memcontrol.c 167.7 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/sched/mm.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
41
#include <linux/pagemap.h>
42
#include <linux/smp.h>
43
#include <linux/page-flags.h>
44
#include <linux/backing-dev.h>
45 46
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
47
#include <linux/limits.h>
48
#include <linux/export.h>
49
#include <linux/mutex.h>
50
#include <linux/rbtree.h>
51
#include <linux/slab.h>
52
#include <linux/swap.h>
53
#include <linux/swapops.h>
54
#include <linux/spinlock.h>
55
#include <linux/eventfd.h>
56
#include <linux/poll.h>
57
#include <linux/sort.h>
58
#include <linux/fs.h>
59
#include <linux/seq_file.h>
60
#include <linux/vmpressure.h>
61
#include <linux/mm_inline.h>
62
#include <linux/swap_cgroup.h>
63
#include <linux/cpu.h>
64
#include <linux/oom.h>
65
#include <linux/lockdep.h>
66
#include <linux/file.h>
67
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
68
#include "internal.h"
G
Glauber Costa 已提交
69
#include <net/sock.h>
M
Michal Hocko 已提交
70
#include <net/ip.h>
71
#include "slab.h"
B
Balbir Singh 已提交
72

73
#include <linux/uaccess.h>
74

75 76
#include <trace/events/vmscan.h>

77 78
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
79

80 81
struct mem_cgroup *root_mem_cgroup __read_mostly;

82
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
83

84 85 86
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

87 88 89
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

90
/* Whether the swap controller is active */
A
Andrew Morton 已提交
91
#ifdef CONFIG_MEMCG_SWAP
92 93
int do_swap_account __read_mostly;
#else
94
#define do_swap_account		0
95 96
#endif

97 98 99 100 101 102
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

103
static const char *const mem_cgroup_lru_names[] = {
104 105 106 107 108 109 110
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

111 112 113
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
114

115 116 117 118 119
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

120
struct mem_cgroup_tree_per_node {
121
	struct rb_root rb_root;
122
	struct rb_node *rb_rightmost;
123 124 125 126 127 128 129 130 131
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
132 133 134 135 136
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
137

138 139 140
/*
 * cgroup_event represents events which userspace want to receive.
 */
141
struct mem_cgroup_event {
142
	/*
143
	 * memcg which the event belongs to.
144
	 */
145
	struct mem_cgroup *memcg;
146 147 148 149 150 151 152 153
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
154 155 156 157 158
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
159
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
160
			      struct eventfd_ctx *eventfd, const char *args);
161 162 163 164 165
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
166
	void (*unregister_event)(struct mem_cgroup *memcg,
167
				 struct eventfd_ctx *eventfd);
168 169 170 171 172 173
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
174
	wait_queue_entry_t wait;
175 176 177
	struct work_struct remove;
};

178 179
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
180

181 182
/* Stuffs for move charges at task migration. */
/*
183
 * Types of charges to be moved.
184
 */
185 186 187
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
188

189 190
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
191
	spinlock_t	  lock; /* for from, to */
192
	struct mm_struct  *mm;
193 194
	struct mem_cgroup *from;
	struct mem_cgroup *to;
195
	unsigned long flags;
196
	unsigned long precharge;
197
	unsigned long moved_charge;
198
	unsigned long moved_swap;
199 200 201
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
202
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
203 204
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
205

206 207 208 209
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
210
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
211
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
212

213 214
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
215
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
216
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
217
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
218 219 220
	NR_CHARGE_TYPE,
};

221
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
222 223 224 225
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
226
	_KMEM,
V
Vladimir Davydov 已提交
227
	_TCP,
G
Glauber Costa 已提交
228 229
};

230 231
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
232
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
233 234
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
235

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(root, iter, NULL))

#define for_each_mem_cgroup(iter)			\
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(NULL, iter, NULL))

251 252 253 254 255 256 257 258 259 260 261 262 263
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

264 265 266 267 268
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

269
#ifdef CONFIG_MEMCG_KMEM
270
/*
271
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
272 273 274 275 276
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
277
 *
278 279
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
280
 */
281 282
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
283

284 285 286 287 288 289 290 291 292 293 294 295 296
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

297 298 299 300 301 302
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
303
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
304 305
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
306
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
307 308 309
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
310
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
311

312 313 314 315 316 317
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
318
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
319
EXPORT_SYMBOL(memcg_kmem_enabled_key);
320

321 322
struct workqueue_struct *memcg_kmem_cache_wq;

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
static int memcg_shrinker_map_size;
static DEFINE_MUTEX(memcg_shrinker_map_mutex);

static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
{
	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
}

static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
					 int size, int old_size)
{
	struct memcg_shrinker_map *new, *old;
	int nid;

	lockdep_assert_held(&memcg_shrinker_map_mutex);

	for_each_node(nid) {
		old = rcu_dereference_protected(
			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
		/* Not yet online memcg */
		if (!old)
			return 0;

		new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
		if (!new)
			return -ENOMEM;

		/* Set all old bits, clear all new bits */
		memset(new->map, (int)0xff, old_size);
		memset((void *)new->map + old_size, 0, size - old_size);

		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
	}

	return 0;
}

static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *pn;
	struct memcg_shrinker_map *map;
	int nid;

	if (mem_cgroup_is_root(memcg))
		return;

	for_each_node(nid) {
		pn = mem_cgroup_nodeinfo(memcg, nid);
		map = rcu_dereference_protected(pn->shrinker_map, true);
		if (map)
			kvfree(map);
		rcu_assign_pointer(pn->shrinker_map, NULL);
	}
}

static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	struct memcg_shrinker_map *map;
	int nid, size, ret = 0;

	if (mem_cgroup_is_root(memcg))
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	size = memcg_shrinker_map_size;
	for_each_node(nid) {
		map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
		if (!map) {
			memcg_free_shrinker_maps(memcg);
			ret = -ENOMEM;
			break;
		}
		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
	}
	mutex_unlock(&memcg_shrinker_map_mutex);

	return ret;
}

int memcg_expand_shrinker_maps(int new_id)
{
	int size, old_size, ret = 0;
	struct mem_cgroup *memcg;

	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
	old_size = memcg_shrinker_map_size;
	if (size <= old_size)
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	if (!root_mem_cgroup)
		goto unlock;

	for_each_mem_cgroup(memcg) {
		if (mem_cgroup_is_root(memcg))
			continue;
		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
		if (ret)
			goto unlock;
	}
unlock:
	if (!ret)
		memcg_shrinker_map_size = size;
	mutex_unlock(&memcg_shrinker_map_mutex);
	return ret;
}
#else /* CONFIG_MEMCG_KMEM */
static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	return 0;
}
static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
436
#endif /* CONFIG_MEMCG_KMEM */
437

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

455
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
456 457 458 459 460
		memcg = root_mem_cgroup;

	return &memcg->css;
}

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

489 490
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
491
{
492
	int nid = page_to_nid(page);
493

494
	return memcg->nodeinfo[nid];
495 496
}

497 498
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
499
{
500
	return soft_limit_tree.rb_tree_per_node[nid];
501 502
}

503
static struct mem_cgroup_tree_per_node *
504 505 506 507
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

508
	return soft_limit_tree.rb_tree_per_node[nid];
509 510
}

511 512
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
513
					 unsigned long new_usage_in_excess)
514 515 516
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
517
	struct mem_cgroup_per_node *mz_node;
518
	bool rightmost = true;
519 520 521 522 523 524 525 526 527

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
528
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
529
					tree_node);
530
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
531
			p = &(*p)->rb_left;
532 533 534
			rightmost = false;
		}

535 536 537 538 539 540 541
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
542 543 544 545

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

546 547 548 549 550
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

551 552
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
553 554 555
{
	if (!mz->on_tree)
		return;
556 557 558 559

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

560 561 562 563
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

564 565
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
566
{
567 568 569
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
570
	__mem_cgroup_remove_exceeded(mz, mctz);
571
	spin_unlock_irqrestore(&mctz->lock, flags);
572 573
}

574 575 576
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
577
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
578 579 580 581 582 583 584
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
585 586 587

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
588
	unsigned long excess;
589 590
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
591

592
	mctz = soft_limit_tree_from_page(page);
593 594
	if (!mctz)
		return;
595 596 597 598 599
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
600
		mz = mem_cgroup_page_nodeinfo(memcg, page);
601
		excess = soft_limit_excess(memcg);
602 603 604 605 606
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
607 608 609
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
610 611
			/* if on-tree, remove it */
			if (mz->on_tree)
612
				__mem_cgroup_remove_exceeded(mz, mctz);
613 614 615 616
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
617
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
618
			spin_unlock_irqrestore(&mctz->lock, flags);
619 620 621 622 623 624
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
625 626 627
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
628

629
	for_each_node(nid) {
630 631
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
632 633
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
634 635 636
	}
}

637 638
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
639
{
640
	struct mem_cgroup_per_node *mz;
641 642 643

retry:
	mz = NULL;
644
	if (!mctz->rb_rightmost)
645 646
		goto done;		/* Nothing to reclaim from */

647 648
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
649 650 651 652 653
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
654
	__mem_cgroup_remove_exceeded(mz, mctz);
655
	if (!soft_limit_excess(mz->memcg) ||
656
	    !css_tryget_online(&mz->memcg->css))
657 658 659 660 661
		goto retry;
done:
	return mz;
}

662 663
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
664
{
665
	struct mem_cgroup_per_node *mz;
666

667
	spin_lock_irq(&mctz->lock);
668
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
669
	spin_unlock_irq(&mctz->lock);
670 671 672
	return mz;
}

673
static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
674
				      int event)
675
{
676
	return atomic_long_read(&memcg->events[event]);
677 678
}

679
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
680
					 struct page *page,
681
					 bool compound, int nr_pages)
682
{
683 684 685 686
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
687
	if (PageAnon(page))
688
		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
689
	else {
690
		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
691
		if (PageSwapBacked(page))
692
			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
693
	}
694

695 696
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
697
		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
698
	}
699

700 701
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
702
		__count_memcg_events(memcg, PGPGIN, 1);
703
	else {
704
		__count_memcg_events(memcg, PGPGOUT, 1);
705 706
		nr_pages = -nr_pages; /* for event */
	}
707

708
	__this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
709 710
}

711 712
unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
					   int nid, unsigned int lru_mask)
713
{
714
	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
715
	unsigned long nr = 0;
716
	enum lru_list lru;
717

718
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
719

720 721 722
	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
723
		nr += mem_cgroup_get_lru_size(lruvec, lru);
724 725
	}
	return nr;
726
}
727

728
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
729
			unsigned int lru_mask)
730
{
731
	unsigned long nr = 0;
732
	int nid;
733

734
	for_each_node_state(nid, N_MEMORY)
735 736
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
737 738
}

739 740
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
741 742 743
{
	unsigned long val, next;

744 745
	val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
	next = __this_cpu_read(memcg->stat_cpu->targets[target]);
746
	/* from time_after() in jiffies.h */
747
	if ((long)(next - val) < 0) {
748 749 750 751
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
752 753 754
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
755 756 757 758 759 760
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
761
		__this_cpu_write(memcg->stat_cpu->targets[target], next);
762
		return true;
763
	}
764
	return false;
765 766 767 768 769 770
}

/*
 * Check events in order.
 *
 */
771
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
772 773
{
	/* threshold event is triggered in finer grain than soft limit */
774 775
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
776
		bool do_softlimit;
777
		bool do_numainfo __maybe_unused;
778

779 780
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
781 782 783 784
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
785
		mem_cgroup_threshold(memcg);
786 787
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
788
#if MAX_NUMNODES > 1
789
		if (unlikely(do_numainfo))
790
			atomic_inc(&memcg->numainfo_events);
791
#endif
792
	}
793 794
}

795
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
796
{
797 798 799 800 801 802 803 804
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

805
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
806
}
M
Michal Hocko 已提交
807
EXPORT_SYMBOL(mem_cgroup_from_task);
808

809 810 811 812 813 814 815 816 817
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
 * returned.
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
818
{
819 820 821 822
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
823

824 825
	rcu_read_lock();
	do {
826 827 828 829 830 831
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
832
			memcg = root_mem_cgroup;
833 834 835 836 837
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
838
	} while (!css_tryget_online(&memcg->css));
839
	rcu_read_unlock();
840
	return memcg;
841
}
842 843
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
/**
 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
 * @page: page from which memcg should be extracted.
 *
 * Obtain a reference on page->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned.
 */
struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
{
	struct mem_cgroup *memcg = page->mem_cgroup;

	if (mem_cgroup_disabled())
		return NULL;

	rcu_read_lock();
	if (!memcg || !css_tryget_online(&memcg->css))
		memcg = root_mem_cgroup;
	rcu_read_unlock();
	return memcg;
}
EXPORT_SYMBOL(get_mem_cgroup_from_page);

866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
/**
 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
 */
static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
{
	if (unlikely(current->active_memcg)) {
		struct mem_cgroup *memcg = root_mem_cgroup;

		rcu_read_lock();
		if (css_tryget_online(&current->active_memcg->css))
			memcg = current->active_memcg;
		rcu_read_unlock();
		return memcg;
	}
	return get_mem_cgroup_from_mm(current->mm);
}
882

883 884 885 886 887 888 889 890 891 892 893 894 895
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
896
 * Reclaimers can specify a node and a priority level in @reclaim to
897
 * divide up the memcgs in the hierarchy among all concurrent
898
 * reclaimers operating on the same node and priority.
899
 */
900
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
901
				   struct mem_cgroup *prev,
902
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
903
{
M
Michal Hocko 已提交
904
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
905
	struct cgroup_subsys_state *css = NULL;
906
	struct mem_cgroup *memcg = NULL;
907
	struct mem_cgroup *pos = NULL;
908

909 910
	if (mem_cgroup_disabled())
		return NULL;
911

912 913
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
914

915
	if (prev && !reclaim)
916
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
917

918 919
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
920
			goto out;
921
		return root;
922
	}
K
KAMEZAWA Hiroyuki 已提交
923

924
	rcu_read_lock();
M
Michal Hocko 已提交
925

926
	if (reclaim) {
927
		struct mem_cgroup_per_node *mz;
928

929
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
930 931 932 933 934
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

935
		while (1) {
936
			pos = READ_ONCE(iter->position);
937 938
			if (!pos || css_tryget(&pos->css))
				break;
939
			/*
940 941 942 943 944 945
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
946
			 */
947 948
			(void)cmpxchg(&iter->position, pos, NULL);
		}
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
966
		}
K
KAMEZAWA Hiroyuki 已提交
967

968 969 970 971 972 973
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
974

975 976
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
977

978 979
		if (css_tryget(css))
			break;
980

981
		memcg = NULL;
982
	}
983 984 985

	if (reclaim) {
		/*
986 987 988
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
989
		 */
990 991
		(void)cmpxchg(&iter->position, pos, memcg);

992 993 994 995 996 997 998
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
999
	}
1000

1001 1002
out_unlock:
	rcu_read_unlock();
1003
out:
1004 1005 1006
	if (prev && prev != root)
		css_put(&prev->css);

1007
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1008
}
K
KAMEZAWA Hiroyuki 已提交
1009

1010 1011 1012 1013 1014 1015 1016
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1017 1018 1019 1020 1021 1022
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1023

1024 1025 1026 1027
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
1028 1029
	struct mem_cgroup_per_node *mz;
	int nid;
1030 1031
	int i;

1032
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1033
		for_each_node(nid) {
1034 1035 1036 1037 1038
			mz = mem_cgroup_nodeinfo(memcg, nid);
			for (i = 0; i <= DEF_PRIORITY; i++) {
				iter = &mz->iter[i];
				cmpxchg(&iter->position,
					dead_memcg, NULL);
1039 1040 1041 1042 1043
			}
		}
	}
}

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

1069
		css_task_iter_start(&iter->css, 0, &it);
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

1081
/**
1082
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1083
 * @page: the page
1084
 * @pgdat: pgdat of the page
1085 1086 1087 1088
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1089
 */
M
Mel Gorman 已提交
1090
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
1091
{
1092
	struct mem_cgroup_per_node *mz;
1093
	struct mem_cgroup *memcg;
1094
	struct lruvec *lruvec;
1095

1096
	if (mem_cgroup_disabled()) {
M
Mel Gorman 已提交
1097
		lruvec = &pgdat->lruvec;
1098 1099
		goto out;
	}
1100

1101
	memcg = page->mem_cgroup;
1102
	/*
1103
	 * Swapcache readahead pages are added to the LRU - and
1104
	 * possibly migrated - before they are charged.
1105
	 */
1106 1107
	if (!memcg)
		memcg = root_mem_cgroup;
1108

1109
	mz = mem_cgroup_page_nodeinfo(memcg, page);
1110 1111 1112 1113 1114 1115 1116
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
1117 1118
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
1119
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1120
}
1121

1122
/**
1123 1124 1125
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1126
 * @zid: zone id of the accounted pages
1127
 * @nr_pages: positive when adding or negative when removing
1128
 *
1129 1130 1131
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1132
 */
1133
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1134
				int zid, int nr_pages)
1135
{
1136
	struct mem_cgroup_per_node *mz;
1137
	unsigned long *lru_size;
1138
	long size;
1139 1140 1141 1142

	if (mem_cgroup_disabled())
		return;

1143
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1144
	lru_size = &mz->lru_zone_size[zid][lru];
1145 1146 1147 1148 1149

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1150 1151 1152
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1153 1154 1155 1156 1157 1158
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1159
}
1160

1161
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1162
{
1163
	struct mem_cgroup *task_memcg;
1164
	struct task_struct *p;
1165
	bool ret;
1166

1167
	p = find_lock_task_mm(task);
1168
	if (p) {
1169
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1170 1171 1172 1173 1174 1175 1176
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1177
		rcu_read_lock();
1178 1179
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1180
		rcu_read_unlock();
1181
	}
1182 1183
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1184 1185 1186
	return ret;
}

1187
/**
1188
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1189
 * @memcg: the memory cgroup
1190
 *
1191
 * Returns the maximum amount of memory @mem can be charged with, in
1192
 * pages.
1193
 */
1194
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1195
{
1196 1197 1198
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1199

1200
	count = page_counter_read(&memcg->memory);
1201
	limit = READ_ONCE(memcg->memory.max);
1202 1203 1204
	if (count < limit)
		margin = limit - count;

1205
	if (do_memsw_account()) {
1206
		count = page_counter_read(&memcg->memsw);
1207
		limit = READ_ONCE(memcg->memsw.max);
1208 1209
		if (count <= limit)
			margin = min(margin, limit - count);
1210 1211
		else
			margin = 0;
1212 1213 1214
	}

	return margin;
1215 1216
}

1217
/*
Q
Qiang Huang 已提交
1218
 * A routine for checking "mem" is under move_account() or not.
1219
 *
Q
Qiang Huang 已提交
1220 1221 1222
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1223
 */
1224
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1225
{
1226 1227
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1228
	bool ret = false;
1229 1230 1231 1232 1233 1234 1235 1236 1237
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1238

1239 1240
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1241 1242
unlock:
	spin_unlock(&mc.lock);
1243 1244 1245
	return ret;
}

1246
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1247 1248
{
	if (mc.moving_task && current != mc.moving_task) {
1249
		if (mem_cgroup_under_move(memcg)) {
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1262
static const unsigned int memcg1_stats[] = {
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
	MEMCG_CACHE,
	MEMCG_RSS,
	MEMCG_RSS_HUGE,
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
	"rss_huge",
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

1284
#define K(x) ((x) << (PAGE_SHIFT-10))
1285
/**
1286
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1287 1288 1289 1290 1291 1292 1293 1294
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
1295 1296
	struct mem_cgroup *iter;
	unsigned int i;
1297 1298 1299

	rcu_read_lock();

1300 1301 1302 1303 1304 1305 1306 1307
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1308
	pr_cont_cgroup_path(memcg->css.cgroup);
1309
	pr_cont("\n");
1310 1311 1312

	rcu_read_unlock();

1313 1314
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1315
		K((u64)memcg->memory.max), memcg->memory.failcnt);
1316 1317
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
1318
		K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1319 1320
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
1321
		K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1322 1323

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1324 1325
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1326 1327
		pr_cont(":");

1328 1329
		for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
			if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1330
				continue;
1331
			pr_cont(" %s:%luKB", memcg1_stat_names[i],
1332
				K(memcg_page_state(iter, memcg1_stats[i])));
1333 1334 1335 1336 1337 1338 1339 1340
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1341 1342
}

D
David Rientjes 已提交
1343 1344 1345
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1346
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1347
{
1348
	unsigned long max;
1349

1350
	max = memcg->memory.max;
1351
	if (mem_cgroup_swappiness(memcg)) {
1352 1353
		unsigned long memsw_max;
		unsigned long swap_max;
1354

1355 1356 1357 1358
		memsw_max = memcg->memsw.max;
		swap_max = memcg->swap.max;
		swap_max = min(swap_max, (unsigned long)total_swap_pages);
		max = min(max + swap_max, memsw_max);
1359
	}
1360
	return max;
D
David Rientjes 已提交
1361 1362
}

1363
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1364
				     int order)
1365
{
1366 1367 1368
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1369
		.memcg = memcg,
1370 1371 1372
		.gfp_mask = gfp_mask,
		.order = order,
	};
1373
	bool ret;
1374

1375
	mutex_lock(&oom_lock);
1376
	ret = out_of_memory(&oc);
1377
	mutex_unlock(&oom_lock);
1378
	return ret;
1379 1380
}

1381 1382
#if MAX_NUMNODES > 1

1383 1384
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1385
 * @memcg: the target memcg
1386 1387 1388 1389 1390 1391 1392
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1393
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1394 1395
		int nid, bool noswap)
{
1396
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1397 1398 1399
		return true;
	if (noswap || !total_swap_pages)
		return false;
1400
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1401 1402 1403 1404
		return true;
	return false;

}
1405 1406 1407 1408 1409 1410 1411

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1412
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1413 1414
{
	int nid;
1415 1416 1417 1418
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1419
	if (!atomic_read(&memcg->numainfo_events))
1420
		return;
1421
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1422 1423 1424
		return;

	/* make a nodemask where this memcg uses memory from */
1425
	memcg->scan_nodes = node_states[N_MEMORY];
1426

1427
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1428

1429 1430
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1431
	}
1432

1433 1434
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1449
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1450 1451 1452
{
	int node;

1453 1454
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1455

1456
	node = next_node_in(node, memcg->scan_nodes);
1457
	/*
1458 1459 1460
	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
	 * last time it really checked all the LRUs due to rate limiting.
	 * Fallback to the current node in that case for simplicity.
1461 1462 1463 1464
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1465
	memcg->last_scanned_node = node;
1466 1467 1468
	return node;
}
#else
1469
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1470 1471 1472 1473 1474
{
	return 0;
}
#endif

1475
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1476
				   pg_data_t *pgdat,
1477 1478 1479 1480 1481 1482 1483 1484 1485
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1486
		.pgdat = pgdat,
1487 1488 1489
		.priority = 0,
	};

1490
	excess = soft_limit_excess(root_memcg);
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1516
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1517
					pgdat, &nr_scanned);
1518
		*total_scanned += nr_scanned;
1519
		if (!soft_limit_excess(root_memcg))
1520
			break;
1521
	}
1522 1523
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1524 1525
}

1526 1527 1528 1529 1530 1531
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1532 1533
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1534 1535 1536 1537
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1538
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1539
{
1540
	struct mem_cgroup *iter, *failed = NULL;
1541

1542 1543
	spin_lock(&memcg_oom_lock);

1544
	for_each_mem_cgroup_tree(iter, memcg) {
1545
		if (iter->oom_lock) {
1546 1547 1548 1549 1550
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1551 1552
			mem_cgroup_iter_break(memcg, iter);
			break;
1553 1554
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1555
	}
K
KAMEZAWA Hiroyuki 已提交
1556

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1568
		}
1569 1570
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1571 1572 1573 1574

	spin_unlock(&memcg_oom_lock);

	return !failed;
1575
}
1576

1577
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1578
{
K
KAMEZAWA Hiroyuki 已提交
1579 1580
	struct mem_cgroup *iter;

1581
	spin_lock(&memcg_oom_lock);
1582
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1583
	for_each_mem_cgroup_tree(iter, memcg)
1584
		iter->oom_lock = false;
1585
	spin_unlock(&memcg_oom_lock);
1586 1587
}

1588
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1589 1590 1591
{
	struct mem_cgroup *iter;

1592
	spin_lock(&memcg_oom_lock);
1593
	for_each_mem_cgroup_tree(iter, memcg)
1594 1595
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1596 1597
}

1598
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1599 1600 1601
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1602 1603
	/*
	 * When a new child is created while the hierarchy is under oom,
1604
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1605
	 */
1606
	spin_lock(&memcg_oom_lock);
1607
	for_each_mem_cgroup_tree(iter, memcg)
1608 1609 1610
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1611 1612
}

K
KAMEZAWA Hiroyuki 已提交
1613 1614
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1615
struct oom_wait_info {
1616
	struct mem_cgroup *memcg;
1617
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1618 1619
};

1620
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1621 1622
	unsigned mode, int sync, void *arg)
{
1623 1624
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1625 1626 1627
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1628
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1629

1630 1631
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1632 1633 1634 1635
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1636
static void memcg_oom_recover(struct mem_cgroup *memcg)
1637
{
1638 1639 1640 1641 1642 1643 1644 1645 1646
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1647
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1648 1649
}

1650 1651 1652 1653 1654 1655 1656 1657
enum oom_status {
	OOM_SUCCESS,
	OOM_FAILED,
	OOM_ASYNC,
	OOM_SKIPPED
};

static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1658
{
1659 1660 1661
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		return OOM_SKIPPED;

K
KAMEZAWA Hiroyuki 已提交
1662
	/*
1663 1664 1665 1666
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1667 1668 1669 1670
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1671
	 *
1672 1673 1674 1675 1676 1677 1678
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
K
KAMEZAWA Hiroyuki 已提交
1679
	 */
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
	if (memcg->oom_kill_disable) {
		if (!current->in_user_fault)
			return OOM_SKIPPED;
		css_get(&memcg->css);
		current->memcg_in_oom = memcg;
		current->memcg_oom_gfp_mask = mask;
		current->memcg_oom_order = order;

		return OOM_ASYNC;
	}

	if (mem_cgroup_out_of_memory(memcg, mask, order))
		return OOM_SUCCESS;

	WARN(1,"Memory cgroup charge failed because of no reclaimable memory! "
		"This looks like a misconfiguration or a kernel bug.");
	return OOM_FAILED;
1697 1698 1699 1700
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1701
 * @handle: actually kill/wait or just clean up the OOM state
1702
 *
1703 1704
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1705
 *
1706
 * Memcg supports userspace OOM handling where failed allocations must
1707 1708 1709 1710
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1711
 * the end of the page fault to complete the OOM handling.
1712 1713
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1714
 * completed, %false otherwise.
1715
 */
1716
bool mem_cgroup_oom_synchronize(bool handle)
1717
{
T
Tejun Heo 已提交
1718
	struct mem_cgroup *memcg = current->memcg_in_oom;
1719
	struct oom_wait_info owait;
1720
	bool locked;
1721 1722 1723

	/* OOM is global, do not handle */
	if (!memcg)
1724
		return false;
1725

1726
	if (!handle)
1727
		goto cleanup;
1728 1729 1730 1731 1732

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
1733
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
1734

1735
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1746 1747
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1748
	} else {
1749
		schedule();
1750 1751 1752 1753 1754
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1755 1756 1757 1758 1759 1760 1761 1762
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1763
cleanup:
T
Tejun Heo 已提交
1764
	current->memcg_in_oom = NULL;
1765
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1766
	return true;
1767 1768
}

