memcontrol.c 146.5 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include <linux/pagemap.h>
40
#include <linux/smp.h>
41
#include <linux/page-flags.h>
42
#include <linux/backing-dev.h>
43 44
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
45
#include <linux/limits.h>
46
#include <linux/export.h>
47
#include <linux/mutex.h>
48
#include <linux/rbtree.h>
49
#include <linux/slab.h>
50
#include <linux/swap.h>
51
#include <linux/swapops.h>
52
#include <linux/spinlock.h>
53
#include <linux/eventfd.h>
54
#include <linux/poll.h>
55
#include <linux/sort.h>
56
#include <linux/fs.h>
57
#include <linux/seq_file.h>
58
#include <linux/vmpressure.h>
59
#include <linux/mm_inline.h>
60
#include <linux/swap_cgroup.h>
61
#include <linux/cpu.h>
62
#include <linux/oom.h>
63
#include <linux/lockdep.h>
64
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
65
#include "internal.h"
G
Glauber Costa 已提交
66
#include <net/sock.h>
M
Michal Hocko 已提交
67
#include <net/ip.h>
G
Glauber Costa 已提交
68
#include <net/tcp_memcontrol.h>
69
#include "slab.h"
B
Balbir Singh 已提交
70

71 72
#include <asm/uaccess.h>

73 74
#include <trace/events/vmscan.h>

75 76
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
77

78
#define MEM_CGROUP_RECLAIM_RETRIES	5
79
static struct mem_cgroup *root_mem_cgroup __read_mostly;
T
Tejun Heo 已提交
80
struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
B
Balbir Singh 已提交
81

82
/* Whether the swap controller is active */
A
Andrew Morton 已提交
83
#ifdef CONFIG_MEMCG_SWAP
84 85
int do_swap_account __read_mostly;
#else
86
#define do_swap_account		0
87 88
#endif

89 90 91
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
92
	"rss_huge",
93
	"mapped_file",
94
	"dirty",
95
	"writeback",
96 97 98 99 100 101 102 103 104 105
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

106 107 108 109 110 111 112 113
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

114 115 116
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
117

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
138 139 140 141 142
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
143

144 145 146
/*
 * cgroup_event represents events which userspace want to receive.
 */
147
struct mem_cgroup_event {
148
	/*
149
	 * memcg which the event belongs to.
150
	 */
151
	struct mem_cgroup *memcg;
152 153 154 155 156 157 158 159
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
160 161 162 163 164
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
165
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
166
			      struct eventfd_ctx *eventfd, const char *args);
167 168 169 170 171
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
172
	void (*unregister_event)(struct mem_cgroup *memcg,
173
				 struct eventfd_ctx *eventfd);
174 175 176 177 178 179 180 181 182 183
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

184 185
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
186

187 188
/* Stuffs for move charges at task migration. */
/*
189
 * Types of charges to be moved.
190
 */
191 192 193
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
194

195 196
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
197
	spinlock_t	  lock; /* for from, to */
198 199
	struct mem_cgroup *from;
	struct mem_cgroup *to;
200
	unsigned long flags;
201
	unsigned long precharge;
202
	unsigned long moved_charge;
203
	unsigned long moved_swap;
204 205 206
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
207
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
208 209
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
210

211 212 213 214
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
215
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
216
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
217

218 219
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
220
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
221
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
222
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
223 224 225
	NR_CHARGE_TYPE,
};

226
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
227 228 229 230
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
231
	_KMEM,
G
Glauber Costa 已提交
232 233
};

234 235
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
236
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
237 238
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
239

240 241 242 243 244 245 246
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

247 248 249 250 251 252 253 254 255 256 257 258 259
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

260 261 262 263 264
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

265 266 267 268 269 270
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
271 272
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
273
	return memcg->css.id;
L
Li Zefan 已提交
274 275
}

276 277 278 279 280 281
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
 */
L
Li Zefan 已提交
282 283 284 285
static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

286
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
287 288 289
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
290
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
291
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
292 293 294

void sock_update_memcg(struct sock *sk)
{
295
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
296
		struct mem_cgroup *memcg;
297
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
298 299 300

		BUG_ON(!sk->sk_prot->proto_cgroup);

301 302 303 304 305 306 307 308 309 310
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
311
			css_get(&sk->sk_cgrp->memcg->css);
312 313 314
			return;
		}

G
Glauber Costa 已提交
315 316
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
317
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
318
		if (cg_proto && test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags) &&
319
		    css_tryget_online(&memcg->css)) {
320
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
321 322 323 324 325 326 327 328
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
329
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
330 331 332
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
333
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
334 335
	}
}
G
Glauber Costa 已提交
336 337 338 339 340 341

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

342
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
343 344
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
345

346 347
#endif

348
#ifdef CONFIG_MEMCG_KMEM
349
/*
350
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
351 352 353 354 355
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
356
 *
357 358
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
359
 */
360 361
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
362

363 364 365 366 367 368 369 370 371 372 373 374 375
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

376 377 378 379 380 381
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
382
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
383 384
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
385
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
386 387 388
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
389
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
390

391 392 393 394 395 396
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
397
struct static_key memcg_kmem_enabled_key;
398
EXPORT_SYMBOL(memcg_kmem_enabled_key);
399 400 401

#endif /* CONFIG_MEMCG_KMEM */

402
static struct mem_cgroup_per_zone *
403
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
404
{
405 406 407
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

408
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
409 410
}

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 *
 * XXX: The above description of behavior on the default hierarchy isn't
 * strictly true yet as replace_page_cache_page() can modify the
 * association before @page is released even on the default hierarchy;
 * however, the current and planned usages don't mix the the two functions
 * and replace_page_cache_page() will soon be updated to make the invariant
 * actually true.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	rcu_read_lock();

	memcg = page->mem_cgroup;

	if (!memcg || !cgroup_on_dfl(memcg->css.cgroup))
		memcg = root_mem_cgroup;

	rcu_read_unlock();
	return &memcg->css;
}

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

472
static struct mem_cgroup_per_zone *
473
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
474
{
475 476
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
477

478
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
479 480
}

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

496 497
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
498
					 unsigned long new_usage_in_excess)
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

528 529
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
530 531 532 533 534 535 536
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

537 538
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
539
{
540 541 542
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
543
	__mem_cgroup_remove_exceeded(mz, mctz);
544
	spin_unlock_irqrestore(&mctz->lock, flags);
545 546
}

547 548 549
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
550
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
551 552 553 554 555 556 557
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
558 559 560

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
561
	unsigned long excess;
562 563 564
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

565
	mctz = soft_limit_tree_from_page(page);
566 567 568 569 570
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
571
		mz = mem_cgroup_page_zoneinfo(memcg, page);
572
		excess = soft_limit_excess(memcg);
573 574 575 576 577
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
578 579 580
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
581 582
			/* if on-tree, remove it */
			if (mz->on_tree)
583
				__mem_cgroup_remove_exceeded(mz, mctz);
584 585 586 587
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
588
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
589
			spin_unlock_irqrestore(&mctz->lock, flags);
590 591 592 593 594 595 596
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
597 598
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
599

600 601 602 603
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
604
			mem_cgroup_remove_exceeded(mz, mctz);
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
627
	__mem_cgroup_remove_exceeded(mz, mctz);
628
	if (!soft_limit_excess(mz->memcg) ||
629
	    !css_tryget_online(&mz->memcg->css))
630 631 632 633 634 635 636 637 638 639
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

640
	spin_lock_irq(&mctz->lock);
641
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
642
	spin_unlock_irq(&mctz->lock);
643 644 645
	return mz;
}

646
/*
647 648
 * Return page count for single (non recursive) @memcg.
 *
649 650 651 652 653
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
654
 * a periodic synchronization of counter in memcg's counter.
655 656 657 658 659 660 661 662 663
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
664
 * common workload, threshold and synchronization as vmstat[] should be
665 666
 * implemented.
 */
667 668
static unsigned long
mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
669
{
670
	long val = 0;
671 672
	int cpu;

673
	/* Per-cpu values can be negative, use a signed accumulator */
674
	for_each_possible_cpu(cpu)
675
		val += per_cpu(memcg->stat->count[idx], cpu);
676 677 678 679 680 681
	/*
	 * Summing races with updates, so val may be negative.  Avoid exposing
	 * transient negative values.
	 */
	if (val < 0)
		val = 0;
682 683 684
	return val;
}

685
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
686 687 688 689 690
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

691
	for_each_possible_cpu(cpu)
692
		val += per_cpu(memcg->stat->events[idx], cpu);
693 694 695
	return val;
}

696
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
697
					 struct page *page,
698
					 int nr_pages)
699
{
700 701 702 703
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
704
	if (PageAnon(page))
705
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
706
				nr_pages);
707
	else
708
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
709
				nr_pages);
710

711 712 713 714
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

715 716
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
717
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
718
	else {
719
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
720 721
		nr_pages = -nr_pages; /* for event */
	}
722

723
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
724 725
}

726 727 728
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
729
{
730
	unsigned long nr = 0;
731 732
	int zid;

733
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
734

735 736 737 738 739 740 741 742 743 744 745 746
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
747
}
748

749
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
750
			unsigned int lru_mask)
751
{
752
	unsigned long nr = 0;
753
	int nid;
754

755
	for_each_node_state(nid, N_MEMORY)
756 757
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
758 759
}

760 761
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
762 763 764
{
	unsigned long val, next;

765
	val = __this_cpu_read(memcg->stat->nr_page_events);
766
	next = __this_cpu_read(memcg->stat->targets[target]);
767
	/* from time_after() in jiffies.h */
768 769 770 771 772
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
773 774 775
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
776 777 778 779 780 781 782 783
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
784
	}
785
	return false;
786 787 788 789 790 791
}

/*
 * Check events in order.
 *
 */
792
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
793 794
{
	/* threshold event is triggered in finer grain than soft limit */
795 796
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
797
		bool do_softlimit;
798
		bool do_numainfo __maybe_unused;
799

800 801
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
802 803 804 805
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
806
		mem_cgroup_threshold(memcg);
807 808
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
809
#if MAX_NUMNODES > 1
810
		if (unlikely(do_numainfo))
811
			atomic_inc(&memcg->numainfo_events);
812
#endif
813
	}
814 815
}

816
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
817
{
818 819 820 821 822 823 824 825
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

826
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
827
}
M
Michal Hocko 已提交
828
EXPORT_SYMBOL(mem_cgroup_from_task);
829

830
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
831
{
832
	struct mem_cgroup *memcg = NULL;
833

834 835
	rcu_read_lock();
	do {
836 837 838 839 840 841
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
842
			memcg = root_mem_cgroup;
843 844 845 846 847
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
848
	} while (!css_tryget_online(&memcg->css));
849
	rcu_read_unlock();
850
	return memcg;
851 852
}

853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
870
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
871
				   struct mem_cgroup *prev,
872
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
873
{
M
Michal Hocko 已提交
874
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
875
	struct cgroup_subsys_state *css = NULL;
876
	struct mem_cgroup *memcg = NULL;
877
	struct mem_cgroup *pos = NULL;
878

879 880
	if (mem_cgroup_disabled())
		return NULL;
881

882 883
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
884

885
	if (prev && !reclaim)
886
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
887

888 889
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
890
			goto out;
891
		return root;
892
	}
K
KAMEZAWA Hiroyuki 已提交
893

894
	rcu_read_lock();
M
Michal Hocko 已提交
895

896 897 898 899 900 901 902 903 904 905
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

		do {
906
			pos = READ_ONCE(iter->position);
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
			/*
			 * A racing update may change the position and
			 * put the last reference, hence css_tryget(),
			 * or retry to see the updated position.
			 */
		} while (pos && !css_tryget(&pos->css));
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
930
		}
K
KAMEZAWA Hiroyuki 已提交
931

932 933 934 935 936 937
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
938

939 940
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
941

942
		if (css_tryget(css)) {
943 944 945 946 947 948 949
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				break;
950

951
			css_put(css);
952
		}
953

954
		memcg = NULL;
955
	}
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975

	if (reclaim) {
		if (cmpxchg(&iter->position, pos, memcg) == pos) {
			if (memcg)
				css_get(&memcg->css);
			if (pos)
				css_put(&pos->css);
		}

		/*
		 * pairs with css_tryget when dereferencing iter->position
		 * above.
		 */
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
976
	}
977

978 979
out_unlock:
	rcu_read_unlock();
980
out:
981 982 983
	if (prev && prev != root)
		css_put(&prev->css);

984
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
985
}
K
KAMEZAWA Hiroyuki 已提交
986

987 988 989 990 991 992 993
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
994 995 996 997 998 999
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1000

1001 1002 1003 1004 1005 1006
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1007
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1008
	     iter != NULL;				\
1009
	     iter = mem_cgroup_iter(root, iter, NULL))
1010

1011
#define for_each_mem_cgroup(iter)			\
1012
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1013
	     iter != NULL;				\
1014
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1015

1016 1017 1018
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1019
 * @memcg: memcg of the wanted lruvec
1020 1021 1022 1023 1024 1025 1026 1027 1028
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1029
	struct lruvec *lruvec;
1030

1031 1032 1033 1034
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1035

1036
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1047 1048 1049
}

/**
1050
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1051
 * @page: the page
1052
 * @zone: zone of the page
1053 1054 1055 1056
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1057
 */
1058
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1059 1060
{
	struct mem_cgroup_per_zone *mz;
1061
	struct mem_cgroup *memcg;
1062
	struct lruvec *lruvec;
1063

1064 1065 1066 1067
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1068

1069
	memcg = page->mem_cgroup;
1070
	/*
1071
	 * Swapcache readahead pages are added to the LRU - and
1072
	 * possibly migrated - before they are charged.
1073
	 */
1074 1075
	if (!memcg)
		memcg = root_mem_cgroup;
1076

1077
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1088
}
1089

1090
/**
1091 1092 1093 1094
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1095
 *
1096 1097
 * This function must be called when a page is added to or removed from an
 * lru list.
1098
 */
1099 1100
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1101 1102
{
	struct mem_cgroup_per_zone *mz;
1103
	unsigned long *lru_size;
1104 1105 1106 1107

	if (mem_cgroup_disabled())
		return;

1108 1109 1110 1111
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1112
}
1113

1114
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1115
{
1116
	struct mem_cgroup *task_memcg;
1117
	struct task_struct *p;
1118
	bool ret;
1119

1120
	p = find_lock_task_mm(task);
1121
	if (p) {
1122
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1123 1124 1125 1126 1127 1128 1129
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1130
		rcu_read_lock();
1131 1132
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1133
		rcu_read_unlock();
1134
	}
1135 1136
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1137 1138 1139
	return ret;
}

1140
#define mem_cgroup_from_counter(counter, member)	\
1141 1142
	container_of(counter, struct mem_cgroup, member)

1143
/**
1144
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1145
 * @memcg: the memory cgroup
1146
 *
1147
 * Returns the maximum amount of memory @mem can be charged with, in
1148
 * pages.
1149
 */
1150
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1151
{
1152 1153 1154
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1155

1156
	count = page_counter_read(&memcg->memory);
1157
	limit = READ_ONCE(memcg->memory.limit);
1158 1159 1160 1161 1162
	if (count < limit)
		margin = limit - count;

	if (do_swap_account) {
		count = page_counter_read(&memcg->memsw);
1163
		limit = READ_ONCE(memcg->memsw.limit);
1164 1165 1166 1167 1168
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1169 1170
}

1171
/*
Q
Qiang Huang 已提交
1172
 * A routine for checking "mem" is under move_account() or not.
1173
 *
Q
Qiang Huang 已提交
1174 1175 1176
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1177
 */
1178
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1179
{
1180 1181
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1182
	bool ret = false;
1183 1184 1185 1186 1187 1188 1189 1190 1191
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1192

1193 1194
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1195 1196
unlock:
	spin_unlock(&mc.lock);
1197 1198 1199
	return ret;
}

1200
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1201 1202
{
	if (mc.moving_task && current != mc.moving_task) {
1203
		if (mem_cgroup_under_move(memcg)) {
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1216
#define K(x) ((x) << (PAGE_SHIFT-10))
1217
/**
1218
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1219 1220 1221 1222 1223 1224 1225 1226
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1227
	/* oom_info_lock ensures that parallel ooms do not interleave */
1228
	static DEFINE_MUTEX(oom_info_lock);
1229 1230
	struct mem_cgroup *iter;
	unsigned int i;
1231

1232
	mutex_lock(&oom_info_lock);
1233 1234
	rcu_read_lock();

1235 1236 1237 1238 1239 1240 1241 1242
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1243
	pr_cont_cgroup_path(memcg->css.cgroup);
1244
	pr_cont("\n");
1245 1246 1247

	rcu_read_unlock();

1248 1249 1250 1251 1252 1253 1254 1255 1256
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1257 1258

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1259 1260
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1261 1262 1263 1264 1265
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
1266
			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1267 1268 1269 1270 1271 1272 1273 1274 1275
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1276
	mutex_unlock(&oom_info_lock);
1277 1278
}

1279 1280 1281 1282
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1283
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1284 1285
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1286 1287
	struct mem_cgroup *iter;

1288
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1289
		num++;
1290 1291 1292
	return num;
}

D
David Rientjes 已提交
1293 1294 1295
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1296
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1297
{
1298
	unsigned long limit;
1299

1300
	limit = memcg->memory.limit;
1301
	if (mem_cgroup_swappiness(memcg)) {
1302
		unsigned long memsw_limit;
1303

1304 1305
		memsw_limit = memcg->memsw.limit;
		limit = min(limit + total_swap_pages, memsw_limit);
1306 1307
	}
	return limit;
D
David Rientjes 已提交
1308 1309
}

1310 1311
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1312
{
1313 1314 1315 1316 1317 1318
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
		.gfp_mask = gfp_mask,
		.order = order,
	};
1319 1320 1321 1322 1323 1324
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1325 1326
	mutex_lock(&oom_lock);

1327
	/*
1328 1329 1330
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1331
	 */
1332
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1333
		mark_oom_victim(current);
1334
		goto unlock;
1335 1336
	}

1337
	check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1338
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1339
	for_each_mem_cgroup_tree(iter, memcg) {
1340
		struct css_task_iter it;
1341 1342
		struct task_struct *task;

1343 1344
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1345
			switch (oom_scan_process_thread(&oc, task, totalpages)) {
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1356
				css_task_iter_end(&it);
1357 1358 1359
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
1360
				goto unlock;
1361 1362 1363 1364
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1377
		}
1378
		css_task_iter_end(&it);
1379 1380
	}

1381 1382
	if (chosen) {
		points = chosen_points * 1000 / totalpages;
1383 1384
		oom_kill_process(&oc, chosen, points, totalpages, memcg,
				 "Memory cgroup out of memory");
1385 1386 1387
	}
unlock:
	mutex_unlock(&oom_lock);
1388 1389
}

1390 1391
#if MAX_NUMNODES > 1

1392 1393
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1394
 * @memcg: the target memcg
1395 1396 1397 1398 1399 1400 1401
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1402
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1403 1404
		int nid, bool noswap)
{
1405
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1406 1407 1408
		return true;
	if (noswap || !total_swap_pages)
		return false;
1409
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1410 1411 1412 1413
		return true;
	return false;

}
1414 1415 1416 1417 1418 1419 1420

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1421
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1422 1423
{
	int nid;
1424 1425 1426 1427
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1428
	if (!atomic_read(&memcg->numainfo_events))
1429
		return;
1430
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1431 1432 1433
		return;

	/* make a nodemask where this memcg uses memory from */
1434
	memcg->scan_nodes = node_states[N_MEMORY];
1435

1436
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1437

1438 1439
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1440
	}
1441

1442 1443
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1458
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1459 1460 1461
{
	int node;

1462 1463
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1464

1465
	node = next_node(node, memcg->scan_nodes);
1466
	if (node == MAX_NUMNODES)
1467
		node = first_node(memcg->scan_nodes);
1468 1469 1470 1471 1472 1473 1474 1475 1476
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1477
	memcg->last_scanned_node = node;
1478 1479 1480
	return node;
}
#else
1481
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1482 1483 1484 1485 1486
{
	return 0;
}
#endif

1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1502
	excess = soft_limit_excess(root_memcg);
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1531
		if (!soft_limit_excess(root_memcg))
1532
			break;
1533
	}
1534 1535
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1536 1537
}

1538 1539 1540 1541 1542 1543
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1544 1545
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1546 1547 1548 1549
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1550
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1551
{
1552
	struct mem_cgroup *iter, *failed = NULL;
1553

1554 1555
	spin_lock(&memcg_oom_lock);

1556
	for_each_mem_cgroup_tree(iter, memcg) {
1557
		if (iter->oom_lock) {
1558 1559 1560 1561 1562
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1563 1564
			mem_cgroup_iter_break(memcg, iter);
			break;
1565 1566
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1567
	}
K
KAMEZAWA Hiroyuki 已提交
1568

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1580
		}
1581 1582
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1583 1584 1585 1586

	spin_unlock(&memcg_oom_lock);

	return !failed;
1587
}
1588

1589
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1590
{
K
KAMEZAWA Hiroyuki 已提交
1591 1592
	struct mem_cgroup *iter;

1593
	spin_lock(&memcg_oom_lock);
1594
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1595
	for_each_mem_cgroup_tree(iter, memcg)
1596
		iter->oom_lock = false;
1597
	spin_unlock(&memcg_oom_lock);
1598 1599
}

1600
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1601 1602 1603
{
	struct mem_cgroup *iter;

1604
	spin_lock(&memcg_oom_lock);
1605
	for_each_mem_cgroup_tree(iter, memcg)
1606 1607
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1608 1609
}

1610
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1611 1612 1613
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1614 1615
	/*
	 * When a new child is created while the hierarchy is under oom,
1616
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1617
	 */
1618
	spin_lock(&memcg_oom_lock);
1619
	for_each_mem_cgroup_tree(iter, memcg)
1620 1621 1622
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1623 1624
}

K
KAMEZAWA Hiroyuki 已提交
1625 1626
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1627
struct oom_wait_info {
1628
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1629 1630 1631 1632 1633 1634
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1635 1636
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1637 1638 1639
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1640
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1641

1642 1643
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1644 1645 1646 1647
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1648
static void memcg_oom_recover(struct mem_cgroup *memcg)
1649
{
1650 1651 1652 1653 1654 1655 1656 1657 1658
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1659
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1660 1661
}

1662
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1663
{
T
Tejun Heo 已提交
1664
	if (!current->memcg_may_oom)
1665
		return;
K
KAMEZAWA Hiroyuki 已提交
1666
	/*
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1679
	 */
1680
	css_get(&memcg->css);
T
Tejun Heo 已提交
1681 1682 1683
	current->memcg_in_oom = memcg;
	current->memcg_oom_gfp_mask = mask;
	current->memcg_oom_order = order;
1684 1685 1686 1687
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1688
 * @handle: actually kill/wait or just clean up the OOM state
1689
 *
1690 1691
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1692
 *
1693
 * Memcg supports userspace OOM handling where failed allocations must
1694 1695 1696 1697
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1698
 * the end of the page fault to complete the OOM handling.
1699 1700
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1701
 * completed, %false otherwise.
1702
 */
1703
bool mem_cgroup_oom_synchronize(bool handle)
1704
{
T
Tejun Heo 已提交
1705
	struct mem_cgroup *memcg = current->memcg_in_oom;
1706
	struct oom_wait_info owait;
1707
	bool locked;
1708 1709 1710

	/* OOM is global, do not handle */
	if (!memcg)
1711
		return false;
1712

1713
	if (!handle || oom_killer_disabled)
1714
		goto cleanup;
1715 1716 1717 1718 1719 1720

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1721

1722
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1733 1734
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1735
	} else {
1736
		schedule();
1737 1738 1739 1740 1741
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1742 1743 1744 1745 1746 1747 1748 1749
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1750
cleanup:
T
Tejun Heo 已提交
1751
	current->memcg_in_oom = NULL;
1752
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1753
	return true;
1754 1755
}

1756 1757 1758
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
1759
 *
1760 1761 1762
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
1763
 *
1764
 *   memcg = mem_cgroup_begin_page_stat(page);
1765 1766
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
1767
 *   mem_cgroup_end_page_stat(memcg);
1768
 */
1769
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1770 1771
{
	struct mem_cgroup *memcg;
1772
	unsigned long flags;
1773

1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page from being uncharged.
	 * E.g. end-writeback clearing PageWriteback(), which allows
	 * migration to go ahead and uncharge the page before the
	 * account transaction might be complete.
	 */
1786 1787 1788 1789
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;
1790
again:
1791
	memcg = page->mem_cgroup;
1792
	if (unlikely(!memcg))
1793 1794
		return NULL;

Q
Qiang Huang 已提交
1795
	if (atomic_read(&memcg->moving_account) <= 0)
1796
		return memcg;
1797

1798
	spin_lock_irqsave(&memcg->move_lock, flags);
1799
	if (memcg != page->mem_cgroup) {
1800
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1801 1802
		goto again;
	}
1803 1804 1805 1806 1807 1808 1809 1810

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
	 * the task who has the lock for mem_cgroup_end_page_stat().
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1811 1812

	return memcg;
1813
}
1814
EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1815

1816 1817 1818 1819
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 */
1820
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1821
{
1822 1823 1824 1825 1826 1827 1828 1829
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1830

1831
	rcu_read_unlock();
1832
}
1833
EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1834

1835 1836 1837 1838
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1839
#define CHARGE_BATCH	32U
1840 1841
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1842
	unsigned int nr_pages;
1843
	struct work_struct work;
1844
	unsigned long flags;
1845
#define FLUSHING_CACHED_CHARGE	0
1846 1847
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1848
static DEFINE_MUTEX(percpu_charge_mutex);
1849

1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1860
 */
1861
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1862 1863
{
	struct memcg_stock_pcp *stock;
1864
	bool ret = false;
1865

1866
	if (nr_pages > CHARGE_BATCH)
1867
		return ret;
1868

1869
	stock = &get_cpu_var(memcg_stock);
1870
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1871
		stock->nr_pages -= nr_pages;
1872 1873
		ret = true;
	}
1874 1875 1876 1877 1878
	put_cpu_var(memcg_stock);
	return ret;
}

/*
1879
 * Returns stocks cached in percpu and reset cached information.
1880 1881 1882 1883 1884
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1885
	if (stock->nr_pages) {
1886
		page_counter_uncharge(&old->memory, stock->nr_pages);
1887
		if (do_swap_account)
1888
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1889
		css_put_many(&old->css, stock->nr_pages);
1890
		stock->nr_pages = 0;
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
1901
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1902
	drain_stock(stock);
1903
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1904 1905 1906
}

/*
1907
 * Cache charges(val) to local per_cpu area.
1908
 * This will be consumed by consume_stock() function, later.
1909
 */
1910
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1911 1912 1913
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

1914
	if (stock->cached != memcg) { /* reset if necessary */
1915
		drain_stock(stock);
1916
		stock->cached = memcg;
1917
	}
1918
	stock->nr_pages += nr_pages;
1919 1920 1921 1922
	put_cpu_var(memcg_stock);
}

/*
1923
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1924
 * of the hierarchy under it.
1925
 */
1926
static void drain_all_stock(struct mem_cgroup *root_memcg)
1927
{
1928
	int cpu, curcpu;
1929

1930 1931 1932
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1933 1934
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1935
	curcpu = get_cpu();
1936 1937
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1938
		struct mem_cgroup *memcg;
1939

1940 1941
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
1942
			continue;
1943
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1944
			continue;
1945 1946 1947 1948 1949 1950
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1951
	}
1952
	put_cpu();
A
Andrew Morton 已提交
1953
	put_online_cpus();
1954
	mutex_unlock(&percpu_charge_mutex);
1955 1956
}

1957
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1958 1959 1960 1961 1962 1963
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

1964
	if (action == CPU_ONLINE)
1965 1966
		return NOTIFY_OK;

1967
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1968
		return NOTIFY_OK;
1969

1970 1971 1972 1973 1974
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1975 1976
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
1977
{
1978
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1979
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1980
	struct mem_cgroup *mem_over_limit;
1981
	struct page_counter *counter;
1982
	unsigned long nr_reclaimed;
1983 1984
	bool may_swap = true;
	bool drained = false;
1985
	int ret = 0;
1986

1987 1988
	if (mem_cgroup_is_root(memcg))
		goto done;
1989
retry:
1990 1991
	if (consume_stock(memcg, nr_pages))
		goto done;
1992

1993
	if (!do_swap_account ||
1994 1995
	    !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (!page_counter_try_charge(&memcg->memory, batch, &counter))
1996
			goto done_restock;
1997
		if (do_swap_account)
1998 1999
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2000
	} else {
2001
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2002
		may_swap = false;
2003
	}
2004

2005 2006 2007 2008
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2009

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
		goto bypass;

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2024 2025
	if (!(gfp_mask & __GFP_WAIT))
		goto nomem;
2026

2027 2028
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

2029 2030
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2031

2032
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2033
		goto retry;
2034

2035
	if (!drained) {
2036
		drain_all_stock(mem_over_limit);
2037 2038 2039 2040
		drained = true;
		goto retry;
	}

2041 2042
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2043 2044 2045 2046 2047 2048 2049 2050 2051
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2052
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2053 2054 2055 2056 2057 2058 2059 2060
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2061 2062 2063
	if (nr_retries--)
		goto retry;

2064 2065 2066
	if (gfp_mask & __GFP_NOFAIL)
		goto bypass;

2067 2068 2069
	if (fatal_signal_pending(current))
		goto bypass;

2070 2071
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2072
	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2073
nomem:
2074
	if (!(gfp_mask & __GFP_NOFAIL))
2075
		return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2076
bypass:
2077
	return -EINTR;
2078 2079

done_restock:
2080
	css_get_many(&memcg->css, batch);
2081 2082
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2083 2084
	if (!(gfp_mask & __GFP_WAIT))
		goto done;
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
	/*
	 * If the hierarchy is above the normal consumption range,
	 * make the charging task trim their excess contribution.
	 */
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
2095
done:
2096
	return ret;
2097
}
2098

2099
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2100
{
2101 2102 2103
	if (mem_cgroup_is_root(memcg))
		return;

2104
	page_counter_uncharge(&memcg->memory, nr_pages);
2105
	if (do_swap_account)
2106
		page_counter_uncharge(&memcg->memsw, nr_pages);
2107

2108
	css_put_many(&memcg->css, nr_pages);
2109 2110
}

2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2142
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2143
			  bool lrucare)
2144
{
2145
	int isolated;
2146

2147
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2148 2149 2150 2151 2152

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2153 2154
	if (lrucare)
		lock_page_lru(page, &isolated);
2155

2156 2157
	/*
	 * Nobody should be changing or seriously looking at
2158
	 * page->mem_cgroup at this point:
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2170
	page->mem_cgroup = memcg;
2171

2172 2173
	if (lrucare)
		unlock_page_lru(page, isolated);
2174
}
2175

2176
#ifdef CONFIG_MEMCG_KMEM
2177 2178
int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
		      unsigned long nr_pages)
2179
{
2180
	struct page_counter *counter;
2181 2182
	int ret = 0;

2183 2184
	ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
	if (ret < 0)
2185 2186
		return ret;

2187
	ret = try_charge(memcg, gfp, nr_pages);
2188 2189
	if (ret == -EINTR)  {
		/*
2190 2191 2192 2193 2194 2195
		 * try_charge() chose to bypass to root due to OOM kill or
		 * fatal signal.  Since our only options are to either fail
		 * the allocation or charge it to this cgroup, do it as a
		 * temporary condition. But we can't fail. From a kmem/slab
		 * perspective, the cache has already been selected, by
		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2196 2197 2198
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
2199 2200 2201
		 * memcg_charge_kmem in a sane state, but was OOM-killed
		 * during try_charge() above. Tasks that were already dying
		 * when the allocation triggers should have been already
2202 2203
		 * directed to the root cgroup in memcontrol.h
		 */
2204
		page_counter_charge(&memcg->memory, nr_pages);
2205
		if (do_swap_account)
2206
			page_counter_charge(&memcg->memsw, nr_pages);
2207
		css_get_many(&memcg->css, nr_pages);
2208 2209
		ret = 0;
	} else if (ret)
2210
		page_counter_uncharge(&memcg->kmem, nr_pages);
2211 2212 2213 2214

	return ret;
}

2215
void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2216
{
2217
	page_counter_uncharge(&memcg->memory, nr_pages);
2218
	if (do_swap_account)
2219
		page_counter_uncharge(&memcg->memsw, nr_pages);
2220

2221
	page_counter_uncharge(&memcg->kmem, nr_pages);
2222

2223
	css_put_many(&memcg->css, nr_pages);
2224 2225
}

2226
static int memcg_alloc_cache_id(void)
2227
{
2228 2229 2230
	int id, size;
	int err;

2231
	id = ida_simple_get(&memcg_cache_ida,
2232 2233 2234
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2235

2236
	if (id < memcg_nr_cache_ids)
2237 2238 2239 2240 2241 2242
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2243
	down_write(&memcg_cache_ids_sem);
2244 2245

	size = 2 * (id + 1);
2246 2247 2248 2249 2250
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2251
	err = memcg_update_all_caches(size);
2252 2253
	if (!err)
		err = memcg_update_all_list_lrus(size);
2254 2255 2256 2257 2258
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2259
	if (err) {
2260
		ida_simple_remove(&memcg_cache_ida, id);
2261 2262 2263 2264 2265 2266 2267
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2268
	ida_simple_remove(&memcg_cache_ida, id);
2269 2270
}

2271
struct memcg_kmem_cache_create_work {
2272 2273 2274 2275 2276
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2277
static void memcg_kmem_cache_create_func(struct work_struct *w)
2278
{
2279 2280
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2281 2282
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2283

2284
	memcg_create_kmem_cache(memcg, cachep);
2285

2286
	css_put(&memcg->css);
2287 2288 2289 2290 2291 2292
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2293 2294
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2295
{
2296
	struct memcg_kmem_cache_create_work *cw;
2297

2298
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2299
	if (!cw)
2300
		return;
2301 2302

	css_get(&memcg->css);
2303 2304 2305

	cw->memcg = memcg;
	cw->cachep = cachep;
2306
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2307 2308 2309 2310

	schedule_work(&cw->work);
}

2311 2312
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2313 2314 2315 2316
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2317
	 * in __memcg_schedule_kmem_cache_create will recurse.
2318 2319 2320 2321 2322 2323 2324
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2325
	current->memcg_kmem_skip_account = 1;
2326
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2327
	current->memcg_kmem_skip_account = 0;
2328
}
2329

2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
2343
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2344 2345
{
	struct mem_cgroup *memcg;
2346
	struct kmem_cache *memcg_cachep;
2347
	int kmemcg_id;
2348

2349
	VM_BUG_ON(!is_root_cache(cachep));
2350

2351
	if (current->memcg_kmem_skip_account)
2352 2353
		return cachep;

2354
	memcg = get_mem_cgroup_from_mm(current->mm);
2355
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2356
	if (kmemcg_id < 0)
2357
		goto out;
2358

2359
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2360 2361
	if (likely(memcg_cachep))
		return memcg_cachep;
2362 2363 2364 2365 2366 2367 2368 2369 2370

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2371 2372 2373
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2374
	 */
2375
	memcg_schedule_kmem_cache_create(memcg, cachep);
2376
out:
2377
	css_put(&memcg->css);
2378
	return cachep;
2379 2380
}

2381 2382 2383
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
2384
		css_put(&cachep->memcg_params.memcg->css);
2385 2386
}

2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
2408

2409
	memcg = get_mem_cgroup_from_mm(current->mm);
2410

2411
	if (!memcg_kmem_is_active(memcg)) {
2412 2413 2414 2415
		css_put(&memcg->css);
		return true;
	}

2416
	ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
2431
		memcg_uncharge_kmem(memcg, 1 << order);
2432 2433
		return;
	}
2434
	page->mem_cgroup = memcg;
2435 2436 2437 2438
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
2439
	struct mem_cgroup *memcg = page->mem_cgroup;
2440 2441 2442 2443

	if (!memcg)
		return;

2444
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2445

2446
	memcg_uncharge_kmem(memcg, 1 << order);
2447
	page->mem_cgroup = NULL;
2448
}
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459

struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
{
	struct mem_cgroup *memcg = NULL;
	struct kmem_cache *cachep;
	struct page *page;

	page = virt_to_head_page(ptr);
	if (PageSlab(page)) {
		cachep = page->slab_cache;
		if (!is_root_cache(cachep))
2460
			memcg = cachep->memcg_params.memcg;
2461 2462 2463 2464 2465 2466
	} else
		/* page allocated by alloc_kmem_pages */
		memcg = page->mem_cgroup;

	return memcg;
}
2467 2468
#endif /* CONFIG_MEMCG_KMEM */

2469 2470 2471 2472
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2473 2474 2475
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2476
 */
2477
void mem_cgroup_split_huge_fixup(struct page *head)
2478
{
2479
	int i;
2480

2481 2482
	if (mem_cgroup_disabled())
		return;
2483

2484
	for (i = 1; i < HPAGE_PMD_NR; i++)
2485
		head[i].mem_cgroup = head->mem_cgroup;
2486

2487
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2488
		       HPAGE_PMD_NR);
2489
}
2490
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2491

A
Andrew Morton 已提交
2492
#ifdef CONFIG_MEMCG_SWAP
2493 2494
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2495
{
2496 2497
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2498
}
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2511
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2512 2513 2514
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2515
				struct mem_cgroup *from, struct mem_cgroup *to)
2516 2517 2518
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2519 2520
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2521 2522 2523

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2524
		mem_cgroup_swap_statistics(to, true);
2525 2526 2527 2528 2529 2530
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2531
				struct mem_cgroup *from, struct mem_cgroup *to)
2532 2533 2534
{
	return -EINVAL;
}
2535
#endif
K
KAMEZAWA Hiroyuki 已提交
2536

2537
static DEFINE_MUTEX(memcg_limit_mutex);
2538

2539
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2540
				   unsigned long limit)
2541
{
2542 2543 2544
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2545
	int retry_count;
2546
	int ret;
2547 2548 2549 2550 2551 2552

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2553 2554
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2555

2556
	oldusage = page_counter_read(&memcg->memory);
2557

2558
	do {
2559 2560 2561 2562
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2563 2564 2565 2566

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2567
			ret = -EINVAL;
2568 2569
			break;
		}
2570 2571 2572 2573
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2574 2575 2576 2577

		if (!ret)
			break;

2578 2579
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2580
		curusage = page_counter_read(&memcg->memory);
2581
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2582
		if (curusage >= oldusage)
2583 2584 2585
			retry_count--;
		else
			oldusage = curusage;
2586 2587
	} while (retry_count);

2588 2589
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2590

2591 2592 2593
	return ret;
}

L
Li Zefan 已提交
2594
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2595
					 unsigned long limit)
2596
{
2597 2598 2599
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2600
	int retry_count;
2601
	int ret;
2602

2603
	/* see mem_cgroup_resize_res_limit */
2604 2605 2606 2607 2608 2609
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2610 2611 2612 2613
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2614 2615 2616 2617

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2618 2619 2620
			ret = -EINVAL;
			break;
		}
2621 2622 2623 2624
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2625 2626 2627 2628

		if (!ret)
			break;

2629 2630
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2631
		curusage = page_counter_read(&memcg->memsw);
2632
		/* Usage is reduced ? */
2633
		if (curusage >= oldusage)
2634
			retry_count--;
2635 2636
		else
			oldusage = curusage;
2637 2638
	} while (retry_count);

2639 2640
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2641

2642 2643 2644
	return ret;
}

2645 2646 2647 2648 2649 2650 2651 2652 2653
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2654
	unsigned long excess;
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2679
		spin_lock_irq(&mctz->lock);
2680
		__mem_cgroup_remove_exceeded(mz, mctz);
2681 2682 2683 2684 2685 2686

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2687 2688 2689
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2690
		excess = soft_limit_excess(mz->memcg);
2691 2692 2693 2694 2695 2696 2697 2698 2699
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2700
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2701
		spin_unlock_irq(&mctz->lock);
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2719 2720 2721 2722 2723 2724
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2725 2726
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2727 2728
	bool ret;

2729
	/*
2730 2731 2732 2733
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
2734
	 */
2735 2736 2737 2738 2739 2740
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2741 2742
}

2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2753 2754
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2755
	/* try to free all pages in this cgroup */
2756
	while (nr_retries && page_counter_read(&memcg->memory)) {
2757
		int progress;
2758

2759 2760 2761
		if (signal_pending(current))
			return -EINTR;

2762 2763
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2764
		if (!progress) {
2765
			nr_retries--;
2766
			/* maybe some writeback is necessary */
2767
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2768
		}
2769 2770

	}
2771 2772

	return 0;
2773 2774
}

2775 2776 2777
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2778
{
2779
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2780

2781 2782
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2783
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2784 2785
}

2786 2787
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2788
{
2789
	return mem_cgroup_from_css(css)->use_hierarchy;
2790 2791
}

2792 2793
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2794 2795
{
	int retval = 0;
2796
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2797
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2798

2799
	mutex_lock(&memcg_create_mutex);
2800 2801 2802 2803

	if (memcg->use_hierarchy == val)
		goto out;

2804
	/*
2805
	 * If parent's use_hierarchy is set, we can't make any modifications
2806 2807 2808 2809 2810 2811
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2812
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2813
				(val == 1 || val == 0)) {
2814
		if (!memcg_has_children(memcg))
2815
			memcg->use_hierarchy = val;
2816 2817 2818 2819
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2820 2821

out:
2822
	mutex_unlock(&memcg_create_mutex);
2823 2824 2825 2826

	return retval;
}

2827 2828
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
2829 2830
{
	struct mem_cgroup *iter;
2831
	unsigned long val = 0;
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842

	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	return val;
}

static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
{
	u64 val;

2843 2844 2845 2846 2847 2848
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
2849
		if (!swap)
2850
			val = page_counter_read(&memcg->memory);
2851
		else
2852
			val = page_counter_read(&memcg->memsw);
2853 2854 2855 2856
	}
	return val << PAGE_SHIFT;
}

2857 2858 2859 2860 2861 2862 2863
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2864

2865
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2866
			       struct cftype *cft)
B
Balbir Singh 已提交
2867
{
2868
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2869
	struct page_counter *counter;
2870

2871
	switch (MEMFILE_TYPE(cft->private)) {
2872
	case _MEM:
2873 2874
		counter = &memcg->memory;
		break;
2875
	case _MEMSWAP:
2876 2877
		counter = &memcg->memsw;
		break;
2878
	case _KMEM:
2879
		counter = &memcg->kmem;
2880
		break;
2881 2882 2883
	default:
		BUG();
	}
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
			return mem_cgroup_usage(memcg, false);
		if (counter == &memcg->memsw)
			return mem_cgroup_usage(memcg, true);
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2903
}
2904 2905

#ifdef CONFIG_MEMCG_KMEM
2906 2907
static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long nr_pages)
2908 2909 2910 2911
{
	int err = 0;
	int memcg_id;

2912
	BUG_ON(memcg->kmemcg_id >= 0);
2913
	BUG_ON(memcg->kmem_acct_activated);
2914
	BUG_ON(memcg->kmem_acct_active);
2915

2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
2928
	mutex_lock(&memcg_create_mutex);
2929 2930
	if (cgroup_has_tasks(memcg->css.cgroup) ||
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
2931 2932 2933 2934
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
2935

2936
	memcg_id = memcg_alloc_cache_id();
2937 2938 2939 2940 2941 2942
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
V
Vladimir Davydov 已提交
2943 2944
	 * We couldn't have accounted to this cgroup, because it hasn't got
	 * activated yet, so this should succeed.
2945
	 */
2946
	err = page_counter_limit(&memcg->kmem, nr_pages);
2947 2948 2949 2950
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
V
Vladimir Davydov 已提交
2951 2952
	 * A memory cgroup is considered kmem-active as soon as it gets
	 * kmemcg_id. Setting the id after enabling static branching will
2953 2954 2955
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2956
	memcg->kmemcg_id = memcg_id;
2957
	memcg->kmem_acct_activated = true;
2958
	memcg->kmem_acct_active = true;
2959
out:
2960 2961 2962 2963
	return err;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2964
				   unsigned long limit)
2965 2966 2967
{
	int ret;

2968
	mutex_lock(&memcg_limit_mutex);
2969
	if (!memcg_kmem_is_active(memcg))
2970
		ret = memcg_activate_kmem(memcg, limit);
2971
	else
2972 2973
		ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
2974 2975 2976
	return ret;
}

2977
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2978
{
2979
	int ret = 0;
2980
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
2981

2982 2983
	if (!parent)
		return 0;
2984

2985
	mutex_lock(&memcg_limit_mutex);
2986
	/*
2987 2988
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
2989
	 */
2990
	if (memcg_kmem_is_active(parent))
2991 2992
		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
	mutex_unlock(&memcg_limit_mutex);
2993
	return ret;
2994
}
2995 2996
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2997
				   unsigned long limit)
2998 2999 3000
{
	return -EINVAL;
}
3001
#endif /* CONFIG_MEMCG_KMEM */
3002

3003 3004 3005 3006
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3007 3008
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3009
{
3010
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3011
	unsigned long nr_pages;
3012 3013
	int ret;

3014
	buf = strstrip(buf);
3015
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3016 3017
	if (ret)
		return ret;
3018

3019
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3020
	case RES_LIMIT:
3021 3022 3023 3024
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3025 3026 3027
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3028
			break;
3029 3030
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3031
			break;
3032 3033 3034 3035
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
		}
3036
		break;
3037 3038 3039
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3040 3041
		break;
	}
3042
	return ret ?: nbytes;
B
Balbir Singh 已提交
3043 3044
}

3045 3046
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3047
{
3048
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3049
	struct page_counter *counter;
3050

3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
	default:
		BUG();
	}
3064

3065
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3066
	case RES_MAX_USAGE:
3067
		page_counter_reset_watermark(counter);
3068 3069
		break;
	case RES_FAILCNT:
3070
		counter->failcnt = 0;
3071
		break;
3072 3073
	default:
		BUG();
3074
	}
3075

3076
	return nbytes;
3077 3078
}

3079
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3080 3081
					struct cftype *cft)
{
3082
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3083 3084
}

3085
#ifdef CONFIG_MMU
3086
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3087 3088
					struct cftype *cft, u64 val)
{
3089
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3090

3091
	if (val & ~MOVE_MASK)
3092
		return -EINVAL;
3093

3094
	/*
3095 3096 3097 3098
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3099
	 */
3100
	memcg->move_charge_at_immigrate = val;
3101 3102
	return 0;
}
3103
#else
3104
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3105 3106 3107 3108 3109
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3110

3111
#ifdef CONFIG_NUMA
3112
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3113
{
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3126
	int nid;
3127
	unsigned long nr;
3128
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3129

3130 3131 3132 3133 3134 3135 3136 3137 3138
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3139 3140
	}

3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3156 3157 3158 3159 3160 3161
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3162
static int memcg_stat_show(struct seq_file *m, void *v)
3163
{
3164
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3165
	unsigned long memory, memsw;
3166 3167
	struct mem_cgroup *mi;
	unsigned int i;
3168

3169 3170 3171 3172
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3173 3174
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3175
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3176
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3177
			continue;
3178
		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3179
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3180
	}
L
Lee Schermerhorn 已提交
3181

3182 3183 3184 3185 3186 3187 3188 3189
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3190
	/* Hierarchical information */
3191 3192 3193 3194
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3195
	}
3196 3197 3198 3199 3200
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
	if (do_swap_account)
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3201

3202
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3203
		unsigned long long val = 0;
3204

3205
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3206
			continue;
3207 3208
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3209
		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3227
	}
K
KAMEZAWA Hiroyuki 已提交
3228

K
KOSAKI Motohiro 已提交
3229 3230 3231 3232
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3233
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3234 3235 3236 3237 3238
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3239
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3240
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3241

3242 3243 3244 3245
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3246
			}
3247 3248 3249 3250
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3251 3252 3253
	}
#endif

3254 3255 3256
	return 0;
}

3257 3258
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3259
{
3260
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3261

3262
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3263 3264
}

3265 3266
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3267
{
3268
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3269

3270
	if (val > 100)
K
KOSAKI Motohiro 已提交
3271 3272
		return -EINVAL;

3273
	if (css->parent)
3274 3275 3276
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3277

K
KOSAKI Motohiro 已提交
3278 3279 3280
	return 0;
}

3281 3282 3283
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3284
	unsigned long usage;
3285 3286 3287 3288
	int i;

	rcu_read_lock();
	if (!swap)
3289
		t = rcu_dereference(memcg->thresholds.primary);
3290
	else
3291
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3292 3293 3294 3295

	if (!t)
		goto unlock;

3296
	usage = mem_cgroup_usage(memcg, swap);
3297 3298

	/*
3299
	 * current_threshold points to threshold just below or equal to usage.
3300 3301 3302
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3303
	i = t->current_threshold;
3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3327
	t->current_threshold = i - 1;
3328 3329 3330 3331 3332 3333
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3334 3335 3336 3337 3338 3339 3340
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3341 3342 3343 3344 3345 3346 3347
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3348 3349 3350 3351 3352 3353 3354
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3355 3356
}

3357
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3358 3359 3360
{
	struct mem_cgroup_eventfd_list *ev;

3361 3362
	spin_lock(&memcg_oom_lock);

3363
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3364
		eventfd_signal(ev->eventfd, 1);
3365 3366

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3367 3368 3369
	return 0;
}

3370
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3371
{
K
KAMEZAWA Hiroyuki 已提交
3372 3373
	struct mem_cgroup *iter;

3374
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3375
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3376 3377
}

3378
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3379
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3380
{
3381 3382
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3383 3384
	unsigned long threshold;
	unsigned long usage;
3385
	int i, size, ret;
3386

3387
	ret = page_counter_memparse(args, "-1", &threshold);
3388 3389
	if (ret)
		return ret;
S
Shaohua Li 已提交
3390
	threshold <<= PAGE_SHIFT;
3391 3392

	mutex_lock(&memcg->thresholds_lock);
3393

3394
	if (type == _MEM) {
3395
		thresholds = &memcg->thresholds;
3396
		usage = mem_cgroup_usage(memcg, false);
3397
	} else if (type == _MEMSWAP) {
3398
		thresholds = &memcg->memsw_thresholds;
3399
		usage = mem_cgroup_usage(memcg, true);
3400
	} else
3401 3402 3403
		BUG();

	/* Check if a threshold crossed before adding a new one */
3404
	if (thresholds->primary)
3405 3406
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3407
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3408 3409

	/* Allocate memory for new array of thresholds */
3410
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3411
			GFP_KERNEL);
3412
	if (!new) {
3413 3414 3415
		ret = -ENOMEM;
		goto unlock;
	}
3416
	new->size = size;
3417 3418

	/* Copy thresholds (if any) to new array */
3419 3420
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3421
				sizeof(struct mem_cgroup_threshold));
3422 3423
	}

3424
	/* Add new threshold */
3425 3426
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3427 3428

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3429
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3430 3431 3432
			compare_thresholds, NULL);

	/* Find current threshold */
3433
	new->current_threshold = -1;
3434
	for (i = 0; i < size; i++) {
3435
		if (new->entries[i].threshold <= usage) {
3436
			/*
3437 3438
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3439 3440
			 * it here.
			 */
3441
			++new->current_threshold;
3442 3443
		} else
			break;
3444 3445
	}

3446 3447 3448 3449 3450
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3451

3452
	/* To be sure that nobody uses thresholds */
3453 3454 3455 3456 3457 3458 3459 3460
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3461
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3462 3463
	struct eventfd_ctx *eventfd, const char *args)
{
3464
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3465 3466
}

3467
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3468 3469
	struct eventfd_ctx *eventfd, const char *args)
{
3470
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3471 3472
}

3473
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3474
	struct eventfd_ctx *eventfd, enum res_type type)
3475
{
3476 3477
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3478
	unsigned long usage;
3479
	int i, j, size;
3480 3481

	mutex_lock(&memcg->thresholds_lock);
3482 3483

	if (type == _MEM) {
3484
		thresholds = &memcg->thresholds;
3485
		usage = mem_cgroup_usage(memcg, false);
3486
	} else if (type == _MEMSWAP) {
3487
		thresholds = &memcg->memsw_thresholds;
3488
		usage = mem_cgroup_usage(memcg, true);
3489
	} else
3490 3491
		BUG();

3492 3493 3494
	if (!thresholds->primary)
		goto unlock;

3495 3496 3497 3498
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3499 3500 3501
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3502 3503 3504
			size++;
	}

3505
	new = thresholds->spare;
3506

3507 3508
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3509 3510
		kfree(new);
		new = NULL;
3511
		goto swap_buffers;
3512 3513
	}

3514
	new->size = size;
3515 3516

	/* Copy thresholds and find current threshold */
3517 3518 3519
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3520 3521
			continue;

3522
		new->entries[j] = thresholds->primary->entries[i];
3523
		if (new->entries[j].threshold <= usage) {
3524
			/*
3525
			 * new->current_threshold will not be used
3526 3527 3528
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3529
			++new->current_threshold;
3530 3531 3532 3533
		}
		j++;
	}

3534
swap_buffers:
3535 3536
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3537 3538 3539 3540 3541 3542
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

3543
	rcu_assign_pointer(thresholds->primary, new);
3544

3545
	/* To be sure that nobody uses thresholds */
3546
	synchronize_rcu();
3547
unlock:
3548 3549
	mutex_unlock(&memcg->thresholds_lock);
}
3550

3551
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3552 3553
	struct eventfd_ctx *eventfd)
{
3554
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3555 3556
}

3557
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3558 3559
	struct eventfd_ctx *eventfd)
{
3560
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3561 3562
}

3563
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3564
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3565 3566 3567 3568 3569 3570 3571
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3572
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3573 3574 3575 3576 3577

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3578
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3579
		eventfd_signal(eventfd, 1);
3580
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3581 3582 3583 3584

	return 0;
}

3585
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3586
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3587 3588 3589
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3590
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3591

3592
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3593 3594 3595 3596 3597 3598
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3599
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3600 3601
}

3602
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3603
{
3604
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3605

3606
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3607
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3608 3609 3610
	return 0;
}

3611
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3612 3613
	struct cftype *cft, u64 val)
{
3614
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3615 3616

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3617
	if (!css->parent || !((val == 0) || (val == 1)))
3618 3619
		return -EINVAL;

3620
	memcg->oom_kill_disable = val;
3621
	if (!val)
3622
		memcg_oom_recover(memcg);
3623

3624 3625 3626
	return 0;
}

A
Andrew Morton 已提交
3627
#ifdef CONFIG_MEMCG_KMEM
3628
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3629
{
3630 3631 3632 3633 3634
	int ret;

	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
3635

3636
	return mem_cgroup_sockets_init(memcg, ss);
3637
}
3638

3639 3640
static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
{
3641 3642 3643 3644
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
	if (!memcg->kmem_acct_active)
		return;

	/*
	 * Clear the 'active' flag before clearing memcg_caches arrays entries.
	 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
	 * guarantees no cache will be created for this cgroup after we are
	 * done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_acct_active = false;

	memcg_deactivate_kmem_caches(memcg);
3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
3683 3684
}

3685
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
3686
{
3687 3688 3689 3690 3691
	if (memcg->kmem_acct_activated) {
		memcg_destroy_kmem_caches(memcg);
		static_key_slow_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
3692
	mem_cgroup_sockets_destroy(memcg);
3693
}
3694
#else
3695
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3696 3697 3698
{
	return 0;
}
G
Glauber Costa 已提交
3699

3700 3701 3702 3703
static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
{
}

3704 3705 3706
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}
3707 3708
#endif

3709 3710 3711 3712 3713 3714 3715
#ifdef CONFIG_CGROUP_WRITEBACK

struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
{
	return &memcg->cgwb_list;
}

T
Tejun Heo 已提交
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3726 3727 3728 3729 3730
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3741 3742 3743
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3744 3745
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3746 3747 3748
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3749 3750 3751
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3752
 *
3753 3754 3755 3756 3757
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3758
 */
3759 3760 3761
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3762 3763 3764 3765 3766 3767 3768 3769
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);

	/* this should eventually include NR_UNSTABLE_NFS */
	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3770 3771 3772
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3773 3774 3775 3776 3777

	while ((parent = parent_mem_cgroup(memcg))) {
		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
		unsigned long used = page_counter_read(&memcg->memory);

3778
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3779 3780 3781 3782
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3794 3795 3796 3797
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3798 3799
#endif	/* CONFIG_CGROUP_WRITEBACK */

3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3813 3814 3815 3816 3817
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3818
static void memcg_event_remove(struct work_struct *work)
3819
{
3820 3821
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3822
	struct mem_cgroup *memcg = event->memcg;
3823 3824 3825

	remove_wait_queue(event->wqh, &event->wait);

3826
	event->unregister_event(memcg, event->eventfd);
3827 3828 3829 3830 3831 3832

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3833
	css_put(&memcg->css);
3834 3835 3836 3837 3838 3839 3840
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3841 3842
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
3843
{
3844 3845
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3846
	struct mem_cgroup *memcg = event->memcg;
3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3859
		spin_lock(&memcg->event_list_lock);
3860 3861 3862 3863 3864 3865 3866 3867
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3868
		spin_unlock(&memcg->event_list_lock);
3869 3870 3871 3872 3873
	}

	return 0;
}

3874
static void memcg_event_ptable_queue_proc(struct file *file,
3875 3876
		wait_queue_head_t *wqh, poll_table *pt)
{
3877 3878
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3879 3880 3881 3882 3883 3884

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3885 3886
 * DO NOT USE IN NEW FILES.
 *
3887 3888 3889 3890 3891
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3892 3893
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3894
{
3895
	struct cgroup_subsys_state *css = of_css(of);
3896
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3897
	struct mem_cgroup_event *event;
3898 3899 3900 3901
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3902
	const char *name;
3903 3904 3905
	char *endp;
	int ret;

3906 3907 3908
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3909 3910
	if (*endp != ' ')
		return -EINVAL;
3911
	buf = endp + 1;
3912

3913
	cfd = simple_strtoul(buf, &endp, 10);
3914 3915
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3916
	buf = endp + 1;
3917 3918 3919 3920 3921

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3922
	event->memcg = memcg;
3923
	INIT_LIST_HEAD(&event->list);
3924 3925 3926
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3952 3953 3954 3955 3956
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3957 3958
	 *
	 * DO NOT ADD NEW FILES.
3959
	 */
A
Al Viro 已提交
3960
	name = cfile.file->f_path.dentry->d_name.name;
3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3972 3973
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3974 3975 3976 3977 3978
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3979
	/*
3980 3981 3982
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
3983
	 */
A
Al Viro 已提交
3984
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3985
					       &memory_cgrp_subsys);
3986
	ret = -EINVAL;
3987
	if (IS_ERR(cfile_css))
3988
		goto out_put_cfile;
3989 3990
	if (cfile_css != css) {
		css_put(cfile_css);
3991
		goto out_put_cfile;
3992
	}
3993

3994
	ret = event->register_event(memcg, event->eventfd, buf);
3995 3996 3997 3998 3999
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

4000 4001 4002
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4003 4004 4005 4006

	fdput(cfile);
	fdput(efile);

4007
	return nbytes;
4008 4009

out_put_css:
4010
	css_put(css);
4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4023
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4024
	{
4025
		.name = "usage_in_bytes",
4026
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4027
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4028
	},
4029 4030
	{
		.name = "max_usage_in_bytes",
4031
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4032
		.write = mem_cgroup_reset,
4033
		.read_u64 = mem_cgroup_read_u64,
4034
	},
B
Balbir Singh 已提交
4035
	{
4036
		.name = "limit_in_bytes",
4037
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4038
		.write = mem_cgroup_write,
4039
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4040
	},
4041 4042 4043
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4044
		.write = mem_cgroup_write,
4045
		.read_u64 = mem_cgroup_read_u64,
4046
	},
B
Balbir Singh 已提交
4047 4048
	{
		.name = "failcnt",
4049
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4050
		.write = mem_cgroup_reset,
4051
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4052
	},
4053 4054
	{
		.name = "stat",
4055
		.seq_show = memcg_stat_show,
4056
	},
4057 4058
	{
		.name = "force_empty",
4059
		.write = mem_cgroup_force_empty_write,
4060
	},
4061 4062 4063 4064 4065
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4066
	{
4067
		.name = "cgroup.event_control",		/* XXX: for compat */
4068
		.write = memcg_write_event_control,
4069 4070 4071
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
4072 4073 4074 4075 4076
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4077 4078 4079 4080 4081
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4082 4083
	{
		.name = "oom_control",
4084
		.seq_show = mem_cgroup_oom_control_read,
4085
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4086 4087
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4088 4089 4090
	{
		.name = "pressure_level",
	},
4091 4092 4093
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4094
		.seq_show = memcg_numa_stat_show,
4095 4096
	},
#endif
4097 4098 4099 4100
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4101
		.write = mem_cgroup_write,
4102
		.read_u64 = mem_cgroup_read_u64,
4103 4104 4105 4106
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4107
		.read_u64 = mem_cgroup_read_u64,
4108 4109 4110 4111
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4112
		.write = mem_cgroup_reset,
4113
		.read_u64 = mem_cgroup_read_u64,
4114 4115 4116 4117
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4118
		.write = mem_cgroup_reset,
4119
		.read_u64 = mem_cgroup_read_u64,
4120
	},
4121 4122 4123
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4124 4125 4126 4127
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4128 4129
	},
#endif
4130
#endif
4131
	{ },	/* terminate */
4132
};
4133

4134
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4135 4136
{
	struct mem_cgroup_per_node *pn;
4137
	struct mem_cgroup_per_zone *mz;
4138
	int zone, tmp = node;
4139 4140 4141 4142 4143 4144 4145 4146
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4147 4148
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4149
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4150 4151
	if (!pn)
		return 1;
4152 4153 4154

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4155
		lruvec_init(&mz->lruvec);
4156 4157
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4158
		mz->memcg = memcg;
4159
	}
4160
	memcg->nodeinfo[node] = pn;
4161 4162 4163
	return 0;
}

4164
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4165
{
4166
	kfree(memcg->nodeinfo[node]);
4167 4168
}

4169 4170
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4171
	struct mem_cgroup *memcg;
4172
	size_t size;
4173

4174 4175
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4176

4177
	memcg = kzalloc(size, GFP_KERNEL);
4178
	if (!memcg)
4179 4180
		return NULL;

4181 4182
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4183
		goto out_free;
T
Tejun Heo 已提交
4184 4185 4186 4187

	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto out_free_stat;

4188
	return memcg;
4189

T
Tejun Heo 已提交
4190 4191
out_free_stat:
	free_percpu(memcg->stat);
4192
out_free:
4193
	kfree(memcg);
4194
	return NULL;
4195 4196
}

4197
/*
4198 4199 4200 4201 4202 4203 4204 4205
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
4206
 */
4207 4208

static void __mem_cgroup_free(struct mem_cgroup *memcg)
4209
{
4210
	int node;
4211

4212
	mem_cgroup_remove_from_trees(memcg);
4213 4214 4215 4216 4217

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);
T
Tejun Heo 已提交
4218
	memcg_wb_domain_exit(memcg);
4219
	kfree(memcg);
4220
}
4221

4222 4223 4224
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4225
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4226
{
4227
	if (!memcg->memory.parent)
4228
		return NULL;
4229
	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4230
}
G
Glauber Costa 已提交
4231
EXPORT_SYMBOL(parent_mem_cgroup);
4232

L
Li Zefan 已提交
4233
static struct cgroup_subsys_state * __ref
4234
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
4235
{
4236
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4237
	long error = -ENOMEM;
4238
	int node;
B
Balbir Singh 已提交
4239

4240 4241
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4242
		return ERR_PTR(error);
4243

B
Bob Liu 已提交
4244
	for_each_node(node)
4245
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4246
			goto free_out;
4247

4248
	/* root ? */
4249
	if (parent_css == NULL) {
4250
		root_mem_cgroup = memcg;
T
Tejun Heo 已提交
4251
		mem_cgroup_root_css = &memcg->css;
4252
		page_counter_init(&memcg->memory, NULL);
4253
		memcg->high = PAGE_COUNTER_MAX;
4254
		memcg->soft_limit = PAGE_COUNTER_MAX;
4255 4256
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4257
	}
4258

4259 4260 4261 4262 4263
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4264
	vmpressure_init(&memcg->vmpressure);
4265 4266
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
V
Vladimir Davydov 已提交
4267 4268 4269
#ifdef CONFIG_MEMCG_KMEM
	memcg->kmemcg_id = -1;
#endif
4270 4271 4272
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4273 4274 4275 4276 4277 4278 4279 4280
	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
4281
mem_cgroup_css_online(struct cgroup_subsys_state *css)
4282
{
4283
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4284
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4285
	int ret;
4286

4287
	if (css->id > MEM_CGROUP_ID_MAX)
4288 4289
		return -ENOSPC;

T
Tejun Heo 已提交
4290
	if (!parent)
4291 4292
		return 0;

4293
	mutex_lock(&memcg_create_mutex);
4294 4295 4296 4297 4298 4299

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
4300
		page_counter_init(&memcg->memory, &parent->memory);
4301
		memcg->high = PAGE_COUNTER_MAX;
4302
		memcg->soft_limit = PAGE_COUNTER_MAX;
4303 4304
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4305

4306
		/*
4307 4308
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
4309
		 */
4310
	} else {
4311
		page_counter_init(&memcg->memory, NULL);
4312
		memcg->high = PAGE_COUNTER_MAX;
4313
		memcg->soft_limit = PAGE_COUNTER_MAX;
4314 4315
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4316 4317 4318 4319 4320
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4321
		if (parent != root_mem_cgroup)
4322
			memory_cgrp_subsys.broken_hierarchy = true;
4323
	}
4324
	mutex_unlock(&memcg_create_mutex);
4325

4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
	if (ret)
		return ret;

	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
4338 4339
}

4340
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4341
{
4342
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4343
	struct mem_cgroup_event *event, *tmp;
4344 4345 4346 4347 4348 4349

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4350 4351
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4352 4353 4354
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4355
	spin_unlock(&memcg->event_list_lock);
4356

4357
	vmpressure_cleanup(&memcg->vmpressure);
4358 4359

	memcg_deactivate_kmem(memcg);
4360 4361

	wb_memcg_offline(memcg);
4362 4363
}

4364
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4365
{
4366
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4367

4368
	memcg_destroy_kmem(memcg);
4369
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4370 4371
}

4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4389 4390 4391
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4392 4393
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4394
	memcg->soft_limit = PAGE_COUNTER_MAX;
4395
	memcg_wb_domain_size_changed(memcg);
4396 4397
}

4398
#ifdef CONFIG_MMU
4399
/* Handlers for move charge at task migration. */
4400
static int mem_cgroup_do_precharge(unsigned long count)
4401
{
4402
	int ret;
4403 4404

	/* Try a single bulk charge without reclaim first */
4405
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4406
	if (!ret) {
4407 4408 4409
		mc.precharge += count;
		return ret;
	}
4410
	if (ret == -EINTR) {
4411
		cancel_charge(root_mem_cgroup, count);
4412 4413
		return ret;
	}
4414 4415

	/* Try charges one by one with reclaim */
4416
	while (count--) {
4417
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4418 4419 4420
		/*
		 * In case of failure, any residual charges against
		 * mc.to will be dropped by mem_cgroup_clear_mc()
4421 4422
		 * later on.  However, cancel any charges that are
		 * bypassed to root right away or they'll be lost.
4423
		 */
4424
		if (ret == -EINTR)
4425
			cancel_charge(root_mem_cgroup, 1);
4426 4427
		if (ret)
			return ret;
4428
		mc.precharge++;
4429
		cond_resched();
4430
	}
4431
	return 0;
4432 4433 4434
}

/**
4435
 * get_mctgt_type - get target type of moving charge
4436 4437 4438
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4439
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4440 4441 4442 4443 4444 4445
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4446 4447 4448
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4449 4450 4451 4452 4453
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4454
	swp_entry_t	ent;
4455 4456 4457
};

enum mc_target_type {
4458
	MC_TARGET_NONE = 0,
4459
	MC_TARGET_PAGE,
4460
	MC_TARGET_SWAP,
4461 4462
};

D
Daisuke Nishimura 已提交
4463 4464
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4465
{
D
Daisuke Nishimura 已提交
4466
	struct page *page = vm_normal_page(vma, addr, ptent);
4467

D
Daisuke Nishimura 已提交
4468 4469 4470
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4471
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4472
			return NULL;
4473 4474 4475 4476
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4477 4478 4479 4480 4481 4482
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4483
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4484 4485 4486 4487 4488 4489
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4490
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4491
		return NULL;
4492 4493 4494 4495
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4496
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
4497 4498 4499 4500 4501
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
4502 4503 4504 4505 4506 4507 4508
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4509

4510 4511 4512 4513 4514 4515 4516 4517 4518
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4519
	if (!(mc.flags & MOVE_FILE))
4520 4521 4522
		return NULL;

	mapping = vma->vm_file->f_mapping;
4523
	pgoff = linear_page_index(vma, addr);
4524 4525

	/* page is moved even if it's not RSS of this task(page-faulted). */
4526 4527
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4540
#endif
4541 4542 4543
	return page;
}

4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
 * @nr_pages: number of regular pages (>1 for huge pages)
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
 * - page is not on LRU (isolate_page() is useful.)
 * - compound_lock is held when nr_pages > 1
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
	int ret;
4565
	bool anon;
4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
	if (nr_pages > 1 && !PageTransHuge(page))
		goto out;

	/*
	 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
	 * of its source page while we change it: page migration takes
	 * both pages off the LRU, but page cache replacement doesn't.
	 */
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4591 4592
	anon = PageAnon(page);

4593 4594
	spin_lock_irqsave(&from->move_lock, flags);

4595
	if (!anon && page_mapped(page)) {
4596 4597 4598 4599 4600 4601
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
		}
	}

4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
	memcg_check_events(to, page);
	mem_cgroup_charge_statistics(from, page, -nr_pages);
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4649
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4650 4651 4652
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4653
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4654 4655 4656 4657 4658 4659
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4660
	else if (pte_none(ptent))
4661
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4662 4663

	if (!page && !ent.val)
4664
		return ret;
4665 4666
	if (page) {
		/*
4667
		 * Do only loose check w/o serialization.
4668
		 * mem_cgroup_move_account() checks the page is valid or
4669
		 * not under LRU exclusion.
4670
		 */
4671
		if (page->mem_cgroup == mc.from) {
4672 4673 4674 4675 4676 4677 4678
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4679 4680
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4681
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4682 4683 4684
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4685 4686 4687 4688
	}
	return ret;
}

4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4702
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4703
	if (!(mc.flags & MOVE_ANON))
4704
		return ret;
4705
	if (page->mem_cgroup == mc.from) {
4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4722 4723 4724 4725
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4726
	struct vm_area_struct *vma = walk->vma;
4727 4728 4729
	pte_t *pte;
	spinlock_t *ptl;

4730
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4731 4732
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4733
		spin_unlock(ptl);
4734
		return 0;
4735
	}
4736

4737 4738
	if (pmd_trans_unstable(pmd))
		return 0;
4739 4740
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4741
		if (get_mctgt_type(vma, addr, *pte, NULL))
4742 4743 4744 4745
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4746 4747 4748
	return 0;
}

4749 4750 4751 4752
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4753 4754 4755 4756
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4757
	down_read(&mm->mmap_sem);
4758
	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4759
	up_read(&mm->mmap_sem);
4760 4761 4762 4763 4764 4765 4766 4767 4768

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4769 4770 4771 4772 4773
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4774 4775
}

4776 4777
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4778
{
4779 4780 4781
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4782
	/* we must uncharge all the leftover precharges from mc.to */
4783
	if (mc.precharge) {
4784
		cancel_charge(mc.to, mc.precharge);
4785 4786 4787 4788 4789 4790 4791
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4792
		cancel_charge(mc.from, mc.moved_charge);
4793
		mc.moved_charge = 0;
4794
	}
4795 4796 4797
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4798
		if (!mem_cgroup_is_root(mc.from))
4799
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4800

4801
		/*
4802 4803
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4804
		 */
4805
		if (!mem_cgroup_is_root(mc.to))
4806 4807
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4808
		css_put_many(&mc.from->css, mc.moved_swap);
4809

L
Li Zefan 已提交
4810
		/* we've already done css_get(mc.to) */
4811 4812
		mc.moved_swap = 0;
	}
4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4826
	spin_lock(&mc.lock);
4827 4828
	mc.from = NULL;
	mc.to = NULL;
4829
	spin_unlock(&mc.lock);
4830 4831
}

4832
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
4833
				 struct cgroup_taskset *tset)
4834
{
4835
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4836 4837 4838
	struct mem_cgroup *from;
	struct task_struct *p;
	struct mm_struct *mm;
4839
	unsigned long move_flags;
4840
	int ret = 0;
4841

4842 4843 4844 4845 4846
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
4847
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876
	if (!move_flags)
		return 0;

	p = cgroup_taskset_first(tset);
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
4877
	}
4878
	mmput(mm);
4879 4880 4881
	return ret;
}

4882
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
4883
				     struct cgroup_taskset *tset)
4884
{
4885 4886
	if (mc.to)
		mem_cgroup_clear_mc();
4887 4888
}

4889 4890 4891
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4892
{
4893
	int ret = 0;
4894
	struct vm_area_struct *vma = walk->vma;
4895 4896
	pte_t *pte;
	spinlock_t *ptl;
4897 4898 4899
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4900

4901 4902 4903 4904 4905 4906 4907 4908 4909 4910
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
4911
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4912
		if (mc.precharge < HPAGE_PMD_NR) {
4913
			spin_unlock(ptl);
4914 4915 4916 4917 4918 4919 4920
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
4921
							     mc.from, mc.to)) {
4922 4923 4924 4925 4926 4927 4928
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
4929
		spin_unlock(ptl);
4930
		return 0;
4931 4932
	}

4933 4934
	if (pmd_trans_unstable(pmd))
		return 0;
4935 4936 4937 4938
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
4939
		swp_entry_t ent;
4940 4941 4942 4943

		if (!mc.precharge)
			break;

4944
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4945 4946 4947 4948
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
4949
			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4950
				mc.precharge--;
4951 4952
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4953 4954
			}
			putback_lru_page(page);
4955
put:			/* get_mctgt_type() gets the page */
4956 4957
			put_page(page);
			break;
4958 4959
		case MC_TARGET_SWAP:
			ent = target.ent;
4960
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4961
				mc.precharge--;
4962 4963 4964
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4965
			break;
4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4980
		ret = mem_cgroup_do_precharge(1);
4981 4982 4983 4984 4985 4986 4987 4988 4989
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
4990 4991 4992 4993
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
		.mm = mm,
	};
4994 4995

	lru_add_drain_all();
4996 4997 4998 4999 5000 5001 5002
	/*
	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
	 * move_lock while we're moving its pages to another memcg.
	 * Then wait for already started RCU-only updates to finish.
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5016 5017 5018 5019 5020
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5021
	up_read(&mm->mmap_sem);
5022
	atomic_dec(&mc.from->moving_account);
5023 5024
}

5025
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5026
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5027
{
5028
	struct task_struct *p = cgroup_taskset_first(tset);
5029
	struct mm_struct *mm = get_task_mm(p);
5030 5031

	if (mm) {
5032 5033
		if (mc.to)
			mem_cgroup_move_charge(mm);
5034 5035
		mmput(mm);
	}
5036 5037
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5038
}
5039
#else	/* !CONFIG_MMU */
5040
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5041
				 struct cgroup_taskset *tset)
5042 5043 5044
{
	return 0;
}
5045
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5046
				     struct cgroup_taskset *tset)
5047 5048
{
}
5049
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5050
				 struct cgroup_taskset *tset)
5051 5052 5053
{
}
#endif
B
Balbir Singh 已提交
5054

5055 5056
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5057 5058
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5059
 */
5060
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5061 5062
{
	/*
5063
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5064 5065 5066
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5067
	if (cgroup_on_dfl(root_css->cgroup))
5068 5069 5070
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5071 5072
}

5073 5074 5075 5076 5077 5078 5079 5080 5081
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
	return mem_cgroup_usage(mem_cgroup_from_css(css), false);
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5082
	unsigned long low = READ_ONCE(memcg->low);
5083 5084

	if (low == PAGE_COUNTER_MAX)
5085
		seq_puts(m, "max\n");
5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5100
	err = page_counter_memparse(buf, "max", &low);
5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5112
	unsigned long high = READ_ONCE(memcg->high);
5113 5114

	if (high == PAGE_COUNTER_MAX)
5115
		seq_puts(m, "max\n");
5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
5130
	err = page_counter_memparse(buf, "max", &high);
5131 5132 5133 5134 5135
	if (err)
		return err;

	memcg->high = high;

5136
	memcg_wb_domain_size_changed(memcg);
5137 5138 5139 5140 5141 5142
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5143
	unsigned long max = READ_ONCE(memcg->memory.limit);
5144 5145

	if (max == PAGE_COUNTER_MAX)
5146
		seq_puts(m, "max\n");
5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
5161
	err = page_counter_memparse(buf, "max", &max);
5162 5163 5164 5165 5166 5167 5168
	if (err)
		return err;

	err = mem_cgroup_resize_limit(memcg, max);
	if (err)
		return err;

5169
	memcg_wb_domain_size_changed(memcg);
5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

static struct cftype memory_files[] = {
	{
		.name = "current",
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_events_show,
	},
	{ }	/* terminate */
};

5216
struct cgroup_subsys memory_cgrp_subsys = {
5217
	.css_alloc = mem_cgroup_css_alloc,
5218
	.css_online = mem_cgroup_css_online,
5219 5220
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
5221
	.css_reset = mem_cgroup_css_reset,
5222 5223
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5224
	.attach = mem_cgroup_move_task,
5225
	.bind = mem_cgroup_bind,
5226 5227
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5228
	.early_init = 0,
B
Balbir Singh 已提交
5229
};
5230

5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252
/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5253
	if (page_counter_read(&memcg->memory) >= memcg->low)
5254 5255 5256 5257 5258 5259 5260 5261
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5262
		if (page_counter_read(&memcg->memory) >= memcg->low)
5263 5264 5265 5266 5267
			return false;
	}
	return true;
}

5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5303
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5304
		if (page->mem_cgroup)
5305
			goto out;
5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316

		if (do_swap_account) {
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);

	if (ret == -EINTR) {
		memcg = root_mem_cgroup;
		ret = 0;
	}
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5374 5375
	commit_charge(page, memcg, lrucare);

5376 5377 5378 5379 5380
	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

5381 5382 5383 5384
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425

	if (do_swap_account && PageSwapCache(page)) {
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

5426 5427 5428 5429
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5430
	unsigned long nr_pages = nr_anon + nr_file;
5431 5432
	unsigned long flags;

5433
	if (!mem_cgroup_is_root(memcg)) {
5434 5435 5436
		page_counter_uncharge(&memcg->memory, nr_pages);
		if (do_swap_account)
			page_counter_uncharge(&memcg->memsw, nr_pages);
5437 5438
		memcg_oom_recover(memcg);
	}
5439 5440 5441 5442 5443 5444

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5445
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5446 5447
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5448 5449

	if (!mem_cgroup_is_root(memcg))
5450
		css_put_many(&memcg->css, nr_pages);
5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5473
		if (!page->mem_cgroup)
5474 5475 5476 5477
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5478
		 * page->mem_cgroup at this point, we have fully
5479
		 * exclusive access to the page.
5480 5481
		 */

5482
		if (memcg != page->mem_cgroup) {
5483
			if (memcg) {
5484 5485 5486
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5487
			}
5488
			memcg = page->mem_cgroup;
5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5502
		page->mem_cgroup = NULL;
5503 5504 5505 5506 5507

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5508 5509
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5510 5511
}

5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5524
	/* Don't touch page->lru of any random page, pre-check: */
5525
	if (!page->mem_cgroup)
5526 5527
		return;

5528 5529 5530
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5531

5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5543

5544 5545
	if (!list_empty(page_list))
		uncharge_list(page_list);
5546 5547 5548 5549 5550 5551
}

/**
 * mem_cgroup_migrate - migrate a charge to another page
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
5552
 * @lrucare: either or both pages might be on the LRU already
5553 5554 5555 5556 5557 5558 5559 5560
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
			bool lrucare)
{
5561
	struct mem_cgroup *memcg;
5562 5563 5564 5565 5566 5567 5568
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5569 5570
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5571 5572 5573 5574 5575

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5576
	if (newpage->mem_cgroup)
5577 5578
		return;

5579 5580 5581 5582 5583 5584
	/*
	 * Swapcache readahead pages can get migrated before being
	 * charged, and migration from compaction can happen to an
	 * uncharged page when the PFN walker finds a page that
	 * reclaim just put back on the LRU but has not released yet.
	 */
5585
	memcg = oldpage->mem_cgroup;
5586
	if (!memcg)
5587 5588 5589 5590 5591
		return;

	if (lrucare)
		lock_page_lru(oldpage, &isolated);

5592
	oldpage->mem_cgroup = NULL;
5593 5594 5595 5596

	if (lrucare)
		unlock_page_lru(oldpage, isolated);

5597
	commit_charge(newpage, memcg, lrucare);
5598 5599
}

5600
/*
5601 5602 5603 5604 5605 5606
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5607 5608 5609
 */
static int __init mem_cgroup_init(void)
{
5610 5611
	int cpu, node;

5612
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;
		int zone;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			struct mem_cgroup_tree_per_zone *rtpz;

			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5635 5636 5637
	return 0;
}
subsys_initcall(mem_cgroup_init);
5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672

#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

	if (!do_swap_account)
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

5673 5674 5675 5676 5677 5678 5679
	/*
	 * Interrupts should be disabled here because the caller holds the
	 * mapping->tree_lock lock which is taken with interrupts-off. It is
	 * important here to have the interrupts disabled because it is the
	 * only synchronisation we have for udpating the per-CPU variables.
	 */
	VM_BUG_ON(!irqs_disabled());
5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699
	mem_cgroup_charge_statistics(memcg, page, -1);
	memcg_check_events(memcg, page);
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

	if (!do_swap_account)
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
5700
	memcg = mem_cgroup_from_id(id);
5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765
	if (memcg) {
		if (!mem_cgroup_is_root(memcg))
			page_counter_uncharge(&memcg->memsw, 1);
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}

/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */