memcontrol.c 160.0 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/sched/mm.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
41
#include <linux/pagemap.h>
42
#include <linux/smp.h>
43
#include <linux/page-flags.h>
44
#include <linux/backing-dev.h>
45 46
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
47
#include <linux/limits.h>
48
#include <linux/export.h>
49
#include <linux/mutex.h>
50
#include <linux/rbtree.h>
51
#include <linux/slab.h>
52
#include <linux/swap.h>
53
#include <linux/swapops.h>
54
#include <linux/spinlock.h>
55
#include <linux/eventfd.h>
56
#include <linux/poll.h>
57
#include <linux/sort.h>
58
#include <linux/fs.h>
59
#include <linux/seq_file.h>
60
#include <linux/vmpressure.h>
61
#include <linux/mm_inline.h>
62
#include <linux/swap_cgroup.h>
63
#include <linux/cpu.h>
64
#include <linux/oom.h>
65
#include <linux/lockdep.h>
66
#include <linux/file.h>
67
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
68
#include "internal.h"
G
Glauber Costa 已提交
69
#include <net/sock.h>
M
Michal Hocko 已提交
70
#include <net/ip.h>
71
#include "slab.h"
B
Balbir Singh 已提交
72

73
#include <linux/uaccess.h>
74

75 76
#include <trace/events/vmscan.h>

77 78
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
79

80 81
struct mem_cgroup *root_mem_cgroup __read_mostly;

82
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
83

84 85 86
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

87 88 89
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

90
/* Whether the swap controller is active */
A
Andrew Morton 已提交
91
#ifdef CONFIG_MEMCG_SWAP
92 93
int do_swap_account __read_mostly;
#else
94
#define do_swap_account		0
95 96
#endif

97 98 99 100 101 102
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

103
static const char *const mem_cgroup_lru_names[] = {
104 105 106 107 108 109 110
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

111 112 113
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
114

115 116 117 118 119
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

120
struct mem_cgroup_tree_per_node {
121
	struct rb_root rb_root;
122
	struct rb_node *rb_rightmost;
123 124 125 126 127 128 129 130 131
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
132 133 134 135 136
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
137

138 139 140
/*
 * cgroup_event represents events which userspace want to receive.
 */
141
struct mem_cgroup_event {
142
	/*
143
	 * memcg which the event belongs to.
144
	 */
145
	struct mem_cgroup *memcg;
146 147 148 149 150 151 152 153
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
154 155 156 157 158
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
159
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
160
			      struct eventfd_ctx *eventfd, const char *args);
161 162 163 164 165
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
166
	void (*unregister_event)(struct mem_cgroup *memcg,
167
				 struct eventfd_ctx *eventfd);
168 169 170 171 172 173
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
174
	wait_queue_entry_t wait;
175 176 177
	struct work_struct remove;
};

178 179
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
180

181 182
/* Stuffs for move charges at task migration. */
/*
183
 * Types of charges to be moved.
184
 */
185 186 187
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
188

189 190
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
191
	spinlock_t	  lock; /* for from, to */
192
	struct mm_struct  *mm;
193 194
	struct mem_cgroup *from;
	struct mem_cgroup *to;
195
	unsigned long flags;
196
	unsigned long precharge;
197
	unsigned long moved_charge;
198
	unsigned long moved_swap;
199 200 201
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
202
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
203 204
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
205

206 207 208 209
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
210
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
211
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
212

213 214
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
215
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
216
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
217
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
218 219 220
	NR_CHARGE_TYPE,
};

221
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
222 223 224 225
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
226
	_KMEM,
V
Vladimir Davydov 已提交
227
	_TCP,
G
Glauber Costa 已提交
228 229
};

230 231
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
232
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
233 234
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
235

236 237 238 239 240 241 242 243 244 245 246 247 248
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

249 250 251 252 253
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

254
#ifndef CONFIG_SLOB
255
/*
256
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
257 258 259 260 261
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
262
 *
263 264
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
265
 */
266 267
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
268

269 270 271 272 273 274 275 276 277 278 279 280 281
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

282 283 284 285 286 287
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
288
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
289 290
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
291
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
292 293 294
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
295
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
296

297 298 299 300 301 302
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
303
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
304
EXPORT_SYMBOL(memcg_kmem_enabled_key);
305

306 307
struct workqueue_struct *memcg_kmem_cache_wq;

308
#endif /* !CONFIG_SLOB */
309

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

327
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
328 329 330 331 332
		memcg = root_mem_cgroup;

	return &memcg->css;
}

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

361 362
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
363
{
364
	int nid = page_to_nid(page);
365

366
	return memcg->nodeinfo[nid];
367 368
}

369 370
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
371
{
372
	return soft_limit_tree.rb_tree_per_node[nid];
373 374
}

375
static struct mem_cgroup_tree_per_node *
376 377 378 379
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

380
	return soft_limit_tree.rb_tree_per_node[nid];
381 382
}

383 384
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
385
					 unsigned long new_usage_in_excess)
386 387 388
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
389
	struct mem_cgroup_per_node *mz_node;
390
	bool rightmost = true;
391 392 393 394 395 396 397 398 399

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
400
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
401
					tree_node);
402
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
403
			p = &(*p)->rb_left;
404 405 406
			rightmost = false;
		}

407 408 409 410 411 412 413
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
414 415 416 417

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

418 419 420 421 422
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

423 424
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
425 426 427
{
	if (!mz->on_tree)
		return;
428 429 430 431

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

432 433 434 435
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

436 437
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
438
{
439 440 441
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
442
	__mem_cgroup_remove_exceeded(mz, mctz);
443
	spin_unlock_irqrestore(&mctz->lock, flags);
444 445
}

446 447 448
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
449
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
450 451 452 453 454 455 456
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
457 458 459

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
460
	unsigned long excess;
461 462
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
463

464
	mctz = soft_limit_tree_from_page(page);
465 466
	if (!mctz)
		return;
467 468 469 470 471
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
472
		mz = mem_cgroup_page_nodeinfo(memcg, page);
473
		excess = soft_limit_excess(memcg);
474 475 476 477 478
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
479 480 481
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
482 483
			/* if on-tree, remove it */
			if (mz->on_tree)
484
				__mem_cgroup_remove_exceeded(mz, mctz);
485 486 487 488
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
489
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
490
			spin_unlock_irqrestore(&mctz->lock, flags);
491 492 493 494 495 496
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
497 498 499
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
500

501
	for_each_node(nid) {
502 503
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
504 505
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
506 507 508
	}
}

509 510
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
511
{
512
	struct mem_cgroup_per_node *mz;
513 514 515

retry:
	mz = NULL;
516
	if (!mctz->rb_rightmost)
517 518
		goto done;		/* Nothing to reclaim from */

519 520
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
521 522 523 524 525
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
526
	__mem_cgroup_remove_exceeded(mz, mctz);
527
	if (!soft_limit_excess(mz->memcg) ||
528
	    !css_tryget_online(&mz->memcg->css))
529 530 531 532 533
		goto retry;
done:
	return mz;
}

534 535
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
536
{
537
	struct mem_cgroup_per_node *mz;
538

539
	spin_lock_irq(&mctz->lock);
540
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
541
	spin_unlock_irq(&mctz->lock);
542 543 544
	return mz;
}

545
static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
546
				      int event)
547
{
548
	return atomic_long_read(&memcg->events[event]);
549 550
}

551
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
552
					 struct page *page,
553
					 bool compound, int nr_pages)
554
{
555 556 557 558
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
559
	if (PageAnon(page))
560
		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
561
	else {
562
		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
563
		if (PageSwapBacked(page))
564
			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
565
	}
566

567 568
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
569
		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
570
	}
571

572 573
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
574
		__count_memcg_events(memcg, PGPGIN, 1);
575
	else {
576
		__count_memcg_events(memcg, PGPGOUT, 1);
577 578
		nr_pages = -nr_pages; /* for event */
	}
579

580
	__this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
581 582
}

583 584
unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
					   int nid, unsigned int lru_mask)
585
{
586
	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
587
	unsigned long nr = 0;
588
	enum lru_list lru;
589

590
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
591

592 593 594
	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
595
		nr += mem_cgroup_get_lru_size(lruvec, lru);
596 597
	}
	return nr;
598
}
599

600
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
601
			unsigned int lru_mask)
602
{
603
	unsigned long nr = 0;
604
	int nid;
605

606
	for_each_node_state(nid, N_MEMORY)
607 608
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
609 610
}

611 612
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
613 614 615
{
	unsigned long val, next;

616 617
	val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
	next = __this_cpu_read(memcg->stat_cpu->targets[target]);
618
	/* from time_after() in jiffies.h */
619
	if ((long)(next - val) < 0) {
620 621 622 623
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
624 625 626
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
627 628 629 630 631 632
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
633
		__this_cpu_write(memcg->stat_cpu->targets[target], next);
634
		return true;
635
	}
636
	return false;
637 638 639 640 641 642
}

/*
 * Check events in order.
 *
 */
643
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
644 645
{
	/* threshold event is triggered in finer grain than soft limit */
646 647
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
648
		bool do_softlimit;
649
		bool do_numainfo __maybe_unused;
650

651 652
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
653 654 655 656
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
657
		mem_cgroup_threshold(memcg);
658 659
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
660
#if MAX_NUMNODES > 1
661
		if (unlikely(do_numainfo))
662
			atomic_inc(&memcg->numainfo_events);
663
#endif
664
	}
665 666
}

667
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
668
{
669 670 671 672 673 674 675 676
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

677
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
678
}
M
Michal Hocko 已提交
679
EXPORT_SYMBOL(mem_cgroup_from_task);
680

681
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
682
{
683
	struct mem_cgroup *memcg = NULL;
684

685 686
	rcu_read_lock();
	do {
687 688 689 690 691 692
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
693
			memcg = root_mem_cgroup;
694 695 696 697 698
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
699
	} while (!css_tryget_online(&memcg->css));
700
	rcu_read_unlock();
701
	return memcg;
702 703
}

704 705 706 707 708 709 710 711 712 713 714 715 716
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
717
 * Reclaimers can specify a node and a priority level in @reclaim to
718
 * divide up the memcgs in the hierarchy among all concurrent
719
 * reclaimers operating on the same node and priority.
720
 */
721
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
722
				   struct mem_cgroup *prev,
723
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
724
{
M
Michal Hocko 已提交
725
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
726
	struct cgroup_subsys_state *css = NULL;
727
	struct mem_cgroup *memcg = NULL;
728
	struct mem_cgroup *pos = NULL;
729

730 731
	if (mem_cgroup_disabled())
		return NULL;
732

733 734
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
735

736
	if (prev && !reclaim)
737
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
738

739 740
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
741
			goto out;
742
		return root;
743
	}
K
KAMEZAWA Hiroyuki 已提交
744

745
	rcu_read_lock();
M
Michal Hocko 已提交
746

747
	if (reclaim) {
748
		struct mem_cgroup_per_node *mz;
749

750
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
751 752 753 754 755
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

756
		while (1) {
757
			pos = READ_ONCE(iter->position);
758 759
			if (!pos || css_tryget(&pos->css))
				break;
760
			/*
761 762 763 764 765 766
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
767
			 */
768 769
			(void)cmpxchg(&iter->position, pos, NULL);
		}
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
787
		}
K
KAMEZAWA Hiroyuki 已提交
788

789 790 791 792 793 794
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
795

796 797
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
798

799 800
		if (css_tryget(css))
			break;
801

802
		memcg = NULL;
803
	}
804 805 806

	if (reclaim) {
		/*
807 808 809
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
810
		 */
811 812
		(void)cmpxchg(&iter->position, pos, memcg);

813 814 815 816 817 818 819
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
820
	}
821

822 823
out_unlock:
	rcu_read_unlock();
824
out:
825 826 827
	if (prev && prev != root)
		css_put(&prev->css);

828
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
829
}
K
KAMEZAWA Hiroyuki 已提交
830

831 832 833 834 835 836 837
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
838 839 840 841 842 843
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
844

845 846 847 848
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
849 850
	struct mem_cgroup_per_node *mz;
	int nid;
851 852 853 854
	int i;

	while ((memcg = parent_mem_cgroup(memcg))) {
		for_each_node(nid) {
855 856 857 858 859
			mz = mem_cgroup_nodeinfo(memcg, nid);
			for (i = 0; i <= DEF_PRIORITY; i++) {
				iter = &mz->iter[i];
				cmpxchg(&iter->position,
					dead_memcg, NULL);
860 861 862 863 864
			}
		}
	}
}

865 866 867 868 869 870
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
871
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
872
	     iter != NULL;				\
873
	     iter = mem_cgroup_iter(root, iter, NULL))
874

875
#define for_each_mem_cgroup(iter)			\
876
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
877
	     iter != NULL;				\
878
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
879

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

905
		css_task_iter_start(&iter->css, 0, &it);
906 907 908 909 910 911 912 913 914 915 916
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

917
/**
918
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
919
 * @page: the page
920
 * @pgdat: pgdat of the page
921 922 923 924
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
925
 */
M
Mel Gorman 已提交
926
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
927
{
928
	struct mem_cgroup_per_node *mz;
929
	struct mem_cgroup *memcg;
930
	struct lruvec *lruvec;
931

