memcontrol.c 190.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
B
Balbir Singh 已提交
2 3 4 5 6
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
7 8 9
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
10 11 12 13
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
14 15 16 17
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
B
Balbir Singh 已提交
23 24
 */

25
#include <linux/page_counter.h>
B
Balbir Singh 已提交
26 27
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
28
#include <linux/pagewalk.h>
29
#include <linux/sched/mm.h>
30
#include <linux/shmem_fs.h>
31
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
32
#include <linux/pagemap.h>
33
#include <linux/vm_event_item.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/swap_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
59
#include <linux/tracehook.h>
60
#include <linux/psi.h>
61
#include <linux/seq_buf.h>
K
KAMEZAWA Hiroyuki 已提交
62
#include "internal.h"
G
Glauber Costa 已提交
63
#include <net/sock.h>
M
Michal Hocko 已提交
64
#include <net/ip.h>
65
#include "slab.h"
B
Balbir Singh 已提交
66

67
#include <linux/uaccess.h>
68

69 70
#include <trace/events/vmscan.h>

71 72
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
73

74 75
struct mem_cgroup *root_mem_cgroup __read_mostly;

76 77 78
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

79 80 81
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

82
/* Whether the swap controller is active */
A
Andrew Morton 已提交
83
#ifdef CONFIG_MEMCG_SWAP
84
bool cgroup_memory_noswap __read_mostly;
85
#else
86
#define cgroup_memory_noswap		1
87
#endif
88

89 90 91 92
#ifdef CONFIG_CGROUP_WRITEBACK
static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
#endif

93 94 95
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
96
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
97 98
}

99 100
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
101

102 103 104 105 106
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

107
struct mem_cgroup_tree_per_node {
108
	struct rb_root rb_root;
109
	struct rb_node *rb_rightmost;
110 111 112 113 114 115 116 117 118
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
119 120 121 122 123
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
124

125 126 127
/*
 * cgroup_event represents events which userspace want to receive.
 */
128
struct mem_cgroup_event {
129
	/*
130
	 * memcg which the event belongs to.
131
	 */
132
	struct mem_cgroup *memcg;
133 134 135 136 137 138 139 140
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
141 142 143 144 145
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
146
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
147
			      struct eventfd_ctx *eventfd, const char *args);
148 149 150 151 152
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
153
	void (*unregister_event)(struct mem_cgroup *memcg,
154
				 struct eventfd_ctx *eventfd);
155 156 157 158 159 160
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
161
	wait_queue_entry_t wait;
162 163 164
	struct work_struct remove;
};

165 166
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
167

168 169
/* Stuffs for move charges at task migration. */
/*
170
 * Types of charges to be moved.
171
 */
172 173 174
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
175

176 177
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
178
	spinlock_t	  lock; /* for from, to */
179
	struct mm_struct  *mm;
180 181
	struct mem_cgroup *from;
	struct mem_cgroup *to;
182
	unsigned long flags;
183
	unsigned long precharge;
184
	unsigned long moved_charge;
185
	unsigned long moved_swap;
186 187 188
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
189
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
190 191
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
192

193 194 195 196
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
197
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
198
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
199

200
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
201 202 203 204
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
205
	_KMEM,
V
Vladimir Davydov 已提交
206
	_TCP,
G
Glauber Costa 已提交
207 208
};

209 210
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
211
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
212 213
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
214

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(root, iter, NULL))

#define for_each_mem_cgroup(iter)			\
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(NULL, iter, NULL))

230 231 232 233 234 235
static inline bool should_force_charge(void)
{
	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
		(current->flags & PF_EXITING);
}

236 237 238 239 240 241 242 243 244 245 246 247 248
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

249
#ifdef CONFIG_MEMCG_KMEM
R
Roman Gushchin 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
extern spinlock_t css_set_lock;

static void obj_cgroup_release(struct percpu_ref *ref)
{
	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
	struct mem_cgroup *memcg;
	unsigned int nr_bytes;
	unsigned int nr_pages;
	unsigned long flags;

	/*
	 * At this point all allocated objects are freed, and
	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
	 *
	 * The following sequence can lead to it:
	 * 1) CPU0: objcg == stock->cached_objcg
	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
	 *          PAGE_SIZE bytes are charged
	 * 3) CPU1: a process from another memcg is allocating something,
	 *          the stock if flushed,
	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
	 * 5) CPU0: we do release this object,
	 *          92 bytes are added to stock->nr_bytes
	 * 6) CPU0: stock is flushed,
	 *          92 bytes are added to objcg->nr_charged_bytes
	 *
	 * In the result, nr_charged_bytes == PAGE_SIZE.
	 * This page will be uncharged in obj_cgroup_release().
	 */
	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
	nr_pages = nr_bytes >> PAGE_SHIFT;

	spin_lock_irqsave(&css_set_lock, flags);
	memcg = obj_cgroup_memcg(objcg);
	if (nr_pages)
		__memcg_kmem_uncharge(memcg, nr_pages);
	list_del(&objcg->list);
	mem_cgroup_put(memcg);
	spin_unlock_irqrestore(&css_set_lock, flags);

	percpu_ref_exit(ref);
	kfree_rcu(objcg, rcu);
}

static struct obj_cgroup *obj_cgroup_alloc(void)
{
	struct obj_cgroup *objcg;
	int ret;

	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
	if (!objcg)
		return NULL;

	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
			      GFP_KERNEL);
	if (ret) {
		kfree(objcg);
		return NULL;
	}
	INIT_LIST_HEAD(&objcg->list);
	return objcg;
}

static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
				  struct mem_cgroup *parent)
{
	struct obj_cgroup *objcg, *iter;

	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);

	spin_lock_irq(&css_set_lock);

	/* Move active objcg to the parent's list */
	xchg(&objcg->memcg, parent);
	css_get(&parent->css);
	list_add(&objcg->list, &parent->objcg_list);

	/* Move already reparented objcgs to the parent's list */
	list_for_each_entry(iter, &memcg->objcg_list, list) {
		css_get(&parent->css);
		xchg(&iter->memcg, parent);
		css_put(&memcg->css);
	}
	list_splice(&memcg->objcg_list, &parent->objcg_list);

	spin_unlock_irq(&css_set_lock);

	percpu_ref_kill(&objcg->refcnt);
}

342
/*
343
 * This will be used as a shrinker list's index.
L
Li Zefan 已提交
344 345 346 347 348
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
349
 *
350 351
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
352
 */
353 354
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
355

356 357 358 359 360 361 362 363 364 365 366 367 368
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

369 370 371 372 373 374
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
375
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
376 377
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
378
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
379 380 381
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
382
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
383

384 385
/*
 * A lot of the calls to the cache allocation functions are expected to be
386
 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
387 388 389
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
390
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
391
EXPORT_SYMBOL(memcg_kmem_enabled_key);
392
#endif
393

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
static int memcg_shrinker_map_size;
static DEFINE_MUTEX(memcg_shrinker_map_mutex);

static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
{
	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
}

static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
					 int size, int old_size)
{
	struct memcg_shrinker_map *new, *old;
	int nid;

	lockdep_assert_held(&memcg_shrinker_map_mutex);

	for_each_node(nid) {
		old = rcu_dereference_protected(
			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
		/* Not yet online memcg */
		if (!old)
			return 0;

417
		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
		if (!new)
			return -ENOMEM;

		/* Set all old bits, clear all new bits */
		memset(new->map, (int)0xff, old_size);
		memset((void *)new->map + old_size, 0, size - old_size);

		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
	}

	return 0;
}

static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *pn;
	struct memcg_shrinker_map *map;
	int nid;

	if (mem_cgroup_is_root(memcg))
		return;

	for_each_node(nid) {
		pn = mem_cgroup_nodeinfo(memcg, nid);
		map = rcu_dereference_protected(pn->shrinker_map, true);
		if (map)
			kvfree(map);
		rcu_assign_pointer(pn->shrinker_map, NULL);
	}
}

static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	struct memcg_shrinker_map *map;
	int nid, size, ret = 0;

	if (mem_cgroup_is_root(memcg))
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	size = memcg_shrinker_map_size;
	for_each_node(nid) {
461
		map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
		if (!map) {
			memcg_free_shrinker_maps(memcg);
			ret = -ENOMEM;
			break;
		}
		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
	}
	mutex_unlock(&memcg_shrinker_map_mutex);

	return ret;
}

int memcg_expand_shrinker_maps(int new_id)
{
	int size, old_size, ret = 0;
	struct mem_cgroup *memcg;

	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
	old_size = memcg_shrinker_map_size;
	if (size <= old_size)
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	if (!root_mem_cgroup)
		goto unlock;

	for_each_mem_cgroup(memcg) {
		if (mem_cgroup_is_root(memcg))
			continue;
		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
492 493
		if (ret) {
			mem_cgroup_iter_break(NULL, memcg);
494
			goto unlock;
495
		}
496 497 498 499 500 501 502
	}
unlock:
	if (!ret)
		memcg_shrinker_map_size = size;
	mutex_unlock(&memcg_shrinker_map_mutex);
	return ret;
}
503 504 505 506 507 508 509 510

void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
{
	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
		struct memcg_shrinker_map *map;

		rcu_read_lock();
		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
511 512
		/* Pairs with smp mb in shrink_slab() */
		smp_mb__before_atomic();
513 514 515 516 517
		set_bit(shrinker_id, map->map);
		rcu_read_unlock();
	}
}

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

535
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
536 537 538 539 540
		memcg = root_mem_cgroup;

	return &memcg->css;
}

541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
560
	memcg = page->mem_cgroup;
561

562 563 564 565 566 567 568 569
	/*
	 * The lowest bit set means that memcg isn't a valid
	 * memcg pointer, but a obj_cgroups pointer.
	 * In this case the page is shared and doesn't belong
	 * to any specific memory cgroup.
	 */
	if ((unsigned long) memcg & 0x1UL)
		memcg = NULL;
570

571 572 573 574 575 576 577 578
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

579 580
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
581
{
582
	int nid = page_to_nid(page);
583

584
	return memcg->nodeinfo[nid];
585 586
}

587 588
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
589
{
590
	return soft_limit_tree.rb_tree_per_node[nid];
591 592
}

593
static struct mem_cgroup_tree_per_node *
594 595 596 597
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

598
	return soft_limit_tree.rb_tree_per_node[nid];
599 600
}

601 602
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
603
					 unsigned long new_usage_in_excess)
604 605 606
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
607
	struct mem_cgroup_per_node *mz_node;
608
	bool rightmost = true;
609 610 611 612 613 614 615 616 617

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
618
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
619
					tree_node);
620
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
621
			p = &(*p)->rb_left;
622 623 624
			rightmost = false;
		}

625 626 627 628 629 630 631
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
632 633 634 635

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

636 637 638 639 640
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

641 642
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
643 644 645
{
	if (!mz->on_tree)
		return;
646 647 648 649

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

650 651 652 653
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

654 655
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
656
{
657 658 659
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
660
	__mem_cgroup_remove_exceeded(mz, mctz);
661
	spin_unlock_irqrestore(&mctz->lock, flags);
662 663
}

664 665 666
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
667
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
668 669 670 671 672 673 674
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
675 676 677

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
678
	unsigned long excess;
679 680
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
681

682
	mctz = soft_limit_tree_from_page(page);
683 684
	if (!mctz)
		return;
685 686 687 688 689
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
690
		mz = mem_cgroup_page_nodeinfo(memcg, page);
691
		excess = soft_limit_excess(memcg);
692 693 694 695 696
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
697 698 699
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
700 701
			/* if on-tree, remove it */
			if (mz->on_tree)
702
				__mem_cgroup_remove_exceeded(mz, mctz);
703 704 705 706
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
707
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
708
			spin_unlock_irqrestore(&mctz->lock, flags);
709 710 711 712 713 714
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
715 716 717
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
718

719
	for_each_node(nid) {
720 721
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
722 723
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
724 725 726
	}
}

727 728
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
729
{
730
	struct mem_cgroup_per_node *mz;
731 732 733

retry:
	mz = NULL;
734
	if (!mctz->rb_rightmost)
735 736
		goto done;		/* Nothing to reclaim from */

737 738
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
739 740 741 742 743
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
744
	__mem_cgroup_remove_exceeded(mz, mctz);
745
	if (!soft_limit_excess(mz->memcg) ||
S
Shakeel Butt 已提交
746
	    !css_tryget(&mz->memcg->css))
747 748 749 750 751
		goto retry;
done:
	return mz;
}

752 753
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
754
{
755
	struct mem_cgroup_per_node *mz;
756

757
	spin_lock_irq(&mctz->lock);
758
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
759
	spin_unlock_irq(&mctz->lock);
760 761 762
	return mz;
}

763 764 765 766 767 768 769 770
/**
 * __mod_memcg_state - update cgroup memory statistics
 * @memcg: the memory cgroup
 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 * @val: delta to add to the counter, can be negative
 */
void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
{
771
	long x, threshold = MEMCG_CHARGE_BATCH;
772 773 774 775

	if (mem_cgroup_disabled())
		return;

776
	if (memcg_stat_item_in_bytes(idx))
777 778
		threshold <<= PAGE_SHIFT;

779
	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
780
	if (unlikely(abs(x) > threshold)) {
781 782
		struct mem_cgroup *mi;

783 784 785 786 787
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
788 789
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmstats[idx]);
790 791 792 793 794
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
}

795 796 797 798 799 800 801 802 803 804 805
static struct mem_cgroup_per_node *
parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
{
	struct mem_cgroup *parent;

	parent = parent_mem_cgroup(pn->memcg);
	if (!parent)
		return NULL;
	return mem_cgroup_nodeinfo(parent, nid);
}

806 807
void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			      int val)
808 809
{
	struct mem_cgroup_per_node *pn;
810
	struct mem_cgroup *memcg;
811
	long x, threshold = MEMCG_CHARGE_BATCH;
812 813

	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
814
	memcg = pn->memcg;
815 816

	/* Update memcg */
817
	__mod_memcg_state(memcg, idx, val);
818

819 820 821
	/* Update lruvec */
	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);

822 823 824
	if (vmstat_item_in_bytes(idx))
		threshold <<= PAGE_SHIFT;

825
	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
826
	if (unlikely(abs(x) > threshold)) {
827
		pg_data_t *pgdat = lruvec_pgdat(lruvec);
828 829 830 831
		struct mem_cgroup_per_node *pi;

		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
			atomic_long_add(x, &pi->lruvec_stat[idx]);
832 833 834 835 836
		x = 0;
	}
	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
}

837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
/**
 * __mod_lruvec_state - update lruvec memory statistics
 * @lruvec: the lruvec
 * @idx: the stat item
 * @val: delta to add to the counter, can be negative
 *
 * The lruvec is the intersection of the NUMA node and a cgroup. This
 * function updates the all three counters that are affected by a
 * change of state at this level: per-node, per-cgroup, per-lruvec.
 */
void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			int val)
{
	/* Update node */
	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);

	/* Update memcg and lruvec */
	if (!mem_cgroup_disabled())
		__mod_memcg_lruvec_state(lruvec, idx, val);
}

858 859
void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
{
860
	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
861 862 863 864
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;

	rcu_read_lock();
865
	memcg = mem_cgroup_from_obj(p);
866 867 868 869 870

	/* Untracked pages have no memcg, no lruvec. Update only the node */
	if (!memcg || memcg == root_mem_cgroup) {
		__mod_node_page_state(pgdat, idx, val);
	} else {
871
		lruvec = mem_cgroup_lruvec(memcg, pgdat);
872 873 874 875 876
		__mod_lruvec_state(lruvec, idx, val);
	}
	rcu_read_unlock();
}

877 878 879 880 881 882 883 884 885 886 887
void mod_memcg_obj_state(void *p, int idx, int val)
{
	struct mem_cgroup *memcg;

	rcu_read_lock();
	memcg = mem_cgroup_from_obj(p);
	if (memcg)
		mod_memcg_state(memcg, idx, val);
	rcu_read_unlock();
}

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
/**
 * __count_memcg_events - account VM events in a cgroup
 * @memcg: the memory cgroup
 * @idx: the event item
 * @count: the number of events that occured
 */
void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
			  unsigned long count)
{
	unsigned long x;

	if (mem_cgroup_disabled())
		return;

	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
904 905
		struct mem_cgroup *mi;

906 907 908 909 910
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->events[idx], x);
911 912
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmevents[idx]);
913 914 915 916 917
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
}

918
static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
919
{
920
	return atomic_long_read(&memcg->vmevents[event]);
921 922
}

923 924
static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
{
925 926 927 928 929 930
	long x = 0;
	int cpu;

	for_each_possible_cpu(cpu)
		x += per_cpu(memcg->vmstats_local->events[event], cpu);
	return x;
931 932
}

933
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
934
					 struct page *page,
935
					 int nr_pages)
936
{
937 938
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
939
		__count_memcg_events(memcg, PGPGIN, 1);
940
	else {
941
		__count_memcg_events(memcg, PGPGOUT, 1);
942 943
		nr_pages = -nr_pages; /* for event */
	}
944

945
	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
946 947
}

948 949
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
950 951 952
{
	unsigned long val, next;

953 954
	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
955
	/* from time_after() in jiffies.h */
956
	if ((long)(next - val) < 0) {
957 958 959 960
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
961 962 963
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
964 965 966
		default:
			break;
		}
967
		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
968
		return true;
969
	}
970
	return false;
971 972 973 974 975 976
}

/*
 * Check events in order.
 *
 */
977
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
978 979
{
	/* threshold event is triggered in finer grain than soft limit */
980 981
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
982
		bool do_softlimit;
983

984 985
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
986
		mem_cgroup_threshold(memcg);
987 988
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
989
	}
990 991
}

992
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
993
{
994 995 996 997 998 999 1000 1001
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1002
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1003
}
M
Michal Hocko 已提交
1004
EXPORT_SYMBOL(mem_cgroup_from_task);
1005

1006 1007 1008 1009 1010 1011 1012 1013 1014
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
 * returned.
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1015
{
1016 1017 1018 1019
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
1020

1021 1022
	rcu_read_lock();
	do {
1023 1024 1025 1026 1027 1028
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1029
			memcg = root_mem_cgroup;
1030 1031 1032 1033 1034
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1035
	} while (!css_tryget(&memcg->css));
1036
	rcu_read_unlock();
1037
	return memcg;
1038
}
1039 1040
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
/**
 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
 * @page: page from which memcg should be extracted.
 *
 * Obtain a reference on page->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned.
 */
struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
{
	struct mem_cgroup *memcg = page->mem_cgroup;

	if (mem_cgroup_disabled())
		return NULL;

	rcu_read_lock();
S
Shakeel Butt 已提交
1056 1057
	/* Page should not get uncharged and freed memcg under us. */
	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1058 1059 1060 1061 1062 1063
		memcg = root_mem_cgroup;
	rcu_read_unlock();
	return memcg;
}
EXPORT_SYMBOL(get_mem_cgroup_from_page);

1064 1065 1066 1067 1068 1069
/**
 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
 */
static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
{
	if (unlikely(current->active_memcg)) {
S
Shakeel Butt 已提交
1070
		struct mem_cgroup *memcg;
1071 1072

		rcu_read_lock();
S
Shakeel Butt 已提交
1073 1074 1075 1076
		/* current->active_memcg must hold a ref. */
		if (WARN_ON_ONCE(!css_tryget(&current->active_memcg->css)))
			memcg = root_mem_cgroup;
		else
1077 1078 1079 1080 1081 1082
			memcg = current->active_memcg;
		rcu_read_unlock();
		return memcg;
	}
	return get_mem_cgroup_from_mm(current->mm);
}
1083

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
1097 1098 1099
 * Reclaimers can specify a node in @reclaim to divide up the memcgs
 * in the hierarchy among all concurrent reclaimers operating on the
 * same node.
1100
 */
1101
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1102
				   struct mem_cgroup *prev,
1103
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1104
{
1105
	struct mem_cgroup_reclaim_iter *iter;
1106
	struct cgroup_subsys_state *css = NULL;
1107
	struct mem_cgroup *memcg = NULL;
1108
	struct mem_cgroup *pos = NULL;
1109

1110 1111
	if (mem_cgroup_disabled())
		return NULL;
1112

1113 1114
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1115

1116
	if (prev && !reclaim)
1117
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1118

1119 1120
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1121
			goto out;
1122
		return root;
1123
	}
K
KAMEZAWA Hiroyuki 已提交
1124

1125
	rcu_read_lock();
M
Michal Hocko 已提交
1126

1127
	if (reclaim) {
1128
		struct mem_cgroup_per_node *mz;
1129

1130
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1131
		iter = &mz->iter;
1132 1133 1134 1135

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

1136
		while (1) {
1137
			pos = READ_ONCE(iter->position);
1138 1139
			if (!pos || css_tryget(&pos->css))
				break;
1140
			/*
1141 1142 1143 1144 1145 1146
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
1147
			 */
1148 1149
			(void)cmpxchg(&iter->position, pos, NULL);
		}
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1167
		}
K
KAMEZAWA Hiroyuki 已提交
1168

1169 1170 1171 1172 1173 1174
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1175

1176 1177
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1178

1179 1180
		if (css_tryget(css))
			break;
1181

1182
		memcg = NULL;
1183
	}
1184 1185 1186

	if (reclaim) {
		/*
1187 1188 1189
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
1190
		 */
1191 1192
		(void)cmpxchg(&iter->position, pos, memcg);

1193 1194 1195 1196 1197 1198 1199
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1200
	}
1201

1202 1203
out_unlock:
	rcu_read_unlock();
1204
out:
1205 1206 1207
	if (prev && prev != root)
		css_put(&prev->css);

1208
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1209
}
K
KAMEZAWA Hiroyuki 已提交
1210

1211 1212 1213 1214 1215 1216 1217
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1218 1219 1220 1221 1222 1223
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1224

1225 1226
static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
					struct mem_cgroup *dead_memcg)
1227 1228
{
	struct mem_cgroup_reclaim_iter *iter;
1229 1230
	struct mem_cgroup_per_node *mz;
	int nid;
1231

1232 1233
	for_each_node(nid) {
		mz = mem_cgroup_nodeinfo(from, nid);
1234 1235
		iter = &mz->iter;
		cmpxchg(&iter->position, dead_memcg, NULL);
1236 1237 1238
	}
}

1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup *last;

	do {
		__invalidate_reclaim_iterators(memcg, dead_memcg);
		last = memcg;
	} while ((memcg = parent_mem_cgroup(memcg)));

	/*
	 * When cgruop1 non-hierarchy mode is used,
	 * parent_mem_cgroup() does not walk all the way up to the
	 * cgroup root (root_mem_cgroup). So we have to handle
	 * dead_memcg from cgroup root separately.
	 */
	if (last != root_mem_cgroup)
		__invalidate_reclaim_iterators(root_mem_cgroup,
						dead_memcg);
}

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

1285
		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

1297
/**
1298
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1299
 * @page: the page
1300
 * @pgdat: pgdat of the page
1301
 *
1302 1303
 * This function relies on page->mem_cgroup being stable - see the
 * access rules in commit_charge().
1304
 */
M
Mel Gorman 已提交
1305
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
1306
{
1307
	struct mem_cgroup_per_node *mz;
1308
	struct mem_cgroup *memcg;
1309
	struct lruvec *lruvec;
1310

1311
	if (mem_cgroup_disabled()) {
1312
		lruvec = &pgdat->__lruvec;
1313 1314
		goto out;
	}
1315

1316
	memcg = page->mem_cgroup;
1317
	/*
1318
	 * Swapcache readahead pages are added to the LRU - and
1319
	 * possibly migrated - before they are charged.
1320
	 */
1321 1322
	if (!memcg)
		memcg = root_mem_cgroup;
1323

1324
	mz = mem_cgroup_page_nodeinfo(memcg, page);
1325 1326 1327 1328 1329 1330 1331
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
1332 1333
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
1334
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1335
}
1336

1337
/**
1338 1339 1340
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1341
 * @zid: zone id of the accounted pages
1342
 * @nr_pages: positive when adding or negative when removing
1343
 *
1344 1345 1346
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1347
 */
1348
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1349
				int zid, int nr_pages)
1350
{
1351
	struct mem_cgroup_per_node *mz;
1352
	unsigned long *lru_size;
1353
	long size;
1354 1355 1356 1357

	if (mem_cgroup_disabled())
		return;

1358
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1359
	lru_size = &mz->lru_zone_size[zid][lru];
1360 1361 1362 1363 1364

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1365 1366 1367
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1368 1369 1370 1371 1372 1373
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1374
}
1375

1376
/**
1377
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1378
 * @memcg: the memory cgroup
1379
 *
1380
 * Returns the maximum amount of memory @mem can be charged with, in
1381
 * pages.
1382
 */
1383
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1384
{
1385 1386 1387
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1388

1389
	count = page_counter_read(&memcg->memory);
1390
	limit = READ_ONCE(memcg->memory.max);
1391 1392 1393
	if (count < limit)
		margin = limit - count;

1394
	if (do_memsw_account()) {
1395
		count = page_counter_read(&memcg->memsw);
1396
		limit = READ_ONCE(memcg->memsw.max);
1397
		if (count < limit)
1398
			margin = min(margin, limit - count);
1399 1400
		else
			margin = 0;
1401 1402 1403
	}

	return margin;
1404 1405
}

1406
/*
Q
Qiang Huang 已提交
1407
 * A routine for checking "mem" is under move_account() or not.
1408
 *
Q
Qiang Huang 已提交
1409 1410 1411
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1412
 */
1413
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1414
{
1415 1416
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1417
	bool ret = false;
1418 1419 1420 1421 1422 1423 1424 1425 1426
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1427

1428 1429
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1430 1431
unlock:
	spin_unlock(&mc.lock);
1432 1433 1434
	return ret;
}

1435
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1436 1437
{
	if (mc.moving_task && current != mc.moving_task) {
1438
		if (mem_cgroup_under_move(memcg)) {
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
struct memory_stat {
	const char *name;
	unsigned int ratio;
	unsigned int idx;
};

static struct memory_stat memory_stats[] = {
	{ "anon", PAGE_SIZE, NR_ANON_MAPPED },
	{ "file", PAGE_SIZE, NR_FILE_PAGES },
	{ "kernel_stack", 1024, NR_KERNEL_STACK_KB },
	{ "percpu", 1, MEMCG_PERCPU_B },
	{ "sock", PAGE_SIZE, MEMCG_SOCK },
	{ "shmem", PAGE_SIZE, NR_SHMEM },
	{ "file_mapped", PAGE_SIZE, NR_FILE_MAPPED },
	{ "file_dirty", PAGE_SIZE, NR_FILE_DIRTY },
	{ "file_writeback", PAGE_SIZE, NR_WRITEBACK },
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	/*
	 * The ratio will be initialized in memory_stats_init(). Because
	 * on some architectures, the macro of HPAGE_PMD_SIZE is not
	 * constant(e.g. powerpc).
	 */
	{ "anon_thp", 0, NR_ANON_THPS },
#endif
	{ "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON },
	{ "active_anon", PAGE_SIZE, NR_ACTIVE_ANON },
	{ "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE },
	{ "active_file", PAGE_SIZE, NR_ACTIVE_FILE },
	{ "unevictable", PAGE_SIZE, NR_UNEVICTABLE },

	/*
	 * Note: The slab_reclaimable and slab_unreclaimable must be
	 * together and slab_reclaimable must be in front.
	 */
	{ "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B },
	{ "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B },

	/* The memory events */
	{ "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON },
	{ "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE },
	{ "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON },
	{ "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE },
	{ "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON },
	{ "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE },
	{ "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM },
};

static int __init memory_stats_init(void)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
		if (memory_stats[i].idx == NR_ANON_THPS)
			memory_stats[i].ratio = HPAGE_PMD_SIZE;
#endif
		VM_BUG_ON(!memory_stats[i].ratio);
		VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT);
	}

	return 0;
}
pure_initcall(memory_stats_init);

1515 1516 1517 1518
static char *memory_stat_format(struct mem_cgroup *memcg)
{
	struct seq_buf s;
	int i;
1519

1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
	if (!s.buffer)
		return NULL;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

1535 1536
	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
		u64 size;
1537

1538 1539 1540
		size = memcg_page_state(memcg, memory_stats[i].idx);
		size *= memory_stats[i].ratio;
		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1541

1542 1543 1544 1545 1546 1547
		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
			size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
			       memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B);
			seq_buf_printf(&s, "slab %llu\n", size);
		}
	}
1548 1549 1550

	/* Accumulated memory events */

1551 1552 1553 1554 1555 1556
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
		       memcg_events(memcg, PGFAULT));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
		       memcg_events(memcg, PGMAJFAULT));
	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
		       memcg_events(memcg, PGREFILL));
1557 1558 1559 1560 1561 1562
	seq_buf_printf(&s, "pgscan %lu\n",
		       memcg_events(memcg, PGSCAN_KSWAPD) +
		       memcg_events(memcg, PGSCAN_DIRECT));
	seq_buf_printf(&s, "pgsteal %lu\n",
		       memcg_events(memcg, PGSTEAL_KSWAPD) +
		       memcg_events(memcg, PGSTEAL_DIRECT));
1563 1564 1565 1566 1567 1568 1569 1570
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
		       memcg_events(memcg, PGACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
		       memcg_events(memcg, PGDEACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
		       memcg_events(memcg, PGLAZYFREE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
		       memcg_events(memcg, PGLAZYFREED));
1571 1572

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1573
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1574
		       memcg_events(memcg, THP_FAULT_ALLOC));
1575
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1576 1577 1578 1579 1580 1581 1582 1583
		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

	/* The above should easily fit into one page */
	WARN_ON_ONCE(seq_buf_has_overflowed(&s));

	return s.buffer;
}
1584

1585
#define K(x) ((x) << (PAGE_SHIFT-10))
1586
/**
1587 1588
 * mem_cgroup_print_oom_context: Print OOM information relevant to
 * memory controller.
1589 1590 1591 1592 1593 1594
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
1595
void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1596 1597 1598
{
	rcu_read_lock();

1599 1600 1601 1602 1603
	if (memcg) {
		pr_cont(",oom_memcg=");
		pr_cont_cgroup_path(memcg->css.cgroup);
	} else
		pr_cont(",global_oom");
1604
	if (p) {
1605
		pr_cont(",task_memcg=");
1606 1607
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	}
1608
	rcu_read_unlock();
1609 1610 1611 1612 1613 1614 1615 1616 1617
}

/**
 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
 * memory controller.
 * @memcg: The memory cgroup that went over limit
 */
void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
1618
	char *buf;
1619

1620 1621
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1622
		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1623 1624 1625
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->swap)),
1626
			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1627 1628 1629 1630 1631 1632 1633
	else {
		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->memsw)),
			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->kmem)),
			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1634
	}
1635 1636 1637 1638 1639 1640 1641 1642 1643

	pr_info("Memory cgroup stats for ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(":");
	buf = memory_stat_format(memcg);
	if (!buf)
		return;
	pr_info("%s", buf);
	kfree(buf);
1644 1645
}

D
David Rientjes 已提交
1646 1647 1648
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1649
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1650
{
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
	unsigned long max = READ_ONCE(memcg->memory.max);

	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
		if (mem_cgroup_swappiness(memcg))
			max += min(READ_ONCE(memcg->swap.max),
				   (unsigned long)total_swap_pages);
	} else { /* v1 */
		if (mem_cgroup_swappiness(memcg)) {
			/* Calculate swap excess capacity from memsw limit */
			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;

			max += min(swap, (unsigned long)total_swap_pages);
		}
1664
	}
1665
	return max;
D
David Rientjes 已提交
1666 1667
}

1668 1669 1670 1671 1672
unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
{
	return page_counter_read(&memcg->memory);
}

1673
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1674
				     int order)
1675
{
1676 1677 1678
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1679
		.memcg = memcg,
1680 1681 1682
		.gfp_mask = gfp_mask,
		.order = order,
	};
1683
	bool ret = true;
1684

1685 1686
	if (mutex_lock_killable(&oom_lock))
		return true;
1687 1688 1689 1690

	if (mem_cgroup_margin(memcg) >= (1 << order))
		goto unlock;

1691 1692 1693 1694 1695
	/*
	 * A few threads which were not waiting at mutex_lock_killable() can
	 * fail to bail out. Therefore, check again after holding oom_lock.
	 */
	ret = should_force_charge() || out_of_memory(&oc);
1696 1697

unlock:
1698
	mutex_unlock(&oom_lock);
1699
	return ret;
1700 1701
}

1702
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1703
				   pg_data_t *pgdat,
1704 1705 1706 1707 1708 1709 1710 1711 1712
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1713
		.pgdat = pgdat,
1714 1715
	};

1716
	excess = soft_limit_excess(root_memcg);
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1742
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1743
					pgdat, &nr_scanned);
1744
		*total_scanned += nr_scanned;
1745
		if (!soft_limit_excess(root_memcg))
1746
			break;
1747
	}
1748 1749
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1750 1751
}

1752 1753 1754 1755 1756 1757
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1758 1759
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1760 1761 1762 1763
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1764
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1765
{
1766
	struct mem_cgroup *iter, *failed = NULL;
1767

1768 1769
	spin_lock(&memcg_oom_lock);

1770
	for_each_mem_cgroup_tree(iter, memcg) {
1771
		if (iter->oom_lock) {
1772 1773 1774 1775 1776
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1777 1778
			mem_cgroup_iter_break(memcg, iter);
			break;
1779 1780
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1781
	}
K
KAMEZAWA Hiroyuki 已提交
1782

1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1794
		}
1795 1796
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1797 1798 1799 1800

	spin_unlock(&memcg_oom_lock);

	return !failed;
1801
}
1802

1803
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1804
{
K
KAMEZAWA Hiroyuki 已提交
1805 1806
	struct mem_cgroup *iter;

1807
	spin_lock(&memcg_oom_lock);
1808
	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1809
	for_each_mem_cgroup_tree(iter, memcg)
1810
		iter->oom_lock = false;
1811
	spin_unlock(&memcg_oom_lock);
1812 1813
}

1814
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1815 1816 1817
{
	struct mem_cgroup *iter;

1818
	spin_lock(&memcg_oom_lock);
1819
	for_each_mem_cgroup_tree(iter, memcg)
1820 1821
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1822 1823
}

1824
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1825 1826 1827
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1828
	/*
1829 1830
	 * Be careful about under_oom underflows becase a child memcg
	 * could have been added after mem_cgroup_mark_under_oom.
K
KAMEZAWA Hiroyuki 已提交
1831
	 */
1832
	spin_lock(&memcg_oom_lock);
1833
	for_each_mem_cgroup_tree(iter, memcg)
1834 1835 1836
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1837 1838
}

K
KAMEZAWA Hiroyuki 已提交
1839 1840
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1841
struct oom_wait_info {
1842
	struct mem_cgroup *memcg;
1843
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1844 1845
};

1846
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1847 1848
	unsigned mode, int sync, void *arg)
{
1849 1850
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1851 1852 1853
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1854
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1855

1856 1857
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1858 1859 1860 1861
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1862
static void memcg_oom_recover(struct mem_cgroup *memcg)
1863
{
1864 1865 1866 1867 1868 1869 1870 1871 1872
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1873
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1874 1875
}

1876 1877 1878 1879 1880 1881 1882 1883
enum oom_status {
	OOM_SUCCESS,
	OOM_FAILED,
	OOM_ASYNC,
	OOM_SKIPPED
};

static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1884
{
1885 1886 1887
	enum oom_status ret;
	bool locked;

1888 1889 1890
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		return OOM_SKIPPED;

1891 1892
	memcg_memory_event(memcg, MEMCG_OOM);

K
KAMEZAWA Hiroyuki 已提交
1893
	/*
1894 1895 1896 1897
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1898 1899 1900 1901
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1902
	 *
1903 1904 1905 1906 1907 1908 1909
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
K
KAMEZAWA Hiroyuki 已提交
1910
	 */
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
	if (memcg->oom_kill_disable) {
		if (!current->in_user_fault)
			return OOM_SKIPPED;
		css_get(&memcg->css);
		current->memcg_in_oom = memcg;
		current->memcg_oom_gfp_mask = mask;
		current->memcg_oom_order = order;

		return OOM_ASYNC;
	}

1922 1923 1924 1925 1926 1927 1928 1929
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	mem_cgroup_unmark_under_oom(memcg);
1930
	if (mem_cgroup_out_of_memory(memcg, mask, order))
1931 1932 1933 1934 1935 1936
		ret = OOM_SUCCESS;
	else
		ret = OOM_FAILED;

	if (locked)
		mem_cgroup_oom_unlock(memcg);
1937

1938
	return ret;
1939 1940 1941 1942
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1943
 * @handle: actually kill/wait or just clean up the OOM state
1944
 *
1945 1946
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1947
 *
1948
 * Memcg supports userspace OOM handling where failed allocations must
1949 1950 1951 1952
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1953
 * the end of the page fault to complete the OOM handling.
1954 1955
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1956
 * completed, %false otherwise.
1957
 */
1958
bool mem_cgroup_oom_synchronize(bool handle)
1959
{
T
Tejun Heo 已提交
1960
	struct mem_cgroup *memcg = current->memcg_in_oom;
1961
	struct oom_wait_info owait;
1962
	bool locked;
1963 1964 1965

	/* OOM is global, do not handle */
	if (!memcg)
1966
		return false;
1967

1968
	if (!handle)
1969
		goto cleanup;
1970 1971 1972 1973 1974

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
1975
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
1976

1977
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1988 1989
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1990
	} else {
1991
		schedule();
1992 1993 1994 1995 1996
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1997 1998 1999 2000 2001 2002 2003 2004
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2005
cleanup:
T
Tejun Heo 已提交
2006
	current->memcg_in_oom = NULL;
2007
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2008
	return true;
2009 2010
}

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
/**
 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 * @victim: task to be killed by the OOM killer
 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 *
 * Returns a pointer to a memory cgroup, which has to be cleaned up
 * by killing all belonging OOM-killable tasks.
 *
 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 */
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
					    struct mem_cgroup *oom_domain)
{
	struct mem_cgroup *oom_group = NULL;
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return NULL;

	if (!oom_domain)
		oom_domain = root_mem_cgroup;

	rcu_read_lock();

	memcg = mem_cgroup_from_task(victim);
	if (memcg == root_mem_cgroup)
		goto out;

2039 2040 2041 2042 2043 2044 2045 2046
	/*
	 * If the victim task has been asynchronously moved to a different
	 * memory cgroup, we might end up killing tasks outside oom_domain.
	 * In this case it's better to ignore memory.group.oom.
	 */
	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
		goto out;

2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
	/*
	 * Traverse the memory cgroup hierarchy from the victim task's
	 * cgroup up to the OOMing cgroup (or root) to find the
	 * highest-level memory cgroup with oom.group set.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		if (memcg->oom_group)
			oom_group = memcg;

		if (memcg == oom_domain)
			break;
	}

	if (oom_group)
		css_get(&oom_group->css);
out:
	rcu_read_unlock();

	return oom_group;
}

void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
	pr_info("Tasks in ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(" are going to be killed due to memory.oom.group set\n");
}

2075
/**
2076 2077
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
2078
 *
2079
 * This function protects unlocked LRU pages from being moved to
2080 2081 2082 2083 2084
 * another cgroup.
 *
 * It ensures lifetime of the returned memcg. Caller is responsible
 * for the lifetime of the page; __unlock_page_memcg() is available
 * when @page might get freed inside the locked section.
2085
 */
2086
struct mem_cgroup *lock_page_memcg(struct page *page)
2087
{
2088
	struct page *head = compound_head(page); /* rmap on tail pages */
2089
	struct mem_cgroup *memcg;
2090
	unsigned long flags;
2091

2092 2093 2094 2095
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
2096 2097 2098 2099 2100 2101 2102
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page itself from being freed. E.g. writeback
	 * doesn't hold a page reference and relies on PG_writeback to
	 * keep off truncation, migration and so forth.
         */
2103 2104 2105
	rcu_read_lock();

	if (mem_cgroup_disabled())
2106
		return NULL;
2107
again:
2108
	memcg = head->mem_cgroup;
2109
	if (unlikely(!memcg))
2110
		return NULL;
2111

Q
Qiang Huang 已提交
2112
	if (atomic_read(&memcg->moving_account) <= 0)
2113
		return memcg;
2114

2115
	spin_lock_irqsave(&memcg->move_lock, flags);
2116
	if (memcg != head->mem_cgroup) {
2117
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2118 2119
		goto again;
	}
2120 2121 2122 2123

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
2124
	 * the task who has the lock for unlock_page_memcg().
2125 2126 2127
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2128

2129
	return memcg;
2130
}
2131
EXPORT_SYMBOL(lock_page_memcg);
2132

2133
/**
2134 2135 2136 2137
 * __unlock_page_memcg - unlock and unpin a memcg
 * @memcg: the memcg
 *
 * Unlock and unpin a memcg returned by lock_page_memcg().
2138
 */
2139
void __unlock_page_memcg(struct mem_cgroup *memcg)
2140
{
2141 2142 2143 2144 2145 2146 2147 2148
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2149

2150
	rcu_read_unlock();
2151
}
2152 2153 2154 2155 2156 2157 2158

/**
 * unlock_page_memcg - unlock a page->mem_cgroup binding
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
2159 2160 2161
	struct page *head = compound_head(page);

	__unlock_page_memcg(head->mem_cgroup);
2162
}
2163
EXPORT_SYMBOL(unlock_page_memcg);
2164

2165 2166
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2167
	unsigned int nr_pages;
R
Roman Gushchin 已提交
2168 2169 2170 2171 2172 2173

#ifdef CONFIG_MEMCG_KMEM
	struct obj_cgroup *cached_objcg;
	unsigned int nr_bytes;
#endif

2174
	struct work_struct work;
2175
	unsigned long flags;
2176
#define FLUSHING_CACHED_CHARGE	0
2177 2178
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2179
static DEFINE_MUTEX(percpu_charge_mutex);
2180

R
Roman Gushchin 已提交
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
#ifdef CONFIG_MEMCG_KMEM
static void drain_obj_stock(struct memcg_stock_pcp *stock);
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg);

#else
static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
{
}
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	return false;
}
#endif

2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2207
 */
2208
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2209 2210
{
	struct memcg_stock_pcp *stock;
2211
	unsigned long flags;
2212
	bool ret = false;
2213

2214
	if (nr_pages > MEMCG_CHARGE_BATCH)
2215
		return ret;
2216

2217 2218 2219
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2220
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2221
		stock->nr_pages -= nr_pages;
2222 2223
		ret = true;
	}
2224 2225 2226

	local_irq_restore(flags);

2227 2228 2229 2230
	return ret;
}

/*
2231
 * Returns stocks cached in percpu and reset cached information.
2232 2233 2234 2235 2236
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2237 2238 2239
	if (!old)
		return;

2240
	if (stock->nr_pages) {
2241
		page_counter_uncharge(&old->memory, stock->nr_pages);
2242
		if (do_memsw_account())
2243
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2244
		stock->nr_pages = 0;
2245
	}
2246 2247

	css_put(&old->css);
2248 2249 2250 2251 2252
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
2253 2254 2255
	struct memcg_stock_pcp *stock;
	unsigned long flags;

2256 2257 2258 2259
	/*
	 * The only protection from memory hotplug vs. drain_stock races is
	 * that we always operate on local CPU stock here with IRQ disabled
	 */
2260 2261 2262
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
R
Roman Gushchin 已提交
2263
	drain_obj_stock(stock);
2264
	drain_stock(stock);
2265
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2266 2267

	local_irq_restore(flags);
2268 2269 2270
}

/*
2271
 * Cache charges(val) to local per_cpu area.
2272
 * This will be consumed by consume_stock() function, later.
2273
 */
2274
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2275
{
2276 2277 2278 2279
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
2280

2281
	stock = this_cpu_ptr(&memcg_stock);
2282
	if (stock->cached != memcg) { /* reset if necessary */
2283
		drain_stock(stock);
2284
		css_get(&memcg->css);
2285
		stock->cached = memcg;
2286
	}
2287
	stock->nr_pages += nr_pages;
2288

2289
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2290 2291
		drain_stock(stock);

2292
	local_irq_restore(flags);
2293 2294 2295
}

/*
2296
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2297
 * of the hierarchy under it.
2298
 */
2299
static void drain_all_stock(struct mem_cgroup *root_memcg)
2300
{
2301
	int cpu, curcpu;
2302

2303 2304 2305
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2306 2307 2308 2309 2310 2311
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
2312
	curcpu = get_cpu();
2313 2314
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2315
		struct mem_cgroup *memcg;
2316
		bool flush = false;
2317

2318
		rcu_read_lock();
2319
		memcg = stock->cached;
2320 2321 2322
		if (memcg && stock->nr_pages &&
		    mem_cgroup_is_descendant(memcg, root_memcg))
			flush = true;
R
Roman Gushchin 已提交
2323 2324
		if (obj_stock_flush_required(stock, root_memcg))
			flush = true;
2325 2326 2327 2328
		rcu_read_unlock();

		if (flush &&
		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2329 2330 2331 2332 2333
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2334
	}
2335
	put_cpu();
2336
	mutex_unlock(&percpu_charge_mutex);
2337 2338
}

2339
static int memcg_hotplug_cpu_dead(unsigned int cpu)
2340 2341
{
	struct memcg_stock_pcp *stock;
2342
	struct mem_cgroup *memcg, *mi;
2343 2344 2345

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
2346 2347 2348 2349 2350 2351 2352 2353

	for_each_mem_cgroup(memcg) {
		int i;

		for (i = 0; i < MEMCG_NR_STAT; i++) {
			int nid;
			long x;

2354
			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2355
			if (x)
2356 2357
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmstats[i]);
2358 2359 2360 2361 2362 2363 2364 2365 2366

			if (i >= NR_VM_NODE_STAT_ITEMS)
				continue;

			for_each_node(nid) {
				struct mem_cgroup_per_node *pn;

				pn = mem_cgroup_nodeinfo(memcg, nid);
				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2367
				if (x)
2368 2369 2370
					do {
						atomic_long_add(x, &pn->lruvec_stat[i]);
					} while ((pn = parent_nodeinfo(pn, nid)));
2371 2372 2373
			}
		}

2374
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2375 2376
			long x;

2377
			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2378
			if (x)
2379 2380
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmevents[i]);
2381 2382 2383
		}
	}

2384
	return 0;
2385 2386
}

2387 2388 2389
static unsigned long reclaim_high(struct mem_cgroup *memcg,
				  unsigned int nr_pages,
				  gfp_t gfp_mask)
2390
{
2391 2392
	unsigned long nr_reclaimed = 0;

2393
	do {
2394 2395
		unsigned long pflags;

2396 2397
		if (page_counter_read(&memcg->memory) <=
		    READ_ONCE(memcg->memory.high))
2398
			continue;
2399

2400
		memcg_memory_event(memcg, MEMCG_HIGH);
2401 2402

		psi_memstall_enter(&pflags);
2403 2404
		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
							     gfp_mask, true);
2405
		psi_memstall_leave(&pflags);
2406 2407
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));
2408 2409

	return nr_reclaimed;
2410 2411 2412 2413 2414 2415 2416
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
2417
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2418 2419
}

2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
/*
 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
 * enough to still cause a significant slowdown in most cases, while still
 * allowing diagnostics and tracing to proceed without becoming stuck.
 */
#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)

/*
 * When calculating the delay, we use these either side of the exponentiation to
 * maintain precision and scale to a reasonable number of jiffies (see the table
 * below.
 *
 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
 *   overage ratio to a delay.
2434
 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
 *   to produce a reasonable delay curve.
 *
 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
 * reasonable delay curve compared to precision-adjusted overage, not
 * penalising heavily at first, but still making sure that growth beyond the
 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
 * example, with a high of 100 megabytes:
 *
 *  +-------+------------------------+
 *  | usage | time to allocate in ms |
 *  +-------+------------------------+
 *  | 100M  |                      0 |
 *  | 101M  |                      6 |
 *  | 102M  |                     25 |
 *  | 103M  |                     57 |
 *  | 104M  |                    102 |
 *  | 105M  |                    159 |
 *  | 106M  |                    230 |
 *  | 107M  |                    313 |
 *  | 108M  |                    409 |
 *  | 109M  |                    518 |
 *  | 110M  |                    639 |
 *  | 111M  |                    774 |
 *  | 112M  |                    921 |
 *  | 113M  |                   1081 |
 *  | 114M  |                   1254 |
 *  | 115M  |                   1439 |
 *  | 116M  |                   1638 |
 *  | 117M  |                   1849 |
 *  | 118M  |                   2000 |
 *  | 119M  |                   2000 |
 *  | 120M  |                   2000 |
 *  +-------+------------------------+
 */
 #define MEMCG_DELAY_PRECISION_SHIFT 20
 #define MEMCG_DELAY_SCALING_SHIFT 14

2473
static u64 calculate_overage(unsigned long usage, unsigned long high)
2474
{
2475
	u64 overage;
2476

2477 2478
	if (usage <= high)
		return 0;
2479

2480 2481 2482 2483 2484
	/*
	 * Prevent division by 0 in overage calculation by acting as if
	 * it was a threshold of 1 page
	 */
	high = max(high, 1UL);
2485

2486 2487 2488 2489
	overage = usage - high;
	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
	return div64_u64(overage, high);
}
2490

2491 2492 2493
static u64 mem_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;
2494

2495 2496
	do {
		overage = calculate_overage(page_counter_read(&memcg->memory),
2497
					    READ_ONCE(memcg->memory.high));
2498
		max_overage = max(overage, max_overage);
2499 2500 2501
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

2502 2503 2504
	return max_overage;
}

2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
static u64 swap_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;

	do {
		overage = calculate_overage(page_counter_read(&memcg->swap),
					    READ_ONCE(memcg->swap.high));
		if (overage)
			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
		max_overage = max(overage, max_overage);
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

	return max_overage;
}

2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
/*
 * Get the number of jiffies that we should penalise a mischievous cgroup which
 * is exceeding its memory.high by checking both it and its ancestors.
 */
static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
					  unsigned int nr_pages,
					  u64 max_overage)
{
	unsigned long penalty_jiffies;

2531 2532
	if (!max_overage)
		return 0;
2533 2534 2535 2536 2537 2538 2539 2540 2541

	/*
	 * We use overage compared to memory.high to calculate the number of
	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
	 * fairly lenient on small overages, and increasingly harsh when the
	 * memcg in question makes it clear that it has no intention of stopping
	 * its crazy behaviour, so we exponentially increase the delay based on
	 * overage amount.
	 */
2542 2543 2544
	penalty_jiffies = max_overage * max_overage * HZ;
	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2545 2546 2547 2548 2549 2550 2551 2552 2553

	/*
	 * Factor in the task's own contribution to the overage, such that four
	 * N-sized allocations are throttled approximately the same as one
	 * 4N-sized allocation.
	 *
	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
	 * larger the current charge patch is than that.
	 */
2554
	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
}

/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned long penalty_jiffies;
	unsigned long pflags;
2565
	unsigned long nr_reclaimed;
2566
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2567
	int nr_retries = MAX_RECLAIM_RETRIES;
2568
	struct mem_cgroup *memcg;
2569
	bool in_retry = false;
2570 2571 2572 2573 2574 2575 2576

	if (likely(!nr_pages))
		return;

	memcg = get_mem_cgroup_from_mm(current->mm);
	current->memcg_nr_pages_over_high = 0;

2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
retry_reclaim:
	/*
	 * The allocating task should reclaim at least the batch size, but for
	 * subsequent retries we only want to do what's necessary to prevent oom
	 * or breaching resource isolation.
	 *
	 * This is distinct from memory.max or page allocator behaviour because
	 * memory.high is currently batched, whereas memory.max and the page
	 * allocator run every time an allocation is made.
	 */
	nr_reclaimed = reclaim_high(memcg,
				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
				    GFP_KERNEL);

2591 2592 2593 2594
	/*
	 * memory.high is breached and reclaim is unable to keep up. Throttle
	 * allocators proactively to slow down excessive growth.
	 */
2595 2596
	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
					       mem_find_max_overage(memcg));
2597

2598 2599 2600
	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
						swap_find_max_overage(memcg));

2601 2602 2603 2604 2605 2606 2607
	/*
	 * Clamp the max delay per usermode return so as to still keep the
	 * application moving forwards and also permit diagnostics, albeit
	 * extremely slowly.
	 */
	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);

2608 2609 2610 2611 2612 2613 2614 2615 2616
	/*
	 * Don't sleep if the amount of jiffies this memcg owes us is so low
	 * that it's not even worth doing, in an attempt to be nice to those who
	 * go only a small amount over their memory.high value and maybe haven't
	 * been aggressively reclaimed enough yet.
	 */
	if (penalty_jiffies <= HZ / 100)
		goto out;

2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
	/*
	 * If reclaim is making forward progress but we're still over
	 * memory.high, we want to encourage that rather than doing allocator
	 * throttling.
	 */
	if (nr_reclaimed || nr_retries--) {
		in_retry = true;
		goto retry_reclaim;
	}

2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
	/*
	 * If we exit early, we're guaranteed to die (since
	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
	 * need to account for any ill-begotten jiffies to pay them off later.
	 */
	psi_memstall_enter(&pflags);
	schedule_timeout_killable(penalty_jiffies);
	psi_memstall_leave(&pflags);

out:
	css_put(&memcg->css);
2638 2639
}

2640 2641
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2642
{
2643
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2644
	int nr_retries = MAX_RECLAIM_RETRIES;
2645
	struct mem_cgroup *mem_over_limit;
2646
	struct page_counter *counter;
2647
	enum oom_status oom_status;
2648
	unsigned long nr_reclaimed;
2649 2650
	bool may_swap = true;
	bool drained = false;
2651
	unsigned long pflags;
2652

2653
	if (mem_cgroup_is_root(memcg))
2654
		return 0;
2655
retry:
2656
	if (consume_stock(memcg, nr_pages))
2657
		return 0;
2658

2659
	if (!do_memsw_account() ||
2660 2661
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2662
			goto done_restock;
2663
		if (do_memsw_account())
2664 2665
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2666
	} else {
2667
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2668
		may_swap = false;
2669
	}
2670

2671 2672 2673 2674
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2675

2676 2677 2678 2679 2680 2681 2682 2683 2684
	/*
	 * Memcg doesn't have a dedicated reserve for atomic
	 * allocations. But like the global atomic pool, we need to
	 * put the burden of reclaim on regular allocation requests
	 * and let these go through as privileged allocations.
	 */
	if (gfp_mask & __GFP_ATOMIC)
		goto force;

2685 2686 2687 2688 2689 2690
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
2691
	if (unlikely(should_force_charge()))
2692
		goto force;
2693

2694 2695 2696 2697 2698 2699 2700 2701 2702
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2703 2704 2705
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2706
	if (!gfpflags_allow_blocking(gfp_mask))
2707
		goto nomem;
2708

2709
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2710

2711
	psi_memstall_enter(&pflags);
2712 2713
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2714
	psi_memstall_leave(&pflags);
2715

2716
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2717
		goto retry;
2718

2719
	if (!drained) {
2720
		drain_all_stock(mem_over_limit);
2721 2722 2723 2724
		drained = true;
		goto retry;
	}

2725 2726
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2727 2728 2729 2730 2731 2732 2733 2734 2735
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2736
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2737 2738 2739 2740 2741 2742 2743 2744
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2745 2746 2747
	if (nr_retries--)
		goto retry;

2748
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2749 2750
		goto nomem;

2751
	if (gfp_mask & __GFP_NOFAIL)
2752
		goto force;
2753

2754
	if (fatal_signal_pending(current))
2755
		goto force;
2756

2757 2758 2759 2760 2761 2762
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2763
		       get_order(nr_pages * PAGE_SIZE));
2764 2765
	switch (oom_status) {
	case OOM_SUCCESS:
2766
		nr_retries = MAX_RECLAIM_RETRIES;
2767 2768 2769 2770 2771 2772
		goto retry;
	case OOM_FAILED:
		goto force;
	default:
		goto nomem;
	}
2773
nomem:
2774
	if (!(gfp_mask & __GFP_NOFAIL))
2775
		return -ENOMEM;
2776 2777 2778 2779 2780 2781 2782
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2783
	if (do_memsw_account())
2784 2785 2786
		page_counter_charge(&memcg->memsw, nr_pages);

	return 0;
2787 2788 2789 2790

done_restock:
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2791

2792
	/*
2793 2794
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2795
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2796 2797 2798 2799
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2800 2801
	 */
	do {
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
		bool mem_high, swap_high;

		mem_high = page_counter_read(&memcg->memory) >
			READ_ONCE(memcg->memory.high);
		swap_high = page_counter_read(&memcg->swap) >
			READ_ONCE(memcg->swap.high);

		/* Don't bother a random interrupted task */
		if (in_interrupt()) {
			if (mem_high) {
2812 2813 2814
				schedule_work(&memcg->high_work);
				break;
			}
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
			continue;
		}

		if (mem_high || swap_high) {
			/*
			 * The allocating tasks in this cgroup will need to do
			 * reclaim or be throttled to prevent further growth
			 * of the memory or swap footprints.
			 *
			 * Target some best-effort fairness between the tasks,
			 * and distribute reclaim work and delay penalties
			 * based on how much each task is actually allocating.
			 */
V
Vladimir Davydov 已提交
2828
			current->memcg_nr_pages_over_high += batch;
2829 2830 2831
			set_notify_resume(current);
			break;
		}
2832
	} while ((memcg = parent_mem_cgroup(memcg)));
2833 2834

	return 0;
2835
}
2836

2837
#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2838
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2839
{
2840 2841 2842
	if (mem_cgroup_is_root(memcg))
		return;

2843
	page_counter_uncharge(&memcg->memory, nr_pages);
2844
	if (do_memsw_account())
2845
		page_counter_uncharge(&memcg->memsw, nr_pages);
2846
}
2847
#endif
2848

2849
static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2850
{
2851
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2852
	/*
2853
	 * Any of the following ensures page->mem_cgroup stability:
2854
	 *
2855 2856 2857 2858
	 * - the page lock
	 * - LRU isolation
	 * - lock_page_memcg()
	 * - exclusive reference
2859
	 */
2860
	page->mem_cgroup = memcg;
2861
}
2862

2863
#ifdef CONFIG_MEMCG_KMEM
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
				 gfp_t gfp)
{
	unsigned int objects = objs_per_slab_page(s, page);
	void *vec;

	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
			   page_to_nid(page));
	if (!vec)
		return -ENOMEM;

	if (cmpxchg(&page->obj_cgroups, NULL,
		    (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
		kfree(vec);
	else
		kmemleak_not_leak(vec);

	return 0;
}

2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
/*
 * Returns a pointer to the memory cgroup to which the kernel object is charged.
 *
 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
 * cgroup_mutex, etc.
 */
struct mem_cgroup *mem_cgroup_from_obj(void *p)
{
	struct page *page;

	if (mem_cgroup_disabled())
		return NULL;

	page = virt_to_head_page(p);

2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
	/*
	 * If page->mem_cgroup is set, it's either a simple mem_cgroup pointer
	 * or a pointer to obj_cgroup vector. In the latter case the lowest
	 * bit of the pointer is set.
	 * The page->mem_cgroup pointer can be asynchronously changed
	 * from NULL to (obj_cgroup_vec | 0x1UL), but can't be changed
	 * from a valid memcg pointer to objcg vector or back.
	 */
	if (!page->mem_cgroup)
		return NULL;

2910
	/*
2911 2912 2913
	 * Slab objects are accounted individually, not per-page.
	 * Memcg membership data for each individual object is saved in
	 * the page->obj_cgroups.
2914
	 */
2915 2916 2917 2918 2919 2920
	if (page_has_obj_cgroups(page)) {
		struct obj_cgroup *objcg;
		unsigned int off;

		off = obj_to_index(page->slab_cache, page, p);
		objcg = page_obj_cgroups(page)[off];
2921 2922 2923 2924
		if (objcg)
			return obj_cgroup_memcg(objcg);

		return NULL;
2925
	}
2926 2927 2928 2929 2930

	/* All other pages use page->mem_cgroup */
	return page->mem_cgroup;
}

R
Roman Gushchin 已提交
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
{
	struct obj_cgroup *objcg = NULL;
	struct mem_cgroup *memcg;

	if (unlikely(!current->mm && !current->active_memcg))
		return NULL;

	rcu_read_lock();
	if (unlikely(current->active_memcg))
		memcg = rcu_dereference(current->active_memcg);
	else
		memcg = mem_cgroup_from_task(current);

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		objcg = rcu_dereference(memcg->objcg);
		if (objcg && obj_cgroup_tryget(objcg))
			break;
	}
	rcu_read_unlock();

	return objcg;
}

2955
static int memcg_alloc_cache_id(void)
2956
{
2957 2958 2959
	int id, size;
	int err;

2960
	id = ida_simple_get(&memcg_cache_ida,
2961 2962 2963
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2964

2965
	if (id < memcg_nr_cache_ids)
2966 2967 2968 2969 2970 2971
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2972
	down_write(&memcg_cache_ids_sem);
2973 2974

	size = 2 * (id + 1);
2975 2976 2977 2978 2979
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2980
	err = memcg_update_all_list_lrus(size);
2981 2982 2983 2984 2985
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2986
	if (err) {
2987
		ida_simple_remove(&memcg_cache_ida, id);
2988 2989 2990 2991 2992 2993 2994
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2995
	ida_simple_remove(&memcg_cache_ida, id);
2996 2997
}

2998
/**
2999
 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
3000
 * @memcg: memory cgroup to charge
3001
 * @gfp: reclaim mode
3002
 * @nr_pages: number of pages to charge
3003 3004 3005
 *
 * Returns 0 on success, an error code on failure.
 */
3006 3007
int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
			unsigned int nr_pages)
3008
{
3009
	struct page_counter *counter;
3010 3011
	int ret;

3012
	ret = try_charge(memcg, gfp, nr_pages);
3013
	if (ret)
3014
		return ret;
3015 3016 3017

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027

		/*
		 * Enforce __GFP_NOFAIL allocation because callers are not
		 * prepared to see failures and likely do not have any failure
		 * handling code.
		 */
		if (gfp & __GFP_NOFAIL) {
			page_counter_charge(&memcg->kmem, nr_pages);
			return 0;
		}
3028 3029
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
3030
	}
3031
	return 0;
3032 3033
}

3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
/**
 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
 */
void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
{
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

	page_counter_uncharge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_uncharge(&memcg->memsw, nr_pages);
}

3049
/**
3050
 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3051 3052 3053 3054 3055 3056
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
3057
int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3058
{
3059
	struct mem_cgroup *memcg;
3060
	int ret = 0;
3061

3062
	if (memcg_kmem_bypass())
3063 3064
		return 0;

3065
	memcg = get_mem_cgroup_from_current();
3066
	if (!mem_cgroup_is_root(memcg)) {
3067
		ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3068 3069
		if (!ret) {
			page->mem_cgroup = memcg;
3070
			__SetPageKmemcg(page);
3071
			return 0;
3072
		}
3073
	}
3074
	css_put(&memcg->css);
3075
	return ret;
3076
}
3077

3078
/**
3079
 * __memcg_kmem_uncharge_page: uncharge a kmem page
3080 3081 3082
 * @page: page to uncharge
 * @order: allocation order
 */
3083
void __memcg_kmem_uncharge_page(struct page *page, int order)
3084
{
3085
	struct mem_cgroup *memcg = page->mem_cgroup;
3086
	unsigned int nr_pages = 1 << order;
3087 3088 3089 3090

	if (!memcg)
		return;

3091
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3092
	__memcg_kmem_uncharge(memcg, nr_pages);
3093
	page->mem_cgroup = NULL;
3094
	css_put(&memcg->css);
3095 3096 3097 3098

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);
3099
}
R
Roman Gushchin 已提交
3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233

static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
{
	struct memcg_stock_pcp *stock;
	unsigned long flags;
	bool ret = false;

	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
		stock->nr_bytes -= nr_bytes;
		ret = true;
	}

	local_irq_restore(flags);

	return ret;
}

static void drain_obj_stock(struct memcg_stock_pcp *stock)
{
	struct obj_cgroup *old = stock->cached_objcg;

	if (!old)
		return;

	if (stock->nr_bytes) {
		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);

		if (nr_pages) {
			rcu_read_lock();
			__memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
			rcu_read_unlock();
		}

		/*
		 * The leftover is flushed to the centralized per-memcg value.
		 * On the next attempt to refill obj stock it will be moved
		 * to a per-cpu stock (probably, on an other CPU), see
		 * refill_obj_stock().
		 *
		 * How often it's flushed is a trade-off between the memory
		 * limit enforcement accuracy and potential CPU contention,
		 * so it might be changed in the future.
		 */
		atomic_add(nr_bytes, &old->nr_charged_bytes);
		stock->nr_bytes = 0;
	}

	obj_cgroup_put(old);
	stock->cached_objcg = NULL;
}

static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	struct mem_cgroup *memcg;

	if (stock->cached_objcg) {
		memcg = obj_cgroup_memcg(stock->cached_objcg);
		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
			return true;
	}

	return false;
}

static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
{
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
	if (stock->cached_objcg != objcg) { /* reset if necessary */
		drain_obj_stock(stock);
		obj_cgroup_get(objcg);
		stock->cached_objcg = objcg;
		stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
	}
	stock->nr_bytes += nr_bytes;

	if (stock->nr_bytes > PAGE_SIZE)
		drain_obj_stock(stock);

	local_irq_restore(flags);
}

int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
{
	struct mem_cgroup *memcg;
	unsigned int nr_pages, nr_bytes;
	int ret;

	if (consume_obj_stock(objcg, size))
		return 0;

	/*
	 * In theory, memcg->nr_charged_bytes can have enough
	 * pre-charged bytes to satisfy the allocation. However,
	 * flushing memcg->nr_charged_bytes requires two atomic
	 * operations, and memcg->nr_charged_bytes can't be big,
	 * so it's better to ignore it and try grab some new pages.
	 * memcg->nr_charged_bytes will be flushed in
	 * refill_obj_stock(), called from this function or
	 * independently later.
	 */
	rcu_read_lock();
	memcg = obj_cgroup_memcg(objcg);
	css_get(&memcg->css);
	rcu_read_unlock();

	nr_pages = size >> PAGE_SHIFT;
	nr_bytes = size & (PAGE_SIZE - 1);

	if (nr_bytes)
		nr_pages += 1;

	ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
	if (!ret && nr_bytes)
		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);

	css_put(&memcg->css);
	return ret;
}

void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
{
	refill_obj_stock(objcg, size);
}

3234
#endif /* CONFIG_MEMCG_KMEM */
3235

3236 3237 3238 3239
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
3240
 * pgdat->lru_lock and migration entries setup in all page mappings.
3241
 */
3242
void mem_cgroup_split_huge_fixup(struct page *head)
3243
{
3244
	struct mem_cgroup *memcg = head->mem_cgroup;
3245
	int i;
3246

3247 3248
	if (mem_cgroup_disabled())
		return;
3249

3250 3251 3252 3253
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		css_get(&memcg->css);
		head[i].mem_cgroup = memcg;
	}
3254
}
3255
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3256

A
Andrew Morton 已提交
3257
#ifdef CONFIG_MEMCG_SWAP
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
3269
 * The caller must have charged to @to, IOW, called page_counter_charge() about
3270 3271 3272
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3273
				struct mem_cgroup *from, struct mem_cgroup *to)
3274 3275 3276
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
3277 3278
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3279 3280

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3281 3282
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
3283 3284 3285 3286 3287 3288
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3289
				struct mem_cgroup *from, struct mem_cgroup *to)
3290 3291 3292
{
	return -EINVAL;
}
3293
#endif
K
KAMEZAWA Hiroyuki 已提交
3294

3295
static DEFINE_MUTEX(memcg_max_mutex);
3296

3297 3298
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
3299
{
3300
	bool enlarge = false;
3301
	bool drained = false;
3302
	int ret;
3303 3304
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3305

3306
	do {
3307 3308 3309 3310
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3311

3312
		mutex_lock(&memcg_max_mutex);
3313 3314
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
3315
		 * break our basic invariant rule memory.max <= memsw.max.
3316
		 */
3317
		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3318
					   max <= memcg->memsw.max;
3319
		if (!limits_invariant) {
3320
			mutex_unlock(&memcg_max_mutex);
3321 3322 3323
			ret = -EINVAL;
			break;
		}
3324
		if (max > counter->max)
3325
			enlarge = true;
3326 3327
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
3328 3329 3330 3331

		if (!ret)
			break;

3332 3333 3334 3335 3336 3337
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

3338 3339 3340 3341 3342 3343
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
3344

3345 3346
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3347

3348 3349 3350
	return ret;
}

3351
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3352 3353 3354 3355
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
3356
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3357 3358
	unsigned long reclaimed;
	int loop = 0;
3359
	struct mem_cgroup_tree_per_node *mctz;
3360
	unsigned long excess;
3361 3362 3363 3364 3365
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

3366
	mctz = soft_limit_tree_node(pgdat->node_id);
3367 3368 3369 3370 3371 3372

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
3373
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3374 3375
		return 0;

3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
3390
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3391 3392 3393
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3394
		spin_lock_irq(&mctz->lock);
3395
		__mem_cgroup_remove_exceeded(mz, mctz);
3396 3397 3398 3399 3400 3401

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3402 3403 3404
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3405
		excess = soft_limit_excess(mz->memcg);
3406 3407 3408 3409 3410 3411 3412 3413 3414
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3415
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3416
		spin_unlock_irq(&mctz->lock);
3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3434 3435 3436 3437
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
3438
 * hierarchy.  Testing use_hierarchy is the caller's responsibility.
3439
 */
3440 3441
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3442 3443 3444 3445 3446 3447
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3448 3449
}

3450
/*
3451
 * Reclaims as many pages from the given memcg as possible.
3452 3453 3454 3455 3456
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
3457
	int nr_retries = MAX_RECLAIM_RETRIES;
3458

3459 3460
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3461 3462 3463

	drain_all_stock(memcg);

3464
	/* try to free all pages in this cgroup */
3465
	while (nr_retries && page_counter_read(&memcg->memory)) {
3466
		int progress;
3467

3468 3469 3470
		if (signal_pending(current))
			return -EINTR;

3471 3472
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3473
		if (!progress) {
3474
			nr_retries--;
3475
			/* maybe some writeback is necessary */
3476
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3477
		}
3478 3479

	}
3480 3481

	return 0;
3482 3483
}

3484 3485 3486
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3487
{
3488
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3489

3490 3491
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3492
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3493 3494
}

3495 3496
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3497
{
3498
	return mem_cgroup_from_css(css)->use_hierarchy;
3499 3500
}

3501 3502
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3503 3504
{
	int retval = 0;
3505
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3506
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3507

3508
	if (memcg->use_hierarchy == val)
3509
		return 0;
3510

3511
	/*
3512
	 * If parent's use_hierarchy is set, we can't make any modifications
3513 3514 3515 3516 3517 3518
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3519
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3520
				(val == 1 || val == 0)) {
3521
		if (!memcg_has_children(memcg))
3522
			memcg->use_hierarchy = val;
3523 3524 3525 3526
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3527

3528 3529 3530
	return retval;
}

3531
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3532
{
3533
	unsigned long val;
3534

3535
	if (mem_cgroup_is_root(memcg)) {
3536
		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3537
			memcg_page_state(memcg, NR_ANON_MAPPED);
3538 3539
		if (swap)
			val += memcg_page_state(memcg, MEMCG_SWAP);
3540
	} else {
3541
		if (!swap)
3542
			val = page_counter_read(&memcg->memory);
3543
		else
3544
			val = page_counter_read(&memcg->memsw);
3545
	}
3546
	return val;
3547 3548
}

3549 3550 3551 3552 3553 3554 3555
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3556

3557
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3558
			       struct cftype *cft)
B
Balbir Singh 已提交
3559
{
3560
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3561
	struct page_counter *counter;
3562

3563
	switch (MEMFILE_TYPE(cft->private)) {
3564
	case _MEM:
3565 3566
		counter = &memcg->memory;
		break;
3567
	case _MEMSWAP:
3568 3569
		counter = &memcg->memsw;
		break;
3570
	case _KMEM:
3571
		counter = &memcg->kmem;
3572
		break;
V
Vladimir Davydov 已提交
3573
	case _TCP:
3574
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3575
		break;
3576 3577 3578
	default:
		BUG();
	}
3579 3580 3581 3582

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
3583
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3584
		if (counter == &memcg->memsw)
3585
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3586 3587
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
3588
		return (u64)counter->max * PAGE_SIZE;
3589 3590 3591 3592 3593 3594 3595 3596 3597
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3598
}
3599

3600
static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3601
{
3602
	unsigned long stat[MEMCG_NR_STAT] = {0};
3603 3604 3605 3606
	struct mem_cgroup *mi;
	int node, cpu, i;

	for_each_online_cpu(cpu)
3607
		for (i = 0; i < MEMCG_NR_STAT; i++)
3608
			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3609 3610

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3611
		for (i = 0; i < MEMCG_NR_STAT; i++)
3612 3613 3614 3615 3616 3617
			atomic_long_add(stat[i], &mi->vmstats[i]);

	for_each_node(node) {
		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
		struct mem_cgroup_per_node *pi;

3618
		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3619 3620 3621
			stat[i] = 0;

		for_each_online_cpu(cpu)
3622
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3623 3624
				stat[i] += per_cpu(
					pn->lruvec_stat_cpu->count[i], cpu);
3625 3626

		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3627
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3628 3629 3630 3631
				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
	}
}

3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
{
	unsigned long events[NR_VM_EVENT_ITEMS];
	struct mem_cgroup *mi;
	int cpu, i;

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
		events[i] = 0;

	for_each_online_cpu(cpu)
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3643 3644
			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
					     cpu);
3645 3646 3647 3648 3649 3650

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
			atomic_long_add(events[i], &mi->vmevents[i]);
}

3651
#ifdef CONFIG_MEMCG_KMEM
3652
static int memcg_online_kmem(struct mem_cgroup *memcg)
3653
{
R
Roman Gushchin 已提交
3654
	struct obj_cgroup *objcg;
3655 3656
	int memcg_id;

3657 3658 3659
	if (cgroup_memory_nokmem)
		return 0;

3660
	BUG_ON(memcg->kmemcg_id >= 0);
3661
	BUG_ON(memcg->kmem_state);
3662

3663
	memcg_id = memcg_alloc_cache_id();
3664 3665
	if (memcg_id < 0)
		return memcg_id;
3666

R
Roman Gushchin 已提交
3667 3668 3669 3670 3671 3672 3673 3674
	objcg = obj_cgroup_alloc();
	if (!objcg) {
		memcg_free_cache_id(memcg_id);
		return -ENOMEM;
	}
	objcg->memcg = memcg;
	rcu_assign_pointer(memcg->objcg, objcg);

3675 3676
	static_branch_enable(&memcg_kmem_enabled_key);

3677
	/*
3678
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
3679
	 * kmemcg_id. Setting the id after enabling static branching will
3680 3681 3682
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3683
	memcg->kmemcg_id = memcg_id;
3684
	memcg->kmem_state = KMEM_ONLINE;
3685 3686

	return 0;
3687 3688
}

3689 3690 3691 3692 3693 3694 3695 3696
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
3697

3698 3699 3700 3701 3702 3703
	memcg->kmem_state = KMEM_ALLOCATED;

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

R
Roman Gushchin 已提交
3704
	memcg_reparent_objcgs(memcg, parent);
3705 3706 3707 3708

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

3709 3710 3711 3712 3713 3714 3715 3716
	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
3717
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3718 3719 3720 3721 3722 3723 3724
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
3725 3726
	rcu_read_unlock();

3727
	memcg_drain_all_list_lrus(kmemcg_id, parent);
3728 3729 3730 3731 3732 3733

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
3734 3735 3736
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);
3737
}
3738
#else
3739
static int memcg_online_kmem(struct mem_cgroup *memcg)
3740 3741 3742 3743 3744 3745 3746 3747 3748
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
3749
#endif /* CONFIG_MEMCG_KMEM */
3750

3751 3752
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
3753
{
3754
	int ret;
3755

3756 3757 3758
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
3759
	return ret;
3760
}
3761

3762
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
3763 3764 3765
{
	int ret;

3766
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3767

3768
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
3769 3770 3771
	if (ret)
		goto out;

3772
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3773 3774 3775
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3776 3777 3778
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
3779 3780 3781 3782 3783 3784
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3785
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
3786 3787 3788 3789
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3790
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3791 3792
	}
out:
3793
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3794 3795 3796
	return ret;
}

3797 3798 3799 3800
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3801 3802
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3803
{
3804
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3805
	unsigned long nr_pages;
3806 3807
	int ret;

3808
	buf = strstrip(buf);
3809
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3810 3811
	if (ret)
		return ret;
3812

3813
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3814
	case RES_LIMIT:
3815 3816 3817 3818
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3819 3820
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3821
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3822
			break;
3823
		case _MEMSWAP:
3824
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3825
			break;
3826
		case _KMEM:
3827 3828 3829
			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
				     "Please report your usecase to linux-mm@kvack.org if you "
				     "depend on this functionality.\n");
3830
			ret = memcg_update_kmem_max(memcg, nr_pages);
3831
			break;
V
Vladimir Davydov 已提交
3832
		case _TCP:
3833
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
3834
			break;
3835
		}
3836
		break;
3837 3838 3839
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3840 3841
		break;
	}
3842
	return ret ?: nbytes;
B
Balbir Singh 已提交
3843 3844
}

3845 3846
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3847
{
3848
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3849
	struct page_counter *counter;
3850

3851 3852 3853 3854 3855 3856 3857 3858 3859 3860
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3861
	case _TCP:
3862
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3863
		break;
3864 3865 3866
	default:
		BUG();
	}
3867

3868
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3869
	case RES_MAX_USAGE:
3870
		page_counter_reset_watermark(counter);
3871 3872
		break;
	case RES_FAILCNT:
3873
		counter->failcnt = 0;
3874
		break;
3875 3876
	default:
		BUG();
3877
	}
3878

3879
	return nbytes;
3880 3881
}

3882
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3883 3884
					struct cftype *cft)
{
3885
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3886 3887
}

3888
#ifdef CONFIG_MMU
3889
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3890 3891
					struct cftype *cft, u64 val)
{
3892
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3893

3894
	if (val & ~MOVE_MASK)
3895
		return -EINVAL;
3896

3897
	/*
3898 3899 3900 3901
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3902
	 */
3903
	memcg->move_charge_at_immigrate = val;
3904 3905
	return 0;
}
3906
#else
3907
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3908 3909 3910 3911 3912
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3913

3914
#ifdef CONFIG_NUMA
3915 3916 3917 3918 3919 3920

#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)

static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3921
				int nid, unsigned int lru_mask, bool tree)
3922
{
3923
	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3924 3925 3926 3927 3928 3929 3930 3931
	unsigned long nr = 0;
	enum lru_list lru;

	VM_BUG_ON((unsigned)nid >= nr_node_ids);

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3932 3933 3934 3935
		if (tree)
			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
		else
			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3936 3937 3938 3939 3940
	}
	return nr;
}

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3941 3942
					     unsigned int lru_mask,
					     bool tree)
3943 3944 3945 3946 3947 3948 3949
{
	unsigned long nr = 0;
	enum lru_list lru;

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3950 3951 3952 3953
		if (tree)
			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
		else
			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3954 3955 3956 3957
	}
	return nr;
}

3958
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3959
{
3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3972
	int nid;
3973
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3974

3975
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3976 3977 3978 3979 3980 3981 3982
		seq_printf(m, "%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   false));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, false));
3983
		seq_putc(m, '\n');
3984 3985
	}

3986
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3987 3988 3989 3990 3991 3992 3993 3994

		seq_printf(m, "hierarchical_%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   true));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, true));
3995
		seq_putc(m, '\n');
3996 3997 3998 3999 4000 4001
	}

	return 0;
}
#endif /* CONFIG_NUMA */

4002
static const unsigned int memcg1_stats[] = {
4003
	NR_FILE_PAGES,
4004
	NR_ANON_MAPPED,
4005 4006 4007
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	NR_ANON_THPS,
#endif
4008 4009 4010 4011 4012 4013 4014 4015 4016 4017
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
4018
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4019
	"rss_huge",
4020
#endif
4021 4022 4023 4024 4025 4026 4027
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

4028
/* Universal VM events cgroup1 shows, original sort order */
4029
static const unsigned int memcg1_events[] = {
4030 4031 4032 4033 4034 4035
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

4036
static int memcg_stat_show(struct seq_file *m, void *v)
4037
{
4038
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4039
	unsigned long memory, memsw;
4040 4041
	struct mem_cgroup *mi;
	unsigned int i;
4042

4043
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4044

4045
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4046 4047
		unsigned long nr;

4048
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4049
			continue;
4050 4051 4052 4053 4054 4055
		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
		if (memcg1_stats[i] == NR_ANON_THPS)
			nr *= HPAGE_PMD_NR;
#endif
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4056
	}
L
Lee Schermerhorn 已提交
4057

4058
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4059
		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4060
			   memcg_events_local(memcg, memcg1_events[i]));
4061 4062

	for (i = 0; i < NR_LRU_LISTS; i++)
4063
		seq_printf(m, "%s %lu\n", lru_list_name(i),
4064
			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4065
			   PAGE_SIZE);
4066

K
KAMEZAWA Hiroyuki 已提交
4067
	/* Hierarchical information */
4068 4069
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4070 4071
		memory = min(memory, READ_ONCE(mi->memory.max));
		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4072
	}
4073 4074
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
4075
	if (do_memsw_account())
4076 4077
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
4078

4079
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4080
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4081
			continue;
4082
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4083 4084
			   (u64)memcg_page_state(memcg, memcg1_stats[i]) *
			   PAGE_SIZE);
4085 4086
	}

4087
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4088 4089
		seq_printf(m, "total_%s %llu\n",
			   vm_event_name(memcg1_events[i]),
4090
			   (u64)memcg_events(memcg, memcg1_events[i]));
4091

4092
	for (i = 0; i < NR_LRU_LISTS; i++)
4093
		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4094 4095
			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			   PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
4096

K
KOSAKI Motohiro 已提交
4097 4098
#ifdef CONFIG_DEBUG_VM
	{
4099 4100
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
4101 4102
		unsigned long anon_cost = 0;
		unsigned long file_cost = 0;
K
KOSAKI Motohiro 已提交
4103

4104 4105
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
K
KOSAKI Motohiro 已提交
4106

4107 4108
			anon_cost += mz->lruvec.anon_cost;
			file_cost += mz->lruvec.file_cost;
4109
		}
4110 4111
		seq_printf(m, "anon_cost %lu\n", anon_cost);
		seq_printf(m, "file_cost %lu\n", file_cost);
K
KOSAKI Motohiro 已提交
4112 4113 4114
	}
#endif

4115 4116 4117
	return 0;
}

4118 4119
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
4120
{
4121
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4122

4123
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4124 4125
}

4126 4127
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
4128
{
4129
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4130

4131
	if (val > 100)
K
KOSAKI Motohiro 已提交
4132 4133
		return -EINVAL;

4134
	if (css->parent)
4135 4136 4137
		memcg->swappiness = val;
	else
		vm_swappiness = val;
4138

K
KOSAKI Motohiro 已提交
4139 4140 4141
	return 0;
}

4142 4143 4144
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
4145
	unsigned long usage;
4146 4147 4148 4149
	int i;

	rcu_read_lock();
	if (!swap)
4150
		t = rcu_dereference(memcg->thresholds.primary);
4151
	else
4152
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4153 4154 4155 4156

	if (!t)
		goto unlock;

4157
	usage = mem_cgroup_usage(memcg, swap);
4158 4159

	/*
4160
	 * current_threshold points to threshold just below or equal to usage.
4161 4162 4163
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4164
	i = t->current_threshold;
4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4188
	t->current_threshold = i - 1;
4189 4190 4191 4192 4193 4194
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4195 4196
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
4197
		if (do_memsw_account())
4198 4199 4200 4201
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4202 4203 4204 4205 4206 4207 4208
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

4209 4210 4211 4212 4213 4214 4215
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
4216 4217
}

4218
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4219 4220 4221
{
	struct mem_cgroup_eventfd_list *ev;

4222 4223
	spin_lock(&memcg_oom_lock);

4224
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4225
		eventfd_signal(ev->eventfd, 1);
4226 4227

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4228 4229 4230
	return 0;
}

4231
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4232
{
K
KAMEZAWA Hiroyuki 已提交
4233 4234
	struct mem_cgroup *iter;

4235
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4236
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4237 4238
}

4239
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4240
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4241
{
4242 4243
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4244 4245
	unsigned long threshold;
	unsigned long usage;
4246
	int i, size, ret;
4247

4248
	ret = page_counter_memparse(args, "-1", &threshold);
4249 4250 4251 4252
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4253

4254
	if (type == _MEM) {
4255
		thresholds = &memcg->thresholds;
4256
		usage = mem_cgroup_usage(memcg, false);
4257
	} else if (type == _MEMSWAP) {
4258
		thresholds = &memcg->memsw_thresholds;
4259
		usage = mem_cgroup_usage(memcg, true);
4260
	} else
4261 4262 4263
		BUG();

	/* Check if a threshold crossed before adding a new one */
4264
	if (thresholds->primary)
4265 4266
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4267
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4268 4269

	/* Allocate memory for new array of thresholds */
4270
	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4271
	if (!new) {
4272 4273 4274
		ret = -ENOMEM;
		goto unlock;
	}
4275
	new->size = size;
4276 4277

	/* Copy thresholds (if any) to new array */
4278 4279 4280
	if (thresholds->primary)
		memcpy(new->entries, thresholds->primary->entries,
		       flex_array_size(new, entries, size - 1));
4281

4282
	/* Add new threshold */
4283 4284
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4285 4286

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4287
	sort(new->entries, size, sizeof(*new->entries),
4288 4289 4290
			compare_thresholds, NULL);

	/* Find current threshold */
4291
	new->current_threshold = -1;
4292
	for (i = 0; i < size; i++) {
4293
		if (new->entries[i].threshold <= usage) {
4294
			/*
4295 4296
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4297 4298
			 * it here.
			 */
4299
			++new->current_threshold;
4300 4301
		} else
			break;
4302 4303
	}

4304 4305 4306 4307 4308
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4309

4310
	/* To be sure that nobody uses thresholds */
4311 4312 4313 4314 4315 4316 4317 4318
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4319
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4320 4321
	struct eventfd_ctx *eventfd, const char *args)
{
4322
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4323 4324
}

4325
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4326 4327
	struct eventfd_ctx *eventfd, const char *args)
{
4328
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4329 4330
}

4331
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4332
	struct eventfd_ctx *eventfd, enum res_type type)
4333
{
4334 4335
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4336
	unsigned long usage;
4337
	int i, j, size, entries;
4338 4339

	mutex_lock(&memcg->thresholds_lock);
4340 4341

	if (type == _MEM) {
4342
		thresholds = &memcg->thresholds;
4343
		usage = mem_cgroup_usage(memcg, false);
4344
	} else if (type == _MEMSWAP) {
4345
		thresholds = &memcg->memsw_thresholds;
4346
		usage = mem_cgroup_usage(memcg, true);
4347
	} else
4348 4349
		BUG();

4350 4351 4352
	if (!thresholds->primary)
		goto unlock;

4353 4354 4355 4356
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4357
	size = entries = 0;
4358 4359
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4360
			size++;
4361 4362
		else
			entries++;
4363 4364
	}

4365
	new = thresholds->spare;
4366

4367 4368 4369 4370
	/* If no items related to eventfd have been cleared, nothing to do */
	if (!entries)
		goto unlock;

4371 4372
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4373 4374
		kfree(new);
		new = NULL;
4375
		goto swap_buffers;
4376 4377
	}

4378
	new->size = size;
4379 4380

	/* Copy thresholds and find current threshold */
4381 4382 4383
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4384 4385
			continue;

4386
		new->entries[j] = thresholds->primary->entries[i];
4387
		if (new->entries[j].threshold <= usage) {
4388
			/*
4389
			 * new->current_threshold will not be used
4390 4391 4392
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4393
			++new->current_threshold;
4394 4395 4396 4397
		}
		j++;
	}

4398
swap_buffers:
4399 4400
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4401

4402
	rcu_assign_pointer(thresholds->primary, new);
4403

4404
	/* To be sure that nobody uses thresholds */
4405
	synchronize_rcu();
4406 4407 4408 4409 4410 4411

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
4412
unlock:
4413 4414
	mutex_unlock(&memcg->thresholds_lock);
}
4415

4416
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4417 4418
	struct eventfd_ctx *eventfd)
{
4419
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4420 4421
}

4422
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4423 4424
	struct eventfd_ctx *eventfd)
{
4425
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4426 4427
}

4428
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4429
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4430 4431 4432 4433 4434 4435 4436
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4437
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4438 4439 4440 4441 4442

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4443
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
4444
		eventfd_signal(eventfd, 1);
4445
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4446 4447 4448 4449

	return 0;
}

4450
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4451
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4452 4453 4454
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4455
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4456

4457
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4458 4459 4460 4461 4462 4463
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4464
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4465 4466
}

4467
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4468
{
4469
	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4470

4471
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4472
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
R
Roman Gushchin 已提交
4473 4474
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4475 4476 4477
	return 0;
}

4478
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4479 4480
	struct cftype *cft, u64 val)
{
4481
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4482 4483

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4484
	if (!css->parent || !((val == 0) || (val == 1)))
4485 4486
		return -EINVAL;

4487
	memcg->oom_kill_disable = val;
4488
	if (!val)
4489
		memcg_oom_recover(memcg);
4490

4491 4492 4493
	return 0;
}

4494 4495
#ifdef CONFIG_CGROUP_WRITEBACK

4496 4497
#include <trace/events/writeback.h>

T
Tejun Heo 已提交
4498 4499 4500 4501 4502 4503 4504 4505 4506 4507
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

4508 4509 4510 4511 4512
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
4513 4514 4515 4516 4517 4518 4519 4520 4521 4522
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

4523 4524 4525 4526 4527 4528
/*
 * idx can be of type enum memcg_stat_item or node_stat_item.
 * Keep in sync with memcg_exact_page().
 */
static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
{
4529
	long x = atomic_long_read(&memcg->vmstats[idx]);
4530 4531 4532
	int cpu;

	for_each_online_cpu(cpu)
4533
		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4534 4535 4536 4537 4538
	if (x < 0)
		x = 0;
	return x;
}

4539 4540 4541
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
4542 4543
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
4544 4545 4546
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
4547 4548 4549
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
4550
 *
4551 4552 4553 4554 4555
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
4556
 */
4557 4558 4559
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
4560 4561 4562 4563
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

4564
	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4565

4566
	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4567 4568
	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4569
	*pheadroom = PAGE_COUNTER_MAX;
4570 4571

	while ((parent = parent_mem_cgroup(memcg))) {
4572
		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4573
					    READ_ONCE(memcg->memory.high));
4574 4575
		unsigned long used = page_counter_read(&memcg->memory);

4576
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4577 4578 4579 4580
		memcg = parent;
	}
}

4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
/*
 * Foreign dirty flushing
 *
 * There's an inherent mismatch between memcg and writeback.  The former
 * trackes ownership per-page while the latter per-inode.  This was a
 * deliberate design decision because honoring per-page ownership in the
 * writeback path is complicated, may lead to higher CPU and IO overheads
 * and deemed unnecessary given that write-sharing an inode across
 * different cgroups isn't a common use-case.
 *
 * Combined with inode majority-writer ownership switching, this works well
 * enough in most cases but there are some pathological cases.  For
 * example, let's say there are two cgroups A and B which keep writing to
 * different but confined parts of the same inode.  B owns the inode and
 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
 * triggering background writeback.  A will be slowed down without a way to
 * make writeback of the dirty pages happen.
 *
 * Conditions like the above can lead to a cgroup getting repatedly and
 * severely throttled after making some progress after each
 * dirty_expire_interval while the underyling IO device is almost
 * completely idle.
 *
 * Solving this problem completely requires matching the ownership tracking
 * granularities between memcg and writeback in either direction.  However,
 * the more egregious behaviors can be avoided by simply remembering the
 * most recent foreign dirtying events and initiating remote flushes on
 * them when local writeback isn't enough to keep the memory clean enough.
 *
 * The following two functions implement such mechanism.  When a foreign
 * page - a page whose memcg and writeback ownerships don't match - is
 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
 * decides that the memcg needs to sleep due to high dirty ratio, it calls
 * mem_cgroup_flush_foreign() which queues writeback on the recorded
 * foreign bdi_writebacks which haven't expired.  Both the numbers of
 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
 * limited to MEMCG_CGWB_FRN_CNT.
 *
 * The mechanism only remembers IDs and doesn't hold any object references.
 * As being wrong occasionally doesn't matter, updates and accesses to the
 * records are lockless and racy.
 */
void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
					     struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = page->mem_cgroup;
	struct memcg_cgwb_frn *frn;
	u64 now = get_jiffies_64();
	u64 oldest_at = now;
	int oldest = -1;
	int i;

4635 4636
	trace_track_foreign_dirty(page, wb);

4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696
	/*
	 * Pick the slot to use.  If there is already a slot for @wb, keep
	 * using it.  If not replace the oldest one which isn't being
	 * written out.
	 */
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		frn = &memcg->cgwb_frn[i];
		if (frn->bdi_id == wb->bdi->id &&
		    frn->memcg_id == wb->memcg_css->id)
			break;
		if (time_before64(frn->at, oldest_at) &&
		    atomic_read(&frn->done.cnt) == 1) {
			oldest = i;
			oldest_at = frn->at;
		}
	}

	if (i < MEMCG_CGWB_FRN_CNT) {
		/*
		 * Re-using an existing one.  Update timestamp lazily to
		 * avoid making the cacheline hot.  We want them to be
		 * reasonably up-to-date and significantly shorter than
		 * dirty_expire_interval as that's what expires the record.
		 * Use the shorter of 1s and dirty_expire_interval / 8.
		 */
		unsigned long update_intv =
			min_t(unsigned long, HZ,
			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);

		if (time_before64(frn->at, now - update_intv))
			frn->at = now;
	} else if (oldest >= 0) {
		/* replace the oldest free one */
		frn = &memcg->cgwb_frn[oldest];
		frn->bdi_id = wb->bdi->id;
		frn->memcg_id = wb->memcg_css->id;
		frn->at = now;
	}
}

/* issue foreign writeback flushes for recorded foreign dirtying events */
void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
	u64 now = jiffies_64;
	int i;

	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];

		/*
		 * If the record is older than dirty_expire_interval,
		 * writeback on it has already started.  No need to kick it
		 * off again.  Also, don't start a new one if there's
		 * already one in flight.
		 */
		if (time_after64(frn->at, now - intv) &&
		    atomic_read(&frn->done.cnt) == 1) {
			frn->at = 0;
4697
			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4698 4699 4700 4701 4702 4703 4704
			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
					       WB_REASON_FOREIGN_FLUSH,
					       &frn->done);
		}
	}
}

T
Tejun Heo 已提交
4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

4716 4717 4718 4719
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

4720 4721
#endif	/* CONFIG_CGROUP_WRITEBACK */

4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4735 4736 4737 4738 4739
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4740
static void memcg_event_remove(struct work_struct *work)
4741
{
4742 4743
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4744
	struct mem_cgroup *memcg = event->memcg;
4745 4746 4747

	remove_wait_queue(event->wqh, &event->wait);

4748
	event->unregister_event(memcg, event->eventfd);
4749 4750 4751 4752 4753 4754

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4755
	css_put(&memcg->css);
4756 4757 4758
}

/*
4759
 * Gets called on EPOLLHUP on eventfd when user closes it.
4760 4761 4762
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4763
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4764
			    int sync, void *key)
4765
{
4766 4767
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4768
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
4769
	__poll_t flags = key_to_poll(key);
4770

4771
	if (flags & EPOLLHUP) {
4772 4773 4774 4775 4776 4777 4778 4779 4780
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4781
		spin_lock(&memcg->event_list_lock);
4782 4783 4784 4785 4786 4787 4788 4789
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4790
		spin_unlock(&memcg->event_list_lock);
4791 4792 4793 4794 4795
	}

	return 0;
}

4796
static void memcg_event_ptable_queue_proc(struct file *file,
4797 4798
		wait_queue_head_t *wqh, poll_table *pt)
{
4799 4800
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4801 4802 4803 4804 4805 4806

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4807 4808
 * DO NOT USE IN NEW FILES.
 *
4809 4810 4811 4812 4813
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4814 4815
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4816
{
4817
	struct cgroup_subsys_state *css = of_css(of);
4818
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4819
	struct mem_cgroup_event *event;
4820 4821 4822 4823
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4824
	const char *name;
4825 4826 4827
	char *endp;
	int ret;

4828 4829 4830
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4831 4832
	if (*endp != ' ')
		return -EINVAL;
4833
	buf = endp + 1;
4834

4835
	cfd = simple_strtoul(buf, &endp, 10);
4836 4837
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4838
	buf = endp + 1;
4839 4840 4841 4842 4843

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4844
	event->memcg = memcg;
4845
	INIT_LIST_HEAD(&event->list);
4846 4847 4848
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4874 4875 4876 4877 4878
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4879 4880
	 *
	 * DO NOT ADD NEW FILES.
4881
	 */
A
Al Viro 已提交
4882
	name = cfile.file->f_path.dentry->d_name.name;
4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4894 4895
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4896 4897 4898 4899 4900
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4901
	/*
4902 4903 4904
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4905
	 */
A
Al Viro 已提交
4906
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4907
					       &memory_cgrp_subsys);
4908
	ret = -EINVAL;
4909
	if (IS_ERR(cfile_css))
4910
		goto out_put_cfile;
4911 4912
	if (cfile_css != css) {
		css_put(cfile_css);
4913
		goto out_put_cfile;
4914
	}
4915

4916
	ret = event->register_event(memcg, event->eventfd, buf);
4917 4918 4919
	if (ret)
		goto out_put_css;

4920
	vfs_poll(efile.file, &event->pt);
4921

4922 4923 4924
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4925 4926 4927 4928

	fdput(cfile);
	fdput(efile);

4929
	return nbytes;
4930 4931

out_put_css:
4932
	css_put(css);
4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4945
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4946
	{
4947
		.name = "usage_in_bytes",
4948
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4949
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4950
	},
4951 4952
	{
		.name = "max_usage_in_bytes",
4953
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4954
		.write = mem_cgroup_reset,
4955
		.read_u64 = mem_cgroup_read_u64,
4956
	},
B
Balbir Singh 已提交
4957
	{
4958
		.name = "limit_in_bytes",
4959
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4960
		.write = mem_cgroup_write,
4961
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4962
	},
4963 4964 4965
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4966
		.write = mem_cgroup_write,
4967
		.read_u64 = mem_cgroup_read_u64,
4968
	},
B
Balbir Singh 已提交
4969 4970
	{
		.name = "failcnt",
4971
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4972
		.write = mem_cgroup_reset,
4973
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4974
	},
4975 4976
	{
		.name = "stat",
4977
		.seq_show = memcg_stat_show,
4978
	},
4979 4980
	{
		.name = "force_empty",
4981
		.write = mem_cgroup_force_empty_write,
4982
	},
4983 4984 4985 4986 4987
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4988
	{
4989
		.name = "cgroup.event_control",		/* XXX: for compat */
4990
		.write = memcg_write_event_control,
4991
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4992
	},
K
KOSAKI Motohiro 已提交
4993 4994 4995 4996 4997
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4998 4999 5000 5001 5002
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5003 5004
	{
		.name = "oom_control",
5005
		.seq_show = mem_cgroup_oom_control_read,
5006
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5007 5008
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5009 5010 5011
	{
		.name = "pressure_level",
	},
5012 5013 5014
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5015
		.seq_show = memcg_numa_stat_show,
5016 5017
	},
#endif
5018 5019 5020
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5021
		.write = mem_cgroup_write,
5022
		.read_u64 = mem_cgroup_read_u64,
5023 5024 5025 5026
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5027
		.read_u64 = mem_cgroup_read_u64,
5028 5029 5030 5031
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5032
		.write = mem_cgroup_reset,
5033
		.read_u64 = mem_cgroup_read_u64,
5034 5035 5036 5037
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5038
		.write = mem_cgroup_reset,
5039
		.read_u64 = mem_cgroup_read_u64,
5040
	},
5041 5042
#if defined(CONFIG_MEMCG_KMEM) && \
	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5043 5044
	{
		.name = "kmem.slabinfo",
5045
		.seq_show = memcg_slab_show,
5046 5047
	},
#endif
V
Vladimir Davydov 已提交
5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
5071
	{ },	/* terminate */
5072
};
5073

5074 5075 5076 5077 5078 5079 5080 5081
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
5082
 * However, there usually are many references to the offline CSS after
5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

5100 5101 5102 5103 5104 5105 5106 5107
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

5108 5109
static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
						  unsigned int n)
5110
{
5111
	refcount_add(n, &memcg->id.ref);
5112 5113
}

5114
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5115
{
5116
	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5117
		mem_cgroup_id_remove(memcg);
5118 5119 5120 5121 5122 5123

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

5124 5125 5126 5127 5128
static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

5141
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5142 5143
{
	struct mem_cgroup_per_node *pn;
5144
	int tmp = node;
5145 5146 5147 5148 5149 5150 5151 5152
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5153 5154
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5155
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5156 5157
	if (!pn)
		return 1;
5158

5159 5160
	pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
						 GFP_KERNEL_ACCOUNT);
5161 5162 5163 5164 5165
	if (!pn->lruvec_stat_local) {
		kfree(pn);
		return 1;
	}

5166 5167
	pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
					       GFP_KERNEL_ACCOUNT);
5168
	if (!pn->lruvec_stat_cpu) {
5169
		free_percpu(pn->lruvec_stat_local);
5170 5171 5172 5173
		kfree(pn);
		return 1;
	}

5174 5175 5176 5177 5178
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

5179
	memcg->nodeinfo[node] = pn;
5180 5181 5182
	return 0;
}

5183
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5184
{
5185 5186
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
5187 5188 5189
	if (!pn)
		return;

5190
	free_percpu(pn->lruvec_stat_cpu);
5191
	free_percpu(pn->lruvec_stat_local);
5192
	kfree(pn);
5193 5194
}

5195
static void __mem_cgroup_free(struct mem_cgroup *memcg)
5196
{
5197
	int node;
5198

5199
	for_each_node(node)
5200
		free_mem_cgroup_per_node_info(memcg, node);
5201
	free_percpu(memcg->vmstats_percpu);
5202
	free_percpu(memcg->vmstats_local);
5203
	kfree(memcg);
5204
}
5205

5206 5207 5208
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
5209 5210 5211 5212
	/*
	 * Flush percpu vmstats and vmevents to guarantee the value correctness
	 * on parent's and all ancestor levels.
	 */
5213
	memcg_flush_percpu_vmstats(memcg);
5214
	memcg_flush_percpu_vmevents(memcg);
5215 5216 5217
	__mem_cgroup_free(memcg);
}

5218
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
5219
{
5220
	struct mem_cgroup *memcg;
5221
	unsigned int size;
5222
	int node;
5223
	int __maybe_unused i;
5224
	long error = -ENOMEM;
B
Balbir Singh 已提交
5225

5226 5227 5228 5229
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
5230
	if (!memcg)
5231
		return ERR_PTR(error);
5232

5233 5234 5235
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
5236 5237
	if (memcg->id.id < 0) {
		error = memcg->id.id;
5238
		goto fail;
5239
	}
5240

5241 5242
	memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
						GFP_KERNEL_ACCOUNT);
5243 5244 5245
	if (!memcg->vmstats_local)
		goto fail;

5246 5247
	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
						 GFP_KERNEL_ACCOUNT);
5248
	if (!memcg->vmstats_percpu)
5249
		goto fail;
5250

B
Bob Liu 已提交
5251
	for_each_node(node)
5252
		if (alloc_mem_cgroup_per_node_info(memcg, node))
5253
			goto fail;
5254

5255 5256
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
5257

5258
	INIT_WORK(&memcg->high_work, high_work_func);
5259 5260 5261
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5262
	vmpressure_init(&memcg->vmpressure);
5263 5264
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
5265
	memcg->socket_pressure = jiffies;
5266
#ifdef CONFIG_MEMCG_KMEM
V
Vladimir Davydov 已提交
5267
	memcg->kmemcg_id = -1;
R
Roman Gushchin 已提交
5268
	INIT_LIST_HEAD(&memcg->objcg_list);
V
Vladimir Davydov 已提交
5269
#endif
5270 5271
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
5272 5273 5274
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		memcg->cgwb_frn[i].done =
			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5275 5276 5277 5278 5279
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
	memcg->deferred_split_queue.split_queue_len = 0;
5280
#endif
5281
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5282 5283
	return memcg;
fail:
5284
	mem_cgroup_id_remove(memcg);
5285
	__mem_cgroup_free(memcg);
5286
	return ERR_PTR(error);
5287 5288
}

5289 5290
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5291
{
5292 5293 5294
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
5295

5296
	memalloc_use_memcg(parent);
5297
	memcg = mem_cgroup_alloc();
5298
	memalloc_unuse_memcg();
5299 5300
	if (IS_ERR(memcg))
		return ERR_CAST(memcg);
5301

5302
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5303
	memcg->soft_limit = PAGE_COUNTER_MAX;
5304
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5305 5306 5307 5308 5309 5310
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
5311
		page_counter_init(&memcg->memory, &parent->memory);
5312
		page_counter_init(&memcg->swap, &parent->swap);
5313
		page_counter_init(&memcg->kmem, &parent->kmem);
5314
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5315
	} else {
5316
		page_counter_init(&memcg->memory, NULL);
5317
		page_counter_init(&memcg->swap, NULL);
5318
		page_counter_init(&memcg->kmem, NULL);
5319
		page_counter_init(&memcg->tcpmem, NULL);
5320 5321 5322 5323 5324
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
5325
		if (parent != root_mem_cgroup)
5326
			memory_cgrp_subsys.broken_hierarchy = true;
5327
	}
5328

5329 5330 5331 5332 5333 5334
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

5335
	error = memcg_online_kmem(memcg);
5336 5337
	if (error)
		goto fail;
5338

5339
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5340
		static_branch_inc(&memcg_sockets_enabled_key);
5341

5342 5343
	return &memcg->css;
fail:
5344
	mem_cgroup_id_remove(memcg);
5345
	mem_cgroup_free(memcg);
5346
	return ERR_PTR(error);
5347 5348
}

5349
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5350
{
5351 5352
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5353 5354 5355 5356 5357 5358 5359 5360 5361 5362
	/*
	 * A memcg must be visible for memcg_expand_shrinker_maps()
	 * by the time the maps are allocated. So, we allocate maps
	 * here, when for_each_mem_cgroup() can't skip it.
	 */
	if (memcg_alloc_shrinker_maps(memcg)) {
		mem_cgroup_id_remove(memcg);
		return -ENOMEM;
	}

5363
	/* Online state pins memcg ID, memcg ID pins CSS */
5364
	refcount_set(&memcg->id.ref, 1);
5365
	css_get(css);
5366
	return 0;
B
Balbir Singh 已提交
5367 5368
}

5369
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5370
{
5371
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5372
	struct mem_cgroup_event *event, *tmp;
5373 5374 5375 5376 5377 5378

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
5379 5380
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5381 5382 5383
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
5384
	spin_unlock(&memcg->event_list_lock);
5385

R
Roman Gushchin 已提交
5386
	page_counter_set_min(&memcg->memory, 0);
5387
	page_counter_set_low(&memcg->memory, 0);
5388

5389
	memcg_offline_kmem(memcg);
5390
	wb_memcg_offline(memcg);
5391

5392 5393
	drain_all_stock(memcg);

5394
	mem_cgroup_id_put(memcg);
5395 5396
}

5397 5398 5399 5400 5401 5402 5403
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

5404
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
5405
{
5406
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5407
	int __maybe_unused i;
5408

5409 5410 5411 5412
#ifdef CONFIG_CGROUP_WRITEBACK
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
#endif
5413
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5414
		static_branch_dec(&memcg_sockets_enabled_key);
5415

5416
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
5417
		static_branch_dec(&memcg_sockets_enabled_key);
5418

5419 5420 5421
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
5422
	memcg_free_shrinker_maps(memcg);
5423
	memcg_free_kmem(memcg);
5424
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
5425 5426
}

5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5444 5445 5446 5447
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
R
Roman Gushchin 已提交
5448
	page_counter_set_min(&memcg->memory, 0);
5449
	page_counter_set_low(&memcg->memory, 0);
5450
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5451
	memcg->soft_limit = PAGE_COUNTER_MAX;
5452
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5453
	memcg_wb_domain_size_changed(memcg);
5454 5455
}

5456
#ifdef CONFIG_MMU
5457
/* Handlers for move charge at task migration. */
5458
static int mem_cgroup_do_precharge(unsigned long count)
5459
{
5460
	int ret;
5461

5462 5463
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5464
	if (!ret) {
5465 5466 5467
		mc.precharge += count;
		return ret;
	}
5468

5469
	/* Try charges one by one with reclaim, but do not retry */
5470
	while (count--) {
5471
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5472 5473
		if (ret)
			return ret;
5474
		mc.precharge++;
5475
		cond_resched();
5476
	}
5477
	return 0;
5478 5479 5480 5481
}

union mc_target {
	struct page	*page;
5482
	swp_entry_t	ent;
5483 5484 5485
};

enum mc_target_type {
5486
	MC_TARGET_NONE = 0,
5487
	MC_TARGET_PAGE,
5488
	MC_TARGET_SWAP,
5489
	MC_TARGET_DEVICE,
5490 5491
};

D
Daisuke Nishimura 已提交
5492 5493
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5494
{
5495
	struct page *page = vm_normal_page(vma, addr, ptent);
5496

D
Daisuke Nishimura 已提交
5497 5498 5499
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
5500
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5501
			return NULL;
5502 5503 5504 5505
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
5506 5507 5508 5509 5510 5511
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5512
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
5513
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5514
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
5515 5516 5517 5518
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

5519
	if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5520
		return NULL;
5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
		page = device_private_entry_to_page(ent);
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

5538 5539 5540
	if (non_swap_entry(ent))
		return NULL;

5541 5542 5543 5544
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5545
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5546
	entry->val = ent.val;
D
Daisuke Nishimura 已提交
5547 5548 5549

	return page;
}
5550 5551
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5552
			pte_t ptent, swp_entry_t *entry)
5553 5554 5555 5556
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5557

5558 5559 5560 5561 5562
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	if (!vma->vm_file) /* anonymous vma */
		return NULL;
5563
	if (!(mc.flags & MOVE_FILE))
5564 5565 5566
		return NULL;

	/* page is moved even if it's not RSS of this task(page-faulted). */
5567
	/* shmem/tmpfs may report page out on swap: account for that too. */
5568 5569
	return find_get_incore_page(vma->vm_file->f_mapping,
			linear_page_index(vma, addr));
5570 5571
}

5572 5573 5574
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
5575
 * @compound: charge the page as compound or small page
5576 5577 5578
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
5579
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5580 5581 5582 5583 5584
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
5585
				   bool compound,
5586 5587 5588
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
5589 5590
	struct lruvec *from_vec, *to_vec;
	struct pglist_data *pgdat;
5591
	unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5592 5593 5594 5595
	int ret;

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
5596
	VM_BUG_ON(compound && !PageTransHuge(page));
5597 5598

	/*
5599
	 * Prevent mem_cgroup_migrate() from looking at
5600
	 * page->mem_cgroup of its source page while we change it.
5601
	 */
5602
	ret = -EBUSY;
5603 5604 5605 5606 5607 5608 5609
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

5610
	pgdat = page_pgdat(page);
5611 5612
	from_vec = mem_cgroup_lruvec(from, pgdat);
	to_vec = mem_cgroup_lruvec(to, pgdat);
5613

5614
	lock_page_memcg(page);
5615

5616 5617 5618 5619
	if (PageAnon(page)) {
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5620 5621 5622 5623 5624 5625 5626
			if (PageTransHuge(page)) {
				__mod_lruvec_state(from_vec, NR_ANON_THPS,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_ANON_THPS,
						   nr_pages);
			}

5627 5628
		}
	} else {
5629 5630 5631 5632 5633 5634 5635 5636
		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);

		if (PageSwapBacked(page)) {
			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
		}

5637 5638 5639 5640
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
		}
5641

5642 5643
		if (PageDirty(page)) {
			struct address_space *mapping = page_mapping(page);
5644

5645
			if (mapping_can_writeback(mapping)) {
5646 5647 5648 5649 5650
				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
						   nr_pages);
			}
5651 5652 5653
		}
	}

5654
	if (PageWriteback(page)) {
5655 5656
		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5657 5658 5659
	}

	/*
5660 5661
	 * All state has been migrated, let's switch to the new memcg.
	 *
5662
	 * It is safe to change page->mem_cgroup here because the page
5663 5664 5665 5666 5667 5668 5669 5670
	 * is referenced, charged, isolated, and locked: we can't race
	 * with (un)charging, migration, LRU putback, or anything else
	 * that would rely on a stable page->mem_cgroup.
	 *
	 * Note that lock_page_memcg is a memcg lock, not a page lock,
	 * to save space. As soon as we switch page->mem_cgroup to a
	 * new memcg that isn't locked, the above state can change
	 * concurrently again. Make sure we're truly done with it.
5671
	 */
5672
	smp_mb();
5673

5674 5675 5676 5677
	css_get(&to->css);
	css_put(&from->css);

	page->mem_cgroup = to;
5678

5679
	__unlock_page_memcg(from);
5680 5681 5682 5683

	ret = 0;

	local_irq_disable();
5684
	mem_cgroup_charge_statistics(to, page, nr_pages);
5685
	memcg_check_events(to, page);
5686
	mem_cgroup_charge_statistics(from, page, -nr_pages);
5687 5688 5689 5690 5691 5692 5693 5694
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5710 5711
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
 *     (so ZONE_DEVICE page and thus not on the lru).
5712 5713 5714
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
5715 5716
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5717 5718 5719 5720
 *
 * Called with pte lock held.
 */

5721
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5722 5723 5724
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
5725
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5726 5727 5728 5729 5730
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
5731
		page = mc_handle_swap_pte(vma, ptent, &ent);
5732
	else if (pte_none(ptent))
5733
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5734 5735

	if (!page && !ent.val)
5736
		return ret;
5737 5738
	if (page) {
		/*
5739
		 * Do only loose check w/o serialization.
5740
		 * mem_cgroup_move_account() checks the page is valid or
5741
		 * not under LRU exclusion.
5742
		 */
5743
		if (page->mem_cgroup == mc.from) {
5744
			ret = MC_TARGET_PAGE;
5745
			if (is_device_private_page(page))
5746
				ret = MC_TARGET_DEVICE;
5747 5748 5749 5750 5751 5752
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
5753 5754 5755 5756 5757
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
5758
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5759 5760 5761
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5762 5763 5764 5765
	}
	return ret;
}

5766 5767
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
5768 5769
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
5770 5771 5772 5773 5774 5775 5776 5777
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

5778 5779 5780 5781 5782
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
5783
	page = pmd_page(pmd);
5784
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5785
	if (!(mc.flags & MOVE_ANON))
5786
		return ret;
5787
	if (page->mem_cgroup == mc.from) {
5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5804 5805 5806 5807
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
5808
	struct vm_area_struct *vma = walk->vma;
5809 5810 5811
	pte_t *pte;
	spinlock_t *ptl;

5812 5813
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5814 5815
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5816 5817
		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
		 * this might change.
5818
		 */
5819 5820
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5821
		spin_unlock(ptl);
5822
		return 0;
5823
	}
5824

5825 5826
	if (pmd_trans_unstable(pmd))
		return 0;
5827 5828
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5829
		if (get_mctgt_type(vma, addr, *pte, NULL))
5830 5831 5832 5833
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5834 5835 5836
	return 0;
}

5837 5838 5839 5840
static const struct mm_walk_ops precharge_walk_ops = {
	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
};

5841 5842 5843 5844
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

5845
	mmap_read_lock(mm);
5846
	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5847
	mmap_read_unlock(mm);
5848 5849 5850 5851 5852 5853 5854 5855 5856

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5857 5858 5859 5860 5861
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5862 5863
}

5864 5865
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5866
{
5867 5868 5869
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5870
	/* we must uncharge all the leftover precharges from mc.to */
5871
	if (mc.precharge) {
5872
		cancel_charge(mc.to, mc.precharge);
5873 5874 5875 5876 5877 5878 5879
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5880
		cancel_charge(mc.from, mc.moved_charge);
5881
		mc.moved_charge = 0;
5882
	}
5883 5884 5885
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5886
		if (!mem_cgroup_is_root(mc.from))
5887
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5888

5889 5890
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

5891
		/*
5892 5893
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5894
		 */
5895
		if (!mem_cgroup_is_root(mc.to))
5896 5897
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5898 5899
		mc.moved_swap = 0;
	}
5900 5901 5902 5903 5904 5905 5906
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
5907 5908
	struct mm_struct *mm = mc.mm;

5909 5910 5911 5912 5913 5914
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5915
	spin_lock(&mc.lock);
5916 5917
	mc.from = NULL;
	mc.to = NULL;
5918
	mc.mm = NULL;
5919
	spin_unlock(&mc.lock);
5920 5921

	mmput(mm);
5922 5923
}

5924
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5925
{
5926
	struct cgroup_subsys_state *css;
5927
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5928
	struct mem_cgroup *from;
5929
	struct task_struct *leader, *p;
5930
	struct mm_struct *mm;
5931
	unsigned long move_flags;
5932
	int ret = 0;
5933

5934 5935
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5936 5937
		return 0;

5938 5939 5940 5941 5942 5943 5944
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
5945
	cgroup_taskset_for_each_leader(leader, css, tset) {
5946 5947
		WARN_ON_ONCE(p);
		p = leader;
5948
		memcg = mem_cgroup_from_css(css);
5949 5950 5951 5952
	}
	if (!p)
		return 0;

5953 5954 5955 5956 5957 5958 5959 5960 5961
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
5978
		mc.mm = mm;
5979 5980 5981 5982 5983 5984 5985 5986 5987
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
5988 5989
	} else {
		mmput(mm);
5990 5991 5992 5993
	}
	return ret;
}

5994
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5995
{
5996 5997
	if (mc.to)
		mem_cgroup_clear_mc();
5998 5999
}

6000 6001 6002
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6003
{
6004
	int ret = 0;
6005
	struct vm_area_struct *vma = walk->vma;
6006 6007
	pte_t *pte;
	spinlock_t *ptl;
6008 6009 6010
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
6011

6012 6013
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
6014
		if (mc.precharge < HPAGE_PMD_NR) {
6015
			spin_unlock(ptl);
6016 6017 6018 6019 6020 6021
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
6022
				if (!mem_cgroup_move_account(page, true,
6023
							     mc.from, mc.to)) {
6024 6025 6026 6027 6028 6029
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
6030 6031 6032 6033 6034 6035 6036 6037
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
6038
		}
6039
		spin_unlock(ptl);
6040
		return 0;
6041 6042
	}

6043 6044
	if (pmd_trans_unstable(pmd))
		return 0;
6045 6046 6047 6048
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6049
		bool device = false;
6050
		swp_entry_t ent;
6051 6052 6053 6054

		if (!mc.precharge)
			break;

6055
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6056 6057
		case MC_TARGET_DEVICE:
			device = true;
J
Joe Perches 已提交
6058
			fallthrough;
6059 6060
		case MC_TARGET_PAGE:
			page = target.page;
6061 6062 6063 6064 6065 6066 6067 6068
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
6069
			if (!device && isolate_lru_page(page))
6070
				goto put;
6071 6072
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
6073
				mc.precharge--;
6074 6075
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6076
			}
6077 6078
			if (!device)
				putback_lru_page(page);
6079
put:			/* get_mctgt_type() gets the page */
6080 6081
			put_page(page);
			break;
6082 6083
		case MC_TARGET_SWAP:
			ent = target.ent;
6084
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6085
				mc.precharge--;
6086 6087
				mem_cgroup_id_get_many(mc.to, 1);
				/* we fixup other refcnts and charges later. */
6088 6089
				mc.moved_swap++;
			}
6090
			break;
6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6105
		ret = mem_cgroup_do_precharge(1);
6106 6107 6108 6109 6110 6111 6112
		if (!ret)
			goto retry;
	}

	return ret;
}

6113 6114 6115 6116
static const struct mm_walk_ops charge_walk_ops = {
	.pmd_entry	= mem_cgroup_move_charge_pte_range,
};

6117
static void mem_cgroup_move_charge(void)
6118 6119
{
	lru_add_drain_all();
6120
	/*
6121 6122 6123
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
6124 6125 6126
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
6127
retry:
6128
	if (unlikely(!mmap_read_trylock(mc.mm))) {
6129
		/*
6130
		 * Someone who are holding the mmap_lock might be waiting in
6131 6132 6133 6134 6135 6136 6137 6138 6139
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6140 6141 6142 6143
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
6144 6145
	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
			NULL);
6146

6147
	mmap_read_unlock(mc.mm);
6148
	atomic_dec(&mc.from->moving_account);
6149 6150
}

6151
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
6152
{
6153 6154
	if (mc.to) {
		mem_cgroup_move_charge();
6155
		mem_cgroup_clear_mc();
6156
	}
B
Balbir Singh 已提交
6157
}
6158
#else	/* !CONFIG_MMU */
6159
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6160 6161 6162
{
	return 0;
}
6163
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6164 6165
{
}
6166
static void mem_cgroup_move_task(void)
6167 6168 6169
{
}
#endif
B
Balbir Singh 已提交
6170

6171 6172
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6173 6174
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
6175
 */
6176
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6177 6178
{
	/*
6179
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
6180 6181 6182
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
6183
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6184 6185 6186
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
6187 6188
}

6189 6190 6191 6192 6193 6194 6195 6196 6197 6198
static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
{
	if (value == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);

	return 0;
}

6199 6200 6201
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
6202 6203 6204
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6205 6206
}

R
Roman Gushchin 已提交
6207 6208
static int memory_min_show(struct seq_file *m, void *v)
{
6209 6210
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
R
Roman Gushchin 已提交
6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

6230 6231
static int memory_low_show(struct seq_file *m, void *v)
{
6232 6233
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6234 6235 6236 6237 6238 6239 6240 6241 6242 6243
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
6244
	err = page_counter_memparse(buf, "max", &low);
6245 6246 6247
	if (err)
		return err;

6248
	page_counter_set_low(&memcg->memory, low);
6249 6250 6251 6252 6253 6254

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
6255 6256
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6257 6258 6259 6260 6261 6262
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6263
	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6264
	bool drained = false;
6265 6266 6267 6268
	unsigned long high;
	int err;

	buf = strstrip(buf);
6269
	err = page_counter_memparse(buf, "max", &high);
6270 6271 6272
	if (err)
		return err;

6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294
	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);
		unsigned long reclaimed;

		if (nr_pages <= high)
			break;

		if (signal_pending(current))
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
							 GFP_KERNEL, true);

		if (!reclaimed && !nr_retries--)
			break;
	}
6295

6296 6297
	page_counter_set_high(&memcg->memory, high);

6298 6299
	memcg_wb_domain_size_changed(memcg);

6300 6301 6302 6303 6304
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
6305 6306
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6307 6308 6309 6310 6311 6312
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6313
	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6314
	bool drained = false;
6315 6316 6317 6318
	unsigned long max;
	int err;

	buf = strstrip(buf);
6319
	err = page_counter_memparse(buf, "max", &max);
6320 6321 6322
	if (err)
		return err;

6323
	xchg(&memcg->memory.max, max);
6324 6325 6326 6327 6328 6329 6330

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

6331
		if (signal_pending(current))
6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

6347
		memcg_memory_event(memcg, MEMCG_OOM);
6348 6349 6350
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
6351

6352
	memcg_wb_domain_size_changed(memcg);
6353 6354 6355
	return nbytes;
}

6356 6357 6358 6359 6360 6361 6362 6363 6364 6365
static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
{
	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&events[MEMCG_OOM_KILL]));
}

6366 6367
static int memory_events_show(struct seq_file *m, void *v)
{
6368
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6369

6370 6371 6372 6373 6374 6375 6376
	__memory_events_show(m, memcg->memory_events);
	return 0;
}

static int memory_events_local_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6377

6378
	__memory_events_show(m, memcg->memory_events_local);
6379 6380 6381
	return 0;
}

6382 6383
static int memory_stat_show(struct seq_file *m, void *v)
{
6384
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6385
	char *buf;
6386

6387 6388 6389 6390 6391
	buf = memory_stat_format(memcg);
	if (!buf)
		return -ENOMEM;
	seq_puts(m, buf);
	kfree(buf);
6392 6393 6394
	return 0;
}

6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423
#ifdef CONFIG_NUMA
static int memory_numa_stat_show(struct seq_file *m, void *v)
{
	int i;
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);

	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
		int nid;

		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
			continue;

		seq_printf(m, "%s", memory_stats[i].name);
		for_each_node_state(nid, N_MEMORY) {
			u64 size;
			struct lruvec *lruvec;

			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
			size = lruvec_page_state(lruvec, memory_stats[i].idx);
			size *= memory_stats[i].ratio;
			seq_printf(m, " N%d=%llu", nid, size);
		}
		seq_putc(m, '\n');
	}

	return 0;
}
#endif

6424 6425
static int memory_oom_group_show(struct seq_file *m, void *v)
{
6426
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454

	seq_printf(m, "%d\n", memcg->oom_group);

	return 0;
}

static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
				      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	int ret, oom_group;

	buf = strstrip(buf);
	if (!buf)
		return -EINVAL;

	ret = kstrtoint(buf, 0, &oom_group);
	if (ret)
		return ret;

	if (oom_group != 0 && oom_group != 1)
		return -EINVAL;

	memcg->oom_group = oom_group;

	return nbytes;
}

6455 6456 6457
static struct cftype memory_files[] = {
	{
		.name = "current",
6458
		.flags = CFTYPE_NOT_ON_ROOT,
6459 6460
		.read_u64 = memory_current_read,
	},
R
Roman Gushchin 已提交
6461 6462 6463 6464 6465 6466
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
6488
		.file_offset = offsetof(struct mem_cgroup, events_file),
6489 6490
		.seq_show = memory_events_show,
	},
6491 6492 6493 6494 6495 6496
	{
		.name = "events.local",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, events_local_file),
		.seq_show = memory_events_local_show,
	},
6497 6498 6499 6500
	{
		.name = "stat",
		.seq_show = memory_stat_show,
	},
6501 6502 6503 6504 6505 6506
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.seq_show = memory_numa_stat_show,
	},
#endif
6507 6508 6509 6510 6511 6512
	{
		.name = "oom.group",
		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
		.seq_show = memory_oom_group_show,
		.write = memory_oom_group_write,
	},
6513 6514 6515
	{ }	/* terminate */
};

6516
struct cgroup_subsys memory_cgrp_subsys = {
6517
	.css_alloc = mem_cgroup_css_alloc,
6518
	.css_online = mem_cgroup_css_online,
6519
	.css_offline = mem_cgroup_css_offline,
6520
	.css_released = mem_cgroup_css_released,
6521
	.css_free = mem_cgroup_css_free,
6522
	.css_reset = mem_cgroup_css_reset,
6523 6524
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
6525
	.post_attach = mem_cgroup_move_task,
6526
	.bind = mem_cgroup_bind,
6527 6528
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
6529
	.early_init = 0,
B
Balbir Singh 已提交
6530
};
6531

6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561
/*
 * This function calculates an individual cgroup's effective
 * protection which is derived from its own memory.min/low, its
 * parent's and siblings' settings, as well as the actual memory
 * distribution in the tree.
 *
 * The following rules apply to the effective protection values:
 *
 * 1. At the first level of reclaim, effective protection is equal to
 *    the declared protection in memory.min and memory.low.
 *
 * 2. To enable safe delegation of the protection configuration, at
 *    subsequent levels the effective protection is capped to the
 *    parent's effective protection.
 *
 * 3. To make complex and dynamic subtrees easier to configure, the
 *    user is allowed to overcommit the declared protection at a given
 *    level. If that is the case, the parent's effective protection is
 *    distributed to the children in proportion to how much protection
 *    they have declared and how much of it they are utilizing.
 *
 *    This makes distribution proportional, but also work-conserving:
 *    if one cgroup claims much more protection than it uses memory,
 *    the unused remainder is available to its siblings.
 *
 * 4. Conversely, when the declared protection is undercommitted at a
 *    given level, the distribution of the larger parental protection
 *    budget is NOT proportional. A cgroup's protection from a sibling
 *    is capped to its own memory.min/low setting.
 *
6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573
 * 5. However, to allow protecting recursive subtrees from each other
 *    without having to declare each individual cgroup's fixed share
 *    of the ancestor's claim to protection, any unutilized -
 *    "floating" - protection from up the tree is distributed in
 *    proportion to each cgroup's *usage*. This makes the protection
 *    neutral wrt sibling cgroups and lets them compete freely over
 *    the shared parental protection budget, but it protects the
 *    subtree as a whole from neighboring subtrees.
 *
 * Note that 4. and 5. are not in conflict: 4. is about protecting
 * against immediate siblings whereas 5. is about protecting against
 * neighboring subtrees.
6574 6575
 */
static unsigned long effective_protection(unsigned long usage,
6576
					  unsigned long parent_usage,
6577 6578 6579 6580 6581
					  unsigned long setting,
					  unsigned long parent_effective,
					  unsigned long siblings_protected)
{
	unsigned long protected;
6582
	unsigned long ep;
6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612

	protected = min(usage, setting);
	/*
	 * If all cgroups at this level combined claim and use more
	 * protection then what the parent affords them, distribute
	 * shares in proportion to utilization.
	 *
	 * We are using actual utilization rather than the statically
	 * claimed protection in order to be work-conserving: claimed
	 * but unused protection is available to siblings that would
	 * otherwise get a smaller chunk than what they claimed.
	 */
	if (siblings_protected > parent_effective)
		return protected * parent_effective / siblings_protected;

	/*
	 * Ok, utilized protection of all children is within what the
	 * parent affords them, so we know whatever this child claims
	 * and utilizes is effectively protected.
	 *
	 * If there is unprotected usage beyond this value, reclaim
	 * will apply pressure in proportion to that amount.
	 *
	 * If there is unutilized protection, the cgroup will be fully
	 * shielded from reclaim, but we do return a smaller value for
	 * protection than what the group could enjoy in theory. This
	 * is okay. With the overcommit distribution above, effective
	 * protection is always dependent on how memory is actually
	 * consumed among the siblings anyway.
	 */
6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625
	ep = protected;

	/*
	 * If the children aren't claiming (all of) the protection
	 * afforded to them by the parent, distribute the remainder in
	 * proportion to the (unprotected) memory of each cgroup. That
	 * way, cgroups that aren't explicitly prioritized wrt each
	 * other compete freely over the allowance, but they are
	 * collectively protected from neighboring trees.
	 *
	 * We're using unprotected memory for the weight so that if
	 * some cgroups DO claim explicit protection, we don't protect
	 * the same bytes twice.
6626 6627 6628 6629
	 *
	 * Check both usage and parent_usage against the respective
	 * protected values. One should imply the other, but they
	 * aren't read atomically - make sure the division is sane.
6630 6631 6632
	 */
	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
		return ep;
6633 6634 6635
	if (parent_effective > siblings_protected &&
	    parent_usage > siblings_protected &&
	    usage > protected) {
6636 6637 6638 6639 6640 6641 6642 6643 6644 6645
		unsigned long unclaimed;

		unclaimed = parent_effective - siblings_protected;
		unclaimed *= usage - protected;
		unclaimed /= parent_usage - siblings_protected;

		ep += unclaimed;
	}

	return ep;
6646 6647
}

6648
/**
R
Roman Gushchin 已提交
6649
 * mem_cgroup_protected - check if memory consumption is in the normal range
6650
 * @root: the top ancestor of the sub-tree being checked
6651 6652
 * @memcg: the memory cgroup to check
 *
6653 6654
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
6655
 */
6656 6657
void mem_cgroup_calculate_protection(struct mem_cgroup *root,
				     struct mem_cgroup *memcg)
6658
{
6659
	unsigned long usage, parent_usage;
6660 6661
	struct mem_cgroup *parent;

6662
	if (mem_cgroup_disabled())
6663
		return;
6664

6665 6666
	if (!root)
		root = root_mem_cgroup;
6667 6668 6669 6670 6671 6672 6673 6674

	/*
	 * Effective values of the reclaim targets are ignored so they
	 * can be stale. Have a look at mem_cgroup_protection for more
	 * details.
	 * TODO: calculation should be more robust so that we do not need
	 * that special casing.
	 */
6675
	if (memcg == root)
6676
		return;
6677

6678
	usage = page_counter_read(&memcg->memory);
R
Roman Gushchin 已提交
6679
	if (!usage)
6680
		return;
R
Roman Gushchin 已提交
6681 6682

	parent = parent_mem_cgroup(memcg);
6683 6684
	/* No parent means a non-hierarchical mode on v1 memcg */
	if (!parent)
6685
		return;
6686

6687
	if (parent == root) {
6688
		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6689
		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6690
		return;
R
Roman Gushchin 已提交
6691 6692
	}

6693 6694
	parent_usage = page_counter_read(&parent->memory);

6695
	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6696 6697
			READ_ONCE(memcg->memory.min),
			READ_ONCE(parent->memory.emin),
6698
			atomic_long_read(&parent->memory.children_min_usage)));
6699

6700
	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6701 6702
			READ_ONCE(memcg->memory.low),
			READ_ONCE(parent->memory.elow),
6703
			atomic_long_read(&parent->memory.children_low_usage)));
6704 6705
}

6706
/**
6707
 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6708 6709 6710 6711 6712 6713 6714
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
6715
 * Returns 0 on success. Otherwise, an error code is returned.
6716
 */
6717
int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6718
{
6719
	unsigned int nr_pages = thp_nr_pages(page);
6720 6721 6722 6723 6724 6725 6726
	struct mem_cgroup *memcg = NULL;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
6727 6728 6729
		swp_entry_t ent = { .val = page_private(page), };
		unsigned short id;

6730 6731 6732
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
6733 6734
		 * already charged pages, too.  page->mem_cgroup is protected
		 * by the page lock, which serializes swap cache removal, which
6735 6736
		 * in turn serializes uncharging.
		 */
6737
		VM_BUG_ON_PAGE(!PageLocked(page), page);
6738
		if (compound_head(page)->mem_cgroup)
6739
			goto out;
6740

6741 6742 6743 6744 6745 6746
		id = lookup_swap_cgroup_id(ent);
		rcu_read_lock();
		memcg = mem_cgroup_from_id(id);
		if (memcg && !css_tryget_online(&memcg->css))
			memcg = NULL;
		rcu_read_unlock();
6747 6748 6749 6750 6751 6752
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);
6753 6754
	if (ret)
		goto out_put;
6755

6756
	css_get(&memcg->css);
6757
	commit_charge(page, memcg);
6758 6759

	local_irq_disable();
6760
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6761 6762
	memcg_check_events(memcg, page);
	local_irq_enable();
6763

6764
	if (PageSwapCache(page)) {
6765 6766 6767 6768 6769 6770
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
6771
		mem_cgroup_uncharge_swap(entry, nr_pages);
6772 6773
	}

6774 6775 6776 6777
out_put:
	css_put(&memcg->css);
out:
	return ret;
6778 6779
}

6780 6781
struct uncharge_gather {
	struct mem_cgroup *memcg;
6782
	unsigned long nr_pages;
6783 6784 6785 6786 6787 6788
	unsigned long pgpgout;
	unsigned long nr_kmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6789
{
6790 6791 6792 6793 6794
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
6795 6796
	unsigned long flags;

6797
	if (!mem_cgroup_is_root(ug->memcg)) {
6798
		page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6799
		if (do_memsw_account())
6800
			page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6801 6802 6803
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
6804
	}
6805 6806

	local_irq_save(flags);
6807
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6808
	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6809
	memcg_check_events(ug->memcg, ug->dummy_page);
6810
	local_irq_restore(flags);
6811 6812 6813

	/* drop reference from uncharge_page */
	css_put(&ug->memcg->css);
6814 6815 6816 6817
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
6818 6819
	unsigned long nr_pages;

6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836
	VM_BUG_ON_PAGE(PageLRU(page), page);

	if (!page->mem_cgroup)
		return;

	/*
	 * Nobody should be changing or seriously looking at
	 * page->mem_cgroup at this point, we have fully
	 * exclusive access to the page.
	 */

	if (ug->memcg != page->mem_cgroup) {
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
		ug->memcg = page->mem_cgroup;
6837 6838 6839

		/* pairs with css_put in uncharge_batch */
		css_get(&ug->memcg->css);
6840 6841
	}

6842 6843
	nr_pages = compound_nr(page);
	ug->nr_pages += nr_pages;
6844

6845
	if (!PageKmemcg(page)) {
6846 6847
		ug->pgpgout++;
	} else {
6848
		ug->nr_kmem += nr_pages;
6849 6850 6851 6852 6853
		__ClearPageKmemcg(page);
	}

	ug->dummy_page = page;
	page->mem_cgroup = NULL;
6854
	css_put(&ug->memcg->css);
6855 6856 6857 6858
}

static void uncharge_list(struct list_head *page_list)
{
6859
	struct uncharge_gather ug;
6860
	struct list_head *next;
6861 6862

	uncharge_gather_clear(&ug);
6863

6864 6865 6866 6867
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
6868 6869
	next = page_list->next;
	do {
6870 6871
		struct page *page;

6872 6873 6874
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

6875
		uncharge_page(page, &ug);
6876 6877
	} while (next != page_list);

6878 6879
	if (ug.memcg)
		uncharge_batch(&ug);
6880 6881
}

6882 6883 6884 6885
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
6886
 * Uncharge a page previously charged with mem_cgroup_charge().
6887 6888 6889
 */
void mem_cgroup_uncharge(struct page *page)
{
6890 6891
	struct uncharge_gather ug;

6892 6893 6894
	if (mem_cgroup_disabled())
		return;

6895
	/* Don't touch page->lru of any random page, pre-check: */
6896
	if (!page->mem_cgroup)
6897 6898
		return;

6899 6900 6901
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
6902
}
6903

6904 6905 6906 6907 6908
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
6909
 * mem_cgroup_charge().
6910 6911 6912 6913 6914
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
6915

6916 6917
	if (!list_empty(page_list))
		uncharge_list(page_list);
6918 6919 6920
}

/**
6921 6922 6923
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
6924
 *
6925 6926
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
6927 6928 6929
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
6930
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6931
{
6932
	struct mem_cgroup *memcg;
6933
	unsigned int nr_pages;
6934
	unsigned long flags;
6935 6936 6937 6938

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6939 6940
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6941 6942 6943 6944 6945

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
6946
	if (newpage->mem_cgroup)
6947 6948
		return;

6949
	/* Swapcache readahead pages can get replaced before being charged */
6950
	memcg = oldpage->mem_cgroup;
6951
	if (!memcg)
6952 6953
		return;

6954
	/* Force-charge the new page. The old one will be freed soon */
6955
	nr_pages = thp_nr_pages(newpage);
6956 6957 6958 6959

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
6960

6961
	css_get(&memcg->css);
6962
	commit_charge(newpage, memcg);
6963

6964
	local_irq_save(flags);
6965
	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6966
	memcg_check_events(memcg, newpage);
6967
	local_irq_restore(flags);
6968 6969
}

6970
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6971 6972
EXPORT_SYMBOL(memcg_sockets_enabled_key);

6973
void mem_cgroup_sk_alloc(struct sock *sk)
6974 6975 6976
{
	struct mem_cgroup *memcg;

6977 6978 6979
	if (!mem_cgroup_sockets_enabled)
		return;

6980 6981 6982 6983
	/* Do not associate the sock with unrelated interrupted task's memcg. */
	if (in_interrupt())
		return;

6984 6985
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
6986 6987
	if (memcg == root_mem_cgroup)
		goto out;
6988
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6989
		goto out;
S
Shakeel Butt 已提交
6990
	if (css_tryget(&memcg->css))
6991
		sk->sk_memcg = memcg;
6992
out:
6993 6994 6995
	rcu_read_unlock();
}

6996
void mem_cgroup_sk_free(struct sock *sk)
6997
{
6998 6999
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
7012
	gfp_t gfp_mask = GFP_KERNEL;
7013

7014
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7015
		struct page_counter *fail;
7016

7017 7018
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
7019 7020
			return true;
		}
7021 7022
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
7023
		return false;
7024
	}
7025

7026 7027 7028 7029
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

7030
	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7031

7032 7033 7034 7035
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7036 7037 7038 7039 7040
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
7041 7042
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
7043 7044 7045
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
7046
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7047
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7048 7049
		return;
	}
7050

7051
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7052

7053
	refill_stock(memcg, nr_pages);
7054 7055
}

7056 7057 7058 7059 7060 7061 7062 7063 7064
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
7065 7066
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
7067 7068 7069 7070
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
7071

7072
/*
7073 7074
 * subsys_initcall() for memory controller.
 *
7075 7076 7077 7078
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
7079 7080 7081
 */
static int __init mem_cgroup_init(void)
{
7082 7083
	int cpu, node;

7084 7085
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

7097
		rtpn->rb_root = RB_ROOT;
7098
		rtpn->rb_rightmost = NULL;
7099
		spin_lock_init(&rtpn->lock);
7100 7101 7102
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

7103 7104 7105
	return 0;
}
subsys_initcall(mem_cgroup_init);
7106 7107

#ifdef CONFIG_MEMCG_SWAP
7108 7109
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
7110
	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

7126 7127 7128 7129 7130 7131 7132 7133 7134
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
7135
	struct mem_cgroup *memcg, *swap_memcg;
7136
	unsigned int nr_entries;
7137 7138 7139 7140 7141
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

7142
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7143 7144 7145 7146 7147 7148 7149 7150
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

7151 7152 7153 7154 7155 7156
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
7157
	nr_entries = thp_nr_pages(page);
7158 7159 7160 7161 7162
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
7163
	VM_BUG_ON_PAGE(oldid, page);
7164
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7165 7166 7167 7168

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
7169
		page_counter_uncharge(&memcg->memory, nr_entries);
7170

7171
	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7172
		if (!mem_cgroup_is_root(swap_memcg))
7173 7174
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
7175 7176
	}

7177 7178
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
7179
	 * i_pages lock which is taken with interrupts-off. It is
7180
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
7181
	 * only synchronisation we have for updating the per-CPU variables.
7182 7183
	 */
	VM_BUG_ON(!irqs_disabled());
7184
	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7185
	memcg_check_events(memcg, page);
7186

7187
	css_put(&memcg->css);
7188 7189
}

7190 7191
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
7192 7193 7194
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
7195
 * Try to charge @page's memcg for the swap space at @entry.
7196 7197 7198 7199 7200
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
7201
	unsigned int nr_pages = thp_nr_pages(page);
7202
	struct page_counter *counter;
7203
	struct mem_cgroup *memcg;
7204 7205
	unsigned short oldid;

7206
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7207 7208 7209 7210 7211 7212 7213 7214
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

7215 7216
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7217
		return 0;
7218
	}
7219

7220 7221
	memcg = mem_cgroup_id_get_online(memcg);

7222
	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7223
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7224 7225
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7226
		mem_cgroup_id_put(memcg);
7227
		return -ENOMEM;
7228
	}
7229

7230 7231 7232 7233
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7234
	VM_BUG_ON_PAGE(oldid, page);
7235
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7236 7237 7238 7239

	return 0;
}

7240
/**
7241
 * mem_cgroup_uncharge_swap - uncharge swap space
7242
 * @entry: swap entry to uncharge
7243
 * @nr_pages: the amount of swap space to uncharge
7244
 */
7245
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7246 7247 7248 7249
{
	struct mem_cgroup *memcg;
	unsigned short id;

7250
	id = swap_cgroup_record(entry, 0, nr_pages);
7251
	rcu_read_lock();
7252
	memcg = mem_cgroup_from_id(id);
7253
	if (memcg) {
7254
		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7255
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7256
				page_counter_uncharge(&memcg->swap, nr_pages);
7257
			else
7258
				page_counter_uncharge(&memcg->memsw, nr_pages);
7259
		}
7260
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7261
		mem_cgroup_id_put_many(memcg, nr_pages);
7262 7263 7264 7265
	}
	rcu_read_unlock();
}

7266 7267 7268 7269
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

7270
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7271 7272 7273
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
7274
				      READ_ONCE(memcg->swap.max) -
7275 7276 7277 7278
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

7279 7280 7281 7282 7283 7284 7285 7286
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
7287
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7288 7289 7290 7291 7292 7293
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

7294 7295 7296 7297 7298
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		unsigned long usage = page_counter_read(&memcg->swap);

		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
		    usage * 2 >= READ_ONCE(memcg->swap.max))
7299
			return true;
7300
	}
7301 7302 7303 7304

	return false;
}

7305
static int __init setup_swap_account(char *s)
7306 7307
{
	if (!strcmp(s, "1"))
7308
		cgroup_memory_noswap = 0;
7309
	else if (!strcmp(s, "0"))
7310
		cgroup_memory_noswap = 1;
7311 7312
	return 1;
}
7313
__setup("swapaccount=", setup_swap_account);
7314

7315 7316 7317 7318 7319 7320 7321 7322
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345
static int swap_high_show(struct seq_file *m, void *v)
{
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
}

static ssize_t swap_high_write(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &high);
	if (err)
		return err;

	page_counter_set_high(&memcg->swap, high);

	return nbytes;
}

7346 7347
static int swap_max_show(struct seq_file *m, void *v)
{
7348 7349
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

7364
	xchg(&memcg->swap.max, max);
7365 7366 7367 7368

	return nbytes;
}

7369 7370
static int swap_events_show(struct seq_file *m, void *v)
{
7371
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7372

7373 7374
	seq_printf(m, "high %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7375 7376 7377 7378 7379 7380 7381 7382
	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

7383 7384 7385 7386 7387 7388
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
7389 7390 7391 7392 7393 7394
	{
		.name = "swap.high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_high_show,
		.write = swap_high_write,
	},
7395 7396 7397 7398 7399 7400
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
7401 7402 7403 7404 7405 7406
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
7407 7408 7409
	{ }	/* terminate */
};

7410
static struct cftype memsw_files[] = {
7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

7437 7438 7439 7440 7441 7442 7443
/*
 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
 * boot parameter. This may result in premature OOPS inside
 * mem_cgroup_get_nr_swap_pages() function in corner cases.
 */
7444 7445
static int __init mem_cgroup_swap_init(void)
{
7446 7447 7448 7449 7450
	/* No memory control -> no swap control */
	if (mem_cgroup_disabled())
		cgroup_memory_noswap = true;

	if (cgroup_memory_noswap)
7451 7452 7453 7454 7455
		return 0;

	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));

7456 7457
	return 0;
}
7458
core_initcall(mem_cgroup_swap_init);
7459 7460

#endif /* CONFIG_MEMCG_SWAP */