1769
/**
1770 1771
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1772
 *
1773
 * This function protects unlocked LRU pages from being moved to
1774 1775 1776 1777 1778
 * another cgroup.
 *
 * It ensures lifetime of the returned memcg. Caller is responsible
 * for the lifetime of the page; __unlock_page_memcg() is available
 * when @page might get freed inside the locked section.
1779
 */
1780
struct mem_cgroup *lock_page_memcg(struct page *page)
1781 1782
{
	struct mem_cgroup *memcg;
1783
	unsigned long flags;
1784

1785 1786 1787 1788
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
1789 1790 1791 1792 1793 1794 1795
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page itself from being freed. E.g. writeback
	 * doesn't hold a page reference and relies on PG_writeback to
	 * keep off truncation, migration and so forth.
         */
1796 1797 1798
	rcu_read_lock();

	if (mem_cgroup_disabled())
1799
		return NULL;
1800
again:
1801
	memcg = page->mem_cgroup;
1802
	if (unlikely(!memcg))
1803
		return NULL;
1804

Q
Qiang Huang 已提交
1805
	if (atomic_read(&memcg->moving_account) <= 0)
1806
		return memcg;
1807

1808
	spin_lock_irqsave(&memcg->move_lock, flags);
1809
	if (memcg != page->mem_cgroup) {
1810
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1811 1812
		goto again;
	}
1813 1814 1815 1816

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
1817
	 * the task who has the lock for unlock_page_memcg().
1818 1819 1820
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1821

1822
	return memcg;
1823
}
1824
EXPORT_SYMBOL(lock_page_memcg);
1825

1826
/**
1827 1828 1829 1830
 * __unlock_page_memcg - unlock and unpin a memcg
 * @memcg: the memcg
 *
 * Unlock and unpin a memcg returned by lock_page_memcg().
1831
 */
1832
void __unlock_page_memcg(struct mem_cgroup *memcg)
1833
{
1834 1835 1836 1837 1838 1839 1840 1841
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1842

1843
	rcu_read_unlock();
1844
}
1845 1846 1847 1848 1849 1850 1851 1852 1853

/**
 * unlock_page_memcg - unlock a page->mem_cgroup binding
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
	__unlock_page_memcg(page->mem_cgroup);
}
1854
EXPORT_SYMBOL(unlock_page_memcg);
1855

1856 1857
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1858
	unsigned int nr_pages;
1859
	struct work_struct work;
1860
	unsigned long flags;
1861
#define FLUSHING_CACHED_CHARGE	0
1862 1863
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1864
static DEFINE_MUTEX(percpu_charge_mutex);
1865

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1876
 */
1877
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1878 1879
{
	struct memcg_stock_pcp *stock;
1880
	unsigned long flags;
1881
	bool ret = false;
1882

1883
	if (nr_pages > MEMCG_CHARGE_BATCH)
1884
		return ret;
1885

1886 1887 1888
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
1889
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1890
		stock->nr_pages -= nr_pages;
1891 1892
		ret = true;
	}
1893 1894 1895

	local_irq_restore(flags);

1896 1897 1898 1899
	return ret;
}

/*
1900
 * Returns stocks cached in percpu and reset cached information.
1901 1902 1903 1904 1905
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1906
	if (stock->nr_pages) {
1907
		page_counter_uncharge(&old->memory, stock->nr_pages);
1908
		if (do_memsw_account())
1909
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1910
		css_put_many(&old->css, stock->nr_pages);
1911
		stock->nr_pages = 0;
1912 1913 1914 1915 1916 1917
	}
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
1918 1919 1920
	struct memcg_stock_pcp *stock;
	unsigned long flags;

1921 1922 1923 1924
	/*
	 * The only protection from memory hotplug vs. drain_stock races is
	 * that we always operate on local CPU stock here with IRQ disabled
	 */
1925 1926 1927
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
1928
	drain_stock(stock);
1929
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1930 1931

	local_irq_restore(flags);
1932 1933 1934
}

/*
1935
 * Cache charges(val) to local per_cpu area.
1936
 * This will be consumed by consume_stock() function, later.
1937
 */
1938
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1939
{
1940 1941 1942 1943
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
1944

1945
	stock = this_cpu_ptr(&memcg_stock);
1946
	if (stock->cached != memcg) { /* reset if necessary */
1947
		drain_stock(stock);
1948
		stock->cached = memcg;
1949
	}
1950
	stock->nr_pages += nr_pages;
1951

1952
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
1953 1954
		drain_stock(stock);

1955
	local_irq_restore(flags);
1956 1957 1958
}

/*
1959
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1960
 * of the hierarchy under it.
1961
 */
1962
static void drain_all_stock(struct mem_cgroup *root_memcg)
1963
{
1964
	int cpu, curcpu;
1965

1966 1967 1968
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1969 1970 1971 1972 1973 1974
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
1975
	curcpu = get_cpu();
1976 1977
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1978
		struct mem_cgroup *memcg;
1979

1980
		memcg = stock->cached;
1981
		if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
1982
			continue;
1983 1984
		if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
			css_put(&memcg->css);
1985
			continue;
1986
		}
1987 1988 1989 1990 1991 1992
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1993
		css_put(&memcg->css);
1994
	}
1995
	put_cpu();
1996
	mutex_unlock(&percpu_charge_mutex);
1997 1998
}

1999
static int memcg_hotplug_cpu_dead(unsigned int cpu)
2000 2001
{
	struct memcg_stock_pcp *stock;
2002
	struct mem_cgroup *memcg;
2003 2004 2005

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

	for_each_mem_cgroup(memcg) {
		int i;

		for (i = 0; i < MEMCG_NR_STAT; i++) {
			int nid;
			long x;

			x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
			if (x)
				atomic_long_add(x, &memcg->stat[i]);

			if (i >= NR_VM_NODE_STAT_ITEMS)
				continue;

			for_each_node(nid) {
				struct mem_cgroup_per_node *pn;

				pn = mem_cgroup_nodeinfo(memcg, nid);
				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
				if (x)
					atomic_long_add(x, &pn->lruvec_stat[i]);
			}
		}

2031
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2032 2033 2034 2035 2036 2037 2038 2039
			long x;

			x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
			if (x)
				atomic_long_add(x, &memcg->events[i]);
		}
	}

2040
	return 0;
2041 2042
}

2043 2044 2045 2046 2047 2048 2049
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
2050
		memcg_memory_event(memcg, MEMCG_HIGH);
2051 2052 2053 2054 2055 2056 2057 2058 2059
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
2060
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2061 2062
}

2063 2064 2065 2066 2067 2068 2069
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2070
	struct mem_cgroup *memcg;
2071 2072 2073 2074

	if (likely(!nr_pages))
		return;

2075 2076
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
2077 2078 2079 2080
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

2081 2082
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2083
{
2084
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2085
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2086
	struct mem_cgroup *mem_over_limit;
2087
	struct page_counter *counter;
2088
	unsigned long nr_reclaimed;
2089 2090
	bool may_swap = true;
	bool drained = false;
2091 2092
	bool oomed = false;
	enum oom_status oom_status;
2093

2094
	if (mem_cgroup_is_root(memcg))
2095
		return 0;
2096
retry:
2097
	if (consume_stock(memcg, nr_pages))
2098
		return 0;
2099

2100
	if (!do_memsw_account() ||
2101 2102
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2103
			goto done_restock;
2104
		if (do_memsw_account())
2105 2106
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2107
	} else {
2108
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2109
		may_swap = false;
2110
	}
2111

2112 2113 2114 2115
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2116

2117 2118 2119 2120 2121 2122
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
2123
	if (unlikely(tsk_is_oom_victim(current) ||
2124 2125
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
2126
		goto force;
2127

2128 2129 2130 2131 2132 2133 2134 2135 2136
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2137 2138 2139
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2140
	if (!gfpflags_allow_blocking(gfp_mask))
2141
		goto nomem;
2142

2143
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2144

2145 2146
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2147

2148
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2149
		goto retry;
2150

2151
	if (!drained) {
2152
		drain_all_stock(mem_over_limit);
2153 2154 2155 2156
		drained = true;
		goto retry;
	}

2157 2158
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2159 2160 2161 2162 2163 2164 2165 2166 2167
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2168
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2169 2170 2171 2172 2173 2174 2175 2176
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2177 2178 2179
	if (nr_retries--)
		goto retry;

2180 2181 2182
	if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed)
		goto nomem;

2183
	if (gfp_mask & __GFP_NOFAIL)
2184
		goto force;
2185

2186
	if (fatal_signal_pending(current))
2187
		goto force;
2188

2189
	memcg_memory_event(mem_over_limit, MEMCG_OOM);
2190

2191 2192 2193 2194 2195 2196
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2197
		       get_order(nr_pages * PAGE_SIZE));
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
	switch (oom_status) {
	case OOM_SUCCESS:
		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
		oomed = true;
		goto retry;
	case OOM_FAILED:
		goto force;
	default:
		goto nomem;
	}
2208
nomem:
2209
	if (!(gfp_mask & __GFP_NOFAIL))
2210
		return -ENOMEM;
2211 2212 2213 2214 2215 2216 2217
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2218
	if (do_memsw_account())
2219 2220 2221 2222
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2223 2224

done_restock:
2225
	css_get_many(&memcg->css, batch);
2226 2227
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2228

2229
	/*
2230 2231
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2232
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2233 2234 2235 2236
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2237 2238
	 */
	do {
2239
		if (page_counter_read(&memcg->memory) > memcg->high) {
2240 2241 2242 2243 2244
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2245
			current->memcg_nr_pages_over_high += batch;
2246 2247 2248
			set_notify_resume(current);
			break;
		}
2249
	} while ((memcg = parent_mem_cgroup(memcg)));
2250 2251

	return 0;
2252
}
2253

2254
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2255
{
2256 2257 2258
	if (mem_cgroup_is_root(memcg))
		return;

2259
	page_counter_uncharge(&memcg->memory, nr_pages);
2260
	if (do_memsw_account())
2261
		page_counter_uncharge(&memcg->memsw, nr_pages);
2262

2263
	css_put_many(&memcg->css, nr_pages);
2264 2265
}

2266 2267 2268 2269
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

2270
	spin_lock_irq(zone_lru_lock(zone));
2271 2272 2273
	if (PageLRU(page)) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2274
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2289
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2290 2291 2292 2293
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
2294
	spin_unlock_irq(zone_lru_lock(zone));
2295 2296
}

2297
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2298
			  bool lrucare)
2299
{
2300
	int isolated;
2301

2302
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2303 2304 2305 2306 2307

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2308 2309
	if (lrucare)
		lock_page_lru(page, &isolated);
2310

2311 2312
	/*
	 * Nobody should be changing or seriously looking at
2313
	 * page->mem_cgroup at this point:
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2325
	page->mem_cgroup = memcg;
2326

2327 2328
	if (lrucare)
		unlock_page_lru(page, isolated);
2329
}
2330

2331
#ifdef CONFIG_MEMCG_KMEM
2332
static int memcg_alloc_cache_id(void)
2333
{
2334 2335 2336
	int id, size;
	int err;

2337
	id = ida_simple_get(&memcg_cache_ida,
2338 2339 2340
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2341

2342
	if (id < memcg_nr_cache_ids)
2343 2344 2345 2346 2347 2348
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2349
	down_write(&memcg_cache_ids_sem);
2350 2351

	size = 2 * (id + 1);
2352 2353 2354 2355 2356
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2357
	err = memcg_update_all_caches(size);
2358 2359
	if (!err)
		err = memcg_update_all_list_lrus(size);
2360 2361 2362 2363 2364
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2365
	if (err) {
2366
		ida_simple_remove(&memcg_cache_ida, id);
2367 2368 2369 2370 2371 2372 2373
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2374
	ida_simple_remove(&memcg_cache_ida, id);
2375 2376
}

2377
struct memcg_kmem_cache_create_work {
2378 2379 2380 2381 2382
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2383
static void memcg_kmem_cache_create_func(struct work_struct *w)
2384
{
2385 2386
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2387 2388
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2389

2390
	memcg_create_kmem_cache(memcg, cachep);
2391

2392
	css_put(&memcg->css);
2393 2394 2395 2396 2397 2398
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2399 2400
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2401
{
2402
	struct memcg_kmem_cache_create_work *cw;
2403

2404
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2405
	if (!cw)
2406
		return;
2407 2408

	css_get(&memcg->css);
2409 2410 2411

	cw->memcg = memcg;
	cw->cachep = cachep;
2412
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2413

2414
	queue_work(memcg_kmem_cache_wq, &cw->work);
2415 2416
}

2417 2418
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2419 2420 2421 2422
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2423
	 * in __memcg_schedule_kmem_cache_create will recurse.
2424 2425 2426 2427 2428 2429 2430
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2431
	current->memcg_kmem_skip_account = 1;
2432
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2433
	current->memcg_kmem_skip_account = 0;
2434
}
2435

2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
static inline bool memcg_kmem_bypass(void)
{
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;
	return false;
}

/**
 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
 * @cachep: the original global kmem cache
 *
2447 2448 2449
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
2450 2451 2452
 * If the cache does not exist yet, if we are the first user of it, we
 * create it asynchronously in a workqueue and let the current allocation
 * go through with the original cache.
2453
 *
2454 2455 2456 2457
 * This function takes a reference to the cache it returns to assure it
 * won't get destroyed while we are working with it. Once the caller is
 * done with it, memcg_kmem_put_cache() must be called to release the
 * reference.
2458
 */
2459
struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2460 2461
{
	struct mem_cgroup *memcg;
2462
	struct kmem_cache *memcg_cachep;
2463
	int kmemcg_id;
2464

2465
	VM_BUG_ON(!is_root_cache(cachep));
2466

2467
	if (memcg_kmem_bypass())
V
Vladimir Davydov 已提交
2468 2469
		return cachep;

2470
	if (current->memcg_kmem_skip_account)
2471 2472
		return cachep;

2473
	memcg = get_mem_cgroup_from_current();
2474
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2475
	if (kmemcg_id < 0)
2476
		goto out;
2477

2478
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2479 2480
	if (likely(memcg_cachep))
		return memcg_cachep;
2481 2482 2483 2484 2485 2486 2487 2488 2489

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2490 2491 2492
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2493
	 */
2494
	memcg_schedule_kmem_cache_create(memcg, cachep);
2495
out:
2496
	css_put(&memcg->css);
2497
	return cachep;
2498 2499
}

2500 2501 2502 2503 2504
/**
 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
 * @cachep: the cache returned by memcg_kmem_get_cache
 */
void memcg_kmem_put_cache(struct kmem_cache *cachep)
2505 2506
{
	if (!is_root_cache(cachep))
2507
		css_put(&cachep->memcg_params.memcg->css);
2508 2509
}

2510
/**
2511
 * memcg_kmem_charge_memcg: charge a kmem page
2512 2513 2514 2515 2516 2517 2518 2519 2520
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 * @memcg: memory cgroup to charge
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			    struct mem_cgroup *memcg)
2521
{
2522 2523
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2524 2525
	int ret;

2526
	ret = try_charge(memcg, gfp, nr_pages);
2527
	if (ret)
2528
		return ret;
2529 2530 2531 2532 2533

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2534 2535
	}

2536
	page->mem_cgroup = memcg;
2537

2538
	return 0;
2539 2540
}

2541 2542 2543 2544 2545 2546 2547 2548 2549
/**
 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2550
{
2551
	struct mem_cgroup *memcg;
2552
	int ret = 0;
2553

2554 2555 2556
	if (memcg_kmem_bypass())
		return 0;

2557
	memcg = get_mem_cgroup_from_current();
2558
	if (!mem_cgroup_is_root(memcg)) {
2559
		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2560 2561 2562
		if (!ret)
			__SetPageKmemcg(page);
	}
2563
	css_put(&memcg->css);
2564
	return ret;
2565
}
2566 2567 2568 2569 2570 2571
/**
 * memcg_kmem_uncharge: uncharge a kmem page
 * @page: page to uncharge
 * @order: allocation order
 */
void memcg_kmem_uncharge(struct page *page, int order)
2572
{
2573
	struct mem_cgroup *memcg = page->mem_cgroup;
2574
	unsigned int nr_pages = 1 << order;
2575 2576 2577 2578

	if (!memcg)
		return;

2579
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2580

2581 2582 2583
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

2584
	page_counter_uncharge(&memcg->memory, nr_pages);
2585
	if (do_memsw_account())
2586
		page_counter_uncharge(&memcg->memsw, nr_pages);
2587

2588
	page->mem_cgroup = NULL;
2589 2590 2591 2592 2593

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);

2594
	css_put_many(&memcg->css, nr_pages);
2595
}
2596
#endif /* CONFIG_MEMCG_KMEM */
2597

2598 2599 2600 2601
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2602
 * zone_lru_lock and migration entries setup in all page mappings.
2603
 */
2604
void mem_cgroup_split_huge_fixup(struct page *head)
2605
{
2606
	int i;
2607

2608 2609
	if (mem_cgroup_disabled())
		return;
2610

2611
	for (i = 1; i < HPAGE_PMD_NR; i++)
2612
		head[i].mem_cgroup = head->mem_cgroup;
2613

2614
	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2615
}
2616
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2617

A
Andrew Morton 已提交
2618
#ifdef CONFIG_MEMCG_SWAP
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2630
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2631 2632 2633
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2634
				struct mem_cgroup *from, struct mem_cgroup *to)
2635 2636 2637
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2638 2639
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2640 2641

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2642 2643
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
2644 2645 2646 2647 2648 2649
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2650
				struct mem_cgroup *from, struct mem_cgroup *to)
2651 2652 2653
{
	return -EINVAL;
}
2654
#endif
K
KAMEZAWA Hiroyuki 已提交
2655

2656
static DEFINE_MUTEX(memcg_max_mutex);
2657

2658 2659
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
2660
{
2661
	bool enlarge = false;
2662
	bool drained = false;
2663
	int ret;
2664 2665
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2666

2667
	do {
2668 2669 2670 2671
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2672

2673
		mutex_lock(&memcg_max_mutex);
2674 2675
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
2676
		 * break our basic invariant rule memory.max <= memsw.max.
2677
		 */
2678 2679
		limits_invariant = memsw ? max >= memcg->memory.max :
					   max <= memcg->memsw.max;
2680
		if (!limits_invariant) {
2681
			mutex_unlock(&memcg_max_mutex);
2682 2683 2684
			ret = -EINVAL;
			break;
		}
2685
		if (max > counter->max)
2686
			enlarge = true;
2687 2688
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
2689 2690 2691 2692

		if (!ret)
			break;

2693 2694 2695 2696 2697 2698
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

2699 2700 2701 2702 2703 2704
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
2705

2706 2707
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2708

2709 2710 2711
	return ret;
}

2712
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2713 2714 2715 2716
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
2717
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2718 2719
	unsigned long reclaimed;
	int loop = 0;
2720
	struct mem_cgroup_tree_per_node *mctz;
2721
	unsigned long excess;
2722 2723 2724 2725 2726
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

2727
	mctz = soft_limit_tree_node(pgdat->node_id);
2728 2729 2730 2731 2732 2733

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
2734
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2735 2736
		return 0;

2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
2751
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2752 2753 2754
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2755
		spin_lock_irq(&mctz->lock);
2756
		__mem_cgroup_remove_exceeded(mz, mctz);
2757 2758 2759 2760 2761 2762

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2763 2764 2765
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2766
		excess = soft_limit_excess(mz->memcg);
2767 2768 2769 2770 2771 2772 2773 2774 2775
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2776
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2777
		spin_unlock_irq(&mctz->lock);
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2795 2796 2797 2798 2799 2800
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2801 2802
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2803 2804 2805 2806 2807 2808
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2809 2810
}

2811
/*
2812
 * Reclaims as many pages from the given memcg as possible.
2813 2814 2815 2816 2817 2818 2819
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2820 2821
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2822 2823 2824

	drain_all_stock(memcg);

2825
	/* try to free all pages in this cgroup */
2826
	while (nr_retries && page_counter_read(&memcg->memory)) {
2827
		int progress;
2828

2829 2830 2831
		if (signal_pending(current))
			return -EINTR;

2832 2833
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2834
		if (!progress) {
2835
			nr_retries--;
2836
			/* maybe some writeback is necessary */
2837
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2838
		}
2839 2840

	}
2841 2842

	return 0;
2843 2844
}

2845 2846 2847
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2848
{
2849
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2850

2851 2852
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2853
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2854 2855
}

2856 2857
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2858
{
2859
	return mem_cgroup_from_css(css)->use_hierarchy;
2860 2861
}

2862 2863
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2864 2865
{
	int retval = 0;
2866
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2867
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2868

2869
	if (memcg->use_hierarchy == val)
2870
		return 0;
2871

2872
	/*
2873
	 * If parent's use_hierarchy is set, we can't make any modifications
2874 2875 2876 2877 2878 2879
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2880
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2881
				(val == 1 || val == 0)) {
2882
		if (!memcg_has_children(memcg))
2883
			memcg->use_hierarchy = val;
2884 2885 2886 2887
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2888

2889 2890 2891
	return retval;
}

2892
static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2893 2894
{
	struct mem_cgroup *iter;
2895
	int i;
2896

2897
	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2898

2899 2900
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_STAT; i++)
2901
			stat[i] += memcg_page_state(iter, i);
2902
	}
2903 2904
}

2905
static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2906 2907
{
	struct mem_cgroup *iter;
2908
	int i;
2909

2910
	memset(events, 0, sizeof(*events) * NR_VM_EVENT_ITEMS);
2911

2912
	for_each_mem_cgroup_tree(iter, memcg) {
2913
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
2914
			events[i] += memcg_sum_events(iter, i);
2915
	}
2916 2917
}

2918
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2919
{
2920
	unsigned long val = 0;
2921

2922
	if (mem_cgroup_is_root(memcg)) {
2923 2924 2925
		struct mem_cgroup *iter;

		for_each_mem_cgroup_tree(iter, memcg) {
2926 2927
			val += memcg_page_state(iter, MEMCG_CACHE);
			val += memcg_page_state(iter, MEMCG_RSS);
2928
			if (swap)
2929
				val += memcg_page_state(iter, MEMCG_SWAP);
2930
		}
2931
	} else {
2932
		if (!swap)
2933
			val = page_counter_read(&memcg->memory);
2934
		else
2935
			val = page_counter_read(&memcg->memsw);
2936
	}
2937
	return val;
2938 2939
}

2940 2941 2942 2943 2944 2945 2946
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2947

2948
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2949
			       struct cftype *cft)
B
Balbir Singh 已提交
2950
{
2951
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2952
	struct page_counter *counter;
2953

2954
	switch (MEMFILE_TYPE(cft->private)) {
2955
	case _MEM:
2956 2957
		counter = &memcg->memory;
		break;
2958
	case _MEMSWAP:
2959 2960
		counter = &memcg->memsw;
		break;
2961
	case _KMEM:
2962
		counter = &memcg->kmem;
2963
		break;
V
Vladimir Davydov 已提交
2964
	case _TCP:
2965
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
2966
		break;
2967 2968 2969
	default:
		BUG();
	}
2970 2971 2972 2973

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
2974
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2975
		if (counter == &memcg->memsw)
2976
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2977 2978
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
2979
		return (u64)counter->max * PAGE_SIZE;
2980 2981 2982 2983 2984 2985 2986 2987 2988
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2989
}
2990

2991
#ifdef CONFIG_MEMCG_KMEM
2992
static int memcg_online_kmem(struct mem_cgroup *memcg)
2993 2994 2995
{
	int memcg_id;

2996 2997 2998
	if (cgroup_memory_nokmem)
		return 0;

2999
	BUG_ON(memcg->kmemcg_id >= 0);
3000
	BUG_ON(memcg->kmem_state);
3001

3002
	memcg_id = memcg_alloc_cache_id();
3003 3004
	if (memcg_id < 0)
		return memcg_id;
3005

3006
	static_branch_inc(&memcg_kmem_enabled_key);
3007
	/*
3008
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
3009
	 * kmemcg_id. Setting the id after enabling static branching will
3010 3011 3012
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3013
	memcg->kmemcg_id = memcg_id;
3014
	memcg->kmem_state = KMEM_ONLINE;
3015
	INIT_LIST_HEAD(&memcg->kmem_caches);
3016 3017

	return 0;
3018 3019
}

3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	memcg_deactivate_kmem_caches(memcg);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
3053
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3054 3055 3056 3057 3058 3059 3060
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
3061 3062
	rcu_read_unlock();

3063 3064 3065 3066 3067 3068 3069
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
3070 3071 3072 3073
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

3074 3075 3076 3077 3078 3079
	if (memcg->kmem_state == KMEM_ALLOCATED) {
		memcg_destroy_kmem_caches(memcg);
		static_branch_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
}
3080
#else
3081
static int memcg_online_kmem(struct mem_cgroup *memcg)
3082 3083 3084 3085 3086 3087 3088 3089 3090
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
3091
#endif /* CONFIG_MEMCG_KMEM */
3092

3093 3094
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
3095
{
3096
	int ret;
3097

3098 3099 3100
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
3101
	return ret;
3102
}
3103

3104
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
3105 3106 3107
{
	int ret;

3108
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3109

3110
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
3111 3112 3113
	if (ret)
		goto out;

3114
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3115 3116 3117
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3118 3119 3120
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
3121 3122 3123 3124 3125 3126
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3127
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
3128 3129 3130 3131
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3132
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3133 3134
	}
out:
3135
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3136 3137 3138
	return ret;
}

3139 3140 3141 3142
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3143 3144
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3145
{
3146
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3147
	unsigned long nr_pages;
3148 3149
	int ret;

3150
	buf = strstrip(buf);
3151
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3152 3153
	if (ret)
		return ret;
3154

3155
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3156
	case RES_LIMIT:
3157 3158 3159 3160
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3161 3162
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3163
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3164
			break;
3165
		case _MEMSWAP:
3166
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3167
			break;
3168
		case _KMEM:
3169
			ret = memcg_update_kmem_max(memcg, nr_pages);
3170
			break;
V
Vladimir Davydov 已提交
3171
		case _TCP:
3172
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
3173
			break;
3174
		}
3175
		break;
3176 3177 3178
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3179 3180
		break;
	}
3181
	return ret ?: nbytes;
B
Balbir Singh 已提交
3182 3183
}

3184 3185
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3186
{
3187
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3188
	struct page_counter *counter;
3189

3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3200
	case _TCP:
3201
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3202
		break;
3203 3204 3205
	default:
		BUG();
	}
3206

3207
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3208
	case RES_MAX_USAGE:
3209
		page_counter_reset_watermark(counter);
3210 3211
		break;
	case RES_FAILCNT:
3212
		counter->failcnt = 0;
3213
		break;
3214 3215
	default:
		BUG();
3216
	}
3217

3218
	return nbytes;
3219 3220
}

3221
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3222 3223
					struct cftype *cft)
{
3224
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3225 3226
}

3227
#ifdef CONFIG_MMU
3228
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3229 3230
					struct cftype *cft, u64 val)
{
3231
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3232

3233
	if (val & ~MOVE_MASK)
3234
		return -EINVAL;
3235

3236
	/*
3237 3238 3239 3240
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3241
	 */
3242
	memcg->move_charge_at_immigrate = val;
3243 3244
	return 0;
}
3245
#else
3246
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3247 3248 3249 3250 3251
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3252

3253
#ifdef CONFIG_NUMA
3254
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3255
{
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3268
	int nid;
3269
	unsigned long nr;
3270
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3271

3272 3273 3274 3275 3276 3277 3278 3279 3280
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3281 3282
	}

3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3298 3299 3300 3301 3302 3303
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3304
/* Universal VM events cgroup1 shows, original sort order */
3305
static const unsigned int memcg1_events[] = {
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

static const char *const memcg1_event_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

3319
static int memcg_stat_show(struct seq_file *m, void *v)
3320
{
3321
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3322
	unsigned long memory, memsw;
3323 3324
	struct mem_cgroup *mi;
	unsigned int i;
3325

3326
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3327 3328
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3329 3330
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3331
			continue;
3332
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3333
			   memcg_page_state(memcg, memcg1_stats[i]) *
3334
			   PAGE_SIZE);
3335
	}
L
Lee Schermerhorn 已提交
3336

3337 3338
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3339
			   memcg_sum_events(memcg, memcg1_events[i]));
3340 3341 3342 3343 3344

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3345
	/* Hierarchical information */
3346 3347
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3348 3349
		memory = min(memory, mi->memory.max);
		memsw = min(memsw, mi->memsw.max);
3350
	}
3351 3352
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3353
	if (do_memsw_account())
3354 3355
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3356

3357
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3358
		unsigned long long val = 0;
3359

3360
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3361
			continue;
3362
		for_each_mem_cgroup_tree(mi, memcg)
3363
			val += memcg_page_state(mi, memcg1_stats[i]) *
3364 3365
			PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
3366 3367
	}

3368
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
3369 3370 3371
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
3372
			val += memcg_sum_events(mi, memcg1_events[i]);
3373
		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
3374 3375 3376 3377 3378 3379 3380 3381
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3382
	}
K
KAMEZAWA Hiroyuki 已提交
3383

K
KOSAKI Motohiro 已提交
3384 3385
#ifdef CONFIG_DEBUG_VM
	{
3386 3387
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
3388
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3389 3390 3391
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

3392 3393 3394
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
			rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3395

3396 3397 3398 3399 3400
			recent_rotated[0] += rstat->recent_rotated[0];
			recent_rotated[1] += rstat->recent_rotated[1];
			recent_scanned[0] += rstat->recent_scanned[0];
			recent_scanned[1] += rstat->recent_scanned[1];
		}
3401 3402 3403 3404
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3405 3406 3407
	}
#endif

3408 3409 3410
	return 0;
}

3411 3412
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3413
{
3414
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3415

3416
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3417 3418
}

3419 3420
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3421
{
3422
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3423

3424
	if (val > 100)
K
KOSAKI Motohiro 已提交
3425 3426
		return -EINVAL;

3427
	if (css->parent)
3428 3429 3430
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3431

K
KOSAKI Motohiro 已提交
3432 3433 3434
	return 0;
}

3435 3436 3437
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3438
	unsigned long usage;
3439 3440 3441 3442
	int i;

	rcu_read_lock();
	if (!swap)
3443
		t = rcu_dereference(memcg->thresholds.primary);
3444
	else
3445
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3446 3447 3448 3449

	if (!t)
		goto unlock;

3450
	usage = mem_cgroup_usage(memcg, swap);
3451 3452

	/*
3453
	 * current_threshold points to threshold just below or equal to usage.
3454 3455 3456
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3457
	i = t->current_threshold;
3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3481
	t->current_threshold = i - 1;
3482 3483 3484 3485 3486 3487
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3488 3489
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3490
		if (do_memsw_account())
3491 3492 3493 3494
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3495 3496 3497 3498 3499 3500 3501
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3502 3503 3504 3505 3506 3507 3508
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3509 3510
}

3511
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3512 3513 3514
{
	struct mem_cgroup_eventfd_list *ev;

3515 3516
	spin_lock(&memcg_oom_lock);

3517
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3518
		eventfd_signal(ev->eventfd, 1);
3519 3520

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3521 3522 3523
	return 0;
}

3524
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3525
{
K
KAMEZAWA Hiroyuki 已提交
3526 3527
	struct mem_cgroup *iter;

3528
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3529
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3530 3531
}

3532
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3533
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3534
{
3535 3536
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3537 3538
	unsigned long threshold;
	unsigned long usage;
3539
	int i, size, ret;
3540

3541
	ret = page_counter_memparse(args, "-1", &threshold);
3542 3543 3544 3545
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3546

3547
	if (type == _MEM) {
3548
		thresholds = &memcg->thresholds;
3549
		usage = mem_cgroup_usage(memcg, false);
3550
	} else if (type == _MEMSWAP) {
3551
		thresholds = &memcg->memsw_thresholds;
3552
		usage = mem_cgroup_usage(memcg, true);
3553
	} else
3554 3555 3556
		BUG();

	/* Check if a threshold crossed before adding a new one */
3557
	if (thresholds->primary)
3558 3559
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3560
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3561 3562

	/* Allocate memory for new array of thresholds */
3563
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3564
			GFP_KERNEL);
3565
	if (!new) {
3566 3567 3568
		ret = -ENOMEM;
		goto unlock;
	}
3569
	new->size = size;
3570 3571

	/* Copy thresholds (if any) to new array */
3572 3573
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3574
				sizeof(struct mem_cgroup_threshold));
3575 3576
	}

3577
	/* Add new threshold */
3578 3579
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3580 3581

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3582
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3583 3584 3585
			compare_thresholds, NULL);

	/* Find current threshold */
3586
	new->current_threshold = -1;
3587
	for (i = 0; i < size; i++) {
3588
		if (new->entries[i].threshold <= usage) {
3589
			/*
3590 3591
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3592 3593
			 * it here.
			 */
3594
			++new->current_threshold;
3595 3596
		} else
			break;
3597 3598
	}

3599 3600 3601 3602 3603
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3604

3605
	/* To be sure that nobody uses thresholds */
3606 3607 3608 3609 3610 3611 3612 3613
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3614
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3615 3616
	struct eventfd_ctx *eventfd, const char *args)
{
3617
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3618 3619
}

3620
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3621 3622
	struct eventfd_ctx *eventfd, const char *args)
{
3623
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3624 3625
}

3626
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3627
	struct eventfd_ctx *eventfd, enum res_type type)
3628
{
3629 3630
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3631
	unsigned long usage;
3632
	int i, j, size;
3633 3634

	mutex_lock(&memcg->thresholds_lock);
3635 3636

	if (type == _MEM) {
3637
		thresholds = &memcg->thresholds;
3638
		usage = mem_cgroup_usage(memcg, false);
3639
	} else if (type == _MEMSWAP) {
3640
		thresholds = &memcg->memsw_thresholds;
3641
		usage = mem_cgroup_usage(memcg, true);
3642
	} else
3643 3644
		BUG();

3645 3646 3647
	if (!thresholds->primary)
		goto unlock;

3648 3649 3650 3651
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3652 3653 3654
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3655 3656 3657
			size++;
	}

3658
	new = thresholds->spare;
3659

3660 3661
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3662 3663
		kfree(new);
		new = NULL;
3664
		goto swap_buffers;
3665 3666
	}

3667
	new->size = size;
3668 3669

	/* Copy thresholds and find current threshold */
3670 3671 3672
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3673 3674
			continue;

3675
		new->entries[j] = thresholds->primary->entries[i];
3676
		if (new->entries[j].threshold <= usage) {
3677
			/*
3678
			 * new->current_threshold will not be used
3679 3680 3681
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3682
			++new->current_threshold;
3683 3684 3685 3686
		}
		j++;
	}

3687
swap_buffers:
3688 3689
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3690

3691
	rcu_assign_pointer(thresholds->primary, new);
3692

3693
	/* To be sure that nobody uses thresholds */
3694
	synchronize_rcu();
3695 3696 3697 3698 3699 3700

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
3701
unlock:
3702 3703
	mutex_unlock(&memcg->thresholds_lock);
}
3704

3705
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3706 3707
	struct eventfd_ctx *eventfd)
{
3708
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3709 3710
}

3711
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3712 3713
	struct eventfd_ctx *eventfd)
{
3714
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3715 3716
}

3717
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3718
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3719 3720 3721 3722 3723 3724 3725
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3726
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3727 3728 3729 3730 3731

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3732
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3733
		eventfd_signal(eventfd, 1);
3734
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3735 3736 3737 3738

	return 0;
}

3739
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3740
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3741 3742 3743
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3744
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3745

3746
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3747 3748 3749 3750 3751 3752
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3753
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3754 3755
}

3756
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3757
{
3758
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3759

3760
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3761
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
R
Roman Gushchin 已提交
3762 3763
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3764 3765 3766
	return 0;
}

3767
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3768 3769
	struct cftype *cft, u64 val)
{
3770
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3771 3772

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3773
	if (!css->parent || !((val == 0) || (val == 1)))
3774 3775
		return -EINVAL;

3776
	memcg->oom_kill_disable = val;
3777
	if (!val)
3778
		memcg_oom_recover(memcg);
3779

3780 3781 3782
	return 0;
}

3783 3784
#ifdef CONFIG_CGROUP_WRITEBACK

T
Tejun Heo 已提交
3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3795 3796 3797 3798 3799
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3810 3811 3812
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3813 3814
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3815 3816 3817
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3818 3819 3820
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3821
 *
3822 3823 3824 3825 3826
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3827
 */
3828 3829 3830
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3831 3832 3833 3834
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

3835
	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3836 3837

	/* this should eventually include NR_UNSTABLE_NFS */
3838
	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3839 3840 3841
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3842 3843

	while ((parent = parent_mem_cgroup(memcg))) {
3844
		unsigned long ceiling = min(memcg->memory.max, memcg->high);
3845 3846
		unsigned long used = page_counter_read(&memcg->memory);

3847
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3848 3849 3850 3851
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3863 3864 3865 3866
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3867 3868
#endif	/* CONFIG_CGROUP_WRITEBACK */

3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3882 3883 3884 3885 3886
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3887
static void memcg_event_remove(struct work_struct *work)
3888
{
3889 3890
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3891
	struct mem_cgroup *memcg = event->memcg;
3892 3893 3894

	remove_wait_queue(event->wqh, &event->wait);

3895
	event->unregister_event(memcg, event->eventfd);
3896 3897 3898 3899 3900 3901

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3902
	css_put(&memcg->css);
3903 3904 3905
}

/*
3906
 * Gets called on EPOLLHUP on eventfd when user closes it.
3907 3908 3909
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3910
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3911
			    int sync, void *key)
3912
{
3913 3914
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3915
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
3916
	__poll_t flags = key_to_poll(key);
3917

3918
	if (flags & EPOLLHUP) {
3919 3920 3921 3922 3923 3924 3925 3926 3927
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3928
		spin_lock(&memcg->event_list_lock);
3929 3930 3931 3932 3933 3934 3935 3936
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3937
		spin_unlock(&memcg->event_list_lock);
3938 3939 3940 3941 3942
	}

	return 0;
}

3943
static void memcg_event_ptable_queue_proc(struct file *file,
3944 3945
		wait_queue_head_t *wqh, poll_table *pt)
{
3946 3947
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3948 3949 3950 3951 3952 3953

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3954 3955
 * DO NOT USE IN NEW FILES.
 *
3956 3957 3958 3959 3960
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3961 3962
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3963
{
3964
	struct cgroup_subsys_state *css = of_css(of);
3965
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3966
	struct mem_cgroup_event *event;
3967 3968 3969 3970
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3971
	const char *name;
3972 3973 3974
	char *endp;
	int ret;

3975 3976 3977
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3978 3979
	if (*endp != ' ')
		return -EINVAL;
3980
	buf = endp + 1;
3981

3982
	cfd = simple_strtoul(buf, &endp, 10);
3983 3984
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3985
	buf = endp + 1;
3986 3987 3988 3989 3990

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3991
	event->memcg = memcg;
3992
	INIT_LIST_HEAD(&event->list);
3993 3994 3995
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4021 4022 4023 4024 4025
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4026 4027
	 *
	 * DO NOT ADD NEW FILES.
4028
	 */
A
Al Viro 已提交
4029
	name = cfile.file->f_path.dentry->d_name.name;
4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4041 4042
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4043 4044 4045 4046 4047
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4048
	/*
4049 4050 4051
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4052
	 */
A
Al Viro 已提交
4053
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4054
					       &memory_cgrp_subsys);
4055
	ret = -EINVAL;
4056
	if (IS_ERR(cfile_css))
4057
		goto out_put_cfile;
4058 4059
	if (cfile_css != css) {
		css_put(cfile_css);
4060
		goto out_put_cfile;
4061
	}
4062

4063
	ret = event->register_event(memcg, event->eventfd, buf);
4064 4065 4066
	if (ret)
		goto out_put_css;

4067
	vfs_poll(efile.file, &event->pt);
4068

4069 4070 4071
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4072 4073 4074 4075

	fdput(cfile);
	fdput(efile);

4076
	return nbytes;
4077 4078

out_put_css:
4079
	css_put(css);
4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4092
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4093
	{
4094
		.name = "usage_in_bytes",
4095
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4096
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4097
	},
4098 4099
	{
		.name = "max_usage_in_bytes",
4100
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4101
		.write = mem_cgroup_reset,
4102
		.read_u64 = mem_cgroup_read_u64,
4103
	},
B
Balbir Singh 已提交
4104
	{
4105
		.name = "limit_in_bytes",
4106
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4107
		.write = mem_cgroup_write,
4108
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4109
	},
4110 4111 4112
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4113
		.write = mem_cgroup_write,
4114
		.read_u64 = mem_cgroup_read_u64,
4115
	},
B
Balbir Singh 已提交
4116 4117
	{
		.name = "failcnt",
4118
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4119
		.write = mem_cgroup_reset,
4120
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4121
	},
4122 4123
	{
		.name = "stat",
4124
		.seq_show = memcg_stat_show,
4125
	},
4126 4127
	{
		.name = "force_empty",
4128
		.write = mem_cgroup_force_empty_write,
4129
	},
4130 4131 4132 4133 4134
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4135
	{
4136
		.name = "cgroup.event_control",		/* XXX: for compat */
4137
		.write = memcg_write_event_control,
4138
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4139
	},
K
KOSAKI Motohiro 已提交
4140 4141 4142 4143 4144
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4145 4146 4147 4148 4149
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4150 4151
	{
		.name = "oom_control",
4152
		.seq_show = mem_cgroup_oom_control_read,
4153
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4154 4155
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4156 4157 4158
	{
		.name = "pressure_level",
	},
4159 4160 4161
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4162
		.seq_show = memcg_numa_stat_show,
4163 4164
	},
#endif
4165 4166 4167
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4168
		.write = mem_cgroup_write,
4169
		.read_u64 = mem_cgroup_read_u64,
4170 4171 4172 4173
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4174
		.read_u64 = mem_cgroup_read_u64,
4175 4176 4177 4178
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4179
		.write = mem_cgroup_reset,
4180
		.read_u64 = mem_cgroup_read_u64,
4181 4182 4183 4184
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4185
		.write = mem_cgroup_reset,
4186
		.read_u64 = mem_cgroup_read_u64,
4187
	},
Y
Yang Shi 已提交
4188
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4189 4190
	{
		.name = "kmem.slabinfo",
4191 4192 4193
		.seq_start = memcg_slab_start,
		.seq_next = memcg_slab_next,
		.seq_stop = memcg_slab_stop,
4194
		.seq_show = memcg_slab_show,
4195 4196
	},
#endif
V
Vladimir Davydov 已提交
4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4220
	{ },	/* terminate */
4221
};
4222

4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
 * However, there usually are many references to the oflline CSS after
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

4249 4250 4251 4252 4253 4254 4255 4256
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

4257
static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4258
{
4259
	VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4260
	atomic_add(n, &memcg->id.ref);
4261 4262
}

4263
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4264
{
4265
	VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4266
	if (atomic_sub_and_test(n, &memcg->id.ref)) {
4267
		mem_cgroup_id_remove(memcg);
4268 4269 4270 4271 4272 4273

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
{
	mem_cgroup_id_get_many(memcg, 1);
}

static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

4296
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4297 4298
{
	struct mem_cgroup_per_node *pn;
4299
	int tmp = node;
4300 4301 4302 4303 4304 4305 4306 4307
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4308 4309
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4310
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4311 4312
	if (!pn)
		return 1;
4313

4314 4315
	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat_cpu) {
4316 4317 4318 4319
		kfree(pn);
		return 1;
	}

4320 4321 4322 4323 4324
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

4325
	memcg->nodeinfo[node] = pn;
4326 4327 4328
	return 0;
}

4329
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4330
{
4331 4332
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
4333 4334 4335
	if (!pn)
		return;

4336
	free_percpu(pn->lruvec_stat_cpu);
4337
	kfree(pn);
4338 4339
}

4340
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4341
{
4342
	int node;
4343

4344
	for_each_node(node)
4345
		free_mem_cgroup_per_node_info(memcg, node);
4346
	free_percpu(memcg->stat_cpu);
4347
	kfree(memcg);
4348
}
4349

4350 4351 4352 4353 4354 4355
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
	__mem_cgroup_free(memcg);
}

4356
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4357
{
4358
	struct mem_cgroup *memcg;
4359
	size_t size;
4360
	int node;
B
Balbir Singh 已提交
4361

4362 4363 4364 4365
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4366
	if (!memcg)
4367 4368
		return NULL;

4369 4370 4371 4372 4373 4374
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
	if (memcg->id.id < 0)
		goto fail;

4375 4376
	memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat_cpu)
4377
		goto fail;
4378

B
Bob Liu 已提交
4379
	for_each_node(node)
4380
		if (alloc_mem_cgroup_per_node_info(memcg, node))
4381
			goto fail;
4382

4383 4384
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4385

4386
	INIT_WORK(&memcg->high_work, high_work_func);
4387 4388 4389 4390
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4391
	vmpressure_init(&memcg->vmpressure);
4392 4393
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4394
	memcg->socket_pressure = jiffies;
4395
#ifdef CONFIG_MEMCG_KMEM
V
Vladimir Davydov 已提交
4396 4397
	memcg->kmemcg_id = -1;
#endif
4398 4399 4400
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4401
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4402 4403
	return memcg;
fail:
4404
	mem_cgroup_id_remove(memcg);
4405
	__mem_cgroup_free(memcg);
4406
	return NULL;
4407 4408
}

4409 4410
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4411
{
4412 4413 4414
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
4415

4416 4417 4418
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
4419

4420 4421 4422 4423 4424 4425 4426 4427
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
4428
		page_counter_init(&memcg->memory, &parent->memory);
4429
		page_counter_init(&memcg->swap, &parent->swap);
4430 4431
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4432
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4433
	} else {
4434
		page_counter_init(&memcg->memory, NULL);
4435
		page_counter_init(&memcg->swap, NULL);
4436 4437
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4438
		page_counter_init(&memcg->tcpmem, NULL);
4439 4440 4441 4442 4443
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4444
		if (parent != root_mem_cgroup)
4445
			memory_cgrp_subsys.broken_hierarchy = true;
4446
	}
4447

4448 4449 4450 4451 4452 4453
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

4454
	error = memcg_online_kmem(memcg);
4455 4456
	if (error)
		goto fail;
4457

4458
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4459
		static_branch_inc(&memcg_sockets_enabled_key);
4460

4461 4462
	return &memcg->css;
fail:
4463
	mem_cgroup_id_remove(memcg);
4464
	mem_cgroup_free(memcg);
4465
	return ERR_PTR(-ENOMEM);
4466 4467
}

4468
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4469
{
4470 4471
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
	/*
	 * A memcg must be visible for memcg_expand_shrinker_maps()
	 * by the time the maps are allocated. So, we allocate maps
	 * here, when for_each_mem_cgroup() can't skip it.
	 */
	if (memcg_alloc_shrinker_maps(memcg)) {
		mem_cgroup_id_remove(memcg);
		return -ENOMEM;
	}

4482
	/* Online state pins memcg ID, memcg ID pins CSS */
4483
	atomic_set(&memcg->id.ref, 1);
4484
	css_get(css);
4485
	return 0;
B
Balbir Singh 已提交
4486 4487
}

4488
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4489
{
4490
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4491
	struct mem_cgroup_event *event, *tmp;
4492 4493 4494 4495 4496 4497

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4498 4499
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4500 4501 4502
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4503
	spin_unlock(&memcg->event_list_lock);
4504

R
Roman Gushchin 已提交
4505
	page_counter_set_min(&memcg->memory, 0);
4506
	page_counter_set_low(&memcg->memory, 0);
4507

4508
	memcg_offline_kmem(memcg);
4509
	wb_memcg_offline(memcg);
4510 4511

	mem_cgroup_id_put(memcg);
4512 4513
}

4514 4515 4516 4517 4518 4519 4520
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4521
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4522
{
4523
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4524

4525
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4526
		static_branch_dec(&memcg_sockets_enabled_key);
4527

4528
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
4529
		static_branch_dec(&memcg_sockets_enabled_key);
4530

4531 4532 4533
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
4534
	memcg_free_shrinker_maps(memcg);
4535
	memcg_free_kmem(memcg);
4536
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4537 4538
}

4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4556 4557 4558 4559 4560
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
R
Roman Gushchin 已提交
4561
	page_counter_set_min(&memcg->memory, 0);
4562
	page_counter_set_low(&memcg->memory, 0);
4563
	memcg->high = PAGE_COUNTER_MAX;
4564
	memcg->soft_limit = PAGE_COUNTER_MAX;
4565
	memcg_wb_domain_size_changed(memcg);
4566 4567
}

4568
#ifdef CONFIG_MMU
4569
/* Handlers for move charge at task migration. */
4570
static int mem_cgroup_do_precharge(unsigned long count)
4571
{
4572
	int ret;
4573

4574 4575
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4576
	if (!ret) {
4577 4578 4579
		mc.precharge += count;
		return ret;
	}
4580

4581
	/* Try charges one by one with reclaim, but do not retry */
4582
	while (count--) {
4583
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4584 4585
		if (ret)
			return ret;
4586
		mc.precharge++;
4587
		cond_resched();
4588
	}
4589
	return 0;
4590 4591 4592 4593
}

union mc_target {
	struct page	*page;
4594
	swp_entry_t	ent;
4595 4596 4597
};

enum mc_target_type {
4598
	MC_TARGET_NONE = 0,
4599
	MC_TARGET_PAGE,
4600
	MC_TARGET_SWAP,
4601
	MC_TARGET_DEVICE,
4602 4603
};

D
Daisuke Nishimura 已提交
4604 4605
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4606
{
4607
	struct page *page = _vm_normal_page(vma, addr, ptent, true);
4608

D
Daisuke Nishimura 已提交
4609 4610 4611
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4612
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4613
			return NULL;
4614 4615 4616 4617
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4618 4619 4620 4621 4622 4623
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4624
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
4625
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4626
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
4627 4628 4629 4630
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4631
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4632
		return NULL;
4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
		page = device_private_entry_to_page(ent);
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

4650 4651 4652 4653
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4654
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4655
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4656 4657 4658 4659
		entry->val = ent.val;

	return page;
}
4660 4661
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4662
			pte_t ptent, swp_entry_t *entry)
4663 4664 4665 4666
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4667

4668 4669 4670 4671 4672 4673 4674 4675 4676
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4677
	if (!(mc.flags & MOVE_FILE))
4678 4679 4680
		return NULL;

	mapping = vma->vm_file->f_mapping;
4681
	pgoff = linear_page_index(vma, addr);
4682 4683

	/* page is moved even if it's not RSS of this task(page-faulted). */
4684 4685
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4686 4687 4688 4689
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
4690
			if (do_memsw_account())
4691
				*entry = swp;
4692 4693
			page = find_get_page(swap_address_space(swp),
					     swp_offset(swp));
4694 4695 4696 4697 4698
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4699
#endif
4700 4701 4702
	return page;
}

4703 4704 4705
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
4706
 * @compound: charge the page as compound or small page
4707 4708 4709
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
4710
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4711 4712 4713 4714 4715
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
4716
				   bool compound,
4717 4718 4719 4720
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
4721
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4722
	int ret;
4723
	bool anon;
4724 4725 4726

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
4727
	VM_BUG_ON(compound && !PageTransHuge(page));
4728 4729

	/*
4730
	 * Prevent mem_cgroup_migrate() from looking at
4731
	 * page->mem_cgroup of its source page while we change it.
4732
	 */
4733
	ret = -EBUSY;
4734 4735 4736 4737 4738 4739 4740
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4741 4742
	anon = PageAnon(page);

4743 4744
	spin_lock_irqsave(&from->move_lock, flags);

4745
	if (!anon && page_mapped(page)) {
4746 4747
		__mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
		__mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
4748 4749
	}

4750 4751
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
4752
	 * mod_memcg_page_state will serialize updates to PageDirty.
4753 4754 4755 4756 4757 4758
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
4759 4760
			__mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
			__mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
4761 4762 4763
		}
	}

4764
	if (PageWriteback(page)) {
4765 4766
		__mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
		__mod_memcg_state(to, NR_WRITEBACK, nr_pages);
4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
4782
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4783
	memcg_check_events(to, page);
4784
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4785 4786 4787 4788 4789 4790 4791 4792
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4808 4809 4810 4811 4812
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PUBLIC
 *     or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
4813 4814
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
4815 4816 4817 4818
 *
 * Called with pte lock held.
 */

4819
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4820 4821 4822
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4823
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4824 4825 4826 4827 4828
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
4829
		page = mc_handle_swap_pte(vma, ptent, &ent);
4830
	else if (pte_none(ptent))
4831
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4832 4833

	if (!page && !ent.val)
4834
		return ret;
4835 4836
	if (page) {
		/*
4837
		 * Do only loose check w/o serialization.
4838
		 * mem_cgroup_move_account() checks the page is valid or
4839
		 * not under LRU exclusion.
4840
		 */
4841
		if (page->mem_cgroup == mc.from) {
4842
			ret = MC_TARGET_PAGE;
4843 4844
			if (is_device_private_page(page) ||
			    is_device_public_page(page))
4845
				ret = MC_TARGET_DEVICE;
4846 4847 4848 4849 4850 4851
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
4852 4853 4854 4855 4856
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
4857
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4858 4859 4860
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4861 4862 4863 4864
	}
	return ret;
}

4865 4866
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
4867 4868
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
4869 4870 4871 4872 4873 4874 4875 4876
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

4877 4878 4879 4880 4881
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
4882
	page = pmd_page(pmd);
4883
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4884
	if (!(mc.flags & MOVE_ANON))
4885
		return ret;
4886
	if (page->mem_cgroup == mc.from) {
4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4903 4904 4905 4906
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4907
	struct vm_area_struct *vma = walk->vma;
4908 4909 4910
	pte_t *pte;
	spinlock_t *ptl;

4911 4912
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4913 4914 4915 4916 4917
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
		 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
		 * MEMORY_DEVICE_PRIVATE but this might change.
		 */
4918 4919
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4920
		spin_unlock(ptl);
4921
		return 0;
4922
	}
4923

4924 4925
	if (pmd_trans_unstable(pmd))
		return 0;
4926 4927
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4928
		if (get_mctgt_type(vma, addr, *pte, NULL))
4929 4930 4931 4932
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4933 4934 4935
	return 0;
}

4936 4937 4938 4939
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4940 4941 4942 4943
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4944
	down_read(&mm->mmap_sem);
4945 4946
	walk_page_range(0, mm->highest_vm_end,
			&mem_cgroup_count_precharge_walk);
4947
	up_read(&mm->mmap_sem);
4948 4949 4950 4951 4952 4953 4954 4955 4956

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4957 4958 4959 4960 4961
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4962 4963
}

4964 4965
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4966
{
4967 4968 4969
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4970
	/* we must uncharge all the leftover precharges from mc.to */
4971
	if (mc.precharge) {
4972
		cancel_charge(mc.to, mc.precharge);
4973 4974 4975 4976 4977 4978 4979
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4980
		cancel_charge(mc.from, mc.moved_charge);
4981
		mc.moved_charge = 0;
4982
	}
4983 4984 4985
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4986
		if (!mem_cgroup_is_root(mc.from))
4987
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4988

4989 4990
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

4991
		/*
4992 4993
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4994
		 */
4995
		if (!mem_cgroup_is_root(mc.to))
4996 4997
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4998 4999
		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
		css_put_many(&mc.to->css, mc.moved_swap);
5000