932
	if (mem_cgroup_disabled()) {
M
Mel Gorman 已提交
933
		lruvec = &pgdat->lruvec;
934 935
		goto out;
	}
936

937
	memcg = page->mem_cgroup;
938
	/*
939
	 * Swapcache readahead pages are added to the LRU - and
940
	 * possibly migrated - before they are charged.
941
	 */
942 943
	if (!memcg)
		memcg = root_mem_cgroup;
944

945
	mz = mem_cgroup_page_nodeinfo(memcg, page);
946 947 948 949 950 951 952
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
953 954
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
955
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
956
}
957

958
/**
959 960 961
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
962
 * @zid: zone id of the accounted pages
963
 * @nr_pages: positive when adding or negative when removing
964
 *
965 966 967
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
968
 */
969
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
970
				int zid, int nr_pages)
971
{
972
	struct mem_cgroup_per_node *mz;
973
	unsigned long *lru_size;
974
	long size;
975 976 977 978

	if (mem_cgroup_disabled())
		return;

979
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
980
	lru_size = &mz->lru_zone_size[zid][lru];
981 982 983 984 985

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
986 987 988
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
989 990 991 992 993 994
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
995
}
996

997
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
998
{
999
	struct mem_cgroup *task_memcg;
1000
	struct task_struct *p;
1001
	bool ret;
1002

1003
	p = find_lock_task_mm(task);
1004
	if (p) {
1005
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1006 1007 1008 1009 1010 1011 1012
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1013
		rcu_read_lock();
1014 1015
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1016
		rcu_read_unlock();
1017
	}
1018 1019
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1020 1021 1022
	return ret;
}

1023
/**
1024
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1025
 * @memcg: the memory cgroup
1026
 *
1027
 * Returns the maximum amount of memory @mem can be charged with, in
1028
 * pages.
1029
 */
1030
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1031
{
1032 1033 1034
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1035

1036
	count = page_counter_read(&memcg->memory);
1037
	limit = READ_ONCE(memcg->memory.max);
1038 1039 1040
	if (count < limit)
		margin = limit - count;

1041
	if (do_memsw_account()) {
1042
		count = page_counter_read(&memcg->memsw);
1043
		limit = READ_ONCE(memcg->memsw.max);
1044 1045
		if (count <= limit)
			margin = min(margin, limit - count);
1046 1047
		else
			margin = 0;
1048 1049 1050
	}

	return margin;
1051 1052
}

1053
/*
Q
Qiang Huang 已提交
1054
 * A routine for checking "mem" is under move_account() or not.
1055
 *
Q
Qiang Huang 已提交
1056 1057 1058
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1059
 */
1060
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1061
{
1062 1063
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1064
	bool ret = false;
1065 1066 1067 1068 1069 1070 1071 1072 1073
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1074

1075 1076
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1077 1078
unlock:
	spin_unlock(&mc.lock);
1079 1080 1081
	return ret;
}

1082
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1083 1084
{
	if (mc.moving_task && current != mc.moving_task) {
1085
		if (mem_cgroup_under_move(memcg)) {
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1098
static const unsigned int memcg1_stats[] = {
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
	MEMCG_CACHE,
	MEMCG_RSS,
	MEMCG_RSS_HUGE,
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
	"rss_huge",
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

1120
#define K(x) ((x) << (PAGE_SHIFT-10))
1121
/**
1122
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1123 1124 1125 1126 1127 1128 1129 1130
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
1131 1132
	struct mem_cgroup *iter;
	unsigned int i;
1133 1134 1135

	rcu_read_lock();

1136 1137 1138 1139 1140 1141 1142 1143
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1144
	pr_cont_cgroup_path(memcg->css.cgroup);
1145
	pr_cont("\n");
1146 1147 1148

	rcu_read_unlock();

1149 1150
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1151
		K((u64)memcg->memory.max), memcg->memory.failcnt);
1152 1153
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
1154
		K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1155 1156
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
1157
		K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1158 1159

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1160 1161
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1162 1163
		pr_cont(":");

1164 1165
		for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
			if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1166
				continue;
1167
			pr_cont(" %s:%luKB", memcg1_stat_names[i],
1168
				K(memcg_page_state(iter, memcg1_stats[i])));
1169 1170 1171 1172 1173 1174 1175 1176
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1177 1178
}

D
David Rientjes 已提交
1179 1180 1181
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1182
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1183
{
1184
	unsigned long max;
1185

1186
	max = memcg->memory.max;
1187
	if (mem_cgroup_swappiness(memcg)) {
1188 1189
		unsigned long memsw_max;
		unsigned long swap_max;
1190

1191 1192 1193 1194
		memsw_max = memcg->memsw.max;
		swap_max = memcg->swap.max;
		swap_max = min(swap_max, (unsigned long)total_swap_pages);
		max = min(max + swap_max, memsw_max);
1195
	}
1196
	return max;
D
David Rientjes 已提交
1197 1198
}

1199
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1200
				     int order)
1201
{
1202 1203 1204
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1205
		.memcg = memcg,
1206 1207 1208
		.gfp_mask = gfp_mask,
		.order = order,
	};
1209
	bool ret;
1210

1211
	mutex_lock(&oom_lock);
1212
	ret = out_of_memory(&oc);
1213
	mutex_unlock(&oom_lock);
1214
	return ret;
1215 1216
}

1217 1218
#if MAX_NUMNODES > 1

1219 1220
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1221
 * @memcg: the target memcg
1222 1223 1224 1225 1226 1227 1228
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1229
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1230 1231
		int nid, bool noswap)
{
1232
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1233 1234 1235
		return true;
	if (noswap || !total_swap_pages)
		return false;
1236
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1237 1238 1239 1240
		return true;
	return false;

}
1241 1242 1243 1244 1245 1246 1247

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1248
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1249 1250
{
	int nid;
1251 1252 1253 1254
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1255
	if (!atomic_read(&memcg->numainfo_events))
1256
		return;
1257
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1258 1259 1260
		return;

	/* make a nodemask where this memcg uses memory from */
1261
	memcg->scan_nodes = node_states[N_MEMORY];
1262

1263
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1264

1265 1266
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1267
	}
1268

1269 1270
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1285
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1286 1287 1288
{
	int node;

1289 1290
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1291

1292
	node = next_node_in(node, memcg->scan_nodes);
1293
	/*
1294 1295 1296
	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
	 * last time it really checked all the LRUs due to rate limiting.
	 * Fallback to the current node in that case for simplicity.
1297 1298 1299 1300
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1301
	memcg->last_scanned_node = node;
1302 1303 1304
	return node;
}
#else
1305
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1306 1307 1308 1309 1310
{
	return 0;
}
#endif

1311
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1312
				   pg_data_t *pgdat,
1313 1314 1315 1316 1317 1318 1319 1320 1321
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1322
		.pgdat = pgdat,
1323 1324 1325
		.priority = 0,
	};

1326
	excess = soft_limit_excess(root_memcg);
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1352
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1353
					pgdat, &nr_scanned);
1354
		*total_scanned += nr_scanned;
1355
		if (!soft_limit_excess(root_memcg))
1356
			break;
1357
	}
1358 1359
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1360 1361
}

1362 1363 1364 1365 1366 1367
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1368 1369
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1370 1371 1372 1373
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1374
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1375
{
1376
	struct mem_cgroup *iter, *failed = NULL;
1377

1378 1379
	spin_lock(&memcg_oom_lock);

1380
	for_each_mem_cgroup_tree(iter, memcg) {
1381
		if (iter->oom_lock) {
1382 1383 1384 1385 1386
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1387 1388
			mem_cgroup_iter_break(memcg, iter);
			break;
1389 1390
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1391
	}
K
KAMEZAWA Hiroyuki 已提交
1392

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1404
		}
1405 1406
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1407 1408 1409 1410

	spin_unlock(&memcg_oom_lock);

	return !failed;
1411
}
1412

1413
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1414
{
K
KAMEZAWA Hiroyuki 已提交
1415 1416
	struct mem_cgroup *iter;

1417
	spin_lock(&memcg_oom_lock);
1418
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1419
	for_each_mem_cgroup_tree(iter, memcg)
1420
		iter->oom_lock = false;
1421
	spin_unlock(&memcg_oom_lock);
1422 1423
}

1424
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1425 1426 1427
{
	struct mem_cgroup *iter;

1428
	spin_lock(&memcg_oom_lock);
1429
	for_each_mem_cgroup_tree(iter, memcg)
1430 1431
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1432 1433
}

1434
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1435 1436 1437
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1438 1439
	/*
	 * When a new child is created while the hierarchy is under oom,
1440
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1441
	 */
1442
	spin_lock(&memcg_oom_lock);
1443
	for_each_mem_cgroup_tree(iter, memcg)
1444 1445 1446
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1447 1448
}

K
KAMEZAWA Hiroyuki 已提交
1449 1450
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1451
struct oom_wait_info {
1452
	struct mem_cgroup *memcg;
1453
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1454 1455
};

1456
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1457 1458
	unsigned mode, int sync, void *arg)
{
1459 1460
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1461 1462 1463
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1464
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1465

1466 1467
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1468 1469 1470 1471
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1472
static void memcg_oom_recover(struct mem_cgroup *memcg)
1473
{
1474 1475 1476 1477 1478 1479 1480 1481 1482
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1483
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1484 1485
}

1486
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1487
{
1488
	if (!current->memcg_may_oom || order > PAGE_ALLOC_COSTLY_ORDER)
1489
		return;
K
KAMEZAWA Hiroyuki 已提交
1490
	/*
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1503
	 */
1504
	css_get(&memcg->css);
T
Tejun Heo 已提交
1505 1506 1507
	current->memcg_in_oom = memcg;
	current->memcg_oom_gfp_mask = mask;
	current->memcg_oom_order = order;
1508 1509 1510 1511
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1512
 * @handle: actually kill/wait or just clean up the OOM state
1513
 *
1514 1515
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1516
 *
1517
 * Memcg supports userspace OOM handling where failed allocations must
1518 1519 1520 1521
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1522
 * the end of the page fault to complete the OOM handling.
1523 1524
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1525
 * completed, %false otherwise.
1526
 */
1527
bool mem_cgroup_oom_synchronize(bool handle)
1528
{
T
Tejun Heo 已提交
1529
	struct mem_cgroup *memcg = current->memcg_in_oom;
1530
	struct oom_wait_info owait;
1531
	bool locked;
1532 1533 1534

	/* OOM is global, do not handle */
	if (!memcg)
1535
		return false;
1536

1537
	if (!handle)
1538
		goto cleanup;
1539 1540 1541 1542 1543

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
1544
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
1545

1546
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1557 1558
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1559
	} else {
1560
		schedule();
1561 1562 1563 1564 1565
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1566 1567 1568 1569 1570 1571 1572 1573
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1574
cleanup:
T
Tejun Heo 已提交
1575
	current->memcg_in_oom = NULL;
1576
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1577
	return true;
1578 1579
}

1580
/**
1581 1582
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1583
 *
1584
 * This function protects unlocked LRU pages from being moved to
1585 1586 1587 1588 1589
 * another cgroup.
 *
 * It ensures lifetime of the returned memcg. Caller is responsible
 * for the lifetime of the page; __unlock_page_memcg() is available
 * when @page might get freed inside the locked section.
1590
 */
1591
struct mem_cgroup *lock_page_memcg(struct page *page)
1592 1593
{
	struct mem_cgroup *memcg;
1594
	unsigned long flags;
1595

1596 1597 1598 1599
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
1600 1601 1602 1603 1604 1605 1606
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page itself from being freed. E.g. writeback
	 * doesn't hold a page reference and relies on PG_writeback to
	 * keep off truncation, migration and so forth.
         */
1607 1608 1609
	rcu_read_lock();

	if (mem_cgroup_disabled())
1610
		return NULL;
1611
again:
1612
	memcg = page->mem_cgroup;
1613
	if (unlikely(!memcg))
1614
		return NULL;
1615

Q
Qiang Huang 已提交
1616
	if (atomic_read(&memcg->moving_account) <= 0)
1617
		return memcg;
1618

1619
	spin_lock_irqsave(&memcg->move_lock, flags);
1620
	if (memcg != page->mem_cgroup) {
1621
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1622 1623
		goto again;
	}
1624 1625 1626 1627

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
1628
	 * the task who has the lock for unlock_page_memcg().
1629 1630 1631
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1632

1633
	return memcg;
1634
}
1635
EXPORT_SYMBOL(lock_page_memcg);
1636

1637
/**
1638 1639 1640 1641
 * __unlock_page_memcg - unlock and unpin a memcg
 * @memcg: the memcg
 *
 * Unlock and unpin a memcg returned by lock_page_memcg().
1642
 */
1643
void __unlock_page_memcg(struct mem_cgroup *memcg)
1644
{
1645 1646 1647 1648 1649 1650 1651 1652
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1653

1654
	rcu_read_unlock();
1655
}
1656 1657 1658 1659 1660 1661 1662 1663 1664

/**
 * unlock_page_memcg - unlock a page->mem_cgroup binding
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
	__unlock_page_memcg(page->mem_cgroup);
}
1665
EXPORT_SYMBOL(unlock_page_memcg);
1666

1667 1668
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1669
	unsigned int nr_pages;
1670
	struct work_struct work;
1671
	unsigned long flags;
1672
#define FLUSHING_CACHED_CHARGE	0
1673 1674
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1675
static DEFINE_MUTEX(percpu_charge_mutex);
1676

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1687
 */
1688
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1689 1690
{
	struct memcg_stock_pcp *stock;
1691
	unsigned long flags;
1692
	bool ret = false;
1693

1694
	if (nr_pages > MEMCG_CHARGE_BATCH)
1695
		return ret;
1696

1697 1698 1699
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
1700
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1701
		stock->nr_pages -= nr_pages;
1702 1703
		ret = true;
	}
1704 1705 1706

	local_irq_restore(flags);

1707 1708 1709 1710
	return ret;
}

/*
1711
 * Returns stocks cached in percpu and reset cached information.
1712 1713 1714 1715 1716
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1717
	if (stock->nr_pages) {
1718
		page_counter_uncharge(&old->memory, stock->nr_pages);
1719
		if (do_memsw_account())
1720
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1721
		css_put_many(&old->css, stock->nr_pages);
1722
		stock->nr_pages = 0;
1723 1724 1725 1726 1727 1728
	}
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
1729 1730 1731
	struct memcg_stock_pcp *stock;
	unsigned long flags;

1732 1733 1734 1735
	/*
	 * The only protection from memory hotplug vs. drain_stock races is
	 * that we always operate on local CPU stock here with IRQ disabled
	 */
1736 1737 1738
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
1739
	drain_stock(stock);
1740
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1741 1742

	local_irq_restore(flags);
1743 1744 1745
}

/*
1746
 * Cache charges(val) to local per_cpu area.
1747
 * This will be consumed by consume_stock() function, later.
1748
 */
1749
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1750
{
1751 1752 1753 1754
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
1755

1756
	stock = this_cpu_ptr(&memcg_stock);
1757
	if (stock->cached != memcg) { /* reset if necessary */
1758
		drain_stock(stock);
1759
		stock->cached = memcg;
1760
	}
1761
	stock->nr_pages += nr_pages;
1762

1763
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
1764 1765
		drain_stock(stock);

1766
	local_irq_restore(flags);
1767 1768 1769
}

/*
1770
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1771
 * of the hierarchy under it.
1772
 */
1773
static void drain_all_stock(struct mem_cgroup *root_memcg)
1774
{
1775
	int cpu, curcpu;
1776

1777 1778 1779
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1780 1781 1782 1783 1784 1785
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
1786
	curcpu = get_cpu();
1787 1788
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1789
		struct mem_cgroup *memcg;
1790

1791
		memcg = stock->cached;
1792
		if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
1793
			continue;
1794 1795
		if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
			css_put(&memcg->css);
1796
			continue;
1797
		}
1798 1799 1800 1801 1802 1803
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1804
		css_put(&memcg->css);
1805
	}
1806
	put_cpu();
1807
	mutex_unlock(&percpu_charge_mutex);
1808 1809
}

1810
static int memcg_hotplug_cpu_dead(unsigned int cpu)
1811 1812
{
	struct memcg_stock_pcp *stock;
1813
	struct mem_cgroup *memcg;
1814 1815 1816

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841

	for_each_mem_cgroup(memcg) {
		int i;

		for (i = 0; i < MEMCG_NR_STAT; i++) {
			int nid;
			long x;

			x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
			if (x)
				atomic_long_add(x, &memcg->stat[i]);

			if (i >= NR_VM_NODE_STAT_ITEMS)
				continue;

			for_each_node(nid) {
				struct mem_cgroup_per_node *pn;

				pn = mem_cgroup_nodeinfo(memcg, nid);
				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
				if (x)
					atomic_long_add(x, &pn->lruvec_stat[i]);
			}
		}

1842
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
1843 1844 1845 1846 1847 1848 1849 1850
			long x;

			x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
			if (x)
				atomic_long_add(x, &memcg->events[i]);
		}
	}

1851
	return 0;
1852 1853
}

1854 1855 1856 1857 1858 1859 1860
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
1861
		memcg_memory_event(memcg, MEMCG_HIGH);
1862 1863 1864 1865 1866 1867 1868 1869 1870
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
1871
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
1872 1873
}

1874 1875 1876 1877 1878 1879 1880
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1881
	struct mem_cgroup *memcg;
1882 1883 1884 1885

	if (likely(!nr_pages))
		return;

1886 1887
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1888 1889 1890 1891
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

1892 1893
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
1894
{
1895
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
1896
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1897
	struct mem_cgroup *mem_over_limit;
1898
	struct page_counter *counter;
1899
	unsigned long nr_reclaimed;
1900 1901
	bool may_swap = true;
	bool drained = false;
1902

1903
	if (mem_cgroup_is_root(memcg))
1904
		return 0;
1905
retry:
1906
	if (consume_stock(memcg, nr_pages))
1907
		return 0;
1908

1909
	if (!do_memsw_account() ||
1910 1911
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1912
			goto done_restock;
1913
		if (do_memsw_account())
1914 1915
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1916
	} else {
1917
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1918
		may_swap = false;
1919
	}
1920

1921 1922 1923 1924
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
1925

1926 1927 1928 1929 1930 1931
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
1932
	if (unlikely(tsk_is_oom_victim(current) ||
1933 1934
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
1935
		goto force;
1936

1937 1938 1939 1940 1941 1942 1943 1944 1945
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

1946 1947 1948
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

1949
	if (!gfpflags_allow_blocking(gfp_mask))
1950
		goto nomem;
1951

1952
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
1953

1954 1955
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
1956

1957
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1958
		goto retry;
1959

1960
	if (!drained) {
1961
		drain_all_stock(mem_over_limit);
1962 1963 1964 1965
		drained = true;
		goto retry;
	}

1966 1967
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
1968 1969 1970 1971 1972 1973 1974 1975 1976
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
1977
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1978 1979 1980 1981 1982 1983 1984 1985
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

1986 1987 1988
	if (nr_retries--)
		goto retry;

1989
	if (gfp_mask & __GFP_NOFAIL)
1990
		goto force;
1991

1992
	if (fatal_signal_pending(current))
1993
		goto force;
1994

1995
	memcg_memory_event(mem_over_limit, MEMCG_OOM);
1996

1997 1998
	mem_cgroup_oom(mem_over_limit, gfp_mask,
		       get_order(nr_pages * PAGE_SIZE));
1999
nomem:
2000
	if (!(gfp_mask & __GFP_NOFAIL))
2001
		return -ENOMEM;
2002 2003 2004 2005 2006 2007 2008
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2009
	if (do_memsw_account())
2010 2011 2012 2013
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2014 2015

done_restock:
2016
	css_get_many(&memcg->css, batch);
2017 2018
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2019

2020
	/*
2021 2022
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2023
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2024 2025 2026 2027
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2028 2029
	 */
	do {
2030
		if (page_counter_read(&memcg->memory) > memcg->high) {
2031 2032 2033 2034 2035
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2036
			current->memcg_nr_pages_over_high += batch;
2037 2038 2039
			set_notify_resume(current);
			break;
		}
2040
	} while ((memcg = parent_mem_cgroup(memcg)));
2041 2042

	return 0;
2043
}
2044

2045
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2046
{
2047 2048 2049
	if (mem_cgroup_is_root(memcg))
		return;

2050
	page_counter_uncharge(&memcg->memory, nr_pages);
2051
	if (do_memsw_account())
2052
		page_counter_uncharge(&memcg->memsw, nr_pages);
2053

2054
	css_put_many(&memcg->css, nr_pages);
2055 2056
}

2057 2058 2059 2060
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

2061
	spin_lock_irq(zone_lru_lock(zone));
2062 2063 2064
	if (PageLRU(page)) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2065
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2080
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2081 2082 2083 2084
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
2085
	spin_unlock_irq(zone_lru_lock(zone));
2086 2087
}

2088
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2089
			  bool lrucare)
2090
{
2091
	int isolated;
2092

2093
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2094 2095 2096 2097 2098

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2099 2100
	if (lrucare)
		lock_page_lru(page, &isolated);
2101

2102 2103
	/*
	 * Nobody should be changing or seriously looking at
2104
	 * page->mem_cgroup at this point:
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2116
	page->mem_cgroup = memcg;
2117

2118 2119
	if (lrucare)
		unlock_page_lru(page, isolated);
2120
}
2121

2122
#ifndef CONFIG_SLOB
2123
static int memcg_alloc_cache_id(void)
2124
{
2125 2126 2127
	int id, size;
	int err;

2128
	id = ida_simple_get(&memcg_cache_ida,
2129 2130 2131
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2132

2133
	if (id < memcg_nr_cache_ids)
2134 2135 2136 2137 2138 2139
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2140
	down_write(&memcg_cache_ids_sem);
2141 2142

	size = 2 * (id + 1);
2143 2144 2145 2146 2147
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2148
	err = memcg_update_all_caches(size);
2149 2150
	if (!err)
		err = memcg_update_all_list_lrus(size);
2151 2152 2153 2154 2155
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2156
	if (err) {
2157
		ida_simple_remove(&memcg_cache_ida, id);
2158 2159 2160 2161 2162 2163 2164
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2165
	ida_simple_remove(&memcg_cache_ida, id);
2166 2167
}

2168
struct memcg_kmem_cache_create_work {
2169 2170 2171 2172 2173
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2174
static void memcg_kmem_cache_create_func(struct work_struct *w)
2175
{
2176 2177
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2178 2179
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2180

2181
	memcg_create_kmem_cache(memcg, cachep);
2182

2183
	css_put(&memcg->css);
2184 2185 2186 2187 2188 2189
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2190 2191
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2192
{
2193
	struct memcg_kmem_cache_create_work *cw;
2194

2195
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2196
	if (!cw)
2197
		return;
2198 2199

	css_get(&memcg->css);
2200 2201 2202

	cw->memcg = memcg;
	cw->cachep = cachep;
2203
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2204

2205
	queue_work(memcg_kmem_cache_wq, &cw->work);
2206 2207
}

2208 2209
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2210 2211 2212 2213
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2214
	 * in __memcg_schedule_kmem_cache_create will recurse.
2215 2216 2217 2218 2219 2220 2221
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2222
	current->memcg_kmem_skip_account = 1;
2223
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2224
	current->memcg_kmem_skip_account = 0;
2225
}
2226

2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
static inline bool memcg_kmem_bypass(void)
{
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;
	return false;
}

/**
 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
 * @cachep: the original global kmem cache
 *
2238 2239 2240
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
2241 2242 2243
 * If the cache does not exist yet, if we are the first user of it, we
 * create it asynchronously in a workqueue and let the current allocation
 * go through with the original cache.
2244
 *
2245 2246 2247 2248
 * This function takes a reference to the cache it returns to assure it
 * won't get destroyed while we are working with it. Once the caller is
 * done with it, memcg_kmem_put_cache() must be called to release the
 * reference.
2249
 */
2250
struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2251 2252
{
	struct mem_cgroup *memcg;
2253
	struct kmem_cache *memcg_cachep;
2254
	int kmemcg_id;
2255

2256
	VM_BUG_ON(!is_root_cache(cachep));
2257

2258
	if (memcg_kmem_bypass())
V
Vladimir Davydov 已提交
2259 2260
		return cachep;

2261
	if (current->memcg_kmem_skip_account)
2262 2263
		return cachep;

2264
	memcg = get_mem_cgroup_from_mm(current->mm);
2265
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2266
	if (kmemcg_id < 0)
2267
		goto out;
2268

2269
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2270 2271
	if (likely(memcg_cachep))
		return memcg_cachep;
2272 2273 2274 2275 2276 2277 2278 2279 2280

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2281 2282 2283
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2284
	 */
2285
	memcg_schedule_kmem_cache_create(memcg, cachep);
2286
out:
2287
	css_put(&memcg->css);
2288
	return cachep;
2289 2290
}

2291 2292 2293 2294 2295
/**
 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
 * @cachep: the cache returned by memcg_kmem_get_cache
 */
void memcg_kmem_put_cache(struct kmem_cache *cachep)
2296 2297
{
	if (!is_root_cache(cachep))
2298
		css_put(&cachep->memcg_params.memcg->css);
2299 2300
}

2301
/**
2302
 * memcg_kmem_charge_memcg: charge a kmem page
2303 2304 2305 2306 2307 2308 2309 2310 2311
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 * @memcg: memory cgroup to charge
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			    struct mem_cgroup *memcg)
2312
{
2313 2314
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2315 2316
	int ret;

2317
	ret = try_charge(memcg, gfp, nr_pages);
2318
	if (ret)
2319
		return ret;
2320 2321 2322 2323 2324

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2325 2326
	}

2327
	page->mem_cgroup = memcg;
2328

2329
	return 0;
2330 2331
}

2332 2333 2334 2335 2336 2337 2338 2339 2340
/**
 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2341
{
2342
	struct mem_cgroup *memcg;
2343
	int ret = 0;
2344

2345 2346 2347
	if (memcg_kmem_bypass())
		return 0;

2348
	memcg = get_mem_cgroup_from_mm(current->mm);
2349
	if (!mem_cgroup_is_root(memcg)) {
2350
		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2351 2352 2353
		if (!ret)
			__SetPageKmemcg(page);
	}
2354
	css_put(&memcg->css);
2355
	return ret;
2356
}
2357 2358 2359 2360 2361 2362
/**
 * memcg_kmem_uncharge: uncharge a kmem page
 * @page: page to uncharge
 * @order: allocation order
 */
void memcg_kmem_uncharge(struct page *page, int order)
2363
{
2364
	struct mem_cgroup *memcg = page->mem_cgroup;
2365
	unsigned int nr_pages = 1 << order;
2366 2367 2368 2369

	if (!memcg)
		return;

2370
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2371

2372 2373 2374
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

2375
	page_counter_uncharge(&memcg->memory, nr_pages);
2376
	if (do_memsw_account())
2377
		page_counter_uncharge(&memcg->memsw, nr_pages);
2378

2379
	page->mem_cgroup = NULL;
2380 2381 2382 2383 2384

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);

2385
	css_put_many(&memcg->css, nr_pages);
2386
}
2387
#endif /* !CONFIG_SLOB */
2388

2389 2390 2391 2392
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2393
 * zone_lru_lock and migration entries setup in all page mappings.
2394
 */
2395
void mem_cgroup_split_huge_fixup(struct page *head)
2396
{
2397
	int i;
2398

2399 2400
	if (mem_cgroup_disabled())
		return;
2401

2402
	for (i = 1; i < HPAGE_PMD_NR; i++)
2403
		head[i].mem_cgroup = head->mem_cgroup;
2404

2405
	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2406
}
2407
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2408

A
Andrew Morton 已提交
2409
#ifdef CONFIG_MEMCG_SWAP
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2421
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2422 2423 2424
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2425
				struct mem_cgroup *from, struct mem_cgroup *to)
2426 2427 2428
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2429 2430
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2431 2432

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2433 2434
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
2435 2436 2437 2438 2439 2440
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2441
				struct mem_cgroup *from, struct mem_cgroup *to)
2442 2443 2444
{
	return -EINVAL;
}
2445
#endif
K
KAMEZAWA Hiroyuki 已提交
2446

2447
static DEFINE_MUTEX(memcg_max_mutex);
2448

2449 2450
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
2451
{
2452 2453
	bool enlarge = false;
	int ret;
2454 2455
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2456

2457
	do {
2458 2459 2460 2461
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2462

2463
		mutex_lock(&memcg_max_mutex);
2464 2465
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
2466
		 * break our basic invariant rule memory.max <= memsw.max.
2467
		 */
2468 2469
		limits_invariant = memsw ? max >= memcg->memory.max :
					   max <= memcg->memsw.max;
2470
		if (!limits_invariant) {
2471
			mutex_unlock(&memcg_max_mutex);
2472 2473 2474
			ret = -EINVAL;
			break;
		}
2475
		if (max > counter->max)
2476
			enlarge = true;
2477 2478
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
2479 2480 2481 2482

		if (!ret)
			break;

2483 2484 2485 2486 2487 2488
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
2489

2490 2491
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2492

2493 2494 2495
	return ret;
}

2496
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2497 2498 2499 2500
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
2501
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2502 2503
	unsigned long reclaimed;
	int loop = 0;
2504
	struct mem_cgroup_tree_per_node *mctz;
2505
	unsigned long excess;
2506 2507 2508 2509 2510
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

2511
	mctz = soft_limit_tree_node(pgdat->node_id);
2512 2513 2514 2515 2516 2517

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
2518
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2519 2520
		return 0;

2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
2535
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2536 2537 2538
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2539
		spin_lock_irq(&mctz->lock);
2540
		__mem_cgroup_remove_exceeded(mz, mctz);
2541 2542 2543 2544 2545 2546

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2547 2548 2549
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2550
		excess = soft_limit_excess(mz->memcg);
2551 2552 2553 2554 2555 2556 2557 2558 2559
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2560
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2561
		spin_unlock_irq(&mctz->lock);
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2579 2580 2581 2582 2583 2584
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2585 2586
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2587 2588 2589 2590 2591 2592
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2593 2594
}

2595
/*
2596
 * Reclaims as many pages from the given memcg as possible.
2597 2598 2599 2600 2601 2602 2603
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2604 2605
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2606
	/* try to free all pages in this cgroup */
2607
	while (nr_retries && page_counter_read(&memcg->memory)) {
2608
		int progress;
2609

2610 2611 2612
		if (signal_pending(current))
			return -EINTR;

2613 2614
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2615
		if (!progress) {
2616
			nr_retries--;
2617
			/* maybe some writeback is necessary */
2618
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2619
		}
2620 2621

	}
2622 2623

	return 0;
2624 2625
}

2626 2627 2628
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2629
{
2630
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2631

2632 2633
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2634
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2635 2636
}

2637 2638
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2639
{
2640
	return mem_cgroup_from_css(css)->use_hierarchy;
2641 2642
}

2643 2644
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2645 2646
{
	int retval = 0;
2647
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2648
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2649

2650
	if (memcg->use_hierarchy == val)
2651
		return 0;
2652

2653
	/*
2654
	 * If parent's use_hierarchy is set, we can't make any modifications
2655 2656 2657 2658 2659 2660
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2661
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2662
				(val == 1 || val == 0)) {
2663
		if (!memcg_has_children(memcg))
2664
			memcg->use_hierarchy = val;
2665 2666 2667 2668
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2669

2670 2671 2672
	return retval;
}

2673
static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2674 2675
{
	struct mem_cgroup *iter;
2676
	int i;
2677

2678
	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2679

2680 2681
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_STAT; i++)
2682
			stat[i] += memcg_page_state(iter, i);
2683
	}
2684 2685
}

2686
static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2687 2688
{
	struct mem_cgroup *iter;
2689
	int i;
2690

2691
	memset(events, 0, sizeof(*events) * NR_VM_EVENT_ITEMS);
2692

2693
	for_each_mem_cgroup_tree(iter, memcg) {
2694
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
2695
			events[i] += memcg_sum_events(iter, i);
2696
	}
2697 2698
}

2699
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2700
{
2701
	unsigned long val = 0;
2702

2703
	if (mem_cgroup_is_root(memcg)) {
2704 2705 2706
		struct mem_cgroup *iter;

		for_each_mem_cgroup_tree(iter, memcg) {
2707 2708
			val += memcg_page_state(iter, MEMCG_CACHE);
			val += memcg_page_state(iter, MEMCG_RSS);
2709
			if (swap)
2710
				val += memcg_page_state(iter, MEMCG_SWAP);
2711
		}
2712
	} else {
2713
		if (!swap)
2714
			val = page_counter_read(&memcg->memory);
2715
		else
2716
			val = page_counter_read(&memcg->memsw);
2717
	}
2718
	return val;
2719 2720
}

2721 2722 2723 2724 2725 2726 2727
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2728

2729
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2730
			       struct cftype *cft)
B
Balbir Singh 已提交
2731
{
2732
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2733
	struct page_counter *counter;
2734

2735
	switch (MEMFILE_TYPE(cft->private)) {
2736
	case _MEM:
2737 2738
		counter = &memcg->memory;
		break;
2739
	case _MEMSWAP:
2740 2741
		counter = &memcg->memsw;
		break;
2742
	case _KMEM:
2743
		counter = &memcg->kmem;
2744
		break;
V
Vladimir Davydov 已提交
2745
	case _TCP:
2746
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
2747
		break;
2748 2749 2750
	default:
		BUG();
	}
2751 2752 2753 2754

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
2755
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2756
		if (counter == &memcg->memsw)
2757
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2758 2759
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
2760
		return (u64)counter->max * PAGE_SIZE;
2761 2762 2763 2764 2765 2766 2767 2768 2769
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2770
}
2771

2772
#ifndef CONFIG_SLOB
2773
static int memcg_online_kmem(struct mem_cgroup *memcg)
2774 2775 2776
{
	int memcg_id;

2777 2778 2779
	if (cgroup_memory_nokmem)
		return 0;

2780
	BUG_ON(memcg->kmemcg_id >= 0);
2781
	BUG_ON(memcg->kmem_state);
2782

2783
	memcg_id = memcg_alloc_cache_id();
2784 2785
	if (memcg_id < 0)
		return memcg_id;
2786

2787
	static_branch_inc(&memcg_kmem_enabled_key);
2788
	/*
2789
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
2790
	 * kmemcg_id. Setting the id after enabling static branching will
2791 2792 2793
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2794
	memcg->kmemcg_id = memcg_id;
2795
	memcg->kmem_state = KMEM_ONLINE;
2796
	INIT_LIST_HEAD(&memcg->kmem_caches);
2797 2798

	return 0;
2799 2800
}

2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	memcg_deactivate_kmem_caches(memcg);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
2834
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2835 2836 2837 2838 2839 2840 2841
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
2842 2843
	rcu_read_unlock();

2844 2845 2846 2847 2848 2849 2850
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
2851 2852 2853 2854
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

2855 2856 2857 2858 2859 2860
	if (memcg->kmem_state == KMEM_ALLOCATED) {
		memcg_destroy_kmem_caches(memcg);
		static_branch_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
}
2861
#else
2862
static int memcg_online_kmem(struct mem_cgroup *memcg)
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
#endif /* !CONFIG_SLOB */

2874 2875
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
2876
{
2877
	int ret;
2878

2879 2880 2881
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
2882
	return ret;
2883
}
2884

2885
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
2886 2887 2888
{
	int ret;

2889
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
2890

2891
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
2892 2893 2894
	if (ret)
		goto out;

2895
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
2896 2897 2898
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
2899 2900 2901
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
2902 2903 2904 2905 2906 2907
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
2908
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
2909 2910 2911 2912
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
2913
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
2914 2915
	}
out:
2916
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
2917 2918 2919
	return ret;
}

2920 2921 2922 2923
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2924 2925
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
2926
{
2927
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2928
	unsigned long nr_pages;
2929 2930
	int ret;

2931
	buf = strstrip(buf);
2932
	ret = page_counter_memparse(buf, "-1", &nr_pages);
2933 2934
	if (ret)
		return ret;
2935

2936
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2937
	case RES_LIMIT:
2938 2939 2940 2941
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
2942 2943
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
2944
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
2945
			break;
2946
		case _MEMSWAP:
2947
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
2948
			break;
2949
		case _KMEM:
2950
			ret = memcg_update_kmem_max(memcg, nr_pages);
2951
			break;
V
Vladimir Davydov 已提交
2952
		case _TCP:
2953
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
2954
			break;
2955
		}
2956
		break;
2957 2958 2959
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
2960 2961
		break;
	}
2962
	return ret ?: nbytes;
B
Balbir Singh 已提交
2963 2964
}

2965 2966
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
2967
{
2968
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2969
	struct page_counter *counter;
2970

2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
2981
	case _TCP:
2982
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
2983
		break;
2984 2985 2986
	default:
		BUG();
	}
2987

2988
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2989
	case RES_MAX_USAGE:
2990
		page_counter_reset_watermark(counter);
2991 2992
		break;
	case RES_FAILCNT:
2993
		counter->failcnt = 0;
2994
		break;
2995 2996
	default:
		BUG();
2997
	}
2998

2999
	return nbytes;
3000 3001
}

3002
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3003 3004
					struct cftype *cft)
{
3005
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3006 3007
}

3008
#ifdef CONFIG_MMU
3009
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3010 3011
					struct cftype *cft, u64 val)
{
3012
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3013

3014
	if (val & ~MOVE_MASK)
3015
		return -EINVAL;
3016

3017
	/*
3018 3019 3020 3021
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3022
	 */
3023
	memcg->move_charge_at_immigrate = val;
3024 3025
	return 0;
}
3026
#else
3027
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3028 3029 3030 3031 3032
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3033

3034
#ifdef CONFIG_NUMA
3035
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3036
{
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3049
	int nid;
3050
	unsigned long nr;
3051
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3052

3053 3054 3055 3056 3057 3058 3059 3060 3061
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3062 3063
	}

3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3079 3080 3081 3082 3083 3084
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3085
/* Universal VM events cgroup1 shows, original sort order */
3086
static const unsigned int memcg1_events[] = {
3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

static const char *const memcg1_event_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

3100
static int memcg_stat_show(struct seq_file *m, void *v)
3101
{
3102
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3103
	unsigned long memory, memsw;
3104 3105
	struct mem_cgroup *mi;
	unsigned int i;
3106

3107
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3108 3109
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3110 3111
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3112
			continue;
3113
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3114
			   memcg_page_state(memcg, memcg1_stats[i]) *
3115
			   PAGE_SIZE);
3116
	}
L
Lee Schermerhorn 已提交
3117

3118 3119
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3120
			   memcg_sum_events(memcg, memcg1_events[i]));
3121 3122 3123 3124 3125

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3126
	/* Hierarchical information */
3127 3128
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3129 3130
		memory = min(memory, mi->memory.max);
		memsw = min(memsw, mi->memsw.max);
3131
	}
3132 3133
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3134
	if (do_memsw_account())
3135 3136
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3137

3138
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3139
		unsigned long long val = 0;
3140

3141
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3142
			continue;
3143
		for_each_mem_cgroup_tree(mi, memcg)
3144
			val += memcg_page_state(mi, memcg1_stats[i]) *
3145 3146
			PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
3147 3148
	}

3149
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
3150 3151 3152
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
3153
			val += memcg_sum_events(mi, memcg1_events[i]);
3154
		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
3155 3156 3157 3158 3159 3160 3161 3162
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3163
	}
K
KAMEZAWA Hiroyuki 已提交
3164

K
KOSAKI Motohiro 已提交
3165 3166
#ifdef CONFIG_DEBUG_VM
	{
3167 3168
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
3169
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3170 3171 3172
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

3173 3174 3175
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
			rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3176

3177 3178 3179 3180 3181
			recent_rotated[0] += rstat->recent_rotated[0];
			recent_rotated[1] += rstat->recent_rotated[1];
			recent_scanned[0] += rstat->recent_scanned[0];
			recent_scanned[1] += rstat->recent_scanned[1];
		}
3182 3183 3184 3185
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3186 3187 3188
	}
#endif

3189 3190 3191
	return 0;
}

3192 3193
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3194
{
3195
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3196

3197
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3198 3199
}

3200 3201
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3202
{
3203
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3204

3205
	if (val > 100)
K
KOSAKI Motohiro 已提交
3206 3207
		return -EINVAL;

3208
	if (css->parent)
3209 3210 3211
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3212

K
KOSAKI Motohiro 已提交
3213 3214 3215
	return 0;
}

3216 3217 3218
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3219
	unsigned long usage;
3220 3221 3222 3223
	int i;

	rcu_read_lock();
	if (!swap)
3224
		t = rcu_dereference(memcg->thresholds.primary);
3225
	else
3226
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3227 3228 3229 3230

	if (!t)
		goto unlock;

3231
	usage = mem_cgroup_usage(memcg, swap);
3232 3233

	/*
3234
	 * current_threshold points to threshold just below or equal to usage.
3235 3236 3237
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3238
	i = t->current_threshold;
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3262
	t->current_threshold = i - 1;
3263 3264 3265 3266 3267 3268
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3269 3270
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3271
		if (do_memsw_account())
3272 3273 3274 3275
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3276 3277 3278 3279 3280 3281 3282
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3283 3284 3285 3286 3287 3288 3289
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3290 3291
}

3292
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3293 3294 3295
{
	struct mem_cgroup_eventfd_list *ev;

3296 3297
	spin_lock(&memcg_oom_lock);

3298
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3299
		eventfd_signal(ev->eventfd, 1);
3300 3301

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3302 3303 3304
	return 0;
}

3305
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3306
{
K
KAMEZAWA Hiroyuki 已提交
3307 3308
	struct mem_cgroup *iter;

3309
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3310
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3311 3312
}

3313
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3314
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3315
{
3316 3317
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3318 3319
	unsigned long threshold;
	unsigned long usage;
3320
	int i, size, ret;
3321

3322
	ret = page_counter_memparse(args, "-1", &threshold);
3323 3324 3325 3326
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3327

3328
	if (type == _MEM) {
3329
		thresholds = &memcg->thresholds;
3330
		usage = mem_cgroup_usage(memcg, false);
3331
	} else if (type == _MEMSWAP) {
3332
		thresholds = &memcg->memsw_thresholds;
3333
		usage = mem_cgroup_usage(memcg, true);
3334
	} else
3335 3336 3337
		BUG();

	/* Check if a threshold crossed before adding a new one */
3338
	if (thresholds->primary)
3339 3340
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3341
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3342 3343

	/* Allocate memory for new array of thresholds */
3344
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3345
			GFP_KERNEL);
3346
	if (!new) {
3347 3348 3349
		ret = -ENOMEM;
		goto unlock;
	}
3350
	new->size = size;
3351 3352

	/* Copy thresholds (if any) to new array */
3353 3354
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3355
				sizeof(struct mem_cgroup_threshold));
3356 3357
	}

3358
	/* Add new threshold */
3359 3360
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3361 3362

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3363
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3364 3365 3366
			compare_thresholds, NULL);

	/* Find current threshold */
3367
	new->current_threshold = -1;
3368
	for (i = 0; i < size; i++) {
3369
		if (new->entries[i].threshold <= usage) {
3370
			/*
3371 3372
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3373 3374
			 * it here.
			 */
3375
			++new->current_threshold;
3376 3377
		} else
			break;
3378 3379
	}

3380 3381 3382 3383 3384
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3385

3386
	/* To be sure that nobody uses thresholds */
3387 3388 3389 3390 3391 3392 3393 3394
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3395
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3396 3397
	struct eventfd_ctx *eventfd, const char *args)
{
3398
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3399 3400
}

3401
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3402 3403
	struct eventfd_ctx *eventfd, const char *args)
{
3404
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3405 3406
}

3407
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3408
	struct eventfd_ctx *eventfd, enum res_type type)
3409
{
3410 3411
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3412
	unsigned long usage;
3413
	int i, j, size;
3414 3415

	mutex_lock(&memcg->thresholds_lock);
3416 3417

	if (type == _MEM) {
3418
		thresholds = &memcg->thresholds;
3419
		usage = mem_cgroup_usage(memcg, false);
3420
	} else if (type == _MEMSWAP) {
3421
		thresholds = &memcg->memsw_thresholds;
3422
		usage = mem_cgroup_usage(memcg, true);
3423
	} else
3424 3425
		BUG();

3426 3427 3428
	if (!thresholds->primary)
		goto unlock;

3429 3430 3431 3432
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3433 3434 3435
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3436 3437 3438
			size++;
	}

3439
	new = thresholds->spare;
3440

3441 3442
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3443 3444
		kfree(new);
		new = NULL;
3445
		goto swap_buffers;
3446 3447
	}

3448
	new->size = size;
3449 3450

	/* Copy thresholds and find current threshold */
3451 3452 3453
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3454 3455
			continue;

3456
		new->entries[j] = thresholds->primary->entries[i];
3457
		if (new->entries[j].threshold <= usage) {
3458
			/*
3459
			 * new->current_threshold will not be used
3460 3461 3462
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3463
			++new->current_threshold;
3464 3465 3466 3467
		}
		j++;
	}

3468
swap_buffers:
3469 3470
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3471

3472
	rcu_assign_pointer(thresholds->primary, new);
3473

3474
	/* To be sure that nobody uses thresholds */
3475
	synchronize_rcu();
3476 3477 3478 3479 3480 3481

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
3482
unlock:
3483 3484
	mutex_unlock(&memcg->thresholds_lock);
}
3485

3486
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3487 3488
	struct eventfd_ctx *eventfd)
{
3489
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3490 3491
}

3492
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3493 3494
	struct eventfd_ctx *eventfd)
{
3495
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3496 3497
}

3498
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3499
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3500 3501 3502 3503 3504 3505 3506
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3507
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3508 3509 3510 3511 3512

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3513
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3514
		eventfd_signal(eventfd, 1);
3515
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3516 3517 3518 3519

	return 0;
}

3520
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3521
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3522 3523 3524
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3525
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3526

3527
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3528 3529 3530 3531 3532 3533
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3534
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3535 3536
}

3537
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3538
{
3539
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3540

3541
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3542
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3543
	seq_printf(sf, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
3544 3545 3546
	return 0;
}

3547
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3548 3549
	struct cftype *cft, u64 val)
{
3550
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3551 3552

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3553
	if (!css->parent || !((val == 0) || (val == 1)))
3554 3555
		return -EINVAL;

3556
	memcg->oom_kill_disable = val;
3557
	if (!val)
3558
		memcg_oom_recover(memcg);
3559

3560 3561 3562
	return 0;
}

3563 3564
#ifdef CONFIG_CGROUP_WRITEBACK

T
Tejun Heo 已提交
3565 3566 3567 3568 3569 3570 3571 3572 3573 3574
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3575 3576 3577 3578 3579
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3590 3591 3592
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3593 3594
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3595 3596 3597
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3598 3599 3600
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3601
 *
3602 3603 3604 3605 3606
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3607
 */
3608 3609 3610
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3611 3612 3613 3614
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

3615
	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3616 3617

	/* this should eventually include NR_UNSTABLE_NFS */
3618
	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3619 3620 3621
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3622 3623

	while ((parent = parent_mem_cgroup(memcg))) {
3624
		unsigned long ceiling = min(memcg->memory.max, memcg->high);
3625 3626
		unsigned long used = page_counter_read(&memcg->memory);

3627
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3628 3629 3630 3631
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3643 3644 3645 3646
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3647 3648
#endif	/* CONFIG_CGROUP_WRITEBACK */

3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3662 3663 3664 3665 3666
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3667
static void memcg_event_remove(struct work_struct *work)
3668
{
3669 3670
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3671
	struct mem_cgroup *memcg = event->memcg;
3672 3673 3674

	remove_wait_queue(event->wqh, &event->wait);

3675
	event->unregister_event(memcg, event->eventfd);
3676 3677 3678 3679 3680 3681

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3682
	css_put(&memcg->css);
3683 3684 3685
}

/*
3686
 * Gets called on EPOLLHUP on eventfd when user closes it.
3687 3688 3689
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3690
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3691
			    int sync, void *key)
3692
{
3693 3694
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3695
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
3696
	__poll_t flags = key_to_poll(key);
3697

3698
	if (flags & EPOLLHUP) {
3699 3700 3701 3702 3703 3704 3705 3706 3707
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3708
		spin_lock(&memcg->event_list_lock);
3709 3710 3711 3712 3713 3714 3715 3716
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3717
		spin_unlock(&memcg->event_list_lock);
3718 3719 3720 3721 3722
	}

	return 0;
}

3723
static void memcg_event_ptable_queue_proc(struct file *file,
3724 3725
		wait_queue_head_t *wqh, poll_table *pt)
{
3726 3727
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3728 3729 3730 3731 3732 3733

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3734 3735
 * DO NOT USE IN NEW FILES.
 *
3736 3737 3738 3739 3740
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3741 3742
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3743
{
3744
	struct cgroup_subsys_state *css = of_css(of);
3745
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3746
	struct mem_cgroup_event *event;
3747 3748 3749 3750
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3751
	const char *name;
3752 3753 3754
	char *endp;
	int ret;

3755 3756 3757
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3758 3759
	if (*endp != ' ')
		return -EINVAL;
3760
	buf = endp + 1;
3761

3762
	cfd = simple_strtoul(buf, &endp, 10);
3763 3764
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3765
	buf = endp + 1;
3766 3767 3768 3769 3770

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3771
	event->memcg = memcg;
3772
	INIT_LIST_HEAD(&event->list);
3773 3774 3775
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3801 3802 3803 3804 3805
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3806 3807
	 *
	 * DO NOT ADD NEW FILES.
3808
	 */
A
Al Viro 已提交
3809
	name = cfile.file->f_path.dentry->d_name.name;
3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3821 3822
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3823 3824 3825 3826 3827
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3828
	/*
3829 3830 3831
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
3832
	 */
A
Al Viro 已提交
3833
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3834
					       &memory_cgrp_subsys);
3835
	ret = -EINVAL;
3836
	if (IS_ERR(cfile_css))
3837
		goto out_put_cfile;
3838 3839
	if (cfile_css != css) {
		css_put(cfile_css);
3840
		goto out_put_cfile;
3841
	}
3842

3843
	ret = event->register_event(memcg, event->eventfd, buf);
3844 3845 3846
	if (ret)
		goto out_put_css;

3847
	vfs_poll(efile.file, &event->pt);
3848

3849 3850 3851
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
3852 3853 3854 3855

	fdput(cfile);
	fdput(efile);

3856
	return nbytes;
3857 3858

out_put_css:
3859
	css_put(css);
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

3872
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
3873
	{
3874
		.name = "usage_in_bytes",
3875
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3876
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3877
	},
3878 3879
	{
		.name = "max_usage_in_bytes",
3880
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3881
		.write = mem_cgroup_reset,
3882
		.read_u64 = mem_cgroup_read_u64,
3883
	},
B
Balbir Singh 已提交
3884
	{
3885
		.name = "limit_in_bytes",
3886
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3887
		.write = mem_cgroup_write,
3888
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3889
	},
3890 3891 3892
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3893
		.write = mem_cgroup_write,
3894
		.read_u64 = mem_cgroup_read_u64,
3895
	},
B
Balbir Singh 已提交
3896 3897
	{
		.name = "failcnt",
3898
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3899
		.write = mem_cgroup_reset,
3900
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3901
	},
3902 3903
	{
		.name = "stat",
3904
		.seq_show = memcg_stat_show,
3905
	},
3906 3907
	{
		.name = "force_empty",
3908
		.write = mem_cgroup_force_empty_write,
3909
	},
3910 3911 3912 3913 3914
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
3915
	{
3916
		.name = "cgroup.event_control",		/* XXX: for compat */
3917
		.write = memcg_write_event_control,
3918
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3919
	},
K
KOSAKI Motohiro 已提交
3920 3921 3922 3923 3924
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3925 3926 3927 3928 3929
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
3930 3931
	{
		.name = "oom_control",
3932
		.seq_show = mem_cgroup_oom_control_read,
3933
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
3934 3935
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
3936 3937 3938
	{
		.name = "pressure_level",
	},
3939 3940 3941
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
3942
		.seq_show = memcg_numa_stat_show,
3943 3944
	},
#endif
3945 3946 3947
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3948
		.write = mem_cgroup_write,
3949
		.read_u64 = mem_cgroup_read_u64,
3950 3951 3952 3953
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3954
		.read_u64 = mem_cgroup_read_u64,
3955 3956 3957 3958
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3959
		.write = mem_cgroup_reset,
3960
		.read_u64 = mem_cgroup_read_u64,
3961 3962 3963 3964
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
3965
		.write = mem_cgroup_reset,
3966
		.read_u64 = mem_cgroup_read_u64,
3967
	},
Y
Yang Shi 已提交
3968
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
3969 3970
	{
		.name = "kmem.slabinfo",
3971 3972 3973
		.seq_start = memcg_slab_start,
		.seq_next = memcg_slab_next,
		.seq_stop = memcg_slab_stop,
3974
		.seq_show = memcg_slab_show,
3975 3976
	},
#endif
V
Vladimir Davydov 已提交
3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4000
	{ },	/* terminate */
4001
};
4002

4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
 * However, there usually are many references to the oflline CSS after
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

4029
static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4030
{
4031
	VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4032
	atomic_add(n, &memcg->id.ref);
4033 4034
}

4035
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4036
{
4037
	VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4038
	if (atomic_sub_and_test(n, &memcg->id.ref)) {
4039 4040 4041 4042 4043 4044 4045 4046
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
{
	mem_cgroup_id_get_many(memcg, 1);
}

static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

4069
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4070 4071
{
	struct mem_cgroup_per_node *pn;
4072
	int tmp = node;
4073 4074 4075 4076 4077 4078 4079 4080
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4081 4082
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4083
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4084 4085
	if (!pn)
		return 1;
4086

4087 4088
	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat_cpu) {
4089 4090 4091 4092
		kfree(pn);
		return 1;
	}

4093 4094 4095 4096 4097
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

4098
	memcg->nodeinfo[node] = pn;
4099 4100 4101
	return 0;
}

4102
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4103
{
4104 4105
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
4106 4107 4108
	if (!pn)
		return;

4109
	free_percpu(pn->lruvec_stat_cpu);
4110
	kfree(pn);
4111 4112
}

4113
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4114
{
4115
	int node;
4116

4117
	for_each_node(node)
4118
		free_mem_cgroup_per_node_info(memcg, node);
4119
	free_percpu(memcg->stat_cpu);
4120
	kfree(memcg);
4121
}
4122

4123 4124 4125 4126 4127 4128
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
	__mem_cgroup_free(memcg);
}

4129
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4130
{
4131
	struct mem_cgroup *memcg;
4132
	size_t size;
4133
	int node;
B
Balbir Singh 已提交
4134

4135 4136 4137 4138
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4139
	if (!memcg)
4140 4141
		return NULL;

4142 4143 4144 4145 4146 4147
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
	if (memcg->id.id < 0)
		goto fail;

4148 4149
	memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat_cpu)
4150
		goto fail;
4151

B
Bob Liu 已提交
4152
	for_each_node(node)
4153
		if (alloc_mem_cgroup_per_node_info(memcg, node))
4154
			goto fail;
4155

4156 4157
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4158

4159
	INIT_WORK(&memcg->high_work, high_work_func);
4160 4161 4162 4163
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4164
	vmpressure_init(&memcg->vmpressure);
4165 4166
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4167
	memcg->socket_pressure = jiffies;
4168
#ifndef CONFIG_SLOB
V
Vladimir Davydov 已提交
4169 4170
	memcg->kmemcg_id = -1;
#endif
4171 4172 4173
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4174
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4175 4176
	return memcg;
fail:
4177 4178
	if (memcg->id.id > 0)
		idr_remove(&mem_cgroup_idr, memcg->id.id);
4179
	__mem_cgroup_free(memcg);
4180
	return NULL;
4181 4182
}

4183 4184
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4185
{
4186 4187 4188
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
4189

4190 4191 4192
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
4193

4194 4195 4196 4197 4198 4199 4200 4201
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
4202
		page_counter_init(&memcg->memory, &parent->memory);
4203
		page_counter_init(&memcg->swap, &parent->swap);
4204 4205
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4206
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4207
	} else {
4208
		page_counter_init(&memcg->memory, NULL);
4209
		page_counter_init(&memcg->swap, NULL);
4210 4211
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4212
		page_counter_init(&memcg->tcpmem, NULL);
4213 4214 4215 4216 4217
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4218
		if (parent != root_mem_cgroup)
4219
			memory_cgrp_subsys.broken_hierarchy = true;
4220
	}
4221

4222 4223 4224 4225 4226 4227
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

4228
	error = memcg_online_kmem(memcg);
4229 4230
	if (error)
		goto fail;
4231

4232
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4233
		static_branch_inc(&memcg_sockets_enabled_key);
4234

4235 4236 4237
	return &memcg->css;
fail:
	mem_cgroup_free(memcg);
4238
	return ERR_PTR(-ENOMEM);
4239 4240
}

4241
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4242
{
4243 4244
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4245
	/* Online state pins memcg ID, memcg ID pins CSS */
4246
	atomic_set(&memcg->id.ref, 1);
4247
	css_get(css);
4248
	return 0;
B
Balbir Singh 已提交
4249 4250
}

4251
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4252
{
4253
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4254
	struct mem_cgroup_event *event, *tmp;
4255 4256 4257 4258 4259 4260

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4261 4262
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4263 4264 4265
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4266
	spin_unlock(&memcg->event_list_lock);
4267

4268
	page_counter_set_low(&memcg->memory, 0);
4269

4270
	memcg_offline_kmem(memcg);
4271
	wb_memcg_offline(memcg);
4272 4273

	mem_cgroup_id_put(memcg);
4274 4275
}

4276 4277 4278 4279 4280 4281 4282
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4283
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4284
{
4285
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4286

4287
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4288
		static_branch_dec(&memcg_sockets_enabled_key);
4289

4290
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
4291
		static_branch_dec(&memcg_sockets_enabled_key);
4292

4293 4294 4295
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
4296
	memcg_free_kmem(memcg);
4297
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4298 4299
}

4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4317 4318 4319 4320 4321
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
4322
	page_counter_set_low(&memcg->memory, 0);
4323
	memcg->high = PAGE_COUNTER_MAX;
4324
	memcg->soft_limit = PAGE_COUNTER_MAX;
4325
	memcg_wb_domain_size_changed(memcg);
4326 4327
}

4328
#ifdef CONFIG_MMU
4329
/* Handlers for move charge at task migration. */
4330
static int mem_cgroup_do_precharge(unsigned long count)
4331
{
4332
	int ret;
4333

4334 4335
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4336
	if (!ret) {
4337 4338 4339
		mc.precharge += count;
		return ret;
	}
4340

4341
	/* Try charges one by one with reclaim, but do not retry */
4342
	while (count--) {
4343
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4344 4345
		if (ret)
			return ret;
4346
		mc.precharge++;
4347
		cond_resched();
4348
	}
4349
	return 0;
4350 4351 4352 4353
}

union mc_target {
	struct page	*page;
4354
	swp_entry_t	ent;
4355 4356 4357
};

enum mc_target_type {
4358
	MC_TARGET_NONE = 0,
4359
	MC_TARGET_PAGE,
4360
	MC_TARGET_SWAP,
4361
	MC_TARGET_DEVICE,
4362 4363
};

D
Daisuke Nishimura 已提交
4364 4365
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4366
{
4367
	struct page *page = _vm_normal_page(vma, addr, ptent, true);
4368

D
Daisuke Nishimura 已提交
4369 4370 4371
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4372
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4373
			return NULL;
4374 4375 4376 4377
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4378 4379 4380 4381 4382 4383
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4384
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
4385
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4386
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
4387 4388 4389 4390
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4391
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4392
		return NULL;
4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
		page = device_private_entry_to_page(ent);
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

4410 4411 4412 4413
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4414
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4415
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4416 4417 4418 4419
		entry->val = ent.val;

	return page;
}
4420 4421
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4422
			pte_t ptent, swp_entry_t *entry)
4423 4424 4425 4426
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4427

4428 4429 4430 4431 4432 4433 4434 4435 4436
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4437
	if (!(mc.flags & MOVE_FILE))
4438 4439 4440
		return NULL;

	mapping = vma->vm_file->f_mapping;
4441
	pgoff = linear_page_index(vma, addr);
4442 4443

	/* page is moved even if it's not RSS of this task(page-faulted). */
4444 4445
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4446 4447 4448 4449
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
4450
			if (do_memsw_account())
4451
				*entry = swp;
4452 4453
			page = find_get_page(swap_address_space(swp),
					     swp_offset(swp));
4454 4455 4456 4457 4458
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4459
#endif
4460 4461 4462
	return page;
}

4463 4464 4465
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
4466
 * @compound: charge the page as compound or small page
4467 4468 4469
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
4470
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4471 4472 4473 4474 4475
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
4476
				   bool compound,
4477 4478 4479 4480
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
4481
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4482
	int ret;
4483
	bool anon;
4484 4485 4486

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
4487
	VM_BUG_ON(compound && !PageTransHuge(page));
4488 4489

	/*
4490
	 * Prevent mem_cgroup_migrate() from looking at
4491
	 * page->mem_cgroup of its source page while we change it.
4492
	 */
4493
	ret = -EBUSY;
4494 4495 4496 4497 4498 4499 4500
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4501 4502
	anon = PageAnon(page);

4503 4504
	spin_lock_irqsave(&from->move_lock, flags);

4505
	if (!anon && page_mapped(page)) {
4506 4507
		__mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
		__mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
4508 4509
	}

4510 4511
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
4512
	 * mod_memcg_page_state will serialize updates to PageDirty.
4513 4514 4515 4516 4517 4518
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
4519 4520
			__mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
			__mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
4521 4522 4523
		}
	}

4524
	if (PageWriteback(page)) {
4525 4526
		__mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
		__mod_memcg_state(to, NR_WRITEBACK, nr_pages);
4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
4542
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4543
	memcg_check_events(to, page);
4544
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4545 4546 4547 4548 4549 4550 4551 4552
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4568 4569 4570 4571 4572
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PUBLIC
 *     or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
4573 4574
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
4575 4576 4577 4578
 *
 * Called with pte lock held.
 */

4579
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4580 4581 4582
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4583
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4584 4585 4586 4587 4588
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
4589
		page = mc_handle_swap_pte(vma, ptent, &ent);
4590
	else if (pte_none(ptent))
4591
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4592 4593

	if (!page && !ent.val)
4594
		return ret;
4595 4596
	if (page) {
		/*
4597
		 * Do only loose check w/o serialization.
4598
		 * mem_cgroup_move_account() checks the page is valid or
4599
		 * not under LRU exclusion.
4600
		 */
4601
		if (page->mem_cgroup == mc.from) {
4602
			ret = MC_TARGET_PAGE;
4603 4604
			if (is_device_private_page(page) ||
			    is_device_public_page(page))
4605
				ret = MC_TARGET_DEVICE;
4606 4607 4608 4609 4610 4611
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
4612 4613 4614 4615 4616
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
4617
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4618 4619 4620
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4621 4622 4623 4624
	}
	return ret;
}

4625 4626
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
4627 4628
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
4629 4630 4631 4632 4633 4634 4635 4636
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

4637 4638 4639 4640 4641
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
4642
	page = pmd_page(pmd);
4643
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4644
	if (!(mc.flags & MOVE_ANON))
4645
		return ret;
4646
	if (page->mem_cgroup == mc.from) {
4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4663 4664 4665 4666
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4667
	struct vm_area_struct *vma = walk->vma;
4668 4669 4670
	pte_t *pte;
	spinlock_t *ptl;

4671 4672
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4673 4674 4675 4676 4677
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
		 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
		 * MEMORY_DEVICE_PRIVATE but this might change.
		 */
4678 4679
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4680
		spin_unlock(ptl);
4681
		return 0;
4682
	}
4683

4684 4685
	if (pmd_trans_unstable(pmd))
		return 0;
4686 4687
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4688
		if (get_mctgt_type(vma, addr, *pte, NULL))
4689 4690 4691 4692
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4693 4694 4695
	return 0;
}

4696 4697 4698 4699
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4700 4701 4702 4703
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4704
	down_read(&mm->mmap_sem);
4705 4706
	walk_page_range(0, mm->highest_vm_end,
			&mem_cgroup_count_precharge_walk);
4707
	up_read(&mm->mmap_sem);
4708 4709 4710 4711 4712 4713 4714 4715 4716

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4717 4718 4719 4720 4721
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4722 4723
}

