memcontrol.c 192.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
B
Balbir Singh 已提交
2 3 4 5 6
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
7 8 9
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
10 11 12 13
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
14 15 16 17
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 24 25
 *
 * Per memcg lru locking
 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
B
Balbir Singh 已提交
26 27
 */

28
#include <linux/page_counter.h>
B
Balbir Singh 已提交
29 30
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/pagewalk.h>
32
#include <linux/sched/mm.h>
33
#include <linux/shmem_fs.h>
34
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
35
#include <linux/pagemap.h>
36
#include <linux/vm_event_item.h>
37
#include <linux/smp.h>
38
#include <linux/page-flags.h>
39
#include <linux/backing-dev.h>
40 41
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
42
#include <linux/limits.h>
43
#include <linux/export.h>
44
#include <linux/mutex.h>
45
#include <linux/rbtree.h>
46
#include <linux/slab.h>
47
#include <linux/swap.h>
48
#include <linux/swapops.h>
49
#include <linux/spinlock.h>
50
#include <linux/eventfd.h>
51
#include <linux/poll.h>
52
#include <linux/sort.h>
53
#include <linux/fs.h>
54
#include <linux/seq_file.h>
55
#include <linux/vmpressure.h>
56
#include <linux/mm_inline.h>
57
#include <linux/swap_cgroup.h>
58
#include <linux/cpu.h>
59
#include <linux/oom.h>
60
#include <linux/lockdep.h>
61
#include <linux/file.h>
62
#include <linux/tracehook.h>
63
#include <linux/psi.h>
64
#include <linux/seq_buf.h>
K
KAMEZAWA Hiroyuki 已提交
65
#include "internal.h"
G
Glauber Costa 已提交
66
#include <net/sock.h>
M
Michal Hocko 已提交
67
#include <net/ip.h>
68
#include "slab.h"
B
Balbir Singh 已提交
69

70
#include <linux/uaccess.h>
71

72 73
#include <trace/events/vmscan.h>

74 75
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
76

77 78
struct mem_cgroup *root_mem_cgroup __read_mostly;

79 80 81
/* Active memory cgroup to use from an interrupt context */
DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);

82 83 84
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

85
/* Kernel memory accounting disabled? */
86
bool cgroup_memory_nokmem;
87

88
/* Whether the swap controller is active */
A
Andrew Morton 已提交
89
#ifdef CONFIG_MEMCG_SWAP
90
bool cgroup_memory_noswap __read_mostly;
91
#else
92
#define cgroup_memory_noswap		1
93
#endif
94

95 96 97 98
#ifdef CONFIG_CGROUP_WRITEBACK
static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
#endif

99 100 101
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
102
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
103 104
}

105 106
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
107

108 109 110 111 112
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

113
struct mem_cgroup_tree_per_node {
114
	struct rb_root rb_root;
115
	struct rb_node *rb_rightmost;
116 117 118 119 120 121 122 123 124
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
125 126 127 128 129
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
130

131 132 133
/*
 * cgroup_event represents events which userspace want to receive.
 */
134
struct mem_cgroup_event {
135
	/*
136
	 * memcg which the event belongs to.
137
	 */
138
	struct mem_cgroup *memcg;
139 140 141 142 143 144 145 146
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
147 148 149 150 151
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
152
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
153
			      struct eventfd_ctx *eventfd, const char *args);
154 155 156 157 158
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
159
	void (*unregister_event)(struct mem_cgroup *memcg,
160
				 struct eventfd_ctx *eventfd);
161 162 163 164 165 166
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
167
	wait_queue_entry_t wait;
168 169 170
	struct work_struct remove;
};

171 172
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173

174 175
/* Stuffs for move charges at task migration. */
/*
176
 * Types of charges to be moved.
177
 */
178 179 180
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
181

182 183
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
184
	spinlock_t	  lock; /* for from, to */
185
	struct mm_struct  *mm;
186 187
	struct mem_cgroup *from;
	struct mem_cgroup *to;
188
	unsigned long flags;
189
	unsigned long precharge;
190
	unsigned long moved_charge;
191
	unsigned long moved_swap;
192 193 194
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
195
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196 197
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
198

199 200 201 202
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
203
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
204
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
205

206
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
207 208 209 210
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
211
	_KMEM,
V
Vladimir Davydov 已提交
212
	_TCP,
G
Glauber Costa 已提交
213 214
};

215 216
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
217
#define MEMFILE_ATTR(val)	((val) & 0xffff)
I
Ingo Molnar 已提交
218
/* Used for OOM notifier */
K
KAMEZAWA Hiroyuki 已提交
219
#define OOM_CONTROL		(0)
220

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(root, iter, NULL))

#define for_each_mem_cgroup(iter)			\
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(NULL, iter, NULL))

236 237 238 239 240 241
static inline bool should_force_charge(void)
{
	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
		(current->flags & PF_EXITING);
}

242 243 244 245 246 247 248 249 250 251 252 253 254
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

255
#ifdef CONFIG_MEMCG_KMEM
R
Roman Gushchin 已提交
256 257
extern spinlock_t css_set_lock;

258 259
static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
				      unsigned int nr_pages);
260

R
Roman Gushchin 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
static void obj_cgroup_release(struct percpu_ref *ref)
{
	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
	unsigned int nr_bytes;
	unsigned int nr_pages;
	unsigned long flags;

	/*
	 * At this point all allocated objects are freed, and
	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
	 *
	 * The following sequence can lead to it:
	 * 1) CPU0: objcg == stock->cached_objcg
	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
	 *          PAGE_SIZE bytes are charged
	 * 3) CPU1: a process from another memcg is allocating something,
	 *          the stock if flushed,
	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
	 * 5) CPU0: we do release this object,
	 *          92 bytes are added to stock->nr_bytes
	 * 6) CPU0: stock is flushed,
	 *          92 bytes are added to objcg->nr_charged_bytes
	 *
	 * In the result, nr_charged_bytes == PAGE_SIZE.
	 * This page will be uncharged in obj_cgroup_release().
	 */
	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
	nr_pages = nr_bytes >> PAGE_SHIFT;

	if (nr_pages)
293
		obj_cgroup_uncharge_pages(objcg, nr_pages);
294 295

	spin_lock_irqsave(&css_set_lock, flags);
R
Roman Gushchin 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
	list_del(&objcg->list);
	spin_unlock_irqrestore(&css_set_lock, flags);

	percpu_ref_exit(ref);
	kfree_rcu(objcg, rcu);
}

static struct obj_cgroup *obj_cgroup_alloc(void)
{
	struct obj_cgroup *objcg;
	int ret;

	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
	if (!objcg)
		return NULL;

	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
			      GFP_KERNEL);
	if (ret) {
		kfree(objcg);
		return NULL;
	}
	INIT_LIST_HEAD(&objcg->list);
	return objcg;
}

static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
				  struct mem_cgroup *parent)
{
	struct obj_cgroup *objcg, *iter;

	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);

	spin_lock_irq(&css_set_lock);

331 332 333 334 335 336
	/* 1) Ready to reparent active objcg. */
	list_add(&objcg->list, &memcg->objcg_list);
	/* 2) Reparent active objcg and already reparented objcgs to parent. */
	list_for_each_entry(iter, &memcg->objcg_list, list)
		WRITE_ONCE(iter->memcg, parent);
	/* 3) Move already reparented objcgs to the parent's list */
R
Roman Gushchin 已提交
337 338 339 340 341 342 343
	list_splice(&memcg->objcg_list, &parent->objcg_list);

	spin_unlock_irq(&css_set_lock);

	percpu_ref_kill(&objcg->refcnt);
}

344
/*
345
 * This will be used as a shrinker list's index.
L
Li Zefan 已提交
346 347 348 349 350
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
351
 *
352 353
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
354
 */
355 356
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
357

358 359 360 361 362 363 364 365 366 367 368 369 370
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

371 372 373 374 375 376
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
377
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
378 379
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
380
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
381 382 383
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
384
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
385

386 387
/*
 * A lot of the calls to the cache allocation functions are expected to be
388
 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
389 390 391
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
392
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
393
EXPORT_SYMBOL(memcg_kmem_enabled_key);
394
#endif
395

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

411
	memcg = page_memcg(page);
412

413
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
414 415 416 417 418
		memcg = root_mem_cgroup;

	return &memcg->css;
}

419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
438
	memcg = page_memcg_check(page);
439

440 441 442 443 444 445 446 447
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

448 449
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
450
{
451
	int nid = page_to_nid(page);
452

453
	return memcg->nodeinfo[nid];
454 455
}

456 457
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
458
{
459
	return soft_limit_tree.rb_tree_per_node[nid];
460 461
}

462
static struct mem_cgroup_tree_per_node *
463 464 465 466
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

467
	return soft_limit_tree.rb_tree_per_node[nid];
468 469
}

470 471
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
472
					 unsigned long new_usage_in_excess)
473 474 475
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
476
	struct mem_cgroup_per_node *mz_node;
477
	bool rightmost = true;
478 479 480 481 482 483 484 485 486

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
487
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
488
					tree_node);
489
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
490
			p = &(*p)->rb_left;
491
			rightmost = false;
492
		} else {
493
			p = &(*p)->rb_right;
494
		}
495
	}
496 497 498 499

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

500 501 502 503 504
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

505 506
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
507 508 509
{
	if (!mz->on_tree)
		return;
510 511 512 513

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

514 515 516 517
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

518 519
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
520
{
521 522 523
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
524
	__mem_cgroup_remove_exceeded(mz, mctz);
525
	spin_unlock_irqrestore(&mctz->lock, flags);
526 527
}

528 529 530
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
531
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
532 533 534 535 536 537 538
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
539 540 541

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
542
	unsigned long excess;
543 544
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
545

546
	mctz = soft_limit_tree_from_page(page);
547 548
	if (!mctz)
		return;
549 550 551 552 553
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
554
		mz = mem_cgroup_page_nodeinfo(memcg, page);
555
		excess = soft_limit_excess(memcg);
556 557 558 559 560
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
561 562 563
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
564 565
			/* if on-tree, remove it */
			if (mz->on_tree)
566
				__mem_cgroup_remove_exceeded(mz, mctz);
567 568 569 570
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
571
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
572
			spin_unlock_irqrestore(&mctz->lock, flags);
573 574 575 576 577 578
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
579 580 581
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
582

583
	for_each_node(nid) {
584
		mz = memcg->nodeinfo[nid];
585
		mctz = soft_limit_tree_node(nid);
586 587
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
588 589 590
	}
}

591 592
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
593
{
594
	struct mem_cgroup_per_node *mz;
595 596 597

retry:
	mz = NULL;
598
	if (!mctz->rb_rightmost)
599 600
		goto done;		/* Nothing to reclaim from */

601 602
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
603 604 605 606 607
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
608
	__mem_cgroup_remove_exceeded(mz, mctz);
609
	if (!soft_limit_excess(mz->memcg) ||
S
Shakeel Butt 已提交
610
	    !css_tryget(&mz->memcg->css))
611 612 613 614 615
		goto retry;
done:
	return mz;
}

616 617
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
618
{
619
	struct mem_cgroup_per_node *mz;
620

621
	spin_lock_irq(&mctz->lock);
622
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
623
	spin_unlock_irq(&mctz->lock);
624 625 626
	return mz;
}

627 628 629 630 631 632 633 634 635 636 637
/**
 * __mod_memcg_state - update cgroup memory statistics
 * @memcg: the memory cgroup
 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 * @val: delta to add to the counter, can be negative
 */
void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
{
	if (mem_cgroup_disabled())
		return;

638 639
	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
640 641
}

642
/* idx can be of type enum memcg_stat_item or node_stat_item. */
643 644
static unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
{
645
	long x = READ_ONCE(memcg->vmstats.state[idx]);
646 647 648 649 650 651 652
#ifdef CONFIG_SMP
	if (x < 0)
		x = 0;
#endif
	return x;
}

653
/* idx can be of type enum memcg_stat_item or node_stat_item. */
654 655 656 657 658 659
static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
{
	long x = 0;
	int cpu;

	for_each_possible_cpu(cpu)
660
		x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
661 662 663 664 665 666 667
#ifdef CONFIG_SMP
	if (x < 0)
		x = 0;
#endif
	return x;
}

668 669 670 671 672 673 674 675
static struct mem_cgroup_per_node *
parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
{
	struct mem_cgroup *parent;

	parent = parent_mem_cgroup(pn->memcg);
	if (!parent)
		return NULL;
676
	return parent->nodeinfo[nid];
677 678
}

679 680
void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			      int val)
681 682
{
	struct mem_cgroup_per_node *pn;
683
	struct mem_cgroup *memcg;
684
	long x, threshold = MEMCG_CHARGE_BATCH;
685 686

	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
687
	memcg = pn->memcg;
688 689

	/* Update memcg */
690
	__mod_memcg_state(memcg, idx, val);
691

692 693 694
	/* Update lruvec */
	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);

695 696 697
	if (vmstat_item_in_bytes(idx))
		threshold <<= PAGE_SHIFT;

698
	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
699
	if (unlikely(abs(x) > threshold)) {
700
		pg_data_t *pgdat = lruvec_pgdat(lruvec);
701 702 703 704
		struct mem_cgroup_per_node *pi;

		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
			atomic_long_add(x, &pi->lruvec_stat[idx]);
705 706 707 708 709
		x = 0;
	}
	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
}

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
/**
 * __mod_lruvec_state - update lruvec memory statistics
 * @lruvec: the lruvec
 * @idx: the stat item
 * @val: delta to add to the counter, can be negative
 *
 * The lruvec is the intersection of the NUMA node and a cgroup. This
 * function updates the all three counters that are affected by a
 * change of state at this level: per-node, per-cgroup, per-lruvec.
 */
void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			int val)
{
	/* Update node */
	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);

	/* Update memcg and lruvec */
	if (!mem_cgroup_disabled())
		__mod_memcg_lruvec_state(lruvec, idx, val);
}

731 732 733 734
void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
			     int val)
{
	struct page *head = compound_head(page); /* rmap on tail pages */
735
	struct mem_cgroup *memcg;
736 737 738
	pg_data_t *pgdat = page_pgdat(page);
	struct lruvec *lruvec;

739 740
	rcu_read_lock();
	memcg = page_memcg(head);
741
	/* Untracked pages have no memcg, no lruvec. Update only the node */
742
	if (!memcg) {
743
		rcu_read_unlock();
744 745 746 747
		__mod_node_page_state(pgdat, idx, val);
		return;
	}

748
	lruvec = mem_cgroup_lruvec(memcg, pgdat);
749
	__mod_lruvec_state(lruvec, idx, val);
750
	rcu_read_unlock();
751
}
752
EXPORT_SYMBOL(__mod_lruvec_page_state);
753

754
void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
755
{
756
	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
757 758 759 760
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;

	rcu_read_lock();
761
	memcg = mem_cgroup_from_obj(p);
762

763 764 765 766 767 768 769
	/*
	 * Untracked pages have no memcg, no lruvec. Update only the
	 * node. If we reparent the slab objects to the root memcg,
	 * when we free the slab object, we need to update the per-memcg
	 * vmstats to keep it correct for the root memcg.
	 */
	if (!memcg) {
770 771
		__mod_node_page_state(pgdat, idx, val);
	} else {
772
		lruvec = mem_cgroup_lruvec(memcg, pgdat);
773 774 775 776 777
		__mod_lruvec_state(lruvec, idx, val);
	}
	rcu_read_unlock();
}

778 779 780 781
/*
 * mod_objcg_mlstate() may be called with irq enabled, so
 * mod_memcg_lruvec_state() should be used.
 */
782 783 784
static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
				     struct pglist_data *pgdat,
				     enum node_stat_item idx, int nr)
785 786 787 788 789 790 791
{
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;

	rcu_read_lock();
	memcg = obj_cgroup_memcg(objcg);
	lruvec = mem_cgroup_lruvec(memcg, pgdat);
792
	mod_memcg_lruvec_state(lruvec, idx, nr);
793 794 795
	rcu_read_unlock();
}

796 797 798 799
/**
 * __count_memcg_events - account VM events in a cgroup
 * @memcg: the memory cgroup
 * @idx: the event item
I
Ingo Molnar 已提交
800
 * @count: the number of events that occurred
801 802 803 804 805 806 807
 */
void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
			  unsigned long count)
{
	if (mem_cgroup_disabled())
		return;

808 809
	__this_cpu_add(memcg->vmstats_percpu->events[idx], count);
	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
810 811
}

812
static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
813
{
814
	return READ_ONCE(memcg->vmstats.events[event]);
815 816
}

817 818
static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
{
819 820 821 822
	long x = 0;
	int cpu;

	for_each_possible_cpu(cpu)
823
		x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
824
	return x;
825 826
}

827
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
828
					 struct page *page,
829
					 int nr_pages)
830
{
831 832
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
833
		__count_memcg_events(memcg, PGPGIN, 1);
834
	else {
835
		__count_memcg_events(memcg, PGPGOUT, 1);
836 837
		nr_pages = -nr_pages; /* for event */
	}
838

839
	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
840 841
}

842 843
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
844 845 846
{
	unsigned long val, next;

847 848
	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
849
	/* from time_after() in jiffies.h */
850
	if ((long)(next - val) < 0) {
851 852 853 854
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
855 856 857
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
858 859 860
		default:
			break;
		}
861
		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
862
		return true;
863
	}
864
	return false;
865 866 867 868 869 870
}

/*
 * Check events in order.
 *
 */
871
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
872 873
{
	/* threshold event is triggered in finer grain than soft limit */
874 875
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
876
		bool do_softlimit;
877

878 879
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
880
		mem_cgroup_threshold(memcg);
881 882
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
883
	}
884 885
}

886
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
887
{
888 889 890 891 892 893 894 895
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

896
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
897
}
M
Michal Hocko 已提交
898
EXPORT_SYMBOL(mem_cgroup_from_task);
899

900 901 902 903 904 905 906 907
static __always_inline struct mem_cgroup *active_memcg(void)
{
	if (in_interrupt())
		return this_cpu_read(int_active_memcg);
	else
		return current->active_memcg;
}

908 909 910 911
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
912 913 914 915 916 917
 * Obtain a reference on mm->memcg and returns it if successful. If mm
 * is NULL, then the memcg is chosen as follows:
 * 1) The active memcg, if set.
 * 2) current->mm->memcg, if available
 * 3) root memcg
 * If mem_cgroup is disabled, NULL is returned.
918 919
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
920
{
921 922 923 924
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
925

926 927 928 929 930 931 932 933 934
	/*
	 * Page cache insertions can happen without an
	 * actual mm context, e.g. during disk probing
	 * on boot, loopback IO, acct() writes etc.
	 *
	 * No need to css_get on root memcg as the reference
	 * counting is disabled on the root level in the
	 * cgroup core. See CSS_NO_REF.
	 */
935 936 937 938 939 940 941 942 943 944 945
	if (unlikely(!mm)) {
		memcg = active_memcg();
		if (unlikely(memcg)) {
			/* remote memcg must hold a ref */
			css_get(&memcg->css);
			return memcg;
		}
		mm = current->mm;
		if (unlikely(!mm))
			return root_mem_cgroup;
	}
946

947 948
	rcu_read_lock();
	do {
949 950
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
951
			memcg = root_mem_cgroup;
952
	} while (!css_tryget(&memcg->css));
953
	rcu_read_unlock();
954
	return memcg;
955
}
956 957
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

958 959 960 961 962 963 964 965 966 967 968 969 970
static __always_inline bool memcg_kmem_bypass(void)
{
	/* Allow remote memcg charging from any context. */
	if (unlikely(active_memcg()))
		return false;

	/* Memcg to charge can't be determined. */
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;

	return false;
}

971 972 973 974 975 976 977 978 979 980 981 982 983
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
984 985 986
 * Reclaimers can specify a node in @reclaim to divide up the memcgs
 * in the hierarchy among all concurrent reclaimers operating on the
 * same node.
987
 */
988
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
989
				   struct mem_cgroup *prev,
990
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
991
{
992
	struct mem_cgroup_reclaim_iter *iter;
993
	struct cgroup_subsys_state *css = NULL;
994
	struct mem_cgroup *memcg = NULL;
995
	struct mem_cgroup *pos = NULL;
996

997 998
	if (mem_cgroup_disabled())
		return NULL;
999

1000 1001
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1002

1003
	if (prev && !reclaim)
1004
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1005

1006
	rcu_read_lock();
M
Michal Hocko 已提交
1007

1008
	if (reclaim) {
1009
		struct mem_cgroup_per_node *mz;
1010

1011
		mz = root->nodeinfo[reclaim->pgdat->node_id];
1012
		iter = &mz->iter;
1013 1014 1015 1016

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

1017
		while (1) {
1018
			pos = READ_ONCE(iter->position);
1019 1020
			if (!pos || css_tryget(&pos->css))
				break;
1021
			/*
1022 1023 1024 1025 1026 1027
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
1028
			 */
1029 1030
			(void)cmpxchg(&iter->position, pos, NULL);
		}
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1048
		}
K
KAMEZAWA Hiroyuki 已提交
1049

1050 1051 1052 1053 1054 1055
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1056

1057 1058
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1059

1060 1061
		if (css_tryget(css))
			break;
1062

1063
		memcg = NULL;
1064
	}
1065 1066 1067

	if (reclaim) {
		/*
1068 1069 1070
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
1071
		 */
1072 1073
		(void)cmpxchg(&iter->position, pos, memcg);

1074 1075 1076 1077 1078 1079 1080
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1081
	}
1082

1083 1084
out_unlock:
	rcu_read_unlock();
1085 1086 1087
	if (prev && prev != root)
		css_put(&prev->css);

1088
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1089
}
K
KAMEZAWA Hiroyuki 已提交
1090

1091 1092 1093 1094 1095 1096 1097
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1098 1099 1100 1101 1102 1103
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1104

1105 1106
static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
					struct mem_cgroup *dead_memcg)
1107 1108
{
	struct mem_cgroup_reclaim_iter *iter;
1109 1110
	struct mem_cgroup_per_node *mz;
	int nid;
1111

1112
	for_each_node(nid) {
1113
		mz = from->nodeinfo[nid];
1114 1115
		iter = &mz->iter;
		cmpxchg(&iter->position, dead_memcg, NULL);
1116 1117 1118
	}
}

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup *last;

	do {
		__invalidate_reclaim_iterators(memcg, dead_memcg);
		last = memcg;
	} while ((memcg = parent_mem_cgroup(memcg)));

	/*
	 * When cgruop1 non-hierarchy mode is used,
	 * parent_mem_cgroup() does not walk all the way up to the
	 * cgroup root (root_mem_cgroup). So we have to handle
	 * dead_memcg from cgroup root separately.
	 */
	if (last != root_mem_cgroup)
		__invalidate_reclaim_iterators(root_mem_cgroup,
						dead_memcg);
}

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

1165
		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
#ifdef CONFIG_DEBUG_VM
void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
{
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return;

	memcg = page_memcg(page);

	if (!memcg)
		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
	else
		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
}
#endif

/**
 * lock_page_lruvec - lock and return lruvec for a given page.
 * @page: the page
 *
1198 1199 1200 1201 1202
 * These functions are safe to use under any of the following conditions:
 * - page locked
 * - PageLRU cleared
 * - lock_page_memcg()
 * - page->_refcount is zero
1203 1204 1205 1206 1207
 */
struct lruvec *lock_page_lruvec(struct page *page)
{
	struct lruvec *lruvec;

1208
	lruvec = mem_cgroup_page_lruvec(page);
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
	spin_lock(&lruvec->lru_lock);

	lruvec_memcg_debug(lruvec, page);

	return lruvec;
}

struct lruvec *lock_page_lruvec_irq(struct page *page)
{
	struct lruvec *lruvec;

1220
	lruvec = mem_cgroup_page_lruvec(page);
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
	spin_lock_irq(&lruvec->lru_lock);

	lruvec_memcg_debug(lruvec, page);

	return lruvec;
}

struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
{
	struct lruvec *lruvec;

1232
	lruvec = mem_cgroup_page_lruvec(page);
1233 1234 1235 1236 1237 1238 1239
	spin_lock_irqsave(&lruvec->lru_lock, *flags);

	lruvec_memcg_debug(lruvec, page);

	return lruvec;
}

1240
/**
1241 1242 1243
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1244
 * @zid: zone id of the accounted pages
1245
 * @nr_pages: positive when adding or negative when removing
1246
 *
1247 1248 1249
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1250
 */
1251
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1252
				int zid, int nr_pages)
1253
{
1254
	struct mem_cgroup_per_node *mz;
1255
	unsigned long *lru_size;
1256
	long size;
1257 1258 1259 1260

	if (mem_cgroup_disabled())
		return;

1261
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1262
	lru_size = &mz->lru_zone_size[zid][lru];
1263 1264 1265 1266 1267

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1268 1269 1270
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1271 1272 1273 1274 1275 1276
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1277
}
1278

1279
/**
1280
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1281
 * @memcg: the memory cgroup
1282
 *
1283
 * Returns the maximum amount of memory @mem can be charged with, in
1284
 * pages.
1285
 */
1286
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1287
{
1288 1289 1290
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1291

1292
	count = page_counter_read(&memcg->memory);
1293
	limit = READ_ONCE(memcg->memory.max);
1294 1295 1296
	if (count < limit)
		margin = limit - count;

1297
	if (do_memsw_account()) {
1298
		count = page_counter_read(&memcg->memsw);
1299
		limit = READ_ONCE(memcg->memsw.max);
1300
		if (count < limit)
1301
			margin = min(margin, limit - count);
1302 1303
		else
			margin = 0;
1304 1305 1306
	}

	return margin;
1307 1308
}

1309
/*
Q
Qiang Huang 已提交
1310
 * A routine for checking "mem" is under move_account() or not.
1311
 *
Q
Qiang Huang 已提交
1312 1313 1314
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1315
 */
1316
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1317
{
1318 1319
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1320
	bool ret = false;
1321 1322 1323 1324 1325 1326 1327 1328 1329
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1330

1331 1332
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1333 1334
unlock:
	spin_unlock(&mc.lock);
1335 1336 1337
	return ret;
}

1338
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1339 1340
{
	if (mc.moving_task && current != mc.moving_task) {
1341
		if (mem_cgroup_under_move(memcg)) {
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1354 1355 1356 1357 1358
struct memory_stat {
	const char *name;
	unsigned int idx;
};

1359
static const struct memory_stat memory_stats[] = {
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
	{ "anon",			NR_ANON_MAPPED			},
	{ "file",			NR_FILE_PAGES			},
	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
	{ "pagetables",			NR_PAGETABLE			},
	{ "percpu",			MEMCG_PERCPU_B			},
	{ "sock",			MEMCG_SOCK			},
	{ "shmem",			NR_SHMEM			},
	{ "file_mapped",		NR_FILE_MAPPED			},
	{ "file_dirty",			NR_FILE_DIRTY			},
	{ "file_writeback",		NR_WRITEBACK			},
1370 1371 1372
#ifdef CONFIG_SWAP
	{ "swapcached",			NR_SWAPCACHE			},
#endif
1373
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1374 1375 1376
	{ "anon_thp",			NR_ANON_THPS			},
	{ "file_thp",			NR_FILE_THPS			},
	{ "shmem_thp",			NR_SHMEM_THPS			},
1377
#endif
1378 1379 1380 1381 1382 1383 1384
	{ "inactive_anon",		NR_INACTIVE_ANON		},
	{ "active_anon",		NR_ACTIVE_ANON			},
	{ "inactive_file",		NR_INACTIVE_FILE		},
	{ "active_file",		NR_ACTIVE_FILE			},
	{ "unevictable",		NR_UNEVICTABLE			},
	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1385 1386

	/* The memory events */
1387 1388 1389 1390 1391 1392 1393
	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1394 1395
};

1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
/* Translate stat items to the correct unit for memory.stat output */
static int memcg_page_state_unit(int item)
{
	switch (item) {
	case MEMCG_PERCPU_B:
	case NR_SLAB_RECLAIMABLE_B:
	case NR_SLAB_UNRECLAIMABLE_B:
	case WORKINGSET_REFAULT_ANON:
	case WORKINGSET_REFAULT_FILE:
	case WORKINGSET_ACTIVATE_ANON:
	case WORKINGSET_ACTIVATE_FILE:
	case WORKINGSET_RESTORE_ANON:
	case WORKINGSET_RESTORE_FILE:
	case WORKINGSET_NODERECLAIM:
		return 1;
	case NR_KERNEL_STACK_KB:
		return SZ_1K;
	default:
		return PAGE_SIZE;
	}
}

static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
						    int item)
{
	return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
}

1424 1425 1426 1427
static char *memory_stat_format(struct mem_cgroup *memcg)
{
	struct seq_buf s;
	int i;
1428

1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
	if (!s.buffer)
		return NULL;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */
1443
	cgroup_rstat_flush(memcg->css.cgroup);
1444

1445 1446
	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
		u64 size;
1447

1448
		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1449
		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1450

1451
		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1452 1453
			size += memcg_page_state_output(memcg,
							NR_SLAB_RECLAIMABLE_B);
1454 1455 1456
			seq_buf_printf(&s, "slab %llu\n", size);
		}
	}
1457 1458 1459

	/* Accumulated memory events */

1460 1461 1462 1463 1464 1465
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
		       memcg_events(memcg, PGFAULT));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
		       memcg_events(memcg, PGMAJFAULT));
	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
		       memcg_events(memcg, PGREFILL));
1466 1467 1468 1469 1470 1471
	seq_buf_printf(&s, "pgscan %lu\n",
		       memcg_events(memcg, PGSCAN_KSWAPD) +
		       memcg_events(memcg, PGSCAN_DIRECT));
	seq_buf_printf(&s, "pgsteal %lu\n",
		       memcg_events(memcg, PGSTEAL_KSWAPD) +
		       memcg_events(memcg, PGSTEAL_DIRECT));
1472 1473 1474 1475 1476 1477 1478 1479
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
		       memcg_events(memcg, PGACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
		       memcg_events(memcg, PGDEACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
		       memcg_events(memcg, PGLAZYFREE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
		       memcg_events(memcg, PGLAZYFREED));
1480 1481

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1482
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1483
		       memcg_events(memcg, THP_FAULT_ALLOC));
1484
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1485 1486 1487 1488 1489 1490 1491 1492
		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

	/* The above should easily fit into one page */
	WARN_ON_ONCE(seq_buf_has_overflowed(&s));

	return s.buffer;
}
1493

1494
#define K(x) ((x) << (PAGE_SHIFT-10))
1495
/**
1496 1497
 * mem_cgroup_print_oom_context: Print OOM information relevant to
 * memory controller.
1498 1499 1500 1501 1502 1503
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
1504
void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1505 1506 1507
{
	rcu_read_lock();

1508 1509 1510 1511 1512
	if (memcg) {
		pr_cont(",oom_memcg=");
		pr_cont_cgroup_path(memcg->css.cgroup);
	} else
		pr_cont(",global_oom");
1513
	if (p) {
1514
		pr_cont(",task_memcg=");
1515 1516
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	}
1517
	rcu_read_unlock();
1518 1519 1520 1521 1522 1523 1524 1525 1526
}

/**
 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
 * memory controller.
 * @memcg: The memory cgroup that went over limit
 */
void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
1527
	char *buf;
1528

1529 1530
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1531
		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1532 1533 1534
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->swap)),
1535
			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1536 1537 1538 1539 1540 1541 1542
	else {
		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->memsw)),
			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->kmem)),
			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1543
	}
1544 1545 1546 1547 1548 1549 1550 1551 1552

	pr_info("Memory cgroup stats for ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(":");
	buf = memory_stat_format(memcg);
	if (!buf)
		return;
	pr_info("%s", buf);
	kfree(buf);
1553 1554
}

D
David Rientjes 已提交
1555 1556 1557
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1558
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1559
{
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
	unsigned long max = READ_ONCE(memcg->memory.max);

	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
		if (mem_cgroup_swappiness(memcg))
			max += min(READ_ONCE(memcg->swap.max),
				   (unsigned long)total_swap_pages);
	} else { /* v1 */
		if (mem_cgroup_swappiness(memcg)) {
			/* Calculate swap excess capacity from memsw limit */
			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;

			max += min(swap, (unsigned long)total_swap_pages);
		}
1573
	}
1574
	return max;
D
David Rientjes 已提交
1575 1576
}

1577 1578 1579 1580 1581
unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
{
	return page_counter_read(&memcg->memory);
}

1582
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1583
				     int order)
1584
{
1585 1586 1587
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1588
		.memcg = memcg,
1589 1590 1591
		.gfp_mask = gfp_mask,
		.order = order,
	};
1592
	bool ret = true;
1593

1594 1595
	if (mutex_lock_killable(&oom_lock))
		return true;
1596 1597 1598 1599

	if (mem_cgroup_margin(memcg) >= (1 << order))
		goto unlock;

1600 1601 1602 1603 1604
	/*
	 * A few threads which were not waiting at mutex_lock_killable() can
	 * fail to bail out. Therefore, check again after holding oom_lock.
	 */
	ret = should_force_charge() || out_of_memory(&oc);
1605 1606

unlock:
1607
	mutex_unlock(&oom_lock);
1608
	return ret;
1609 1610
}

1611
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1612
				   pg_data_t *pgdat,
1613 1614 1615 1616 1617 1618 1619 1620 1621
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1622
		.pgdat = pgdat,
1623 1624
	};

1625
	excess = soft_limit_excess(root_memcg);
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1651
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1652
					pgdat, &nr_scanned);
1653
		*total_scanned += nr_scanned;
1654
		if (!soft_limit_excess(root_memcg))
1655
			break;
1656
	}
1657 1658
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1659 1660
}

1661 1662 1663 1664 1665 1666
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1667 1668
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1669 1670 1671 1672
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1673
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1674
{
1675
	struct mem_cgroup *iter, *failed = NULL;
1676

1677 1678
	spin_lock(&memcg_oom_lock);

1679
	for_each_mem_cgroup_tree(iter, memcg) {
1680
		if (iter->oom_lock) {
1681 1682 1683 1684 1685
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1686 1687
			mem_cgroup_iter_break(memcg, iter);
			break;
1688 1689
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1690
	}
K
KAMEZAWA Hiroyuki 已提交
1691

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1703
		}
1704 1705
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1706 1707 1708 1709

	spin_unlock(&memcg_oom_lock);

	return !failed;
1710
}
1711

1712
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1713
{
K
KAMEZAWA Hiroyuki 已提交
1714 1715
	struct mem_cgroup *iter;

1716
	spin_lock(&memcg_oom_lock);
1717
	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1718
	for_each_mem_cgroup_tree(iter, memcg)
1719
		iter->oom_lock = false;
1720
	spin_unlock(&memcg_oom_lock);
1721 1722
}

1723
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1724 1725 1726
{
	struct mem_cgroup *iter;

1727
	spin_lock(&memcg_oom_lock);
1728
	for_each_mem_cgroup_tree(iter, memcg)
1729 1730
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1731 1732
}

1733
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1734 1735 1736
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1737
	/*
I
Ingo Molnar 已提交
1738
	 * Be careful about under_oom underflows because a child memcg
1739
	 * could have been added after mem_cgroup_mark_under_oom.
K
KAMEZAWA Hiroyuki 已提交
1740
	 */
1741
	spin_lock(&memcg_oom_lock);
1742
	for_each_mem_cgroup_tree(iter, memcg)
1743 1744 1745
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1746 1747
}

K
KAMEZAWA Hiroyuki 已提交
1748 1749
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1750
struct oom_wait_info {
1751
	struct mem_cgroup *memcg;
1752
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1753 1754
};

1755
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1756 1757
	unsigned mode, int sync, void *arg)
{
1758 1759
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1760 1761 1762
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1763
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1764

1765 1766
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1767 1768 1769 1770
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1771
static void memcg_oom_recover(struct mem_cgroup *memcg)
1772
{
1773 1774 1775 1776 1777 1778 1779 1780 1781
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1782
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1783 1784
}

1785 1786 1787 1788 1789 1790 1791 1792
enum oom_status {
	OOM_SUCCESS,
	OOM_FAILED,
	OOM_ASYNC,
	OOM_SKIPPED
};

static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1793
{
1794 1795 1796
	enum oom_status ret;
	bool locked;

1797 1798 1799
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		return OOM_SKIPPED;

1800 1801
	memcg_memory_event(memcg, MEMCG_OOM);

K
KAMEZAWA Hiroyuki 已提交
1802
	/*
1803 1804 1805 1806
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1807 1808 1809 1810
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1811
	 *
1812 1813 1814 1815 1816 1817 1818
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
K
KAMEZAWA Hiroyuki 已提交
1819
	 */
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
	if (memcg->oom_kill_disable) {
		if (!current->in_user_fault)
			return OOM_SKIPPED;
		css_get(&memcg->css);
		current->memcg_in_oom = memcg;
		current->memcg_oom_gfp_mask = mask;
		current->memcg_oom_order = order;

		return OOM_ASYNC;
	}

1831 1832 1833 1834 1835 1836 1837 1838
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	mem_cgroup_unmark_under_oom(memcg);
1839
	if (mem_cgroup_out_of_memory(memcg, mask, order))
1840 1841 1842 1843 1844 1845
		ret = OOM_SUCCESS;
	else
		ret = OOM_FAILED;

	if (locked)
		mem_cgroup_oom_unlock(memcg);
1846

1847
	return ret;
1848 1849 1850 1851
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1852
 * @handle: actually kill/wait or just clean up the OOM state
1853
 *
1854 1855
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1856
 *
1857
 * Memcg supports userspace OOM handling where failed allocations must
1858 1859 1860 1861
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1862
 * the end of the page fault to complete the OOM handling.
1863 1864
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1865
 * completed, %false otherwise.
1866
 */
1867
bool mem_cgroup_oom_synchronize(bool handle)
1868
{
T
Tejun Heo 已提交
1869
	struct mem_cgroup *memcg = current->memcg_in_oom;
1870
	struct oom_wait_info owait;
1871
	bool locked;
1872 1873 1874

	/* OOM is global, do not handle */
	if (!memcg)
1875
		return false;
1876

1877
	if (!handle)
1878
		goto cleanup;
1879 1880 1881 1882 1883

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
1884
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
1885

1886
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1897 1898
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1899
	} else {
1900
		schedule();
1901 1902 1903 1904 1905
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1906 1907 1908 1909
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
I
Ingo Molnar 已提交
1910
		 * uncharges.  Wake any sleepers explicitly.
1911 1912 1913
		 */
		memcg_oom_recover(memcg);
	}
1914
cleanup:
T
Tejun Heo 已提交
1915
	current->memcg_in_oom = NULL;
1916
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1917
	return true;
1918 1919
}

1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
/**
 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 * @victim: task to be killed by the OOM killer
 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 *
 * Returns a pointer to a memory cgroup, which has to be cleaned up
 * by killing all belonging OOM-killable tasks.
 *
 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 */
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
					    struct mem_cgroup *oom_domain)
{
	struct mem_cgroup *oom_group = NULL;
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return NULL;

	if (!oom_domain)
		oom_domain = root_mem_cgroup;

	rcu_read_lock();

	memcg = mem_cgroup_from_task(victim);
	if (memcg == root_mem_cgroup)
		goto out;

1948 1949 1950 1951 1952 1953 1954 1955
	/*
	 * If the victim task has been asynchronously moved to a different
	 * memory cgroup, we might end up killing tasks outside oom_domain.
	 * In this case it's better to ignore memory.group.oom.
	 */
	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
		goto out;

1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
	/*
	 * Traverse the memory cgroup hierarchy from the victim task's
	 * cgroup up to the OOMing cgroup (or root) to find the
	 * highest-level memory cgroup with oom.group set.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		if (memcg->oom_group)
			oom_group = memcg;

		if (memcg == oom_domain)
			break;
	}

	if (oom_group)
		css_get(&oom_group->css);
out:
	rcu_read_unlock();

	return oom_group;
}

void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
	pr_info("Tasks in ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(" are going to be killed due to memory.oom.group set\n");
}

1984
/**
1985
 * lock_page_memcg - lock a page and memcg binding
1986
 * @page: the page
1987
 *
1988
 * This function protects unlocked LRU pages from being moved to
1989 1990
 * another cgroup.
 *
1991 1992
 * It ensures lifetime of the locked memcg. Caller is responsible
 * for the lifetime of the page.
1993
 */
1994
void lock_page_memcg(struct page *page)
1995
{
1996
	struct page *head = compound_head(page); /* rmap on tail pages */
1997
	struct mem_cgroup *memcg;
1998
	unsigned long flags;
1999

2000 2001 2002 2003
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
2004
         */
2005 2006 2007
	rcu_read_lock();

	if (mem_cgroup_disabled())
2008
		return;
2009
again:
2010
	memcg = page_memcg(head);
2011
	if (unlikely(!memcg))
2012
		return;
2013

2014 2015 2016 2017 2018 2019
#ifdef CONFIG_PROVE_LOCKING
	local_irq_save(flags);
	might_lock(&memcg->move_lock);
	local_irq_restore(flags);
#endif

Q
Qiang Huang 已提交
2020
	if (atomic_read(&memcg->moving_account) <= 0)
2021
		return;
2022

2023
	spin_lock_irqsave(&memcg->move_lock, flags);
2024
	if (memcg != page_memcg(head)) {
2025
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2026 2027
		goto again;
	}
2028 2029

	/*
2030 2031 2032 2033
	 * When charge migration first begins, we can have multiple
	 * critical sections holding the fast-path RCU lock and one
	 * holding the slowpath move_lock. Track the task who has the
	 * move_lock for unlock_page_memcg().
2034 2035 2036
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2037
}
2038
EXPORT_SYMBOL(lock_page_memcg);
2039

2040
static void __unlock_page_memcg(struct mem_cgroup *memcg)
2041
{
2042 2043 2044 2045 2046 2047 2048 2049
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2050

2051
	rcu_read_unlock();
2052
}
2053 2054

/**
2055
 * unlock_page_memcg - unlock a page and memcg binding
2056 2057 2058 2059
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
2060 2061
	struct page *head = compound_head(page);

2062
	__unlock_page_memcg(page_memcg(head));
2063
}
2064
EXPORT_SYMBOL(unlock_page_memcg);
2065

2066
struct obj_stock {
R
Roman Gushchin 已提交
2067 2068
#ifdef CONFIG_MEMCG_KMEM
	struct obj_cgroup *cached_objcg;
2069
	struct pglist_data *cached_pgdat;
R
Roman Gushchin 已提交
2070
	unsigned int nr_bytes;
2071 2072
	int nr_slab_reclaimable_b;
	int nr_slab_unreclaimable_b;
2073 2074
#else
	int dummy[0];
R
Roman Gushchin 已提交
2075
#endif
2076 2077 2078 2079 2080 2081 2082
};

struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
	unsigned int nr_pages;
	struct obj_stock task_obj;
	struct obj_stock irq_obj;
R
Roman Gushchin 已提交
2083

2084
	struct work_struct work;
2085
	unsigned long flags;
2086
#define FLUSHING_CACHED_CHARGE	0
2087 2088
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2089
static DEFINE_MUTEX(percpu_charge_mutex);
2090

R
Roman Gushchin 已提交
2091
#ifdef CONFIG_MEMCG_KMEM
2092
static void drain_obj_stock(struct obj_stock *stock);
R
Roman Gushchin 已提交
2093 2094 2095 2096
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg);

#else
2097
static inline void drain_obj_stock(struct obj_stock *stock)
R
Roman Gushchin 已提交
2098 2099 2100 2101 2102 2103 2104 2105 2106
{
}
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	return false;
}
#endif

2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
/*
 * Most kmem_cache_alloc() calls are from user context. The irq disable/enable
 * sequence used in this case to access content from object stock is slow.
 * To optimize for user context access, there are now two object stocks for
 * task context and interrupt context access respectively.
 *
 * The task context object stock can be accessed by disabling preemption only
 * which is cheap in non-preempt kernel. The interrupt context object stock
 * can only be accessed after disabling interrupt. User context code can
 * access interrupt object stock, but not vice versa.
 */
static inline struct obj_stock *get_obj_stock(unsigned long *pflags)
{
	struct memcg_stock_pcp *stock;

	if (likely(in_task())) {
		*pflags = 0UL;
		preempt_disable();
		stock = this_cpu_ptr(&memcg_stock);
		return &stock->task_obj;
	}

	local_irq_save(*pflags);
	stock = this_cpu_ptr(&memcg_stock);
	return &stock->irq_obj;
}

static inline void put_obj_stock(unsigned long flags)
{
	if (likely(in_task()))
		preempt_enable();
	else
		local_irq_restore(flags);
}

2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2152
 */
2153
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2154 2155
{
	struct memcg_stock_pcp *stock;
2156
	unsigned long flags;
2157
	bool ret = false;
2158

2159
	if (nr_pages > MEMCG_CHARGE_BATCH)
2160
		return ret;
2161

2162 2163 2164
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2165
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2166
		stock->nr_pages -= nr_pages;
2167 2168
		ret = true;
	}
2169 2170 2171

	local_irq_restore(flags);

2172 2173 2174 2175
	return ret;
}

/*
2176
 * Returns stocks cached in percpu and reset cached information.
2177 2178 2179 2180 2181
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2182 2183 2184
	if (!old)
		return;

2185
	if (stock->nr_pages) {
2186
		page_counter_uncharge(&old->memory, stock->nr_pages);
2187
		if (do_memsw_account())
2188
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2189
		stock->nr_pages = 0;
2190
	}
2191 2192

	css_put(&old->css);
2193 2194 2195 2196 2197
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
2198 2199 2200
	struct memcg_stock_pcp *stock;
	unsigned long flags;

2201 2202 2203 2204
	/*
	 * The only protection from memory hotplug vs. drain_stock races is
	 * that we always operate on local CPU stock here with IRQ disabled
	 */
2205 2206 2207
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2208 2209 2210
	drain_obj_stock(&stock->irq_obj);
	if (in_task())
		drain_obj_stock(&stock->task_obj);
2211
	drain_stock(stock);
2212
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2213 2214

	local_irq_restore(flags);
2215 2216 2217
}

/*
2218
 * Cache charges(val) to local per_cpu area.
2219
 * This will be consumed by consume_stock() function, later.
2220
 */
2221
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2222
{
2223 2224 2225 2226
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
2227

2228
	stock = this_cpu_ptr(&memcg_stock);
2229
	if (stock->cached != memcg) { /* reset if necessary */
2230
		drain_stock(stock);
2231
		css_get(&memcg->css);
2232
		stock->cached = memcg;
2233
	}
2234
	stock->nr_pages += nr_pages;
2235

2236
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2237 2238
		drain_stock(stock);

2239
	local_irq_restore(flags);
2240 2241 2242
}

/*
2243
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2244
 * of the hierarchy under it.
2245
 */
2246
static void drain_all_stock(struct mem_cgroup *root_memcg)
2247
{
2248
	int cpu, curcpu;
2249

2250 2251 2252
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2253 2254 2255 2256 2257 2258
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
2259
	curcpu = get_cpu();
2260 2261
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2262
		struct mem_cgroup *memcg;
2263
		bool flush = false;
2264

2265
		rcu_read_lock();
2266
		memcg = stock->cached;
2267 2268 2269
		if (memcg && stock->nr_pages &&
		    mem_cgroup_is_descendant(memcg, root_memcg))
			flush = true;
R
Roman Gushchin 已提交
2270 2271
		if (obj_stock_flush_required(stock, root_memcg))
			flush = true;
2272 2273 2274 2275
		rcu_read_unlock();

		if (flush &&
		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2276 2277 2278 2279 2280
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2281
	}
2282
	put_cpu();
2283
	mutex_unlock(&percpu_charge_mutex);
2284 2285
}

2286
static void memcg_flush_lruvec_page_state(struct mem_cgroup *memcg, int cpu)
2287
{
2288
	int nid;
2289

2290 2291 2292 2293
	for_each_node(nid) {
		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
		unsigned long stat[NR_VM_NODE_STAT_ITEMS];
		struct batched_lruvec_stat *lstatc;
2294 2295
		int i;

2296
		lstatc = per_cpu_ptr(pn->lruvec_stat_cpu, cpu);
2297
		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
2298 2299 2300
			stat[i] = lstatc->count[i];
			lstatc->count[i] = 0;
		}
2301

2302 2303 2304 2305 2306 2307
		do {
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
				atomic_long_add(stat[i], &pn->lruvec_stat[i]);
		} while ((pn = parent_nodeinfo(pn, nid)));
	}
}
2308

2309 2310 2311 2312
static int memcg_hotplug_cpu_dead(unsigned int cpu)
{
	struct memcg_stock_pcp *stock;
	struct mem_cgroup *memcg;
2313

2314 2315
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
2316

2317 2318
	for_each_mem_cgroup(memcg)
		memcg_flush_lruvec_page_state(memcg, cpu);
2319

2320
	return 0;
2321 2322
}

2323 2324 2325
static unsigned long reclaim_high(struct mem_cgroup *memcg,
				  unsigned int nr_pages,
				  gfp_t gfp_mask)
2326
{
2327 2328
	unsigned long nr_reclaimed = 0;

2329
	do {
2330 2331
		unsigned long pflags;

2332 2333
		if (page_counter_read(&memcg->memory) <=
		    READ_ONCE(memcg->memory.high))
2334
			continue;
2335

2336
		memcg_memory_event(memcg, MEMCG_HIGH);
2337 2338

		psi_memstall_enter(&pflags);
2339 2340
		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
							     gfp_mask, true);
2341
		psi_memstall_leave(&pflags);
2342 2343
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));
2344 2345

	return nr_reclaimed;
2346 2347 2348 2349 2350 2351 2352
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
2353
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2354 2355
}

2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
/*
 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
 * enough to still cause a significant slowdown in most cases, while still
 * allowing diagnostics and tracing to proceed without becoming stuck.
 */
#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)

/*
 * When calculating the delay, we use these either side of the exponentiation to
 * maintain precision and scale to a reasonable number of jiffies (see the table
 * below.
 *
 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
 *   overage ratio to a delay.
2370
 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
 *   to produce a reasonable delay curve.
 *
 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
 * reasonable delay curve compared to precision-adjusted overage, not
 * penalising heavily at first, but still making sure that growth beyond the
 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
 * example, with a high of 100 megabytes:
 *
 *  +-------+------------------------+
 *  | usage | time to allocate in ms |
 *  +-------+------------------------+
 *  | 100M  |                      0 |
 *  | 101M  |                      6 |
 *  | 102M  |                     25 |
 *  | 103M  |                     57 |
 *  | 104M  |                    102 |
 *  | 105M  |                    159 |
 *  | 106M  |                    230 |
 *  | 107M  |                    313 |
 *  | 108M  |                    409 |
 *  | 109M  |                    518 |
 *  | 110M  |                    639 |
 *  | 111M  |                    774 |
 *  | 112M  |                    921 |
 *  | 113M  |                   1081 |
 *  | 114M  |                   1254 |
 *  | 115M  |                   1439 |
 *  | 116M  |                   1638 |
 *  | 117M  |                   1849 |
 *  | 118M  |                   2000 |
 *  | 119M  |                   2000 |
 *  | 120M  |                   2000 |
 *  +-------+------------------------+
 */
 #define MEMCG_DELAY_PRECISION_SHIFT 20
 #define MEMCG_DELAY_SCALING_SHIFT 14

2409
static u64 calculate_overage(unsigned long usage, unsigned long high)
2410
{
2411
	u64 overage;
2412

2413 2414
	if (usage <= high)
		return 0;
2415

2416 2417 2418 2419 2420
	/*
	 * Prevent division by 0 in overage calculation by acting as if
	 * it was a threshold of 1 page
	 */
	high = max(high, 1UL);
2421

2422 2423 2424 2425
	overage = usage - high;
	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
	return div64_u64(overage, high);
}
2426

2427 2428 2429
static u64 mem_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;
2430

2431 2432
	do {
		overage = calculate_overage(page_counter_read(&memcg->memory),
2433
					    READ_ONCE(memcg->memory.high));
2434
		max_overage = max(overage, max_overage);
2435 2436 2437
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

2438 2439 2440
	return max_overage;
}

2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
static u64 swap_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;

	do {
		overage = calculate_overage(page_counter_read(&memcg->swap),
					    READ_ONCE(memcg->swap.high));
		if (overage)
			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
		max_overage = max(overage, max_overage);
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

	return max_overage;
}

2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
/*
 * Get the number of jiffies that we should penalise a mischievous cgroup which
 * is exceeding its memory.high by checking both it and its ancestors.
 */
static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
					  unsigned int nr_pages,
					  u64 max_overage)
{
	unsigned long penalty_jiffies;

2467 2468
	if (!max_overage)
		return 0;
2469 2470 2471 2472 2473 2474 2475 2476 2477

	/*
	 * We use overage compared to memory.high to calculate the number of
	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
	 * fairly lenient on small overages, and increasingly harsh when the
	 * memcg in question makes it clear that it has no intention of stopping
	 * its crazy behaviour, so we exponentially increase the delay based on
	 * overage amount.
	 */
2478 2479 2480
	penalty_jiffies = max_overage * max_overage * HZ;
	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2481 2482 2483 2484 2485 2486 2487 2488 2489

	/*
	 * Factor in the task's own contribution to the overage, such that four
	 * N-sized allocations are throttled approximately the same as one
	 * 4N-sized allocation.
	 *
	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
	 * larger the current charge patch is than that.
	 */
2490
	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
}

/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned long penalty_jiffies;
	unsigned long pflags;
2501
	unsigned long nr_reclaimed;
2502
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2503
	int nr_retries = MAX_RECLAIM_RETRIES;
2504
	struct mem_cgroup *memcg;
2505
	bool in_retry = false;
2506 2507 2508 2509 2510 2511 2512

	if (likely(!nr_pages))
		return;

	memcg = get_mem_cgroup_from_mm(current->mm);
	current->memcg_nr_pages_over_high = 0;

2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
retry_reclaim:
	/*
	 * The allocating task should reclaim at least the batch size, but for
	 * subsequent retries we only want to do what's necessary to prevent oom
	 * or breaching resource isolation.
	 *
	 * This is distinct from memory.max or page allocator behaviour because
	 * memory.high is currently batched, whereas memory.max and the page
	 * allocator run every time an allocation is made.
	 */
	nr_reclaimed = reclaim_high(memcg,
				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
				    GFP_KERNEL);

2527 2528 2529 2530
	/*
	 * memory.high is breached and reclaim is unable to keep up. Throttle
	 * allocators proactively to slow down excessive growth.
	 */
2531 2532
	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
					       mem_find_max_overage(memcg));
2533

2534 2535 2536
	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
						swap_find_max_overage(memcg));

2537 2538 2539 2540 2541 2542 2543
	/*
	 * Clamp the max delay per usermode return so as to still keep the
	 * application moving forwards and also permit diagnostics, albeit
	 * extremely slowly.
	 */
	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);

2544 2545 2546 2547 2548 2549 2550 2551 2552
	/*
	 * Don't sleep if the amount of jiffies this memcg owes us is so low
	 * that it's not even worth doing, in an attempt to be nice to those who
	 * go only a small amount over their memory.high value and maybe haven't
	 * been aggressively reclaimed enough yet.
	 */
	if (penalty_jiffies <= HZ / 100)
		goto out;

2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
	/*
	 * If reclaim is making forward progress but we're still over
	 * memory.high, we want to encourage that rather than doing allocator
	 * throttling.
	 */
	if (nr_reclaimed || nr_retries--) {
		in_retry = true;
		goto retry_reclaim;
	}

2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
	/*
	 * If we exit early, we're guaranteed to die (since
	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
	 * need to account for any ill-begotten jiffies to pay them off later.
	 */
	psi_memstall_enter(&pflags);
	schedule_timeout_killable(penalty_jiffies);
	psi_memstall_leave(&pflags);

out:
	css_put(&memcg->css);
2574 2575
}

2576 2577
static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
			unsigned int nr_pages)
2578
{
2579
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2580
	int nr_retries = MAX_RECLAIM_RETRIES;
2581
	struct mem_cgroup *mem_over_limit;
2582
	struct page_counter *counter;
2583
	enum oom_status oom_status;
2584
	unsigned long nr_reclaimed;
2585 2586
	bool may_swap = true;
	bool drained = false;
2587
	unsigned long pflags;
2588

2589
retry:
2590
	if (consume_stock(memcg, nr_pages))
2591
		return 0;
2592

2593
	if (!do_memsw_account() ||
2594 2595
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2596
			goto done_restock;
2597
		if (do_memsw_account())
2598 2599
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2600
	} else {
2601
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2602
		may_swap = false;
2603
	}
2604

2605 2606 2607 2608
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2609

2610 2611 2612 2613 2614 2615 2616 2617 2618
	/*
	 * Memcg doesn't have a dedicated reserve for atomic
	 * allocations. But like the global atomic pool, we need to
	 * put the burden of reclaim on regular allocation requests
	 * and let these go through as privileged allocations.
	 */
	if (gfp_mask & __GFP_ATOMIC)
		goto force;

2619 2620 2621 2622 2623 2624
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
2625
	if (unlikely(should_force_charge()))
2626
		goto force;
2627

2628 2629 2630 2631 2632 2633 2634 2635 2636
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2637 2638 2639
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2640
	if (!gfpflags_allow_blocking(gfp_mask))
2641
		goto nomem;
2642

2643
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2644

2645
	psi_memstall_enter(&pflags);
2646 2647
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2648
	psi_memstall_leave(&pflags);
2649

2650
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2651
		goto retry;
2652

2653
	if (!drained) {
2654
		drain_all_stock(mem_over_limit);
2655 2656 2657 2658
		drained = true;
		goto retry;
	}

2659 2660
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2661 2662 2663 2664 2665 2666 2667 2668 2669
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2670
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2671 2672 2673 2674 2675 2676 2677 2678
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2679 2680 2681
	if (nr_retries--)
		goto retry;

2682
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2683 2684
		goto nomem;

2685
	if (fatal_signal_pending(current))
2686
		goto force;
2687

2688 2689 2690 2691 2692 2693
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2694
		       get_order(nr_pages * PAGE_SIZE));
2695 2696
	switch (oom_status) {
	case OOM_SUCCESS:
2697
		nr_retries = MAX_RECLAIM_RETRIES;
2698 2699 2700 2701 2702 2703
		goto retry;
	case OOM_FAILED:
		goto force;
	default:
		goto nomem;
	}
2704
nomem:
2705
	if (!(gfp_mask & __GFP_NOFAIL))
2706
		return -ENOMEM;
2707 2708 2709 2710 2711 2712 2713
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2714
	if (do_memsw_account())
2715 2716 2717
		page_counter_charge(&memcg->memsw, nr_pages);

	return 0;
2718 2719 2720 2721

done_restock:
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2722

2723
	/*
2724 2725
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2726
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2727 2728 2729 2730
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2731 2732
	 */
	do {
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
		bool mem_high, swap_high;

		mem_high = page_counter_read(&memcg->memory) >
			READ_ONCE(memcg->memory.high);
		swap_high = page_counter_read(&memcg->swap) >
			READ_ONCE(memcg->swap.high);

		/* Don't bother a random interrupted task */
		if (in_interrupt()) {
			if (mem_high) {
2743 2744 2745
				schedule_work(&memcg->high_work);
				break;
			}
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
			continue;
		}

		if (mem_high || swap_high) {
			/*
			 * The allocating tasks in this cgroup will need to do
			 * reclaim or be throttled to prevent further growth
			 * of the memory or swap footprints.
			 *
			 * Target some best-effort fairness between the tasks,
			 * and distribute reclaim work and delay penalties
			 * based on how much each task is actually allocating.
			 */
V
Vladimir Davydov 已提交
2759
			current->memcg_nr_pages_over_high += batch;
2760 2761 2762
			set_notify_resume(current);
			break;
		}
2763
	} while ((memcg = parent_mem_cgroup(memcg)));
2764 2765

	return 0;
2766
}
2767

2768 2769 2770 2771 2772 2773 2774 2775 2776
static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
			     unsigned int nr_pages)
{
	if (mem_cgroup_is_root(memcg))
		return 0;

	return try_charge_memcg(memcg, gfp_mask, nr_pages);
}

2777
#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2778
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2779
{
2780 2781 2782
	if (mem_cgroup_is_root(memcg))
		return;

2783
	page_counter_uncharge(&memcg->memory, nr_pages);
2784
	if (do_memsw_account())
2785
		page_counter_uncharge(&memcg->memsw, nr_pages);
2786
}
2787
#endif
2788

2789
static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2790
{
2791
	VM_BUG_ON_PAGE(page_memcg(page), page);
2792
	/*
2793
	 * Any of the following ensures page's memcg stability:
2794
	 *
2795 2796 2797 2798
	 * - the page lock
	 * - LRU isolation
	 * - lock_page_memcg()
	 * - exclusive reference
2799
	 */
2800
	page->memcg_data = (unsigned long)memcg;
2801
}
2802

2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
{
	struct mem_cgroup *memcg;

	rcu_read_lock();
retry:
	memcg = obj_cgroup_memcg(objcg);
	if (unlikely(!css_tryget(&memcg->css)))
		goto retry;
	rcu_read_unlock();

	return memcg;
}

2817
#ifdef CONFIG_MEMCG_KMEM
2818 2819 2820 2821 2822 2823 2824
/*
 * The allocated objcg pointers array is not accounted directly.
 * Moreover, it should not come from DMA buffer and is not readily
 * reclaimable. So those GFP bits should be masked off.
 */
#define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)

2825
int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2826
				 gfp_t gfp, bool new_page)
2827 2828
{
	unsigned int objects = objs_per_slab_page(s, page);
2829
	unsigned long memcg_data;
2830 2831
	void *vec;

2832
	gfp &= ~OBJCGS_CLEAR_MASK;
2833 2834 2835 2836 2837
	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
			   page_to_nid(page));
	if (!vec)
		return -ENOMEM;

2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
	if (new_page) {
		/*
		 * If the slab page is brand new and nobody can yet access
		 * it's memcg_data, no synchronization is required and
		 * memcg_data can be simply assigned.
		 */
		page->memcg_data = memcg_data;
	} else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
		/*
		 * If the slab page is already in use, somebody can allocate
		 * and assign obj_cgroups in parallel. In this case the existing
		 * objcg vector should be reused.
		 */
2852
		kfree(vec);
2853 2854
		return 0;
	}
2855

2856
	kmemleak_not_leak(vec);
2857 2858 2859
	return 0;
}

2860 2861 2862
/*
 * Returns a pointer to the memory cgroup to which the kernel object is charged.
 *
2863 2864 2865 2866 2867 2868
 * A passed kernel object can be a slab object or a generic kernel page, so
 * different mechanisms for getting the memory cgroup pointer should be used.
 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
 * can not know for sure how the kernel object is implemented.
 * mem_cgroup_from_obj() can be safely used in such cases.
 *
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
 * cgroup_mutex, etc.
 */
struct mem_cgroup *mem_cgroup_from_obj(void *p)
{
	struct page *page;

	if (mem_cgroup_disabled())
		return NULL;

	page = virt_to_head_page(p);

	/*
2882 2883 2884
	 * Slab objects are accounted individually, not per-page.
	 * Memcg membership data for each individual object is saved in
	 * the page->obj_cgroups.
2885
	 */
2886
	if (page_objcgs_check(page)) {
2887 2888 2889 2890
		struct obj_cgroup *objcg;
		unsigned int off;

		off = obj_to_index(page->slab_cache, page, p);
2891
		objcg = page_objcgs(page)[off];
2892 2893 2894 2895
		if (objcg)
			return obj_cgroup_memcg(objcg);

		return NULL;
2896
	}
2897

2898 2899 2900 2901 2902 2903 2904 2905
	/*
	 * page_memcg_check() is used here, because page_has_obj_cgroups()
	 * check above could fail because the object cgroups vector wasn't set
	 * at that moment, but it can be set concurrently.
	 * page_memcg_check(page) will guarantee that a proper memory
	 * cgroup pointer or NULL will be returned.
	 */
	return page_memcg_check(page);
2906 2907
}

R
Roman Gushchin 已提交
2908 2909 2910 2911 2912
__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
{
	struct obj_cgroup *objcg = NULL;
	struct mem_cgroup *memcg;

2913 2914 2915
	if (memcg_kmem_bypass())
		return NULL;

R
Roman Gushchin 已提交
2916
	rcu_read_lock();
2917 2918
	if (unlikely(active_memcg()))
		memcg = active_memcg();
R
Roman Gushchin 已提交
2919 2920 2921 2922 2923 2924 2925
	else
		memcg = mem_cgroup_from_task(current);

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		objcg = rcu_dereference(memcg->objcg);
		if (objcg && obj_cgroup_tryget(objcg))
			break;
2926
		objcg = NULL;
R
Roman Gushchin 已提交
2927 2928 2929 2930 2931 2932
	}
	rcu_read_unlock();

	return objcg;
}

2933
static int memcg_alloc_cache_id(void)
2934
{
2935 2936 2937
	int id, size;
	int err;

2938
	id = ida_simple_get(&memcg_cache_ida,
2939 2940 2941
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2942

2943
	if (id < memcg_nr_cache_ids)
2944 2945 2946 2947 2948 2949
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2950
	down_write(&memcg_cache_ids_sem);
2951 2952

	size = 2 * (id + 1);
2953 2954 2955 2956 2957
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2958
	err = memcg_update_all_list_lrus(size);
2959 2960 2961 2962 2963
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2964
	if (err) {
2965
		ida_simple_remove(&memcg_cache_ida, id);
2966 2967 2968 2969 2970 2971 2972
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2973
	ida_simple_remove(&memcg_cache_ida, id);
2974 2975
}

2976 2977 2978 2979 2980
/*
 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
 * @objcg: object cgroup to uncharge
 * @nr_pages: number of pages to uncharge
 */
2981 2982 2983 2984 2985 2986 2987
static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
				      unsigned int nr_pages)
{
	struct mem_cgroup *memcg;

	memcg = get_mem_cgroup_from_objcg(objcg);

2988 2989 2990
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);
	refill_stock(memcg, nr_pages);
2991 2992 2993 2994

	css_put(&memcg->css);
}

2995 2996 2997
/*
 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
 * @objcg: object cgroup to charge
2998
 * @gfp: reclaim mode
2999
 * @nr_pages: number of pages to charge
3000 3001 3002
 *
 * Returns 0 on success, an error code on failure.
 */
3003 3004
static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
				   unsigned int nr_pages)
3005
{
3006
	struct page_counter *counter;
3007
	struct mem_cgroup *memcg;
3008 3009
	int ret;

3010 3011
	memcg = get_mem_cgroup_from_objcg(objcg);

3012
	ret = try_charge_memcg(memcg, gfp, nr_pages);
3013
	if (ret)
3014
		goto out;
3015 3016 3017

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3018 3019 3020 3021 3022 3023 3024 3025

		/*
		 * Enforce __GFP_NOFAIL allocation because callers are not
		 * prepared to see failures and likely do not have any failure
		 * handling code.
		 */
		if (gfp & __GFP_NOFAIL) {
			page_counter_charge(&memcg->kmem, nr_pages);
3026
			goto out;
3027
		}
3028
		cancel_charge(memcg, nr_pages);
3029
		ret = -ENOMEM;
3030
	}
3031 3032
out:
	css_put(&memcg->css);
3033

3034
	return ret;
3035 3036
}

3037
/**
3038
 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3039 3040 3041 3042 3043 3044
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
3045
int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3046
{
3047
	struct obj_cgroup *objcg;
3048
	int ret = 0;
3049

3050 3051 3052
	objcg = get_obj_cgroup_from_current();
	if (objcg) {
		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3053
		if (!ret) {
3054
			page->memcg_data = (unsigned long)objcg |
3055
				MEMCG_DATA_KMEM;
3056
			return 0;
3057
		}
3058
		obj_cgroup_put(objcg);
3059
	}
3060
	return ret;
3061
}
3062

3063
/**
3064
 * __memcg_kmem_uncharge_page: uncharge a kmem page
3065 3066 3067
 * @page: page to uncharge
 * @order: allocation order
 */
3068
void __memcg_kmem_uncharge_page(struct page *page, int order)
3069
{
3070
	struct obj_cgroup *objcg;
3071
	unsigned int nr_pages = 1 << order;
3072

3073
	if (!PageMemcgKmem(page))
3074 3075
		return;

3076 3077
	objcg = __page_objcg(page);
	obj_cgroup_uncharge_pages(objcg, nr_pages);
3078
	page->memcg_data = 0;
3079
	obj_cgroup_put(objcg);
3080
}
R
Roman Gushchin 已提交
3081

3082 3083 3084 3085
void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
		     enum node_stat_item idx, int nr)
{
	unsigned long flags;
3086
	struct obj_stock *stock = get_obj_stock(&flags);
3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
	int *bytes;

	/*
	 * Save vmstat data in stock and skip vmstat array update unless
	 * accumulating over a page of vmstat data or when pgdat or idx
	 * changes.
	 */
	if (stock->cached_objcg != objcg) {
		drain_obj_stock(stock);
		obj_cgroup_get(objcg);
		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
		stock->cached_objcg = objcg;
		stock->cached_pgdat = pgdat;
	} else if (stock->cached_pgdat != pgdat) {
		/* Flush the existing cached vmstat data */
		if (stock->nr_slab_reclaimable_b) {
			mod_objcg_mlstate(objcg, pgdat, NR_SLAB_RECLAIMABLE_B,
					  stock->nr_slab_reclaimable_b);
			stock->nr_slab_reclaimable_b = 0;
		}
		if (stock->nr_slab_unreclaimable_b) {
			mod_objcg_mlstate(objcg, pgdat, NR_SLAB_UNRECLAIMABLE_B,
					  stock->nr_slab_unreclaimable_b);
			stock->nr_slab_unreclaimable_b = 0;
		}
		stock->cached_pgdat = pgdat;
	}

	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
					       : &stock->nr_slab_unreclaimable_b;
	/*
	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
	 * cached locally at least once before pushing it out.
	 */
	if (!*bytes) {
		*bytes = nr;
		nr = 0;
	} else {
		*bytes += nr;
		if (abs(*bytes) > PAGE_SIZE) {
			nr = *bytes;
			*bytes = 0;
		} else {
			nr = 0;
		}
	}
	if (nr)
		mod_objcg_mlstate(objcg, pgdat, idx, nr);

3137
	put_obj_stock(flags);
3138 3139
}

R
Roman Gushchin 已提交
3140 3141 3142
static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
{
	unsigned long flags;
3143
	struct obj_stock *stock = get_obj_stock(&flags);
R
Roman Gushchin 已提交
3144 3145 3146 3147 3148 3149 3150
	bool ret = false;

	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
		stock->nr_bytes -= nr_bytes;
		ret = true;
	}

3151
	put_obj_stock(flags);
R
Roman Gushchin 已提交
3152 3153 3154 3155

	return ret;
}

3156
static void drain_obj_stock(struct obj_stock *stock)
R
Roman Gushchin 已提交
3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
{
	struct obj_cgroup *old = stock->cached_objcg;

	if (!old)
		return;

	if (stock->nr_bytes) {
		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);

3167 3168
		if (nr_pages)
			obj_cgroup_uncharge_pages(old, nr_pages);
R
Roman Gushchin 已提交
3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183

		/*
		 * The leftover is flushed to the centralized per-memcg value.
		 * On the next attempt to refill obj stock it will be moved
		 * to a per-cpu stock (probably, on an other CPU), see
		 * refill_obj_stock().
		 *
		 * How often it's flushed is a trade-off between the memory
		 * limit enforcement accuracy and potential CPU contention,
		 * so it might be changed in the future.
		 */
		atomic_add(nr_bytes, &old->nr_charged_bytes);
		stock->nr_bytes = 0;
	}

3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
	/*
	 * Flush the vmstat data in current stock
	 */
	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
		if (stock->nr_slab_reclaimable_b) {
			mod_objcg_mlstate(old, stock->cached_pgdat,
					  NR_SLAB_RECLAIMABLE_B,
					  stock->nr_slab_reclaimable_b);
			stock->nr_slab_reclaimable_b = 0;
		}
		if (stock->nr_slab_unreclaimable_b) {
			mod_objcg_mlstate(old, stock->cached_pgdat,
					  NR_SLAB_UNRECLAIMABLE_B,
					  stock->nr_slab_unreclaimable_b);
			stock->nr_slab_unreclaimable_b = 0;
		}
		stock->cached_pgdat = NULL;
	}

R
Roman Gushchin 已提交
3203 3204 3205 3206 3207 3208 3209 3210 3211
	obj_cgroup_put(old);
	stock->cached_objcg = NULL;
}

static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	struct mem_cgroup *memcg;

3212 3213 3214 3215 3216 3217 3218
	if (in_task() && stock->task_obj.cached_objcg) {
		memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg);
		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
			return true;
	}
	if (stock->irq_obj.cached_objcg) {
		memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg);
R
Roman Gushchin 已提交
3219 3220 3221 3222 3223 3224 3225
		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
			return true;
	}

	return false;
}

3226 3227
static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
			     bool allow_uncharge)
R
Roman Gushchin 已提交
3228 3229
{
	unsigned long flags;
3230
	struct obj_stock *stock = get_obj_stock(&flags);
3231
	unsigned int nr_pages = 0;
R
Roman Gushchin 已提交
3232 3233 3234 3235 3236

	if (stock->cached_objcg != objcg) { /* reset if necessary */
		drain_obj_stock(stock);
		obj_cgroup_get(objcg);
		stock->cached_objcg = objcg;
3237 3238 3239
		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
		allow_uncharge = true;	/* Allow uncharge when objcg changes */
R
Roman Gushchin 已提交
3240 3241 3242
	}
	stock->nr_bytes += nr_bytes;

3243 3244 3245 3246
	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
		stock->nr_bytes &= (PAGE_SIZE - 1);
	}
R
Roman Gushchin 已提交
3247

3248
	put_obj_stock(flags);
3249 3250 3251

	if (nr_pages)
		obj_cgroup_uncharge_pages(objcg, nr_pages);
R
Roman Gushchin 已提交
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
}

int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
{
	unsigned int nr_pages, nr_bytes;
	int ret;

	if (consume_obj_stock(objcg, size))
		return 0;

	/*
3263
	 * In theory, objcg->nr_charged_bytes can have enough
R
Roman Gushchin 已提交
3264
	 * pre-charged bytes to satisfy the allocation. However,
3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
	 * flushing objcg->nr_charged_bytes requires two atomic
	 * operations, and objcg->nr_charged_bytes can't be big.
	 * The shared objcg->nr_charged_bytes can also become a
	 * performance bottleneck if all tasks of the same memcg are
	 * trying to update it. So it's better to ignore it and try
	 * grab some new pages. The stock's nr_bytes will be flushed to
	 * objcg->nr_charged_bytes later on when objcg changes.
	 *
	 * The stock's nr_bytes may contain enough pre-charged bytes
	 * to allow one less page from being charged, but we can't rely
	 * on the pre-charged bytes not being changed outside of
	 * consume_obj_stock() or refill_obj_stock(). So ignore those
	 * pre-charged bytes as well when charging pages. To avoid a
	 * page uncharge right after a page charge, we set the
	 * allow_uncharge flag to false when calling refill_obj_stock()
	 * to temporarily allow the pre-charged bytes to exceed the page
	 * size limit. The maximum reachable value of the pre-charged
	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
	 * race.
R
Roman Gushchin 已提交
3284 3285 3286 3287 3288 3289 3290
	 */
	nr_pages = size >> PAGE_SHIFT;
	nr_bytes = size & (PAGE_SIZE - 1);

	if (nr_bytes)
		nr_pages += 1;

3291
	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
R
Roman Gushchin 已提交
3292
	if (!ret && nr_bytes)
3293
		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
R
Roman Gushchin 已提交
3294 3295 3296 3297 3298 3299

	return ret;
}

void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
{
3300
	refill_obj_stock(objcg, size, true);
R
Roman Gushchin 已提交
3301 3302
}

3303
#endif /* CONFIG_MEMCG_KMEM */
3304

3305
/*
3306
 * Because page_memcg(head) is not set on tails, set it now.
3307
 */
3308
void split_page_memcg(struct page *head, unsigned int nr)
3309
{
3310
	struct mem_cgroup *memcg = page_memcg(head);
3311
	int i;
3312

3313
	if (mem_cgroup_disabled() || !memcg)
3314
		return;
3315

3316 3317
	for (i = 1; i < nr; i++)
		head[i].memcg_data = head->memcg_data;
3318 3319 3320 3321 3322

	if (PageMemcgKmem(head))
		obj_cgroup_get_many(__page_objcg(head), nr - 1);
	else
		css_get_many(&memcg->css, nr - 1);
3323 3324
}

A
Andrew Morton 已提交
3325
#ifdef CONFIG_MEMCG_SWAP
3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
3337
 * The caller must have charged to @to, IOW, called page_counter_charge() about
3338 3339 3340
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3341
				struct mem_cgroup *from, struct mem_cgroup *to)
3342 3343 3344
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
3345 3346
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3347 3348

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3349 3350
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
3351 3352 3353 3354 3355 3356
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3357
				struct mem_cgroup *from, struct mem_cgroup *to)
3358 3359 3360
{
	return -EINVAL;
}
3361
#endif
K
KAMEZAWA Hiroyuki 已提交
3362

3363
static DEFINE_MUTEX(memcg_max_mutex);
3364

3365 3366
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
3367
{
3368
	bool enlarge = false;
3369
	bool drained = false;
3370
	int ret;
3371 3372
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3373

3374
	do {
3375 3376 3377 3378
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3379

3380
		mutex_lock(&memcg_max_mutex);
3381 3382
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
3383
		 * break our basic invariant rule memory.max <= memsw.max.
3384
		 */
3385
		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3386
					   max <= memcg->memsw.max;
3387
		if (!limits_invariant) {
3388
			mutex_unlock(&memcg_max_mutex);
3389 3390 3391
			ret = -EINVAL;
			break;
		}
3392
		if (max > counter->max)
3393
			enlarge = true;
3394 3395
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
3396 3397 3398 3399

		if (!ret)
			break;

3400 3401 3402 3403 3404 3405
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

3406 3407 3408 3409 3410 3411
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
3412

3413 3414
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3415

3416 3417 3418
	return ret;
}

3419
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3420 3421 3422 3423
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
3424
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3425 3426
	unsigned long reclaimed;
	int loop = 0;
3427
	struct mem_cgroup_tree_per_node *mctz;
3428
	unsigned long excess;
3429 3430 3431 3432 3433
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

3434
	mctz = soft_limit_tree_node(pgdat->node_id);
3435 3436 3437 3438 3439 3440

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
3441
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3442 3443
		return 0;

3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
3458
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3459 3460 3461
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3462
		spin_lock_irq(&mctz->lock);
3463
		__mem_cgroup_remove_exceeded(mz, mctz);
3464 3465 3466 3467 3468 3469

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3470 3471 3472
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3473
		excess = soft_limit_excess(mz->memcg);
3474 3475 3476 3477 3478 3479 3480 3481 3482
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3483
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3484
		spin_unlock_irq(&mctz->lock);
3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3502
/*
3503
 * Reclaims as many pages from the given memcg as possible.
3504 3505 3506 3507 3508
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
3509
	int nr_retries = MAX_RECLAIM_RETRIES;
3510

3511 3512
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3513 3514 3515

	drain_all_stock(memcg);

3516
	/* try to free all pages in this cgroup */
3517
	while (nr_retries && page_counter_read(&memcg->memory)) {
3518
		int progress;
3519

3520 3521 3522
		if (signal_pending(current))
			return -EINTR;

3523 3524
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3525
		if (!progress) {
3526
			nr_retries--;
3527
			/* maybe some writeback is necessary */
3528
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3529
		}
3530 3531

	}
3532 3533

	return 0;
3534 3535
}

3536 3537 3538
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3539
{
3540
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3541

3542 3543
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3544
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3545 3546
}

3547 3548
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3549
{
3550
	return 1;
3551 3552
}

3553 3554
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3555
{
3556
	if (val == 1)
3557
		return 0;
3558

3559 3560 3561
	pr_warn_once("Non-hierarchical mode is deprecated. "
		     "Please report your usecase to linux-mm@kvack.org if you "
		     "depend on this functionality.\n");
3562

3563
	return -EINVAL;
3564 3565
}

3566
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3567
{
3568
	unsigned long val;
3569

3570
	if (mem_cgroup_is_root(memcg)) {
3571
		cgroup_rstat_flush(memcg->css.cgroup);
3572
		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3573
			memcg_page_state(memcg, NR_ANON_MAPPED);
3574 3575
		if (swap)
			val += memcg_page_state(memcg, MEMCG_SWAP);
3576
	} else {
3577
		if (!swap)
3578
			val = page_counter_read(&memcg->memory);
3579
		else
3580
			val = page_counter_read(&memcg->memsw);
3581
	}
3582
	return val;
3583 3584
}

3585 3586 3587 3588 3589 3590 3591
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3592

3593
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3594
			       struct cftype *cft)
B
Balbir Singh 已提交
3595
{
3596
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3597
	struct page_counter *counter;
3598

3599
	switch (MEMFILE_TYPE(cft->private)) {
3600
	case _MEM:
3601 3602
		counter = &memcg->memory;
		break;
3603
	case _MEMSWAP:
3604 3605
		counter = &memcg->memsw;
		break;
3606
	case _KMEM:
3607
		counter = &memcg->kmem;
3608
		break;
V
Vladimir Davydov 已提交
3609
	case _TCP:
3610
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3611
		break;
3612 3613 3614
	default:
		BUG();
	}
3615 3616 3617 3618

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
3619
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3620
		if (counter == &memcg->memsw)
3621
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3622 3623
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
3624
		return (u64)counter->max * PAGE_SIZE;
3625 3626 3627 3628 3629 3630 3631 3632 3633
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3634
}
3635

3636
#ifdef CONFIG_MEMCG_KMEM
3637
static int memcg_online_kmem(struct mem_cgroup *memcg)
3638
{
R
Roman Gushchin 已提交
3639
	struct obj_cgroup *objcg;
3640 3641
	int memcg_id;

3642 3643 3644
	if (cgroup_memory_nokmem)
		return 0;

3645
	BUG_ON(memcg->kmemcg_id >= 0);
3646
	BUG_ON(memcg->kmem_state);
3647

3648
	memcg_id = memcg_alloc_cache_id();
3649 3650
	if (memcg_id < 0)
		return memcg_id;
3651

R
Roman Gushchin 已提交
3652 3653 3654 3655 3656 3657 3658 3659
	objcg = obj_cgroup_alloc();
	if (!objcg) {
		memcg_free_cache_id(memcg_id);
		return -ENOMEM;
	}
	objcg->memcg = memcg;
	rcu_assign_pointer(memcg->objcg, objcg);

3660 3661
	static_branch_enable(&memcg_kmem_enabled_key);

V
Vladimir Davydov 已提交
3662
	memcg->kmemcg_id = memcg_id;
3663
	memcg->kmem_state = KMEM_ONLINE;
3664 3665

	return 0;
3666 3667
}

3668 3669 3670 3671 3672 3673 3674 3675
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
3676

3677 3678 3679 3680 3681 3682
	memcg->kmem_state = KMEM_ALLOCATED;

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

R
Roman Gushchin 已提交
3683
	memcg_reparent_objcgs(memcg, parent);
3684 3685 3686 3687

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

3688 3689 3690 3691 3692 3693 3694 3695
	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
3696
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3697 3698 3699 3700 3701
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
	}
3702 3703
	rcu_read_unlock();

3704
	memcg_drain_all_list_lrus(kmemcg_id, parent);
3705 3706 3707 3708 3709 3710

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
3711 3712 3713
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);
3714
}
3715
#else
3716
static int memcg_online_kmem(struct mem_cgroup *memcg)
3717 3718 3719 3720 3721 3722 3723 3724 3725
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
3726
#endif /* CONFIG_MEMCG_KMEM */
3727

3728 3729
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
3730
{
3731
	int ret;
3732

3733 3734 3735
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
3736
	return ret;
3737
}
3738

3739
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
3740 3741 3742
{
	int ret;

3743
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3744

3745
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
3746 3747 3748
	if (ret)
		goto out;

3749
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3750 3751 3752
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3753 3754 3755
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
3756 3757 3758 3759 3760 3761
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3762
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
3763 3764 3765 3766
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3767
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3768 3769
	}
out:
3770
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3771 3772 3773
	return ret;
}

3774 3775 3776 3777
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3778 3779
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3780
{
3781
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3782
	unsigned long nr_pages;
3783 3784
	int ret;

3785
	buf = strstrip(buf);
3786
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3787 3788
	if (ret)
		return ret;
3789

3790
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3791
	case RES_LIMIT:
3792 3793 3794 3795
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3796 3797
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3798
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3799
			break;
3800
		case _MEMSWAP:
3801
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3802
			break;
3803
		case _KMEM:
3804 3805 3806
			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
				     "Please report your usecase to linux-mm@kvack.org if you "
				     "depend on this functionality.\n");
3807
			ret = memcg_update_kmem_max(memcg, nr_pages);
3808
			break;
V
Vladimir Davydov 已提交
3809
		case _TCP:
3810
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
3811
			break;
3812
		}
3813
		break;
3814 3815 3816
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3817 3818
		break;
	}
3819
	return ret ?: nbytes;
B
Balbir Singh 已提交
3820 3821
}

3822 3823
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3824
{
3825
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3826
	struct page_counter *counter;
3827

3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3838
	case _TCP:
3839
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3840
		break;
3841 3842 3843
	default:
		BUG();
	}
3844

3845
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3846
	case RES_MAX_USAGE:
3847
		page_counter_reset_watermark(counter);
3848 3849
		break;
	case RES_FAILCNT:
3850
		counter->failcnt = 0;
3851
		break;
3852 3853
	default:
		BUG();
3854
	}
3855

3856
	return nbytes;
3857 3858
}

3859
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3860 3861
					struct cftype *cft)
{
3862
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3863 3864
}

3865
#ifdef CONFIG_MMU
3866
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3867 3868
					struct cftype *cft, u64 val)
{
3869
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3870

3871
	if (val & ~MOVE_MASK)
3872
		return -EINVAL;
3873

3874
	/*
3875 3876 3877 3878
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3879
	 */
3880
	memcg->move_charge_at_immigrate = val;
3881 3882
	return 0;
}
3883
#else
3884
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3885 3886 3887 3888 3889
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3890

3891
#ifdef CONFIG_NUMA
3892 3893 3894 3895 3896 3897

#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)

static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3898
				int nid, unsigned int lru_mask, bool tree)
3899
{
3900
	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3901 3902 3903 3904 3905 3906 3907 3908
	unsigned long nr = 0;
	enum lru_list lru;

	VM_BUG_ON((unsigned)nid >= nr_node_ids);

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3909 3910 3911 3912
		if (tree)
			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
		else
			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3913 3914 3915 3916 3917
	}
	return nr;
}

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3918 3919
					     unsigned int lru_mask,
					     bool tree)
3920 3921 3922 3923 3924 3925 3926
{
	unsigned long nr = 0;
	enum lru_list lru;

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3927 3928 3929 3930
		if (tree)
			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
		else
			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3931 3932 3933 3934
	}
	return nr;
}

3935
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3936
{
3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3949
	int nid;
3950
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3951

3952 3953
	cgroup_rstat_flush(memcg->css.cgroup);

3954
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3955 3956 3957 3958 3959 3960 3961
		seq_printf(m, "%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   false));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, false));
3962
		seq_putc(m, '\n');
3963 3964
	}

3965
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3966 3967 3968 3969 3970 3971 3972 3973

		seq_printf(m, "hierarchical_%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   true));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, true));
3974
		seq_putc(m, '\n');
3975 3976 3977 3978 3979 3980
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3981
static const unsigned int memcg1_stats[] = {
3982
	NR_FILE_PAGES,
3983
	NR_ANON_MAPPED,
3984 3985 3986
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	NR_ANON_THPS,
#endif
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
3997
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3998
	"rss_huge",
3999
#endif
4000 4001 4002 4003 4004 4005 4006
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

4007
/* Universal VM events cgroup1 shows, original sort order */
4008
static const unsigned int memcg1_events[] = {
4009 4010 4011 4012 4013 4014
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

4015
static int memcg_stat_show(struct seq_file *m, void *v)
4016
{
4017
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4018
	unsigned long memory, memsw;
4019 4020
	struct mem_cgroup *mi;
	unsigned int i;
4021

4022
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4023

4024 4025
	cgroup_rstat_flush(memcg->css.cgroup);

4026
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4027 4028
		unsigned long nr;

4029
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4030
			continue;
4031 4032
		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4033
	}
L
Lee Schermerhorn 已提交
4034

4035
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4036
		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4037
			   memcg_events_local(memcg, memcg1_events[i]));
4038 4039

	for (i = 0; i < NR_LRU_LISTS; i++)
4040
		seq_printf(m, "%s %lu\n", lru_list_name(i),
4041
			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4042
			   PAGE_SIZE);
4043

K
KAMEZAWA Hiroyuki 已提交
4044
	/* Hierarchical information */
4045 4046
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4047 4048
		memory = min(memory, READ_ONCE(mi->memory.max));
		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4049
	}
4050 4051
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
4052
	if (do_memsw_account())
4053 4054
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
4055

4056
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4057 4058
		unsigned long nr;

4059
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4060
			continue;
4061
		nr = memcg_page_state(memcg, memcg1_stats[i]);
4062
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4063
						(u64)nr * PAGE_SIZE);
4064 4065
	}

4066
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4067 4068
		seq_printf(m, "total_%s %llu\n",
			   vm_event_name(memcg1_events[i]),
4069
			   (u64)memcg_events(memcg, memcg1_events[i]));
4070

4071
	for (i = 0; i < NR_LRU_LISTS; i++)
4072
		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4073 4074
			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			   PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
4075

K
KOSAKI Motohiro 已提交
4076 4077
#ifdef CONFIG_DEBUG_VM
	{
4078 4079
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
4080 4081
		unsigned long anon_cost = 0;
		unsigned long file_cost = 0;
K
KOSAKI Motohiro 已提交
4082

4083
		for_each_online_pgdat(pgdat) {
4084
			mz = memcg->nodeinfo[pgdat->node_id];
K
KOSAKI Motohiro 已提交
4085

4086 4087
			anon_cost += mz->lruvec.anon_cost;
			file_cost += mz->lruvec.file_cost;
4088
		}
4089 4090
		seq_printf(m, "anon_cost %lu\n", anon_cost);
		seq_printf(m, "file_cost %lu\n", file_cost);
K
KOSAKI Motohiro 已提交
4091 4092 4093
	}
#endif

4094 4095 4096
	return 0;
}

4097 4098
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
4099
{
4100
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4101

4102
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4103 4104
}

4105 4106
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
4107
{
4108
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4109

4110
	if (val > 100)
K
KOSAKI Motohiro 已提交
4111 4112
		return -EINVAL;

S
Shakeel Butt 已提交
4113
	if (!mem_cgroup_is_root(memcg))
4114 4115 4116
		memcg->swappiness = val;
	else
		vm_swappiness = val;
4117

K
KOSAKI Motohiro 已提交
4118 4119 4120
	return 0;
}

4121 4122 4123
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
4124
	unsigned long usage;
4125 4126 4127 4128
	int i;

	rcu_read_lock();
	if (!swap)
4129
		t = rcu_dereference(memcg->thresholds.primary);
4130
	else
4131
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4132 4133 4134 4135

	if (!t)
		goto unlock;

4136
	usage = mem_cgroup_usage(memcg, swap);
4137 4138

	/*
4139
	 * current_threshold points to threshold just below or equal to usage.
4140 4141 4142
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4143
	i = t->current_threshold;
4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4167
	t->current_threshold = i - 1;
4168 4169 4170 4171 4172 4173
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4174 4175
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
4176
		if (do_memsw_account())
4177 4178 4179 4180
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4181 4182 4183 4184 4185 4186 4187
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

4188 4189 4190 4191 4192 4193 4194
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
4195 4196
}

4197
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4198 4199 4200
{
	struct mem_cgroup_eventfd_list *ev;

4201 4202
	spin_lock(&memcg_oom_lock);

4203
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4204
		eventfd_signal(ev->eventfd, 1);
4205 4206

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4207 4208 4209
	return 0;
}

4210
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4211
{
K
KAMEZAWA Hiroyuki 已提交
4212 4213
	struct mem_cgroup *iter;

4214
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4215
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4216 4217
}

4218
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4219
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4220
{
4221 4222
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4223 4224
	unsigned long threshold;
	unsigned long usage;
4225
	int i, size, ret;
4226

4227
	ret = page_counter_memparse(args, "-1", &threshold);
4228 4229 4230 4231
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4232

4233
	if (type == _MEM) {
4234
		thresholds = &memcg->thresholds;
4235
		usage = mem_cgroup_usage(memcg, false);
4236
	} else if (type == _MEMSWAP) {
4237
		thresholds = &memcg->memsw_thresholds;
4238
		usage = mem_cgroup_usage(memcg, true);
4239
	} else
4240 4241 4242
		BUG();

	/* Check if a threshold crossed before adding a new one */
4243
	if (thresholds->primary)
4244 4245
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4246
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4247 4248

	/* Allocate memory for new array of thresholds */
4249
	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4250
	if (!new) {
4251 4252 4253
		ret = -ENOMEM;
		goto unlock;
	}
4254
	new->size = size;
4255 4256

	/* Copy thresholds (if any) to new array */
4257 4258 4259
	if (thresholds->primary)
		memcpy(new->entries, thresholds->primary->entries,
		       flex_array_size(new, entries, size - 1));
4260

4261
	/* Add new threshold */
4262 4263
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4264 4265

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4266
	sort(new->entries, size, sizeof(*new->entries),
4267 4268 4269
			compare_thresholds, NULL);

	/* Find current threshold */
4270
	new->current_threshold = -1;
4271
	for (i = 0; i < size; i++) {
4272
		if (new->entries[i].threshold <= usage) {
4273
			/*
4274 4275
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4276 4277
			 * it here.
			 */
4278
			++new->current_threshold;
4279 4280
		} else
			break;
4281 4282
	}

4283 4284 4285 4286 4287
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4288

4289
	/* To be sure that nobody uses thresholds */
4290 4291 4292 4293 4294 4295 4296 4297
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4298
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4299 4300
	struct eventfd_ctx *eventfd, const char *args)
{
4301
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4302 4303
}

4304
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4305 4306
	struct eventfd_ctx *eventfd, const char *args)
{
4307
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4308 4309
}

4310
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4311
	struct eventfd_ctx *eventfd, enum res_type type)
4312
{
4313 4314
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4315
	unsigned long usage;
4316
	int i, j, size, entries;
4317 4318

	mutex_lock(&memcg->thresholds_lock);
4319 4320

	if (type == _MEM) {
4321
		thresholds = &memcg->thresholds;
4322
		usage = mem_cgroup_usage(memcg, false);
4323
	} else if (type == _MEMSWAP) {
4324
		thresholds = &memcg->memsw_thresholds;
4325
		usage = mem_cgroup_usage(memcg, true);
4326
	} else
4327 4328
		BUG();

4329 4330 4331
	if (!thresholds->primary)
		goto unlock;

4332 4333 4334 4335
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4336
	size = entries = 0;
4337 4338
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4339
			size++;
4340 4341
		else
			entries++;
4342 4343
	}

4344
	new = thresholds->spare;
4345

4346 4347 4348 4349
	/* If no items related to eventfd have been cleared, nothing to do */
	if (!entries)
		goto unlock;

4350 4351
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4352 4353
		kfree(new);
		new = NULL;
4354
		goto swap_buffers;
4355 4356
	}

4357
	new->size = size;
4358 4359

	/* Copy thresholds and find current threshold */
4360 4361 4362
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4363 4364
			continue;

4365
		new->entries[j] = thresholds->primary->entries[i];
4366
		if (new->entries[j].threshold <= usage) {
4367
			/*
4368
			 * new->current_threshold will not be used
4369 4370 4371
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4372
			++new->current_threshold;
4373 4374 4375 4376
		}
		j++;
	}

4377
swap_buffers:
4378 4379
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4380

4381
	rcu_assign_pointer(thresholds->primary, new);
4382

4383
	/* To be sure that nobody uses thresholds */
4384
	synchronize_rcu();
4385 4386 4387 4388 4389 4390

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
4391
unlock:
4392 4393
	mutex_unlock(&memcg->thresholds_lock);
}
4394

4395
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4396 4397
	struct eventfd_ctx *eventfd)
{
4398
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4399 4400
}

4401
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4402 4403
	struct eventfd_ctx *eventfd)
{
4404
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4405 4406
}

4407
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4408
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4409 4410 4411 4412 4413 4414 4415
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4416
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4417 4418 4419 4420 4421

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4422
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
4423
		eventfd_signal(eventfd, 1);
4424
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4425 4426 4427 4428

	return 0;
}

4429
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4430
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4431 4432 4433
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4434
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4435

4436
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4437 4438 4439 4440 4441 4442
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4443
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4444 4445
}

4446
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4447
{
4448
	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4449

4450
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4451
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
R
Roman Gushchin 已提交
4452 4453
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4454 4455 4456
	return 0;
}

4457
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4458 4459
	struct cftype *cft, u64 val)
{
4460
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4461 4462

	/* cannot set to root cgroup and only 0 and 1 are allowed */
S
Shakeel Butt 已提交
4463
	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4464 4465
		return -EINVAL;

4466
	memcg->oom_kill_disable = val;
4467
	if (!val)
4468
		memcg_oom_recover(memcg);
4469

4470 4471 4472
	return 0;
}

4473 4474
#ifdef CONFIG_CGROUP_WRITEBACK

4475 4476
#include <trace/events/writeback.h>

T
Tejun Heo 已提交
4477 4478 4479 4480 4481 4482 4483 4484 4485 4486
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

4487 4488 4489 4490 4491
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
4492 4493 4494 4495 4496 4497 4498 4499 4500 4501
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

4502 4503 4504
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
4505 4506
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
4507 4508 4509
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
4510 4511 4512
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
4513
 *
4514 4515 4516 4517 4518
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
4519
 */
4520 4521 4522
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
4523 4524 4525 4526
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

4527
	cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
4528

4529 4530 4531 4532
	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
			memcg_page_state(memcg, NR_ACTIVE_FILE);
4533

4534
	*pheadroom = PAGE_COUNTER_MAX;
4535
	while ((parent = parent_mem_cgroup(memcg))) {
4536
		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4537
					    READ_ONCE(memcg->memory.high));
4538 4539
		unsigned long used = page_counter_read(&memcg->memory);

4540
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4541 4542 4543 4544
		memcg = parent;
	}
}

4545 4546 4547 4548
/*
 * Foreign dirty flushing
 *
 * There's an inherent mismatch between memcg and writeback.  The former
I
Ingo Molnar 已提交
4549
 * tracks ownership per-page while the latter per-inode.  This was a
4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
 * deliberate design decision because honoring per-page ownership in the
 * writeback path is complicated, may lead to higher CPU and IO overheads
 * and deemed unnecessary given that write-sharing an inode across
 * different cgroups isn't a common use-case.
 *
 * Combined with inode majority-writer ownership switching, this works well
 * enough in most cases but there are some pathological cases.  For
 * example, let's say there are two cgroups A and B which keep writing to
 * different but confined parts of the same inode.  B owns the inode and
 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
 * triggering background writeback.  A will be slowed down without a way to
 * make writeback of the dirty pages happen.
 *
I
Ingo Molnar 已提交
4564
 * Conditions like the above can lead to a cgroup getting repeatedly and
4565
 * severely throttled after making some progress after each
I
Ingo Molnar 已提交
4566
 * dirty_expire_interval while the underlying IO device is almost
4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591
 * completely idle.
 *
 * Solving this problem completely requires matching the ownership tracking
 * granularities between memcg and writeback in either direction.  However,
 * the more egregious behaviors can be avoided by simply remembering the
 * most recent foreign dirtying events and initiating remote flushes on
 * them when local writeback isn't enough to keep the memory clean enough.
 *
 * The following two functions implement such mechanism.  When a foreign
 * page - a page whose memcg and writeback ownerships don't match - is
 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
 * decides that the memcg needs to sleep due to high dirty ratio, it calls
 * mem_cgroup_flush_foreign() which queues writeback on the recorded
 * foreign bdi_writebacks which haven't expired.  Both the numbers of
 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
 * limited to MEMCG_CGWB_FRN_CNT.
 *
 * The mechanism only remembers IDs and doesn't hold any object references.
 * As being wrong occasionally doesn't matter, updates and accesses to the
 * records are lockless and racy.
 */
void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
					     struct bdi_writeback *wb)
{
4592
	struct mem_cgroup *memcg = page_memcg(page);
4593 4594 4595 4596 4597 4598
	struct memcg_cgwb_frn *frn;
	u64 now = get_jiffies_64();
	u64 oldest_at = now;
	int oldest = -1;
	int i;

4599 4600
	trace_track_foreign_dirty(page, wb);

4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
	/*
	 * Pick the slot to use.  If there is already a slot for @wb, keep
	 * using it.  If not replace the oldest one which isn't being
	 * written out.
	 */
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		frn = &memcg->cgwb_frn[i];
		if (frn->bdi_id == wb->bdi->id &&
		    frn->memcg_id == wb->memcg_css->id)
			break;
		if (time_before64(frn->at, oldest_at) &&
		    atomic_read(&frn->done.cnt) == 1) {
			oldest = i;
			oldest_at = frn->at;
		}
	}

	if (i < MEMCG_CGWB_FRN_CNT) {
		/*
		 * Re-using an existing one.  Update timestamp lazily to
		 * avoid making the cacheline hot.  We want them to be
		 * reasonably up-to-date and significantly shorter than
		 * dirty_expire_interval as that's what expires the record.
		 * Use the shorter of 1s and dirty_expire_interval / 8.
		 */
		unsigned long update_intv =
			min_t(unsigned long, HZ,
			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);

		if (time_before64(frn->at, now - update_intv))
			frn->at = now;
	} else if (oldest >= 0) {
		/* replace the oldest free one */
		frn = &memcg->cgwb_frn[oldest];
		frn->bdi_id = wb->bdi->id;
		frn->memcg_id = wb->memcg_css->id;
		frn->at = now;
	}
}

/* issue foreign writeback flushes for recorded foreign dirtying events */
void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
	u64 now = jiffies_64;
	int i;

	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];

		/*
		 * If the record is older than dirty_expire_interval,
		 * writeback on it has already started.  No need to kick it
		 * off again.  Also, don't start a new one if there's
		 * already one in flight.
		 */
		if (time_after64(frn->at, now - intv) &&
		    atomic_read(&frn->done.cnt) == 1) {
			frn->at = 0;
4661
			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4662 4663 4664 4665 4666 4667 4668
			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
					       WB_REASON_FOREIGN_FLUSH,
					       &frn->done);
		}
	}
}

T
Tejun Heo 已提交
4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

4680 4681 4682 4683
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

4684 4685
#endif	/* CONFIG_CGROUP_WRITEBACK */

4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4699 4700 4701 4702 4703
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4704
static void memcg_event_remove(struct work_struct *work)
4705
{
4706 4707
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4708
	struct mem_cgroup *memcg = event->memcg;
4709 4710 4711

	remove_wait_queue(event->wqh, &event->wait);

4712
	event->unregister_event(memcg, event->eventfd);
4713 4714 4715 4716 4717 4718

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4719
	css_put(&memcg->css);
4720 4721 4722
}

/*
4723
 * Gets called on EPOLLHUP on eventfd when user closes it.
4724 4725 4726
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4727
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4728
			    int sync, void *key)
4729
{
4730 4731
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4732
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
4733
	__poll_t flags = key_to_poll(key);
4734

4735
	if (flags & EPOLLHUP) {
4736 4737 4738 4739 4740 4741 4742 4743 4744
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4745
		spin_lock(&memcg->event_list_lock);
4746 4747 4748 4749 4750 4751 4752 4753
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4754
		spin_unlock(&memcg->event_list_lock);
4755 4756 4757 4758 4759
	}

	return 0;
}

4760
static void memcg_event_ptable_queue_proc(struct file *file,
4761 4762
		wait_queue_head_t *wqh, poll_table *pt)
{
4763 4764
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4765 4766 4767 4768 4769 4770

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4771 4772
 * DO NOT USE IN NEW FILES.
 *
4773 4774 4775 4776 4777
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4778 4779
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4780
{
4781
	struct cgroup_subsys_state *css = of_css(of);
4782
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4783
	struct mem_cgroup_event *event;
4784 4785 4786 4787
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4788
	const char *name;
4789 4790 4791
	char *endp;
	int ret;

4792 4793 4794
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4795 4796
	if (*endp != ' ')
		return -EINVAL;
4797
	buf = endp + 1;
4798

4799
	cfd = simple_strtoul(buf, &endp, 10);
4800 4801
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4802
	buf = endp + 1;
4803 4804 4805 4806 4807

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4808
	event->memcg = memcg;
4809
	INIT_LIST_HEAD(&event->list);
4810 4811 4812
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
4834
	ret = file_permission(cfile.file, MAY_READ);
4835 4836 4837
	if (ret < 0)
		goto out_put_cfile;

4838 4839 4840 4841 4842
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4843 4844
	 *
	 * DO NOT ADD NEW FILES.
4845
	 */
A
Al Viro 已提交
4846
	name = cfile.file->f_path.dentry->d_name.name;
4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4858 4859
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4860 4861 4862 4863 4864
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4865
	/*
4866 4867 4868
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4869
	 */
A
Al Viro 已提交
4870
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4871
					       &memory_cgrp_subsys);
4872
	ret = -EINVAL;
4873
	if (IS_ERR(cfile_css))
4874
		goto out_put_cfile;
4875 4876
	if (cfile_css != css) {
		css_put(cfile_css);
4877
		goto out_put_cfile;
4878
	}
4879

4880
	ret = event->register_event(memcg, event->eventfd, buf);
4881 4882 4883
	if (ret)
		goto out_put_css;

4884
	vfs_poll(efile.file, &event->pt);
4885

4886 4887 4888
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4889 4890 4891 4892

	fdput(cfile);
	fdput(efile);

4893
	return nbytes;
4894 4895

out_put_css:
4896
	css_put(css);
4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4909
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4910
	{
4911
		.name = "usage_in_bytes",
4912
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4913
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4914
	},
4915 4916
	{
		.name = "max_usage_in_bytes",
4917
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4918
		.write = mem_cgroup_reset,
4919
		.read_u64 = mem_cgroup_read_u64,
4920
	},
B
Balbir Singh 已提交
4921
	{
4922
		.name = "limit_in_bytes",
4923
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4924
		.write = mem_cgroup_write,
4925
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4926
	},
4927 4928 4929
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4930
		.write = mem_cgroup_write,
4931
		.read_u64 = mem_cgroup_read_u64,
4932
	},
B
Balbir Singh 已提交
4933 4934
	{
		.name = "failcnt",
4935
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4936
		.write = mem_cgroup_reset,
4937
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4938
	},
4939 4940
	{
		.name = "stat",
4941
		.seq_show = memcg_stat_show,
4942
	},
4943 4944
	{
		.name = "force_empty",
4945
		.write = mem_cgroup_force_empty_write,
4946
	},
4947 4948 4949 4950 4951
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4952
	{
4953
		.name = "cgroup.event_control",		/* XXX: for compat */
4954
		.write = memcg_write_event_control,
4955
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4956
	},
K
KOSAKI Motohiro 已提交
4957 4958 4959 4960 4961
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4962 4963 4964 4965 4966
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4967 4968
	{
		.name = "oom_control",
4969
		.seq_show = mem_cgroup_oom_control_read,
4970
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4971 4972
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4973 4974 4975
	{
		.name = "pressure_level",
	},
4976 4977 4978
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4979
		.seq_show = memcg_numa_stat_show,
4980 4981
	},
#endif
4982 4983 4984
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4985
		.write = mem_cgroup_write,
4986
		.read_u64 = mem_cgroup_read_u64,
4987 4988 4989 4990
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4991
		.read_u64 = mem_cgroup_read_u64,
4992 4993 4994 4995
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4996
		.write = mem_cgroup_reset,
4997
		.read_u64 = mem_cgroup_read_u64,
4998 4999 5000 5001
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5002
		.write = mem_cgroup_reset,
5003
		.read_u64 = mem_cgroup_read_u64,
5004
	},
5005 5006
#if defined(CONFIG_MEMCG_KMEM) && \
	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5007 5008
	{
		.name = "kmem.slabinfo",
5009
		.seq_show = memcg_slab_show,
5010 5011
	},
#endif
V
Vladimir Davydov 已提交
5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
5035
	{ },	/* terminate */
5036
};
5037

5038 5039 5040 5041 5042 5043 5044 5045
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
5046
 * However, there usually are many references to the offline CSS after
5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

5064 5065 5066 5067 5068 5069 5070 5071
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

5072 5073
static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
						  unsigned int n)
5074
{
5075
	refcount_add(n, &memcg->id.ref);
5076 5077
}

5078
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5079
{
5080
	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5081
		mem_cgroup_id_remove(memcg);
5082 5083 5084 5085 5086 5087

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

5088 5089 5090 5091 5092
static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

5105
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5106 5107
{
	struct mem_cgroup_per_node *pn;
5108
	int tmp = node;
5109 5110 5111 5112 5113 5114 5115 5116
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5117 5118
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5119
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5120 5121
	if (!pn)
		return 1;
5122

5123 5124
	pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
						 GFP_KERNEL_ACCOUNT);
5125 5126 5127 5128 5129
	if (!pn->lruvec_stat_local) {
		kfree(pn);
		return 1;
	}

5130
	pn->lruvec_stat_cpu = alloc_percpu_gfp(struct batched_lruvec_stat,
5131
					       GFP_KERNEL_ACCOUNT);
5132
	if (!pn->lruvec_stat_cpu) {
5133
		free_percpu(pn->lruvec_stat_local);
5134 5135 5136 5137
		kfree(pn);
		return 1;
	}

5138 5139 5140 5141 5142
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

5143
	memcg->nodeinfo[node] = pn;
5144 5145 5146
	return 0;
}

5147
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5148
{
5149 5150
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
5151 5152 5153
	if (!pn)
		return;

5154
	free_percpu(pn->lruvec_stat_cpu);
5155
	free_percpu(pn->lruvec_stat_local);
5156
	kfree(pn);
5157 5158
}

5159
static void __mem_cgroup_free(struct mem_cgroup *memcg)
5160
{
5161
	int node;
5162

5163
	for_each_node(node)
5164
		free_mem_cgroup_per_node_info(memcg, node);
5165
	free_percpu(memcg->vmstats_percpu);
5166
	kfree(memcg);
5167
}
5168

5169 5170
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
5171 5172
	int cpu;

5173
	memcg_wb_domain_exit(memcg);
5174
	/*
5175 5176
	 * Flush percpu lruvec stats to guarantee the value
	 * correctness on parent's and all ancestor levels.
5177
	 */
5178 5179
	for_each_online_cpu(cpu)
		memcg_flush_lruvec_page_state(memcg, cpu);
5180 5181 5182
	__mem_cgroup_free(memcg);
}

5183
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
5184
{
5185
	struct mem_cgroup *memcg;
5186
	unsigned int size;
5187
	int node;
5188
	int __maybe_unused i;
5189
	long error = -ENOMEM;
B
Balbir Singh 已提交
5190

5191 5192 5193 5194
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
5195
	if (!memcg)
5196
		return ERR_PTR(error);
5197

5198 5199 5200
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
5201 5202
	if (memcg->id.id < 0) {
		error = memcg->id.id;
5203
		goto fail;
5204
	}
5205

5206 5207
	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
						 GFP_KERNEL_ACCOUNT);
5208
	if (!memcg->vmstats_percpu)
5209
		goto fail;
5210

B
Bob Liu 已提交
5211
	for_each_node(node)
5212
		if (alloc_mem_cgroup_per_node_info(memcg, node))
5213
			goto fail;
5214

5215 5216
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
5217

5218
	INIT_WORK(&memcg->high_work, high_work_func);
5219 5220 5221
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5222
	vmpressure_init(&memcg->vmpressure);
5223 5224
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
5225
	memcg->socket_pressure = jiffies;
5226
#ifdef CONFIG_MEMCG_KMEM
V
Vladimir Davydov 已提交
5227
	memcg->kmemcg_id = -1;
R
Roman Gushchin 已提交
5228
	INIT_LIST_HEAD(&memcg->objcg_list);
V
Vladimir Davydov 已提交
5229
#endif
5230 5231
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
5232 5233 5234
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		memcg->cgwb_frn[i].done =
			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5235 5236 5237 5238 5239
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
	memcg->deferred_split_queue.split_queue_len = 0;
5240
#endif
5241
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5242 5243
	return memcg;
fail:
5244
	mem_cgroup_id_remove(memcg);
5245
	__mem_cgroup_free(memcg);
5246
	return ERR_PTR(error);
5247 5248
}

5249 5250
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5251
{
5252
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5253
	struct mem_cgroup *memcg, *old_memcg;
5254
	long error = -ENOMEM;
5255

5256
	old_memcg = set_active_memcg(parent);
5257
	memcg = mem_cgroup_alloc();
5258
	set_active_memcg(old_memcg);
5259 5260
	if (IS_ERR(memcg))
		return ERR_CAST(memcg);
5261

5262
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5263
	memcg->soft_limit = PAGE_COUNTER_MAX;
5264
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5265 5266 5267
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
5268

5269
		page_counter_init(&memcg->memory, &parent->memory);
5270
		page_counter_init(&memcg->swap, &parent->swap);
5271
		page_counter_init(&memcg->kmem, &parent->kmem);
5272
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5273
	} else {
5274 5275 5276 5277
		page_counter_init(&memcg->memory, NULL);
		page_counter_init(&memcg->swap, NULL);
		page_counter_init(&memcg->kmem, NULL);
		page_counter_init(&memcg->tcpmem, NULL);
5278

5279 5280 5281 5282
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

5283
	/* The following stuff does not apply to the root */
5284
	error = memcg_online_kmem(memcg);
5285 5286
	if (error)
		goto fail;
5287

5288
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5289
		static_branch_inc(&memcg_sockets_enabled_key);
5290

5291 5292
	return &memcg->css;
fail:
5293
	mem_cgroup_id_remove(memcg);
5294
	mem_cgroup_free(memcg);
5295
	return ERR_PTR(error);
5296 5297
}

5298
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5299
{
5300 5301
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5302
	/*
5303
	 * A memcg must be visible for expand_shrinker_info()
5304 5305 5306
	 * by the time the maps are allocated. So, we allocate maps
	 * here, when for_each_mem_cgroup() can't skip it.
	 */
5307
	if (alloc_shrinker_info(memcg)) {
5308 5309 5310 5311
		mem_cgroup_id_remove(memcg);
		return -ENOMEM;
	}

5312
	/* Online state pins memcg ID, memcg ID pins CSS */
5313
	refcount_set(&memcg->id.ref, 1);
5314
	css_get(css);
5315
	return 0;
B
Balbir Singh 已提交
5316 5317
}

5318
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5319
{
5320
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5321
	struct mem_cgroup_event *event, *tmp;
5322 5323 5324 5325 5326 5327

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
5328 5329
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5330 5331 5332
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
5333
	spin_unlock(&memcg->event_list_lock);
5334

R
Roman Gushchin 已提交
5335
	page_counter_set_min(&memcg->memory, 0);
5336
	page_counter_set_low(&memcg->memory, 0);
5337

5338
	memcg_offline_kmem(memcg);
5339
	reparent_shrinker_deferred(memcg);
5340
	wb_memcg_offline(memcg);
5341

5342 5343
	drain_all_stock(memcg);

5344
	mem_cgroup_id_put(memcg);
5345 5346
}

5347 5348 5349 5350 5351 5352 5353
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

5354
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
5355
{
5356
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5357
	int __maybe_unused i;
5358

5359 5360 5361 5362
#ifdef CONFIG_CGROUP_WRITEBACK
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
#endif
5363
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5364
		static_branch_dec(&memcg_sockets_enabled_key);
5365

5366
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
5367
		static_branch_dec(&memcg_sockets_enabled_key);
5368

5369 5370 5371
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
5372
	free_shrinker_info(memcg);
5373
	memcg_free_kmem(memcg);
5374
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
5375 5376
}

5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5394 5395 5396 5397
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
R
Roman Gushchin 已提交
5398
	page_counter_set_min(&memcg->memory, 0);
5399
	page_counter_set_low(&memcg->memory, 0);
5400
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5401
	memcg->soft_limit = PAGE_COUNTER_MAX;
5402
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5403
	memcg_wb_domain_size_changed(memcg);
5404 5405
}

5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461
static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	struct memcg_vmstats_percpu *statc;
	long delta, v;
	int i;

	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);

	for (i = 0; i < MEMCG_NR_STAT; i++) {
		/*
		 * Collect the aggregated propagation counts of groups
		 * below us. We're in a per-cpu loop here and this is
		 * a global counter, so the first cycle will get them.
		 */
		delta = memcg->vmstats.state_pending[i];
		if (delta)
			memcg->vmstats.state_pending[i] = 0;

		/* Add CPU changes on this level since the last flush */
		v = READ_ONCE(statc->state[i]);
		if (v != statc->state_prev[i]) {
			delta += v - statc->state_prev[i];
			statc->state_prev[i] = v;
		}

		if (!delta)
			continue;

		/* Aggregate counts on this level and propagate upwards */
		memcg->vmstats.state[i] += delta;
		if (parent)
			parent->vmstats.state_pending[i] += delta;
	}

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
		delta = memcg->vmstats.events_pending[i];
		if (delta)
			memcg->vmstats.events_pending[i] = 0;

		v = READ_ONCE(statc->events[i]);
		if (v != statc->events_prev[i]) {
			delta += v - statc->events_prev[i];
			statc->events_prev[i] = v;
		}

		if (!delta)
			continue;

		memcg->vmstats.events[i] += delta;
		if (parent)
			parent->vmstats.events_pending[i] += delta;
	}
}

5462
#ifdef CONFIG_MMU
5463
/* Handlers for move charge at task migration. */
5464
static int mem_cgroup_do_precharge(unsigned long count)
5465
{
5466
	int ret;
5467

5468 5469
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5470
	if (!ret) {
5471 5472 5473
		mc.precharge += count;
		return ret;
	}
5474

5475
	/* Try charges one by one with reclaim, but do not retry */
5476
	while (count--) {
5477
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5478 5479
		if (ret)
			return ret;
5480
		mc.precharge++;
5481
		cond_resched();
5482
	}
5483
	return 0;
5484 5485 5486 5487
}

union mc_target {
	struct page	*page;
5488
	swp_entry_t	ent;
5489 5490 5491
};

enum mc_target_type {
5492
	MC_TARGET_NONE = 0,
5493
	MC_TARGET_PAGE,
5494
	MC_TARGET_SWAP,
5495
	MC_TARGET_DEVICE,
5496 5497
};

D
Daisuke Nishimura 已提交
5498 5499
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5500
{
5501
	struct page *page = vm_normal_page(vma, addr, ptent);
5502

D
Daisuke Nishimura 已提交
5503 5504 5505
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
5506
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5507
			return NULL;
5508 5509 5510 5511
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
5512 5513 5514 5515 5516 5517
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5518
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
5519
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5520
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
5521 5522 5523 5524
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

5525
	if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5526
		return NULL;
5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
		page = device_private_entry_to_page(ent);
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

5544 5545 5546
	if (non_swap_entry(ent))
		return NULL;

5547 5548 5549 5550
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5551
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5552
	entry->val = ent.val;
D
Daisuke Nishimura 已提交
5553 5554 5555

	return page;
}
5556 5557
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5558
			pte_t ptent, swp_entry_t *entry)
5559 5560 5561 5562
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5563

5564 5565 5566 5567 5568
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	if (!vma->vm_file) /* anonymous vma */
		return NULL;
5569
	if (!(mc.flags & MOVE_FILE))
5570 5571 5572
		return NULL;

	/* page is moved even if it's not RSS of this task(page-faulted). */
5573
	/* shmem/tmpfs may report page out on swap: account for that too. */
5574 5575
	return find_get_incore_page(vma->vm_file->f_mapping,
			linear_page_index(vma, addr));
5576 5577
}

5578 5579 5580
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
5581
 * @compound: charge the page as compound or small page
5582 5583 5584
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
5585
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5586 5587 5588 5589 5590
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
5591
				   bool compound,
5592 5593 5594
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
5595 5596
	struct lruvec *from_vec, *to_vec;
	struct pglist_data *pgdat;
5597
	unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5598 5599 5600 5601
	int ret;

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
5602
	VM_BUG_ON(compound && !PageTransHuge(page));
5603 5604

	/*
5605
	 * Prevent mem_cgroup_migrate() from looking at
5606
	 * page's memory cgroup of its source page while we change it.
5607
	 */
5608
	ret = -EBUSY;
5609 5610 5611 5612
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
5613
	if (page_memcg(page) != from)
5614 5615
		goto out_unlock;

5616
	pgdat = page_pgdat(page);
5617 5618
	from_vec = mem_cgroup_lruvec(from, pgdat);
	to_vec = mem_cgroup_lruvec(to, pgdat);
5619

5620
	lock_page_memcg(page);
5621

5622 5623 5624 5625
	if (PageAnon(page)) {
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5626
			if (PageTransHuge(page)) {
5627 5628 5629 5630
				__mod_lruvec_state(from_vec, NR_ANON_THPS,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_ANON_THPS,
						   nr_pages);
5631
			}
5632 5633
		}
	} else {
5634 5635 5636 5637 5638 5639 5640 5641
		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);

		if (PageSwapBacked(page)) {
			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
		}

5642 5643 5644 5645
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
		}
5646

5647 5648
		if (PageDirty(page)) {
			struct address_space *mapping = page_mapping(page);
5649

5650
			if (mapping_can_writeback(mapping)) {
5651 5652 5653 5654 5655
				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
						   nr_pages);
			}
5656 5657 5658
		}
	}

5659
	if (PageWriteback(page)) {
5660 5661
		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5662 5663 5664
	}

	/*
5665 5666
	 * All state has been migrated, let's switch to the new memcg.
	 *
5667
	 * It is safe to change page's memcg here because the page
5668 5669
	 * is referenced, charged, isolated, and locked: we can't race
	 * with (un)charging, migration, LRU putback, or anything else
5670
	 * that would rely on a stable page's memory cgroup.
5671 5672
	 *
	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5673
	 * to save space. As soon as we switch page's memory cgroup to a
5674 5675
	 * new memcg that isn't locked, the above state can change
	 * concurrently again. Make sure we're truly done with it.
5676
	 */
5677
	smp_mb();
5678

5679 5680 5681
	css_get(&to->css);
	css_put(&from->css);

5682
	page->memcg_data = (unsigned long)to;
5683

5684
	__unlock_page_memcg(from);
5685 5686 5687 5688

	ret = 0;

	local_irq_disable();
5689
	mem_cgroup_charge_statistics(to, page, nr_pages);
5690
	memcg_check_events(to, page);
5691
	mem_cgroup_charge_statistics(from, page, -nr_pages);
5692 5693 5694 5695 5696 5697 5698 5699
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5715 5716
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
 *     (so ZONE_DEVICE page and thus not on the lru).
5717 5718 5719
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
5720 5721
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5722 5723 5724 5725
 *
 * Called with pte lock held.
 */

5726
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5727 5728 5729
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
5730
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5731 5732 5733 5734 5735
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
5736
		page = mc_handle_swap_pte(vma, ptent, &ent);
5737
	else if (pte_none(ptent))
5738
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5739 5740

	if (!page && !ent.val)
5741
		return ret;
5742 5743
	if (page) {
		/*
5744
		 * Do only loose check w/o serialization.
5745
		 * mem_cgroup_move_account() checks the page is valid or
5746
		 * not under LRU exclusion.
5747
		 */
5748
		if (page_memcg(page) == mc.from) {
5749
			ret = MC_TARGET_PAGE;
5750
			if (is_device_private_page(page))
5751
				ret = MC_TARGET_DEVICE;
5752 5753 5754 5755 5756 5757
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
5758 5759 5760 5761 5762
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
5763
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5764 5765 5766
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5767 5768 5769 5770
	}
	return ret;
}

5771 5772
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
5773 5774
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
5775 5776 5777 5778 5779 5780 5781 5782
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

5783 5784 5785 5786 5787
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
5788
	page = pmd_page(pmd);
5789
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5790
	if (!(mc.flags & MOVE_ANON))
5791
		return ret;
5792
	if (page_memcg(page) == mc.from) {
5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5809 5810 5811 5812
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
5813
	struct vm_area_struct *vma = walk->vma;
5814 5815 5816
	pte_t *pte;
	spinlock_t *ptl;

5817 5818
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5819 5820
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5821 5822
		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
		 * this might change.
5823
		 */
5824 5825
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5826
		spin_unlock(ptl);
5827
		return 0;
5828
	}
5829

5830 5831
	if (pmd_trans_unstable(pmd))
		return 0;
5832 5833
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5834
		if (get_mctgt_type(vma, addr, *pte, NULL))
5835 5836 5837 5838
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5839 5840 5841
	return 0;
}

5842 5843 5844 5845
static const struct mm_walk_ops precharge_walk_ops = {
	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
};

5846 5847 5848 5849
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

5850
	mmap_read_lock(mm);
5851
	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5852
	mmap_read_unlock(mm);
5853 5854 5855 5856 5857 5858 5859 5860 5861

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5862 5863 5864 5865 5866
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5867 5868
}

5869 5870
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5871
{
5872 5873 5874
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5875
	/* we must uncharge all the leftover precharges from mc.to */
5876
	if (mc.precharge) {
5877
		cancel_charge(mc.to, mc.precharge);
5878 5879 5880 5881 5882 5883 5884
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5885
		cancel_charge(mc.from, mc.moved_charge);
5886
		mc.moved_charge = 0;
5887
	}
5888 5889 5890
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5891
		if (!mem_cgroup_is_root(mc.from))
5892
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5893

5894 5895
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

5896
		/*
5897 5898
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5899
		 */
5900
		if (!mem_cgroup_is_root(mc.to))
5901 5902
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5903 5904
		mc.moved_swap = 0;
	}
5905 5906 5907 5908 5909 5910 5911
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
5912 5913
	struct mm_struct *mm = mc.mm;

5914 5915 5916 5917 5918 5919
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5920
	spin_lock(&mc.lock);
5921 5922
	mc.from = NULL;
	mc.to = NULL;
5923
	mc.mm = NULL;
5924
	spin_unlock(&mc.lock);
5925 5926

	mmput(mm);
5927 5928
}

5929
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5930
{
5931
	struct cgroup_subsys_state *css;
5932
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5933
	struct mem_cgroup *from;
5934
	struct task_struct *leader, *p;
5935
	struct mm_struct *mm;
5936
	unsigned long move_flags;
5937
	int ret = 0;
5938

5939 5940
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5941 5942
		return 0;

5943 5944 5945 5946 5947 5948 5949
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
5950
	cgroup_taskset_for_each_leader(leader, css, tset) {
5951 5952
		WARN_ON_ONCE(p);
		p = leader;
5953
		memcg = mem_cgroup_from_css(css);
5954 5955 5956 5957
	}
	if (!p)
		return 0;

5958
	/*
I
Ingo Molnar 已提交
5959
	 * We are now committed to this value whatever it is. Changes in this
5960 5961 5962 5963 5964 5965 5966
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
5983
		mc.mm = mm;
5984 5985 5986 5987 5988 5989 5990 5991 5992
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
5993 5994
	} else {
		mmput(mm);
5995 5996 5997 5998
	}
	return ret;
}

5999
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6000
{
6001 6002
	if (mc.to)
		mem_cgroup_clear_mc();
6003 6004
}

6005 6006 6007
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6008
{
6009
	int ret = 0;
6010
	struct vm_area_struct *vma = walk->vma;
6011 6012
	pte_t *pte;
	spinlock_t *ptl;
6013 6014 6015
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
6016

6017 6018
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
6019
		if (mc.precharge < HPAGE_PMD_NR) {
6020
			spin_unlock(ptl);
6021 6022 6023 6024 6025 6026
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
6027
				if (!mem_cgroup_move_account(page, true,
6028
							     mc.from, mc.to)) {
6029 6030 6031 6032 6033 6034
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
6035 6036 6037 6038 6039 6040 6041 6042
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
6043
		}
6044
		spin_unlock(ptl);
6045
		return 0;
6046 6047
	}

6048 6049
	if (pmd_trans_unstable(pmd))
		return 0;
6050 6051 6052 6053
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6054
		bool device = false;
6055
		swp_entry_t ent;
6056 6057 6058 6059

		if (!mc.precharge)
			break;

6060
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6061 6062
		case MC_TARGET_DEVICE:
			device = true;
J
Joe Perches 已提交
6063
			fallthrough;
6064 6065
		case MC_TARGET_PAGE:
			page = target.page;
6066 6067 6068 6069 6070 6071 6072 6073
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
6074
			if (!device && isolate_lru_page(page))
6075
				goto put;
6076 6077
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
6078
				mc.precharge--;
6079 6080
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6081
			}
6082 6083
			if (!device)
				putback_lru_page(page);
6084
put:			/* get_mctgt_type() gets the page */
6085 6086
			put_page(page);
			break;
6087 6088
		case MC_TARGET_SWAP:
			ent = target.ent;
6089
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6090
				mc.precharge--;
6091 6092
				mem_cgroup_id_get_many(mc.to, 1);
				/* we fixup other refcnts and charges later. */
6093 6094
				mc.moved_swap++;
			}
6095
			break;
6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6110
		ret = mem_cgroup_do_precharge(1);
6111 6112 6113 6114 6115 6116 6117
		if (!ret)
			goto retry;
	}

	return ret;
}

6118 6119 6120 6121
static const struct mm_walk_ops charge_walk_ops = {
	.pmd_entry	= mem_cgroup_move_charge_pte_range,
};

6122
static void mem_cgroup_move_charge(void)
6123 6124
{
	lru_add_drain_all();
6125
	/*
6126 6127 6128
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
6129 6130 6131
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
6132
retry:
6133
	if (unlikely(!mmap_read_trylock(mc.mm))) {
6134
		/*
6135
		 * Someone who are holding the mmap_lock might be waiting in
6136 6137 6138 6139 6140 6141 6142 6143 6144
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6145 6146 6147 6148
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
6149 6150
	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
			NULL);
6151

6152
	mmap_read_unlock(mc.mm);
6153
	atomic_dec(&mc.from->moving_account);
6154 6155
}

6156
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
6157
{
6158 6159
	if (mc.to) {
		mem_cgroup_move_charge();
6160
		mem_cgroup_clear_mc();
6161
	}
B
Balbir Singh 已提交
6162
}
6163
#else	/* !CONFIG_MMU */
6164
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6165 6166 6167
{
	return 0;
}
6168
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6169 6170
{
}
6171
static void mem_cgroup_move_task(void)
6172 6173 6174
{
}
#endif
B
Balbir Singh 已提交
6175

6176 6177 6178 6179 6180 6181 6182 6183 6184 6185
static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
{
	if (value == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);

	return 0;
}

6186 6187 6188
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
6189 6190 6191
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6192 6193
}

R
Roman Gushchin 已提交
6194 6195
static int memory_min_show(struct seq_file *m, void *v)
{
6196 6197
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
R
Roman Gushchin 已提交
6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

6217 6218
static int memory_low_show(struct seq_file *m, void *v)
{
6219 6220
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6221 6222 6223 6224 6225 6226 6227 6228 6229 6230
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
6231
	err = page_counter_memparse(buf, "max", &low);
6232 6233 6234
	if (err)
		return err;

6235
	page_counter_set_low(&memcg->memory, low);
6236 6237 6238 6239 6240 6241

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
6242 6243
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6244 6245 6246 6247 6248 6249
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6250
	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6251
	bool drained = false;
6252 6253 6254 6255
	unsigned long high;
	int err;

	buf = strstrip(buf);
6256
	err = page_counter_memparse(buf, "max", &high);
6257 6258 6259
	if (err)
		return err;

6260 6261
	page_counter_set_high(&memcg->memory, high);

6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283
	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);
		unsigned long reclaimed;

		if (nr_pages <= high)
			break;

		if (signal_pending(current))
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
							 GFP_KERNEL, true);

		if (!reclaimed && !nr_retries--)
			break;
	}
6284

6285
	memcg_wb_domain_size_changed(memcg);
6286 6287 6288 6289 6290
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
6291 6292
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6293 6294 6295 6296 6297 6298
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6299
	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6300
	bool drained = false;
6301 6302 6303 6304
	unsigned long max;
	int err;

	buf = strstrip(buf);
6305
	err = page_counter_memparse(buf, "max", &max);
6306 6307 6308
	if (err)
		return err;

6309
	xchg(&memcg->memory.max, max);
6310 6311 6312 6313 6314 6315 6316

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

6317
		if (signal_pending(current))
6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

6333
		memcg_memory_event(memcg, MEMCG_OOM);
6334 6335 6336
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
6337

6338
	memcg_wb_domain_size_changed(memcg);
6339 6340 6341
	return nbytes;
}

6342 6343 6344 6345 6346 6347 6348 6349 6350 6351
static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
{
	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&events[MEMCG_OOM_KILL]));
}

6352 6353
static int memory_events_show(struct seq_file *m, void *v)
{
6354
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6355

6356 6357 6358 6359 6360 6361 6362
	__memory_events_show(m, memcg->memory_events);
	return 0;
}

static int memory_events_local_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6363

6364
	__memory_events_show(m, memcg->memory_events_local);
6365 6366 6367
	return 0;
}

6368 6369
static int memory_stat_show(struct seq_file *m, void *v)
{
6370
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6371
	char *buf;
6372

6373 6374 6375 6376 6377
	buf = memory_stat_format(memcg);
	if (!buf)
		return -ENOMEM;
	seq_puts(m, buf);
	kfree(buf);
6378 6379 6380
	return 0;
}

6381
#ifdef CONFIG_NUMA
6382 6383 6384 6385 6386 6387
static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
						     int item)
{
	return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
}

6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404
static int memory_numa_stat_show(struct seq_file *m, void *v)
{
	int i;
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);

	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
		int nid;

		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
			continue;

		seq_printf(m, "%s", memory_stats[i].name);
		for_each_node_state(nid, N_MEMORY) {
			u64 size;
			struct lruvec *lruvec;

			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6405 6406
			size = lruvec_page_state_output(lruvec,
							memory_stats[i].idx);
6407 6408 6409 6410 6411 6412 6413 6414 6415
			seq_printf(m, " N%d=%llu", nid, size);
		}
		seq_putc(m, '\n');
	}

	return 0;
}
#endif

6416 6417
static int memory_oom_group_show(struct seq_file *m, void *v)
{
6418
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446

	seq_printf(m, "%d\n", memcg->oom_group);

	return 0;
}

static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
				      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	int ret, oom_group;

	buf = strstrip(buf);
	if (!buf)
		return -EINVAL;

	ret = kstrtoint(buf, 0, &oom_group);
	if (ret)
		return ret;

	if (oom_group != 0 && oom_group != 1)
		return -EINVAL;

	memcg->oom_group = oom_group;

	return nbytes;
}

6447 6448 6449
static struct cftype memory_files[] = {
	{
		.name = "current",
6450
		.flags = CFTYPE_NOT_ON_ROOT,
6451 6452
		.read_u64 = memory_current_read,
	},
R
Roman Gushchin 已提交
6453 6454 6455 6456 6457 6458
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
6480
		.file_offset = offsetof(struct mem_cgroup, events_file),
6481 6482
		.seq_show = memory_events_show,
	},
6483 6484 6485 6486 6487 6488
	{
		.name = "events.local",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, events_local_file),
		.seq_show = memory_events_local_show,
	},
6489 6490 6491 6492
	{
		.name = "stat",
		.seq_show = memory_stat_show,
	},
6493 6494 6495 6496 6497 6498
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.seq_show = memory_numa_stat_show,
	},
#endif
6499 6500 6501 6502 6503 6504
	{
		.name = "oom.group",
		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
		.seq_show = memory_oom_group_show,
		.write = memory_oom_group_write,
	},
6505 6506 6507
	{ }	/* terminate */
};

6508
struct cgroup_subsys memory_cgrp_subsys = {
6509
	.css_alloc = mem_cgroup_css_alloc,
6510
	.css_online = mem_cgroup_css_online,
6511
	.css_offline = mem_cgroup_css_offline,
6512
	.css_released = mem_cgroup_css_released,
6513
	.css_free = mem_cgroup_css_free,
6514
	.css_reset = mem_cgroup_css_reset,
6515
	.css_rstat_flush = mem_cgroup_css_rstat_flush,
6516 6517
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
6518
	.post_attach = mem_cgroup_move_task,
6519 6520
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
6521
	.early_init = 0,
B
Balbir Singh 已提交
6522
};
6523

6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553
/*
 * This function calculates an individual cgroup's effective
 * protection which is derived from its own memory.min/low, its
 * parent's and siblings' settings, as well as the actual memory
 * distribution in the tree.
 *
 * The following rules apply to the effective protection values:
 *
 * 1. At the first level of reclaim, effective protection is equal to
 *    the declared protection in memory.min and memory.low.
 *
 * 2. To enable safe delegation of the protection configuration, at
 *    subsequent levels the effective protection is capped to the
 *    parent's effective protection.
 *
 * 3. To make complex and dynamic subtrees easier to configure, the
 *    user is allowed to overcommit the declared protection at a given
 *    level. If that is the case, the parent's effective protection is
 *    distributed to the children in proportion to how much protection
 *    they have declared and how much of it they are utilizing.
 *
 *    This makes distribution proportional, but also work-conserving:
 *    if one cgroup claims much more protection than it uses memory,
 *    the unused remainder is available to its siblings.
 *
 * 4. Conversely, when the declared protection is undercommitted at a
 *    given level, the distribution of the larger parental protection
 *    budget is NOT proportional. A cgroup's protection from a sibling
 *    is capped to its own memory.min/low setting.
 *
6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565
 * 5. However, to allow protecting recursive subtrees from each other
 *    without having to declare each individual cgroup's fixed share
 *    of the ancestor's claim to protection, any unutilized -
 *    "floating" - protection from up the tree is distributed in
 *    proportion to each cgroup's *usage*. This makes the protection
 *    neutral wrt sibling cgroups and lets them compete freely over
 *    the shared parental protection budget, but it protects the
 *    subtree as a whole from neighboring subtrees.
 *
 * Note that 4. and 5. are not in conflict: 4. is about protecting
 * against immediate siblings whereas 5. is about protecting against
 * neighboring subtrees.
6566 6567
 */
static unsigned long effective_protection(unsigned long usage,
6568
					  unsigned long parent_usage,
6569 6570 6571 6572 6573
					  unsigned long setting,
					  unsigned long parent_effective,
					  unsigned long siblings_protected)
{
	unsigned long protected;
6574
	unsigned long ep;
6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604

	protected = min(usage, setting);
	/*
	 * If all cgroups at this level combined claim and use more
	 * protection then what the parent affords them, distribute
	 * shares in proportion to utilization.
	 *
	 * We are using actual utilization rather than the statically
	 * claimed protection in order to be work-conserving: claimed
	 * but unused protection is available to siblings that would
	 * otherwise get a smaller chunk than what they claimed.
	 */
	if (siblings_protected > parent_effective)
		return protected * parent_effective / siblings_protected;

	/*
	 * Ok, utilized protection of all children is within what the
	 * parent affords them, so we know whatever this child claims
	 * and utilizes is effectively protected.
	 *
	 * If there is unprotected usage beyond this value, reclaim
	 * will apply pressure in proportion to that amount.
	 *
	 * If there is unutilized protection, the cgroup will be fully
	 * shielded from reclaim, but we do return a smaller value for
	 * protection than what the group could enjoy in theory. This
	 * is okay. With the overcommit distribution above, effective
	 * protection is always dependent on how memory is actually
	 * consumed among the siblings anyway.
	 */
6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617
	ep = protected;

	/*
	 * If the children aren't claiming (all of) the protection
	 * afforded to them by the parent, distribute the remainder in
	 * proportion to the (unprotected) memory of each cgroup. That
	 * way, cgroups that aren't explicitly prioritized wrt each
	 * other compete freely over the allowance, but they are
	 * collectively protected from neighboring trees.
	 *
	 * We're using unprotected memory for the weight so that if
	 * some cgroups DO claim explicit protection, we don't protect
	 * the same bytes twice.
6618 6619 6620 6621
	 *
	 * Check both usage and parent_usage against the respective
	 * protected values. One should imply the other, but they
	 * aren't read atomically - make sure the division is sane.
6622 6623 6624
	 */
	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
		return ep;
6625 6626 6627
	if (parent_effective > siblings_protected &&
	    parent_usage > siblings_protected &&
	    usage > protected) {
6628 6629 6630 6631 6632 6633 6634 6635 6636 6637
		unsigned long unclaimed;

		unclaimed = parent_effective - siblings_protected;
		unclaimed *= usage - protected;
		unclaimed /= parent_usage - siblings_protected;

		ep += unclaimed;
	}

	return ep;
6638 6639
}

6640
/**
R
Roman Gushchin 已提交
6641
 * mem_cgroup_protected - check if memory consumption is in the normal range
6642
 * @root: the top ancestor of the sub-tree being checked
6643 6644
 * @memcg: the memory cgroup to check
 *
6645 6646
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
6647
 */
6648 6649
void mem_cgroup_calculate_protection(struct mem_cgroup *root,
				     struct mem_cgroup *memcg)
6650
{
6651
	unsigned long usage, parent_usage;
6652 6653
	struct mem_cgroup *parent;

6654
	if (mem_cgroup_disabled())
6655
		return;
6656

6657 6658
	if (!root)
		root = root_mem_cgroup;
6659 6660 6661 6662 6663 6664 6665 6666

	/*
	 * Effective values of the reclaim targets are ignored so they
	 * can be stale. Have a look at mem_cgroup_protection for more
	 * details.
	 * TODO: calculation should be more robust so that we do not need
	 * that special casing.
	 */
6667
	if (memcg == root)
6668
		return;
6669

6670
	usage = page_counter_read(&memcg->memory);
R
Roman Gushchin 已提交
6671
	if (!usage)
6672
		return;
R
Roman Gushchin 已提交
6673 6674

	parent = parent_mem_cgroup(memcg);
6675 6676
	/* No parent means a non-hierarchical mode on v1 memcg */
	if (!parent)
6677
		return;
6678

6679
	if (parent == root) {
6680
		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6681
		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6682
		return;
R
Roman Gushchin 已提交
6683 6684
	}

6685 6686
	parent_usage = page_counter_read(&parent->memory);

6687
	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6688 6689
			READ_ONCE(memcg->memory.min),
			READ_ONCE(parent->memory.emin),
6690
			atomic_long_read(&parent->memory.children_min_usage)));
6691

6692
	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6693 6694
			READ_ONCE(memcg->memory.low),
			READ_ONCE(parent->memory.elow),
6695
			atomic_long_read(&parent->memory.children_low_usage)));
6696 6697
}

6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718
static int __mem_cgroup_charge(struct page *page, struct mem_cgroup *memcg,
			       gfp_t gfp)
{
	unsigned int nr_pages = thp_nr_pages(page);
	int ret;

	ret = try_charge(memcg, gfp, nr_pages);
	if (ret)
		goto out;

	css_get(&memcg->css);
	commit_charge(page, memcg);

	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
out:
	return ret;
}

6719
/**
6720
 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6721 6722 6723 6724 6725
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6726 6727
 * pages according to @gfp_mask if necessary. if @mm is NULL, try to
 * charge to the active memcg.
6728
 *
6729 6730
 * Do not use this for pages allocated for swapin.
 *
6731
 * Returns 0 on success. Otherwise, an error code is returned.
6732
 */
6733
int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6734
{
6735 6736
	struct mem_cgroup *memcg;
	int ret;
6737 6738

	if (mem_cgroup_disabled())
6739
		return 0;
6740

6741 6742 6743
	memcg = get_mem_cgroup_from_mm(mm);
	ret = __mem_cgroup_charge(page, memcg, gfp_mask);
	css_put(&memcg->css);
6744

6745 6746
	return ret;
}
6747

6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765
/**
 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp: reclaim mode
 * @entry: swap entry for which the page is allocated
 *
 * This function charges a page allocated for swapin. Please call this before
 * adding the page to the swapcache.
 *
 * Returns 0 on success. Otherwise, an error code is returned.
 */
int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
				  gfp_t gfp, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;
	int ret;
6766

6767 6768
	if (mem_cgroup_disabled())
		return 0;
6769

6770 6771 6772 6773 6774 6775
	id = lookup_swap_cgroup_id(entry);
	rcu_read_lock();
	memcg = mem_cgroup_from_id(id);
	if (!memcg || !css_tryget_online(&memcg->css))
		memcg = get_mem_cgroup_from_mm(mm);
	rcu_read_unlock();
6776

6777
	ret = __mem_cgroup_charge(page, memcg, gfp);
6778

6779 6780 6781
	css_put(&memcg->css);
	return ret;
}
6782

6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793
/*
 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
 * @entry: swap entry for which the page is charged
 *
 * Call this function after successfully adding the charged page to swapcache.
 *
 * Note: This function assumes the page for which swap slot is being uncharged
 * is order 0 page.
 */
void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
{
6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805
	/*
	 * Cgroup1's unified memory+swap counter has been charged with the
	 * new swapcache page, finish the transfer by uncharging the swap
	 * slot. The swap slot would also get uncharged when it dies, but
	 * it can stick around indefinitely and we'd count the page twice
	 * the entire time.
	 *
	 * Cgroup2 has separate resource counters for memory and swap,
	 * so this is a non-issue here. Memory and swap charge lifetimes
	 * correspond 1:1 to page and swap slot lifetimes: we charge the
	 * page to memory here, and uncharge swap when the slot is freed.
	 */
6806
	if (!mem_cgroup_disabled() && do_memsw_account()) {
6807 6808 6809 6810 6811
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
6812
		mem_cgroup_uncharge_swap(entry, 1);
6813
	}
6814 6815
}

6816 6817
struct uncharge_gather {
	struct mem_cgroup *memcg;
6818
	unsigned long nr_memory;
6819 6820 6821 6822 6823 6824
	unsigned long pgpgout;
	unsigned long nr_kmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6825
{
6826 6827 6828 6829 6830
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
6831 6832
	unsigned long flags;

6833 6834
	if (ug->nr_memory) {
		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6835
		if (do_memsw_account())
6836
			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6837 6838 6839
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
6840
	}
6841 6842

	local_irq_save(flags);
6843
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6844
	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6845
	memcg_check_events(ug->memcg, ug->dummy_page);
6846
	local_irq_restore(flags);
6847 6848 6849

	/* drop reference from uncharge_page */
	css_put(&ug->memcg->css);
6850 6851 6852 6853
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
6854
	unsigned long nr_pages;
6855 6856
	struct mem_cgroup *memcg;
	struct obj_cgroup *objcg;
6857
	bool use_objcg = PageMemcgKmem(page);
6858

6859 6860 6861 6862
	VM_BUG_ON_PAGE(PageLRU(page), page);

	/*
	 * Nobody should be changing or seriously looking at
6863
	 * page memcg or objcg at this point, we have fully
6864 6865
	 * exclusive access to the page.
	 */
6866
	if (use_objcg) {
6867 6868 6869 6870 6871 6872 6873 6874 6875
		objcg = __page_objcg(page);
		/*
		 * This get matches the put at the end of the function and
		 * kmem pages do not hold memcg references anymore.
		 */
		memcg = get_mem_cgroup_from_objcg(objcg);
	} else {
		memcg = __page_memcg(page);
	}
6876

6877 6878 6879 6880
	if (!memcg)
		return;

	if (ug->memcg != memcg) {
6881 6882 6883 6884
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
6885
		ug->memcg = memcg;
6886
		ug->dummy_page = page;
6887 6888

		/* pairs with css_put in uncharge_batch */
6889
		css_get(&memcg->css);
6890 6891
	}

6892
	nr_pages = compound_nr(page);
6893

6894
	if (use_objcg) {
6895
		ug->nr_memory += nr_pages;
6896
		ug->nr_kmem += nr_pages;
6897 6898 6899 6900 6901 6902 6903

		page->memcg_data = 0;
		obj_cgroup_put(objcg);
	} else {
		/* LRU pages aren't accounted at the root level */
		if (!mem_cgroup_is_root(memcg))
			ug->nr_memory += nr_pages;
6904
		ug->pgpgout++;
6905

6906 6907 6908 6909
		page->memcg_data = 0;
	}

	css_put(&memcg->css);
6910 6911
}

6912 6913 6914 6915
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
6916
 * Uncharge a page previously charged with mem_cgroup_charge().
6917 6918 6919
 */
void mem_cgroup_uncharge(struct page *page)
{
6920 6921
	struct uncharge_gather ug;

6922 6923 6924
	if (mem_cgroup_disabled())
		return;

6925
	/* Don't touch page->lru of any random page, pre-check: */
6926
	if (!page_memcg(page))
6927 6928
		return;

6929 6930 6931
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
6932
}
6933

6934 6935 6936 6937 6938
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
6939
 * mem_cgroup_charge().
6940 6941 6942
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
6943 6944 6945
	struct uncharge_gather ug;
	struct page *page;

6946 6947
	if (mem_cgroup_disabled())
		return;
6948

6949 6950 6951 6952 6953
	uncharge_gather_clear(&ug);
	list_for_each_entry(page, page_list, lru)
		uncharge_page(page, &ug);
	if (ug.memcg)
		uncharge_batch(&ug);
6954 6955 6956
}

/**
6957 6958 6959
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
6960
 *
6961 6962
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
6963 6964 6965
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
6966
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6967
{
6968
	struct mem_cgroup *memcg;
6969
	unsigned int nr_pages;
6970
	unsigned long flags;
6971 6972 6973 6974

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6975 6976
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6977 6978 6979 6980 6981

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
6982
	if (page_memcg(newpage))
6983 6984
		return;

6985
	memcg = page_memcg(oldpage);
6986
	VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
6987
	if (!memcg)
6988 6989
		return;

6990
	/* Force-charge the new page. The old one will be freed soon */
6991
	nr_pages = thp_nr_pages(newpage);
6992

6993 6994 6995 6996 6997
	if (!mem_cgroup_is_root(memcg)) {
		page_counter_charge(&memcg->memory, nr_pages);
		if (do_memsw_account())
			page_counter_charge(&memcg->memsw, nr_pages);
	}
6998

6999
	css_get(&memcg->css);
7000
	commit_charge(newpage, memcg);
7001

7002
	local_irq_save(flags);
7003
	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
7004
	memcg_check_events(memcg, newpage);
7005
	local_irq_restore(flags);
7006 7007
}

7008
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7009 7010
EXPORT_SYMBOL(memcg_sockets_enabled_key);

7011
void mem_cgroup_sk_alloc(struct sock *sk)
7012 7013 7014
{
	struct mem_cgroup *memcg;

7015 7016 7017
	if (!mem_cgroup_sockets_enabled)
		return;

7018 7019 7020 7021
	/* Do not associate the sock with unrelated interrupted task's memcg. */
	if (in_interrupt())
		return;

7022 7023
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
7024 7025
	if (memcg == root_mem_cgroup)
		goto out;
7026
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7027
		goto out;
S
Shakeel Butt 已提交
7028
	if (css_tryget(&memcg->css))
7029
		sk->sk_memcg = memcg;
7030
out:
7031 7032 7033
	rcu_read_unlock();
}

7034
void mem_cgroup_sk_free(struct sock *sk)
7035
{
7036 7037
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
7050
	gfp_t gfp_mask = GFP_KERNEL;
7051

7052
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7053
		struct page_counter *fail;
7054

7055 7056
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
7057 7058
			return true;
		}
7059 7060
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
7061
		return false;
7062
	}
7063

7064 7065 7066 7067
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

7068
	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7069

7070 7071 7072 7073
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7074 7075 7076 7077 7078
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
7079 7080
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
7081 7082 7083
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
7084
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7085
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7086 7087
		return;
	}
7088

7089
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7090

7091
	refill_stock(memcg, nr_pages);
7092 7093
}

7094 7095 7096 7097 7098 7099 7100 7101 7102
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
7103 7104
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
7105 7106 7107 7108
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
7109

7110
/*
7111 7112
 * subsys_initcall() for memory controller.
 *
7113 7114 7115 7116
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
7117 7118 7119
 */
static int __init mem_cgroup_init(void)
{
7120 7121
	int cpu, node;

7122 7123 7124 7125 7126 7127 7128 7129
	/*
	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
	 * used for per-memcg-per-cpu caching of per-node statistics. In order
	 * to work fine, we should make sure that the overfill threshold can't
	 * exceed S32_MAX / PAGE_SIZE.
	 */
	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);

7130 7131
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

7143
		rtpn->rb_root = RB_ROOT;
7144
		rtpn->rb_rightmost = NULL;
7145
		spin_lock_init(&rtpn->lock);
7146 7147 7148
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

7149 7150 7151
	return 0;
}
subsys_initcall(mem_cgroup_init);
7152 7153

#ifdef CONFIG_MEMCG_SWAP
7154 7155
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
7156
	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

7172 7173 7174 7175 7176 7177 7178 7179 7180
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
7181
	struct mem_cgroup *memcg, *swap_memcg;
7182
	unsigned int nr_entries;
7183 7184 7185 7186 7187
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

7188 7189 7190
	if (mem_cgroup_disabled())
		return;

7191
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7192 7193
		return;

7194
	memcg = page_memcg(page);
7195

7196
	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7197 7198 7199
	if (!memcg)
		return;

7200 7201 7202 7203 7204 7205
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
7206
	nr_entries = thp_nr_pages(page);
7207 7208 7209 7210 7211
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
7212
	VM_BUG_ON_PAGE(oldid, page);
7213
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7214

7215
	page->memcg_data = 0;
7216 7217

	if (!mem_cgroup_is_root(memcg))
7218
		page_counter_uncharge(&memcg->memory, nr_entries);
7219

7220
	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7221
		if (!mem_cgroup_is_root(swap_memcg))
7222 7223
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
7224 7225
	}

7226 7227
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
7228
	 * i_pages lock which is taken with interrupts-off. It is
7229
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
7230
	 * only synchronisation we have for updating the per-CPU variables.
7231 7232
	 */
	VM_BUG_ON(!irqs_disabled());
7233
	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7234
	memcg_check_events(memcg, page);
7235

7236
	css_put(&memcg->css);
7237 7238
}

7239 7240
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
7241 7242 7243
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
7244
 * Try to charge @page's memcg for the swap space at @entry.
7245 7246 7247 7248 7249
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
7250
	unsigned int nr_pages = thp_nr_pages(page);
7251
	struct page_counter *counter;
7252
	struct mem_cgroup *memcg;
7253 7254
	unsigned short oldid;

7255 7256 7257
	if (mem_cgroup_disabled())
		return 0;

7258
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7259 7260
		return 0;

7261
	memcg = page_memcg(page);
7262

7263
	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7264 7265 7266
	if (!memcg)
		return 0;

7267 7268
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7269
		return 0;
7270
	}
7271

7272 7273
	memcg = mem_cgroup_id_get_online(memcg);

7274
	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7275
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7276 7277
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7278
		mem_cgroup_id_put(memcg);
7279
		return -ENOMEM;
7280
	}
7281

7282 7283 7284 7285
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7286
	VM_BUG_ON_PAGE(oldid, page);
7287
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7288 7289 7290 7291

	return 0;
}

7292
/**
7293
 * mem_cgroup_uncharge_swap - uncharge swap space
7294
 * @entry: swap entry to uncharge
7295
 * @nr_pages: the amount of swap space to uncharge
7296
 */
7297
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7298 7299 7300 7301
{
	struct mem_cgroup *memcg;
	unsigned short id;

7302
	id = swap_cgroup_record(entry, 0, nr_pages);
7303
	rcu_read_lock();
7304
	memcg = mem_cgroup_from_id(id);
7305
	if (memcg) {
7306
		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7307
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7308
				page_counter_uncharge(&memcg->swap, nr_pages);
7309
			else
7310
				page_counter_uncharge(&memcg->memsw, nr_pages);
7311
		}
7312
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7313
		mem_cgroup_id_put_many(memcg, nr_pages);
7314 7315 7316 7317
	}
	rcu_read_unlock();
}

7318 7319 7320 7321
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

7322
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7323 7324 7325
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
7326
				      READ_ONCE(memcg->swap.max) -
7327 7328 7329 7330
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

7331 7332 7333 7334 7335 7336 7337 7338
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
7339
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7340 7341
		return false;

7342
	memcg = page_memcg(page);
7343 7344 7345
	if (!memcg)
		return false;

7346 7347 7348 7349 7350
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		unsigned long usage = page_counter_read(&memcg->swap);

		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
		    usage * 2 >= READ_ONCE(memcg->swap.max))
7351
			return true;
7352
	}
7353 7354 7355 7356

	return false;
}

7357
static int __init setup_swap_account(char *s)
7358 7359
{
	if (!strcmp(s, "1"))
7360
		cgroup_memory_noswap = false;
7361
	else if (!strcmp(s, "0"))
7362
		cgroup_memory_noswap = true;
7363 7364
	return 1;
}
7365
__setup("swapaccount=", setup_swap_account);
7366

7367 7368 7369 7370 7371 7372 7373 7374
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397
static int swap_high_show(struct seq_file *m, void *v)
{
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
}

static ssize_t swap_high_write(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &high);
	if (err)
		return err;

	page_counter_set_high(&memcg->swap, high);

	return nbytes;
}

7398 7399
static int swap_max_show(struct seq_file *m, void *v)
{
7400 7401
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

7416
	xchg(&memcg->swap.max, max);
7417 7418 7419 7420

	return nbytes;
}

7421 7422
static int swap_events_show(struct seq_file *m, void *v)
{
7423
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7424

7425 7426
	seq_printf(m, "high %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7427 7428 7429 7430 7431 7432 7433 7434
	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

7435 7436 7437 7438 7439 7440
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
7441 7442 7443 7444 7445 7446
	{
		.name = "swap.high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_high_show,
		.write = swap_high_write,
	},
7447 7448 7449 7450 7451 7452
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
7453 7454 7455 7456 7457 7458
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
7459 7460 7461
	{ }	/* terminate */
};

7462
static struct cftype memsw_files[] = {
7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

7489 7490 7491 7492 7493 7494 7495
/*
 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
 * boot parameter. This may result in premature OOPS inside
 * mem_cgroup_get_nr_swap_pages() function in corner cases.
 */
7496 7497
static int __init mem_cgroup_swap_init(void)
{
7498 7499 7500 7501 7502
	/* No memory control -> no swap control */
	if (mem_cgroup_disabled())
		cgroup_memory_noswap = true;

	if (cgroup_memory_noswap)
7503 7504 7505 7506 7507
		return 0;

	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));

7508 7509
	return 0;
}
7510
core_initcall(mem_cgroup_swap_init);
7511 7512

#endif /* CONFIG_MEMCG_SWAP */