5001 5002
		mc.moved_swap = 0;
	}
5003 5004 5005 5006 5007 5008 5009
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
5010 5011
	struct mm_struct *mm = mc.mm;

5012 5013 5014 5015 5016 5017
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5018
	spin_lock(&mc.lock);
5019 5020
	mc.from = NULL;
	mc.to = NULL;
5021
	mc.mm = NULL;
5022
	spin_unlock(&mc.lock);
5023 5024

	mmput(mm);
5025 5026
}

5027
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5028
{
5029
	struct cgroup_subsys_state *css;
5030
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5031
	struct mem_cgroup *from;
5032
	struct task_struct *leader, *p;
5033
	struct mm_struct *mm;
5034
	unsigned long move_flags;
5035
	int ret = 0;
5036

5037 5038
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5039 5040
		return 0;

5041 5042 5043 5044 5045 5046 5047
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
5048
	cgroup_taskset_for_each_leader(leader, css, tset) {
5049 5050
		WARN_ON_ONCE(p);
		p = leader;
5051
		memcg = mem_cgroup_from_css(css);
5052 5053 5054 5055
	}
	if (!p)
		return 0;

5056 5057 5058 5059 5060 5061 5062 5063 5064
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
5081
		mc.mm = mm;
5082 5083 5084 5085 5086 5087 5088 5089 5090
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
5091 5092
	} else {
		mmput(mm);
5093 5094 5095 5096
	}
	return ret;
}

5097
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5098
{
5099 5100
	if (mc.to)
		mem_cgroup_clear_mc();
5101 5102
}

5103 5104 5105
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5106
{
5107
	int ret = 0;
5108
	struct vm_area_struct *vma = walk->vma;
5109 5110
	pte_t *pte;
	spinlock_t *ptl;
5111 5112 5113
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5114

5115 5116
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5117
		if (mc.precharge < HPAGE_PMD_NR) {
5118
			spin_unlock(ptl);
5119 5120 5121 5122 5123 5124
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
5125
				if (!mem_cgroup_move_account(page, true,
5126
							     mc.from, mc.to)) {
5127 5128 5129 5130 5131 5132
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
5133 5134 5135 5136 5137 5138 5139 5140
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
5141
		}
5142
		spin_unlock(ptl);
5143
		return 0;
5144 5145
	}

5146 5147
	if (pmd_trans_unstable(pmd))
		return 0;
5148 5149 5150 5151
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5152
		bool device = false;
5153
		swp_entry_t ent;
5154 5155 5156 5157

		if (!mc.precharge)
			break;

5158
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5159 5160 5161
		case MC_TARGET_DEVICE:
			device = true;
			/* fall through */
5162 5163
		case MC_TARGET_PAGE:
			page = target.page;
5164 5165 5166 5167 5168 5169 5170 5171
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
5172
			if (!device && isolate_lru_page(page))
5173
				goto put;
5174 5175
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
5176
				mc.precharge--;
5177 5178
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5179
			}
5180 5181
			if (!device)
				putback_lru_page(page);
5182
put:			/* get_mctgt_type() gets the page */
5183 5184
			put_page(page);
			break;
5185 5186
		case MC_TARGET_SWAP:
			ent = target.ent;
5187
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5188
				mc.precharge--;
5189 5190 5191
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5192
			break;
5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5207
		ret = mem_cgroup_do_precharge(1);
5208 5209 5210 5211 5212 5213 5214
		if (!ret)
			goto retry;
	}

	return ret;
}

5215
static void mem_cgroup_move_charge(void)
5216
{
5217 5218
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
5219
		.mm = mc.mm,
5220
	};
5221 5222

	lru_add_drain_all();
5223
	/*
5224 5225 5226
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
5227 5228 5229
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5230
retry:
5231
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5243 5244 5245 5246
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
5247 5248
	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);

5249
	up_read(&mc.mm->mmap_sem);
5250
	atomic_dec(&mc.from->moving_account);
5251 5252
}

5253
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
5254
{
5255 5256
	if (mc.to) {
		mem_cgroup_move_charge();
5257
		mem_cgroup_clear_mc();
5258
	}
B
Balbir Singh 已提交
5259
}
5260
#else	/* !CONFIG_MMU */
5261
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5262 5263 5264
{
	return 0;
}
5265
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5266 5267
{
}
5268
static void mem_cgroup_move_task(void)
5269 5270 5271
{
}
#endif
B
Balbir Singh 已提交
5272

5273 5274
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5275 5276
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5277
 */
5278
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5279 5280
{
	/*
5281
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5282 5283 5284
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5285
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5286 5287 5288
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5289 5290
}

5291 5292 5293
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5294 5295 5296
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5297 5298
}

R
Roman Gushchin 已提交
5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328
static int memory_min_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long min = READ_ONCE(memcg->memory.min);

	if (min == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)min * PAGE_SIZE);

	return 0;
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

5329 5330 5331
static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5332
	unsigned long low = READ_ONCE(memcg->memory.low);
5333 5334

	if (low == PAGE_COUNTER_MAX)
5335
		seq_puts(m, "max\n");
5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5350
	err = page_counter_memparse(buf, "max", &low);
5351 5352 5353
	if (err)
		return err;

5354
	page_counter_set_low(&memcg->memory, low);
5355 5356 5357 5358 5359 5360 5361

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5362
	unsigned long high = READ_ONCE(memcg->high);
5363 5364

	if (high == PAGE_COUNTER_MAX)
5365
		seq_puts(m, "max\n");
5366 5367 5368 5369 5370 5371 5372 5373 5374 5375
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5376
	unsigned long nr_pages;
5377 5378 5379 5380
	unsigned long high;
	int err;

	buf = strstrip(buf);
5381
	err = page_counter_memparse(buf, "max", &high);
5382 5383 5384 5385 5386
	if (err)
		return err;

	memcg->high = high;

5387 5388 5389 5390 5391
	nr_pages = page_counter_read(&memcg->memory);
	if (nr_pages > high)
		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
					     GFP_KERNEL, true);

5392
	memcg_wb_domain_size_changed(memcg);
5393 5394 5395 5396 5397 5398
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5399
	unsigned long max = READ_ONCE(memcg->memory.max);
5400 5401

	if (max == PAGE_COUNTER_MAX)
5402
		seq_puts(m, "max\n");
5403 5404 5405 5406 5407 5408 5409 5410 5411 5412
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5413 5414
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
5415 5416 5417 5418
	unsigned long max;
	int err;

	buf = strstrip(buf);
5419
	err = page_counter_memparse(buf, "max", &max);
5420 5421 5422
	if (err)
		return err;

5423
	xchg(&memcg->memory.max, max);
5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

		if (signal_pending(current)) {
			err = -EINTR;
			break;
		}

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

5449
		memcg_memory_event(memcg, MEMCG_OOM);
5450 5451 5452
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
5453

5454
	memcg_wb_domain_size_changed(memcg);
5455 5456 5457 5458 5459 5460 5461
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

5462 5463 5464 5465 5466 5467 5468 5469
	seq_printf(m, "low %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
R
Roman Gushchin 已提交
5470 5471
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
5472 5473 5474 5475

	return 0;
}

5476 5477 5478
static int memory_stat_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5479
	unsigned long stat[MEMCG_NR_STAT];
5480
	unsigned long events[NR_VM_EVENT_ITEMS];
5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493
	int i;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

5494 5495 5496
	tree_stat(memcg, stat);
	tree_events(memcg, events);

5497
	seq_printf(m, "anon %llu\n",
5498
		   (u64)stat[MEMCG_RSS] * PAGE_SIZE);
5499
	seq_printf(m, "file %llu\n",
5500
		   (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
5501
	seq_printf(m, "kernel_stack %llu\n",
5502
		   (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5503
	seq_printf(m, "slab %llu\n",
5504 5505
		   (u64)(stat[NR_SLAB_RECLAIMABLE] +
			 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5506
	seq_printf(m, "sock %llu\n",
5507
		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5508

5509
	seq_printf(m, "shmem %llu\n",
5510
		   (u64)stat[NR_SHMEM] * PAGE_SIZE);
5511
	seq_printf(m, "file_mapped %llu\n",
5512
		   (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
5513
	seq_printf(m, "file_dirty %llu\n",
5514
		   (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
5515
	seq_printf(m, "file_writeback %llu\n",
5516
		   (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527

	for (i = 0; i < NR_LRU_LISTS; i++) {
		struct mem_cgroup *mi;
		unsigned long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
		seq_printf(m, "%s %llu\n",
			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
	}

5528
	seq_printf(m, "slab_reclaimable %llu\n",
5529
		   (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5530
	seq_printf(m, "slab_unreclaimable %llu\n",
5531
		   (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5532

5533 5534
	/* Accumulated memory events */

5535 5536
	seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
	seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
5537

5538 5539 5540 5541 5542 5543 5544 5545 5546 5547
	seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
	seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
		   events[PGSCAN_DIRECT]);
	seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
		   events[PGSTEAL_DIRECT]);
	seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
	seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
	seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
	seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);

5548
	seq_printf(m, "workingset_refault %lu\n",
5549
		   stat[WORKINGSET_REFAULT]);
5550
	seq_printf(m, "workingset_activate %lu\n",
5551
		   stat[WORKINGSET_ACTIVATE]);
5552
	seq_printf(m, "workingset_nodereclaim %lu\n",
5553
		   stat[WORKINGSET_NODERECLAIM]);
5554

5555 5556 5557
	return 0;
}

5558 5559 5560
static struct cftype memory_files[] = {
	{
		.name = "current",
5561
		.flags = CFTYPE_NOT_ON_ROOT,
5562 5563
		.read_u64 = memory_current_read,
	},
R
Roman Gushchin 已提交
5564 5565 5566 5567 5568 5569
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5591
		.file_offset = offsetof(struct mem_cgroup, events_file),
5592 5593
		.seq_show = memory_events_show,
	},
5594 5595 5596 5597 5598
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
5599 5600 5601
	{ }	/* terminate */
};

5602
struct cgroup_subsys memory_cgrp_subsys = {
5603
	.css_alloc = mem_cgroup_css_alloc,
5604
	.css_online = mem_cgroup_css_online,
5605
	.css_offline = mem_cgroup_css_offline,
5606
	.css_released = mem_cgroup_css_released,
5607
	.css_free = mem_cgroup_css_free,
5608
	.css_reset = mem_cgroup_css_reset,
5609 5610
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
5611
	.post_attach = mem_cgroup_move_task,
5612
	.bind = mem_cgroup_bind,
5613 5614
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5615
	.early_init = 0,
B
Balbir Singh 已提交
5616
};
5617

5618
/**
R
Roman Gushchin 已提交
5619
 * mem_cgroup_protected - check if memory consumption is in the normal range
5620
 * @root: the top ancestor of the sub-tree being checked
5621 5622
 * @memcg: the memory cgroup to check
 *
5623 5624
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
5625
 *
R
Roman Gushchin 已提交
5626 5627 5628 5629 5630
 * Returns one of the following:
 *   MEMCG_PROT_NONE: cgroup memory is not protected
 *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
 *     an unprotected supply of reclaimable memory from other cgroups.
 *   MEMCG_PROT_MIN: cgroup memory is protected
5631
 *
R
Roman Gushchin 已提交
5632
 * @root is exclusive; it is never protected when looked at directly
5633
 *
R
Roman Gushchin 已提交
5634 5635 5636
 * To provide a proper hierarchical behavior, effective memory.min/low values
 * are used. Below is the description of how effective memory.low is calculated.
 * Effective memory.min values is calculated in the same way.
5637
 *
5638 5639 5640 5641 5642 5643 5644
 * Effective memory.low is always equal or less than the original memory.low.
 * If there is no memory.low overcommittment (which is always true for
 * top-level memory cgroups), these two values are equal.
 * Otherwise, it's a part of parent's effective memory.low,
 * calculated as a cgroup's memory.low usage divided by sum of sibling's
 * memory.low usages, where memory.low usage is the size of actually
 * protected memory.
5645
 *
5646 5647 5648
 *                                             low_usage
 * elow = min( memory.low, parent->elow * ------------------ ),
 *                                        siblings_low_usage
5649
 *
5650 5651 5652
 *             | memory.current, if memory.current < memory.low
 * low_usage = |
	       | 0, otherwise.
5653
 *
5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680
 *
 * Such definition of the effective memory.low provides the expected
 * hierarchical behavior: parent's memory.low value is limiting
 * children, unprotected memory is reclaimed first and cgroups,
 * which are not using their guarantee do not affect actual memory
 * distribution.
 *
 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
 *
 *     A      A/memory.low = 2G, A/memory.current = 6G
 *    //\\
 *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
 *            C/memory.low = 1G  C/memory.current = 2G
 *            D/memory.low = 0   D/memory.current = 2G
 *            E/memory.low = 10G E/memory.current = 0
 *
 * and the memory pressure is applied, the following memory distribution
 * is expected (approximately):
 *
 *     A/memory.current = 2G
 *
 *     B/memory.current = 1.3G
 *     C/memory.current = 0.6G
 *     D/memory.current = 0
 *     E/memory.current = 0
 *
 * These calculations require constant tracking of the actual low usages
R
Roman Gushchin 已提交
5681 5682
 * (see propagate_protected_usage()), as well as recursive calculation of
 * effective memory.low values. But as we do call mem_cgroup_protected()
5683 5684 5685 5686
 * path for each memory cgroup top-down from the reclaim,
 * it's possible to optimize this part, and save calculated elow
 * for next usage. This part is intentionally racy, but it's ok,
 * as memory.low is a best-effort mechanism.
5687
 */
R
Roman Gushchin 已提交
5688 5689
enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
						struct mem_cgroup *memcg)
5690
{
5691
	struct mem_cgroup *parent;
R
Roman Gushchin 已提交
5692 5693 5694
	unsigned long emin, parent_emin;
	unsigned long elow, parent_elow;
	unsigned long usage;
5695

5696
	if (mem_cgroup_disabled())
R
Roman Gushchin 已提交
5697
		return MEMCG_PROT_NONE;
5698

5699 5700 5701
	if (!root)
		root = root_mem_cgroup;
	if (memcg == root)
R
Roman Gushchin 已提交
5702
		return MEMCG_PROT_NONE;
5703

5704
	usage = page_counter_read(&memcg->memory);
R
Roman Gushchin 已提交
5705 5706 5707 5708 5709
	if (!usage)
		return MEMCG_PROT_NONE;

	emin = memcg->memory.min;
	elow = memcg->memory.low;
5710

R
Roman Gushchin 已提交
5711
	parent = parent_mem_cgroup(memcg);
5712 5713 5714 5715
	/* No parent means a non-hierarchical mode on v1 memcg */
	if (!parent)
		return MEMCG_PROT_NONE;

5716 5717 5718
	if (parent == root)
		goto exit;

R
Roman Gushchin 已提交
5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732
	parent_emin = READ_ONCE(parent->memory.emin);
	emin = min(emin, parent_emin);
	if (emin && parent_emin) {
		unsigned long min_usage, siblings_min_usage;

		min_usage = min(usage, memcg->memory.min);
		siblings_min_usage = atomic_long_read(
			&parent->memory.children_min_usage);

		if (min_usage && siblings_min_usage)
			emin = min(emin, parent_emin * min_usage /
				   siblings_min_usage);
	}

5733 5734
	parent_elow = READ_ONCE(parent->memory.elow);
	elow = min(elow, parent_elow);
R
Roman Gushchin 已提交
5735 5736
	if (elow && parent_elow) {
		unsigned long low_usage, siblings_low_usage;
5737

R
Roman Gushchin 已提交
5738 5739 5740
		low_usage = min(usage, memcg->memory.low);
		siblings_low_usage = atomic_long_read(
			&parent->memory.children_low_usage);
5741

R
Roman Gushchin 已提交
5742 5743 5744 5745
		if (low_usage && siblings_low_usage)
			elow = min(elow, parent_elow * low_usage /
				   siblings_low_usage);
	}
5746 5747

exit:
R
Roman Gushchin 已提交
5748
	memcg->memory.emin = emin;
5749
	memcg->memory.elow = elow;
R
Roman Gushchin 已提交
5750 5751 5752 5753 5754 5755 5756

	if (usage <= emin)
		return MEMCG_PROT_MIN;
	else if (usage <= elow)
		return MEMCG_PROT_LOW;
	else
		return MEMCG_PROT_NONE;
5757 5758
}

5759 5760 5761 5762 5763 5764
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
5765
 * @compound: charge the page as compound or small page
5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5778 5779
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
5780 5781
{
	struct mem_cgroup *memcg = NULL;
5782
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5796
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5797
		if (compound_head(page)->mem_cgroup)
5798
			goto out;
5799

5800
		if (do_swap_account) {
5801 5802 5803 5804 5805 5806 5807 5808 5809
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835
int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
{
	struct mem_cgroup *memcg;
	int ret;

	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
	memcg = *memcgp;
	mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
	return ret;
}

5836 5837 5838 5839 5840
/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
5841
 * @compound: charge the page as compound or small page
5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5854
			      bool lrucare, bool compound)
5855
{
5856
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5871 5872 5873
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
5874
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5875 5876
	memcg_check_events(memcg, page);
	local_irq_enable();
5877

5878
	if (do_memsw_account() && PageSwapCache(page)) {
5879 5880 5881 5882 5883 5884
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
5885
		mem_cgroup_uncharge_swap(entry, nr_pages);
5886 5887 5888 5889 5890 5891 5892
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
5893
 * @compound: charge the page as compound or small page
5894 5895 5896
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
5897 5898
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
5899
{
5900
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926
struct uncharge_gather {
	struct mem_cgroup *memcg;
	unsigned long pgpgout;
	unsigned long nr_anon;
	unsigned long nr_file;
	unsigned long nr_kmem;
	unsigned long nr_huge;
	unsigned long nr_shmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
5927
{
5928 5929 5930 5931 5932 5933
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
5934 5935
	unsigned long flags;

5936 5937
	if (!mem_cgroup_is_root(ug->memcg)) {
		page_counter_uncharge(&ug->memcg->memory, nr_pages);
5938
		if (do_memsw_account())
5939 5940 5941 5942
			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
5943
	}
5944 5945

	local_irq_save(flags);
5946 5947 5948 5949 5950
	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
5951
	__this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
5952
	memcg_check_events(ug->memcg, ug->dummy_page);
5953
	local_irq_restore(flags);
5954

5955 5956 5957 5958 5959 5960 5961
	if (!mem_cgroup_is_root(ug->memcg))
		css_put_many(&ug->memcg->css, nr_pages);
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
	VM_BUG_ON_PAGE(PageLRU(page), page);
5962 5963
	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
			!PageHWPoison(page) , page);
5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003

	if (!page->mem_cgroup)
		return;

	/*
	 * Nobody should be changing or seriously looking at
	 * page->mem_cgroup at this point, we have fully
	 * exclusive access to the page.
	 */

	if (ug->memcg != page->mem_cgroup) {
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
		ug->memcg = page->mem_cgroup;
	}

	if (!PageKmemcg(page)) {
		unsigned int nr_pages = 1;

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			ug->nr_huge += nr_pages;
		}
		if (PageAnon(page))
			ug->nr_anon += nr_pages;
		else {
			ug->nr_file += nr_pages;
			if (PageSwapBacked(page))
				ug->nr_shmem += nr_pages;
		}
		ug->pgpgout++;
	} else {
		ug->nr_kmem += 1 << compound_order(page);
		__ClearPageKmemcg(page);
	}

	ug->dummy_page = page;
	page->mem_cgroup = NULL;
6004 6005 6006 6007
}

static void uncharge_list(struct list_head *page_list)
{
6008
	struct uncharge_gather ug;
6009
	struct list_head *next;
6010 6011

	uncharge_gather_clear(&ug);
6012

6013 6014 6015 6016
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
6017 6018
	next = page_list->next;
	do {
6019 6020
		struct page *page;

6021 6022 6023
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

6024
		uncharge_page(page, &ug);
6025 6026
	} while (next != page_list);

6027 6028
	if (ug.memcg)
		uncharge_batch(&ug);
6029 6030
}

6031 6032 6033 6034 6035 6036 6037 6038 6039
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
6040 6041
	struct uncharge_gather ug;

6042 6043 6044
	if (mem_cgroup_disabled())
		return;

6045
	/* Don't touch page->lru of any random page, pre-check: */
6046
	if (!page->mem_cgroup)
6047 6048
		return;

6049 6050 6051
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
6052
}
6053

6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
6065

6066 6067
	if (!list_empty(page_list))
		uncharge_list(page_list);
6068 6069 6070
}

/**
6071 6072 6073
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
6074
 *
6075 6076
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
6077 6078 6079
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
6080
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6081
{
6082
	struct mem_cgroup *memcg;
6083 6084
	unsigned int nr_pages;
	bool compound;
6085
	unsigned long flags;
6086 6087 6088 6089

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6090 6091
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6092 6093 6094 6095 6096

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
6097
	if (newpage->mem_cgroup)
6098 6099
		return;

6100
	/* Swapcache readahead pages can get replaced before being charged */
6101
	memcg = oldpage->mem_cgroup;
6102
	if (!memcg)
6103 6104
		return;

6105 6106 6107 6108 6109 6110 6111 6112
	/* Force-charge the new page. The old one will be freed soon */
	compound = PageTransHuge(newpage);
	nr_pages = compound ? hpage_nr_pages(newpage) : 1;

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
6113

6114
	commit_charge(newpage, memcg, false);
6115

6116
	local_irq_save(flags);
6117 6118
	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
	memcg_check_events(memcg, newpage);
6119
	local_irq_restore(flags);
6120 6121
}

6122
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6123 6124
EXPORT_SYMBOL(memcg_sockets_enabled_key);

6125
void mem_cgroup_sk_alloc(struct sock *sk)
6126 6127 6128
{
	struct mem_cgroup *memcg;

6129 6130 6131
	if (!mem_cgroup_sockets_enabled)
		return;

6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145
	/*
	 * Socket cloning can throw us here with sk_memcg already
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		css_get(&sk->sk_memcg->css);
		return;
	}

6146 6147
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
6148 6149
	if (memcg == root_mem_cgroup)
		goto out;
6150
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6151 6152
		goto out;
	if (css_tryget_online(&memcg->css))
6153
		sk->sk_memcg = memcg;
6154
out:
6155 6156 6157
	rcu_read_unlock();
}

6158
void mem_cgroup_sk_free(struct sock *sk)
6159
{
6160 6161
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6174
	gfp_t gfp_mask = GFP_KERNEL;
6175

6176
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6177
		struct page_counter *fail;
6178

6179 6180
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
6181 6182
			return true;
		}
6183 6184
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
6185
		return false;
6186
	}
6187

6188 6189 6190 6191
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

6192
	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6193

6194 6195 6196 6197
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6198 6199 6200 6201 6202
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
6203 6204
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
6205 6206 6207
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6208
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6209
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6210 6211
		return;
	}
6212

6213
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6214

6215
	refill_stock(memcg, nr_pages);
6216 6217
}

6218 6219 6220 6221 6222 6223 6224 6225 6226
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
6227 6228
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
6229 6230 6231 6232
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
6233

6234
/*
6235 6236
 * subsys_initcall() for memory controller.
 *
6237 6238 6239 6240
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
6241 6242 6243
 */
static int __init mem_cgroup_init(void)
{
6244 6245
	int cpu, node;

6246
#ifdef CONFIG_MEMCG_KMEM
6247 6248
	/*
	 * Kmem cache creation is mostly done with the slab_mutex held,
6249 6250 6251
	 * so use a workqueue with limited concurrency to avoid stalling
	 * all worker threads in case lots of cgroups are created and
	 * destroyed simultaneously.
6252
	 */
6253 6254
	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
	BUG_ON(!memcg_kmem_cache_wq);
6255 6256
#endif

6257 6258
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

6270
		rtpn->rb_root = RB_ROOT;
6271
		rtpn->rb_rightmost = NULL;
6272
		spin_lock_init(&rtpn->lock);
6273 6274 6275
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

6276 6277 6278
	return 0;
}
subsys_initcall(mem_cgroup_init);
6279 6280

#ifdef CONFIG_MEMCG_SWAP
6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
	while (!atomic_inc_not_zero(&memcg->id.ref)) {
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

6299 6300 6301 6302 6303 6304 6305 6306 6307
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
6308
	struct mem_cgroup *memcg, *swap_memcg;
6309
	unsigned int nr_entries;
6310 6311 6312 6313 6314
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

6315
	if (!do_memsw_account())
6316 6317 6318 6319 6320 6321 6322 6323
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

6324 6325 6326 6327 6328 6329
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
6330 6331 6332 6333 6334 6335
	nr_entries = hpage_nr_pages(page);
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
6336
	VM_BUG_ON_PAGE(oldid, page);
6337
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6338 6339 6340 6341

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
6342
		page_counter_uncharge(&memcg->memory, nr_entries);
6343

6344 6345
	if (memcg != swap_memcg) {
		if (!mem_cgroup_is_root(swap_memcg))
6346 6347
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
6348 6349
	}

6350 6351
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
6352
	 * i_pages lock which is taken with interrupts-off. It is
6353
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
6354
	 * only synchronisation we have for updating the per-CPU variables.
6355 6356
	 */
	VM_BUG_ON(!irqs_disabled());
6357 6358
	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
				     -nr_entries);
6359
	memcg_check_events(memcg, page);
6360 6361

	if (!mem_cgroup_is_root(memcg))
6362
		css_put_many(&memcg->css, nr_entries);
6363 6364
}

6365 6366
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
6367 6368 6369
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
6370
 * Try to charge @page's memcg for the swap space at @entry.
6371 6372 6373 6374 6375
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
6376
	unsigned int nr_pages = hpage_nr_pages(page);
6377
	struct page_counter *counter;
6378
	struct mem_cgroup *memcg;
6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

6390 6391
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6392
		return 0;
6393
	}
6394

6395 6396
	memcg = mem_cgroup_id_get_online(memcg);

6397
	if (!mem_cgroup_is_root(memcg) &&
6398
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6399 6400
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6401
		mem_cgroup_id_put(memcg);
6402
		return -ENOMEM;
6403
	}
6404

6405 6406 6407 6408
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6409
	VM_BUG_ON_PAGE(oldid, page);
6410
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6411 6412 6413 6414

	return 0;
}

6415
/**
6416
 * mem_cgroup_uncharge_swap - uncharge swap space
6417
 * @entry: swap entry to uncharge
6418
 * @nr_pages: the amount of swap space to uncharge
6419
 */
6420
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6421 6422 6423 6424
{
	struct mem_cgroup *memcg;
	unsigned short id;

6425
	if (!do_swap_account)
6426 6427
		return;

6428
	id = swap_cgroup_record(entry, 0, nr_pages);
6429
	rcu_read_lock();
6430
	memcg = mem_cgroup_from_id(id);
6431
	if (memcg) {
6432 6433
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6434
				page_counter_uncharge(&memcg->swap, nr_pages);
6435
			else
6436
				page_counter_uncharge(&memcg->memsw, nr_pages);
6437
		}
6438
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6439
		mem_cgroup_id_put_many(memcg, nr_pages);
6440 6441 6442 6443
	}
	rcu_read_unlock();
}

6444 6445 6446 6447 6448 6449 6450 6451
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
6452
				      READ_ONCE(memcg->swap.max) -
6453 6454 6455 6456
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6473
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6474 6475 6476 6477 6478
			return true;

	return false;
}

6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6507
	unsigned long max = READ_ONCE(memcg->swap.max);
6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

6529
	xchg(&memcg->swap.max, max);
6530 6531 6532 6533

	return nbytes;
}

6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545
static int swap_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
6558 6559 6560 6561 6562 6563
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
6564 6565 6566
	{ }	/* terminate */
};

6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
6598 6599
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
6600 6601 6602 6603 6604 6605 6606 6607
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */