memcontrol.c 185.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
B
Balbir Singh 已提交
2 3 4 5 6
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
7 8 9
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
10 11 12 13
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
14 15 16 17
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
B
Balbir Singh 已提交
23 24
 */

25
#include <linux/page_counter.h>
B
Balbir Singh 已提交
26 27
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
28
#include <linux/pagewalk.h>
29
#include <linux/sched/mm.h>
30
#include <linux/shmem_fs.h>
31
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
32
#include <linux/pagemap.h>
33
#include <linux/vm_event_item.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/swap_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
59
#include <linux/tracehook.h>
60
#include <linux/psi.h>
61
#include <linux/seq_buf.h>
K
KAMEZAWA Hiroyuki 已提交
62
#include "internal.h"
G
Glauber Costa 已提交
63
#include <net/sock.h>
M
Michal Hocko 已提交
64
#include <net/ip.h>
65
#include "slab.h"
B
Balbir Singh 已提交
66

67
#include <linux/uaccess.h>
68

69 70
#include <trace/events/vmscan.h>

71 72
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
73

74 75
struct mem_cgroup *root_mem_cgroup __read_mostly;

76
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
77

78 79 80
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

81 82 83
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

84
/* Whether the swap controller is active */
A
Andrew Morton 已提交
85
#ifdef CONFIG_MEMCG_SWAP
86
bool cgroup_memory_noswap __read_mostly;
87
#else
88
#define cgroup_memory_noswap		1
89
#endif
90

91 92 93 94
#ifdef CONFIG_CGROUP_WRITEBACK
static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
#endif

95 96 97
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
98
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
99 100
}

101 102
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
103

104 105 106 107 108
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

109
struct mem_cgroup_tree_per_node {
110
	struct rb_root rb_root;
111
	struct rb_node *rb_rightmost;
112 113 114 115 116 117 118 119 120
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
121 122 123 124 125
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
126

127 128 129
/*
 * cgroup_event represents events which userspace want to receive.
 */
130
struct mem_cgroup_event {
131
	/*
132
	 * memcg which the event belongs to.
133
	 */
134
	struct mem_cgroup *memcg;
135 136 137 138 139 140 141 142
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
143 144 145 146 147
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
148
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
149
			      struct eventfd_ctx *eventfd, const char *args);
150 151 152 153 154
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
155
	void (*unregister_event)(struct mem_cgroup *memcg,
156
				 struct eventfd_ctx *eventfd);
157 158 159 160 161 162
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
163
	wait_queue_entry_t wait;
164 165 166
	struct work_struct remove;
};

167 168
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
169

170 171
/* Stuffs for move charges at task migration. */
/*
172
 * Types of charges to be moved.
173
 */
174 175 176
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
177

178 179
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
180
	spinlock_t	  lock; /* for from, to */
181
	struct mm_struct  *mm;
182 183
	struct mem_cgroup *from;
	struct mem_cgroup *to;
184
	unsigned long flags;
185
	unsigned long precharge;
186
	unsigned long moved_charge;
187
	unsigned long moved_swap;
188 189 190
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
191
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
192 193
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
194

195 196 197 198
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
199
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
200
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
201

202 203
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
204
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
205
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
206
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
207 208 209
	NR_CHARGE_TYPE,
};

210
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
211 212 213 214
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
215
	_KMEM,
V
Vladimir Davydov 已提交
216
	_TCP,
G
Glauber Costa 已提交
217 218
};

219 220
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
221
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
222 223
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
224

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(root, iter, NULL))

#define for_each_mem_cgroup(iter)			\
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(NULL, iter, NULL))

240 241 242 243 244 245
static inline bool should_force_charge(void)
{
	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
		(current->flags & PF_EXITING);
}

246 247 248 249 250 251 252 253 254 255 256 257 258
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

259
#ifdef CONFIG_MEMCG_KMEM
260
/*
261
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
262 263 264 265 266
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
267
 *
268 269
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
270
 */
271 272
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
273

274 275 276 277 278 279 280 281 282 283 284 285 286
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

287 288 289 290 291 292
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
293
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
294 295
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
296
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
297 298 299
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
300
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
301

302 303 304 305 306 307
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
308
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
309
EXPORT_SYMBOL(memcg_kmem_enabled_key);
310

311
struct workqueue_struct *memcg_kmem_cache_wq;
312
#endif
313

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
static int memcg_shrinker_map_size;
static DEFINE_MUTEX(memcg_shrinker_map_mutex);

static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
{
	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
}

static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
					 int size, int old_size)
{
	struct memcg_shrinker_map *new, *old;
	int nid;

	lockdep_assert_held(&memcg_shrinker_map_mutex);

	for_each_node(nid) {
		old = rcu_dereference_protected(
			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
		/* Not yet online memcg */
		if (!old)
			return 0;

337
		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
		if (!new)
			return -ENOMEM;

		/* Set all old bits, clear all new bits */
		memset(new->map, (int)0xff, old_size);
		memset((void *)new->map + old_size, 0, size - old_size);

		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
	}

	return 0;
}

static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *pn;
	struct memcg_shrinker_map *map;
	int nid;

	if (mem_cgroup_is_root(memcg))
		return;

	for_each_node(nid) {
		pn = mem_cgroup_nodeinfo(memcg, nid);
		map = rcu_dereference_protected(pn->shrinker_map, true);
		if (map)
			kvfree(map);
		rcu_assign_pointer(pn->shrinker_map, NULL);
	}
}

static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	struct memcg_shrinker_map *map;
	int nid, size, ret = 0;

	if (mem_cgroup_is_root(memcg))
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	size = memcg_shrinker_map_size;
	for_each_node(nid) {
381
		map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
		if (!map) {
			memcg_free_shrinker_maps(memcg);
			ret = -ENOMEM;
			break;
		}
		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
	}
	mutex_unlock(&memcg_shrinker_map_mutex);

	return ret;
}

int memcg_expand_shrinker_maps(int new_id)
{
	int size, old_size, ret = 0;
	struct mem_cgroup *memcg;

	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
	old_size = memcg_shrinker_map_size;
	if (size <= old_size)
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	if (!root_mem_cgroup)
		goto unlock;

	for_each_mem_cgroup(memcg) {
		if (mem_cgroup_is_root(memcg))
			continue;
		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
412 413
		if (ret) {
			mem_cgroup_iter_break(NULL, memcg);
414
			goto unlock;
415
		}
416 417 418 419 420 421 422
	}
unlock:
	if (!ret)
		memcg_shrinker_map_size = size;
	mutex_unlock(&memcg_shrinker_map_mutex);
	return ret;
}
423 424 425 426 427 428 429 430

void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
{
	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
		struct memcg_shrinker_map *map;

		rcu_read_lock();
		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
431 432
		/* Pairs with smp mb in shrink_slab() */
		smp_mb__before_atomic();
433 434 435 436 437
		set_bit(shrinker_id, map->map);
		rcu_read_unlock();
	}
}

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

455
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
456 457 458 459 460
		memcg = root_mem_cgroup;

	return &memcg->css;
}

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
480
	if (PageSlab(page) && !PageTail(page))
481 482 483
		memcg = memcg_from_slab_page(page);
	else
		memcg = READ_ONCE(page->mem_cgroup);
484 485 486 487 488 489 490 491
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

492 493
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
494
{
495
	int nid = page_to_nid(page);
496

497
	return memcg->nodeinfo[nid];
498 499
}

500 501
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
502
{
503
	return soft_limit_tree.rb_tree_per_node[nid];
504 505
}

506
static struct mem_cgroup_tree_per_node *
507 508 509 510
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

511
	return soft_limit_tree.rb_tree_per_node[nid];
512 513
}

514 515
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
516
					 unsigned long new_usage_in_excess)
517 518 519
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
520
	struct mem_cgroup_per_node *mz_node;
521
	bool rightmost = true;
522 523 524 525 526 527 528 529 530

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
531
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
532
					tree_node);
533
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
534
			p = &(*p)->rb_left;
535 536 537
			rightmost = false;
		}

538 539 540 541 542 543 544
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
545 546 547 548

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

549 550 551 552 553
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

554 555
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
556 557 558
{
	if (!mz->on_tree)
		return;
559 560 561 562

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

563 564 565 566
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

567 568
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
569
{
570 571 572
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
573
	__mem_cgroup_remove_exceeded(mz, mctz);
574
	spin_unlock_irqrestore(&mctz->lock, flags);
575 576
}

577 578 579
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
580
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
581 582 583 584 585 586 587
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
588 589 590

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
591
	unsigned long excess;
592 593
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
594

595
	mctz = soft_limit_tree_from_page(page);
596 597
	if (!mctz)
		return;
598 599 600 601 602
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
603
		mz = mem_cgroup_page_nodeinfo(memcg, page);
604
		excess = soft_limit_excess(memcg);
605 606 607 608 609
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
610 611 612
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
613 614
			/* if on-tree, remove it */
			if (mz->on_tree)
615
				__mem_cgroup_remove_exceeded(mz, mctz);
616 617 618 619
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
620
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
621
			spin_unlock_irqrestore(&mctz->lock, flags);
622 623 624 625 626 627
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
628 629 630
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
631

632
	for_each_node(nid) {
633 634
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
635 636
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
637 638 639
	}
}

640 641
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
642
{
643
	struct mem_cgroup_per_node *mz;
644 645 646

retry:
	mz = NULL;
647
	if (!mctz->rb_rightmost)
648 649
		goto done;		/* Nothing to reclaim from */

650 651
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
652 653 654 655 656
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
657
	__mem_cgroup_remove_exceeded(mz, mctz);
658
	if (!soft_limit_excess(mz->memcg) ||
S
Shakeel Butt 已提交
659
	    !css_tryget(&mz->memcg->css))
660 661 662 663 664
		goto retry;
done:
	return mz;
}

665 666
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
667
{
668
	struct mem_cgroup_per_node *mz;
669

670
	spin_lock_irq(&mctz->lock);
671
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
672
	spin_unlock_irq(&mctz->lock);
673 674 675
	return mz;
}

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
/**
 * __mod_memcg_state - update cgroup memory statistics
 * @memcg: the memory cgroup
 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 * @val: delta to add to the counter, can be negative
 */
void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
{
	long x;

	if (mem_cgroup_disabled())
		return;

	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
691 692
		struct mem_cgroup *mi;

693 694 695 696 697
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
698 699
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmstats[idx]);
700 701 702 703 704
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
}

705 706 707 708 709 710 711 712 713 714 715
static struct mem_cgroup_per_node *
parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
{
	struct mem_cgroup *parent;

	parent = parent_mem_cgroup(pn->memcg);
	if (!parent)
		return NULL;
	return mem_cgroup_nodeinfo(parent, nid);
}

716 717 718 719 720 721 722 723 724 725 726 727 728
/**
 * __mod_lruvec_state - update lruvec memory statistics
 * @lruvec: the lruvec
 * @idx: the stat item
 * @val: delta to add to the counter, can be negative
 *
 * The lruvec is the intersection of the NUMA node and a cgroup. This
 * function updates the all three counters that are affected by a
 * change of state at this level: per-node, per-cgroup, per-lruvec.
 */
void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			int val)
{
729
	pg_data_t *pgdat = lruvec_pgdat(lruvec);
730
	struct mem_cgroup_per_node *pn;
731
	struct mem_cgroup *memcg;
732 733 734
	long x;

	/* Update node */
735
	__mod_node_page_state(pgdat, idx, val);
736 737 738 739 740

	if (mem_cgroup_disabled())
		return;

	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
741
	memcg = pn->memcg;
742 743

	/* Update memcg */
744
	__mod_memcg_state(memcg, idx, val);
745

746 747 748
	/* Update lruvec */
	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);

749 750
	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
751 752 753 754
		struct mem_cgroup_per_node *pi;

		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
			atomic_long_add(x, &pi->lruvec_stat[idx]);
755 756 757 758 759
		x = 0;
	}
	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
}

760 761
void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
{
762
	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
763 764 765 766
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;

	rcu_read_lock();
767
	memcg = mem_cgroup_from_obj(p);
768 769 770 771 772

	/* Untracked pages have no memcg, no lruvec. Update only the node */
	if (!memcg || memcg == root_mem_cgroup) {
		__mod_node_page_state(pgdat, idx, val);
	} else {
773
		lruvec = mem_cgroup_lruvec(memcg, pgdat);
774 775 776 777 778
		__mod_lruvec_state(lruvec, idx, val);
	}
	rcu_read_unlock();
}

779 780 781 782 783 784 785 786 787 788 789
void mod_memcg_obj_state(void *p, int idx, int val)
{
	struct mem_cgroup *memcg;

	rcu_read_lock();
	memcg = mem_cgroup_from_obj(p);
	if (memcg)
		mod_memcg_state(memcg, idx, val);
	rcu_read_unlock();
}

790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
/**
 * __count_memcg_events - account VM events in a cgroup
 * @memcg: the memory cgroup
 * @idx: the event item
 * @count: the number of events that occured
 */
void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
			  unsigned long count)
{
	unsigned long x;

	if (mem_cgroup_disabled())
		return;

	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
806 807
		struct mem_cgroup *mi;

808 809 810 811 812
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->events[idx], x);
813 814
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmevents[idx]);
815 816 817 818 819
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
}

820
static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
821
{
822
	return atomic_long_read(&memcg->vmevents[event]);
823 824
}

825 826
static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
{
827 828 829 830 831 832
	long x = 0;
	int cpu;

	for_each_possible_cpu(cpu)
		x += per_cpu(memcg->vmstats_local->events[event], cpu);
	return x;
833 834
}

835
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
836
					 struct page *page,
837
					 int nr_pages)
838
{
839 840
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
841
		__count_memcg_events(memcg, PGPGIN, 1);
842
	else {
843
		__count_memcg_events(memcg, PGPGOUT, 1);
844 845
		nr_pages = -nr_pages; /* for event */
	}
846

847
	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
848 849
}

850 851
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
852 853 854
{
	unsigned long val, next;

855 856
	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
857
	/* from time_after() in jiffies.h */
858
	if ((long)(next - val) < 0) {
859 860 861 862
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
863 864 865
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
866 867 868
		default:
			break;
		}
869
		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
870
		return true;
871
	}
872
	return false;
873 874 875 876 877 878
}

/*
 * Check events in order.
 *
 */
879
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
880 881
{
	/* threshold event is triggered in finer grain than soft limit */
882 883
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
884
		bool do_softlimit;
885

886 887
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
888
		mem_cgroup_threshold(memcg);
889 890
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
891
	}
892 893
}

894
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
895
{
896 897 898 899 900 901 902 903
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

904
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
905
}
M
Michal Hocko 已提交
906
EXPORT_SYMBOL(mem_cgroup_from_task);
907

908 909 910 911 912 913 914 915 916
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
 * returned.
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
917
{
918 919 920 921
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
922

923 924
	rcu_read_lock();
	do {
925 926 927 928 929 930
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
931
			memcg = root_mem_cgroup;
932 933 934 935 936
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
937
	} while (!css_tryget(&memcg->css));
938
	rcu_read_unlock();
939
	return memcg;
940
}
941 942
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
/**
 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
 * @page: page from which memcg should be extracted.
 *
 * Obtain a reference on page->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned.
 */
struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
{
	struct mem_cgroup *memcg = page->mem_cgroup;

	if (mem_cgroup_disabled())
		return NULL;

	rcu_read_lock();
S
Shakeel Butt 已提交
958 959
	/* Page should not get uncharged and freed memcg under us. */
	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
960 961 962 963 964 965
		memcg = root_mem_cgroup;
	rcu_read_unlock();
	return memcg;
}
EXPORT_SYMBOL(get_mem_cgroup_from_page);

966 967 968 969 970 971
/**
 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
 */
static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
{
	if (unlikely(current->active_memcg)) {
S
Shakeel Butt 已提交
972
		struct mem_cgroup *memcg;
973 974

		rcu_read_lock();
S
Shakeel Butt 已提交
975 976 977 978
		/* current->active_memcg must hold a ref. */
		if (WARN_ON_ONCE(!css_tryget(&current->active_memcg->css)))
			memcg = root_mem_cgroup;
		else
979 980 981 982 983 984
			memcg = current->active_memcg;
		rcu_read_unlock();
		return memcg;
	}
	return get_mem_cgroup_from_mm(current->mm);
}
985

986 987 988 989 990 991 992 993 994 995 996 997 998
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
999
 * Reclaimers can specify a node and a priority level in @reclaim to
1000
 * divide up the memcgs in the hierarchy among all concurrent
1001
 * reclaimers operating on the same node and priority.
1002
 */
1003
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1004
				   struct mem_cgroup *prev,
1005
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1006
{
M
Michal Hocko 已提交
1007
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1008
	struct cgroup_subsys_state *css = NULL;
1009
	struct mem_cgroup *memcg = NULL;
1010
	struct mem_cgroup *pos = NULL;
1011

1012 1013
	if (mem_cgroup_disabled())
		return NULL;
1014

1015 1016
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1017

1018
	if (prev && !reclaim)
1019
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1020

1021 1022
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1023
			goto out;
1024
		return root;
1025
	}
K
KAMEZAWA Hiroyuki 已提交
1026

1027
	rcu_read_lock();
M
Michal Hocko 已提交
1028

1029
	if (reclaim) {
1030
		struct mem_cgroup_per_node *mz;
1031

1032
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1033
		iter = &mz->iter;
1034 1035 1036 1037

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

1038
		while (1) {
1039
			pos = READ_ONCE(iter->position);
1040 1041
			if (!pos || css_tryget(&pos->css))
				break;
1042
			/*
1043 1044 1045 1046 1047 1048
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
1049
			 */
1050 1051
			(void)cmpxchg(&iter->position, pos, NULL);
		}
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1069
		}
K
KAMEZAWA Hiroyuki 已提交
1070

1071 1072 1073 1074 1075 1076
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1077

1078 1079
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1080

1081 1082
		if (css_tryget(css))
			break;
1083

1084
		memcg = NULL;
1085
	}
1086 1087 1088

	if (reclaim) {
		/*
1089 1090 1091
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
1092
		 */
1093 1094
		(void)cmpxchg(&iter->position, pos, memcg);

1095 1096 1097 1098 1099 1100 1101
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1102
	}
1103

1104 1105
out_unlock:
	rcu_read_unlock();
1106
out:
1107 1108 1109
	if (prev && prev != root)
		css_put(&prev->css);

1110
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1111
}
K
KAMEZAWA Hiroyuki 已提交
1112

1113 1114 1115 1116 1117 1118 1119
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1120 1121 1122 1123 1124 1125
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1126

1127 1128
static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
					struct mem_cgroup *dead_memcg)
1129 1130
{
	struct mem_cgroup_reclaim_iter *iter;
1131 1132
	struct mem_cgroup_per_node *mz;
	int nid;
1133

1134 1135
	for_each_node(nid) {
		mz = mem_cgroup_nodeinfo(from, nid);
1136 1137
		iter = &mz->iter;
		cmpxchg(&iter->position, dead_memcg, NULL);
1138 1139 1140
	}
}

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup *last;

	do {
		__invalidate_reclaim_iterators(memcg, dead_memcg);
		last = memcg;
	} while ((memcg = parent_mem_cgroup(memcg)));

	/*
	 * When cgruop1 non-hierarchy mode is used,
	 * parent_mem_cgroup() does not walk all the way up to the
	 * cgroup root (root_mem_cgroup). So we have to handle
	 * dead_memcg from cgroup root separately.
	 */
	if (last != root_mem_cgroup)
		__invalidate_reclaim_iterators(root_mem_cgroup,
						dead_memcg);
}

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

1187
		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

1199
/**
1200
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1201
 * @page: the page
1202
 * @pgdat: pgdat of the page
1203
 *
1204 1205
 * This function relies on page->mem_cgroup being stable - see the
 * access rules in commit_charge().
1206
 */
M
Mel Gorman 已提交
1207
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
1208
{
1209
	struct mem_cgroup_per_node *mz;
1210
	struct mem_cgroup *memcg;
1211
	struct lruvec *lruvec;
1212

1213
	if (mem_cgroup_disabled()) {
1214
		lruvec = &pgdat->__lruvec;
1215 1216
		goto out;
	}
1217

1218
	memcg = page->mem_cgroup;
1219
	/*
1220
	 * Swapcache readahead pages are added to the LRU - and
1221
	 * possibly migrated - before they are charged.
1222
	 */
1223 1224
	if (!memcg)
		memcg = root_mem_cgroup;
1225

1226
	mz = mem_cgroup_page_nodeinfo(memcg, page);
1227 1228 1229 1230 1231 1232 1233
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
1234 1235
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
1236
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1237
}
1238

1239
/**
1240 1241 1242
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1243
 * @zid: zone id of the accounted pages
1244
 * @nr_pages: positive when adding or negative when removing
1245
 *
1246 1247 1248
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1249
 */
1250
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1251
				int zid, int nr_pages)
1252
{
1253
	struct mem_cgroup_per_node *mz;
1254
	unsigned long *lru_size;
1255
	long size;
1256 1257 1258 1259

	if (mem_cgroup_disabled())
		return;

1260
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1261
	lru_size = &mz->lru_zone_size[zid][lru];
1262 1263 1264 1265 1266

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1267 1268 1269
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1270 1271 1272 1273 1274 1275
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1276
}
1277

1278
/**
1279
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1280
 * @memcg: the memory cgroup
1281
 *
1282
 * Returns the maximum amount of memory @mem can be charged with, in
1283
 * pages.
1284
 */
1285
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1286
{
1287 1288 1289
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1290

1291
	count = page_counter_read(&memcg->memory);
1292
	limit = READ_ONCE(memcg->memory.max);
1293 1294 1295
	if (count < limit)
		margin = limit - count;

1296
	if (do_memsw_account()) {
1297
		count = page_counter_read(&memcg->memsw);
1298
		limit = READ_ONCE(memcg->memsw.max);
1299
		if (count < limit)
1300
			margin = min(margin, limit - count);
1301 1302
		else
			margin = 0;
1303 1304 1305
	}

	return margin;
1306 1307
}

1308
/*
Q
Qiang Huang 已提交
1309
 * A routine for checking "mem" is under move_account() or not.
1310
 *
Q
Qiang Huang 已提交
1311 1312 1313
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1314
 */
1315
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1316
{
1317 1318
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1319
	bool ret = false;
1320 1321 1322 1323 1324 1325 1326 1327 1328
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1329

1330 1331
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1332 1333
unlock:
	spin_unlock(&mc.lock);
1334 1335 1336
	return ret;
}

1337
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1338 1339
{
	if (mc.moving_task && current != mc.moving_task) {
1340
		if (mem_cgroup_under_move(memcg)) {
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1353 1354 1355 1356
static char *memory_stat_format(struct mem_cgroup *memcg)
{
	struct seq_buf s;
	int i;
1357

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
	if (!s.buffer)
		return NULL;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

	seq_buf_printf(&s, "anon %llu\n",
1374
		       (u64)memcg_page_state(memcg, NR_ANON_MAPPED) *
1375 1376
		       PAGE_SIZE);
	seq_buf_printf(&s, "file %llu\n",
1377
		       (u64)memcg_page_state(memcg, NR_FILE_PAGES) *
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
		       PAGE_SIZE);
	seq_buf_printf(&s, "kernel_stack %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
		       1024);
	seq_buf_printf(&s, "slab %llu\n",
		       (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
			     memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "sock %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_SOCK) *
		       PAGE_SIZE);

	seq_buf_printf(&s, "shmem %llu\n",
		       (u64)memcg_page_state(memcg, NR_SHMEM) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_mapped %llu\n",
		       (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_dirty %llu\n",
		       (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_writeback %llu\n",
		       (u64)memcg_page_state(memcg, NR_WRITEBACK) *
		       PAGE_SIZE);

1403
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1404
	seq_buf_printf(&s, "anon_thp %llu\n",
1405 1406 1407
		       (u64)memcg_page_state(memcg, NR_ANON_THPS) *
		       HPAGE_PMD_SIZE);
#endif
1408 1409

	for (i = 0; i < NR_LRU_LISTS; i++)
1410
		seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			       PAGE_SIZE);

	seq_buf_printf(&s, "slab_reclaimable %llu\n",
		       (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "slab_unreclaimable %llu\n",
		       (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
		       PAGE_SIZE);

	/* Accumulated memory events */

1423 1424 1425 1426
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
		       memcg_events(memcg, PGFAULT));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
		       memcg_events(memcg, PGMAJFAULT));
1427 1428 1429 1430 1431

	seq_buf_printf(&s, "workingset_refault %lu\n",
		       memcg_page_state(memcg, WORKINGSET_REFAULT));
	seq_buf_printf(&s, "workingset_activate %lu\n",
		       memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1432 1433
	seq_buf_printf(&s, "workingset_restore %lu\n",
		       memcg_page_state(memcg, WORKINGSET_RESTORE));
1434 1435 1436
	seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
		       memcg_page_state(memcg, WORKINGSET_NODERECLAIM));

1437 1438
	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
		       memcg_events(memcg, PGREFILL));
1439 1440 1441 1442 1443 1444
	seq_buf_printf(&s, "pgscan %lu\n",
		       memcg_events(memcg, PGSCAN_KSWAPD) +
		       memcg_events(memcg, PGSCAN_DIRECT));
	seq_buf_printf(&s, "pgsteal %lu\n",
		       memcg_events(memcg, PGSTEAL_KSWAPD) +
		       memcg_events(memcg, PGSTEAL_DIRECT));
1445 1446 1447 1448 1449 1450 1451 1452
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
		       memcg_events(memcg, PGACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
		       memcg_events(memcg, PGDEACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
		       memcg_events(memcg, PGLAZYFREE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
		       memcg_events(memcg, PGLAZYFREED));
1453 1454

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1455
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1456
		       memcg_events(memcg, THP_FAULT_ALLOC));
1457
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1458 1459 1460 1461 1462 1463 1464 1465
		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

	/* The above should easily fit into one page */
	WARN_ON_ONCE(seq_buf_has_overflowed(&s));

	return s.buffer;
}
1466

1467
#define K(x) ((x) << (PAGE_SHIFT-10))
1468
/**
1469 1470
 * mem_cgroup_print_oom_context: Print OOM information relevant to
 * memory controller.
1471 1472 1473 1474 1475 1476
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
1477
void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1478 1479 1480
{
	rcu_read_lock();

1481 1482 1483 1484 1485
	if (memcg) {
		pr_cont(",oom_memcg=");
		pr_cont_cgroup_path(memcg->css.cgroup);
	} else
		pr_cont(",global_oom");
1486
	if (p) {
1487
		pr_cont(",task_memcg=");
1488 1489
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	}
1490
	rcu_read_unlock();
1491 1492 1493 1494 1495 1496 1497 1498 1499
}

/**
 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
 * memory controller.
 * @memcg: The memory cgroup that went over limit
 */
void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
1500
	char *buf;
1501

1502 1503
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1504
		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1505 1506 1507
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->swap)),
1508
			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1509 1510 1511 1512 1513 1514 1515
	else {
		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->memsw)),
			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->kmem)),
			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1516
	}
1517 1518 1519 1520 1521 1522 1523 1524 1525

	pr_info("Memory cgroup stats for ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(":");
	buf = memory_stat_format(memcg);
	if (!buf)
		return;
	pr_info("%s", buf);
	kfree(buf);
1526 1527
}

D
David Rientjes 已提交
1528 1529 1530
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1531
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1532
{
1533
	unsigned long max;
1534

1535
	max = READ_ONCE(memcg->memory.max);
1536
	if (mem_cgroup_swappiness(memcg)) {
1537 1538
		unsigned long memsw_max;
		unsigned long swap_max;
1539

1540
		memsw_max = memcg->memsw.max;
1541
		swap_max = READ_ONCE(memcg->swap.max);
1542 1543
		swap_max = min(swap_max, (unsigned long)total_swap_pages);
		max = min(max + swap_max, memsw_max);
1544
	}
1545
	return max;
D
David Rientjes 已提交
1546 1547
}

1548 1549 1550 1551 1552
unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
{
	return page_counter_read(&memcg->memory);
}

1553
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1554
				     int order)
1555
{
1556 1557 1558
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1559
		.memcg = memcg,
1560 1561 1562
		.gfp_mask = gfp_mask,
		.order = order,
	};
1563
	bool ret;
1564

1565 1566 1567 1568 1569 1570 1571
	if (mutex_lock_killable(&oom_lock))
		return true;
	/*
	 * A few threads which were not waiting at mutex_lock_killable() can
	 * fail to bail out. Therefore, check again after holding oom_lock.
	 */
	ret = should_force_charge() || out_of_memory(&oc);
1572
	mutex_unlock(&oom_lock);
1573
	return ret;
1574 1575
}

1576
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1577
				   pg_data_t *pgdat,
1578 1579 1580 1581 1582 1583 1584 1585 1586
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1587
		.pgdat = pgdat,
1588 1589
	};

1590
	excess = soft_limit_excess(root_memcg);
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1616
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1617
					pgdat, &nr_scanned);
1618
		*total_scanned += nr_scanned;
1619
		if (!soft_limit_excess(root_memcg))
1620
			break;
1621
	}
1622 1623
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1624 1625
}

1626 1627 1628 1629 1630 1631
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1632 1633
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1634 1635 1636 1637
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1638
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1639
{
1640
	struct mem_cgroup *iter, *failed = NULL;
1641

1642 1643
	spin_lock(&memcg_oom_lock);

1644
	for_each_mem_cgroup_tree(iter, memcg) {
1645
		if (iter->oom_lock) {
1646 1647 1648 1649 1650
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1651 1652
			mem_cgroup_iter_break(memcg, iter);
			break;
1653 1654
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1655
	}
K
KAMEZAWA Hiroyuki 已提交
1656

1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1668
		}
1669 1670
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1671 1672 1673 1674

	spin_unlock(&memcg_oom_lock);

	return !failed;
1675
}
1676

1677
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1678
{
K
KAMEZAWA Hiroyuki 已提交
1679 1680
	struct mem_cgroup *iter;

1681
	spin_lock(&memcg_oom_lock);
1682
	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1683
	for_each_mem_cgroup_tree(iter, memcg)
1684
		iter->oom_lock = false;
1685
	spin_unlock(&memcg_oom_lock);
1686 1687
}

1688
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1689 1690 1691
{
	struct mem_cgroup *iter;

1692
	spin_lock(&memcg_oom_lock);
1693
	for_each_mem_cgroup_tree(iter, memcg)
1694 1695
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1696 1697
}

1698
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1699 1700 1701
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1702 1703
	/*
	 * When a new child is created while the hierarchy is under oom,
1704
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1705
	 */
1706
	spin_lock(&memcg_oom_lock);
1707
	for_each_mem_cgroup_tree(iter, memcg)
1708 1709 1710
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1711 1712
}

K
KAMEZAWA Hiroyuki 已提交
1713 1714
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1715
struct oom_wait_info {
1716
	struct mem_cgroup *memcg;
1717
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1718 1719
};

1720
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1721 1722
	unsigned mode, int sync, void *arg)
{
1723 1724
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1725 1726 1727
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1728
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1729

1730 1731
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1732 1733 1734 1735
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1736
static void memcg_oom_recover(struct mem_cgroup *memcg)
1737
{
1738 1739 1740 1741 1742 1743 1744 1745 1746
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1747
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1748 1749
}

1750 1751 1752 1753 1754 1755 1756 1757
enum oom_status {
	OOM_SUCCESS,
	OOM_FAILED,
	OOM_ASYNC,
	OOM_SKIPPED
};

static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1758
{
1759 1760 1761
	enum oom_status ret;
	bool locked;

1762 1763 1764
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		return OOM_SKIPPED;

1765 1766
	memcg_memory_event(memcg, MEMCG_OOM);

K
KAMEZAWA Hiroyuki 已提交
1767
	/*
1768 1769 1770 1771
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1772 1773 1774 1775
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1776
	 *
1777 1778 1779 1780 1781 1782 1783
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
K
KAMEZAWA Hiroyuki 已提交
1784
	 */
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
	if (memcg->oom_kill_disable) {
		if (!current->in_user_fault)
			return OOM_SKIPPED;
		css_get(&memcg->css);
		current->memcg_in_oom = memcg;
		current->memcg_oom_gfp_mask = mask;
		current->memcg_oom_order = order;

		return OOM_ASYNC;
	}

1796 1797 1798 1799 1800 1801 1802 1803
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	mem_cgroup_unmark_under_oom(memcg);
1804
	if (mem_cgroup_out_of_memory(memcg, mask, order))
1805 1806 1807 1808 1809 1810
		ret = OOM_SUCCESS;
	else
		ret = OOM_FAILED;

	if (locked)
		mem_cgroup_oom_unlock(memcg);
1811

1812
	return ret;
1813 1814 1815 1816
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1817
 * @handle: actually kill/wait or just clean up the OOM state
1818
 *
1819 1820
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1821
 *
1822
 * Memcg supports userspace OOM handling where failed allocations must
1823 1824 1825 1826
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1827
 * the end of the page fault to complete the OOM handling.
1828 1829
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1830
 * completed, %false otherwise.
1831
 */
1832
bool mem_cgroup_oom_synchronize(bool handle)
1833
{
T
Tejun Heo 已提交
1834
	struct mem_cgroup *memcg = current->memcg_in_oom;
1835
	struct oom_wait_info owait;
1836
	bool locked;
1837 1838 1839

	/* OOM is global, do not handle */
	if (!memcg)
1840
		return false;
1841

1842
	if (!handle)
1843
		goto cleanup;
1844 1845 1846 1847 1848

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
1849
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
1850

1851
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1862 1863
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1864
	} else {
1865
		schedule();
1866 1867 1868 1869 1870
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1871 1872 1873 1874 1875 1876 1877 1878
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1879
cleanup:
T
Tejun Heo 已提交
1880
	current->memcg_in_oom = NULL;
1881
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1882
	return true;
1883 1884
}

1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
/**
 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 * @victim: task to be killed by the OOM killer
 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 *
 * Returns a pointer to a memory cgroup, which has to be cleaned up
 * by killing all belonging OOM-killable tasks.
 *
 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 */
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
					    struct mem_cgroup *oom_domain)
{
	struct mem_cgroup *oom_group = NULL;
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return NULL;

	if (!oom_domain)
		oom_domain = root_mem_cgroup;

	rcu_read_lock();

	memcg = mem_cgroup_from_task(victim);
	if (memcg == root_mem_cgroup)
		goto out;

1913 1914 1915 1916 1917 1918 1919 1920
	/*
	 * If the victim task has been asynchronously moved to a different
	 * memory cgroup, we might end up killing tasks outside oom_domain.
	 * In this case it's better to ignore memory.group.oom.
	 */
	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
		goto out;

1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
	/*
	 * Traverse the memory cgroup hierarchy from the victim task's
	 * cgroup up to the OOMing cgroup (or root) to find the
	 * highest-level memory cgroup with oom.group set.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		if (memcg->oom_group)
			oom_group = memcg;

		if (memcg == oom_domain)
			break;
	}

	if (oom_group)
		css_get(&oom_group->css);
out:
	rcu_read_unlock();

	return oom_group;
}

void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
	pr_info("Tasks in ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(" are going to be killed due to memory.oom.group set\n");
}