4724 4725
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4726
{
4727 4728 4729
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4730
	/* we must uncharge all the leftover precharges from mc.to */
4731
	if (mc.precharge) {
4732
		cancel_charge(mc.to, mc.precharge);
4733 4734 4735 4736 4737 4738 4739
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4740
		cancel_charge(mc.from, mc.moved_charge);
4741
		mc.moved_charge = 0;
4742
	}
4743 4744 4745
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4746
		if (!mem_cgroup_is_root(mc.from))
4747
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4748

4749 4750
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

4751
		/*
4752 4753
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4754
		 */
4755
		if (!mem_cgroup_is_root(mc.to))
4756 4757
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4758 4759
		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
		css_put_many(&mc.to->css, mc.moved_swap);
4760

4761 4762
		mc.moved_swap = 0;
	}
4763 4764 4765 4766 4767 4768 4769
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
4770 4771
	struct mm_struct *mm = mc.mm;

4772 4773 4774 4775 4776 4777
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4778
	spin_lock(&mc.lock);
4779 4780
	mc.from = NULL;
	mc.to = NULL;
4781
	mc.mm = NULL;
4782
	spin_unlock(&mc.lock);
4783 4784

	mmput(mm);
4785 4786
}

4787
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4788
{
4789
	struct cgroup_subsys_state *css;
4790
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4791
	struct mem_cgroup *from;
4792
	struct task_struct *leader, *p;
4793
	struct mm_struct *mm;
4794
	unsigned long move_flags;
4795
	int ret = 0;
4796

4797 4798
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4799 4800
		return 0;

4801 4802 4803 4804 4805 4806 4807
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
4808
	cgroup_taskset_for_each_leader(leader, css, tset) {
4809 4810
		WARN_ON_ONCE(p);
		p = leader;
4811
		memcg = mem_cgroup_from_css(css);
4812 4813 4814 4815
	}
	if (!p)
		return 0;

4816 4817 4818 4819 4820 4821 4822 4823 4824
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
4841
		mc.mm = mm;
4842 4843 4844 4845 4846 4847 4848 4849 4850
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
4851 4852
	} else {
		mmput(mm);
4853 4854 4855 4856
	}
	return ret;
}

4857
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4858
{
4859 4860
	if (mc.to)
		mem_cgroup_clear_mc();
4861 4862
}

4863 4864 4865
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4866
{
4867
	int ret = 0;
4868
	struct vm_area_struct *vma = walk->vma;
4869 4870
	pte_t *pte;
	spinlock_t *ptl;
4871 4872 4873
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4874

4875 4876
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4877
		if (mc.precharge < HPAGE_PMD_NR) {
4878
			spin_unlock(ptl);
4879 4880 4881 4882 4883 4884
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
4885
				if (!mem_cgroup_move_account(page, true,
4886
							     mc.from, mc.to)) {
4887 4888 4889 4890 4891 4892
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
4893 4894 4895 4896 4897 4898 4899 4900
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
4901
		}
4902
		spin_unlock(ptl);
4903
		return 0;
4904 4905
	}

4906 4907
	if (pmd_trans_unstable(pmd))
		return 0;
4908 4909 4910 4911
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
4912
		bool device = false;
4913
		swp_entry_t ent;
4914 4915 4916 4917

		if (!mc.precharge)
			break;

4918
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4919 4920 4921
		case MC_TARGET_DEVICE:
			device = true;
			/* fall through */
4922 4923
		case MC_TARGET_PAGE:
			page = target.page;
4924 4925 4926 4927 4928 4929 4930 4931
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
4932
			if (!device && isolate_lru_page(page))
4933
				goto put;
4934 4935
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
4936
				mc.precharge--;
4937 4938
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4939
			}
4940 4941
			if (!device)
				putback_lru_page(page);
4942
put:			/* get_mctgt_type() gets the page */
4943 4944
			put_page(page);
			break;
4945 4946
		case MC_TARGET_SWAP:
			ent = target.ent;
4947
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4948
				mc.precharge--;
4949 4950 4951
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4952
			break;
4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4967
		ret = mem_cgroup_do_precharge(1);
4968 4969 4970 4971 4972 4973 4974
		if (!ret)
			goto retry;
	}

	return ret;
}

4975
static void mem_cgroup_move_charge(void)
4976
{
4977 4978
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
4979
		.mm = mc.mm,
4980
	};
4981 4982

	lru_add_drain_all();
4983
	/*
4984 4985 4986
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
4987 4988 4989
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
4990
retry:
4991
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5003 5004 5005 5006
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
5007 5008
	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);

5009
	up_read(&mc.mm->mmap_sem);
5010
	atomic_dec(&mc.from->moving_account);
5011 5012
}

5013
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
5014
{
5015 5016
	if (mc.to) {
		mem_cgroup_move_charge();
5017
		mem_cgroup_clear_mc();
5018
	}
B
Balbir Singh 已提交
5019
}
5020
#else	/* !CONFIG_MMU */
5021
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5022 5023 5024
{
	return 0;
}
5025
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5026 5027
{
}
5028
static void mem_cgroup_move_task(void)
5029 5030 5031
{
}
#endif
B
Balbir Singh 已提交
5032

5033 5034
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5035 5036
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5037
 */
5038
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5039 5040
{
	/*
5041
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5042 5043 5044
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5045
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5046 5047 5048
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5049 5050
}

5051 5052 5053
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5054 5055 5056
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5057 5058 5059 5060 5061
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5062
	unsigned long low = READ_ONCE(memcg->memory.low);
5063 5064

	if (low == PAGE_COUNTER_MAX)
5065
		seq_puts(m, "max\n");
5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5080
	err = page_counter_memparse(buf, "max", &low);
5081 5082 5083
	if (err)
		return err;

5084
	page_counter_set_low(&memcg->memory, low);
5085 5086 5087 5088 5089 5090 5091

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5092
	unsigned long high = READ_ONCE(memcg->high);
5093 5094

	if (high == PAGE_COUNTER_MAX)
5095
		seq_puts(m, "max\n");
5096 5097 5098 5099 5100 5101 5102 5103 5104 5105
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5106
	unsigned long nr_pages;
5107 5108 5109 5110
	unsigned long high;
	int err;

	buf = strstrip(buf);
5111
	err = page_counter_memparse(buf, "max", &high);
5112 5113 5114 5115 5116
	if (err)
		return err;

	memcg->high = high;

5117 5118 5119 5120 5121
	nr_pages = page_counter_read(&memcg->memory);
	if (nr_pages > high)
		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
					     GFP_KERNEL, true);

5122
	memcg_wb_domain_size_changed(memcg);
5123 5124 5125 5126 5127 5128
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5129
	unsigned long max = READ_ONCE(memcg->memory.max);
5130 5131

	if (max == PAGE_COUNTER_MAX)
5132
		seq_puts(m, "max\n");
5133 5134 5135 5136 5137 5138 5139 5140 5141 5142
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5143 5144
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
5145 5146 5147 5148
	unsigned long max;
	int err;

	buf = strstrip(buf);
5149
	err = page_counter_memparse(buf, "max", &max);
5150 5151 5152
	if (err)
		return err;

5153
	xchg(&memcg->memory.max, max);
5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

		if (signal_pending(current)) {
			err = -EINTR;
			break;
		}

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

5179
		memcg_memory_event(memcg, MEMCG_OOM);
5180 5181 5182
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
5183

5184
	memcg_wb_domain_size_changed(memcg);
5185 5186 5187 5188 5189 5190 5191
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

5192 5193 5194 5195 5196 5197 5198 5199
	seq_printf(m, "low %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
5200
	seq_printf(m, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
5201 5202 5203 5204

	return 0;
}

5205 5206 5207
static int memory_stat_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5208
	unsigned long stat[MEMCG_NR_STAT];
5209
	unsigned long events[NR_VM_EVENT_ITEMS];
5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222
	int i;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

5223 5224 5225
	tree_stat(memcg, stat);
	tree_events(memcg, events);

5226
	seq_printf(m, "anon %llu\n",
5227
		   (u64)stat[MEMCG_RSS] * PAGE_SIZE);
5228
	seq_printf(m, "file %llu\n",
5229
		   (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
5230
	seq_printf(m, "kernel_stack %llu\n",
5231
		   (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5232
	seq_printf(m, "slab %llu\n",
5233 5234
		   (u64)(stat[NR_SLAB_RECLAIMABLE] +
			 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5235
	seq_printf(m, "sock %llu\n",
5236
		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5237

5238
	seq_printf(m, "shmem %llu\n",
5239
		   (u64)stat[NR_SHMEM] * PAGE_SIZE);
5240
	seq_printf(m, "file_mapped %llu\n",
5241
		   (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
5242
	seq_printf(m, "file_dirty %llu\n",
5243
		   (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
5244
	seq_printf(m, "file_writeback %llu\n",
5245
		   (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256

	for (i = 0; i < NR_LRU_LISTS; i++) {
		struct mem_cgroup *mi;
		unsigned long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
		seq_printf(m, "%s %llu\n",
			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
	}

5257
	seq_printf(m, "slab_reclaimable %llu\n",
5258
		   (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5259
	seq_printf(m, "slab_unreclaimable %llu\n",
5260
		   (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5261

5262 5263
	/* Accumulated memory events */

5264 5265
	seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
	seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
5266

5267 5268 5269 5270 5271 5272 5273 5274 5275 5276
	seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
	seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
		   events[PGSCAN_DIRECT]);
	seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
		   events[PGSTEAL_DIRECT]);
	seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
	seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
	seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
	seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);

5277
	seq_printf(m, "workingset_refault %lu\n",
5278
		   stat[WORKINGSET_REFAULT]);
5279
	seq_printf(m, "workingset_activate %lu\n",
5280
		   stat[WORKINGSET_ACTIVATE]);
5281
	seq_printf(m, "workingset_nodereclaim %lu\n",
5282
		   stat[WORKINGSET_NODERECLAIM]);
5283

5284 5285 5286
	return 0;
}

5287 5288 5289
static struct cftype memory_files[] = {
	{
		.name = "current",
5290
		.flags = CFTYPE_NOT_ON_ROOT,
5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5314
		.file_offset = offsetof(struct mem_cgroup, events_file),
5315 5316
		.seq_show = memory_events_show,
	},
5317 5318 5319 5320 5321
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
5322 5323 5324
	{ }	/* terminate */
};

5325
struct cgroup_subsys memory_cgrp_subsys = {
5326
	.css_alloc = mem_cgroup_css_alloc,
5327
	.css_online = mem_cgroup_css_online,
5328
	.css_offline = mem_cgroup_css_offline,
5329
	.css_released = mem_cgroup_css_released,
5330
	.css_free = mem_cgroup_css_free,
5331
	.css_reset = mem_cgroup_css_reset,
5332 5333
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
5334
	.post_attach = mem_cgroup_move_task,
5335
	.bind = mem_cgroup_bind,
5336 5337
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5338
	.early_init = 0,
B
Balbir Singh 已提交
5339
};
5340

5341
/**
5342
 * mem_cgroup_low - check if memory consumption is in the normal range
5343
 * @root: the top ancestor of the sub-tree being checked
5344 5345
 * @memcg: the memory cgroup to check
 *
5346 5347
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
5348
 *
5349
 * Returns %true if memory consumption of @memcg is in the normal range.
5350
 *
5351
 * @root is exclusive; it is never low when looked at directly
5352
 *
5353 5354
 * To provide a proper hierarchical behavior, effective memory.low value
 * is used.
5355
 *
5356 5357 5358 5359 5360 5361 5362
 * Effective memory.low is always equal or less than the original memory.low.
 * If there is no memory.low overcommittment (which is always true for
 * top-level memory cgroups), these two values are equal.
 * Otherwise, it's a part of parent's effective memory.low,
 * calculated as a cgroup's memory.low usage divided by sum of sibling's
 * memory.low usages, where memory.low usage is the size of actually
 * protected memory.
5363
 *
5364 5365 5366
 *                                             low_usage
 * elow = min( memory.low, parent->elow * ------------------ ),
 *                                        siblings_low_usage
5367
 *
5368 5369 5370
 *             | memory.current, if memory.current < memory.low
 * low_usage = |
	       | 0, otherwise.
5371
 *
5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404
 *
 * Such definition of the effective memory.low provides the expected
 * hierarchical behavior: parent's memory.low value is limiting
 * children, unprotected memory is reclaimed first and cgroups,
 * which are not using their guarantee do not affect actual memory
 * distribution.
 *
 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
 *
 *     A      A/memory.low = 2G, A/memory.current = 6G
 *    //\\
 *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
 *            C/memory.low = 1G  C/memory.current = 2G
 *            D/memory.low = 0   D/memory.current = 2G
 *            E/memory.low = 10G E/memory.current = 0
 *
 * and the memory pressure is applied, the following memory distribution
 * is expected (approximately):
 *
 *     A/memory.current = 2G
 *
 *     B/memory.current = 1.3G
 *     C/memory.current = 0.6G
 *     D/memory.current = 0
 *     E/memory.current = 0
 *
 * These calculations require constant tracking of the actual low usages
 * (see propagate_low_usage()), as well as recursive calculation of
 * effective memory.low values. But as we do call mem_cgroup_low()
 * path for each memory cgroup top-down from the reclaim,
 * it's possible to optimize this part, and save calculated elow
 * for next usage. This part is intentionally racy, but it's ok,
 * as memory.low is a best-effort mechanism.
5405 5406 5407
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
5408 5409 5410 5411
	unsigned long usage, low_usage, siblings_low_usage;
	unsigned long elow, parent_elow;
	struct mem_cgroup *parent;

5412 5413 5414
	if (mem_cgroup_disabled())
		return false;

5415 5416 5417
	if (!root)
		root = root_mem_cgroup;
	if (memcg == root)
5418 5419
		return false;

5420 5421 5422
	elow = memcg->memory.low;
	usage = page_counter_read(&memcg->memory);
	parent = parent_mem_cgroup(memcg);
5423

5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442
	if (parent == root)
		goto exit;

	parent_elow = READ_ONCE(parent->memory.elow);
	elow = min(elow, parent_elow);

	if (!elow || !parent_elow)
		goto exit;

	low_usage = min(usage, memcg->memory.low);
	siblings_low_usage = atomic_long_read(
		&parent->memory.children_low_usage);

	if (!low_usage || !siblings_low_usage)
		goto exit;

	elow = min(elow, parent_elow * low_usage / siblings_low_usage);
exit:
	memcg->memory.elow = elow;
5443
	return usage && usage <= elow;
5444 5445
}

5446 5447 5448 5449 5450 5451
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
5452
 * @compound: charge the page as compound or small page
5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5465 5466
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
5467 5468
{
	struct mem_cgroup *memcg = NULL;
5469
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5483
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5484
		if (compound_head(page)->mem_cgroup)
5485
			goto out;
5486

5487
		if (do_swap_account) {
5488 5489 5490 5491 5492 5493 5494 5495 5496
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
5515
 * @compound: charge the page as compound or small page
5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5528
			      bool lrucare, bool compound)
5529
{
5530
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5545 5546 5547
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
5548
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5549 5550
	memcg_check_events(memcg, page);
	local_irq_enable();
5551

5552
	if (do_memsw_account() && PageSwapCache(page)) {
5553 5554 5555 5556 5557 5558
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
5559
		mem_cgroup_uncharge_swap(entry, nr_pages);
5560 5561 5562 5563 5564 5565 5566
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
5567
 * @compound: charge the page as compound or small page
5568 5569 5570
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
5571 5572
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
5573
{
5574
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600
struct uncharge_gather {
	struct mem_cgroup *memcg;
	unsigned long pgpgout;
	unsigned long nr_anon;
	unsigned long nr_file;
	unsigned long nr_kmem;
	unsigned long nr_huge;
	unsigned long nr_shmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
5601
{
5602 5603 5604 5605 5606 5607
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
5608 5609
	unsigned long flags;

5610 5611
	if (!mem_cgroup_is_root(ug->memcg)) {
		page_counter_uncharge(&ug->memcg->memory, nr_pages);
5612
		if (do_memsw_account())
5613 5614 5615 5616
			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
5617
	}
5618 5619

	local_irq_save(flags);
5620 5621 5622 5623 5624
	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
5625
	__this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
5626
	memcg_check_events(ug->memcg, ug->dummy_page);
5627
	local_irq_restore(flags);
5628

5629 5630 5631 5632 5633 5634 5635
	if (!mem_cgroup_is_root(ug->memcg))
		css_put_many(&ug->memcg->css, nr_pages);
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
	VM_BUG_ON_PAGE(PageLRU(page), page);
5636 5637
	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
			!PageHWPoison(page) , page);
5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677

	if (!page->mem_cgroup)
		return;

	/*
	 * Nobody should be changing or seriously looking at
	 * page->mem_cgroup at this point, we have fully
	 * exclusive access to the page.
	 */

	if (ug->memcg != page->mem_cgroup) {
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
		ug->memcg = page->mem_cgroup;
	}

	if (!PageKmemcg(page)) {
		unsigned int nr_pages = 1;

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			ug->nr_huge += nr_pages;
		}
		if (PageAnon(page))
			ug->nr_anon += nr_pages;
		else {
			ug->nr_file += nr_pages;
			if (PageSwapBacked(page))
				ug->nr_shmem += nr_pages;
		}
		ug->pgpgout++;
	} else {
		ug->nr_kmem += 1 << compound_order(page);
		__ClearPageKmemcg(page);
	}

	ug->dummy_page = page;
	page->mem_cgroup = NULL;
5678 5679 5680 5681
}

static void uncharge_list(struct list_head *page_list)
{
5682
	struct uncharge_gather ug;
5683
	struct list_head *next;
5684 5685

	uncharge_gather_clear(&ug);
5686

5687 5688 5689 5690
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
5691 5692
	next = page_list->next;
	do {
5693 5694
		struct page *page;

5695 5696 5697
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

5698
		uncharge_page(page, &ug);
5699 5700
	} while (next != page_list);

5701 5702
	if (ug.memcg)
		uncharge_batch(&ug);
5703 5704
}

5705 5706 5707 5708 5709 5710 5711 5712 5713
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
5714 5715
	struct uncharge_gather ug;

5716 5717 5718
	if (mem_cgroup_disabled())
		return;

5719
	/* Don't touch page->lru of any random page, pre-check: */
5720
	if (!page->mem_cgroup)
5721 5722
		return;

5723 5724 5725
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
5726
}
5727

5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5739

5740 5741
	if (!list_empty(page_list))
		uncharge_list(page_list);
5742 5743 5744
}

/**
5745 5746 5747
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
5748
 *
5749 5750
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
5751 5752 5753
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
5754
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5755
{
5756
	struct mem_cgroup *memcg;
5757 5758
	unsigned int nr_pages;
	bool compound;
5759
	unsigned long flags;
5760 5761 5762 5763

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5764 5765
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5766 5767 5768 5769 5770

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5771
	if (newpage->mem_cgroup)
5772 5773
		return;

5774
	/* Swapcache readahead pages can get replaced before being charged */
5775
	memcg = oldpage->mem_cgroup;
5776
	if (!memcg)
5777 5778
		return;

5779 5780 5781 5782 5783 5784 5785 5786
	/* Force-charge the new page. The old one will be freed soon */
	compound = PageTransHuge(newpage);
	nr_pages = compound ? hpage_nr_pages(newpage) : 1;

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
5787

5788
	commit_charge(newpage, memcg, false);
5789

5790
	local_irq_save(flags);
5791 5792
	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
	memcg_check_events(memcg, newpage);
5793
	local_irq_restore(flags);
5794 5795
}

5796
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5797 5798
EXPORT_SYMBOL(memcg_sockets_enabled_key);

5799
void mem_cgroup_sk_alloc(struct sock *sk)
5800 5801 5802
{
	struct mem_cgroup *memcg;

5803 5804 5805
	if (!mem_cgroup_sockets_enabled)
		return;

5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819
	/*
	 * Socket cloning can throw us here with sk_memcg already
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		css_get(&sk->sk_memcg->css);
		return;
	}

5820 5821
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
5822 5823
	if (memcg == root_mem_cgroup)
		goto out;
5824
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5825 5826
		goto out;
	if (css_tryget_online(&memcg->css))
5827
		sk->sk_memcg = memcg;
5828
out:
5829 5830 5831
	rcu_read_unlock();
}

5832
void mem_cgroup_sk_free(struct sock *sk)
5833
{
5834 5835
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5848
	gfp_t gfp_mask = GFP_KERNEL;
5849

5850
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5851
		struct page_counter *fail;
5852

5853 5854
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
5855 5856
			return true;
		}
5857 5858
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
5859
		return false;
5860
	}
5861

5862 5863 5864 5865
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

5866
	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
5867

5868 5869 5870 5871
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5872 5873 5874 5875 5876
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
5877 5878
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
5879 5880 5881
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5882
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5883
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5884 5885
		return;
	}
5886

5887
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
5888

5889
	refill_stock(memcg, nr_pages);
5890 5891
}

5892 5893 5894 5895 5896 5897 5898 5899 5900
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
5901 5902
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
5903 5904 5905 5906
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
5907

5908
/*
5909 5910
 * subsys_initcall() for memory controller.
 *
5911 5912 5913 5914
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
5915 5916 5917
 */
static int __init mem_cgroup_init(void)
{
5918 5919
	int cpu, node;

5920 5921 5922
#ifndef CONFIG_SLOB
	/*
	 * Kmem cache creation is mostly done with the slab_mutex held,
5923 5924 5925
	 * so use a workqueue with limited concurrency to avoid stalling
	 * all worker threads in case lots of cgroups are created and
	 * destroyed simultaneously.
5926
	 */
5927 5928
	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
	BUG_ON(!memcg_kmem_cache_wq);
5929 5930
#endif

5931 5932
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

5944
		rtpn->rb_root = RB_ROOT;
5945
		rtpn->rb_rightmost = NULL;
5946
		spin_lock_init(&rtpn->lock);
5947 5948 5949
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5950 5951 5952
	return 0;
}
subsys_initcall(mem_cgroup_init);
5953 5954

#ifdef CONFIG_MEMCG_SWAP
5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
	while (!atomic_inc_not_zero(&memcg->id.ref)) {
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

5973 5974 5975 5976 5977 5978 5979 5980 5981
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
5982
	struct mem_cgroup *memcg, *swap_memcg;
5983
	unsigned int nr_entries;
5984 5985 5986 5987 5988
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

5989
	if (!do_memsw_account())
5990 5991 5992 5993 5994 5995 5996 5997
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

5998 5999 6000 6001 6002 6003
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
6004 6005 6006 6007 6008 6009
	nr_entries = hpage_nr_pages(page);
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
6010
	VM_BUG_ON_PAGE(oldid, page);
6011
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6012 6013 6014 6015

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
6016
		page_counter_uncharge(&memcg->memory, nr_entries);
6017

6018 6019
	if (memcg != swap_memcg) {
		if (!mem_cgroup_is_root(swap_memcg))
6020 6021
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
6022 6023
	}

6024 6025
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
6026
	 * i_pages lock which is taken with interrupts-off. It is
6027
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
6028
	 * only synchronisation we have for updating the per-CPU variables.
6029 6030
	 */
	VM_BUG_ON(!irqs_disabled());
6031 6032
	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
				     -nr_entries);
6033
	memcg_check_events(memcg, page);
6034 6035

	if (!mem_cgroup_is_root(memcg))
6036
		css_put_many(&memcg->css, nr_entries);
6037 6038
}

6039 6040
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
6041 6042 6043
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
6044
 * Try to charge @page's memcg for the swap space at @entry.
6045 6046 6047 6048 6049
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
6050
	unsigned int nr_pages = hpage_nr_pages(page);
6051
	struct page_counter *counter;
6052
	struct mem_cgroup *memcg;
6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

6064 6065
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6066
		return 0;
6067
	}
6068

6069 6070
	memcg = mem_cgroup_id_get_online(memcg);

6071
	if (!mem_cgroup_is_root(memcg) &&
6072
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6073 6074
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6075
		mem_cgroup_id_put(memcg);
6076
		return -ENOMEM;
6077
	}
6078

6079 6080 6081 6082
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6083
	VM_BUG_ON_PAGE(oldid, page);
6084
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6085 6086 6087 6088

	return 0;
}

6089
/**
6090
 * mem_cgroup_uncharge_swap - uncharge swap space
6091
 * @entry: swap entry to uncharge
6092
 * @nr_pages: the amount of swap space to uncharge
6093
 */
6094
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6095 6096 6097 6098
{
	struct mem_cgroup *memcg;
	unsigned short id;

6099
	if (!do_swap_account)
6100 6101
		return;

6102
	id = swap_cgroup_record(entry, 0, nr_pages);
6103
	rcu_read_lock();
6104
	memcg = mem_cgroup_from_id(id);
6105
	if (memcg) {
6106 6107
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6108
				page_counter_uncharge(&memcg->swap, nr_pages);
6109
			else
6110
				page_counter_uncharge(&memcg->memsw, nr_pages);
6111
		}
6112
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6113
		mem_cgroup_id_put_many(memcg, nr_pages);
6114 6115 6116 6117
	}
	rcu_read_unlock();
}

6118 6119 6120 6121 6122 6123 6124 6125
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
6126
				      READ_ONCE(memcg->swap.max) -
6127 6128 6129 6130
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6147
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6148 6149 6150 6151 6152
			return true;

	return false;
}

6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6181
	unsigned long max = READ_ONCE(memcg->swap.max);
6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

6203 6204 6205
	mutex_lock(&memcg_max_mutex);
	err = page_counter_set_max(&memcg->swap, max);
	mutex_unlock(&memcg_max_mutex);
6206 6207 6208 6209 6210 6211
	if (err)
		return err;

	return nbytes;
}

6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223
static int swap_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
6236 6237 6238 6239 6240 6241
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
6242 6243 6244
	{ }	/* terminate */
};

6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
6276 6277
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
6278 6279 6280 6281 6282 6283 6284 6285
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */