(struct mem_cgroup *memcg)
5097
{
5098
	int node;
5099

5100
	for_each_node(node)
5101
		free_mem_cgroup_per_node_info(memcg, node);
5102
	free_percpu(memcg->vmstats_percpu);
5103
	kfree(memcg);
5104
}
5105

5106 5107 5108 5109 5110 5111
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
	__mem_cgroup_free(memcg);
}

5112
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
5113
{
5114
	struct mem_cgroup *memcg;
5115
	unsigned int size;
5116
	int node;
5117
	int __maybe_unused i;
5118
	long error = -ENOMEM;
B
Balbir Singh 已提交
5119

5120 5121 5122 5123
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
5124
	if (!memcg)
5125
		return ERR_PTR(error);
5126

5127 5128 5129
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
5130 5131
	if (memcg->id.id < 0) {
		error = memcg->id.id;
5132
		goto fail;
5133
	}
5134

5135 5136
	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
						 GFP_KERNEL_ACCOUNT);
5137
	if (!memcg->vmstats_percpu)
5138
		goto fail;
5139

B
Bob Liu 已提交
5140
	for_each_node(node)
5141
		if (alloc_mem_cgroup_per_node_info(memcg, node))
5142
			goto fail;
5143

5144 5145
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
5146

5147
	INIT_WORK(&memcg->high_work, high_work_func);
5148 5149 5150
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5151
	vmpressure_init(&memcg->vmpressure);
5152 5153
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
5154
	memcg->socket_pressure = jiffies;
5155
#ifdef CONFIG_MEMCG_KMEM
V
Vladimir Davydov 已提交
5156
	memcg->kmemcg_id = -1;
R
Roman Gushchin 已提交
5157
	INIT_LIST_HEAD(&memcg->objcg_list);
V
Vladimir Davydov 已提交
5158
#endif
5159 5160
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
5161 5162 5163
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		memcg->cgwb_frn[i].done =
			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5164 5165 5166 5167 5168
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
	memcg->deferred_split_queue.split_queue_len = 0;
5169
#endif
5170
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5171 5172
	return memcg;
fail:
5173
	mem_cgroup_id_remove(memcg);
5174
	__mem_cgroup_free(memcg);
5175
	return ERR_PTR(error);
5176 5177
}

5178 5179
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5180
{
5181
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5182
	struct mem_cgroup *memcg, *old_memcg;
5183
	long error = -ENOMEM;
5184

5185
	old_memcg = set_active_memcg(parent);
5186
	memcg = mem_cgroup_alloc();
5187
	set_active_memcg(old_memcg);
5188 5189
	if (IS_ERR(memcg))
		return ERR_CAST(memcg);
5190

5191
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5192
	memcg->soft_limit = PAGE_COUNTER_MAX;
5193
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5194 5195 5196
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
5197

5198
		page_counter_init(&memcg->memory, &parent->memory);
5199
		page_counter_init(&memcg->swap, &parent->swap);
5200
		page_counter_init(&memcg->kmem, &parent->kmem);
5201
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5202
	} else {
5203 5204 5205 5206
		page_counter_init(&memcg->memory, NULL);
		page_counter_init(&memcg->swap, NULL);
		page_counter_init(&memcg->kmem, NULL);
		page_counter_init(&memcg->tcpmem, NULL);
5207

5208 5209 5210 5211
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

5212
	/* The following stuff does not apply to the root */
5213
	error = memcg_online_kmem(memcg);
5214 5215
	if (error)
		goto fail;
5216

5217
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5218
		static_branch_inc(&memcg_sockets_enabled_key);
5219

5220 5221
	return &memcg->css;
fail:
5222
	mem_cgroup_id_remove(memcg);
5223
	mem_cgroup_free(memcg);
5224
	return ERR_PTR(error);
5225 5226
}

5227
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5228
{
5229 5230
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5231
	/*
5232
	 * A memcg must be visible for expand_shrinker_info()
5233 5234 5235
	 * by the time the maps are allocated. So, we allocate maps
	 * here, when for_each_mem_cgroup() can't skip it.
	 */
5236
	if (alloc_shrinker_info(memcg)) {
5237 5238 5239 5240
		mem_cgroup_id_remove(memcg);
		return -ENOMEM;
	}

5241
	/* Online state pins memcg ID, memcg ID pins CSS */
5242
	refcount_set(&memcg->id.ref, 1);
5243
	css_get(css);
5244 5245 5246 5247

	if (unlikely(mem_cgroup_is_root(memcg)))
		queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
				   2UL*HZ);
5248
	return 0;
B
Balbir Singh 已提交
5249 5250
}

5251
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5252
{
5253
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5254
	struct mem_cgroup_event *event, *tmp;
5255 5256 5257 5258 5259 5260

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
5261
	spin_lock_irq(&memcg->event_list_lock);
5262
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5263 5264 5265
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
5266
	spin_unlock_irq(&memcg->event_list_lock);
5267

R
Roman Gushchin 已提交
5268
	page_counter_set_min(&memcg->memory, 0);
5269
	page_counter_set_low(&memcg->memory, 0);
5270

5271
	memcg_offline_kmem(memcg);
5272
	reparent_shrinker_deferred(memcg);
5273
	wb_memcg_offline(memcg);
5274

5275 5276
	drain_all_stock(memcg);

5277
	mem_cgroup_id_put(memcg);
5278 5279
}

5280 5281 5282 5283 5284 5285 5286
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

5287
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
5288
{
5289
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5290
	int __maybe_unused i;
5291

5292 5293 5294 5295
#ifdef CONFIG_CGROUP_WRITEBACK
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
#endif
5296
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5297
		static_branch_dec(&memcg_sockets_enabled_key);
5298

5299
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
5300
		static_branch_dec(&memcg_sockets_enabled_key);
5301

5302 5303 5304
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
5305
	free_shrinker_info(memcg);
5306
	memcg_free_kmem(memcg);
5307
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
5308 5309
}

5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5327 5328 5329 5330
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
R
Roman Gushchin 已提交
5331
	page_counter_set_min(&memcg->memory, 0);
5332
	page_counter_set_low(&memcg->memory, 0);
5333
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5334
	memcg->soft_limit = PAGE_COUNTER_MAX;
5335
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5336
	memcg_wb_domain_size_changed(memcg);
5337 5338
}

5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353
void mem_cgroup_flush_stats(void)
{
	if (!spin_trylock(&stats_flush_lock))
		return;

	cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
	spin_unlock(&stats_flush_lock);
}

static void flush_memcg_stats_dwork(struct work_struct *w)
{
	mem_cgroup_flush_stats();
	queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 2UL*HZ);
}

5354 5355 5356 5357 5358 5359
static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	struct memcg_vmstats_percpu *statc;
	long delta, v;
5360
	int i, nid;
5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407

	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);

	for (i = 0; i < MEMCG_NR_STAT; i++) {
		/*
		 * Collect the aggregated propagation counts of groups
		 * below us. We're in a per-cpu loop here and this is
		 * a global counter, so the first cycle will get them.
		 */
		delta = memcg->vmstats.state_pending[i];
		if (delta)
			memcg->vmstats.state_pending[i] = 0;

		/* Add CPU changes on this level since the last flush */
		v = READ_ONCE(statc->state[i]);
		if (v != statc->state_prev[i]) {
			delta += v - statc->state_prev[i];
			statc->state_prev[i] = v;
		}

		if (!delta)
			continue;

		/* Aggregate counts on this level and propagate upwards */
		memcg->vmstats.state[i] += delta;
		if (parent)
			parent->vmstats.state_pending[i] += delta;
	}

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
		delta = memcg->vmstats.events_pending[i];
		if (delta)
			memcg->vmstats.events_pending[i] = 0;

		v = READ_ONCE(statc->events[i]);
		if (v != statc->events_prev[i]) {
			delta += v - statc->events_prev[i];
			statc->events_prev[i] = v;
		}

		if (!delta)
			continue;

		memcg->vmstats.events[i] += delta;
		if (parent)
			parent->vmstats.events_pending[i] += delta;
	}
5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437

	for_each_node_state(nid, N_MEMORY) {
		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
		struct mem_cgroup_per_node *ppn = NULL;
		struct lruvec_stats_percpu *lstatc;

		if (parent)
			ppn = parent->nodeinfo[nid];

		lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);

		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
			delta = pn->lruvec_stats.state_pending[i];
			if (delta)
				pn->lruvec_stats.state_pending[i] = 0;

			v = READ_ONCE(lstatc->state[i]);
			if (v != lstatc->state_prev[i]) {
				delta += v - lstatc->state_prev[i];
				lstatc->state_prev[i] = v;
			}

			if (!delta)
				continue;

			pn->lruvec_stats.state[i] += delta;
			if (ppn)
				ppn->lruvec_stats.state_pending[i] += delta;
		}
	}
5438 5439
}

5440
#ifdef CONFIG_MMU
5441
/* Handlers for move charge at task migration. */
5442
static int mem_cgroup_do_precharge(unsigned long count)
5443
{
5444
	int ret;
5445

5446 5447
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5448
	if (!ret) {
5449 5450 5451
		mc.precharge += count;
		return ret;
	}
5452

5453
	/* Try charges one by one with reclaim, but do not retry */
5454
	while (count--) {
5455
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5456 5457
		if (ret)
			return ret;
5458
		mc.precharge++;
5459
		cond_resched();
5460
	}
5461
	return 0;
5462 5463 5464 5465
}

union mc_target {
	struct page	*page;
5466
	swp_entry_t	ent;
5467 5468 5469
};

enum mc_target_type {
5470
	MC_TARGET_NONE = 0,
5471
	MC_TARGET_PAGE,
5472
	MC_TARGET_SWAP,
5473
	MC_TARGET_DEVICE,
5474 5475
};

D
Daisuke Nishimura 已提交
5476 5477
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5478
{
5479
	struct page *page = vm_normal_page(vma, addr, ptent);
5480

D
Daisuke Nishimura 已提交
5481 5482 5483
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
5484
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5485
			return NULL;
5486 5487 5488 5489
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
5490 5491 5492 5493 5494 5495
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5496
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
5497
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5498
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
5499 5500 5501 5502
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

5503
	if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5504
		return NULL;
5505 5506 5507 5508 5509 5510 5511

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
5512
		page = pfn_swap_entry_to_page(ent);
5513 5514 5515 5516 5517 5518 5519 5520 5521
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

5522 5523 5524
	if (non_swap_entry(ent))
		return NULL;

5525 5526 5527 5528
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5529
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5530
	entry->val = ent.val;
D
Daisuke Nishimura 已提交
5531 5532 5533

	return page;
}
5534 5535
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5536
			pte_t ptent, swp_entry_t *entry)
5537 5538 5539 5540
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5541

5542 5543 5544 5545 5546
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	if (!vma->vm_file) /* anonymous vma */
		return NULL;
5547
	if (!(mc.flags & MOVE_FILE))
5548 5549 5550
		return NULL;

	/* page is moved even if it's not RSS of this task(page-faulted). */
5551
	/* shmem/tmpfs may report page out on swap: account for that too. */
5552 5553
	return find_get_incore_page(vma->vm_file->f_mapping,
			linear_page_index(vma, addr));
5554 5555
}

5556 5557 5558
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
5559
 * @compound: charge the page as compound or small page
5560 5561 5562
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
5563
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5564 5565 5566 5567 5568
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
5569
				   bool compound,
5570 5571 5572
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
5573
	struct folio *folio = page_folio(page);
5574 5575
	struct lruvec *from_vec, *to_vec;
	struct pglist_data *pgdat;
5576
	unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5577
	int nid, ret;
5578 5579

	VM_BUG_ON(from == to);
5580 5581
	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
	VM_BUG_ON(compound && !folio_test_multi(folio));
5582 5583

	/*
5584
	 * Prevent mem_cgroup_migrate() from looking at
5585
	 * page's memory cgroup of its source page while we change it.
5586
	 */
5587
	ret = -EBUSY;
5588
	if (!folio_trylock(folio))
5589 5590 5591
		goto out;

	ret = -EINVAL;
5592
	if (folio_memcg(folio) != from)
5593 5594
		goto out_unlock;

5595
	pgdat = folio_pgdat(folio);
5596 5597
	from_vec = mem_cgroup_lruvec(from, pgdat);
	to_vec = mem_cgroup_lruvec(to, pgdat);
5598

5599
	folio_memcg_lock(folio);
5600

5601 5602
	if (folio_test_anon(folio)) {
		if (folio_mapped(folio)) {
5603 5604
			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5605
			if (folio_test_transhuge(folio)) {
5606 5607 5608 5609
				__mod_lruvec_state(from_vec, NR_ANON_THPS,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_ANON_THPS,
						   nr_pages);
5610
			}
5611 5612
		}
	} else {
5613 5614 5615
		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);

5616
		if (folio_test_swapbacked(folio)) {
5617 5618 5619 5620
			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
		}

5621
		if (folio_mapped(folio)) {
5622 5623 5624
			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
		}
5625

5626 5627
		if (folio_test_dirty(folio)) {
			struct address_space *mapping = folio_mapping(folio);
5628

5629
			if (mapping_can_writeback(mapping)) {
5630 5631 5632 5633 5634
				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
						   nr_pages);
			}
5635 5636 5637
		}
	}

5638
	if (folio_test_writeback(folio)) {
5639 5640
		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5641 5642 5643
	}

	/*
5644 5645
	 * All state has been migrated, let's switch to the new memcg.
	 *
5646
	 * It is safe to change page's memcg here because the page
5647 5648
	 * is referenced, charged, isolated, and locked: we can't race
	 * with (un)charging, migration, LRU putback, or anything else
5649
	 * that would rely on a stable page's memory cgroup.
5650 5651
	 *
	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5652
	 * to save space. As soon as we switch page's memory cgroup to a
5653 5654
	 * new memcg that isn't locked, the above state can change
	 * concurrently again. Make sure we're truly done with it.
5655
	 */
5656
	smp_mb();
5657

5658 5659 5660
	css_get(&to->css);
	css_put(&from->css);

5661
	folio->memcg_data = (unsigned long)to;
5662

5663
	__folio_memcg_unlock(from);
5664 5665

	ret = 0;
5666
	nid = folio_nid(folio);
5667 5668

	local_irq_disable();
5669
	mem_cgroup_charge_statistics(to, nr_pages);
5670
	memcg_check_events(to, nid);
5671
	mem_cgroup_charge_statistics(from, -nr_pages);
5672
	memcg_check_events(from, nid);
5673 5674
	local_irq_enable();
out_unlock:
5675
	folio_unlock(folio);
5676 5677 5678 5679
out:
	return ret;
}

5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5695 5696
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
 *     (so ZONE_DEVICE page and thus not on the lru).
5697 5698 5699
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
5700 5701
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5702 5703 5704 5705
 *
 * Called with pte lock held.
 */

5706
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5707 5708 5709
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
5710
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5711 5712 5713 5714 5715
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
5716
		page = mc_handle_swap_pte(vma, ptent, &ent);
5717
	else if (pte_none(ptent))
5718
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5719 5720

	if (!page && !ent.val)
5721
		return ret;
5722 5723
	if (page) {
		/*
5724
		 * Do only loose check w/o serialization.
5725
		 * mem_cgroup_move_account() checks the page is valid or
5726
		 * not under LRU exclusion.
5727
		 */
5728
		if (page_memcg(page) == mc.from) {
5729
			ret = MC_TARGET_PAGE;
5730
			if (is_device_private_page(page))
5731
				ret = MC_TARGET_DEVICE;
5732 5733 5734 5735 5736 5737
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
5738 5739 5740 5741 5742
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
5743
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5744 5745 5746
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5747 5748 5749 5750
	}
	return ret;
}

5751 5752
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
5753 5754
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
5755 5756 5757 5758 5759 5760 5761 5762
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

5763 5764 5765 5766 5767
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
5768
	page = pmd_page(pmd);
5769
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5770
	if (!(mc.flags & MOVE_ANON))
5771
		return ret;
5772
	if (page_memcg(page) == mc.from) {
5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5789 5790 5791 5792
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
5793
	struct vm_area_struct *vma = walk->vma;
5794 5795 5796
	pte_t *pte;
	spinlock_t *ptl;

5797 5798
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5799 5800
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5801 5802
		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
		 * this might change.
5803
		 */
5804 5805
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5806
		spin_unlock(ptl);
5807
		return 0;
5808
	}
5809

5810 5811
	if (pmd_trans_unstable(pmd))
		return 0;
5812 5813
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5814
		if (get_mctgt_type(vma, addr, *pte, NULL))
5815 5816 5817 5818
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5819 5820 5821
	return 0;
}

5822 5823 5824 5825
static const struct mm_walk_ops precharge_walk_ops = {
	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
};

5826 5827 5828 5829
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

5830
	mmap_read_lock(mm);
5831
	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5832
	mmap_read_unlock(mm);
5833 5834 5835 5836 5837 5838 5839 5840 5841

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5842 5843 5844 5845 5846
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5847 5848
}

5849 5850
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5851
{
5852 5853 5854
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5855
	/* we must uncharge all the leftover precharges from mc.to */
5856
	if (mc.precharge) {
5857
		cancel_charge(mc.to, mc.precharge);
5858 5859 5860 5861 5862 5863 5864
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5865
		cancel_charge(mc.from, mc.moved_charge);
5866
		mc.moved_charge = 0;
5867
	}
5868 5869 5870
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5871
		if (!mem_cgroup_is_root(mc.from))
5872
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5873

5874 5875
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

5876
		/*
5877 5878
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5879
		 */
5880
		if (!mem_cgroup_is_root(mc.to))
5881 5882
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5883 5884
		mc.moved_swap = 0;
	}
5885 5886 5887 5888 5889 5890 5891
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
5892 5893
	struct mm_struct *mm = mc.mm;

5894 5895 5896 5897 5898 5899
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5900
	spin_lock(&mc.lock);
5901 5902
	mc.from = NULL;
	mc.to = NULL;
5903
	mc.mm = NULL;
5904
	spin_unlock(&mc.lock);
5905 5906

	mmput(mm);
5907 5908
}

5909
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5910
{
5911
	struct cgroup_subsys_state *css;
5912
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5913
	struct mem_cgroup *from;
5914
	struct task_struct *leader, *p;
5915
	struct mm_struct *mm;
5916
	unsigned long move_flags;
5917
	int ret = 0;
5918

5919 5920
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5921 5922
		return 0;

5923 5924 5925 5926 5927 5928 5929
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
5930
	cgroup_taskset_for_each_leader(leader, css, tset) {
5931 5932
		WARN_ON_ONCE(p);
		p = leader;
5933
		memcg = mem_cgroup_from_css(css);
5934 5935 5936 5937
	}
	if (!p)
		return 0;

5938
	/*
I
Ingo Molnar 已提交
5939
	 * We are now committed to this value whatever it is. Changes in this
5940 5941 5942 5943 5944 5945 5946
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
5963
		mc.mm = mm;
5964 5965 5966 5967 5968 5969 5970 5971 5972
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
5973 5974
	} else {
		mmput(mm);
5975 5976 5977 5978
	}
	return ret;
}

5979
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5980
{
5981 5982
	if (mc.to)
		mem_cgroup_clear_mc();
5983 5984
}

5985 5986 5987
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5988
{
5989
	int ret = 0;
5990
	struct vm_area_struct *vma = walk->vma;
5991 5992
	pte_t *pte;
	spinlock_t *ptl;
5993 5994 5995
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5996

5997 5998
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5999
		if (mc.precharge < HPAGE_PMD_NR) {
6000
			spin_unlock(ptl);
6001 6002 6003 6004 6005 6006
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
6007
				if (!mem_cgroup_move_account(page, true,
6008
							     mc.from, mc.to)) {
6009 6010 6011 6012 6013 6014
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
6015 6016 6017 6018 6019 6020 6021 6022
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
6023
		}
6024
		spin_unlock(ptl);
6025
		return 0;
6026 6027
	}

6028 6029
	if (pmd_trans_unstable(pmd))
		return 0;
6030 6031 6032 6033
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6034
		bool device = false;
6035
		swp_entry_t ent;
6036 6037 6038 6039

		if (!mc.precharge)
			break;

6040
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6041 6042
		case MC_TARGET_DEVICE:
			device = true;
J
Joe Perches 已提交
6043
			fallthrough;
6044 6045
		case MC_TARGET_PAGE:
			page = target.page;
6046 6047 6048 6049 6050 6051 6052 6053
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
6054
			if (!device && isolate_lru_page(page))
6055
				goto put;
6056 6057
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
6058
				mc.precharge--;
6059 6060
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6061
			}
6062 6063
			if (!device)
				putback_lru_page(page);
6064
put:			/* get_mctgt_type() gets the page */
6065 6066
			put_page(page);
			break;
6067 6068
		case MC_TARGET_SWAP:
			ent = target.ent;
6069
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6070
				mc.precharge--;
6071 6072
				mem_cgroup_id_get_many(mc.to, 1);
				/* we fixup other refcnts and charges later. */
6073 6074
				mc.moved_swap++;
			}
6075
			break;
6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6090
		ret = mem_cgroup_do_precharge(1);
6091 6092 6093 6094 6095 6096 6097
		if (!ret)
			goto retry;
	}

	return ret;
}

6098 6099 6100 6101
static const struct mm_walk_ops charge_walk_ops = {
	.pmd_entry	= mem_cgroup_move_charge_pte_range,
};

6102
static void mem_cgroup_move_charge(void)
6103 6104
{
	lru_add_drain_all();
6105
	/*
6106 6107 6108
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
6109 6110 6111
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
6112
retry:
6113
	if (unlikely(!mmap_read_trylock(mc.mm))) {
6114
		/*
6115
		 * Someone who are holding the mmap_lock might be waiting in
6116 6117 6118 6119 6120 6121 6122 6123 6124
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6125 6126 6127 6128
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
6129 6130
	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
			NULL);
6131

6132
	mmap_read_unlock(mc.mm);
6133
	atomic_dec(&mc.from->moving_account);
6134 6135
}

6136
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
6137
{
6138 6139
	if (mc.to) {
		mem_cgroup_move_charge();
6140
		mem_cgroup_clear_mc();
6141
	}
B
Balbir Singh 已提交
6142
}
6143
#else	/* !CONFIG_MMU */
6144
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6145 6146 6147
{
	return 0;
}
6148
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6149 6150
{
}
6151
static void mem_cgroup_move_task(void)
6152 6153 6154
{
}
#endif
B
Balbir Singh 已提交
6155

6156 6157 6158 6159 6160 6161 6162 6163 6164 6165
static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
{
	if (value == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);

	return 0;
}

6166 6167 6168
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
6169 6170 6171
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6172 6173
}

R
Roman Gushchin 已提交
6174 6175
static int memory_min_show(struct seq_file *m, void *v)
{
6176 6177
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
R
Roman Gushchin 已提交
6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

6197 6198
static int memory_low_show(struct seq_file *m, void *v)
{
6199 6200
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6201 6202 6203 6204 6205 6206 6207 6208 6209 6210
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
6211
	err = page_counter_memparse(buf, "max", &low);
6212 6213 6214
	if (err)
		return err;

6215
	page_counter_set_low(&memcg->memory, low);
6216 6217 6218 6219 6220 6221

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
6222 6223
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6224 6225 6226 6227 6228 6229
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6230
	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6231
	bool drained = false;
6232 6233 6234 6235
	unsigned long high;
	int err;

	buf = strstrip(buf);
6236
	err = page_counter_memparse(buf, "max", &high);
6237 6238 6239
	if (err)
		return err;

6240 6241
	page_counter_set_high(&memcg->memory, high);

6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263
	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);
		unsigned long reclaimed;

		if (nr_pages <= high)
			break;

		if (signal_pending(current))
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
							 GFP_KERNEL, true);

		if (!reclaimed && !nr_retries--)
			break;
	}
6264

6265
	memcg_wb_domain_size_changed(memcg);
6266 6267 6268 6269 6270
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
6271 6272
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6273 6274 6275 6276 6277 6278
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6279
	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6280
	bool drained = false;
6281 6282 6283 6284
	unsigned long max;
	int err;

	buf = strstrip(buf);
6285
	err = page_counter_memparse(buf, "max", &max);
6286 6287 6288
	if (err)
		return err;

6289
	xchg(&memcg->memory.max, max);
6290 6291 6292 6293 6294 6295 6296

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

6297
		if (signal_pending(current))
6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

6313
		memcg_memory_event(memcg, MEMCG_OOM);
6314 6315 6316
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
6317

6318
	memcg_wb_domain_size_changed(memcg);
6319 6320 6321
	return nbytes;
}

6322 6323 6324 6325 6326 6327 6328 6329 6330 6331
static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
{
	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&events[MEMCG_OOM_KILL]));
}

6332 6333
static int memory_events_show(struct seq_file *m, void *v)
{
6334
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6335

6336 6337 6338 6339 6340 6341 6342
	__memory_events_show(m, memcg->memory_events);
	return 0;
}

static int memory_events_local_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6343

6344
	__memory_events_show(m, memcg->memory_events_local);
6345 6346 6347
	return 0;
}

6348 6349
static int memory_stat_show(struct seq_file *m, void *v)
{
6350
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6351
	char *buf;
6352

6353 6354 6355 6356 6357
	buf = memory_stat_format(memcg);
	if (!buf)
		return -ENOMEM;
	seq_puts(m, buf);
	kfree(buf);
6358 6359 6360
	return 0;
}

6361
#ifdef CONFIG_NUMA
6362 6363 6364 6365 6366 6367
static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
						     int item)
{
	return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
}

6368 6369 6370 6371 6372
static int memory_numa_stat_show(struct seq_file *m, void *v)
{
	int i;
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);

6373 6374
	cgroup_rstat_flush(memcg->css.cgroup);

6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386
	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
		int nid;

		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
			continue;

		seq_printf(m, "%s", memory_stats[i].name);
		for_each_node_state(nid, N_MEMORY) {
			u64 size;
			struct lruvec *lruvec;

			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6387 6388
			size = lruvec_page_state_output(lruvec,
							memory_stats[i].idx);
6389 6390 6391 6392 6393 6394 6395 6396 6397
			seq_printf(m, " N%d=%llu", nid, size);
		}
		seq_putc(m, '\n');
	}

	return 0;
}
#endif

6398 6399
static int memory_oom_group_show(struct seq_file *m, void *v)
{
6400
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428

	seq_printf(m, "%d\n", memcg->oom_group);

	return 0;
}

static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
				      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	int ret, oom_group;

	buf = strstrip(buf);
	if (!buf)
		return -EINVAL;

	ret = kstrtoint(buf, 0, &oom_group);
	if (ret)
		return ret;

	if (oom_group != 0 && oom_group != 1)
		return -EINVAL;

	memcg->oom_group = oom_group;

	return nbytes;
}

6429 6430 6431
static struct cftype memory_files[] = {
	{
		.name = "current",
6432
		.flags = CFTYPE_NOT_ON_ROOT,
6433 6434
		.read_u64 = memory_current_read,
	},
R
Roman Gushchin 已提交
6435 6436 6437 6438 6439 6440
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
6462
		.file_offset = offsetof(struct mem_cgroup, events_file),
6463 6464
		.seq_show = memory_events_show,
	},
6465 6466 6467 6468 6469 6470
	{
		.name = "events.local",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, events_local_file),
		.seq_show = memory_events_local_show,
	},
6471 6472 6473 6474
	{
		.name = "stat",
		.seq_show = memory_stat_show,
	},
6475 6476 6477 6478 6479 6480
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.seq_show = memory_numa_stat_show,
	},
#endif
6481 6482 6483 6484 6485 6486
	{
		.name = "oom.group",
		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
		.seq_show = memory_oom_group_show,
		.write = memory_oom_group_write,
	},
6487 6488 6489
	{ }	/* terminate */
};

6490
struct cgroup_subsys memory_cgrp_subsys = {
6491
	.css_alloc = mem_cgroup_css_alloc,
6492
	.css_online = mem_cgroup_css_online,
6493
	.css_offline = mem_cgroup_css_offline,
6494
	.css_released = mem_cgroup_css_released,
6495
	.css_free = mem_cgroup_css_free,
6496
	.css_reset = mem_cgroup_css_reset,
6497
	.css_rstat_flush = mem_cgroup_css_rstat_flush,
6498 6499
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
6500
	.post_attach = mem_cgroup_move_task,
6501 6502
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
6503
	.early_init = 0,
B
Balbir Singh 已提交
6504
};
6505

6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535
/*
 * This function calculates an individual cgroup's effective
 * protection which is derived from its own memory.min/low, its
 * parent's and siblings' settings, as well as the actual memory
 * distribution in the tree.
 *
 * The following rules apply to the effective protection values:
 *
 * 1. At the first level of reclaim, effective protection is equal to
 *    the declared protection in memory.min and memory.low.
 *
 * 2. To enable safe delegation of the protection configuration, at
 *    subsequent levels the effective protection is capped to the
 *    parent's effective protection.
 *
 * 3. To make complex and dynamic subtrees easier to configure, the
 *    user is allowed to overcommit the declared protection at a given
 *    level. If that is the case, the parent's effective protection is
 *    distributed to the children in proportion to how much protection
 *    they have declared and how much of it they are utilizing.
 *
 *    This makes distribution proportional, but also work-conserving:
 *    if one cgroup claims much more protection than it uses memory,
 *    the unused remainder is available to its siblings.
 *
 * 4. Conversely, when the declared protection is undercommitted at a
 *    given level, the distribution of the larger parental protection
 *    budget is NOT proportional. A cgroup's protection from a sibling
 *    is capped to its own memory.min/low setting.
 *
6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547
 * 5. However, to allow protecting recursive subtrees from each other
 *    without having to declare each individual cgroup's fixed share
 *    of the ancestor's claim to protection, any unutilized -
 *    "floating" - protection from up the tree is distributed in
 *    proportion to each cgroup's *usage*. This makes the protection
 *    neutral wrt sibling cgroups and lets them compete freely over
 *    the shared parental protection budget, but it protects the
 *    subtree as a whole from neighboring subtrees.
 *
 * Note that 4. and 5. are not in conflict: 4. is about protecting
 * against immediate siblings whereas 5. is about protecting against
 * neighboring subtrees.
6548 6549
 */
static unsigned long effective_protection(unsigned long usage,
6550
					  unsigned long parent_usage,
6551 6552 6553 6554 6555
					  unsigned long setting,
					  unsigned long parent_effective,
					  unsigned long siblings_protected)
{
	unsigned long protected;
6556
	unsigned long ep;
6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586

	protected = min(usage, setting);
	/*
	 * If all cgroups at this level combined claim and use more
	 * protection then what the parent affords them, distribute
	 * shares in proportion to utilization.
	 *
	 * We are using actual utilization rather than the statically
	 * claimed protection in order to be work-conserving: claimed
	 * but unused protection is available to siblings that would
	 * otherwise get a smaller chunk than what they claimed.
	 */
	if (siblings_protected > parent_effective)
		return protected * parent_effective / siblings_protected;

	/*
	 * Ok, utilized protection of all children is within what the
	 * parent affords them, so we know whatever this child claims
	 * and utilizes is effectively protected.
	 *
	 * If there is unprotected usage beyond this value, reclaim
	 * will apply pressure in proportion to that amount.
	 *
	 * If there is unutilized protection, the cgroup will be fully
	 * shielded from reclaim, but we do return a smaller value for
	 * protection than what the group could enjoy in theory. This
	 * is okay. With the overcommit distribution above, effective
	 * protection is always dependent on how memory is actually
	 * consumed among the siblings anyway.
	 */
6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599
	ep = protected;

	/*
	 * If the children aren't claiming (all of) the protection
	 * afforded to them by the parent, distribute the remainder in
	 * proportion to the (unprotected) memory of each cgroup. That
	 * way, cgroups that aren't explicitly prioritized wrt each
	 * other compete freely over the allowance, but they are
	 * collectively protected from neighboring trees.
	 *
	 * We're using unprotected memory for the weight so that if
	 * some cgroups DO claim explicit protection, we don't protect
	 * the same bytes twice.
6600 6601 6602 6603
	 *
	 * Check both usage and parent_usage against the respective
	 * protected values. One should imply the other, but they
	 * aren't read atomically - make sure the division is sane.
6604 6605 6606
	 */
	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
		return ep;
6607 6608 6609
	if (parent_effective > siblings_protected &&
	    parent_usage > siblings_protected &&
	    usage > protected) {
6610 6611 6612 6613 6614 6615 6616 6617 6618 6619
		unsigned long unclaimed;

		unclaimed = parent_effective - siblings_protected;
		unclaimed *= usage - protected;
		unclaimed /= parent_usage - siblings_protected;

		ep += unclaimed;
	}

	return ep;
6620 6621
}

6622
/**
6623
 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6624
 * @root: the top ancestor of the sub-tree being checked
6625 6626
 * @memcg: the memory cgroup to check
 *
6627 6628
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
6629
 */
6630 6631
void mem_cgroup_calculate_protection(struct mem_cgroup *root,
				     struct mem_cgroup *memcg)
6632
{
6633
	unsigned long usage, parent_usage;
6634 6635
	struct mem_cgroup *parent;

6636
	if (mem_cgroup_disabled())
6637
		return;
6638

6639 6640
	if (!root)
		root = root_mem_cgroup;
6641 6642 6643 6644 6645 6646 6647 6648

	/*
	 * Effective values of the reclaim targets are ignored so they
	 * can be stale. Have a look at mem_cgroup_protection for more
	 * details.
	 * TODO: calculation should be more robust so that we do not need
	 * that special casing.
	 */
6649
	if (memcg == root)
6650
		return;
6651

6652
	usage = page_counter_read(&memcg->memory);
R
Roman Gushchin 已提交
6653
	if (!usage)
6654
		return;
R
Roman Gushchin 已提交
6655 6656

	parent = parent_mem_cgroup(memcg);
6657 6658
	/* No parent means a non-hierarchical mode on v1 memcg */
	if (!parent)
6659
		return;
6660

6661
	if (parent == root) {
6662
		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6663
		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6664
		return;
R
Roman Gushchin 已提交
6665 6666
	}

6667 6668
	parent_usage = page_counter_read(&parent->memory);

6669
	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6670 6671
			READ_ONCE(memcg->memory.min),
			READ_ONCE(parent->memory.emin),
6672
			atomic_long_read(&parent->memory.children_min_usage)));
6673

6674
	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6675 6676
			READ_ONCE(memcg->memory.low),
			READ_ONCE(parent->memory.elow),
6677
			atomic_long_read(&parent->memory.children_low_usage)));
6678 6679
}

6680 6681
static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
			gfp_t gfp)
6682
{
6683
	long nr_pages = folio_nr_pages(folio);
6684 6685 6686 6687 6688 6689 6690
	int ret;

	ret = try_charge(memcg, gfp, nr_pages);
	if (ret)
		goto out;

	css_get(&memcg->css);
6691
	commit_charge(folio, memcg);
6692 6693

	local_irq_disable();
6694
	mem_cgroup_charge_statistics(memcg, nr_pages);
6695
	memcg_check_events(memcg, folio_nid(folio));
6696 6697 6698 6699 6700
	local_irq_enable();
out:
	return ret;
}

6701
int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
6702
{
6703 6704
	struct mem_cgroup *memcg;
	int ret;
6705

6706
	memcg = get_mem_cgroup_from_mm(mm);
6707
	ret = charge_memcg(folio, memcg, gfp);
6708
	css_put(&memcg->css);
6709

6710 6711
	return ret;
}
6712

6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727
/**
 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp: reclaim mode
 * @entry: swap entry for which the page is allocated
 *
 * This function charges a page allocated for swapin. Please call this before
 * adding the page to the swapcache.
 *
 * Returns 0 on success. Otherwise, an error code is returned.
 */
int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
				  gfp_t gfp, swp_entry_t entry)
{
6728
	struct folio *folio = page_folio(page);
6729 6730 6731
	struct mem_cgroup *memcg;
	unsigned short id;
	int ret;
6732

6733 6734
	if (mem_cgroup_disabled())
		return 0;
6735

6736 6737 6738 6739 6740 6741
	id = lookup_swap_cgroup_id(entry);
	rcu_read_lock();
	memcg = mem_cgroup_from_id(id);
	if (!memcg || !css_tryget_online(&memcg->css))
		memcg = get_mem_cgroup_from_mm(mm);
	rcu_read_unlock();
6742

6743
	ret = charge_memcg(folio, memcg, gfp);
6744

6745 6746 6747
	css_put(&memcg->css);
	return ret;
}
6748

6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759
/*
 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
 * @entry: swap entry for which the page is charged
 *
 * Call this function after successfully adding the charged page to swapcache.
 *
 * Note: This function assumes the page for which swap slot is being uncharged
 * is order 0 page.
 */
void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
{
6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771
	/*
	 * Cgroup1's unified memory+swap counter has been charged with the
	 * new swapcache page, finish the transfer by uncharging the swap
	 * slot. The swap slot would also get uncharged when it dies, but
	 * it can stick around indefinitely and we'd count the page twice
	 * the entire time.
	 *
	 * Cgroup2 has separate resource counters for memory and swap,
	 * so this is a non-issue here. Memory and swap charge lifetimes
	 * correspond 1:1 to page and swap slot lifetimes: we charge the
	 * page to memory here, and uncharge swap when the slot is freed.
	 */
6772
	if (!mem_cgroup_disabled() && do_memsw_account()) {
6773 6774 6775 6776 6777
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
6778
		mem_cgroup_uncharge_swap(entry, 1);
6779
	}
6780 6781
}

6782 6783
struct uncharge_gather {
	struct mem_cgroup *memcg;
6784
	unsigned long nr_memory;
6785 6786
	unsigned long pgpgout;
	unsigned long nr_kmem;
6787
	int nid;
6788 6789 6790
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6791
{
6792 6793 6794 6795 6796
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
6797 6798
	unsigned long flags;

6799 6800
	if (ug->nr_memory) {
		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6801
		if (do_memsw_account())
6802
			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6803 6804 6805
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
6806
	}
6807 6808

	local_irq_save(flags);
6809
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6810
	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6811
	memcg_check_events(ug->memcg, ug->nid);
6812
	local_irq_restore(flags);
6813

6814
	/* drop reference from uncharge_folio */
6815
	css_put(&ug->memcg->css);
6816 6817
}

6818
static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
6819
{
6820
	long nr_pages;
6821 6822
	struct mem_cgroup *memcg;
	struct obj_cgroup *objcg;
6823
	bool use_objcg = folio_memcg_kmem(folio);
6824

6825
	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
6826 6827 6828

	/*
	 * Nobody should be changing or seriously looking at
6829 6830
	 * folio memcg or objcg at this point, we have fully
	 * exclusive access to the folio.
6831
	 */
6832
	if (use_objcg) {
6833
		objcg = __folio_objcg(folio);
6834 6835 6836 6837 6838 6839
		/*
		 * This get matches the put at the end of the function and
		 * kmem pages do not hold memcg references anymore.
		 */
		memcg = get_mem_cgroup_from_objcg(objcg);
	} else {
6840
		memcg = __folio_memcg(folio);
6841
	}
6842

6843 6844 6845 6846
	if (!memcg)
		return;

	if (ug->memcg != memcg) {
6847 6848 6849 6850
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
6851
		ug->memcg = memcg;
6852
		ug->nid = folio_nid(folio);
6853 6854

		/* pairs with css_put in uncharge_batch */
6855
		css_get(&memcg->css);
6856 6857
	}

6858
	nr_pages = folio_nr_pages(folio);
6859

6860
	if (use_objcg) {
6861
		ug->nr_memory += nr_pages;
6862
		ug->nr_kmem += nr_pages;
6863

6864
		folio->memcg_data = 0;
6865 6866 6867 6868 6869
		obj_cgroup_put(objcg);
	} else {
		/* LRU pages aren't accounted at the root level */
		if (!mem_cgroup_is_root(memcg))
			ug->nr_memory += nr_pages;
6870
		ug->pgpgout++;
6871

6872
		folio->memcg_data = 0;
6873 6874 6875
	}

	css_put(&memcg->css);
6876 6877
}

6878
void __mem_cgroup_uncharge(struct folio *folio)
6879
{
6880 6881
	struct uncharge_gather ug;

6882 6883
	/* Don't touch folio->lru of any random page, pre-check: */
	if (!folio_memcg(folio))
6884 6885
		return;

6886
	uncharge_gather_clear(&ug);
6887
	uncharge_folio(folio, &ug);
6888
	uncharge_batch(&ug);
6889
}
6890

6891
/**
6892
 * __mem_cgroup_uncharge_list - uncharge a list of page
6893 6894 6895
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
6896
 * __mem_cgroup_charge().
6897
 */
6898
void __mem_cgroup_uncharge_list(struct list_head *page_list)
6899
{
6900
	struct uncharge_gather ug;
6901
	struct folio *folio;
6902 6903

	uncharge_gather_clear(&ug);
6904 6905
	list_for_each_entry(folio, page_list, lru)
		uncharge_folio(folio, &ug);
6906 6907
	if (ug.memcg)
		uncharge_batch(&ug);
6908 6909 6910
}

/**
6911 6912 6913
 * mem_cgroup_migrate - Charge a folio's replacement.
 * @old: Currently circulating folio.
 * @new: Replacement folio.
6914
 *
6915
 * Charge @new as a replacement folio for @old. @old will
6916
 * be uncharged upon free.
6917
 *
6918
 * Both folios must be locked, @new->mapping must be set up.
6919
 */
6920
void mem_cgroup_migrate(struct folio *old, struct folio *new)
6921
{
6922
	struct mem_cgroup *memcg;
6923
	long nr_pages = folio_nr_pages(new);
6924
	unsigned long flags;
6925

6926 6927 6928 6929
	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
	VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
6930 6931 6932 6933

	if (mem_cgroup_disabled())
		return;

6934 6935
	/* Page cache replacement: new folio already charged? */
	if (folio_memcg(new))
6936 6937
		return;

6938 6939
	memcg = folio_memcg(old);
	VM_WARN_ON_ONCE_FOLIO(!memcg, old);
6940
	if (!memcg)
6941 6942
		return;

6943
	/* Force-charge the new page. The old one will be freed soon */
6944 6945 6946 6947 6948
	if (!mem_cgroup_is_root(memcg)) {
		page_counter_charge(&memcg->memory, nr_pages);
		if (do_memsw_account())
			page_counter_charge(&memcg->memsw, nr_pages);
	}
6949

6950
	css_get(&memcg->css);
6951
	commit_charge(new, memcg);
6952

6953
	local_irq_save(flags);
6954
	mem_cgroup_charge_statistics(memcg, nr_pages);
6955
	memcg_check_events(memcg, folio_nid(new));
6956
	local_irq_restore(flags);
6957 6958
}

6959
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6960 6961
EXPORT_SYMBOL(memcg_sockets_enabled_key);

6962
void mem_cgroup_sk_alloc(struct sock *sk)
6963 6964 6965
{
	struct mem_cgroup *memcg;

6966 6967 6968
	if (!mem_cgroup_sockets_enabled)
		return;

6969 6970 6971 6972
	/* Do not associate the sock with unrelated interrupted task's memcg. */
	if (in_interrupt())
		return;

6973 6974
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
6975 6976
	if (memcg == root_mem_cgroup)
		goto out;
6977
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6978
		goto out;
S
Shakeel Butt 已提交
6979
	if (css_tryget(&memcg->css))
6980
		sk->sk_memcg = memcg;
6981
out:
6982 6983 6984
	rcu_read_unlock();
}

6985
void mem_cgroup_sk_free(struct sock *sk)
6986
{
6987 6988
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
6989 6990 6991 6992 6993 6994
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
6995
 * @gfp_mask: reclaim mode
6996 6997
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6998
 * @memcg's configured limit, %false if it doesn't.
6999
 */
7000 7001
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
			     gfp_t gfp_mask)
7002
{
7003
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7004
		struct page_counter *fail;
7005

7006 7007
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
7008 7009
			return true;
		}
7010
		memcg->tcpmem_pressure = 1;
7011 7012 7013 7014
		if (gfp_mask & __GFP_NOFAIL) {
			page_counter_charge(&memcg->tcpmem, nr_pages);
			return true;
		}
7015
		return false;
7016
	}
7017

7018 7019
	if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
		mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7020
		return true;
7021
	}
7022

7023 7024 7025 7026 7027
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
7028 7029
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
7030 7031 7032
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
7033
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7034
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7035 7036
		return;
	}
7037

7038
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7039

7040
	refill_stock(memcg, nr_pages);
7041 7042
}

7043 7044 7045 7046 7047 7048 7049 7050 7051
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
7052 7053
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
7054 7055 7056 7057
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
7058

7059
/*
7060 7061
 * subsys_initcall() for memory controller.
 *
7062 7063 7064 7065
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
7066 7067 7068
 */
static int __init mem_cgroup_init(void)
{
7069 7070
	int cpu, node;

7071 7072 7073 7074 7075 7076 7077 7078
	/*
	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
	 * used for per-memcg-per-cpu caching of per-node statistics. In order
	 * to work fine, we should make sure that the overfill threshold can't
	 * exceed S32_MAX / PAGE_SIZE.
	 */
	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);

7079 7080
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

7092
		rtpn->rb_root = RB_ROOT;
7093
		rtpn->rb_rightmost = NULL;
7094
		spin_lock_init(&rtpn->lock);
7095 7096 7097
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

7098 7099 7100
	return 0;
}
subsys_initcall(mem_cgroup_init);
7101 7102

#ifdef CONFIG_MEMCG_SWAP
7103 7104
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
7105
	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

7121 7122 7123 7124 7125 7126 7127 7128 7129
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
7130
	struct mem_cgroup *memcg, *swap_memcg;
7131
	unsigned int nr_entries;
7132 7133 7134 7135 7136
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

7137 7138 7139
	if (mem_cgroup_disabled())
		return;

7140
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7141 7142
		return;

7143
	memcg = page_memcg(page);
7144

7145
	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7146 7147 7148
	if (!memcg)
		return;

7149 7150 7151 7152 7153 7154
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
7155
	nr_entries = thp_nr_pages(page);
7156 7157 7158 7159 7160
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
7161
	VM_BUG_ON_PAGE(oldid, page);
7162
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7163

7164
	page->memcg_data = 0;
7165 7166

	if (!mem_cgroup_is_root(memcg))
7167
		page_counter_uncharge(&memcg->memory, nr_entries);
7168

7169
	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7170
		if (!mem_cgroup_is_root(swap_memcg))
7171 7172
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
7173 7174
	}

7175 7176
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
7177
	 * i_pages lock which is taken with interrupts-off. It is
7178
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
7179
	 * only synchronisation we have for updating the per-CPU variables.
7180 7181
	 */
	VM_BUG_ON(!irqs_disabled());
7182
	mem_cgroup_charge_statistics(memcg, -nr_entries);
7183
	memcg_check_events(memcg, page_to_nid(page));
7184

7185
	css_put(&memcg->css);
7186 7187
}

7188
/**
7189
 * __mem_cgroup_try_charge_swap - try charging swap space for a page
7190 7191 7192
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
7193
 * Try to charge @page's memcg for the swap space at @entry.
7194 7195 7196
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
7197
int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7198
{
7199
	unsigned int nr_pages = thp_nr_pages(page);
7200
	struct page_counter *counter;
7201
	struct mem_cgroup *memcg;
7202 7203
	unsigned short oldid;

7204
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7205 7206
		return 0;

7207
	memcg = page_memcg(page);
7208

7209
	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7210 7211 7212
	if (!memcg)
		return 0;

7213 7214
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7215
		return 0;
7216
	}
7217

7218 7219
	memcg = mem_cgroup_id_get_online(memcg);

7220
	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7221
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7222 7223
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7224
		mem_cgroup_id_put(memcg);
7225
		return -ENOMEM;
7226
	}
7227

7228 7229 7230 7231
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7232
	VM_BUG_ON_PAGE(oldid, page);
7233
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7234 7235 7236 7237

	return 0;
}

7238
/**
7239
 * __mem_cgroup_uncharge_swap - uncharge swap space
7240
 * @entry: swap entry to uncharge
7241
 * @nr_pages: the amount of swap space to uncharge
7242
 */
7243
void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7244 7245 7246 7247
{
	struct mem_cgroup *memcg;
	unsigned short id;

7248
	id = swap_cgroup_record(entry, 0, nr_pages);
7249
	rcu_read_lock();
7250
	memcg = mem_cgroup_from_id(id);
7251
	if (memcg) {
7252
		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7253
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7254
				page_counter_uncharge(&memcg->swap, nr_pages);
7255
			else
7256
				page_counter_uncharge(&memcg->memsw, nr_pages);
7257
		}
7258
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7259
		mem_cgroup_id_put_many(memcg, nr_pages);
7260 7261 7262 7263
	}
	rcu_read_unlock();
}

7264 7265 7266 7267
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

7268
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7269 7270 7271
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
7272
				      READ_ONCE(memcg->swap.max) -
7273 7274 7275 7276
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

7277 7278 7279 7280 7281 7282 7283 7284
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
7285
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7286 7287
		return false;

7288
	memcg = page_memcg(page);
7289 7290 7291
	if (!memcg)
		return false;

7292 7293 7294 7295 7296
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		unsigned long usage = page_counter_read(&memcg->swap);

		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
		    usage * 2 >= READ_ONCE(memcg->swap.max))
7297
			return true;
7298
	}
7299 7300 7301 7302

	return false;
}

7303
static int __init setup_swap_account(char *s)
7304 7305
{
	if (!strcmp(s, "1"))
7306
		cgroup_memory_noswap = false;
7307
	else if (!strcmp(s, "0"))
7308
		cgroup_memory_noswap = true;
7309 7310
	return 1;
}
7311
__setup("swapaccount=", setup_swap_account);
7312

7313 7314 7315 7316 7317 7318 7319 7320
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343
static int swap_high_show(struct seq_file *m, void *v)
{
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
}

static ssize_t swap_high_write(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &high);
	if (err)
		return err;

	page_counter_set_high(&memcg->swap, high);

	return nbytes;
}

7344 7345
static int swap_max_show(struct seq_file *m, void *v)
{
7346 7347
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

7362
	xchg(&memcg->swap.max, max);
7363 7364 7365 7366

	return nbytes;
}

7367 7368
static int swap_events_show(struct seq_file *m, void *v)
{
7369
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7370

7371 7372
	seq_printf(m, "high %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7373 7374 7375 7376 7377 7378 7379 7380
	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

7381 7382 7383 7384 7385 7386
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
7387 7388 7389 7390 7391 7392
	{
		.name = "swap.high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_high_show,
		.write = swap_high_write,
	},
7393 7394 7395 7396 7397 7398
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
7399 7400 7401 7402 7403 7404
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
7405 7406 7407
	{ }	/* terminate */
};

7408
static struct cftype memsw_files[] = {
7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

7435 7436 7437 7438 7439 7440 7441
/*
 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
 * boot parameter. This may result in premature OOPS inside
 * mem_cgroup_get_nr_swap_pages() function in corner cases.
 */
7442 7443
static int __init mem_cgroup_swap_init(void)
{
7444 7445 7446 7447 7448
	/* No memory control -> no swap control */
	if (mem_cgroup_disabled())
		cgroup_memory_noswap = true;

	if (cgroup_memory_noswap)
7449 7450 7451 7452 7453
		return 0;

	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));

7454 7455
	return 0;
}
7456
core_initcall(mem_cgroup_swap_init);
7457 7458

#endif /* CONFIG_MEMCG_SWAP */