1949
/**
1950 1951
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1952
 *
1953
 * This function protects unlocked LRU pages from being moved to
1954 1955 1956 1957 1958
 * another cgroup.
 *
 * It ensures lifetime of the returned memcg. Caller is responsible
 * for the lifetime of the page; __unlock_page_memcg() is available
 * when @page might get freed inside the locked section.
1959
 */
1960
struct mem_cgroup *lock_page_memcg(struct page *page)
1961
{
1962
	struct page *head = compound_head(page); /* rmap on tail pages */
1963
	struct mem_cgroup *memcg;
1964
	unsigned long flags;
1965

1966 1967 1968 1969
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
1970 1971 1972 1973 1974 1975 1976
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page itself from being freed. E.g. writeback
	 * doesn't hold a page reference and relies on PG_writeback to
	 * keep off truncation, migration and so forth.
         */
1977 1978 1979
	rcu_read_lock();

	if (mem_cgroup_disabled())
1980
		return NULL;
1981
again:
1982
	memcg = head->mem_cgroup;
1983
	if (unlikely(!memcg))
1984
		return NULL;
1985

Q
Qiang Huang 已提交
1986
	if (atomic_read(&memcg->moving_account) <= 0)
1987
		return memcg;
1988

1989
	spin_lock_irqsave(&memcg->move_lock, flags);
1990
	if (memcg != head->mem_cgroup) {
1991
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1992 1993
		goto again;
	}
1994 1995 1996 1997

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
1998
	 * the task who has the lock for unlock_page_memcg().
1999 2000 2001
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2002

2003
	return memcg;
2004
}
2005
EXPORT_SYMBOL(lock_page_memcg);
2006

2007
/**
2008 2009 2010 2011
 * __unlock_page_memcg - unlock and unpin a memcg
 * @memcg: the memcg
 *
 * Unlock and unpin a memcg returned by lock_page_memcg().
2012
 */
2013
void __unlock_page_memcg(struct mem_cgroup *memcg)
2014
{
2015 2016 2017 2018 2019 2020 2021 2022
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2023

2024
	rcu_read_unlock();
2025
}
2026 2027 2028 2029 2030 2031 2032

/**
 * unlock_page_memcg - unlock a page->mem_cgroup binding
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
2033 2034 2035
	struct page *head = compound_head(page);

	__unlock_page_memcg(head->mem_cgroup);
2036
}
2037
EXPORT_SYMBOL(unlock_page_memcg);
2038

2039 2040
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2041
	unsigned int nr_pages;
2042
	struct work_struct work;
2043
	unsigned long flags;
2044
#define FLUSHING_CACHED_CHARGE	0
2045 2046
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2047
static DEFINE_MUTEX(percpu_charge_mutex);
2048

2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2059
 */
2060
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2061 2062
{
	struct memcg_stock_pcp *stock;
2063
	unsigned long flags;
2064
	bool ret = false;
2065

2066
	if (nr_pages > MEMCG_CHARGE_BATCH)
2067
		return ret;
2068

2069 2070 2071
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2072
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2073
		stock->nr_pages -= nr_pages;
2074 2075
		ret = true;
	}
2076 2077 2078

	local_irq_restore(flags);

2079 2080 2081 2082
	return ret;
}

/*
2083
 * Returns stocks cached in percpu and reset cached information.
2084 2085 2086 2087 2088
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2089
	if (stock->nr_pages) {
2090
		page_counter_uncharge(&old->memory, stock->nr_pages);
2091
		if (do_memsw_account())
2092
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2093
		css_put_many(&old->css, stock->nr_pages);
2094
		stock->nr_pages = 0;
2095 2096 2097 2098 2099 2100
	}
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
2101 2102 2103
	struct memcg_stock_pcp *stock;
	unsigned long flags;

2104 2105 2106 2107
	/*
	 * The only protection from memory hotplug vs. drain_stock races is
	 * that we always operate on local CPU stock here with IRQ disabled
	 */
2108 2109 2110
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2111
	drain_stock(stock);
2112
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2113 2114

	local_irq_restore(flags);
2115 2116 2117
}

/*
2118
 * Cache charges(val) to local per_cpu area.
2119
 * This will be consumed by consume_stock() function, later.
2120
 */
2121
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2122
{
2123 2124 2125 2126
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
2127

2128
	stock = this_cpu_ptr(&memcg_stock);
2129
	if (stock->cached != memcg) { /* reset if necessary */
2130
		drain_stock(stock);
2131
		stock->cached = memcg;
2132
	}
2133
	stock->nr_pages += nr_pages;
2134

2135
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2136 2137
		drain_stock(stock);

2138
	local_irq_restore(flags);
2139 2140 2141
}

/*
2142
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2143
 * of the hierarchy under it.
2144
 */
2145
static void drain_all_stock(struct mem_cgroup *root_memcg)
2146
{
2147
	int cpu, curcpu;
2148

2149 2150 2151
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2152 2153 2154 2155 2156 2157
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
2158
	curcpu = get_cpu();
2159 2160
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2161
		struct mem_cgroup *memcg;
2162
		bool flush = false;
2163

2164
		rcu_read_lock();
2165
		memcg = stock->cached;
2166 2167 2168 2169 2170 2171 2172
		if (memcg && stock->nr_pages &&
		    mem_cgroup_is_descendant(memcg, root_memcg))
			flush = true;
		rcu_read_unlock();

		if (flush &&
		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2173 2174 2175 2176 2177
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2178
	}
2179
	put_cpu();
2180
	mutex_unlock(&percpu_charge_mutex);
2181 2182
}

2183
static int memcg_hotplug_cpu_dead(unsigned int cpu)
2184 2185
{
	struct memcg_stock_pcp *stock;
2186
	struct mem_cgroup *memcg, *mi;
2187 2188 2189

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
2190 2191 2192 2193 2194 2195 2196 2197

	for_each_mem_cgroup(memcg) {
		int i;

		for (i = 0; i < MEMCG_NR_STAT; i++) {
			int nid;
			long x;

2198
			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2199
			if (x)
2200 2201
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmstats[i]);
2202 2203 2204 2205 2206 2207 2208 2209 2210

			if (i >= NR_VM_NODE_STAT_ITEMS)
				continue;

			for_each_node(nid) {
				struct mem_cgroup_per_node *pn;

				pn = mem_cgroup_nodeinfo(memcg, nid);
				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2211
				if (x)
2212 2213 2214
					do {
						atomic_long_add(x, &pn->lruvec_stat[i]);
					} while ((pn = parent_nodeinfo(pn, nid)));
2215 2216 2217
			}
		}

2218
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2219 2220
			long x;

2221
			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2222
			if (x)
2223 2224
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmevents[i]);
2225 2226 2227
		}
	}

2228
	return 0;
2229 2230
}

2231 2232 2233 2234 2235
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
2236 2237
		if (page_counter_read(&memcg->memory) <=
		    READ_ONCE(memcg->memory.high))
2238
			continue;
2239
		memcg_memory_event(memcg, MEMCG_HIGH);
2240
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2241 2242
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));
2243 2244 2245 2246 2247 2248 2249
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
2250
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2251 2252
}

2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
/*
 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
 * enough to still cause a significant slowdown in most cases, while still
 * allowing diagnostics and tracing to proceed without becoming stuck.
 */
#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)

/*
 * When calculating the delay, we use these either side of the exponentiation to
 * maintain precision and scale to a reasonable number of jiffies (see the table
 * below.
 *
 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
 *   overage ratio to a delay.
 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
 *   to produce a reasonable delay curve.
 *
 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
 * reasonable delay curve compared to precision-adjusted overage, not
 * penalising heavily at first, but still making sure that growth beyond the
 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
 * example, with a high of 100 megabytes:
 *
 *  +-------+------------------------+
 *  | usage | time to allocate in ms |
 *  +-------+------------------------+
 *  | 100M  |                      0 |
 *  | 101M  |                      6 |
 *  | 102M  |                     25 |
 *  | 103M  |                     57 |
 *  | 104M  |                    102 |
 *  | 105M  |                    159 |
 *  | 106M  |                    230 |
 *  | 107M  |                    313 |
 *  | 108M  |                    409 |
 *  | 109M  |                    518 |
 *  | 110M  |                    639 |
 *  | 111M  |                    774 |
 *  | 112M  |                    921 |
 *  | 113M  |                   1081 |
 *  | 114M  |                   1254 |
 *  | 115M  |                   1439 |
 *  | 116M  |                   1638 |
 *  | 117M  |                   1849 |
 *  | 118M  |                   2000 |
 *  | 119M  |                   2000 |
 *  | 120M  |                   2000 |
 *  +-------+------------------------+
 */
 #define MEMCG_DELAY_PRECISION_SHIFT 20
 #define MEMCG_DELAY_SCALING_SHIFT 14

2306
static u64 calculate_overage(unsigned long usage, unsigned long high)
2307
{
2308
	u64 overage;
2309

2310 2311
	if (usage <= high)
		return 0;
2312

2313 2314 2315 2316 2317
	/*
	 * Prevent division by 0 in overage calculation by acting as if
	 * it was a threshold of 1 page
	 */
	high = max(high, 1UL);
2318

2319 2320 2321 2322
	overage = usage - high;
	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
	return div64_u64(overage, high);
}
2323

2324 2325 2326
static u64 mem_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;
2327

2328 2329
	do {
		overage = calculate_overage(page_counter_read(&memcg->memory),
2330
					    READ_ONCE(memcg->memory.high));
2331
		max_overage = max(overage, max_overage);
2332 2333 2334
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

2335 2336 2337
	return max_overage;
}

2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
static u64 swap_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;

	do {
		overage = calculate_overage(page_counter_read(&memcg->swap),
					    READ_ONCE(memcg->swap.high));
		if (overage)
			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
		max_overage = max(overage, max_overage);
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

	return max_overage;
}

2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
/*
 * Get the number of jiffies that we should penalise a mischievous cgroup which
 * is exceeding its memory.high by checking both it and its ancestors.
 */
static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
					  unsigned int nr_pages,
					  u64 max_overage)
{
	unsigned long penalty_jiffies;

2364 2365
	if (!max_overage)
		return 0;
2366 2367 2368 2369 2370 2371 2372 2373 2374

	/*
	 * We use overage compared to memory.high to calculate the number of
	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
	 * fairly lenient on small overages, and increasingly harsh when the
	 * memcg in question makes it clear that it has no intention of stopping
	 * its crazy behaviour, so we exponentially increase the delay based on
	 * overage amount.
	 */
2375 2376 2377
	penalty_jiffies = max_overage * max_overage * HZ;
	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2378 2379 2380 2381 2382 2383 2384 2385 2386

	/*
	 * Factor in the task's own contribution to the overage, such that four
	 * N-sized allocations are throttled approximately the same as one
	 * 4N-sized allocation.
	 *
	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
	 * larger the current charge patch is than that.
	 */
2387
	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
}

/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned long penalty_jiffies;
	unsigned long pflags;
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
	struct mem_cgroup *memcg;

	if (likely(!nr_pages))
		return;

	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
	current->memcg_nr_pages_over_high = 0;

	/*
	 * memory.high is breached and reclaim is unable to keep up. Throttle
	 * allocators proactively to slow down excessive growth.
	 */
2412 2413
	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
					       mem_find_max_overage(memcg));
2414

2415 2416 2417
	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
						swap_find_max_overage(memcg));

2418 2419 2420 2421 2422 2423 2424
	/*
	 * Clamp the max delay per usermode return so as to still keep the
	 * application moving forwards and also permit diagnostics, albeit
	 * extremely slowly.
	 */
	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);

2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
	/*
	 * Don't sleep if the amount of jiffies this memcg owes us is so low
	 * that it's not even worth doing, in an attempt to be nice to those who
	 * go only a small amount over their memory.high value and maybe haven't
	 * been aggressively reclaimed enough yet.
	 */
	if (penalty_jiffies <= HZ / 100)
		goto out;

	/*
	 * If we exit early, we're guaranteed to die (since
	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
	 * need to account for any ill-begotten jiffies to pay them off later.
	 */
	psi_memstall_enter(&pflags);
	schedule_timeout_killable(penalty_jiffies);
	psi_memstall_leave(&pflags);

out:
	css_put(&memcg->css);
2445 2446
}

2447 2448
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2449
{
2450
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2451
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2452
	struct mem_cgroup *mem_over_limit;
2453
	struct page_counter *counter;
2454
	unsigned long nr_reclaimed;
2455 2456
	bool may_swap = true;
	bool drained = false;
2457
	enum oom_status oom_status;
2458

2459
	if (mem_cgroup_is_root(memcg))
2460
		return 0;
2461
retry:
2462
	if (consume_stock(memcg, nr_pages))
2463
		return 0;
2464

2465
	if (!do_memsw_account() ||
2466 2467
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2468
			goto done_restock;
2469
		if (do_memsw_account())
2470 2471
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2472
	} else {
2473
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2474
		may_swap = false;
2475
	}
2476

2477 2478 2479 2480
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2481

2482 2483 2484 2485 2486 2487 2488 2489 2490
	/*
	 * Memcg doesn't have a dedicated reserve for atomic
	 * allocations. But like the global atomic pool, we need to
	 * put the burden of reclaim on regular allocation requests
	 * and let these go through as privileged allocations.
	 */
	if (gfp_mask & __GFP_ATOMIC)
		goto force;

2491 2492 2493 2494 2495 2496
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
2497
	if (unlikely(should_force_charge()))
2498
		goto force;
2499

2500 2501 2502 2503 2504 2505 2506 2507 2508
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2509 2510 2511
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2512
	if (!gfpflags_allow_blocking(gfp_mask))
2513
		goto nomem;
2514

2515
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2516

2517 2518
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2519

2520
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2521
		goto retry;
2522

2523
	if (!drained) {
2524
		drain_all_stock(mem_over_limit);
2525 2526 2527 2528
		drained = true;
		goto retry;
	}

2529 2530
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2531 2532 2533 2534 2535 2536 2537 2538 2539
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2540
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2541 2542 2543 2544 2545 2546 2547 2548
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2549 2550 2551
	if (nr_retries--)
		goto retry;

2552
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2553 2554
		goto nomem;

2555
	if (gfp_mask & __GFP_NOFAIL)
2556
		goto force;
2557

2558
	if (fatal_signal_pending(current))
2559
		goto force;
2560

2561 2562 2563 2564 2565 2566
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2567
		       get_order(nr_pages * PAGE_SIZE));
2568 2569 2570 2571 2572 2573 2574 2575 2576
	switch (oom_status) {
	case OOM_SUCCESS:
		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
		goto retry;
	case OOM_FAILED:
		goto force;
	default:
		goto nomem;
	}
2577
nomem:
2578
	if (!(gfp_mask & __GFP_NOFAIL))
2579
		return -ENOMEM;
2580 2581 2582 2583 2584 2585 2586
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2587
	if (do_memsw_account())
2588 2589 2590 2591
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2592 2593

done_restock:
2594
	css_get_many(&memcg->css, batch);
2595 2596
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2597

2598
	/*
2599 2600
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2601
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2602 2603 2604 2605
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2606 2607
	 */
	do {
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
		bool mem_high, swap_high;

		mem_high = page_counter_read(&memcg->memory) >
			READ_ONCE(memcg->memory.high);
		swap_high = page_counter_read(&memcg->swap) >
			READ_ONCE(memcg->swap.high);

		/* Don't bother a random interrupted task */
		if (in_interrupt()) {
			if (mem_high) {
2618 2619 2620
				schedule_work(&memcg->high_work);
				break;
			}
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
			continue;
		}

		if (mem_high || swap_high) {
			/*
			 * The allocating tasks in this cgroup will need to do
			 * reclaim or be throttled to prevent further growth
			 * of the memory or swap footprints.
			 *
			 * Target some best-effort fairness between the tasks,
			 * and distribute reclaim work and delay penalties
			 * based on how much each task is actually allocating.
			 */
V
Vladimir Davydov 已提交
2634
			current->memcg_nr_pages_over_high += batch;
2635 2636 2637
			set_notify_resume(current);
			break;
		}
2638
	} while ((memcg = parent_mem_cgroup(memcg)));
2639 2640

	return 0;
2641
}
2642

2643
#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2644
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2645
{
2646 2647 2648
	if (mem_cgroup_is_root(memcg))
		return;

2649
	page_counter_uncharge(&memcg->memory, nr_pages);
2650
	if (do_memsw_account())
2651
		page_counter_uncharge(&memcg->memsw, nr_pages);
2652

2653
	css_put_many(&memcg->css, nr_pages);
2654
}
2655
#endif
2656

2657
static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2658
{
2659
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2660
	/*
2661
	 * Any of the following ensures page->mem_cgroup stability:
2662
	 *
2663 2664 2665 2666
	 * - the page lock
	 * - LRU isolation
	 * - lock_page_memcg()
	 * - exclusive reference
2667
	 */
2668
	page->mem_cgroup = memcg;
2669
}
2670

2671
#ifdef CONFIG_MEMCG_KMEM
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
/*
 * Returns a pointer to the memory cgroup to which the kernel object is charged.
 *
 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
 * cgroup_mutex, etc.
 */
struct mem_cgroup *mem_cgroup_from_obj(void *p)
{
	struct page *page;

	if (mem_cgroup_disabled())
		return NULL;

	page = virt_to_head_page(p);

	/*
	 * Slab pages don't have page->mem_cgroup set because corresponding
	 * kmem caches can be reparented during the lifetime. That's why
	 * memcg_from_slab_page() should be used instead.
	 */
	if (PageSlab(page))
		return memcg_from_slab_page(page);

	/* All other pages use page->mem_cgroup */
	return page->mem_cgroup;
}

2699
static int memcg_alloc_cache_id(void)
2700
{
2701 2702 2703
	int id, size;
	int err;

2704
	id = ida_simple_get(&memcg_cache_ida,
2705 2706 2707
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2708

2709
	if (id < memcg_nr_cache_ids)
2710 2711 2712 2713 2714 2715
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2716
	down_write(&memcg_cache_ids_sem);
2717 2718

	size = 2 * (id + 1);
2719 2720 2721 2722 2723
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2724
	err = memcg_update_all_caches(size);
2725 2726
	if (!err)
		err = memcg_update_all_list_lrus(size);
2727 2728 2729 2730 2731
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2732
	if (err) {
2733
		ida_simple_remove(&memcg_cache_ida, id);
2734 2735 2736 2737 2738 2739 2740
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2741
	ida_simple_remove(&memcg_cache_ida, id);
2742 2743
}

2744
struct memcg_kmem_cache_create_work {
2745 2746 2747 2748 2749
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2750
static void memcg_kmem_cache_create_func(struct work_struct *w)
2751
{
2752 2753
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2754 2755
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2756

2757
	memcg_create_kmem_cache(memcg, cachep);
2758

2759
	css_put(&memcg->css);
2760 2761 2762 2763 2764 2765
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2766
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2767
					       struct kmem_cache *cachep)
2768
{
2769
	struct memcg_kmem_cache_create_work *cw;
2770

2771 2772 2773
	if (!css_tryget_online(&memcg->css))
		return;

2774
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2775 2776
	if (!cw) {
		css_put(&memcg->css);
2777
		return;
2778
	}
2779

2780 2781
	cw->memcg = memcg;
	cw->cachep = cachep;
2782
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2783

2784
	queue_work(memcg_kmem_cache_wq, &cw->work);
2785 2786
}

2787 2788
static inline bool memcg_kmem_bypass(void)
{
2789 2790 2791 2792 2793 2794
	if (in_interrupt())
		return true;

	/* Allow remote memcg charging in kthread contexts. */
	if ((!current->mm || (current->flags & PF_KTHREAD)) &&
	     !current->active_memcg)
2795 2796 2797 2798 2799 2800 2801 2802
		return true;
	return false;
}

/**
 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
 * @cachep: the original global kmem cache
 *
2803 2804 2805
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
2806 2807 2808
 * If the cache does not exist yet, if we are the first user of it, we
 * create it asynchronously in a workqueue and let the current allocation
 * go through with the original cache.
2809
 *
2810 2811 2812 2813
 * This function takes a reference to the cache it returns to assure it
 * won't get destroyed while we are working with it. Once the caller is
 * done with it, memcg_kmem_put_cache() must be called to release the
 * reference.
2814
 */
2815
struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2816 2817
{
	struct mem_cgroup *memcg;
2818
	struct kmem_cache *memcg_cachep;
2819
	struct memcg_cache_array *arr;
2820
	int kmemcg_id;
2821

2822
	VM_BUG_ON(!is_root_cache(cachep));
2823

2824
	if (memcg_kmem_bypass())
V
Vladimir Davydov 已提交
2825 2826
		return cachep;

2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
	rcu_read_lock();

	if (unlikely(current->active_memcg))
		memcg = current->active_memcg;
	else
		memcg = mem_cgroup_from_task(current);

	if (!memcg || memcg == root_mem_cgroup)
		goto out_unlock;

2837
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2838
	if (kmemcg_id < 0)
2839
		goto out_unlock;
2840

2841 2842 2843 2844 2845 2846 2847 2848
	arr = rcu_dereference(cachep->memcg_params.memcg_caches);

	/*
	 * Make sure we will access the up-to-date value. The code updating
	 * memcg_caches issues a write barrier to match the data dependency
	 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
	 */
	memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2849 2850 2851 2852 2853 2854 2855 2856 2857

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2858 2859 2860
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2861 2862 2863 2864 2865 2866 2867
	 *
	 * If the memcg is dying or memcg_cache is about to be released,
	 * don't bother creating new kmem_caches. Because memcg_cachep
	 * is ZEROed as the fist step of kmem offlining, we don't need
	 * percpu_ref_tryget_live() here. css_tryget_online() check in
	 * memcg_schedule_kmem_cache_create() will prevent us from
	 * creation of a new kmem_cache.
2868
	 */
2869 2870 2871 2872 2873 2874
	if (unlikely(!memcg_cachep))
		memcg_schedule_kmem_cache_create(memcg, cachep);
	else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
		cachep = memcg_cachep;
out_unlock:
	rcu_read_unlock();
2875
	return cachep;
2876 2877
}

2878 2879 2880 2881 2882
/**
 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
 * @cachep: the cache returned by memcg_kmem_get_cache
 */
void memcg_kmem_put_cache(struct kmem_cache *cachep)
2883 2884
{
	if (!is_root_cache(cachep))
2885
		percpu_ref_put(&cachep->memcg_params.refcnt);
2886 2887
}

2888
/**
2889
 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
2890
 * @memcg: memory cgroup to charge
2891
 * @gfp: reclaim mode
2892
 * @nr_pages: number of pages to charge
2893 2894 2895
 *
 * Returns 0 on success, an error code on failure.
 */
2896 2897
int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
			unsigned int nr_pages)
2898
{
2899
	struct page_counter *counter;
2900 2901
	int ret;

2902
	ret = try_charge(memcg, gfp, nr_pages);
2903
	if (ret)
2904
		return ret;
2905 2906 2907

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917

		/*
		 * Enforce __GFP_NOFAIL allocation because callers are not
		 * prepared to see failures and likely do not have any failure
		 * handling code.
		 */
		if (gfp & __GFP_NOFAIL) {
			page_counter_charge(&memcg->kmem, nr_pages);
			return 0;
		}
2918 2919
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2920
	}
2921
	return 0;
2922 2923
}

2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
/**
 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
 */
void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
{
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

	page_counter_uncharge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_uncharge(&memcg->memsw, nr_pages);
}

2939
/**
2940
 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2941 2942 2943 2944 2945 2946
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
2947
int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2948
{
2949
	struct mem_cgroup *memcg;
2950
	int ret = 0;
2951

2952
	if (memcg_kmem_bypass())
2953 2954
		return 0;

2955
	memcg = get_mem_cgroup_from_current();
2956
	if (!mem_cgroup_is_root(memcg)) {
2957
		ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
2958 2959
		if (!ret) {
			page->mem_cgroup = memcg;
2960
			__SetPageKmemcg(page);
2961
		}
2962
	}
2963
	css_put(&memcg->css);
2964
	return ret;
2965
}
2966

2967
/**
2968
 * __memcg_kmem_uncharge_page: uncharge a kmem page
2969 2970 2971
 * @page: page to uncharge
 * @order: allocation order
 */
2972
void __memcg_kmem_uncharge_page(struct page *page, int order)
2973
{
2974
	struct mem_cgroup *memcg = page->mem_cgroup;
2975
	unsigned int nr_pages = 1 << order;
2976 2977 2978 2979

	if (!memcg)
		return;

2980
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2981
	__memcg_kmem_uncharge(memcg, nr_pages);
2982
	page->mem_cgroup = NULL;
2983 2984 2985 2986 2987

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);

2988
	css_put_many(&memcg->css, nr_pages);
2989
}
2990
#endif /* CONFIG_MEMCG_KMEM */
2991

2992 2993 2994 2995
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2996
 * pgdat->lru_lock and migration entries setup in all page mappings.
2997
 */
2998
void mem_cgroup_split_huge_fixup(struct page *head)
2999
{
3000
	int i;
3001

3002 3003
	if (mem_cgroup_disabled())
		return;
3004

3005
	for (i = 1; i < HPAGE_PMD_NR; i++)
3006
		head[i].mem_cgroup = head->mem_cgroup;
3007
}
3008
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3009

A
Andrew Morton 已提交
3010
#ifdef CONFIG_MEMCG_SWAP
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
3022
 * The caller must have charged to @to, IOW, called page_counter_charge() about
3023 3024 3025
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3026
				struct mem_cgroup *from, struct mem_cgroup *to)
3027 3028 3029
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
3030 3031
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3032 3033

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3034 3035
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
3036 3037 3038 3039 3040 3041
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3042
				struct mem_cgroup *from, struct mem_cgroup *to)
3043 3044 3045
{
	return -EINVAL;
}
3046
#endif
K
KAMEZAWA Hiroyuki 已提交
3047

3048
static DEFINE_MUTEX(memcg_max_mutex);
3049

3050 3051
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
3052
{
3053
	bool enlarge = false;
3054
	bool drained = false;
3055
	int ret;
3056 3057
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3058

3059
	do {
3060 3061 3062 3063
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3064

3065
		mutex_lock(&memcg_max_mutex);
3066 3067
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
3068
		 * break our basic invariant rule memory.max <= memsw.max.
3069
		 */
3070
		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3071
					   max <= memcg->memsw.max;
3072
		if (!limits_invariant) {
3073
			mutex_unlock(&memcg_max_mutex);
3074 3075 3076
			ret = -EINVAL;
			break;
		}
3077
		if (max > counter->max)
3078
			enlarge = true;
3079 3080
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
3081 3082 3083 3084

		if (!ret)
			break;

3085 3086 3087 3088 3089 3090
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

3091 3092 3093 3094 3095 3096
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
3097

3098 3099
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3100

3101 3102 3103
	return ret;
}

3104
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3105 3106 3107 3108
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
3109
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3110 3111
	unsigned long reclaimed;
	int loop = 0;
3112
	struct mem_cgroup_tree_per_node *mctz;
3113
	unsigned long excess;
3114 3115 3116 3117 3118
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

3119
	mctz = soft_limit_tree_node(pgdat->node_id);
3120 3121 3122 3123 3124 3125

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
3126
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3127 3128
		return 0;

3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
3143
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3144 3145 3146
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3147
		spin_lock_irq(&mctz->lock);
3148
		__mem_cgroup_remove_exceeded(mz, mctz);
3149 3150 3151 3152 3153 3154

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3155 3156 3157
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3158
		excess = soft_limit_excess(mz->memcg);
3159 3160 3161 3162 3163 3164 3165 3166 3167
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3168
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3169
		spin_unlock_irq(&mctz->lock);
3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3187 3188 3189 3190
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
3191
 * hierarchy.  Testing use_hierarchy is the caller's responsibility.
3192
 */
3193 3194
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3195 3196 3197 3198 3199 3200
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3201 3202
}

3203
/*
3204
 * Reclaims as many pages from the given memcg as possible.
3205 3206 3207 3208 3209 3210 3211
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

3212 3213
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3214 3215 3216

	drain_all_stock(memcg);

3217
	/* try to free all pages in this cgroup */
3218
	while (nr_retries && page_counter_read(&memcg->memory)) {
3219
		int progress;
3220

3221 3222 3223
		if (signal_pending(current))
			return -EINTR;

3224 3225
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3226
		if (!progress) {
3227
			nr_retries--;
3228
			/* maybe some writeback is necessary */
3229
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3230
		}
3231 3232

	}
3233 3234

	return 0;
3235 3236
}

3237 3238 3239
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3240
{
3241
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3242

3243 3244
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3245
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3246 3247
}

3248 3249
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3250
{
3251
	return mem_cgroup_from_css(css)->use_hierarchy;
3252 3253
}

3254 3255
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3256 3257
{
	int retval = 0;
3258
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3259
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3260

3261
	if (memcg->use_hierarchy == val)
3262
		return 0;
3263

3264
	/*
3265
	 * If parent's use_hierarchy is set, we can't make any modifications
3266 3267 3268 3269 3270 3271
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3272
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3273
				(val == 1 || val == 0)) {
3274
		if (!memcg_has_children(memcg))
3275
			memcg->use_hierarchy = val;
3276 3277 3278 3279
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3280

3281 3282 3283
	return retval;
}

3284
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3285
{
3286
	unsigned long val;
3287

3288
	if (mem_cgroup_is_root(memcg)) {
3289
		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3290
			memcg_page_state(memcg, NR_ANON_MAPPED);
3291 3292
		if (swap)
			val += memcg_page_state(memcg, MEMCG_SWAP);
3293
	} else {
3294
		if (!swap)
3295
			val = page_counter_read(&memcg->memory);
3296
		else
3297
			val = page_counter_read(&memcg->memsw);
3298
	}
3299
	return val;
3300 3301
}

3302 3303 3304 3305 3306 3307 3308
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3309

3310
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3311
			       struct cftype *cft)
B
Balbir Singh 已提交
3312
{
3313
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3314
	struct page_counter *counter;
3315

3316
	switch (MEMFILE_TYPE(cft->private)) {
3317
	case _MEM:
3318 3319
		counter = &memcg->memory;
		break;
3320
	case _MEMSWAP:
3321 3322
		counter = &memcg->memsw;
		break;
3323
	case _KMEM:
3324
		counter = &memcg->kmem;
3325
		break;
V
Vladimir Davydov 已提交
3326
	case _TCP:
3327
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3328
		break;
3329 3330 3331
	default:
		BUG();
	}
3332 3333 3334 3335

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
3336
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3337
		if (counter == &memcg->memsw)
3338
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3339 3340
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
3341
		return (u64)counter->max * PAGE_SIZE;
3342 3343 3344 3345 3346 3347 3348 3349 3350
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3351
}
3352

3353
static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3354
{
3355
	unsigned long stat[MEMCG_NR_STAT] = {0};
3356 3357 3358 3359
	struct mem_cgroup *mi;
	int node, cpu, i;

	for_each_online_cpu(cpu)
3360
		for (i = 0; i < MEMCG_NR_STAT; i++)
3361
			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3362 3363

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3364
		for (i = 0; i < MEMCG_NR_STAT; i++)
3365 3366 3367 3368 3369 3370
			atomic_long_add(stat[i], &mi->vmstats[i]);

	for_each_node(node) {
		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
		struct mem_cgroup_per_node *pi;

3371
		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3372 3373 3374
			stat[i] = 0;

		for_each_online_cpu(cpu)
3375
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3376 3377
				stat[i] += per_cpu(
					pn->lruvec_stat_cpu->count[i], cpu);
3378 3379

		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3380
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3381 3382 3383 3384
				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
	}
}

3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
{
	unsigned long events[NR_VM_EVENT_ITEMS];
	struct mem_cgroup *mi;
	int cpu, i;

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
		events[i] = 0;

	for_each_online_cpu(cpu)
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3396 3397
			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
					     cpu);
3398 3399 3400 3401 3402 3403

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
			atomic_long_add(events[i], &mi->vmevents[i]);
}

3404
#ifdef CONFIG_MEMCG_KMEM
3405
static int memcg_online_kmem(struct mem_cgroup *memcg)
3406 3407 3408
{
	int memcg_id;

3409 3410 3411
	if (cgroup_memory_nokmem)
		return 0;

3412
	BUG_ON(memcg->kmemcg_id >= 0);
3413
	BUG_ON(memcg->kmem_state);
3414

3415
	memcg_id = memcg_alloc_cache_id();
3416 3417
	if (memcg_id < 0)
		return memcg_id;
3418

3419
	static_branch_inc(&memcg_kmem_enabled_key);
3420
	/*
3421
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
3422
	 * kmemcg_id. Setting the id after enabling static branching will
3423 3424 3425
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3426
	memcg->kmemcg_id = memcg_id;
3427
	memcg->kmem_state = KMEM_ONLINE;
3428
	INIT_LIST_HEAD(&memcg->kmem_caches);
3429 3430

	return 0;
3431 3432
}

3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

3453
	/*
3454
	 * Deactivate and reparent kmem_caches.
3455
	 */
3456 3457 3458 3459 3460
	memcg_deactivate_kmem_caches(memcg, parent);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

3461 3462 3463 3464 3465 3466 3467 3468
	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
3469
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3470 3471 3472 3473 3474 3475 3476
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
3477 3478
	rcu_read_unlock();

3479
	memcg_drain_all_list_lrus(kmemcg_id, parent);
3480 3481 3482 3483 3484 3485

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
3486 3487 3488 3489
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

3490
	if (memcg->kmem_state == KMEM_ALLOCATED) {
3491
		WARN_ON(!list_empty(&memcg->kmem_caches));
3492 3493 3494
		static_branch_dec(&memcg_kmem_enabled_key);
	}
}
3495
#else
3496
static int memcg_online_kmem(struct mem_cgroup *memcg)
3497 3498 3499 3500 3501 3502 3503 3504 3505
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
3506
#endif /* CONFIG_MEMCG_KMEM */
3507

3508 3509
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
3510
{
3511
	int ret;
3512

3513 3514 3515
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
3516
	return ret;
3517
}
3518

3519
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
3520 3521 3522
{
	int ret;

3523
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3524

3525
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
3526 3527 3528
	if (ret)
		goto out;

3529
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3530 3531 3532
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3533 3534 3535
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
3536 3537 3538 3539 3540 3541
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3542
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
3543 3544 3545 3546
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3547
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3548 3549
	}
out:
3550
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3551 3552 3553
	return ret;
}

3554 3555 3556 3557
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3558 3559
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3560
{
3561
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3562
	unsigned long nr_pages;
3563 3564
	int ret;

3565
	buf = strstrip(buf);
3566
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3567 3568
	if (ret)
		return ret;
3569

3570
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3571
	case RES_LIMIT:
3572 3573 3574 3575
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3576 3577
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3578
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3579
			break;
3580
		case _MEMSWAP:
3581
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3582
			break;
3583
		case _KMEM:
3584 3585 3586
			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
				     "Please report your usecase to linux-mm@kvack.org if you "
				     "depend on this functionality.\n");
3587
			ret = memcg_update_kmem_max(memcg, nr_pages);
3588
			break;
V
Vladimir Davydov 已提交
3589
		case _TCP:
3590
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
3591
			break;
3592
		}
3593
		break;
3594 3595 3596
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3597 3598
		break;
	}
3599
	return ret ?: nbytes;
B
Balbir Singh 已提交
3600 3601
}

3602 3603
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3604
{
3605
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3606
	struct page_counter *counter;
3607

3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3618
	case _TCP:
3619
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3620
		break;
3621 3622 3623
	default:
		BUG();
	}
3624

3625
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3626
	case RES_MAX_USAGE:
3627
		page_counter_reset_watermark(counter);
3628 3629
		break;
	case RES_FAILCNT:
3630
		counter->failcnt = 0;
3631
		break;
3632 3633
	default:
		BUG();
3634
	}
3635

3636
	return nbytes;
3637 3638
}

3639
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3640 3641
					struct cftype *cft)
{
3642
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3643 3644
}

3645
#ifdef CONFIG_MMU
3646
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3647 3648
					struct cftype *cft, u64 val)
{
3649
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3650

3651
	if (val & ~MOVE_MASK)
3652
		return -EINVAL;
3653

3654
	/*
3655 3656 3657 3658
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3659
	 */
3660
	memcg->move_charge_at_immigrate = val;
3661 3662
	return 0;
}
3663
#else
3664
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3665 3666 3667 3668 3669
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3670

3671
#ifdef CONFIG_NUMA
3672 3673 3674 3675 3676 3677

#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)

static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3678
				int nid, unsigned int lru_mask, bool tree)
3679
{
3680
	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3681 3682 3683 3684 3685 3686 3687 3688
	unsigned long nr = 0;
	enum lru_list lru;

	VM_BUG_ON((unsigned)nid >= nr_node_ids);

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3689 3690 3691 3692
		if (tree)
			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
		else
			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3693 3694 3695 3696 3697
	}
	return nr;
}

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3698 3699
					     unsigned int lru_mask,
					     bool tree)
3700 3701 3702 3703 3704 3705 3706
{
	unsigned long nr = 0;
	enum lru_list lru;

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3707 3708 3709 3710
		if (tree)
			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
		else
			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3711 3712 3713 3714
	}
	return nr;
}

3715
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3716
{
3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3729
	int nid;
3730
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3731

3732
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3733 3734 3735 3736 3737 3738 3739
		seq_printf(m, "%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   false));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, false));
3740
		seq_putc(m, '\n');
3741 3742
	}

3743
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3744 3745 3746 3747 3748 3749 3750 3751

		seq_printf(m, "hierarchical_%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   true));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, true));
3752
		seq_putc(m, '\n');
3753 3754 3755 3756 3757 3758
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3759
static const unsigned int memcg1_stats[] = {
3760
	NR_FILE_PAGES,
3761
	NR_ANON_MAPPED,
3762 3763 3764
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	NR_ANON_THPS,
#endif
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
3775
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3776
	"rss_huge",
3777
#endif
3778 3779 3780 3781 3782 3783 3784
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

3785
/* Universal VM events cgroup1 shows, original sort order */
3786
static const unsigned int memcg1_events[] = {
3787 3788 3789 3790 3791 3792
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

3793
static int memcg_stat_show(struct seq_file *m, void *v)
3794
{
3795
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3796
	unsigned long memory, memsw;
3797 3798
	struct mem_cgroup *mi;
	unsigned int i;
3799

3800
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3801

3802
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3803 3804
		unsigned long nr;

3805
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3806
			continue;
3807 3808 3809 3810 3811 3812
		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
		if (memcg1_stats[i] == NR_ANON_THPS)
			nr *= HPAGE_PMD_NR;
#endif
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
3813
	}
L
Lee Schermerhorn 已提交
3814

3815
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3816
		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3817
			   memcg_events_local(memcg, memcg1_events[i]));
3818 3819

	for (i = 0; i < NR_LRU_LISTS; i++)
3820
		seq_printf(m, "%s %lu\n", lru_list_name(i),
3821
			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3822
			   PAGE_SIZE);
3823

K
KAMEZAWA Hiroyuki 已提交
3824
	/* Hierarchical information */
3825 3826
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3827 3828
		memory = min(memory, READ_ONCE(mi->memory.max));
		memsw = min(memsw, READ_ONCE(mi->memsw.max));
3829
	}
3830 3831
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3832
	if (do_memsw_account())
3833 3834
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3835

3836
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3837
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3838
			continue;
3839
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3840 3841
			   (u64)memcg_page_state(memcg, memcg1_stats[i]) *
			   PAGE_SIZE);
3842 3843
	}

3844
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3845 3846
		seq_printf(m, "total_%s %llu\n",
			   vm_event_name(memcg1_events[i]),
3847
			   (u64)memcg_events(memcg, memcg1_events[i]));
3848

3849
	for (i = 0; i < NR_LRU_LISTS; i++)
3850
		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
3851 3852
			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			   PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
3853

K
KOSAKI Motohiro 已提交
3854 3855
#ifdef CONFIG_DEBUG_VM
	{
3856 3857
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
3858 3859
		unsigned long anon_cost = 0;
		unsigned long file_cost = 0;
K
KOSAKI Motohiro 已提交
3860

3861 3862
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
K
KOSAKI Motohiro 已提交
3863

3864 3865
			anon_cost += mz->lruvec.anon_cost;
			file_cost += mz->lruvec.file_cost;
3866
		}
3867 3868
		seq_printf(m, "anon_cost %lu\n", anon_cost);
		seq_printf(m, "file_cost %lu\n", file_cost);
K
KOSAKI Motohiro 已提交
3869 3870 3871
	}
#endif

3872 3873 3874
	return 0;
}

3875 3876
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3877
{
3878
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3879

3880
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3881 3882
}

3883 3884
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3885
{
3886
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3887

3888
	if (val > 100)
K
KOSAKI Motohiro 已提交
3889 3890
		return -EINVAL;

3891
	if (css->parent)
3892 3893 3894
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3895

K
KOSAKI Motohiro 已提交
3896 3897 3898
	return 0;
}

3899 3900 3901
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3902
	unsigned long usage;
3903 3904 3905 3906
	int i;

	rcu_read_lock();
	if (!swap)
3907
		t = rcu_dereference(memcg->thresholds.primary);
3908
	else
3909
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3910 3911 3912 3913

	if (!t)
		goto unlock;

3914
	usage = mem_cgroup_usage(memcg, swap);
3915 3916

	/*
3917
	 * current_threshold points to threshold just below or equal to usage.
3918 3919 3920
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3921
	i = t->current_threshold;
3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3945
	t->current_threshold = i - 1;
3946 3947 3948 3949 3950 3951
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3952 3953
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3954
		if (do_memsw_account())
3955 3956 3957 3958
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3959 3960 3961 3962 3963 3964 3965
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3966 3967 3968 3969 3970 3971 3972
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3973 3974
}

3975
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3976 3977 3978
{
	struct mem_cgroup_eventfd_list *ev;

3979 3980
	spin_lock(&memcg_oom_lock);

3981
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3982
		eventfd_signal(ev->eventfd, 1);
3983 3984

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3985 3986 3987
	return 0;
}

3988
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3989
{
K
KAMEZAWA Hiroyuki 已提交
3990 3991
	struct mem_cgroup *iter;

3992
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3993
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3994 3995
}

3996
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3997
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3998
{
3999 4000
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4001 4002
	unsigned long threshold;
	unsigned long usage;
4003
	int i, size, ret;
4004

4005
	ret = page_counter_memparse(args, "-1", &threshold);
4006 4007 4008 4009
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4010

4011
	if (type == _MEM) {
4012
		thresholds = &memcg->thresholds;
4013
		usage = mem_cgroup_usage(memcg, false);
4014
	} else if (type == _MEMSWAP) {
4015
		thresholds = &memcg->memsw_thresholds;
4016
		usage = mem_cgroup_usage(memcg, true);
4017
	} else
4018 4019 4020
		BUG();

	/* Check if a threshold crossed before adding a new one */
4021
	if (thresholds->primary)
4022 4023
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4024
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4025 4026

	/* Allocate memory for new array of thresholds */
4027
	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4028
	if (!new) {
4029 4030 4031
		ret = -ENOMEM;
		goto unlock;
	}
4032
	new->size = size;
4033 4034

	/* Copy thresholds (if any) to new array */
4035 4036
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4037
				sizeof(struct mem_cgroup_threshold));
4038 4039
	}

4040
	/* Add new threshold */
4041 4042
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4043 4044

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4045
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4046 4047 4048
			compare_thresholds, NULL);

	/* Find current threshold */
4049
	new->current_threshold = -1;
4050
	for (i = 0; i < size; i++) {
4051
		if (new->entries[i].threshold <= usage) {
4052
			/*
4053 4054
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4055 4056
			 * it here.
			 */
4057
			++new->current_threshold;
4058 4059
		} else
			break;
4060 4061
	}

4062 4063 4064 4065 4066
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4067

4068
	/* To be sure that nobody uses thresholds */
4069 4070 4071 4072 4073 4074 4075 4076
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4077
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4078 4079
	struct eventfd_ctx *eventfd, const char *args)
{
4080
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4081 4082
}

4083
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4084 4085
	struct eventfd_ctx *eventfd, const char *args)
{
4086
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4087 4088
}

4089
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4090
	struct eventfd_ctx *eventfd, enum res_type type)
4091
{
4092 4093
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4094
	unsigned long usage;
4095
	int i, j, size, entries;
4096 4097

	mutex_lock(&memcg->thresholds_lock);
4098 4099

	if (type == _MEM) {
4100
		thresholds = &memcg->thresholds;
4101
		usage = mem_cgroup_usage(memcg, false);
4102
	} else if (type == _MEMSWAP) {
4103
		thresholds = &memcg->memsw_thresholds;
4104
		usage = mem_cgroup_usage(memcg, true);
4105
	} else
4106 4107
		BUG();

4108 4109 4110
	if (!thresholds->primary)
		goto unlock;

4111 4112 4113 4114
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4115
	size = entries = 0;
4116 4117
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4118
			size++;
4119 4120
		else
			entries++;
4121 4122
	}

4123
	new = thresholds->spare;
4124

4125 4126 4127 4128
	/* If no items related to eventfd have been cleared, nothing to do */
	if (!entries)
		goto unlock;

4129 4130
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4131 4132
		kfree(new);
		new = NULL;
4133
		goto swap_buffers;
4134 4135
	}

4136
	new->size = size;
4137 4138

	/* Copy thresholds and find current threshold */
4139 4140 4141
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4142 4143
			continue;

4144
		new->entries[j] = thresholds->primary->entries[i];
4145
		if (new->entries[j].threshold <= usage) {
4146
			/*
4147
			 * new->current_threshold will not be used
4148 4149 4150
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4151
			++new->current_threshold;
4152 4153 4154 4155
		}
		j++;
	}

4156
swap_buffers:
4157 4158
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4159

4160
	rcu_assign_pointer(thresholds->primary, new);
4161

4162
	/* To be sure that nobody uses thresholds */
4163
	synchronize_rcu();
4164 4165 4166 4167 4168 4169

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
4170
unlock:
4171 4172
	mutex_unlock(&memcg->thresholds_lock);
}
4173

4174
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4175 4176
	struct eventfd_ctx *eventfd)
{
4177
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4178 4179
}

4180
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4181 4182
	struct eventfd_ctx *eventfd)
{
4183
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4184 4185
}

4186
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4187
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4188 4189 4190 4191 4192 4193 4194
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4195
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4196 4197 4198 4199 4200

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4201
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
4202
		eventfd_signal(eventfd, 1);
4203
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4204 4205 4206 4207

	return 0;
}

4208
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4209
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4210 4211 4212
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4213
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4214

4215
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4216 4217 4218 4219 4220 4221
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4222
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4223 4224
}

4225
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4226
{
4227
	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4228

4229
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4230
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
R
Roman Gushchin 已提交
4231 4232
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4233 4234 4235
	return 0;
}

4236
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4237 4238
	struct cftype *cft, u64 val)
{
4239
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4240 4241

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4242
	if (!css->parent || !((val == 0) || (val == 1)))
4243 4244
		return -EINVAL;

4245
	memcg->oom_kill_disable = val;
4246
	if (!val)
4247
		memcg_oom_recover(memcg);
4248

4249 4250 4251
	return 0;
}

4252 4253
#ifdef CONFIG_CGROUP_WRITEBACK

4254 4255
#include <trace/events/writeback.h>

T
Tejun Heo 已提交
4256 4257 4258 4259 4260 4261 4262 4263 4264 4265
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

4266 4267 4268 4269 4270
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

4281 4282 4283 4284 4285 4286
/*
 * idx can be of type enum memcg_stat_item or node_stat_item.
 * Keep in sync with memcg_exact_page().
 */
static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
{
4287
	long x = atomic_long_read(&memcg->vmstats[idx]);
4288 4289 4290
	int cpu;

	for_each_online_cpu(cpu)
4291
		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4292 4293 4294 4295 4296
	if (x < 0)
		x = 0;
	return x;
}

4297 4298 4299
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
4300 4301
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
4302 4303 4304
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
4305 4306 4307
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
4308
 *
4309 4310 4311 4312 4313
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
4314
 */
4315 4316 4317
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
4318 4319 4320 4321
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

4322
	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4323

4324
	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4325 4326
	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4327
	*pheadroom = PAGE_COUNTER_MAX;
4328 4329

	while ((parent = parent_mem_cgroup(memcg))) {
4330
		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4331
					    READ_ONCE(memcg->memory.high));
4332 4333
		unsigned long used = page_counter_read(&memcg->memory);

4334
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4335 4336 4337 4338
		memcg = parent;
	}
}

4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392
/*
 * Foreign dirty flushing
 *
 * There's an inherent mismatch between memcg and writeback.  The former
 * trackes ownership per-page while the latter per-inode.  This was a
 * deliberate design decision because honoring per-page ownership in the
 * writeback path is complicated, may lead to higher CPU and IO overheads
 * and deemed unnecessary given that write-sharing an inode across
 * different cgroups isn't a common use-case.
 *
 * Combined with inode majority-writer ownership switching, this works well
 * enough in most cases but there are some pathological cases.  For
 * example, let's say there are two cgroups A and B which keep writing to
 * different but confined parts of the same inode.  B owns the inode and
 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
 * triggering background writeback.  A will be slowed down without a way to
 * make writeback of the dirty pages happen.
 *
 * Conditions like the above can lead to a cgroup getting repatedly and
 * severely throttled after making some progress after each
 * dirty_expire_interval while the underyling IO device is almost
 * completely idle.
 *
 * Solving this problem completely requires matching the ownership tracking
 * granularities between memcg and writeback in either direction.  However,
 * the more egregious behaviors can be avoided by simply remembering the
 * most recent foreign dirtying events and initiating remote flushes on
 * them when local writeback isn't enough to keep the memory clean enough.
 *
 * The following two functions implement such mechanism.  When a foreign
 * page - a page whose memcg and writeback ownerships don't match - is
 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
 * decides that the memcg needs to sleep due to high dirty ratio, it calls
 * mem_cgroup_flush_foreign() which queues writeback on the recorded
 * foreign bdi_writebacks which haven't expired.  Both the numbers of
 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
 * limited to MEMCG_CGWB_FRN_CNT.
 *
 * The mechanism only remembers IDs and doesn't hold any object references.
 * As being wrong occasionally doesn't matter, updates and accesses to the
 * records are lockless and racy.
 */
void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
					     struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = page->mem_cgroup;
	struct memcg_cgwb_frn *frn;
	u64 now = get_jiffies_64();
	u64 oldest_at = now;
	int oldest = -1;
	int i;

4393 4394
	trace_track_foreign_dirty(page, wb);

4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
	/*
	 * Pick the slot to use.  If there is already a slot for @wb, keep
	 * using it.  If not replace the oldest one which isn't being
	 * written out.
	 */
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		frn = &memcg->cgwb_frn[i];
		if (frn->bdi_id == wb->bdi->id &&
		    frn->memcg_id == wb->memcg_css->id)
			break;
		if (time_before64(frn->at, oldest_at) &&
		    atomic_read(&frn->done.cnt) == 1) {
			oldest = i;
			oldest_at = frn->at;
		}
	}

	if (i < MEMCG_CGWB_FRN_CNT) {
		/*
		 * Re-using an existing one.  Update timestamp lazily to
		 * avoid making the cacheline hot.  We want them to be
		 * reasonably up-to-date and significantly shorter than
		 * dirty_expire_interval as that's what expires the record.
		 * Use the shorter of 1s and dirty_expire_interval / 8.
		 */
		unsigned long update_intv =
			min_t(unsigned long, HZ,
			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);

		if (time_before64(frn->at, now - update_intv))
			frn->at = now;
	} else if (oldest >= 0) {
		/* replace the oldest free one */
		frn = &memcg->cgwb_frn[oldest];
		frn->bdi_id = wb->bdi->id;
		frn->memcg_id = wb->memcg_css->id;
		frn->at = now;
	}
}

/* issue foreign writeback flushes for recorded foreign dirtying events */
void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
	u64 now = jiffies_64;
	int i;

	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];

		/*
		 * If the record is older than dirty_expire_interval,
		 * writeback on it has already started.  No need to kick it
		 * off again.  Also, don't start a new one if there's
		 * already one in flight.
		 */
		if (time_after64(frn->at, now - intv) &&
		    atomic_read(&frn->done.cnt) == 1) {
			frn->at = 0;
4455
			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4456 4457 4458 4459 4460 4461 4462
			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
					       WB_REASON_FOREIGN_FLUSH,
					       &frn->done);
		}
	}
}

T
Tejun Heo 已提交
4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

4474 4475 4476 4477
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

4478 4479
#endif	/* CONFIG_CGROUP_WRITEBACK */

4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4493 4494 4495 4496 4497
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4498
static void memcg_event_remove(struct work_struct *work)
4499
{
4500 4501
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4502
	struct mem_cgroup *memcg = event->memcg;
4503 4504 4505

	remove_wait_queue(event->wqh, &event->wait);

4506
	event->unregister_event(memcg, event->eventfd);
4507 4508 4509 4510 4511 4512

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4513
	css_put(&memcg->css);
4514 4515 4516
}

/*
4517
 * Gets called on EPOLLHUP on eventfd when user closes it.
4518 4519 4520
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4521
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4522
			    int sync, void *key)
4523
{
4524 4525
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4526
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
4527
	__poll_t flags = key_to_poll(key);
4528

4529
	if (flags & EPOLLHUP) {
4530 4531 4532 4533 4534 4535 4536 4537 4538
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4539
		spin_lock(&memcg->event_list_lock);
4540 4541 4542 4543 4544 4545 4546 4547
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4548
		spin_unlock(&memcg->event_list_lock);
4549 4550 4551 4552 4553
	}

	return 0;
}

4554
static void memcg_event_ptable_queue_proc(struct file *file,
4555 4556
		wait_queue_head_t *wqh, poll_table *pt)
{
4557 4558
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4559 4560 4561 4562 4563 4564

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4565 4566
 * DO NOT USE IN NEW FILES.
 *
4567 4568 4569 4570 4571
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4572 4573
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4574
{
4575
	struct cgroup_subsys_state *css = of_css(of);
4576
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4577
	struct mem_cgroup_event *event;
4578 4579 4580 4581
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4582
	const char *name;
4583 4584 4585
	char *endp;
	int ret;

4586 4587 4588
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4589 4590
	if (*endp != ' ')
		return -EINVAL;
4591
	buf = endp + 1;
4592

4593
	cfd = simple_strtoul(buf, &endp, 10);
4594 4595
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4596
	buf = endp + 1;
4597 4598 4599 4600 4601

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4602
	event->memcg = memcg;
4603
	INIT_LIST_HEAD(&event->list);
4604 4605 4606
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4632 4633 4634 4635 4636
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4637 4638
	 *
	 * DO NOT ADD NEW FILES.
4639
	 */
A
Al Viro 已提交
4640
	name = cfile.file->f_path.dentry->d_name.name;
4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4652 4653
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4654 4655 4656 4657 4658
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4659
	/*
4660 4661 4662
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4663
	 */
A
Al Viro 已提交
4664
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4665
					       &memory_cgrp_subsys);
4666
	ret = -EINVAL;
4667
	if (IS_ERR(cfile_css))
4668
		goto out_put_cfile;
4669 4670
	if (cfile_css != css) {
		css_put(cfile_css);
4671
		goto out_put_cfile;
4672
	}
4673

4674
	ret = event->register_event(memcg, event->eventfd, buf);
4675 4676 4677
	if (ret)
		goto out_put_css;

4678
	vfs_poll(efile.file, &event->pt);
4679

4680 4681 4682
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4683 4684 4685 4686

	fdput(cfile);
	fdput(efile);

4687
	return nbytes;
4688 4689

out_put_css:
4690
	css_put(css);
4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4703
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4704
	{
4705
		.name = "usage_in_bytes",
4706
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4707
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4708
	},
4709 4710
	{
		.name = "max_usage_in_bytes",
4711
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4712
		.write = mem_cgroup_reset,
4713
		.read_u64 = mem_cgroup_read_u64,
4714
	},
B
Balbir Singh 已提交
4715
	{
4716
		.name = "limit_in_bytes",
4717
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4718
		.write = mem_cgroup_write,
4719
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4720
	},
4721 4722 4723
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4724
		.write = mem_cgroup_write,
4725
		.read_u64 = mem_cgroup_read_u64,
4726
	},
B
Balbir Singh 已提交
4727 4728
	{
		.name = "failcnt",
4729
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4730
		.write = mem_cgroup_reset,
4731
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4732
	},
4733 4734
	{
		.name = "stat",
4735
		.seq_show = memcg_stat_show,
4736
	},
4737 4738
	{
		.name = "force_empty",
4739
		.write = mem_cgroup_force_empty_write,
4740
	},
4741 4742 4743 4744 4745
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4746
	{
4747
		.name = "cgroup.event_control",		/* XXX: for compat */
4748
		.write = memcg_write_event_control,
4749
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4750
	},
K
KOSAKI Motohiro 已提交
4751 4752 4753 4754 4755
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4756 4757 4758 4759 4760
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4761 4762
	{
		.name = "oom_control",
4763
		.seq_show = mem_cgroup_oom_control_read,
4764
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4765 4766
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4767 4768 4769
	{
		.name = "pressure_level",
	},
4770 4771 4772
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4773
		.seq_show = memcg_numa_stat_show,
4774 4775
	},
#endif
4776 4777 4778
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4779
		.write = mem_cgroup_write,
4780
		.read_u64 = mem_cgroup_read_u64,
4781 4782 4783 4784
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4785
		.read_u64 = mem_cgroup_read_u64,
4786 4787 4788 4789
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4790
		.write = mem_cgroup_reset,
4791
		.read_u64 = mem_cgroup_read_u64,
4792 4793 4794 4795
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4796
		.write = mem_cgroup_reset,
4797
		.read_u64 = mem_cgroup_read_u64,
4798
	},
4799 4800
#if defined(CONFIG_MEMCG_KMEM) && \
	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4801 4802
	{
		.name = "kmem.slabinfo",
4803 4804 4805
		.seq_start = memcg_slab_start,
		.seq_next = memcg_slab_next,
		.seq_stop = memcg_slab_stop,
4806
		.seq_show = memcg_slab_show,
4807 4808
	},
#endif
V
Vladimir Davydov 已提交
4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4832
	{ },	/* terminate */
4833
};
4834

4835 4836 4837 4838 4839 4840 4841 4842
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
4843
 * However, there usually are many references to the offline CSS after
4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

4861 4862 4863 4864 4865 4866 4867 4868
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

4869 4870
static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
						  unsigned int n)
4871
{
4872
	refcount_add(n, &memcg->id.ref);
4873 4874
}

4875
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4876
{
4877
	if (refcount_sub_and_test(n, &memcg->id.ref)) {
4878
		mem_cgroup_id_remove(memcg);
4879 4880 4881 4882 4883 4884

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

4885 4886 4887 4888 4889
static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

4902
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4903 4904
{
	struct mem_cgroup_per_node *pn;
4905
	int tmp = node;
4906 4907 4908 4909 4910 4911 4912 4913
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4914 4915
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4916
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4917 4918
	if (!pn)
		return 1;
4919

4920 4921 4922 4923 4924 4925
	pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat_local) {
		kfree(pn);
		return 1;
	}

4926 4927
	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat_cpu) {
4928
		free_percpu(pn->lruvec_stat_local);
4929 4930 4931 4932
		kfree(pn);
		return 1;
	}

4933 4934 4935 4936 4937
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

4938
	memcg->nodeinfo[node] = pn;
4939 4940 4941
	return 0;
}

4942
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4943
{
4944 4945
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
4946 4947 4948
	if (!pn)
		return;

4949
	free_percpu(pn->lruvec_stat_cpu);
4950
	free_percpu(pn->lruvec_stat_local);
4951
	kfree(pn);
4952 4953
}

4954
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4955
{
4956
	int node;
4957

4958
	for_each_node(node)
4959
		free_mem_cgroup_per_node_info(memcg, node);
4960
	free_percpu(memcg->vmstats_percpu);
4961
	free_percpu(memcg->vmstats_local);
4962
	kfree(memcg);
4963
}
4964

4965 4966 4967
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
4968 4969 4970 4971
	/*
	 * Flush percpu vmstats and vmevents to guarantee the value correctness
	 * on parent's and all ancestor levels.
	 */
4972
	memcg_flush_percpu_vmstats(memcg);
4973
	memcg_flush_percpu_vmevents(memcg);
4974 4975 4976
	__mem_cgroup_free(memcg);
}

4977
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4978
{
4979
	struct mem_cgroup *memcg;
4980
	unsigned int size;
4981
	int node;
4982
	int __maybe_unused i;
4983
	long error = -ENOMEM;
B
Balbir Singh 已提交
4984

4985 4986 4987 4988
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4989
	if (!memcg)
4990
		return ERR_PTR(error);
4991

4992 4993 4994
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
4995 4996
	if (memcg->id.id < 0) {
		error = memcg->id.id;
4997
		goto fail;
4998
	}
4999

5000 5001 5002 5003
	memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
	if (!memcg->vmstats_local)
		goto fail;

5004 5005
	memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
	if (!memcg->vmstats_percpu)
5006
		goto fail;
5007

B
Bob Liu 已提交
5008
	for_each_node(node)
5009
		if (alloc_mem_cgroup_per_node_info(memcg, node))
5010
			goto fail;
5011

5012 5013
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
5014

5015
	INIT_WORK(&memcg->high_work, high_work_func);
5016 5017 5018
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5019
	vmpressure_init(&memcg->vmpressure);
5020 5021
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
5022
	memcg->socket_pressure = jiffies;
5023
#ifdef CONFIG_MEMCG_KMEM
V
Vladimir Davydov 已提交
5024 5025
	memcg->kmemcg_id = -1;
#endif
5026 5027
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
5028 5029 5030
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		memcg->cgwb_frn[i].done =
			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5031 5032 5033 5034 5035
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
	memcg->deferred_split_queue.split_queue_len = 0;
5036
#endif
5037
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5038 5039
	return memcg;
fail:
5040
	mem_cgroup_id_remove(memcg);
5041
	__mem_cgroup_free(memcg);
5042
	return ERR_PTR(error);
5043 5044
}

5045 5046
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5047
{
5048 5049 5050
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
5051

5052
	memcg = mem_cgroup_alloc();
5053 5054
	if (IS_ERR(memcg))
		return ERR_CAST(memcg);
5055

5056
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5057
	memcg->soft_limit = PAGE_COUNTER_MAX;
5058
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5059 5060 5061 5062 5063 5064
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
5065
		page_counter_init(&memcg->memory, &parent->memory);
5066
		page_counter_init(&memcg->swap, &parent->swap);
5067 5068
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
5069
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5070
	} else {
5071
		page_counter_init(&memcg->memory, NULL);
5072
		page_counter_init(&memcg->swap, NULL);
5073 5074
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
5075
		page_counter_init(&memcg->tcpmem, NULL);
5076 5077 5078 5079 5080
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
5081
		if (parent != root_mem_cgroup)
5082
			memory_cgrp_subsys.broken_hierarchy = true;
5083
	}
5084

5085 5086
	/* The following stuff does not apply to the root */
	if (!parent) {
5087 5088 5089
#ifdef CONFIG_MEMCG_KMEM
		INIT_LIST_HEAD(&memcg->kmem_caches);
#endif
5090 5091 5092 5093
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

5094
	error = memcg_online_kmem(memcg);
5095 5096
	if (error)
		goto fail;
5097

5098
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5099
		static_branch_inc(&memcg_sockets_enabled_key);
5100

5101 5102
	return &memcg->css;
fail:
5103
	mem_cgroup_id_remove(memcg);
5104
	mem_cgroup_free(memcg);
5105
	return ERR_PTR(error);
5106 5107
}

5108
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5109
{
5110 5111
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5112 5113 5114 5115 5116 5117 5118 5119 5120 5121
	/*
	 * A memcg must be visible for memcg_expand_shrinker_maps()
	 * by the time the maps are allocated. So, we allocate maps
	 * here, when for_each_mem_cgroup() can't skip it.
	 */
	if (memcg_alloc_shrinker_maps(memcg)) {
		mem_cgroup_id_remove(memcg);
		return -ENOMEM;
	}

5122
	/* Online state pins memcg ID, memcg ID pins CSS */
5123
	refcount_set(&memcg->id.ref, 1);
5124
	css_get(css);
5125
	return 0;
B
Balbir Singh 已提交
5126 5127
}

5128
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5129
{
5130
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5131
	struct mem_cgroup_event *event, *tmp;
5132 5133 5134 5135 5136 5137

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
5138 5139
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5140 5141 5142
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
5143
	spin_unlock(&memcg->event_list_lock);
5144

R
Roman Gushchin 已提交
5145
	page_counter_set_min(&memcg->memory, 0);
5146
	page_counter_set_low(&memcg->memory, 0);
5147

5148
	memcg_offline_kmem(memcg);
5149
	wb_memcg_offline(memcg);
5150

5151 5152
	drain_all_stock(memcg);

5153
	mem_cgroup_id_put(memcg);
5154 5155
}

5156 5157 5158 5159 5160 5161 5162
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

5163
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
5164
{
5165
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5166
	int __maybe_unused i;
5167

5168 5169 5170 5171
#ifdef CONFIG_CGROUP_WRITEBACK
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
#endif
5172
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5173
		static_branch_dec(&memcg_sockets_enabled_key);
5174

5175
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
5176
		static_branch_dec(&memcg_sockets_enabled_key);
5177

5178 5179 5180
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
5181
	memcg_free_shrinker_maps(memcg);
5182
	memcg_free_kmem(memcg);
5183
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
5184 5185
}

5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5203 5204 5205 5206 5207
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
R
Roman Gushchin 已提交
5208
	page_counter_set_min(&memcg->memory, 0);
5209
	page_counter_set_low(&memcg->memory, 0);
5210
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5211
	memcg->soft_limit = PAGE_COUNTER_MAX;
5212
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5213
	memcg_wb_domain_size_changed(memcg);
5214 5215
}

5216
#ifdef CONFIG_MMU
5217
/* Handlers for move charge at task migration. */
5218
static int mem_cgroup_do_precharge(unsigned long count)
5219
{
5220
	int ret;
5221

5222 5223
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5224
	if (!ret) {
5225 5226 5227
		mc.precharge += count;
		return ret;
	}
5228

5229
	/* Try charges one by one with reclaim, but do not retry */
5230
	while (count--) {
5231
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5232 5233
		if (ret)
			return ret;
5234
		mc.precharge++;
5235
		cond_resched();
5236
	}
5237
	return 0;
5238 5239 5240 5241
}

union mc_target {
	struct page	*page;
5242
	swp_entry_t	ent;
5243 5244 5245
};

enum mc_target_type {
5246
	MC_TARGET_NONE = 0,
5247
	MC_TARGET_PAGE,
5248
	MC_TARGET_SWAP,
5249
	MC_TARGET_DEVICE,
5250 5251
};

D
Daisuke Nishimura 已提交
5252 5253
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5254
{
5255
	struct page *page = vm_normal_page(vma, addr, ptent);
5256

D
Daisuke Nishimura 已提交
5257 5258 5259
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
5260
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5261
			return NULL;
5262 5263 5264 5265
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
5266 5267 5268 5269 5270 5271
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5272
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
5273
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5274
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
5275 5276 5277 5278
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

5279
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
5280
		return NULL;
5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
		page = device_private_entry_to_page(ent);
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

5298 5299 5300 5301
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5302
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5303
	entry->val = ent.val;
D
Daisuke Nishimura 已提交
5304 5305 5306

	return page;
}
5307 5308
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5309
			pte_t ptent, swp_entry_t *entry)
5310 5311 5312 5313
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5314

5315 5316 5317 5318 5319 5320 5321 5322 5323
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
5324
	if (!(mc.flags & MOVE_FILE))
5325 5326 5327
		return NULL;

	mapping = vma->vm_file->f_mapping;
5328
	pgoff = linear_page_index(vma, addr);
5329 5330

	/* page is moved even if it's not RSS of this task(page-faulted). */
5331 5332
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
5333 5334
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
5335
		if (xa_is_value(page)) {
5336
			swp_entry_t swp = radix_to_swp_entry(page);
5337
			*entry = swp;
5338 5339
			page = find_get_page(swap_address_space(swp),
					     swp_offset(swp));
5340 5341 5342 5343 5344
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
5345
#endif
5346 5347 5348
	return page;
}

5349 5350 5351
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
5352
 * @compound: charge the page as compound or small page
5353 5354 5355
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
5356
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5357 5358 5359 5360 5361
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
5362
				   bool compound,
5363 5364 5365
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
5366 5367
	struct lruvec *from_vec, *to_vec;
	struct pglist_data *pgdat;
5368
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5369 5370 5371 5372
	int ret;

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
5373
	VM_BUG_ON(compound && !PageTransHuge(page));
5374 5375

	/*
5376
	 * Prevent mem_cgroup_migrate() from looking at
5377
	 * page->mem_cgroup of its source page while we change it.
5378
	 */
5379
	ret = -EBUSY;
5380 5381 5382 5383 5384 5385 5386
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

5387
	pgdat = page_pgdat(page);
5388 5389
	from_vec = mem_cgroup_lruvec(from, pgdat);
	to_vec = mem_cgroup_lruvec(to, pgdat);
5390

5391
	lock_page_memcg(page);
5392

5393 5394 5395 5396
	if (PageAnon(page)) {
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5397 5398 5399 5400 5401 5402 5403
			if (PageTransHuge(page)) {
				__mod_lruvec_state(from_vec, NR_ANON_THPS,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_ANON_THPS,
						   nr_pages);
			}

5404 5405
		}
	} else {
5406 5407 5408 5409 5410 5411 5412 5413
		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);

		if (PageSwapBacked(page)) {
			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
		}

5414 5415 5416 5417
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
		}
5418

5419 5420
		if (PageDirty(page)) {
			struct address_space *mapping = page_mapping(page);
5421

5422 5423 5424 5425 5426 5427
			if (mapping_cap_account_dirty(mapping)) {
				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
						   nr_pages);
			}
5428 5429 5430
		}
	}

5431
	if (PageWriteback(page)) {
5432 5433
		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5434 5435 5436
	}

	/*
5437 5438
	 * All state has been migrated, let's switch to the new memcg.
	 *
5439
	 * It is safe to change page->mem_cgroup here because the page
5440 5441 5442 5443 5444 5445 5446 5447
	 * is referenced, charged, isolated, and locked: we can't race
	 * with (un)charging, migration, LRU putback, or anything else
	 * that would rely on a stable page->mem_cgroup.
	 *
	 * Note that lock_page_memcg is a memcg lock, not a page lock,
	 * to save space. As soon as we switch page->mem_cgroup to a
	 * new memcg that isn't locked, the above state can change
	 * concurrently again. Make sure we're truly done with it.
5448
	 */
5449
	smp_mb();
5450

5451
	page->mem_cgroup = to; 	/* caller should have done css_get */
5452

5453
	__unlock_page_memcg(from);
5454 5455 5456 5457

	ret = 0;

	local_irq_disable();
5458
	mem_cgroup_charge_statistics(to, page, nr_pages);
5459
	memcg_check_events(to, page);
5460
	mem_cgroup_charge_statistics(from, page, -nr_pages);
5461 5462 5463 5464 5465 5466 5467 5468
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5484 5485
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
 *     (so ZONE_DEVICE page and thus not on the lru).
5486 5487 5488
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
5489 5490
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5491 5492 5493 5494
 *
 * Called with pte lock held.
 */

5495
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5496 5497 5498
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
5499
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5500 5501 5502 5503 5504
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
5505
		page = mc_handle_swap_pte(vma, ptent, &ent);
5506
	else if (pte_none(ptent))
5507
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5508 5509

	if (!page && !ent.val)
5510
		return ret;
5511 5512
	if (page) {
		/*
5513
		 * Do only loose check w/o serialization.
5514
		 * mem_cgroup_move_account() checks the page is valid or
5515
		 * not under LRU exclusion.
5516
		 */
5517
		if (page->mem_cgroup == mc.from) {
5518
			ret = MC_TARGET_PAGE;
5519
			if (is_device_private_page(page))
5520
				ret = MC_TARGET_DEVICE;
5521 5522 5523 5524 5525 5526
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
5527 5528 5529 5530 5531
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
5532
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5533 5534 5535
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5536 5537 5538 5539
	}
	return ret;
}

5540 5541
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
5542 5543
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
5544 5545 5546 5547 5548 5549 5550 5551
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

5552 5553 5554 5555 5556
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
5557
	page = pmd_page(pmd);
5558
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5559
	if (!(mc.flags & MOVE_ANON))
5560
		return ret;
5561
	if (page->mem_cgroup == mc.from) {
5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5578 5579 5580 5581
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
5582
	struct vm_area_struct *vma = walk->vma;
5583 5584 5585
	pte_t *pte;
	spinlock_t *ptl;

5586 5587
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5588 5589
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5590 5591
		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
		 * this might change.
5592
		 */
5593 5594
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5595
		spin_unlock(ptl);
5596
		return 0;
5597
	}
5598

5599 5600
	if (pmd_trans_unstable(pmd))
		return 0;
5601 5602
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5603
		if (get_mctgt_type(vma, addr, *pte, NULL))
5604 5605 5606 5607
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5608 5609 5610
	return 0;
}

5611 5612 5613 5614
static const struct mm_walk_ops precharge_walk_ops = {
	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
};

5615 5616 5617 5618
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

5619
	mmap_read_lock(mm);
5620
	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5621
	mmap_read_unlock(mm);
5622 5623 5624 5625 5626 5627 5628 5629 5630

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5631 5632 5633 5634 5635
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5636 5637
}

5638 5639
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5640
{
5641 5642 5643
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5644
	/* we must uncharge all the leftover precharges from mc.to */
5645
	if (mc.precharge) {
5646
		cancel_charge(mc.to, mc.precharge);
5647 5648 5649 5650 5651 5652 5653
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5654
		cancel_charge(mc.from, mc.moved_charge);
5655
		mc.moved_charge = 0;
5656
	}
5657 5658 5659
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5660
		if (!mem_cgroup_is_root(mc.from))
5661
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5662

5663 5664
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

5665
		/*
5666 5667
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5668
		 */
5669
		if (!mem_cgroup_is_root(mc.to))
5670 5671
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5672 5673
		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
		css_put_many(&mc.to->css, mc.moved_swap);
5674

5675 5676
		mc.moved_swap = 0;
	}
5677 5678 5679 5680 5681 5682 5683
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
5684 5685
	struct mm_struct *mm = mc.mm;

5686 5687 5688 5689 5690 5691
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5692
	spin_lock(&mc.lock);
5693 5694
	mc.from = NULL;
	mc.to = NULL;
5695
	mc.mm = NULL;
5696
	spin_unlock(&mc.lock);
5697 5698

	mmput(mm);
5699 5700
}

5701
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5702
{
5703
	struct cgroup_subsys_state *css;
5704
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5705
	struct mem_cgroup *from;
5706
	struct task_struct *leader, *p;
5707
	struct mm_struct *mm;
5708
	unsigned long move_flags;
5709
	int ret = 0;
5710

5711 5712
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5713 5714
		return 0;

5715 5716 5717 5718 5719 5720 5721
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
5722
	cgroup_taskset_for_each_leader(leader, css, tset) {
5723 5724
		WARN_ON_ONCE(p);
		p = leader;
5725
		memcg = mem_cgroup_from_css(css);
5726 5727 5728 5729
	}
	if (!p)
		return 0;

5730 5731 5732 5733 5734 5735 5736 5737 5738
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
5755
		mc.mm = mm;
5756 5757 5758 5759 5760 5761 5762 5763 5764
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
5765 5766
	} else {
		mmput(mm);
5767 5768 5769 5770
	}
	return ret;
}

5771
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5772
{
5773 5774
	if (mc.to)
		mem_cgroup_clear_mc();
5775 5776
}

5777 5778 5779
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5780
{
5781
	int ret = 0;
5782
	struct vm_area_struct *vma = walk->vma;
5783 5784
	pte_t *pte;
	spinlock_t *ptl;
5785 5786 5787
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5788

5789 5790
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5791
		if (mc.precharge < HPAGE_PMD_NR) {
5792
			spin_unlock(ptl);
5793 5794 5795 5796 5797 5798
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
5799
				if (!mem_cgroup_move_account(page, true,
5800
							     mc.from, mc.to)) {
5801 5802 5803 5804 5805 5806
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
5807 5808 5809 5810 5811 5812 5813 5814
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
5815
		}
5816
		spin_unlock(ptl);
5817
		return 0;
5818 5819
	}

5820 5821
	if (pmd_trans_unstable(pmd))
		return 0;
5822 5823 5824 5825
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5826
		bool device = false;
5827
		swp_entry_t ent;
5828 5829 5830 5831

		if (!mc.precharge)
			break;

5832
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5833 5834
		case MC_TARGET_DEVICE:
			device = true;
J
Joe Perches 已提交
5835
			fallthrough;
5836 5837
		case MC_TARGET_PAGE:
			page = target.page;
5838 5839 5840 5841 5842 5843 5844 5845
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
5846
			if (!device && isolate_lru_page(page))
5847
				goto put;
5848 5849
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
5850
				mc.precharge--;
5851 5852
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5853
			}
5854 5855
			if (!device)
				putback_lru_page(page);
5856
put:			/* get_mctgt_type() gets the page */
5857 5858
			put_page(page);
			break;
5859 5860
		case MC_TARGET_SWAP:
			ent = target.ent;
5861
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5862
				mc.precharge--;
5863 5864 5865
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5866
			break;
5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5881
		ret = mem_cgroup_do_precharge(1);
5882 5883 5884 5885 5886 5887 5888
		if (!ret)
			goto retry;
	}

	return ret;
}

5889 5890 5891 5892
static const struct mm_walk_ops charge_walk_ops = {
	.pmd_entry	= mem_cgroup_move_charge_pte_range,
};

5893
static void mem_cgroup_move_charge(void)
5894 5895
{
	lru_add_drain_all();
5896
	/*
5897 5898 5899
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
5900 5901 5902
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5903
retry:
5904
	if (unlikely(!mmap_read_trylock(mc.mm))) {
5905
		/*
5906
		 * Someone who are holding the mmap_lock might be waiting in
5907 5908 5909 5910 5911 5912 5913 5914 5915
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5916 5917 5918 5919
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
5920 5921
	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
			NULL);
5922

5923
	mmap_read_unlock(mc.mm);
5924
	atomic_dec(&mc.from->moving_account);
5925 5926
}

5927
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
5928
{
5929 5930
	if (mc.to) {
		mem_cgroup_move_charge();
5931
		mem_cgroup_clear_mc();
5932
	}
B
Balbir Singh 已提交
5933
}
5934
#else	/* !CONFIG_MMU */
5935
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5936 5937 5938
{
	return 0;
}
5939
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5940 5941
{
}
5942
static void mem_cgroup_move_task(void)
5943 5944 5945
{
}
#endif
B
Balbir Singh 已提交
5946

5947 5948
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5949 5950
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5951
 */
5952
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5953 5954
{
	/*
5955
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5956 5957 5958
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5959
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5960 5961 5962
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5963 5964
}

5965 5966 5967 5968 5969 5970 5971 5972 5973 5974
static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
{
	if (value == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);

	return 0;
}

5975 5976 5977
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5978 5979 5980
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5981 5982
}

R
Roman Gushchin 已提交
5983 5984
static int memory_min_show(struct seq_file *m, void *v)
{
5985 5986
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
R
Roman Gushchin 已提交
5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

6006 6007
static int memory_low_show(struct seq_file *m, void *v)
{
6008 6009
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6010 6011 6012 6013 6014 6015 6016 6017 6018 6019
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
6020
	err = page_counter_memparse(buf, "max", &low);
6021 6022 6023
	if (err)
		return err;

6024
	page_counter_set_low(&memcg->memory, low);
6025 6026 6027 6028 6029 6030

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
6031 6032
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6033 6034 6035 6036 6037 6038
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6039 6040
	unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
6041 6042 6043 6044
	unsigned long high;
	int err;

	buf = strstrip(buf);
6045
	err = page_counter_memparse(buf, "max", &high);
6046 6047 6048
	if (err)
		return err;

6049
	page_counter_set_high(&memcg->memory, high);
6050

6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072
	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);
		unsigned long reclaimed;

		if (nr_pages <= high)
			break;

		if (signal_pending(current))
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
							 GFP_KERNEL, true);

		if (!reclaimed && !nr_retries--)
			break;
	}
6073

6074 6075 6076 6077 6078
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
6079 6080
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6081 6082 6083 6084 6085 6086
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6087 6088
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
6089 6090 6091 6092
	unsigned long max;
	int err;

	buf = strstrip(buf);
6093
	err = page_counter_memparse(buf, "max", &max);
6094 6095 6096
	if (err)
		return err;

6097
	xchg(&memcg->memory.max, max);
6098 6099 6100 6101 6102 6103 6104

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

6105
		if (signal_pending(current))
6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

6121
		memcg_memory_event(memcg, MEMCG_OOM);
6122 6123 6124
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
6125

6126
	memcg_wb_domain_size_changed(memcg);
6127 6128 6129
	return nbytes;
}

6130 6131 6132 6133 6134 6135 6136 6137 6138 6139
static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
{
	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&events[MEMCG_OOM_KILL]));
}

6140 6141
static int memory_events_show(struct seq_file *m, void *v)
{
6142
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6143

6144 6145 6146 6147 6148 6149 6150
	__memory_events_show(m, memcg->memory_events);
	return 0;
}

static int memory_events_local_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6151

6152
	__memory_events_show(m, memcg->memory_events_local);
6153 6154 6155
	return 0;
}

6156 6157
static int memory_stat_show(struct seq_file *m, void *v)
{
6158
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6159
	char *buf;
6160

6161 6162 6163 6164 6165
	buf = memory_stat_format(memcg);
	if (!buf)
		return -ENOMEM;
	seq_puts(m, buf);
	kfree(buf);
6166 6167 6168
	return 0;
}

6169 6170
static int memory_oom_group_show(struct seq_file *m, void *v)
{
6171
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199

	seq_printf(m, "%d\n", memcg->oom_group);

	return 0;
}

static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
				      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	int ret, oom_group;

	buf = strstrip(buf);
	if (!buf)
		return -EINVAL;

	ret = kstrtoint(buf, 0, &oom_group);
	if (ret)
		return ret;

	if (oom_group != 0 && oom_group != 1)
		return -EINVAL;

	memcg->oom_group = oom_group;

	return nbytes;
}

6200 6201 6202
static struct cftype memory_files[] = {
	{
		.name = "current",
6203
		.flags = CFTYPE_NOT_ON_ROOT,
6204 6205
		.read_u64 = memory_current_read,
	},
R
Roman Gushchin 已提交
6206 6207 6208 6209 6210 6211
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
6233
		.file_offset = offsetof(struct mem_cgroup, events_file),
6234 6235
		.seq_show = memory_events_show,
	},
6236 6237 6238 6239 6240 6241
	{
		.name = "events.local",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, events_local_file),
		.seq_show = memory_events_local_show,
	},
6242 6243 6244 6245
	{
		.name = "stat",
		.seq_show = memory_stat_show,
	},
6246 6247 6248 6249 6250 6251
	{
		.name = "oom.group",
		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
		.seq_show = memory_oom_group_show,
		.write = memory_oom_group_write,
	},
6252 6253 6254
	{ }	/* terminate */
};

6255
struct cgroup_subsys memory_cgrp_subsys = {
6256
	.css_alloc = mem_cgroup_css_alloc,
6257
	.css_online = mem_cgroup_css_online,
6258
	.css_offline = mem_cgroup_css_offline,
6259
	.css_released = mem_cgroup_css_released,
6260
	.css_free = mem_cgroup_css_free,
6261
	.css_reset = mem_cgroup_css_reset,
6262 6263
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
6264
	.post_attach = mem_cgroup_move_task,
6265
	.bind = mem_cgroup_bind,
6266 6267
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
6268
	.early_init = 0,
B
Balbir Singh 已提交
6269
};
6270

6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300
/*
 * This function calculates an individual cgroup's effective
 * protection which is derived from its own memory.min/low, its
 * parent's and siblings' settings, as well as the actual memory
 * distribution in the tree.
 *
 * The following rules apply to the effective protection values:
 *
 * 1. At the first level of reclaim, effective protection is equal to
 *    the declared protection in memory.min and memory.low.
 *
 * 2. To enable safe delegation of the protection configuration, at
 *    subsequent levels the effective protection is capped to the
 *    parent's effective protection.
 *
 * 3. To make complex and dynamic subtrees easier to configure, the
 *    user is allowed to overcommit the declared protection at a given
 *    level. If that is the case, the parent's effective protection is
 *    distributed to the children in proportion to how much protection
 *    they have declared and how much of it they are utilizing.
 *
 *    This makes distribution proportional, but also work-conserving:
 *    if one cgroup claims much more protection than it uses memory,
 *    the unused remainder is available to its siblings.
 *
 * 4. Conversely, when the declared protection is undercommitted at a
 *    given level, the distribution of the larger parental protection
 *    budget is NOT proportional. A cgroup's protection from a sibling
 *    is capped to its own memory.min/low setting.
 *
6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312
 * 5. However, to allow protecting recursive subtrees from each other
 *    without having to declare each individual cgroup's fixed share
 *    of the ancestor's claim to protection, any unutilized -
 *    "floating" - protection from up the tree is distributed in
 *    proportion to each cgroup's *usage*. This makes the protection
 *    neutral wrt sibling cgroups and lets them compete freely over
 *    the shared parental protection budget, but it protects the
 *    subtree as a whole from neighboring subtrees.
 *
 * Note that 4. and 5. are not in conflict: 4. is about protecting
 * against immediate siblings whereas 5. is about protecting against
 * neighboring subtrees.
6313 6314
 */
static unsigned long effective_protection(unsigned long usage,
6315
					  unsigned long parent_usage,
6316 6317 6318 6319 6320
					  unsigned long setting,
					  unsigned long parent_effective,
					  unsigned long siblings_protected)
{
	unsigned long protected;
6321
	unsigned long ep;
6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351

	protected = min(usage, setting);
	/*
	 * If all cgroups at this level combined claim and use more
	 * protection then what the parent affords them, distribute
	 * shares in proportion to utilization.
	 *
	 * We are using actual utilization rather than the statically
	 * claimed protection in order to be work-conserving: claimed
	 * but unused protection is available to siblings that would
	 * otherwise get a smaller chunk than what they claimed.
	 */
	if (siblings_protected > parent_effective)
		return protected * parent_effective / siblings_protected;

	/*
	 * Ok, utilized protection of all children is within what the
	 * parent affords them, so we know whatever this child claims
	 * and utilizes is effectively protected.
	 *
	 * If there is unprotected usage beyond this value, reclaim
	 * will apply pressure in proportion to that amount.
	 *
	 * If there is unutilized protection, the cgroup will be fully
	 * shielded from reclaim, but we do return a smaller value for
	 * protection than what the group could enjoy in theory. This
	 * is okay. With the overcommit distribution above, effective
	 * protection is always dependent on how memory is actually
	 * consumed among the siblings anyway.
	 */
6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364
	ep = protected;

	/*
	 * If the children aren't claiming (all of) the protection
	 * afforded to them by the parent, distribute the remainder in
	 * proportion to the (unprotected) memory of each cgroup. That
	 * way, cgroups that aren't explicitly prioritized wrt each
	 * other compete freely over the allowance, but they are
	 * collectively protected from neighboring trees.
	 *
	 * We're using unprotected memory for the weight so that if
	 * some cgroups DO claim explicit protection, we don't protect
	 * the same bytes twice.
6365 6366 6367 6368
	 *
	 * Check both usage and parent_usage against the respective
	 * protected values. One should imply the other, but they
	 * aren't read atomically - make sure the division is sane.
6369 6370 6371
	 */
	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
		return ep;
6372 6373 6374
	if (parent_effective > siblings_protected &&
	    parent_usage > siblings_protected &&
	    usage > protected) {
6375 6376 6377 6378 6379 6380 6381 6382 6383 6384
		unsigned long unclaimed;

		unclaimed = parent_effective - siblings_protected;
		unclaimed *= usage - protected;
		unclaimed /= parent_usage - siblings_protected;

		ep += unclaimed;
	}

	return ep;
6385 6386
}

6387
/**
R
Roman Gushchin 已提交
6388
 * mem_cgroup_protected - check if memory consumption is in the normal range
6389
 * @root: the top ancestor of the sub-tree being checked
6390 6391
 * @memcg: the memory cgroup to check
 *
6392 6393
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
6394
 *
R
Roman Gushchin 已提交
6395 6396 6397 6398 6399
 * Returns one of the following:
 *   MEMCG_PROT_NONE: cgroup memory is not protected
 *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
 *     an unprotected supply of reclaimable memory from other cgroups.
 *   MEMCG_PROT_MIN: cgroup memory is protected
6400
 */
R
Roman Gushchin 已提交
6401 6402
enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
						struct mem_cgroup *memcg)
6403
{
6404
	unsigned long usage, parent_usage;
6405 6406
	struct mem_cgroup *parent;

6407
	if (mem_cgroup_disabled())
R
Roman Gushchin 已提交
6408
		return MEMCG_PROT_NONE;
6409

6410 6411 6412
	if (!root)
		root = root_mem_cgroup;
	if (memcg == root)
R
Roman Gushchin 已提交
6413
		return MEMCG_PROT_NONE;
6414

6415
	usage = page_counter_read(&memcg->memory);
R
Roman Gushchin 已提交
6416 6417 6418 6419
	if (!usage)
		return MEMCG_PROT_NONE;

	parent = parent_mem_cgroup(memcg);
6420 6421 6422 6423
	/* No parent means a non-hierarchical mode on v1 memcg */
	if (!parent)
		return MEMCG_PROT_NONE;

6424
	if (parent == root) {
6425
		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6426
		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6427
		goto out;
R
Roman Gushchin 已提交
6428 6429
	}

6430 6431
	parent_usage = page_counter_read(&parent->memory);

6432
	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6433 6434
			READ_ONCE(memcg->memory.min),
			READ_ONCE(parent->memory.emin),
6435
			atomic_long_read(&parent->memory.children_min_usage)));
6436

6437
	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6438 6439
			READ_ONCE(memcg->memory.low),
			READ_ONCE(parent->memory.elow),
6440
			atomic_long_read(&parent->memory.children_low_usage)));
6441

6442 6443
out:
	if (usage <= memcg->memory.emin)
R
Roman Gushchin 已提交
6444
		return MEMCG_PROT_MIN;
6445
	else if (usage <= memcg->memory.elow)
R
Roman Gushchin 已提交
6446 6447 6448
		return MEMCG_PROT_LOW;
	else
		return MEMCG_PROT_NONE;
6449 6450
}

6451
/**
6452
 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6453 6454 6455 6456 6457 6458 6459
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
6460
 * Returns 0 on success. Otherwise, an error code is returned.
6461
 */
6462
int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6463
{
6464
	unsigned int nr_pages = hpage_nr_pages(page);
6465 6466 6467 6468 6469 6470 6471
	struct mem_cgroup *memcg = NULL;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
6472 6473 6474
		swp_entry_t ent = { .val = page_private(page), };
		unsigned short id;

6475 6476 6477
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
6478 6479
		 * already charged pages, too.  page->mem_cgroup is protected
		 * by the page lock, which serializes swap cache removal, which
6480 6481
		 * in turn serializes uncharging.
		 */
6482
		VM_BUG_ON_PAGE(!PageLocked(page), page);
6483
		if (compound_head(page)->mem_cgroup)
6484
			goto out;
6485

6486 6487 6488 6489 6490 6491
		id = lookup_swap_cgroup_id(ent);
		rcu_read_lock();
		memcg = mem_cgroup_from_id(id);
		if (memcg && !css_tryget_online(&memcg->css))
			memcg = NULL;
		rcu_read_unlock();
6492 6493 6494 6495 6496 6497
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);
6498 6499
	if (ret)
		goto out_put;
6500

6501
	commit_charge(page, memcg);
6502 6503

	local_irq_disable();
6504
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6505 6506
	memcg_check_events(memcg, page);
	local_irq_enable();
6507

6508
	if (PageSwapCache(page)) {
6509 6510 6511 6512 6513 6514
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
6515
		mem_cgroup_uncharge_swap(entry, nr_pages);
6516 6517
	}

6518 6519 6520 6521
out_put:
	css_put(&memcg->css);
out:
	return ret;
6522 6523
}

6524 6525
struct uncharge_gather {
	struct mem_cgroup *memcg;
6526
	unsigned long nr_pages;
6527 6528 6529 6530 6531 6532
	unsigned long pgpgout;
	unsigned long nr_kmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6533
{
6534 6535 6536 6537 6538
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
6539 6540
	unsigned long flags;

6541
	if (!mem_cgroup_is_root(ug->memcg)) {
6542
		page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6543
		if (do_memsw_account())
6544
			page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6545 6546 6547
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
6548
	}
6549 6550

	local_irq_save(flags);
6551
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6552
	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6553
	memcg_check_events(ug->memcg, ug->dummy_page);
6554
	local_irq_restore(flags);
6555

6556
	if (!mem_cgroup_is_root(ug->memcg))
6557
		css_put_many(&ug->memcg->css, ug->nr_pages);
6558 6559 6560 6561
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
6562 6563
	unsigned long nr_pages;

6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582
	VM_BUG_ON_PAGE(PageLRU(page), page);

	if (!page->mem_cgroup)
		return;

	/*
	 * Nobody should be changing or seriously looking at
	 * page->mem_cgroup at this point, we have fully
	 * exclusive access to the page.
	 */

	if (ug->memcg != page->mem_cgroup) {
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
		ug->memcg = page->mem_cgroup;
	}

6583 6584
	nr_pages = compound_nr(page);
	ug->nr_pages += nr_pages;
6585

6586
	if (!PageKmemcg(page)) {
6587 6588
		ug->pgpgout++;
	} else {
6589
		ug->nr_kmem += nr_pages;
6590 6591 6592 6593 6594
		__ClearPageKmemcg(page);
	}

	ug->dummy_page = page;
	page->mem_cgroup = NULL;
6595 6596 6597 6598
}

static void uncharge_list(struct list_head *page_list)
{
6599
	struct uncharge_gather ug;
6600
	struct list_head *next;
6601 6602

	uncharge_gather_clear(&ug);
6603

6604 6605 6606 6607
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
6608 6609
	next = page_list->next;
	do {
6610 6611
		struct page *page;

6612 6613 6614
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

6615
		uncharge_page(page, &ug);
6616 6617
	} while (next != page_list);

6618 6619
	if (ug.memcg)
		uncharge_batch(&ug);
6620 6621
}

6622 6623 6624 6625
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
6626
 * Uncharge a page previously charged with mem_cgroup_charge().
6627 6628 6629
 */
void mem_cgroup_uncharge(struct page *page)
{
6630 6631
	struct uncharge_gather ug;

6632 6633 6634
	if (mem_cgroup_disabled())
		return;

6635
	/* Don't touch page->lru of any random page, pre-check: */
6636
	if (!page->mem_cgroup)
6637 6638
		return;

6639 6640 6641
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
6642
}
6643

6644 6645 6646 6647 6648
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
6649
 * mem_cgroup_charge().
6650 6651 6652 6653 6654
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
6655

6656 6657
	if (!list_empty(page_list))
		uncharge_list(page_list);
6658 6659 6660
}

/**
6661 6662 6663
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
6664
 *
6665 6666
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
6667 6668 6669
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
6670
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6671
{
6672
	struct mem_cgroup *memcg;
6673
	unsigned int nr_pages;
6674
	unsigned long flags;
6675 6676 6677 6678

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6679 6680
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6681 6682 6683 6684 6685

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
6686
	if (newpage->mem_cgroup)
6687 6688
		return;

6689
	/* Swapcache readahead pages can get replaced before being charged */
6690
	memcg = oldpage->mem_cgroup;
6691
	if (!memcg)
6692 6693
		return;

6694
	/* Force-charge the new page. The old one will be freed soon */
6695
	nr_pages = hpage_nr_pages(newpage);
6696 6697 6698 6699 6700

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
6701

6702
	commit_charge(newpage, memcg);
6703

6704
	local_irq_save(flags);
6705
	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6706
	memcg_check_events(memcg, newpage);
6707
	local_irq_restore(flags);
6708 6709
}

6710
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6711 6712
EXPORT_SYMBOL(memcg_sockets_enabled_key);

6713
void mem_cgroup_sk_alloc(struct sock *sk)
6714 6715 6716
{
	struct mem_cgroup *memcg;

6717 6718 6719
	if (!mem_cgroup_sockets_enabled)
		return;

6720 6721 6722 6723
	/* Do not associate the sock with unrelated interrupted task's memcg. */
	if (in_interrupt())
		return;

6724 6725
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
6726 6727
	if (memcg == root_mem_cgroup)
		goto out;
6728
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6729
		goto out;
S
Shakeel Butt 已提交
6730
	if (css_tryget(&memcg->css))
6731
		sk->sk_memcg = memcg;
6732
out:
6733 6734 6735
	rcu_read_unlock();
}

6736
void mem_cgroup_sk_free(struct sock *sk)
6737
{
6738 6739
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6752
	gfp_t gfp_mask = GFP_KERNEL;
6753

6754
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6755
		struct page_counter *fail;
6756

6757 6758
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
6759 6760
			return true;
		}
6761 6762
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
6763
		return false;
6764
	}
6765

6766 6767 6768 6769
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

6770
	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6771

6772 6773 6774 6775
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6776 6777 6778 6779 6780
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
6781 6782
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
6783 6784 6785
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6786
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6787
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6788 6789
		return;
	}
6790

6791
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6792

6793
	refill_stock(memcg, nr_pages);
6794 6795
}

6796 6797 6798 6799 6800 6801 6802 6803 6804
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
6805 6806
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
6807 6808 6809 6810
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
6811

6812
/*
6813 6814
 * subsys_initcall() for memory controller.
 *
6815 6816 6817 6818
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
6819 6820 6821
 */
static int __init mem_cgroup_init(void)
{
6822 6823
	int cpu, node;

6824
#ifdef CONFIG_MEMCG_KMEM
6825 6826
	/*
	 * Kmem cache creation is mostly done with the slab_mutex held,
6827 6828 6829
	 * so use a workqueue with limited concurrency to avoid stalling
	 * all worker threads in case lots of cgroups are created and
	 * destroyed simultaneously.
6830
	 */
6831 6832
	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
	BUG_ON(!memcg_kmem_cache_wq);
6833 6834
#endif

6835 6836
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

6848
		rtpn->rb_root = RB_ROOT;
6849
		rtpn->rb_rightmost = NULL;
6850
		spin_lock_init(&rtpn->lock);
6851 6852 6853
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

6854 6855 6856
	return 0;
}
subsys_initcall(mem_cgroup_init);
6857 6858

#ifdef CONFIG_MEMCG_SWAP
6859 6860
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
6861
	while (!refcount_inc_not_zero(&memcg->id.ref)) {
6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

6877 6878 6879 6880 6881 6882 6883 6884 6885
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
6886
	struct mem_cgroup *memcg, *swap_memcg;
6887
	unsigned int nr_entries;
6888 6889 6890 6891 6892
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

6893
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6894 6895 6896 6897 6898 6899 6900 6901
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

6902 6903 6904 6905 6906 6907
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
6908 6909 6910 6911 6912 6913
	nr_entries = hpage_nr_pages(page);
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
6914
	VM_BUG_ON_PAGE(oldid, page);
6915
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6916 6917 6918 6919

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
6920
		page_counter_uncharge(&memcg->memory, nr_entries);
6921

6922
	if (!cgroup_memory_noswap && memcg != swap_memcg) {
6923
		if (!mem_cgroup_is_root(swap_memcg))
6924 6925
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
6926 6927
	}

6928 6929
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
6930
	 * i_pages lock which is taken with interrupts-off. It is
6931
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
6932
	 * only synchronisation we have for updating the per-CPU variables.
6933 6934
	 */
	VM_BUG_ON(!irqs_disabled());
6935
	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
6936
	memcg_check_events(memcg, page);
6937 6938

	if (!mem_cgroup_is_root(memcg))
6939
		css_put_many(&memcg->css, nr_entries);
6940 6941
}

6942 6943
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
6944 6945 6946
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
6947
 * Try to charge @page's memcg for the swap space at @entry.
6948 6949 6950 6951 6952
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
6953
	unsigned int nr_pages = hpage_nr_pages(page);
6954
	struct page_counter *counter;
6955
	struct mem_cgroup *memcg;
6956 6957
	unsigned short oldid;

6958
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
6959 6960 6961 6962 6963 6964 6965 6966
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

6967 6968
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6969
		return 0;
6970
	}
6971

6972 6973
	memcg = mem_cgroup_id_get_online(memcg);

6974
	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
6975
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6976 6977
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6978
		mem_cgroup_id_put(memcg);
6979
		return -ENOMEM;
6980
	}
6981

6982 6983 6984 6985
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6986
	VM_BUG_ON_PAGE(oldid, page);
6987
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6988 6989 6990 6991

	return 0;
}

6992
/**
6993
 * mem_cgroup_uncharge_swap - uncharge swap space
6994
 * @entry: swap entry to uncharge
6995
 * @nr_pages: the amount of swap space to uncharge
6996
 */
6997
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6998 6999 7000 7001
{
	struct mem_cgroup *memcg;
	unsigned short id;

7002
	id = swap_cgroup_record(entry, 0, nr_pages);
7003
	rcu_read_lock();
7004
	memcg = mem_cgroup_from_id(id);
7005
	if (memcg) {
7006
		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7007
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7008
				page_counter_uncharge(&memcg->swap, nr_pages);
7009
			else
7010
				page_counter_uncharge(&memcg->memsw, nr_pages);
7011
		}
7012
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7013
		mem_cgroup_id_put_many(memcg, nr_pages);
7014 7015 7016 7017
	}
	rcu_read_unlock();
}

7018 7019 7020 7021
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

7022
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7023 7024 7025
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
7026
				      READ_ONCE(memcg->swap.max) -
7027 7028 7029 7030
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

7031 7032 7033 7034 7035 7036 7037 7038
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
7039
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7040 7041 7042 7043 7044 7045
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

7046 7047 7048 7049 7050
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		unsigned long usage = page_counter_read(&memcg->swap);

		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
		    usage * 2 >= READ_ONCE(memcg->swap.max))
7051
			return true;
7052
	}
7053 7054 7055 7056

	return false;
}

7057
static int __init setup_swap_account(char *s)
7058 7059
{
	if (!strcmp(s, "1"))
7060
		cgroup_memory_noswap = 0;
7061
	else if (!strcmp(s, "0"))
7062
		cgroup_memory_noswap = 1;
7063 7064
	return 1;
}
7065
__setup("swapaccount=", setup_swap_account);
7066

7067 7068 7069 7070 7071 7072 7073 7074
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097
static int swap_high_show(struct seq_file *m, void *v)
{
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
}

static ssize_t swap_high_write(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &high);
	if (err)
		return err;

	page_counter_set_high(&memcg->swap, high);

	return nbytes;
}

7098 7099
static int swap_max_show(struct seq_file *m, void *v)
{
7100 7101
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

7116
	xchg(&memcg->swap.max, max);
7117 7118 7119 7120

	return nbytes;
}

7121 7122
static int swap_events_show(struct seq_file *m, void *v)
{
7123
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7124

7125 7126
	seq_printf(m, "high %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7127 7128 7129 7130 7131 7132 7133 7134
	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

7135 7136 7137 7138 7139 7140
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
7141 7142 7143 7144 7145 7146
	{
		.name = "swap.high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_high_show,
		.write = swap_high_write,
	},
7147 7148 7149 7150 7151 7152
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
7153 7154 7155 7156 7157 7158
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
7159 7160 7161
	{ }	/* terminate */
};

7162
static struct cftype memsw_files[] = {
7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
7191 7192 7193 7194 7195
	/* No memory control -> no swap control */
	if (mem_cgroup_disabled())
		cgroup_memory_noswap = true;

	if (cgroup_memory_noswap)
7196 7197 7198 7199 7200
		return 0;

	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));

7201 7202 7203 7204 7205
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */