memcontrol.c 185.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
B
Balbir Singh 已提交
2 3 4 5 6
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
7 8 9
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
10 11 12 13
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
14 15 16 17
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
B
Balbir Singh 已提交
23 24
 */

25
#include <linux/page_counter.h>
B
Balbir Singh 已提交
26 27
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
28
#include <linux/pagewalk.h>
29
#include <linux/sched/mm.h>
30
#include <linux/shmem_fs.h>
31
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
32
#include <linux/pagemap.h>
33
#include <linux/vm_event_item.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/swap_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
59
#include <linux/tracehook.h>
60
#include <linux/psi.h>
61
#include <linux/seq_buf.h>
K
KAMEZAWA Hiroyuki 已提交
62
#include "internal.h"
G
Glauber Costa 已提交
63
#include <net/sock.h>
M
Michal Hocko 已提交
64
#include <net/ip.h>
65
#include "slab.h"
B
Balbir Singh 已提交
66

67
#include <linux/uaccess.h>
68

69 70
#include <trace/events/vmscan.h>

71 72
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
73

74 75
struct mem_cgroup *root_mem_cgroup __read_mostly;

76
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
77

78 79 80
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

81 82 83
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

84
/* Whether the swap controller is active */
A
Andrew Morton 已提交
85
#ifdef CONFIG_MEMCG_SWAP
86 87
int do_swap_account __read_mostly;
#else
88
#define do_swap_account		0
89 90
#endif

91 92 93 94
#ifdef CONFIG_CGROUP_WRITEBACK
static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
#endif

95 96 97 98 99 100
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

101 102
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
103

104 105 106 107 108
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

109
struct mem_cgroup_tree_per_node {
110
	struct rb_root rb_root;
111
	struct rb_node *rb_rightmost;
112 113 114 115 116 117 118 119 120
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
121 122 123 124 125
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
126

127 128 129
/*
 * cgroup_event represents events which userspace want to receive.
 */
130
struct mem_cgroup_event {
131
	/*
132
	 * memcg which the event belongs to.
133
	 */
134
	struct mem_cgroup *memcg;
135 136 137 138 139 140 141 142
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
143 144 145 146 147
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
148
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
149
			      struct eventfd_ctx *eventfd, const char *args);
150 151 152 153 154
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
155
	void (*unregister_event)(struct mem_cgroup *memcg,
156
				 struct eventfd_ctx *eventfd);
157 158 159 160 161 162
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
163
	wait_queue_entry_t wait;
164 165 166
	struct work_struct remove;
};

167 168
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
169

170 171
/* Stuffs for move charges at task migration. */
/*
172
 * Types of charges to be moved.
173
 */
174 175 176
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
177

178 179
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
180
	spinlock_t	  lock; /* for from, to */
181
	struct mm_struct  *mm;
182 183
	struct mem_cgroup *from;
	struct mem_cgroup *to;
184
	unsigned long flags;
185
	unsigned long precharge;
186
	unsigned long moved_charge;
187
	unsigned long moved_swap;
188 189 190
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
191
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
192 193
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
194

195 196 197 198
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
199
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
200
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
201

202 203
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
204
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
205
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
206
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
207 208 209
	NR_CHARGE_TYPE,
};

210
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
211 212 213 214
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
215
	_KMEM,
V
Vladimir Davydov 已提交
216
	_TCP,
G
Glauber Costa 已提交
217 218
};

219 220
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
221
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
222 223
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
224

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(root, iter, NULL))

#define for_each_mem_cgroup(iter)			\
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(NULL, iter, NULL))

240 241 242 243 244 245
static inline bool should_force_charge(void)
{
	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
		(current->flags & PF_EXITING);
}

246 247 248 249 250 251 252 253 254 255 256 257 258
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

259
#ifdef CONFIG_MEMCG_KMEM
260
/*
261
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
262 263 264 265 266
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
267
 *
268 269
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
270
 */
271 272
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
273

274 275 276 277 278 279 280 281 282 283 284 285 286
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

287 288 289 290 291 292
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
293
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
294 295
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
296
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
297 298 299
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
300
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
301

302 303 304 305 306 307
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
308
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
309
EXPORT_SYMBOL(memcg_kmem_enabled_key);
310

311
struct workqueue_struct *memcg_kmem_cache_wq;
312
#endif
313

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
static int memcg_shrinker_map_size;
static DEFINE_MUTEX(memcg_shrinker_map_mutex);

static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
{
	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
}

static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
					 int size, int old_size)
{
	struct memcg_shrinker_map *new, *old;
	int nid;

	lockdep_assert_held(&memcg_shrinker_map_mutex);

	for_each_node(nid) {
		old = rcu_dereference_protected(
			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
		/* Not yet online memcg */
		if (!old)
			return 0;

337
		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
		if (!new)
			return -ENOMEM;

		/* Set all old bits, clear all new bits */
		memset(new->map, (int)0xff, old_size);
		memset((void *)new->map + old_size, 0, size - old_size);

		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
	}

	return 0;
}

static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *pn;
	struct memcg_shrinker_map *map;
	int nid;

	if (mem_cgroup_is_root(memcg))
		return;

	for_each_node(nid) {
		pn = mem_cgroup_nodeinfo(memcg, nid);
		map = rcu_dereference_protected(pn->shrinker_map, true);
		if (map)
			kvfree(map);
		rcu_assign_pointer(pn->shrinker_map, NULL);
	}
}

static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	struct memcg_shrinker_map *map;
	int nid, size, ret = 0;

	if (mem_cgroup_is_root(memcg))
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	size = memcg_shrinker_map_size;
	for_each_node(nid) {
381
		map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
		if (!map) {
			memcg_free_shrinker_maps(memcg);
			ret = -ENOMEM;
			break;
		}
		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
	}
	mutex_unlock(&memcg_shrinker_map_mutex);

	return ret;
}

int memcg_expand_shrinker_maps(int new_id)
{
	int size, old_size, ret = 0;
	struct mem_cgroup *memcg;

	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
	old_size = memcg_shrinker_map_size;
	if (size <= old_size)
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	if (!root_mem_cgroup)
		goto unlock;

	for_each_mem_cgroup(memcg) {
		if (mem_cgroup_is_root(memcg))
			continue;
		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
412 413
		if (ret) {
			mem_cgroup_iter_break(NULL, memcg);
414
			goto unlock;
415
		}
416 417 418 419 420 421 422
	}
unlock:
	if (!ret)
		memcg_shrinker_map_size = size;
	mutex_unlock(&memcg_shrinker_map_mutex);
	return ret;
}
423 424 425 426 427 428 429 430

void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
{
	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
		struct memcg_shrinker_map *map;

		rcu_read_lock();
		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
431 432
		/* Pairs with smp mb in shrink_slab() */
		smp_mb__before_atomic();
433 434 435 436 437
		set_bit(shrinker_id, map->map);
		rcu_read_unlock();
	}
}

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

455
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
456 457 458 459 460
		memcg = root_mem_cgroup;

	return &memcg->css;
}

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
480
	if (PageSlab(page) && !PageTail(page))
481 482 483
		memcg = memcg_from_slab_page(page);
	else
		memcg = READ_ONCE(page->mem_cgroup);
484 485 486 487 488 489 490 491
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

492 493
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
494
{
495
	int nid = page_to_nid(page);
496

497
	return memcg->nodeinfo[nid];
498 499
}

500 501
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
502
{
503
	return soft_limit_tree.rb_tree_per_node[nid];
504 505
}

506
static struct mem_cgroup_tree_per_node *
507 508 509 510
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

511
	return soft_limit_tree.rb_tree_per_node[nid];
512 513
}

514 515
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
516
					 unsigned long new_usage_in_excess)
517 518 519
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
520
	struct mem_cgroup_per_node *mz_node;
521
	bool rightmost = true;
522 523 524 525 526 527 528 529 530

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
531
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
532
					tree_node);
533
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
534
			p = &(*p)->rb_left;
535 536 537
			rightmost = false;
		}

538 539 540 541 542 543 544
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
545 546 547 548

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

549 550 551 552 553
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

554 555
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
556 557 558
{
	if (!mz->on_tree)
		return;
559 560 561 562

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

563 564 565 566
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

567 568
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
569
{
570 571 572
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
573
	__mem_cgroup_remove_exceeded(mz, mctz);
574
	spin_unlock_irqrestore(&mctz->lock, flags);
575 576
}

577 578 579
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
580
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
581 582 583 584 585 586 587
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
588 589 590

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
591
	unsigned long excess;
592 593
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
594

595
	mctz = soft_limit_tree_from_page(page);
596 597
	if (!mctz)
		return;
598 599 600 601 602
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
603
		mz = mem_cgroup_page_nodeinfo(memcg, page);
604
		excess = soft_limit_excess(memcg);
605 606 607 608 609
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
610 611 612
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
613 614
			/* if on-tree, remove it */
			if (mz->on_tree)
615
				__mem_cgroup_remove_exceeded(mz, mctz);
616 617 618 619
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
620
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
621
			spin_unlock_irqrestore(&mctz->lock, flags);
622 623 624 625 626 627
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
628 629 630
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
631

632
	for_each_node(nid) {
633 634
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
635 636
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
637 638 639
	}
}

640 641
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
642
{
643
	struct mem_cgroup_per_node *mz;
644 645 646

retry:
	mz = NULL;
647
	if (!mctz->rb_rightmost)
648 649
		goto done;		/* Nothing to reclaim from */

650 651
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
652 653 654 655 656
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
657
	__mem_cgroup_remove_exceeded(mz, mctz);
658
	if (!soft_limit_excess(mz->memcg) ||
659
	    !css_tryget_online(&mz->memcg->css))
660 661 662 663 664
		goto retry;
done:
	return mz;
}

665 666
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
667
{
668
	struct mem_cgroup_per_node *mz;
669

670
	spin_lock_irq(&mctz->lock);
671
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
672
	spin_unlock_irq(&mctz->lock);
673 674 675
	return mz;
}

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
/**
 * __mod_memcg_state - update cgroup memory statistics
 * @memcg: the memory cgroup
 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 * @val: delta to add to the counter, can be negative
 */
void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
{
	long x;

	if (mem_cgroup_disabled())
		return;

	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
691 692
		struct mem_cgroup *mi;

693 694 695 696 697
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
698 699
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmstats[idx]);
700 701 702 703 704
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
}

705 706 707 708 709 710 711 712 713 714 715
static struct mem_cgroup_per_node *
parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
{
	struct mem_cgroup *parent;

	parent = parent_mem_cgroup(pn->memcg);
	if (!parent)
		return NULL;
	return mem_cgroup_nodeinfo(parent, nid);
}

716 717 718 719 720 721 722 723 724 725 726 727 728
/**
 * __mod_lruvec_state - update lruvec memory statistics
 * @lruvec: the lruvec
 * @idx: the stat item
 * @val: delta to add to the counter, can be negative
 *
 * The lruvec is the intersection of the NUMA node and a cgroup. This
 * function updates the all three counters that are affected by a
 * change of state at this level: per-node, per-cgroup, per-lruvec.
 */
void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			int val)
{
729
	pg_data_t *pgdat = lruvec_pgdat(lruvec);
730
	struct mem_cgroup_per_node *pn;
731
	struct mem_cgroup *memcg;
732 733 734
	long x;

	/* Update node */
735
	__mod_node_page_state(pgdat, idx, val);
736 737 738 739 740

	if (mem_cgroup_disabled())
		return;

	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
741
	memcg = pn->memcg;
742 743

	/* Update memcg */
744
	__mod_memcg_state(memcg, idx, val);
745

746 747 748
	/* Update lruvec */
	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);

749 750
	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
751 752 753 754
		struct mem_cgroup_per_node *pi;

		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
			atomic_long_add(x, &pi->lruvec_stat[idx]);
755 756 757 758 759
		x = 0;
	}
	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
}

760 761
void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
{
762
	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
763 764 765 766
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;

	rcu_read_lock();
767
	memcg = mem_cgroup_from_obj(p);
768 769 770 771 772

	/* Untracked pages have no memcg, no lruvec. Update only the node */
	if (!memcg || memcg == root_mem_cgroup) {
		__mod_node_page_state(pgdat, idx, val);
	} else {
773
		lruvec = mem_cgroup_lruvec(memcg, pgdat);
774 775 776 777 778
		__mod_lruvec_state(lruvec, idx, val);
	}
	rcu_read_unlock();
}

779 780 781 782 783 784 785 786 787 788 789
void mod_memcg_obj_state(void *p, int idx, int val)
{
	struct mem_cgroup *memcg;

	rcu_read_lock();
	memcg = mem_cgroup_from_obj(p);
	if (memcg)
		mod_memcg_state(memcg, idx, val);
	rcu_read_unlock();
}

790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
/**
 * __count_memcg_events - account VM events in a cgroup
 * @memcg: the memory cgroup
 * @idx: the event item
 * @count: the number of events that occured
 */
void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
			  unsigned long count)
{
	unsigned long x;

	if (mem_cgroup_disabled())
		return;

	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
806 807
		struct mem_cgroup *mi;

808 809 810 811 812
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->events[idx], x);
813 814
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmevents[idx]);
815 816 817 818 819
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
}

820
static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
821
{
822
	return atomic_long_read(&memcg->vmevents[event]);
823 824
}

825 826
static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
{
827 828 829 830 831 832
	long x = 0;
	int cpu;

	for_each_possible_cpu(cpu)
		x += per_cpu(memcg->vmstats_local->events[event], cpu);
	return x;
833 834
}

835
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
836
					 struct page *page,
837
					 bool compound, int nr_pages)
838
{
839 840 841 842
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
843
	if (PageAnon(page))
844
		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
845
	else {
846
		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
847
		if (PageSwapBacked(page))
848
			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
849
	}
850

851 852
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
853
		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
854
	}
855

856 857
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
858
		__count_memcg_events(memcg, PGPGIN, 1);
859
	else {
860
		__count_memcg_events(memcg, PGPGOUT, 1);
861 862
		nr_pages = -nr_pages; /* for event */
	}
863

864
	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
865 866
}

867 868
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
869 870 871
{
	unsigned long val, next;

872 873
	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
874
	/* from time_after() in jiffies.h */
875
	if ((long)(next - val) < 0) {
876 877 878 879
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
880 881 882
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
883 884 885
		default:
			break;
		}
886
		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
887
		return true;
888
	}
889
	return false;
890 891 892 893 894 895
}

/*
 * Check events in order.
 *
 */
896
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
897 898
{
	/* threshold event is triggered in finer grain than soft limit */
899 900
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
901
		bool do_softlimit;
902

903 904
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
905
		mem_cgroup_threshold(memcg);
906 907
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
908
	}
909 910
}

911
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
912
{
913 914 915 916 917 918 919 920
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

921
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
922
}
M
Michal Hocko 已提交
923
EXPORT_SYMBOL(mem_cgroup_from_task);
924

925 926 927 928 929 930 931 932 933
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
 * returned.
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
934
{
935 936 937 938
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
939

940 941
	rcu_read_lock();
	do {
942 943 944 945 946 947
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
948
			memcg = root_mem_cgroup;
949 950 951 952 953
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
954
	} while (!css_tryget(&memcg->css));
955
	rcu_read_unlock();
956
	return memcg;
957
}
958 959
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
/**
 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
 * @page: page from which memcg should be extracted.
 *
 * Obtain a reference on page->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned.
 */
struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
{
	struct mem_cgroup *memcg = page->mem_cgroup;

	if (mem_cgroup_disabled())
		return NULL;

	rcu_read_lock();
	if (!memcg || !css_tryget_online(&memcg->css))
		memcg = root_mem_cgroup;
	rcu_read_unlock();
	return memcg;
}
EXPORT_SYMBOL(get_mem_cgroup_from_page);

982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
/**
 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
 */
static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
{
	if (unlikely(current->active_memcg)) {
		struct mem_cgroup *memcg = root_mem_cgroup;

		rcu_read_lock();
		if (css_tryget_online(&current->active_memcg->css))
			memcg = current->active_memcg;
		rcu_read_unlock();
		return memcg;
	}
	return get_mem_cgroup_from_mm(current->mm);
}
998

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
1012
 * Reclaimers can specify a node and a priority level in @reclaim to
1013
 * divide up the memcgs in the hierarchy among all concurrent
1014
 * reclaimers operating on the same node and priority.
1015
 */
1016
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1017
				   struct mem_cgroup *prev,
1018
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1019
{
M
Michal Hocko 已提交
1020
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1021
	struct cgroup_subsys_state *css = NULL;
1022
	struct mem_cgroup *memcg = NULL;
1023
	struct mem_cgroup *pos = NULL;
1024

1025 1026
	if (mem_cgroup_disabled())
		return NULL;
1027

1028 1029
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1030

1031
	if (prev && !reclaim)
1032
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1033

1034 1035
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1036
			goto out;
1037
		return root;
1038
	}
K
KAMEZAWA Hiroyuki 已提交
1039

1040
	rcu_read_lock();
M
Michal Hocko 已提交
1041

1042
	if (reclaim) {
1043
		struct mem_cgroup_per_node *mz;
1044

1045
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1046
		iter = &mz->iter;
1047 1048 1049 1050

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

1051
		while (1) {
1052
			pos = READ_ONCE(iter->position);
1053 1054
			if (!pos || css_tryget(&pos->css))
				break;
1055
			/*
1056 1057 1058 1059 1060 1061
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
1062
			 */
1063 1064
			(void)cmpxchg(&iter->position, pos, NULL);
		}
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1082
		}
K
KAMEZAWA Hiroyuki 已提交
1083

1084 1085 1086 1087 1088 1089
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1090

1091 1092
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1093

1094 1095
		if (css_tryget(css))
			break;
1096

1097
		memcg = NULL;
1098
	}
1099 1100 1101

	if (reclaim) {
		/*
1102 1103 1104
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
1105
		 */
1106 1107
		(void)cmpxchg(&iter->position, pos, memcg);

1108 1109 1110 1111 1112 1113 1114
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1115
	}
1116

1117 1118
out_unlock:
	rcu_read_unlock();
1119
out:
1120 1121 1122
	if (prev && prev != root)
		css_put(&prev->css);

1123
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1124
}
K
KAMEZAWA Hiroyuki 已提交
1125

1126 1127 1128 1129 1130 1131 1132
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1133 1134 1135 1136 1137 1138
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1139

1140 1141
static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
					struct mem_cgroup *dead_memcg)
1142 1143
{
	struct mem_cgroup_reclaim_iter *iter;
1144 1145
	struct mem_cgroup_per_node *mz;
	int nid;
1146

1147 1148
	for_each_node(nid) {
		mz = mem_cgroup_nodeinfo(from, nid);
1149 1150
		iter = &mz->iter;
		cmpxchg(&iter->position, dead_memcg, NULL);
1151 1152 1153
	}
}

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup *last;

	do {
		__invalidate_reclaim_iterators(memcg, dead_memcg);
		last = memcg;
	} while ((memcg = parent_mem_cgroup(memcg)));

	/*
	 * When cgruop1 non-hierarchy mode is used,
	 * parent_mem_cgroup() does not walk all the way up to the
	 * cgroup root (root_mem_cgroup). So we have to handle
	 * dead_memcg from cgroup root separately.
	 */
	if (last != root_mem_cgroup)
		__invalidate_reclaim_iterators(root_mem_cgroup,
						dead_memcg);
}

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

1200
		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

1212
/**
1213
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1214
 * @page: the page
1215
 * @pgdat: pgdat of the page
1216 1217 1218 1219
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1220
 */
M
Mel Gorman 已提交
1221
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
1222
{
1223
	struct mem_cgroup_per_node *mz;
1224
	struct mem_cgroup *memcg;
1225
	struct lruvec *lruvec;
1226

1227
	if (mem_cgroup_disabled()) {
1228
		lruvec = &pgdat->__lruvec;
1229 1230
		goto out;
	}
1231

1232
	memcg = page->mem_cgroup;
1233
	/*
1234
	 * Swapcache readahead pages are added to the LRU - and
1235
	 * possibly migrated - before they are charged.
1236
	 */
1237 1238
	if (!memcg)
		memcg = root_mem_cgroup;
1239

1240
	mz = mem_cgroup_page_nodeinfo(memcg, page);
1241 1242 1243 1244 1245 1246 1247
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
1248 1249
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
1250
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1251
}
1252

1253
/**
1254 1255 1256
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1257
 * @zid: zone id of the accounted pages
1258
 * @nr_pages: positive when adding or negative when removing
1259
 *
1260 1261 1262
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1263
 */
1264
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1265
				int zid, int nr_pages)
1266
{
1267
	struct mem_cgroup_per_node *mz;
1268
	unsigned long *lru_size;
1269
	long size;
1270 1271 1272 1273

	if (mem_cgroup_disabled())
		return;

1274
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1275
	lru_size = &mz->lru_zone_size[zid][lru];
1276 1277 1278 1279 1280

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1281 1282 1283
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1284 1285 1286 1287 1288 1289
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1290
}
1291

1292
/**
1293
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1294
 * @memcg: the memory cgroup
1295
 *
1296
 * Returns the maximum amount of memory @mem can be charged with, in
1297
 * pages.
1298
 */
1299
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1300
{
1301 1302 1303
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1304

1305
	count = page_counter_read(&memcg->memory);
1306
	limit = READ_ONCE(memcg->memory.max);
1307 1308 1309
	if (count < limit)
		margin = limit - count;

1310
	if (do_memsw_account()) {
1311
		count = page_counter_read(&memcg->memsw);
1312
		limit = READ_ONCE(memcg->memsw.max);
1313 1314
		if (count <= limit)
			margin = min(margin, limit - count);
1315 1316
		else
			margin = 0;
1317 1318 1319
	}

	return margin;
1320 1321
}

1322
/*
Q
Qiang Huang 已提交
1323
 * A routine for checking "mem" is under move_account() or not.
1324
 *
Q
Qiang Huang 已提交
1325 1326 1327
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1328
 */
1329
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1330
{
1331 1332
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1333
	bool ret = false;
1334 1335 1336 1337 1338 1339 1340 1341 1342
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1343

1344 1345
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1346 1347
unlock:
	spin_unlock(&mc.lock);
1348 1349 1350
	return ret;
}

1351
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1352 1353
{
	if (mc.moving_task && current != mc.moving_task) {
1354
		if (mem_cgroup_under_move(memcg)) {
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1367 1368 1369 1370
static char *memory_stat_format(struct mem_cgroup *memcg)
{
	struct seq_buf s;
	int i;
1371

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
	if (!s.buffer)
		return NULL;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

	seq_buf_printf(&s, "anon %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_RSS) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_CACHE) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "kernel_stack %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
		       1024);
	seq_buf_printf(&s, "slab %llu\n",
		       (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
			     memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "sock %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_SOCK) *
		       PAGE_SIZE);

	seq_buf_printf(&s, "shmem %llu\n",
		       (u64)memcg_page_state(memcg, NR_SHMEM) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_mapped %llu\n",
		       (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_dirty %llu\n",
		       (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_writeback %llu\n",
		       (u64)memcg_page_state(memcg, NR_WRITEBACK) *
		       PAGE_SIZE);

	/*
	 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
	 * with the NR_ANON_THP vm counter, but right now it's a pain in the
	 * arse because it requires migrating the work out of rmap to a place
	 * where the page->mem_cgroup is set up and stable.
	 */
	seq_buf_printf(&s, "anon_thp %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
		       PAGE_SIZE);

	for (i = 0; i < NR_LRU_LISTS; i++)
1428
		seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			       PAGE_SIZE);

	seq_buf_printf(&s, "slab_reclaimable %llu\n",
		       (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "slab_unreclaimable %llu\n",
		       (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
		       PAGE_SIZE);

	/* Accumulated memory events */

1441 1442 1443 1444
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
		       memcg_events(memcg, PGFAULT));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
		       memcg_events(memcg, PGMAJFAULT));
1445 1446 1447 1448 1449 1450 1451 1452

	seq_buf_printf(&s, "workingset_refault %lu\n",
		       memcg_page_state(memcg, WORKINGSET_REFAULT));
	seq_buf_printf(&s, "workingset_activate %lu\n",
		       memcg_page_state(memcg, WORKINGSET_ACTIVATE));
	seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
		       memcg_page_state(memcg, WORKINGSET_NODERECLAIM));

1453 1454
	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
		       memcg_events(memcg, PGREFILL));
1455 1456 1457 1458 1459 1460
	seq_buf_printf(&s, "pgscan %lu\n",
		       memcg_events(memcg, PGSCAN_KSWAPD) +
		       memcg_events(memcg, PGSCAN_DIRECT));
	seq_buf_printf(&s, "pgsteal %lu\n",
		       memcg_events(memcg, PGSTEAL_KSWAPD) +
		       memcg_events(memcg, PGSTEAL_DIRECT));
1461 1462 1463 1464 1465 1466 1467 1468
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
		       memcg_events(memcg, PGACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
		       memcg_events(memcg, PGDEACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
		       memcg_events(memcg, PGLAZYFREE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
		       memcg_events(memcg, PGLAZYFREED));
1469 1470

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1471
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1472
		       memcg_events(memcg, THP_FAULT_ALLOC));
1473
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1474 1475 1476 1477 1478 1479 1480 1481
		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

	/* The above should easily fit into one page */
	WARN_ON_ONCE(seq_buf_has_overflowed(&s));

	return s.buffer;
}
1482

1483
#define K(x) ((x) << (PAGE_SHIFT-10))
1484
/**
1485 1486
 * mem_cgroup_print_oom_context: Print OOM information relevant to
 * memory controller.
1487 1488 1489 1490 1491 1492
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
1493
void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1494 1495 1496
{
	rcu_read_lock();

1497 1498 1499 1500 1501
	if (memcg) {
		pr_cont(",oom_memcg=");
		pr_cont_cgroup_path(memcg->css.cgroup);
	} else
		pr_cont(",global_oom");
1502
	if (p) {
1503
		pr_cont(",task_memcg=");
1504 1505
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	}
1506
	rcu_read_unlock();
1507 1508 1509 1510 1511 1512 1513 1514 1515
}

/**
 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
 * memory controller.
 * @memcg: The memory cgroup that went over limit
 */
void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
1516
	char *buf;
1517

1518 1519
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1520
		K((u64)memcg->memory.max), memcg->memory.failcnt);
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->swap)),
			K((u64)memcg->swap.max), memcg->swap.failcnt);
	else {
		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->memsw)),
			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->kmem)),
			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1532
	}
1533 1534 1535 1536 1537 1538 1539 1540 1541

	pr_info("Memory cgroup stats for ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(":");
	buf = memory_stat_format(memcg);
	if (!buf)
		return;
	pr_info("%s", buf);
	kfree(buf);
1542 1543
}

D
David Rientjes 已提交
1544 1545 1546
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1547
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1548
{
1549
	unsigned long max;
1550

1551
	max = memcg->memory.max;
1552
	if (mem_cgroup_swappiness(memcg)) {
1553 1554
		unsigned long memsw_max;
		unsigned long swap_max;
1555

1556 1557 1558 1559
		memsw_max = memcg->memsw.max;
		swap_max = memcg->swap.max;
		swap_max = min(swap_max, (unsigned long)total_swap_pages);
		max = min(max + swap_max, memsw_max);
1560
	}
1561
	return max;
D
David Rientjes 已提交
1562 1563
}

1564 1565 1566 1567 1568
unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
{
	return page_counter_read(&memcg->memory);
}

1569
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1570
				     int order)
1571
{
1572 1573 1574
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1575
		.memcg = memcg,
1576 1577 1578
		.gfp_mask = gfp_mask,
		.order = order,
	};
1579
	bool ret;
1580

1581 1582 1583 1584 1585 1586 1587
	if (mutex_lock_killable(&oom_lock))
		return true;
	/*
	 * A few threads which were not waiting at mutex_lock_killable() can
	 * fail to bail out. Therefore, check again after holding oom_lock.
	 */
	ret = should_force_charge() || out_of_memory(&oc);
1588
	mutex_unlock(&oom_lock);
1589
	return ret;
1590 1591
}

1592
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1593
				   pg_data_t *pgdat,
1594 1595 1596 1597 1598 1599 1600 1601 1602
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1603
		.pgdat = pgdat,
1604 1605
	};

1606
	excess = soft_limit_excess(root_memcg);
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1632
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1633
					pgdat, &nr_scanned);
1634
		*total_scanned += nr_scanned;
1635
		if (!soft_limit_excess(root_memcg))
1636
			break;
1637
	}
1638 1639
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1640 1641
}

1642 1643 1644 1645 1646 1647
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1648 1649
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1650 1651 1652 1653
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1654
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1655
{
1656
	struct mem_cgroup *iter, *failed = NULL;
1657

1658 1659
	spin_lock(&memcg_oom_lock);

1660
	for_each_mem_cgroup_tree(iter, memcg) {
1661
		if (iter->oom_lock) {
1662 1663 1664 1665 1666
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1667 1668
			mem_cgroup_iter_break(memcg, iter);
			break;
1669 1670
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1671
	}
K
KAMEZAWA Hiroyuki 已提交
1672

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1684
		}
1685 1686
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1687 1688 1689 1690

	spin_unlock(&memcg_oom_lock);

	return !failed;
1691
}
1692

1693
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1694
{
K
KAMEZAWA Hiroyuki 已提交
1695 1696
	struct mem_cgroup *iter;

1697
	spin_lock(&memcg_oom_lock);
1698
	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1699
	for_each_mem_cgroup_tree(iter, memcg)
1700
		iter->oom_lock = false;
1701
	spin_unlock(&memcg_oom_lock);
1702 1703
}

1704
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1705 1706 1707
{
	struct mem_cgroup *iter;

1708
	spin_lock(&memcg_oom_lock);
1709
	for_each_mem_cgroup_tree(iter, memcg)
1710 1711
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1712 1713
}

1714
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1715 1716 1717
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1718 1719
	/*
	 * When a new child is created while the hierarchy is under oom,
1720
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1721
	 */
1722
	spin_lock(&memcg_oom_lock);
1723
	for_each_mem_cgroup_tree(iter, memcg)
1724 1725 1726
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1727 1728
}

K
KAMEZAWA Hiroyuki 已提交
1729 1730
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1731
struct oom_wait_info {
1732
	struct mem_cgroup *memcg;
1733
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1734 1735
};

1736
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1737 1738
	unsigned mode, int sync, void *arg)
{
1739 1740
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1741 1742 1743
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1744
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1745

1746 1747
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1748 1749 1750 1751
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1752
static void memcg_oom_recover(struct mem_cgroup *memcg)
1753
{
1754 1755 1756 1757 1758 1759 1760 1761 1762
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1763
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1764 1765
}

1766 1767 1768 1769 1770 1771 1772 1773
enum oom_status {
	OOM_SUCCESS,
	OOM_FAILED,
	OOM_ASYNC,
	OOM_SKIPPED
};

static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1774
{
1775 1776 1777
	enum oom_status ret;
	bool locked;

1778 1779 1780
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		return OOM_SKIPPED;

1781 1782
	memcg_memory_event(memcg, MEMCG_OOM);

K
KAMEZAWA Hiroyuki 已提交
1783
	/*
1784 1785 1786 1787
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1788 1789 1790 1791
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1792
	 *
1793 1794 1795 1796 1797 1798 1799
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
K
KAMEZAWA Hiroyuki 已提交
1800
	 */
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
	if (memcg->oom_kill_disable) {
		if (!current->in_user_fault)
			return OOM_SKIPPED;
		css_get(&memcg->css);
		current->memcg_in_oom = memcg;
		current->memcg_oom_gfp_mask = mask;
		current->memcg_oom_order = order;

		return OOM_ASYNC;
	}

1812 1813 1814 1815 1816 1817 1818 1819
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	mem_cgroup_unmark_under_oom(memcg);
1820
	if (mem_cgroup_out_of_memory(memcg, mask, order))
1821 1822 1823 1824 1825 1826
		ret = OOM_SUCCESS;
	else
		ret = OOM_FAILED;

	if (locked)
		mem_cgroup_oom_unlock(memcg);
1827

1828
	return ret;
1829 1830 1831 1832
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1833
 * @handle: actually kill/wait or just clean up the OOM state
1834
 *
1835 1836
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1837
 *
1838
 * Memcg supports userspace OOM handling where failed allocations must
1839 1840 1841 1842
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1843
 * the end of the page fault to complete the OOM handling.
1844 1845
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1846
 * completed, %false otherwise.
1847
 */
1848
bool mem_cgroup_oom_synchronize(bool handle)
1849
{
T
Tejun Heo 已提交
1850
	struct mem_cgroup *memcg = current->memcg_in_oom;
1851
	struct oom_wait_info owait;
1852
	bool locked;
1853 1854 1855

	/* OOM is global, do not handle */
	if (!memcg)
1856
		return false;
1857

1858
	if (!handle)
1859
		goto cleanup;
1860 1861 1862 1863 1864

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
1865
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
1866

1867
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1878 1879
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1880
	} else {
1881
		schedule();
1882 1883 1884 1885 1886
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1887 1888 1889 1890 1891 1892 1893 1894
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1895
cleanup:
T
Tejun Heo 已提交
1896
	current->memcg_in_oom = NULL;
1897
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1898
	return true;
1899 1900
}

1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
/**
 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 * @victim: task to be killed by the OOM killer
 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 *
 * Returns a pointer to a memory cgroup, which has to be cleaned up
 * by killing all belonging OOM-killable tasks.
 *
 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 */
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
					    struct mem_cgroup *oom_domain)
{
	struct mem_cgroup *oom_group = NULL;
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return NULL;

	if (!oom_domain)
		oom_domain = root_mem_cgroup;

	rcu_read_lock();

	memcg = mem_cgroup_from_task(victim);
	if (memcg == root_mem_cgroup)
		goto out;

	/*
	 * Traverse the memory cgroup hierarchy from the victim task's
	 * cgroup up to the OOMing cgroup (or root) to find the
	 * highest-level memory cgroup with oom.group set.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		if (memcg->oom_group)
			oom_group = memcg;

		if (memcg == oom_domain)
			break;
	}

	if (oom_group)
		css_get(&oom_group->css);
out:
	rcu_read_unlock();

	return oom_group;
}

void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
	pr_info("Tasks in ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(" are going to be killed due to memory.oom.group set\n");
}

1957
/**
1958 1959
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1960
 *
1961
 * This function protects unlocked LRU pages from being moved to
1962 1963 1964 1965 1966
 * another cgroup.
 *
 * It ensures lifetime of the returned memcg. Caller is responsible
 * for the lifetime of the page; __unlock_page_memcg() is available
 * when @page might get freed inside the locked section.
1967
 */
1968
struct mem_cgroup *lock_page_memcg(struct page *page)
1969 1970
{
	struct mem_cgroup *memcg;
1971
	unsigned long flags;
1972

1973 1974 1975 1976
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
1977 1978 1979 1980 1981 1982 1983
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page itself from being freed. E.g. writeback
	 * doesn't hold a page reference and relies on PG_writeback to
	 * keep off truncation, migration and so forth.
         */
1984 1985 1986
	rcu_read_lock();

	if (mem_cgroup_disabled())
1987
		return NULL;
1988
again:
1989
	memcg = page->mem_cgroup;
1990
	if (unlikely(!memcg))
1991
		return NULL;
1992

Q
Qiang Huang 已提交
1993
	if (atomic_read(&memcg->moving_account) <= 0)
1994
		return memcg;
1995

1996
	spin_lock_irqsave(&memcg->move_lock, flags);
1997
	if (memcg != page->mem_cgroup) {
1998
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1999 2000
		goto again;
	}
2001 2002 2003 2004

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
2005
	 * the task who has the lock for unlock_page_memcg().
2006 2007 2008
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2009

2010
	return memcg;
2011
}
2012
EXPORT_SYMBOL(lock_page_memcg);
2013

2014
/**
2015 2016 2017 2018
 * __unlock_page_memcg - unlock and unpin a memcg
 * @memcg: the memcg
 *
 * Unlock and unpin a memcg returned by lock_page_memcg().
2019
 */
2020
void __unlock_page_memcg(struct mem_cgroup *memcg)
2021
{
2022 2023 2024 2025 2026 2027 2028 2029
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2030

2031
	rcu_read_unlock();
2032
}
2033 2034 2035 2036 2037 2038 2039 2040 2041

/**
 * unlock_page_memcg - unlock a page->mem_cgroup binding
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
	__unlock_page_memcg(page->mem_cgroup);
}
2042
EXPORT_SYMBOL(unlock_page_memcg);
2043

2044 2045
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2046
	unsigned int nr_pages;
2047
	struct work_struct work;
2048
	unsigned long flags;
2049
#define FLUSHING_CACHED_CHARGE	0
2050 2051
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2052
static DEFINE_MUTEX(percpu_charge_mutex);
2053

2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2064
 */
2065
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2066 2067
{
	struct memcg_stock_pcp *stock;
2068
	unsigned long flags;
2069
	bool ret = false;
2070

2071
	if (nr_pages > MEMCG_CHARGE_BATCH)
2072
		return ret;
2073

2074 2075 2076
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2077
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2078
		stock->nr_pages -= nr_pages;
2079 2080
		ret = true;
	}
2081 2082 2083

	local_irq_restore(flags);

2084 2085 2086 2087
	return ret;
}

/*
2088
 * Returns stocks cached in percpu and reset cached information.
2089 2090 2091 2092 2093
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2094
	if (stock->nr_pages) {
2095
		page_counter_uncharge(&old->memory, stock->nr_pages);
2096
		if (do_memsw_account())
2097
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2098
		css_put_many(&old->css, stock->nr_pages);
2099
		stock->nr_pages = 0;
2100 2101 2102 2103 2104 2105
	}
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
2106 2107 2108
	struct memcg_stock_pcp *stock;
	unsigned long flags;

2109 2110 2111 2112
	/*
	 * The only protection from memory hotplug vs. drain_stock races is
	 * that we always operate on local CPU stock here with IRQ disabled
	 */
2113 2114 2115
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2116
	drain_stock(stock);
2117
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2118 2119

	local_irq_restore(flags);
2120 2121 2122
}

/*
2123
 * Cache charges(val) to local per_cpu area.
2124
 * This will be consumed by consume_stock() function, later.
2125
 */
2126
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2127
{
2128 2129 2130 2131
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
2132

2133
	stock = this_cpu_ptr(&memcg_stock);
2134
	if (stock->cached != memcg) { /* reset if necessary */
2135
		drain_stock(stock);
2136
		stock->cached = memcg;
2137
	}
2138
	stock->nr_pages += nr_pages;
2139

2140
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2141 2142
		drain_stock(stock);

2143
	local_irq_restore(flags);
2144 2145 2146
}

/*
2147
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2148
 * of the hierarchy under it.
2149
 */
2150
static void drain_all_stock(struct mem_cgroup *root_memcg)
2151
{
2152
	int cpu, curcpu;
2153

2154 2155 2156
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2157 2158 2159 2160 2161 2162
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
2163
	curcpu = get_cpu();
2164 2165
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2166
		struct mem_cgroup *memcg;
2167
		bool flush = false;
2168

2169
		rcu_read_lock();
2170
		memcg = stock->cached;
2171 2172 2173 2174 2175 2176 2177
		if (memcg && stock->nr_pages &&
		    mem_cgroup_is_descendant(memcg, root_memcg))
			flush = true;
		rcu_read_unlock();

		if (flush &&
		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2178 2179 2180 2181 2182
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2183
	}
2184
	put_cpu();
2185
	mutex_unlock(&percpu_charge_mutex);
2186 2187
}

2188
static int memcg_hotplug_cpu_dead(unsigned int cpu)
2189 2190
{
	struct memcg_stock_pcp *stock;
2191
	struct mem_cgroup *memcg, *mi;
2192 2193 2194

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
2195 2196 2197 2198 2199 2200 2201 2202

	for_each_mem_cgroup(memcg) {
		int i;

		for (i = 0; i < MEMCG_NR_STAT; i++) {
			int nid;
			long x;

2203
			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2204
			if (x)
2205 2206
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmstats[i]);
2207 2208 2209 2210 2211 2212 2213 2214 2215

			if (i >= NR_VM_NODE_STAT_ITEMS)
				continue;

			for_each_node(nid) {
				struct mem_cgroup_per_node *pn;

				pn = mem_cgroup_nodeinfo(memcg, nid);
				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2216
				if (x)
2217 2218 2219
					do {
						atomic_long_add(x, &pn->lruvec_stat[i]);
					} while ((pn = parent_nodeinfo(pn, nid)));
2220 2221 2222
			}
		}

2223
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2224 2225
			long x;

2226
			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2227
			if (x)
2228 2229
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmevents[i]);
2230 2231 2232
		}
	}

2233
	return 0;
2234 2235
}

2236 2237 2238 2239 2240 2241 2242
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
2243
		memcg_memory_event(memcg, MEMCG_HIGH);
2244 2245 2246 2247 2248 2249 2250 2251 2252
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
2253
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2254 2255
}

2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
/*
 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
 * enough to still cause a significant slowdown in most cases, while still
 * allowing diagnostics and tracing to proceed without becoming stuck.
 */
#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)

/*
 * When calculating the delay, we use these either side of the exponentiation to
 * maintain precision and scale to a reasonable number of jiffies (see the table
 * below.
 *
 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
 *   overage ratio to a delay.
 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
 *   to produce a reasonable delay curve.
 *
 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
 * reasonable delay curve compared to precision-adjusted overage, not
 * penalising heavily at first, but still making sure that growth beyond the
 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
 * example, with a high of 100 megabytes:
 *
 *  +-------+------------------------+
 *  | usage | time to allocate in ms |
 *  +-------+------------------------+
 *  | 100M  |                      0 |
 *  | 101M  |                      6 |
 *  | 102M  |                     25 |
 *  | 103M  |                     57 |
 *  | 104M  |                    102 |
 *  | 105M  |                    159 |
 *  | 106M  |                    230 |
 *  | 107M  |                    313 |
 *  | 108M  |                    409 |
 *  | 109M  |                    518 |
 *  | 110M  |                    639 |
 *  | 111M  |                    774 |
 *  | 112M  |                    921 |
 *  | 113M  |                   1081 |
 *  | 114M  |                   1254 |
 *  | 115M  |                   1439 |
 *  | 116M  |                   1638 |
 *  | 117M  |                   1849 |
 *  | 118M  |                   2000 |
 *  | 119M  |                   2000 |
 *  | 120M  |                   2000 |
 *  +-------+------------------------+
 */
 #define MEMCG_DELAY_PRECISION_SHIFT 20
 #define MEMCG_DELAY_SCALING_SHIFT 14

2309
/*
2310 2311
 * Get the number of jiffies that we should penalise a mischievous cgroup which
 * is exceeding its memory.high by checking both it and its ancestors.
2312
 */
2313 2314
static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
					  unsigned int nr_pages)
2315
{
2316 2317
	unsigned long penalty_jiffies;
	u64 max_overage = 0;
2318

2319 2320 2321
	do {
		unsigned long usage, high;
		u64 overage;
2322

2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
		usage = page_counter_read(&memcg->memory);
		high = READ_ONCE(memcg->high);

		/*
		 * Prevent division by 0 in overage calculation by acting as if
		 * it was a threshold of 1 page
		 */
		high = max(high, 1UL);

		overage = usage - high;
		overage <<= MEMCG_DELAY_PRECISION_SHIFT;
		overage = div64_u64(overage, high);

		if (overage > max_overage)
			max_overage = overage;
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

	if (!max_overage)
		return 0;
2343 2344 2345 2346 2347 2348 2349 2350 2351

	/*
	 * We use overage compared to memory.high to calculate the number of
	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
	 * fairly lenient on small overages, and increasingly harsh when the
	 * memcg in question makes it clear that it has no intention of stopping
	 * its crazy behaviour, so we exponentially increase the delay based on
	 * overage amount.
	 */
2352 2353 2354
	penalty_jiffies = max_overage * max_overage * HZ;
	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370

	/*
	 * Factor in the task's own contribution to the overage, such that four
	 * N-sized allocations are throttled approximately the same as one
	 * 4N-sized allocation.
	 *
	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
	 * larger the current charge patch is than that.
	 */
	penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;

	/*
	 * Clamp the max delay per usermode return so as to still keep the
	 * application moving forwards and also permit diagnostics, albeit
	 * extremely slowly.
	 */
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
	return min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
}

/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned long penalty_jiffies;
	unsigned long pflags;
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
	struct mem_cgroup *memcg;

	if (likely(!nr_pages))
		return;

	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
	current->memcg_nr_pages_over_high = 0;

	/*
	 * memory.high is breached and reclaim is unable to keep up. Throttle
	 * allocators proactively to slow down excessive growth.
	 */
	penalty_jiffies = calculate_high_delay(memcg, nr_pages);
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417

	/*
	 * Don't sleep if the amount of jiffies this memcg owes us is so low
	 * that it's not even worth doing, in an attempt to be nice to those who
	 * go only a small amount over their memory.high value and maybe haven't
	 * been aggressively reclaimed enough yet.
	 */
	if (penalty_jiffies <= HZ / 100)
		goto out;

	/*
	 * If we exit early, we're guaranteed to die (since
	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
	 * need to account for any ill-begotten jiffies to pay them off later.
	 */
	psi_memstall_enter(&pflags);
	schedule_timeout_killable(penalty_jiffies);
	psi_memstall_leave(&pflags);

out:
	css_put(&memcg->css);
2418 2419
}

2420 2421
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2422
{
2423
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2424
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2425
	struct mem_cgroup *mem_over_limit;
2426
	struct page_counter *counter;
2427
	unsigned long nr_reclaimed;
2428 2429
	bool may_swap = true;
	bool drained = false;
2430
	enum oom_status oom_status;
2431

2432
	if (mem_cgroup_is_root(memcg))
2433
		return 0;
2434
retry:
2435
	if (consume_stock(memcg, nr_pages))
2436
		return 0;
2437

2438
	if (!do_memsw_account() ||
2439 2440
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2441
			goto done_restock;
2442
		if (do_memsw_account())
2443 2444
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2445
	} else {
2446
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2447
		may_swap = false;
2448
	}
2449

2450 2451 2452 2453
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2454

2455 2456 2457 2458 2459 2460 2461 2462 2463
	/*
	 * Memcg doesn't have a dedicated reserve for atomic
	 * allocations. But like the global atomic pool, we need to
	 * put the burden of reclaim on regular allocation requests
	 * and let these go through as privileged allocations.
	 */
	if (gfp_mask & __GFP_ATOMIC)
		goto force;

2464 2465 2466 2467 2468 2469
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
2470
	if (unlikely(should_force_charge()))
2471
		goto force;
2472

2473 2474 2475 2476 2477 2478 2479 2480 2481
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2482 2483 2484
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2485
	if (!gfpflags_allow_blocking(gfp_mask))
2486
		goto nomem;
2487

2488
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2489

2490 2491
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2492

2493
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2494
		goto retry;
2495

2496
	if (!drained) {
2497
		drain_all_stock(mem_over_limit);
2498 2499 2500 2501
		drained = true;
		goto retry;
	}

2502 2503
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2504 2505 2506 2507 2508 2509 2510 2511 2512
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2513
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2514 2515 2516 2517 2518 2519 2520 2521
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2522 2523 2524
	if (nr_retries--)
		goto retry;

2525
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2526 2527
		goto nomem;

2528
	if (gfp_mask & __GFP_NOFAIL)
2529
		goto force;
2530

2531
	if (fatal_signal_pending(current))
2532
		goto force;
2533

2534 2535 2536 2537 2538 2539
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2540
		       get_order(nr_pages * PAGE_SIZE));
2541 2542 2543 2544 2545 2546 2547 2548 2549
	switch (oom_status) {
	case OOM_SUCCESS:
		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
		goto retry;
	case OOM_FAILED:
		goto force;
	default:
		goto nomem;
	}
2550
nomem:
2551
	if (!(gfp_mask & __GFP_NOFAIL))
2552
		return -ENOMEM;
2553 2554 2555 2556 2557 2558 2559
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2560
	if (do_memsw_account())
2561 2562 2563 2564
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2565 2566

done_restock:
2567
	css_get_many(&memcg->css, batch);
2568 2569
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2570

2571
	/*
2572 2573
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2574
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2575 2576 2577 2578
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2579 2580
	 */
	do {
2581
		if (page_counter_read(&memcg->memory) > memcg->high) {
2582 2583 2584 2585 2586
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2587
			current->memcg_nr_pages_over_high += batch;
2588 2589 2590
			set_notify_resume(current);
			break;
		}
2591
	} while ((memcg = parent_mem_cgroup(memcg)));
2592 2593

	return 0;
2594
}
2595

2596
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2597
{
2598 2599 2600
	if (mem_cgroup_is_root(memcg))
		return;

2601
	page_counter_uncharge(&memcg->memory, nr_pages);
2602
	if (do_memsw_account())
2603
		page_counter_uncharge(&memcg->memsw, nr_pages);
2604

2605
	css_put_many(&memcg->css, nr_pages);
2606 2607
}

2608 2609
static void lock_page_lru(struct page *page, int *isolated)
{
2610
	pg_data_t *pgdat = page_pgdat(page);
2611

2612
	spin_lock_irq(&pgdat->lru_lock);
2613 2614 2615
	if (PageLRU(page)) {
		struct lruvec *lruvec;

2616
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2617 2618 2619 2620 2621 2622 2623 2624 2625
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
2626
	pg_data_t *pgdat = page_pgdat(page);
2627 2628 2629 2630

	if (isolated) {
		struct lruvec *lruvec;

2631
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2632 2633 2634 2635
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
2636
	spin_unlock_irq(&pgdat->lru_lock);
2637 2638
}

2639
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2640
			  bool lrucare)
2641
{
2642
	int isolated;
2643

2644
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2645 2646 2647 2648 2649

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2650 2651
	if (lrucare)
		lock_page_lru(page, &isolated);
2652

2653 2654
	/*
	 * Nobody should be changing or seriously looking at
2655
	 * page->mem_cgroup at this point:
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2667
	page->mem_cgroup = memcg;
2668

2669 2670
	if (lrucare)
		unlock_page_lru(page, isolated);
2671
}
2672

2673
#ifdef CONFIG_MEMCG_KMEM
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
/*
 * Returns a pointer to the memory cgroup to which the kernel object is charged.
 *
 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
 * cgroup_mutex, etc.
 */
struct mem_cgroup *mem_cgroup_from_obj(void *p)
{
	struct page *page;

	if (mem_cgroup_disabled())
		return NULL;

	page = virt_to_head_page(p);

	/*
	 * Slab pages don't have page->mem_cgroup set because corresponding
	 * kmem caches can be reparented during the lifetime. That's why
	 * memcg_from_slab_page() should be used instead.
	 */
	if (PageSlab(page))
		return memcg_from_slab_page(page);

	/* All other pages use page->mem_cgroup */
	return page->mem_cgroup;
}

2701
static int memcg_alloc_cache_id(void)
2702
{
2703 2704 2705
	int id, size;
	int err;

2706
	id = ida_simple_get(&memcg_cache_ida,
2707 2708 2709
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2710

2711
	if (id < memcg_nr_cache_ids)
2712 2713 2714 2715 2716 2717
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2718
	down_write(&memcg_cache_ids_sem);
2719 2720

	size = 2 * (id + 1);
2721 2722 2723 2724 2725
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2726
	err = memcg_update_all_caches(size);
2727 2728
	if (!err)
		err = memcg_update_all_list_lrus(size);
2729 2730 2731 2732 2733
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2734
	if (err) {
2735
		ida_simple_remove(&memcg_cache_ida, id);
2736 2737 2738 2739 2740 2741 2742
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2743
	ida_simple_remove(&memcg_cache_ida, id);
2744 2745
}

2746
struct memcg_kmem_cache_create_work {
2747 2748 2749 2750 2751
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2752
static void memcg_kmem_cache_create_func(struct work_struct *w)
2753
{
2754 2755
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2756 2757
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2758

2759
	memcg_create_kmem_cache(memcg, cachep);
2760

2761
	css_put(&memcg->css);
2762 2763 2764 2765 2766 2767
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2768
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2769
					       struct kmem_cache *cachep)
2770
{
2771
	struct memcg_kmem_cache_create_work *cw;
2772

2773 2774 2775
	if (!css_tryget_online(&memcg->css))
		return;

2776
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2777
	if (!cw)
2778
		return;
2779

2780 2781
	cw->memcg = memcg;
	cw->cachep = cachep;
2782
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2783

2784
	queue_work(memcg_kmem_cache_wq, &cw->work);
2785 2786
}

2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
static inline bool memcg_kmem_bypass(void)
{
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;
	return false;
}

/**
 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
 * @cachep: the original global kmem cache
 *
2798 2799 2800
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
2801 2802 2803
 * If the cache does not exist yet, if we are the first user of it, we
 * create it asynchronously in a workqueue and let the current allocation
 * go through with the original cache.
2804
 *
2805 2806 2807 2808
 * This function takes a reference to the cache it returns to assure it
 * won't get destroyed while we are working with it. Once the caller is
 * done with it, memcg_kmem_put_cache() must be called to release the
 * reference.
2809
 */
2810
struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2811 2812
{
	struct mem_cgroup *memcg;
2813
	struct kmem_cache *memcg_cachep;
2814
	struct memcg_cache_array *arr;
2815
	int kmemcg_id;
2816

2817
	VM_BUG_ON(!is_root_cache(cachep));
2818

2819
	if (memcg_kmem_bypass())
V
Vladimir Davydov 已提交
2820 2821
		return cachep;

2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
	rcu_read_lock();

	if (unlikely(current->active_memcg))
		memcg = current->active_memcg;
	else
		memcg = mem_cgroup_from_task(current);

	if (!memcg || memcg == root_mem_cgroup)
		goto out_unlock;

2832
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2833
	if (kmemcg_id < 0)
2834
		goto out_unlock;
2835

2836 2837 2838 2839 2840 2841 2842 2843
	arr = rcu_dereference(cachep->memcg_params.memcg_caches);

	/*
	 * Make sure we will access the up-to-date value. The code updating
	 * memcg_caches issues a write barrier to match the data dependency
	 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
	 */
	memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2844 2845 2846 2847 2848 2849 2850 2851 2852

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2853 2854 2855
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2856 2857 2858 2859 2860 2861 2862
	 *
	 * If the memcg is dying or memcg_cache is about to be released,
	 * don't bother creating new kmem_caches. Because memcg_cachep
	 * is ZEROed as the fist step of kmem offlining, we don't need
	 * percpu_ref_tryget_live() here. css_tryget_online() check in
	 * memcg_schedule_kmem_cache_create() will prevent us from
	 * creation of a new kmem_cache.
2863
	 */
2864 2865 2866 2867 2868 2869
	if (unlikely(!memcg_cachep))
		memcg_schedule_kmem_cache_create(memcg, cachep);
	else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
		cachep = memcg_cachep;
out_unlock:
	rcu_read_unlock();
2870
	return cachep;
2871 2872
}

2873 2874 2875 2876 2877
/**
 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
 * @cachep: the cache returned by memcg_kmem_get_cache
 */
void memcg_kmem_put_cache(struct kmem_cache *cachep)
2878 2879
{
	if (!is_root_cache(cachep))
2880
		percpu_ref_put(&cachep->memcg_params.refcnt);
2881 2882
}

2883
/**
2884
 * __memcg_kmem_charge_memcg: charge a kmem page
2885
 * @memcg: memory cgroup to charge
2886
 * @gfp: reclaim mode
2887
 * @nr_pages: number of pages to charge
2888 2889 2890
 *
 * Returns 0 on success, an error code on failure.
 */
2891 2892
int __memcg_kmem_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp,
			      unsigned int nr_pages)
2893
{
2894
	struct page_counter *counter;
2895 2896
	int ret;

2897
	ret = try_charge(memcg, gfp, nr_pages);
2898
	if (ret)
2899
		return ret;
2900 2901 2902

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912

		/*
		 * Enforce __GFP_NOFAIL allocation because callers are not
		 * prepared to see failures and likely do not have any failure
		 * handling code.
		 */
		if (gfp & __GFP_NOFAIL) {
			page_counter_charge(&memcg->kmem, nr_pages);
			return 0;
		}
2913 2914
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2915
	}
2916
	return 0;
2917 2918
}

2919
/**
2920
 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2921 2922 2923 2924 2925 2926
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
2927
int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2928
{
2929
	struct mem_cgroup *memcg;
2930
	int ret = 0;
2931

2932
	if (memcg_kmem_bypass())
2933 2934
		return 0;

2935
	memcg = get_mem_cgroup_from_current();
2936
	if (!mem_cgroup_is_root(memcg)) {
2937
		ret = __memcg_kmem_charge_memcg(memcg, gfp, 1 << order);
2938 2939
		if (!ret) {
			page->mem_cgroup = memcg;
2940
			__SetPageKmemcg(page);
2941
		}
2942
	}
2943
	css_put(&memcg->css);
2944
	return ret;
2945
}
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961

/**
 * __memcg_kmem_uncharge_memcg: uncharge a kmem page
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
 */
void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
				 unsigned int nr_pages)
{
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

	page_counter_uncharge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_uncharge(&memcg->memsw, nr_pages);
}
2962
/**
2963
 * __memcg_kmem_uncharge_page: uncharge a kmem page
2964 2965 2966
 * @page: page to uncharge
 * @order: allocation order
 */
2967
void __memcg_kmem_uncharge_page(struct page *page, int order)
2968
{
2969
	struct mem_cgroup *memcg = page->mem_cgroup;
2970
	unsigned int nr_pages = 1 << order;
2971 2972 2973 2974

	if (!memcg)
		return;

2975
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2976
	__memcg_kmem_uncharge_memcg(memcg, nr_pages);
2977
	page->mem_cgroup = NULL;
2978 2979 2980 2981 2982

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);

2983
	css_put_many(&memcg->css, nr_pages);
2984
}
2985
#endif /* CONFIG_MEMCG_KMEM */
2986

2987 2988 2989 2990
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2991
 * pgdat->lru_lock and migration entries setup in all page mappings.
2992
 */
2993
void mem_cgroup_split_huge_fixup(struct page *head)
2994
{
2995
	int i;
2996

2997 2998
	if (mem_cgroup_disabled())
		return;
2999

3000
	for (i = 1; i < HPAGE_PMD_NR; i++)
3001
		head[i].mem_cgroup = head->mem_cgroup;
3002

3003
	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
3004
}
3005
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3006

A
Andrew Morton 已提交
3007
#ifdef CONFIG_MEMCG_SWAP
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
3019
 * The caller must have charged to @to, IOW, called page_counter_charge() about
3020 3021 3022
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3023
				struct mem_cgroup *from, struct mem_cgroup *to)
3024 3025 3026
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
3027 3028
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3029 3030

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3031 3032
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
3033 3034 3035 3036 3037 3038
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3039
				struct mem_cgroup *from, struct mem_cgroup *to)
3040 3041 3042
{
	return -EINVAL;
}
3043
#endif
K
KAMEZAWA Hiroyuki 已提交
3044

3045
static DEFINE_MUTEX(memcg_max_mutex);
3046

3047 3048
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
3049
{
3050
	bool enlarge = false;
3051
	bool drained = false;
3052
	int ret;
3053 3054
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3055

3056
	do {
3057 3058 3059 3060
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3061

3062
		mutex_lock(&memcg_max_mutex);
3063 3064
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
3065
		 * break our basic invariant rule memory.max <= memsw.max.
3066
		 */
3067 3068
		limits_invariant = memsw ? max >= memcg->memory.max :
					   max <= memcg->memsw.max;
3069
		if (!limits_invariant) {
3070
			mutex_unlock(&memcg_max_mutex);
3071 3072 3073
			ret = -EINVAL;
			break;
		}
3074
		if (max > counter->max)
3075
			enlarge = true;
3076 3077
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
3078 3079 3080 3081

		if (!ret)
			break;

3082 3083 3084 3085 3086 3087
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

3088 3089 3090 3091 3092 3093
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
3094

3095 3096
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3097

3098 3099 3100
	return ret;
}

3101
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3102 3103 3104 3105
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
3106
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3107 3108
	unsigned long reclaimed;
	int loop = 0;
3109
	struct mem_cgroup_tree_per_node *mctz;
3110
	unsigned long excess;
3111 3112 3113 3114 3115
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

3116
	mctz = soft_limit_tree_node(pgdat->node_id);
3117 3118 3119 3120 3121 3122

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
3123
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3124 3125
		return 0;

3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
3140
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3141 3142 3143
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3144
		spin_lock_irq(&mctz->lock);
3145
		__mem_cgroup_remove_exceeded(mz, mctz);
3146 3147 3148 3149 3150 3151

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3152 3153 3154
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3155
		excess = soft_limit_excess(mz->memcg);
3156 3157 3158 3159 3160 3161 3162 3163 3164
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3165
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3166
		spin_unlock_irq(&mctz->lock);
3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3184 3185 3186 3187 3188 3189
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
3190 3191
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3192 3193 3194 3195 3196 3197
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3198 3199
}

3200
/*
3201
 * Reclaims as many pages from the given memcg as possible.
3202 3203 3204 3205 3206 3207 3208
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

3209 3210
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3211 3212 3213

	drain_all_stock(memcg);

3214
	/* try to free all pages in this cgroup */
3215
	while (nr_retries && page_counter_read(&memcg->memory)) {
3216
		int progress;
3217

3218 3219 3220
		if (signal_pending(current))
			return -EINTR;

3221 3222
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3223
		if (!progress) {
3224
			nr_retries--;
3225
			/* maybe some writeback is necessary */
3226
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3227
		}
3228 3229

	}
3230 3231

	return 0;
3232 3233
}

3234 3235 3236
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3237
{
3238
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3239

3240 3241
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3242
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3243 3244
}

3245 3246
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3247
{
3248
	return mem_cgroup_from_css(css)->use_hierarchy;
3249 3250
}

3251 3252
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3253 3254
{
	int retval = 0;
3255
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3256
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3257

3258
	if (memcg->use_hierarchy == val)
3259
		return 0;
3260

3261
	/*
3262
	 * If parent's use_hierarchy is set, we can't make any modifications
3263 3264 3265 3266 3267 3268
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3269
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3270
				(val == 1 || val == 0)) {
3271
		if (!memcg_has_children(memcg))
3272
			memcg->use_hierarchy = val;
3273 3274 3275 3276
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3277

3278 3279 3280
	return retval;
}

3281
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3282
{
3283
	unsigned long val;
3284

3285
	if (mem_cgroup_is_root(memcg)) {
3286 3287 3288 3289
		val = memcg_page_state(memcg, MEMCG_CACHE) +
			memcg_page_state(memcg, MEMCG_RSS);
		if (swap)
			val += memcg_page_state(memcg, MEMCG_SWAP);
3290
	} else {
3291
		if (!swap)
3292
			val = page_counter_read(&memcg->memory);
3293
		else
3294
			val = page_counter_read(&memcg->memsw);
3295
	}
3296
	return val;
3297 3298
}

3299 3300 3301 3302 3303 3304 3305
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3306

3307
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3308
			       struct cftype *cft)
B
Balbir Singh 已提交
3309
{
3310
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3311
	struct page_counter *counter;
3312

3313
	switch (MEMFILE_TYPE(cft->private)) {
3314
	case _MEM:
3315 3316
		counter = &memcg->memory;
		break;
3317
	case _MEMSWAP:
3318 3319
		counter = &memcg->memsw;
		break;
3320
	case _KMEM:
3321
		counter = &memcg->kmem;
3322
		break;
V
Vladimir Davydov 已提交
3323
	case _TCP:
3324
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3325
		break;
3326 3327 3328
	default:
		BUG();
	}
3329 3330 3331 3332

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
3333
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3334
		if (counter == &memcg->memsw)
3335
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3336 3337
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
3338
		return (u64)counter->max * PAGE_SIZE;
3339 3340 3341 3342 3343 3344 3345 3346 3347
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3348
}
3349

3350
static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3351
{
3352
	unsigned long stat[MEMCG_NR_STAT] = {0};
3353 3354 3355 3356
	struct mem_cgroup *mi;
	int node, cpu, i;

	for_each_online_cpu(cpu)
3357
		for (i = 0; i < MEMCG_NR_STAT; i++)
3358
			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3359 3360

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3361
		for (i = 0; i < MEMCG_NR_STAT; i++)
3362 3363 3364 3365 3366 3367
			atomic_long_add(stat[i], &mi->vmstats[i]);

	for_each_node(node) {
		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
		struct mem_cgroup_per_node *pi;

3368
		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3369 3370 3371
			stat[i] = 0;

		for_each_online_cpu(cpu)
3372
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3373 3374
				stat[i] += per_cpu(
					pn->lruvec_stat_cpu->count[i], cpu);
3375 3376

		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3377
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3378 3379 3380 3381
				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
	}
}

3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
{
	unsigned long events[NR_VM_EVENT_ITEMS];
	struct mem_cgroup *mi;
	int cpu, i;

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
		events[i] = 0;

	for_each_online_cpu(cpu)
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3393 3394
			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
					     cpu);
3395 3396 3397 3398 3399 3400

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
			atomic_long_add(events[i], &mi->vmevents[i]);
}

3401
#ifdef CONFIG_MEMCG_KMEM
3402
static int memcg_online_kmem(struct mem_cgroup *memcg)
3403 3404 3405
{
	int memcg_id;

3406 3407 3408
	if (cgroup_memory_nokmem)
		return 0;

3409
	BUG_ON(memcg->kmemcg_id >= 0);
3410
	BUG_ON(memcg->kmem_state);
3411

3412
	memcg_id = memcg_alloc_cache_id();
3413 3414
	if (memcg_id < 0)
		return memcg_id;
3415

3416
	static_branch_inc(&memcg_kmem_enabled_key);
3417
	/*
3418
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
3419
	 * kmemcg_id. Setting the id after enabling static branching will
3420 3421 3422
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3423
	memcg->kmemcg_id = memcg_id;
3424
	memcg->kmem_state = KMEM_ONLINE;
3425
	INIT_LIST_HEAD(&memcg->kmem_caches);
3426 3427

	return 0;
3428 3429
}

3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

3450
	/*
3451
	 * Deactivate and reparent kmem_caches.
3452
	 */
3453 3454 3455 3456 3457
	memcg_deactivate_kmem_caches(memcg, parent);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

3458 3459 3460 3461 3462 3463 3464 3465
	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
3466
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3467 3468 3469 3470 3471 3472 3473
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
3474 3475
	rcu_read_unlock();

3476
	memcg_drain_all_list_lrus(kmemcg_id, parent);
3477 3478 3479 3480 3481 3482

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
3483 3484 3485 3486
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

3487
	if (memcg->kmem_state == KMEM_ALLOCATED) {
3488
		WARN_ON(!list_empty(&memcg->kmem_caches));
3489 3490 3491
		static_branch_dec(&memcg_kmem_enabled_key);
	}
}
3492
#else
3493
static int memcg_online_kmem(struct mem_cgroup *memcg)
3494 3495 3496 3497 3498 3499 3500 3501 3502
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
3503
#endif /* CONFIG_MEMCG_KMEM */
3504

3505 3506
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
3507
{
3508
	int ret;
3509

3510 3511 3512
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
3513
	return ret;
3514
}
3515

3516
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
3517 3518 3519
{
	int ret;

3520
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3521

3522
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
3523 3524 3525
	if (ret)
		goto out;

3526
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3527 3528 3529
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3530 3531 3532
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
3533 3534 3535 3536 3537 3538
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3539
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
3540 3541 3542 3543
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3544
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3545 3546
	}
out:
3547
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3548 3549 3550
	return ret;
}

3551 3552 3553 3554
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3555 3556
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3557
{
3558
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3559
	unsigned long nr_pages;
3560 3561
	int ret;

3562
	buf = strstrip(buf);
3563
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3564 3565
	if (ret)
		return ret;
3566

3567
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3568
	case RES_LIMIT:
3569 3570 3571 3572
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3573 3574
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3575
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3576
			break;
3577
		case _MEMSWAP:
3578
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3579
			break;
3580
		case _KMEM:
3581 3582 3583
			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
				     "Please report your usecase to linux-mm@kvack.org if you "
				     "depend on this functionality.\n");
3584
			ret = memcg_update_kmem_max(memcg, nr_pages);
3585
			break;
V
Vladimir Davydov 已提交
3586
		case _TCP:
3587
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
3588
			break;
3589
		}
3590
		break;
3591 3592 3593
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3594 3595
		break;
	}
3596
	return ret ?: nbytes;
B
Balbir Singh 已提交
3597 3598
}

3599 3600
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3601
{
3602
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3603
	struct page_counter *counter;
3604

3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3615
	case _TCP:
3616
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3617
		break;
3618 3619 3620
	default:
		BUG();
	}
3621

3622
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3623
	case RES_MAX_USAGE:
3624
		page_counter_reset_watermark(counter);
3625 3626
		break;
	case RES_FAILCNT:
3627
		counter->failcnt = 0;
3628
		break;
3629 3630
	default:
		BUG();
3631
	}
3632

3633
	return nbytes;
3634 3635
}

3636
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3637 3638
					struct cftype *cft)
{
3639
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3640 3641
}

3642
#ifdef CONFIG_MMU
3643
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3644 3645
					struct cftype *cft, u64 val)
{
3646
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3647

3648
	if (val & ~MOVE_MASK)
3649
		return -EINVAL;
3650

3651
	/*
3652 3653 3654 3655
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3656
	 */
3657
	memcg->move_charge_at_immigrate = val;
3658 3659
	return 0;
}
3660
#else
3661
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3662 3663 3664 3665 3666
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3667

3668
#ifdef CONFIG_NUMA
3669 3670 3671 3672 3673 3674 3675 3676

#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)

static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
					   int nid, unsigned int lru_mask)
{
3677
	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3678 3679 3680 3681 3682 3683 3684 3685
	unsigned long nr = 0;
	enum lru_list lru;

	VM_BUG_ON((unsigned)nid >= nr_node_ids);

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3686
		nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
	}
	return nr;
}

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
					     unsigned int lru_mask)
{
	unsigned long nr = 0;
	enum lru_list lru;

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3700
		nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3701 3702 3703 3704
	}
	return nr;
}

3705
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3706
{
3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3719
	int nid;
3720
	unsigned long nr;
3721
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3722

3723 3724 3725 3726 3727 3728 3729 3730 3731
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3732 3733
	}

3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3749 3750 3751 3752 3753 3754
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
static const unsigned int memcg1_stats[] = {
	MEMCG_CACHE,
	MEMCG_RSS,
	MEMCG_RSS_HUGE,
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
	"rss_huge",
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

3777
/* Universal VM events cgroup1 shows, original sort order */
3778
static const unsigned int memcg1_events[] = {
3779 3780 3781 3782 3783 3784
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

3785
static int memcg_stat_show(struct seq_file *m, void *v)
3786
{
3787
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3788
	unsigned long memory, memsw;
3789 3790
	struct mem_cgroup *mi;
	unsigned int i;
3791

3792
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3793

3794 3795
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3796
			continue;
3797
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3798
			   memcg_page_state_local(memcg, memcg1_stats[i]) *
3799
			   PAGE_SIZE);
3800
	}
L
Lee Schermerhorn 已提交
3801

3802
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3803
		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3804
			   memcg_events_local(memcg, memcg1_events[i]));
3805 3806

	for (i = 0; i < NR_LRU_LISTS; i++)
3807
		seq_printf(m, "%s %lu\n", lru_list_name(i),
3808
			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3809
			   PAGE_SIZE);
3810

K
KAMEZAWA Hiroyuki 已提交
3811
	/* Hierarchical information */
3812 3813
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3814 3815
		memory = min(memory, mi->memory.max);
		memsw = min(memsw, mi->memsw.max);
3816
	}
3817 3818
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3819
	if (do_memsw_account())
3820 3821
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3822

3823
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3824
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3825
			continue;
3826
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3827 3828
			   (u64)memcg_page_state(memcg, memcg1_stats[i]) *
			   PAGE_SIZE);
3829 3830
	}

3831
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3832 3833
		seq_printf(m, "total_%s %llu\n",
			   vm_event_name(memcg1_events[i]),
3834
			   (u64)memcg_events(memcg, memcg1_events[i]));
3835

3836
	for (i = 0; i < NR_LRU_LISTS; i++)
3837
		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
3838 3839
			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			   PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
3840

K
KOSAKI Motohiro 已提交
3841 3842
#ifdef CONFIG_DEBUG_VM
	{
3843 3844
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
3845
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3846 3847 3848
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

3849 3850 3851
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
			rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3852

3853 3854 3855 3856 3857
			recent_rotated[0] += rstat->recent_rotated[0];
			recent_rotated[1] += rstat->recent_rotated[1];
			recent_scanned[0] += rstat->recent_scanned[0];
			recent_scanned[1] += rstat->recent_scanned[1];
		}
3858 3859 3860 3861
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3862 3863 3864
	}
#endif

3865 3866 3867
	return 0;
}

3868 3869
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3870
{
3871
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3872

3873
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3874 3875
}

3876 3877
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3878
{
3879
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3880

3881
	if (val > 100)
K
KOSAKI Motohiro 已提交
3882 3883
		return -EINVAL;

3884
	if (css->parent)
3885 3886 3887
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3888

K
KOSAKI Motohiro 已提交
3889 3890 3891
	return 0;
}

3892 3893 3894
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3895
	unsigned long usage;
3896 3897 3898 3899
	int i;

	rcu_read_lock();
	if (!swap)
3900
		t = rcu_dereference(memcg->thresholds.primary);
3901
	else
3902
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3903 3904 3905 3906

	if (!t)
		goto unlock;

3907
	usage = mem_cgroup_usage(memcg, swap);
3908 3909

	/*
3910
	 * current_threshold points to threshold just below or equal to usage.
3911 3912 3913
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3914
	i = t->current_threshold;
3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3938
	t->current_threshold = i - 1;
3939 3940 3941 3942 3943 3944
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3945 3946
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3947
		if (do_memsw_account())
3948 3949 3950 3951
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3952 3953 3954 3955 3956 3957 3958
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3959 3960 3961 3962 3963 3964 3965
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3966 3967
}

3968
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3969 3970 3971
{
	struct mem_cgroup_eventfd_list *ev;

3972 3973
	spin_lock(&memcg_oom_lock);

3974
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3975
		eventfd_signal(ev->eventfd, 1);
3976 3977

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3978 3979 3980
	return 0;
}

3981
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3982
{
K
KAMEZAWA Hiroyuki 已提交
3983 3984
	struct mem_cgroup *iter;

3985
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3986
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3987 3988
}

3989
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3990
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3991
{
3992 3993
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3994 3995
	unsigned long threshold;
	unsigned long usage;
3996
	int i, size, ret;
3997

3998
	ret = page_counter_memparse(args, "-1", &threshold);
3999 4000 4001 4002
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4003

4004
	if (type == _MEM) {
4005
		thresholds = &memcg->thresholds;
4006
		usage = mem_cgroup_usage(memcg, false);
4007
	} else if (type == _MEMSWAP) {
4008
		thresholds = &memcg->memsw_thresholds;
4009
		usage = mem_cgroup_usage(memcg, true);
4010
	} else
4011 4012 4013
		BUG();

	/* Check if a threshold crossed before adding a new one */
4014
	if (thresholds->primary)
4015 4016
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4017
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4018 4019

	/* Allocate memory for new array of thresholds */
4020
	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4021
	if (!new) {
4022 4023 4024
		ret = -ENOMEM;
		goto unlock;
	}
4025
	new->size = size;
4026 4027

	/* Copy thresholds (if any) to new array */
4028 4029
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4030
				sizeof(struct mem_cgroup_threshold));
4031 4032
	}

4033
	/* Add new threshold */
4034 4035
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4036 4037

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4038
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4039 4040 4041
			compare_thresholds, NULL);

	/* Find current threshold */
4042
	new->current_threshold = -1;
4043
	for (i = 0; i < size; i++) {
4044
		if (new->entries[i].threshold <= usage) {
4045
			/*
4046 4047
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4048 4049
			 * it here.
			 */
4050
			++new->current_threshold;
4051 4052
		} else
			break;
4053 4054
	}

4055 4056 4057 4058 4059
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4060

4061
	/* To be sure that nobody uses thresholds */
4062 4063 4064 4065 4066 4067 4068 4069
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4070
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4071 4072
	struct eventfd_ctx *eventfd, const char *args)
{
4073
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4074 4075
}

4076
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4077 4078
	struct eventfd_ctx *eventfd, const char *args)
{
4079
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4080 4081
}

4082
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4083
	struct eventfd_ctx *eventfd, enum res_type type)
4084
{
4085 4086
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4087
	unsigned long usage;
4088
	int i, j, size, entries;
4089 4090

	mutex_lock(&memcg->thresholds_lock);
4091 4092

	if (type == _MEM) {
4093
		thresholds = &memcg->thresholds;
4094
		usage = mem_cgroup_usage(memcg, false);
4095
	} else if (type == _MEMSWAP) {
4096
		thresholds = &memcg->memsw_thresholds;
4097
		usage = mem_cgroup_usage(memcg, true);
4098
	} else
4099 4100
		BUG();

4101 4102 4103
	if (!thresholds->primary)
		goto unlock;

4104 4105 4106 4107
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4108
	size = entries = 0;
4109 4110
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4111
			size++;
4112 4113
		else
			entries++;
4114 4115
	}

4116
	new = thresholds->spare;
4117

4118 4119 4120 4121
	/* If no items related to eventfd have been cleared, nothing to do */
	if (!entries)
		goto unlock;

4122 4123
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4124 4125
		kfree(new);
		new = NULL;
4126
		goto swap_buffers;
4127 4128
	}

4129
	new->size = size;
4130 4131

	/* Copy thresholds and find current threshold */
4132 4133 4134
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4135 4136
			continue;

4137
		new->entries[j] = thresholds->primary->entries[i];
4138
		if (new->entries[j].threshold <= usage) {
4139
			/*
4140
			 * new->current_threshold will not be used
4141 4142 4143
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4144
			++new->current_threshold;
4145 4146 4147 4148
		}
		j++;
	}

4149
swap_buffers:
4150 4151
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4152

4153
	rcu_assign_pointer(thresholds->primary, new);
4154

4155
	/* To be sure that nobody uses thresholds */
4156
	synchronize_rcu();
4157 4158 4159 4160 4161 4162

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
4163
unlock:
4164 4165
	mutex_unlock(&memcg->thresholds_lock);
}
4166

4167
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4168 4169
	struct eventfd_ctx *eventfd)
{
4170
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4171 4172
}

4173
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4174 4175
	struct eventfd_ctx *eventfd)
{
4176
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4177 4178
}

4179
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4180
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4181 4182 4183 4184 4185 4186 4187
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4188
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4189 4190 4191 4192 4193

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4194
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
4195
		eventfd_signal(eventfd, 1);
4196
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4197 4198 4199 4200

	return 0;
}

4201
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4202
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4203 4204 4205
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4206
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4207

4208
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4209 4210 4211 4212 4213 4214
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4215
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4216 4217
}

4218
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4219
{
4220
	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4221

4222
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4223
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
R
Roman Gushchin 已提交
4224 4225
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4226 4227 4228
	return 0;
}

4229
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4230 4231
	struct cftype *cft, u64 val)
{
4232
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4233 4234

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4235
	if (!css->parent || !((val == 0) || (val == 1)))
4236 4237
		return -EINVAL;

4238
	memcg->oom_kill_disable = val;
4239
	if (!val)
4240
		memcg_oom_recover(memcg);
4241

4242 4243 4244
	return 0;
}

4245 4246
#ifdef CONFIG_CGROUP_WRITEBACK

4247 4248
#include <trace/events/writeback.h>

T
Tejun Heo 已提交
4249 4250 4251 4252 4253 4254 4255 4256 4257 4258
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

4259 4260 4261 4262 4263
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

4274 4275 4276 4277 4278 4279
/*
 * idx can be of type enum memcg_stat_item or node_stat_item.
 * Keep in sync with memcg_exact_page().
 */
static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
{
4280
	long x = atomic_long_read(&memcg->vmstats[idx]);
4281 4282 4283
	int cpu;

	for_each_online_cpu(cpu)
4284
		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4285 4286 4287 4288 4289
	if (x < 0)
		x = 0;
	return x;
}

4290 4291 4292
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
4293 4294
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
4295 4296 4297
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
4298 4299 4300
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
4301
 *
4302 4303 4304 4305 4306
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
4307
 */
4308 4309 4310
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
4311 4312 4313 4314
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

4315
	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4316 4317

	/* this should eventually include NR_UNSTABLE_NFS */
4318
	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4319 4320
	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4321
	*pheadroom = PAGE_COUNTER_MAX;
4322 4323

	while ((parent = parent_mem_cgroup(memcg))) {
4324
		unsigned long ceiling = min(memcg->memory.max, memcg->high);
4325 4326
		unsigned long used = page_counter_read(&memcg->memory);

4327
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4328 4329 4330 4331
		memcg = parent;
	}
}

4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385
/*
 * Foreign dirty flushing
 *
 * There's an inherent mismatch between memcg and writeback.  The former
 * trackes ownership per-page while the latter per-inode.  This was a
 * deliberate design decision because honoring per-page ownership in the
 * writeback path is complicated, may lead to higher CPU and IO overheads
 * and deemed unnecessary given that write-sharing an inode across
 * different cgroups isn't a common use-case.
 *
 * Combined with inode majority-writer ownership switching, this works well
 * enough in most cases but there are some pathological cases.  For
 * example, let's say there are two cgroups A and B which keep writing to
 * different but confined parts of the same inode.  B owns the inode and
 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
 * triggering background writeback.  A will be slowed down without a way to
 * make writeback of the dirty pages happen.
 *
 * Conditions like the above can lead to a cgroup getting repatedly and
 * severely throttled after making some progress after each
 * dirty_expire_interval while the underyling IO device is almost
 * completely idle.
 *
 * Solving this problem completely requires matching the ownership tracking
 * granularities between memcg and writeback in either direction.  However,
 * the more egregious behaviors can be avoided by simply remembering the
 * most recent foreign dirtying events and initiating remote flushes on
 * them when local writeback isn't enough to keep the memory clean enough.
 *
 * The following two functions implement such mechanism.  When a foreign
 * page - a page whose memcg and writeback ownerships don't match - is
 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
 * decides that the memcg needs to sleep due to high dirty ratio, it calls
 * mem_cgroup_flush_foreign() which queues writeback on the recorded
 * foreign bdi_writebacks which haven't expired.  Both the numbers of
 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
 * limited to MEMCG_CGWB_FRN_CNT.
 *
 * The mechanism only remembers IDs and doesn't hold any object references.
 * As being wrong occasionally doesn't matter, updates and accesses to the
 * records are lockless and racy.
 */
void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
					     struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = page->mem_cgroup;
	struct memcg_cgwb_frn *frn;
	u64 now = get_jiffies_64();
	u64 oldest_at = now;
	int oldest = -1;
	int i;

4386 4387
	trace_track_foreign_dirty(page, wb);

4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447
	/*
	 * Pick the slot to use.  If there is already a slot for @wb, keep
	 * using it.  If not replace the oldest one which isn't being
	 * written out.
	 */
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		frn = &memcg->cgwb_frn[i];
		if (frn->bdi_id == wb->bdi->id &&
		    frn->memcg_id == wb->memcg_css->id)
			break;
		if (time_before64(frn->at, oldest_at) &&
		    atomic_read(&frn->done.cnt) == 1) {
			oldest = i;
			oldest_at = frn->at;
		}
	}

	if (i < MEMCG_CGWB_FRN_CNT) {
		/*
		 * Re-using an existing one.  Update timestamp lazily to
		 * avoid making the cacheline hot.  We want them to be
		 * reasonably up-to-date and significantly shorter than
		 * dirty_expire_interval as that's what expires the record.
		 * Use the shorter of 1s and dirty_expire_interval / 8.
		 */
		unsigned long update_intv =
			min_t(unsigned long, HZ,
			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);

		if (time_before64(frn->at, now - update_intv))
			frn->at = now;
	} else if (oldest >= 0) {
		/* replace the oldest free one */
		frn = &memcg->cgwb_frn[oldest];
		frn->bdi_id = wb->bdi->id;
		frn->memcg_id = wb->memcg_css->id;
		frn->at = now;
	}
}

/* issue foreign writeback flushes for recorded foreign dirtying events */
void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
	u64 now = jiffies_64;
	int i;

	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];

		/*
		 * If the record is older than dirty_expire_interval,
		 * writeback on it has already started.  No need to kick it
		 * off again.  Also, don't start a new one if there's
		 * already one in flight.
		 */
		if (time_after64(frn->at, now - intv) &&
		    atomic_read(&frn->done.cnt) == 1) {
			frn->at = 0;
4448
			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4449 4450 4451 4452 4453 4454 4455
			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
					       WB_REASON_FOREIGN_FLUSH,
					       &frn->done);
		}
	}
}

T
Tejun Heo 已提交
4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

4467 4468 4469 4470
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

4471 4472
#endif	/* CONFIG_CGROUP_WRITEBACK */

4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4486 4487 4488 4489 4490
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4491
static void memcg_event_remove(struct work_struct *work)
4492
{
4493 4494
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4495
	struct mem_cgroup *memcg = event->memcg;
4496 4497 4498

	remove_wait_queue(event->wqh, &event->wait);

4499
	event->unregister_event(memcg, event->eventfd);
4500 4501 4502 4503 4504 4505

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4506
	css_put(&memcg->css);
4507 4508 4509
}

/*
4510
 * Gets called on EPOLLHUP on eventfd when user closes it.
4511 4512 4513
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4514
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4515
			    int sync, void *key)
4516
{
4517 4518
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4519
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
4520
	__poll_t flags = key_to_poll(key);
4521

4522
	if (flags & EPOLLHUP) {
4523 4524 4525 4526 4527 4528 4529 4530 4531
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4532
		spin_lock(&memcg->event_list_lock);
4533 4534 4535 4536 4537 4538 4539 4540
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4541
		spin_unlock(&memcg->event_list_lock);
4542 4543 4544 4545 4546
	}

	return 0;
}

4547
static void memcg_event_ptable_queue_proc(struct file *file,
4548 4549
		wait_queue_head_t *wqh, poll_table *pt)
{
4550 4551
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4552 4553 4554 4555 4556 4557

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4558 4559
 * DO NOT USE IN NEW FILES.
 *
4560 4561 4562 4563 4564
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4565 4566
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4567
{
4568
	struct cgroup_subsys_state *css = of_css(of);
4569
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4570
	struct mem_cgroup_event *event;
4571 4572 4573 4574
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4575
	const char *name;
4576 4577 4578
	char *endp;
	int ret;

4579 4580 4581
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4582 4583
	if (*endp != ' ')
		return -EINVAL;
4584
	buf = endp + 1;
4585

4586
	cfd = simple_strtoul(buf, &endp, 10);
4587 4588
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4589
	buf = endp + 1;
4590 4591 4592 4593 4594

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4595
	event->memcg = memcg;
4596
	INIT_LIST_HEAD(&event->list);
4597 4598 4599
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4625 4626 4627 4628 4629
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4630 4631
	 *
	 * DO NOT ADD NEW FILES.
4632
	 */
A
Al Viro 已提交
4633
	name = cfile.file->f_path.dentry->d_name.name;
4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4645 4646
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4647 4648 4649 4650 4651
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4652
	/*
4653 4654 4655
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4656
	 */
A
Al Viro 已提交
4657
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4658
					       &memory_cgrp_subsys);
4659
	ret = -EINVAL;
4660
	if (IS_ERR(cfile_css))
4661
		goto out_put_cfile;
4662 4663
	if (cfile_css != css) {
		css_put(cfile_css);
4664
		goto out_put_cfile;
4665
	}
4666

4667
	ret = event->register_event(memcg, event->eventfd, buf);
4668 4669 4670
	if (ret)
		goto out_put_css;

4671
	vfs_poll(efile.file, &event->pt);
4672

4673 4674 4675
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4676 4677 4678 4679

	fdput(cfile);
	fdput(efile);

4680
	return nbytes;
4681 4682

out_put_css:
4683
	css_put(css);
4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4696
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4697
	{
4698
		.name = "usage_in_bytes",
4699
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4700
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4701
	},
4702 4703
	{
		.name = "max_usage_in_bytes",
4704
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4705
		.write = mem_cgroup_reset,
4706
		.read_u64 = mem_cgroup_read_u64,
4707
	},
B
Balbir Singh 已提交
4708
	{
4709
		.name = "limit_in_bytes",
4710
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4711
		.write = mem_cgroup_write,
4712
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4713
	},
4714 4715 4716
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4717
		.write = mem_cgroup_write,
4718
		.read_u64 = mem_cgroup_read_u64,
4719
	},
B
Balbir Singh 已提交
4720 4721
	{
		.name = "failcnt",
4722
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4723
		.write = mem_cgroup_reset,
4724
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4725
	},
4726 4727
	{
		.name = "stat",
4728
		.seq_show = memcg_stat_show,
4729
	},
4730 4731
	{
		.name = "force_empty",
4732
		.write = mem_cgroup_force_empty_write,
4733
	},
4734 4735 4736 4737 4738
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4739
	{
4740
		.name = "cgroup.event_control",		/* XXX: for compat */
4741
		.write = memcg_write_event_control,
4742
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4743
	},
K
KOSAKI Motohiro 已提交
4744 4745 4746 4747 4748
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4749 4750 4751 4752 4753
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4754 4755
	{
		.name = "oom_control",
4756
		.seq_show = mem_cgroup_oom_control_read,
4757
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4758 4759
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4760 4761 4762
	{
		.name = "pressure_level",
	},
4763 4764 4765
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4766
		.seq_show = memcg_numa_stat_show,
4767 4768
	},
#endif
4769 4770 4771
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4772
		.write = mem_cgroup_write,
4773
		.read_u64 = mem_cgroup_read_u64,
4774 4775 4776 4777
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4778
		.read_u64 = mem_cgroup_read_u64,
4779 4780 4781 4782
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4783
		.write = mem_cgroup_reset,
4784
		.read_u64 = mem_cgroup_read_u64,
4785 4786 4787 4788
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4789
		.write = mem_cgroup_reset,
4790
		.read_u64 = mem_cgroup_read_u64,
4791
	},
4792 4793
#if defined(CONFIG_MEMCG_KMEM) && \
	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4794 4795
	{
		.name = "kmem.slabinfo",
4796 4797 4798
		.seq_start = memcg_slab_start,
		.seq_next = memcg_slab_next,
		.seq_stop = memcg_slab_stop,
4799
		.seq_show = memcg_slab_show,
4800 4801
	},
#endif
V
Vladimir Davydov 已提交
4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4825
	{ },	/* terminate */
4826
};
4827

4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
 * However, there usually are many references to the oflline CSS after
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

4854 4855 4856 4857 4858 4859 4860 4861
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

4862
static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4863
{
4864
	refcount_add(n, &memcg->id.ref);
4865 4866
}

4867
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4868
{
4869
	if (refcount_sub_and_test(n, &memcg->id.ref)) {
4870
		mem_cgroup_id_remove(memcg);
4871 4872 4873 4874 4875 4876

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

4877 4878 4879 4880 4881
static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

4894
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4895 4896
{
	struct mem_cgroup_per_node *pn;
4897
	int tmp = node;
4898 4899 4900 4901 4902 4903 4904 4905
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4906 4907
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4908
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4909 4910
	if (!pn)
		return 1;
4911

4912 4913 4914 4915 4916 4917
	pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat_local) {
		kfree(pn);
		return 1;
	}

4918 4919
	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat_cpu) {
4920
		free_percpu(pn->lruvec_stat_local);
4921 4922 4923 4924
		kfree(pn);
		return 1;
	}

4925 4926 4927 4928 4929
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

4930
	memcg->nodeinfo[node] = pn;
4931 4932 4933
	return 0;
}

4934
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4935
{
4936 4937
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
4938 4939 4940
	if (!pn)
		return;

4941
	free_percpu(pn->lruvec_stat_cpu);
4942
	free_percpu(pn->lruvec_stat_local);
4943
	kfree(pn);
4944 4945
}

4946
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4947
{
4948
	int node;
4949

4950
	for_each_node(node)
4951
		free_mem_cgroup_per_node_info(memcg, node);
4952
	free_percpu(memcg->vmstats_percpu);
4953
	free_percpu(memcg->vmstats_local);
4954
	kfree(memcg);
4955
}
4956

4957 4958 4959
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
4960 4961 4962 4963
	/*
	 * Flush percpu vmstats and vmevents to guarantee the value correctness
	 * on parent's and all ancestor levels.
	 */
4964
	memcg_flush_percpu_vmstats(memcg);
4965
	memcg_flush_percpu_vmevents(memcg);
4966 4967 4968
	__mem_cgroup_free(memcg);
}

4969
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4970
{
4971
	struct mem_cgroup *memcg;
4972
	unsigned int size;
4973
	int node;
4974
	int __maybe_unused i;
B
Balbir Singh 已提交
4975

4976 4977 4978 4979
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4980
	if (!memcg)
4981 4982
		return NULL;

4983 4984 4985 4986 4987 4988
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
	if (memcg->id.id < 0)
		goto fail;

4989 4990 4991 4992
	memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
	if (!memcg->vmstats_local)
		goto fail;

4993 4994
	memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
	if (!memcg->vmstats_percpu)
4995
		goto fail;
4996

B
Bob Liu 已提交
4997
	for_each_node(node)
4998
		if (alloc_mem_cgroup_per_node_info(memcg, node))
4999
			goto fail;
5000

5001 5002
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
5003

5004
	INIT_WORK(&memcg->high_work, high_work_func);
5005 5006 5007
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5008
	vmpressure_init(&memcg->vmpressure);
5009 5010
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
5011
	memcg->socket_pressure = jiffies;
5012
#ifdef CONFIG_MEMCG_KMEM
V
Vladimir Davydov 已提交
5013 5014
	memcg->kmemcg_id = -1;
#endif
5015 5016
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
5017 5018 5019
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		memcg->cgwb_frn[i].done =
			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5020 5021 5022 5023 5024
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
	memcg->deferred_split_queue.split_queue_len = 0;
5025
#endif
5026
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5027 5028
	return memcg;
fail:
5029
	mem_cgroup_id_remove(memcg);
5030
	__mem_cgroup_free(memcg);
5031
	return NULL;
5032 5033
}

5034 5035
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5036
{
5037 5038 5039
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
5040

5041 5042 5043
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
5044

5045 5046 5047 5048 5049 5050 5051 5052
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
5053
		page_counter_init(&memcg->memory, &parent->memory);
5054
		page_counter_init(&memcg->swap, &parent->swap);
5055 5056
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
5057
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5058
	} else {
5059
		page_counter_init(&memcg->memory, NULL);
5060
		page_counter_init(&memcg->swap, NULL);
5061 5062
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
5063
		page_counter_init(&memcg->tcpmem, NULL);
5064 5065 5066 5067 5068
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
5069
		if (parent != root_mem_cgroup)
5070
			memory_cgrp_subsys.broken_hierarchy = true;
5071
	}
5072

5073 5074
	/* The following stuff does not apply to the root */
	if (!parent) {
5075 5076 5077
#ifdef CONFIG_MEMCG_KMEM
		INIT_LIST_HEAD(&memcg->kmem_caches);
#endif
5078 5079 5080 5081
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

5082
	error = memcg_online_kmem(memcg);
5083 5084
	if (error)
		goto fail;
5085

5086
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5087
		static_branch_inc(&memcg_sockets_enabled_key);
5088

5089 5090
	return &memcg->css;
fail:
5091
	mem_cgroup_id_remove(memcg);
5092
	mem_cgroup_free(memcg);
5093
	return ERR_PTR(-ENOMEM);
5094 5095
}

5096
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5097
{
5098 5099
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5100 5101 5102 5103 5104 5105 5106 5107 5108 5109
	/*
	 * A memcg must be visible for memcg_expand_shrinker_maps()
	 * by the time the maps are allocated. So, we allocate maps
	 * here, when for_each_mem_cgroup() can't skip it.
	 */
	if (memcg_alloc_shrinker_maps(memcg)) {
		mem_cgroup_id_remove(memcg);
		return -ENOMEM;
	}

5110
	/* Online state pins memcg ID, memcg ID pins CSS */
5111
	refcount_set(&memcg->id.ref, 1);
5112
	css_get(css);
5113
	return 0;
B
Balbir Singh 已提交
5114 5115
}

5116
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5117
{
5118
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5119
	struct mem_cgroup_event *event, *tmp;
5120 5121 5122 5123 5124 5125

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
5126 5127
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5128 5129 5130
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
5131
	spin_unlock(&memcg->event_list_lock);
5132

R
Roman Gushchin 已提交
5133
	page_counter_set_min(&memcg->memory, 0);
5134
	page_counter_set_low(&memcg->memory, 0);
5135

5136
	memcg_offline_kmem(memcg);
5137
	wb_memcg_offline(memcg);
5138

5139 5140
	drain_all_stock(memcg);

5141
	mem_cgroup_id_put(memcg);
5142 5143
}

5144 5145 5146 5147 5148 5149 5150
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

5151
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
5152
{
5153
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5154
	int __maybe_unused i;
5155

5156 5157 5158 5159
#ifdef CONFIG_CGROUP_WRITEBACK
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
#endif
5160
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5161
		static_branch_dec(&memcg_sockets_enabled_key);
5162

5163
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
5164
		static_branch_dec(&memcg_sockets_enabled_key);
5165

5166 5167 5168
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
5169
	memcg_free_shrinker_maps(memcg);
5170
	memcg_free_kmem(memcg);
5171
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
5172 5173
}

5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5191 5192 5193 5194 5195
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
R
Roman Gushchin 已提交
5196
	page_counter_set_min(&memcg->memory, 0);
5197
	page_counter_set_low(&memcg->memory, 0);
5198
	memcg->high = PAGE_COUNTER_MAX;
5199
	memcg->soft_limit = PAGE_COUNTER_MAX;
5200
	memcg_wb_domain_size_changed(memcg);
5201 5202
}

5203
#ifdef CONFIG_MMU
5204
/* Handlers for move charge at task migration. */
5205
static int mem_cgroup_do_precharge(unsigned long count)
5206
{
5207
	int ret;
5208

5209 5210
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5211
	if (!ret) {
5212 5213 5214
		mc.precharge += count;
		return ret;
	}
5215

5216
	/* Try charges one by one with reclaim, but do not retry */
5217
	while (count--) {
5218
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5219 5220
		if (ret)
			return ret;
5221
		mc.precharge++;
5222
		cond_resched();
5223
	}
5224
	return 0;
5225 5226 5227 5228
}

union mc_target {
	struct page	*page;
5229
	swp_entry_t	ent;
5230 5231 5232
};

enum mc_target_type {
5233
	MC_TARGET_NONE = 0,
5234
	MC_TARGET_PAGE,
5235
	MC_TARGET_SWAP,
5236
	MC_TARGET_DEVICE,
5237 5238
};

D
Daisuke Nishimura 已提交
5239 5240
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5241
{
5242
	struct page *page = vm_normal_page(vma, addr, ptent);
5243

D
Daisuke Nishimura 已提交
5244 5245 5246
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
5247
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5248
			return NULL;
5249 5250 5251 5252
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
5253 5254 5255 5256 5257 5258
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5259
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
5260
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5261
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
5262 5263 5264 5265
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

5266
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
5267
		return NULL;
5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
		page = device_private_entry_to_page(ent);
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

5285 5286 5287 5288
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5289
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5290
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
5291 5292 5293 5294
		entry->val = ent.val;

	return page;
}
5295 5296
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5297
			pte_t ptent, swp_entry_t *entry)
5298 5299 5300 5301
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5302

5303 5304 5305 5306 5307 5308 5309 5310 5311
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
5312
	if (!(mc.flags & MOVE_FILE))
5313 5314 5315
		return NULL;

	mapping = vma->vm_file->f_mapping;
5316
	pgoff = linear_page_index(vma, addr);
5317 5318

	/* page is moved even if it's not RSS of this task(page-faulted). */
5319 5320
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
5321 5322
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
5323
		if (xa_is_value(page)) {
5324
			swp_entry_t swp = radix_to_swp_entry(page);
5325
			if (do_memsw_account())
5326
				*entry = swp;
5327 5328
			page = find_get_page(swap_address_space(swp),
					     swp_offset(swp));
5329 5330 5331 5332 5333
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
5334
#endif
5335 5336 5337
	return page;
}

5338 5339 5340
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
5341
 * @compound: charge the page as compound or small page
5342 5343 5344
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
5345
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5346 5347 5348 5349 5350
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
5351
				   bool compound,
5352 5353 5354
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
5355 5356
	struct lruvec *from_vec, *to_vec;
	struct pglist_data *pgdat;
5357
	unsigned long flags;
5358
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5359
	int ret;
5360
	bool anon;
5361 5362 5363

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
5364
	VM_BUG_ON(compound && !PageTransHuge(page));
5365 5366

	/*
5367
	 * Prevent mem_cgroup_migrate() from looking at
5368
	 * page->mem_cgroup of its source page while we change it.
5369
	 */
5370
	ret = -EBUSY;
5371 5372 5373 5374 5375 5376 5377
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

5378 5379
	anon = PageAnon(page);

5380
	pgdat = page_pgdat(page);
5381 5382
	from_vec = mem_cgroup_lruvec(from, pgdat);
	to_vec = mem_cgroup_lruvec(to, pgdat);
5383

5384 5385
	spin_lock_irqsave(&from->move_lock, flags);

5386
	if (!anon && page_mapped(page)) {
5387 5388
		__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
		__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5389 5390
	}

5391 5392
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
5393
	 * mod_memcg_page_state will serialize updates to PageDirty.
5394 5395 5396 5397 5398 5399
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
5400 5401
			__mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
			__mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
5402 5403 5404
		}
	}

5405
	if (PageWriteback(page)) {
5406 5407
		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5408 5409 5410 5411 5412 5413 5414 5415 5416 5417
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
5418

5419 5420 5421 5422 5423
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
5424
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5425
	memcg_check_events(to, page);
5426
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5427 5428 5429 5430 5431 5432 5433 5434
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5450 5451
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
 *     (so ZONE_DEVICE page and thus not on the lru).
5452 5453 5454
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
5455 5456
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5457 5458 5459 5460
 *
 * Called with pte lock held.
 */

5461
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5462 5463 5464
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
5465
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5466 5467 5468 5469 5470
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
5471
		page = mc_handle_swap_pte(vma, ptent, &ent);
5472
	else if (pte_none(ptent))
5473
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5474 5475

	if (!page && !ent.val)
5476
		return ret;
5477 5478
	if (page) {
		/*
5479
		 * Do only loose check w/o serialization.
5480
		 * mem_cgroup_move_account() checks the page is valid or
5481
		 * not under LRU exclusion.
5482
		 */
5483
		if (page->mem_cgroup == mc.from) {
5484
			ret = MC_TARGET_PAGE;
5485
			if (is_device_private_page(page))
5486
				ret = MC_TARGET_DEVICE;
5487 5488 5489 5490 5491 5492
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
5493 5494 5495 5496 5497
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
5498
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5499 5500 5501
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5502 5503 5504 5505
	}
	return ret;
}

5506 5507
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
5508 5509
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
5510 5511 5512 5513 5514 5515 5516 5517
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

5518 5519 5520 5521 5522
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
5523
	page = pmd_page(pmd);
5524
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5525
	if (!(mc.flags & MOVE_ANON))
5526
		return ret;
5527
	if (page->mem_cgroup == mc.from) {
5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5544 5545 5546 5547
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
5548
	struct vm_area_struct *vma = walk->vma;
5549 5550 5551
	pte_t *pte;
	spinlock_t *ptl;

5552 5553
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5554 5555
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5556 5557
		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
		 * this might change.
5558
		 */
5559 5560
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5561
		spin_unlock(ptl);
5562
		return 0;
5563
	}
5564

5565 5566
	if (pmd_trans_unstable(pmd))
		return 0;
5567 5568
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5569
		if (get_mctgt_type(vma, addr, *pte, NULL))
5570 5571 5572 5573
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5574 5575 5576
	return 0;
}

5577 5578 5579 5580
static const struct mm_walk_ops precharge_walk_ops = {
	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
};

5581 5582 5583 5584
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

5585
	down_read(&mm->mmap_sem);
5586
	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5587
	up_read(&mm->mmap_sem);
5588 5589 5590 5591 5592 5593 5594 5595 5596

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5597 5598 5599 5600 5601
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5602 5603
}

5604 5605
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5606
{
5607 5608 5609
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5610
	/* we must uncharge all the leftover precharges from mc.to */
5611
	if (mc.precharge) {
5612
		cancel_charge(mc.to, mc.precharge);
5613 5614 5615 5616 5617 5618 5619
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5620
		cancel_charge(mc.from, mc.moved_charge);
5621
		mc.moved_charge = 0;
5622
	}
5623 5624 5625
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5626
		if (!mem_cgroup_is_root(mc.from))
5627
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5628

5629 5630
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

5631
		/*
5632 5633
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5634
		 */
5635
		if (!mem_cgroup_is_root(mc.to))
5636 5637
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5638 5639
		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
		css_put_many(&mc.to->css, mc.moved_swap);
5640

5641 5642
		mc.moved_swap = 0;
	}
5643 5644 5645 5646 5647 5648 5649
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
5650 5651
	struct mm_struct *mm = mc.mm;

5652 5653 5654 5655 5656 5657
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5658
	spin_lock(&mc.lock);
5659 5660
	mc.from = NULL;
	mc.to = NULL;
5661
	mc.mm = NULL;
5662
	spin_unlock(&mc.lock);
5663 5664

	mmput(mm);
5665 5666
}

5667
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5668
{
5669
	struct cgroup_subsys_state *css;
5670
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5671
	struct mem_cgroup *from;
5672
	struct task_struct *leader, *p;
5673
	struct mm_struct *mm;
5674
	unsigned long move_flags;
5675
	int ret = 0;
5676

5677 5678
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5679 5680
		return 0;

5681 5682 5683 5684 5685 5686 5687
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
5688
	cgroup_taskset_for_each_leader(leader, css, tset) {
5689 5690
		WARN_ON_ONCE(p);
		p = leader;
5691
		memcg = mem_cgroup_from_css(css);
5692 5693 5694 5695
	}
	if (!p)
		return 0;

5696 5697 5698 5699 5700 5701 5702 5703 5704
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
5721
		mc.mm = mm;
5722 5723 5724 5725 5726 5727 5728 5729 5730
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
5731 5732
	} else {
		mmput(mm);
5733 5734 5735 5736
	}
	return ret;
}

5737
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5738
{
5739 5740
	if (mc.to)
		mem_cgroup_clear_mc();
5741 5742
}

5743 5744 5745
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5746
{
5747
	int ret = 0;
5748
	struct vm_area_struct *vma = walk->vma;
5749 5750
	pte_t *pte;
	spinlock_t *ptl;
5751 5752 5753
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5754

5755 5756
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5757
		if (mc.precharge < HPAGE_PMD_NR) {
5758
			spin_unlock(ptl);
5759 5760 5761 5762 5763 5764
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
5765
				if (!mem_cgroup_move_account(page, true,
5766
							     mc.from, mc.to)) {
5767 5768 5769 5770 5771 5772
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
5773 5774 5775 5776 5777 5778 5779 5780
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
5781
		}
5782
		spin_unlock(ptl);
5783
		return 0;
5784 5785
	}

5786 5787
	if (pmd_trans_unstable(pmd))
		return 0;
5788 5789 5790 5791
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5792
		bool device = false;
5793
		swp_entry_t ent;
5794 5795 5796 5797

		if (!mc.precharge)
			break;

5798
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5799 5800 5801
		case MC_TARGET_DEVICE:
			device = true;
			/* fall through */
5802 5803
		case MC_TARGET_PAGE:
			page = target.page;
5804 5805 5806 5807 5808 5809 5810 5811
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
5812
			if (!device && isolate_lru_page(page))
5813
				goto put;
5814 5815
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
5816
				mc.precharge--;
5817 5818
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5819
			}
5820 5821
			if (!device)
				putback_lru_page(page);
5822
put:			/* get_mctgt_type() gets the page */
5823 5824
			put_page(page);
			break;
5825 5826
		case MC_TARGET_SWAP:
			ent = target.ent;
5827
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5828
				mc.precharge--;
5829 5830 5831
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5832
			break;
5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5847
		ret = mem_cgroup_do_precharge(1);
5848 5849 5850 5851 5852 5853 5854
		if (!ret)
			goto retry;
	}

	return ret;
}

5855 5856 5857 5858
static const struct mm_walk_ops charge_walk_ops = {
	.pmd_entry	= mem_cgroup_move_charge_pte_range,
};

5859
static void mem_cgroup_move_charge(void)
5860 5861
{
	lru_add_drain_all();
5862
	/*
5863 5864 5865
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
5866 5867 5868
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5869
retry:
5870
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5882 5883 5884 5885
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
5886 5887
	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
			NULL);
5888

5889
	up_read(&mc.mm->mmap_sem);
5890
	atomic_dec(&mc.from->moving_account);
5891 5892
}

5893
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
5894
{
5895 5896
	if (mc.to) {
		mem_cgroup_move_charge();
5897
		mem_cgroup_clear_mc();
5898
	}
B
Balbir Singh 已提交
5899
}
5900
#else	/* !CONFIG_MMU */
5901
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5902 5903 5904
{
	return 0;
}
5905
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5906 5907
{
}
5908
static void mem_cgroup_move_task(void)
5909 5910 5911
{
}
#endif
B
Balbir Singh 已提交
5912

5913 5914
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5915 5916
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5917
 */
5918
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5919 5920
{
	/*
5921
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5922 5923 5924
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5925
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5926 5927 5928
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5929 5930
}

5931 5932 5933 5934 5935 5936 5937 5938 5939 5940
static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
{
	if (value == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);

	return 0;
}

5941 5942 5943
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5944 5945 5946
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5947 5948
}

R
Roman Gushchin 已提交
5949 5950
static int memory_min_show(struct seq_file *m, void *v)
{
5951 5952
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
R
Roman Gushchin 已提交
5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

5972 5973
static int memory_low_show(struct seq_file *m, void *v)
{
5974 5975
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5976 5977 5978 5979 5980 5981 5982 5983 5984 5985
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5986
	err = page_counter_memparse(buf, "max", &low);
5987 5988 5989
	if (err)
		return err;

5990
	page_counter_set_low(&memcg->memory, low);
5991 5992 5993 5994 5995 5996

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
5997
	return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
5998 5999 6000 6001 6002 6003
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6004 6005
	unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
6006 6007 6008 6009
	unsigned long high;
	int err;

	buf = strstrip(buf);
6010
	err = page_counter_memparse(buf, "max", &high);
6011 6012 6013 6014 6015
	if (err)
		return err;

	memcg->high = high;

6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037
	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);
		unsigned long reclaimed;

		if (nr_pages <= high)
			break;

		if (signal_pending(current))
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
							 GFP_KERNEL, true);

		if (!reclaimed && !nr_retries--)
			break;
	}
6038

6039 6040 6041 6042 6043
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
6044 6045
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6046 6047 6048 6049 6050 6051
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6052 6053
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
6054 6055 6056 6057
	unsigned long max;
	int err;

	buf = strstrip(buf);
6058
	err = page_counter_memparse(buf, "max", &max);
6059 6060 6061
	if (err)
		return err;

6062
	xchg(&memcg->memory.max, max);
6063 6064 6065 6066 6067 6068 6069

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

6070
		if (signal_pending(current))
6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

6086
		memcg_memory_event(memcg, MEMCG_OOM);
6087 6088 6089
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
6090

6091
	memcg_wb_domain_size_changed(memcg);
6092 6093 6094
	return nbytes;
}

6095 6096 6097 6098 6099 6100 6101 6102 6103 6104
static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
{
	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&events[MEMCG_OOM_KILL]));
}

6105 6106
static int memory_events_show(struct seq_file *m, void *v)
{
6107
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6108

6109 6110 6111 6112 6113 6114 6115
	__memory_events_show(m, memcg->memory_events);
	return 0;
}

static int memory_events_local_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6116

6117
	__memory_events_show(m, memcg->memory_events_local);
6118 6119 6120
	return 0;
}

6121 6122
static int memory_stat_show(struct seq_file *m, void *v)
{
6123
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6124
	char *buf;
6125

6126 6127 6128 6129 6130
	buf = memory_stat_format(memcg);
	if (!buf)
		return -ENOMEM;
	seq_puts(m, buf);
	kfree(buf);
6131 6132 6133
	return 0;
}

6134 6135
static int memory_oom_group_show(struct seq_file *m, void *v)
{
6136
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164

	seq_printf(m, "%d\n", memcg->oom_group);

	return 0;
}

static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
				      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	int ret, oom_group;

	buf = strstrip(buf);
	if (!buf)
		return -EINVAL;

	ret = kstrtoint(buf, 0, &oom_group);
	if (ret)
		return ret;

	if (oom_group != 0 && oom_group != 1)
		return -EINVAL;

	memcg->oom_group = oom_group;

	return nbytes;
}

6165 6166 6167
static struct cftype memory_files[] = {
	{
		.name = "current",
6168
		.flags = CFTYPE_NOT_ON_ROOT,
6169 6170
		.read_u64 = memory_current_read,
	},
R
Roman Gushchin 已提交
6171 6172 6173 6174 6175 6176
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
6198
		.file_offset = offsetof(struct mem_cgroup, events_file),
6199 6200
		.seq_show = memory_events_show,
	},
6201 6202 6203 6204 6205 6206
	{
		.name = "events.local",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, events_local_file),
		.seq_show = memory_events_local_show,
	},
6207 6208 6209 6210 6211
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
6212 6213 6214 6215 6216 6217
	{
		.name = "oom.group",
		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
		.seq_show = memory_oom_group_show,
		.write = memory_oom_group_write,
	},
6218 6219 6220
	{ }	/* terminate */
};

6221
struct cgroup_subsys memory_cgrp_subsys = {
6222
	.css_alloc = mem_cgroup_css_alloc,
6223
	.css_online = mem_cgroup_css_online,
6224
	.css_offline = mem_cgroup_css_offline,
6225
	.css_released = mem_cgroup_css_released,
6226
	.css_free = mem_cgroup_css_free,
6227
	.css_reset = mem_cgroup_css_reset,
6228 6229
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
6230
	.post_attach = mem_cgroup_move_task,
6231
	.bind = mem_cgroup_bind,
6232 6233
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
6234
	.early_init = 0,
B
Balbir Singh 已提交
6235
};
6236

6237
/**
R
Roman Gushchin 已提交
6238
 * mem_cgroup_protected - check if memory consumption is in the normal range
6239
 * @root: the top ancestor of the sub-tree being checked
6240 6241
 * @memcg: the memory cgroup to check
 *
6242 6243
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
6244
 *
R
Roman Gushchin 已提交
6245 6246 6247 6248 6249
 * Returns one of the following:
 *   MEMCG_PROT_NONE: cgroup memory is not protected
 *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
 *     an unprotected supply of reclaimable memory from other cgroups.
 *   MEMCG_PROT_MIN: cgroup memory is protected
6250
 *
R
Roman Gushchin 已提交
6251
 * @root is exclusive; it is never protected when looked at directly
6252
 *
R
Roman Gushchin 已提交
6253 6254 6255
 * To provide a proper hierarchical behavior, effective memory.min/low values
 * are used. Below is the description of how effective memory.low is calculated.
 * Effective memory.min values is calculated in the same way.
6256
 *
6257 6258 6259 6260 6261 6262 6263
 * Effective memory.low is always equal or less than the original memory.low.
 * If there is no memory.low overcommittment (which is always true for
 * top-level memory cgroups), these two values are equal.
 * Otherwise, it's a part of parent's effective memory.low,
 * calculated as a cgroup's memory.low usage divided by sum of sibling's
 * memory.low usages, where memory.low usage is the size of actually
 * protected memory.
6264
 *
6265 6266 6267
 *                                             low_usage
 * elow = min( memory.low, parent->elow * ------------------ ),
 *                                        siblings_low_usage
6268
 *
6269 6270
 *             | memory.current, if memory.current < memory.low
 * low_usage = |
6271
 *	       | 0, otherwise.
6272
 *
6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299
 *
 * Such definition of the effective memory.low provides the expected
 * hierarchical behavior: parent's memory.low value is limiting
 * children, unprotected memory is reclaimed first and cgroups,
 * which are not using their guarantee do not affect actual memory
 * distribution.
 *
 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
 *
 *     A      A/memory.low = 2G, A/memory.current = 6G
 *    //\\
 *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
 *            C/memory.low = 1G  C/memory.current = 2G
 *            D/memory.low = 0   D/memory.current = 2G
 *            E/memory.low = 10G E/memory.current = 0
 *
 * and the memory pressure is applied, the following memory distribution
 * is expected (approximately):
 *
 *     A/memory.current = 2G
 *
 *     B/memory.current = 1.3G
 *     C/memory.current = 0.6G
 *     D/memory.current = 0
 *     E/memory.current = 0
 *
 * These calculations require constant tracking of the actual low usages
R
Roman Gushchin 已提交
6300 6301
 * (see propagate_protected_usage()), as well as recursive calculation of
 * effective memory.low values. But as we do call mem_cgroup_protected()
6302 6303 6304 6305
 * path for each memory cgroup top-down from the reclaim,
 * it's possible to optimize this part, and save calculated elow
 * for next usage. This part is intentionally racy, but it's ok,
 * as memory.low is a best-effort mechanism.
6306
 */
R
Roman Gushchin 已提交
6307 6308
enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
						struct mem_cgroup *memcg)
6309
{
6310
	struct mem_cgroup *parent;
R
Roman Gushchin 已提交
6311 6312 6313
	unsigned long emin, parent_emin;
	unsigned long elow, parent_elow;
	unsigned long usage;
6314

6315
	if (mem_cgroup_disabled())
R
Roman Gushchin 已提交
6316
		return MEMCG_PROT_NONE;
6317

6318 6319 6320
	if (!root)
		root = root_mem_cgroup;
	if (memcg == root)
R
Roman Gushchin 已提交
6321
		return MEMCG_PROT_NONE;
6322

6323
	usage = page_counter_read(&memcg->memory);
R
Roman Gushchin 已提交
6324 6325 6326 6327 6328
	if (!usage)
		return MEMCG_PROT_NONE;

	emin = memcg->memory.min;
	elow = memcg->memory.low;
6329

R
Roman Gushchin 已提交
6330
	parent = parent_mem_cgroup(memcg);
6331 6332 6333 6334
	/* No parent means a non-hierarchical mode on v1 memcg */
	if (!parent)
		return MEMCG_PROT_NONE;

6335 6336 6337
	if (parent == root)
		goto exit;

R
Roman Gushchin 已提交
6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351
	parent_emin = READ_ONCE(parent->memory.emin);
	emin = min(emin, parent_emin);
	if (emin && parent_emin) {
		unsigned long min_usage, siblings_min_usage;

		min_usage = min(usage, memcg->memory.min);
		siblings_min_usage = atomic_long_read(
			&parent->memory.children_min_usage);

		if (min_usage && siblings_min_usage)
			emin = min(emin, parent_emin * min_usage /
				   siblings_min_usage);
	}

6352 6353
	parent_elow = READ_ONCE(parent->memory.elow);
	elow = min(elow, parent_elow);
R
Roman Gushchin 已提交
6354 6355
	if (elow && parent_elow) {
		unsigned long low_usage, siblings_low_usage;
6356

R
Roman Gushchin 已提交
6357 6358 6359
		low_usage = min(usage, memcg->memory.low);
		siblings_low_usage = atomic_long_read(
			&parent->memory.children_low_usage);
6360

R
Roman Gushchin 已提交
6361 6362 6363 6364
		if (low_usage && siblings_low_usage)
			elow = min(elow, parent_elow * low_usage /
				   siblings_low_usage);
	}
6365 6366

exit:
R
Roman Gushchin 已提交
6367
	memcg->memory.emin = emin;
6368
	memcg->memory.elow = elow;
R
Roman Gushchin 已提交
6369 6370 6371 6372 6373 6374 6375

	if (usage <= emin)
		return MEMCG_PROT_MIN;
	else if (usage <= elow)
		return MEMCG_PROT_LOW;
	else
		return MEMCG_PROT_NONE;
6376 6377
}

6378 6379 6380 6381 6382 6383
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
6384
 * @compound: charge the page as compound or small page
6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6397 6398
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
6399 6400
{
	struct mem_cgroup *memcg = NULL;
6401
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
6415
		VM_BUG_ON_PAGE(!PageLocked(page), page);
6416
		if (compound_head(page)->mem_cgroup)
6417
			goto out;
6418

6419
		if (do_swap_account) {
6420 6421 6422 6423 6424 6425 6426 6427 6428
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454
int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
{
	struct mem_cgroup *memcg;
	int ret;

	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
	memcg = *memcgp;
	mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
	return ret;
}

6455 6456 6457 6458 6459
/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
6460
 * @compound: charge the page as compound or small page
6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6473
			      bool lrucare, bool compound)
6474
{
6475
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

6490 6491 6492
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
6493
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6494 6495
	memcg_check_events(memcg, page);
	local_irq_enable();
6496

6497
	if (do_memsw_account() && PageSwapCache(page)) {
6498 6499 6500 6501 6502 6503
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
6504
		mem_cgroup_uncharge_swap(entry, nr_pages);
6505 6506 6507 6508 6509 6510 6511
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
6512
 * @compound: charge the page as compound or small page
6513 6514 6515
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
6516 6517
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
6518
{
6519
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545
struct uncharge_gather {
	struct mem_cgroup *memcg;
	unsigned long pgpgout;
	unsigned long nr_anon;
	unsigned long nr_file;
	unsigned long nr_kmem;
	unsigned long nr_huge;
	unsigned long nr_shmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6546
{
6547 6548 6549 6550 6551 6552
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6553 6554
	unsigned long flags;

6555 6556
	if (!mem_cgroup_is_root(ug->memcg)) {
		page_counter_uncharge(&ug->memcg->memory, nr_pages);
6557
		if (do_memsw_account())
6558 6559 6560 6561
			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
6562
	}
6563 6564

	local_irq_save(flags);
6565 6566 6567 6568 6569
	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6570
	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6571
	memcg_check_events(ug->memcg, ug->dummy_page);
6572
	local_irq_restore(flags);
6573

6574 6575 6576 6577 6578 6579 6580
	if (!mem_cgroup_is_root(ug->memcg))
		css_put_many(&ug->memcg->css, nr_pages);
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
	VM_BUG_ON_PAGE(PageLRU(page), page);
6581 6582
	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
			!PageHWPoison(page) , page);
6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604

	if (!page->mem_cgroup)
		return;

	/*
	 * Nobody should be changing or seriously looking at
	 * page->mem_cgroup at this point, we have fully
	 * exclusive access to the page.
	 */

	if (ug->memcg != page->mem_cgroup) {
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
		ug->memcg = page->mem_cgroup;
	}

	if (!PageKmemcg(page)) {
		unsigned int nr_pages = 1;

		if (PageTransHuge(page)) {
6605
			nr_pages = compound_nr(page);
6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616
			ug->nr_huge += nr_pages;
		}
		if (PageAnon(page))
			ug->nr_anon += nr_pages;
		else {
			ug->nr_file += nr_pages;
			if (PageSwapBacked(page))
				ug->nr_shmem += nr_pages;
		}
		ug->pgpgout++;
	} else {
6617
		ug->nr_kmem += compound_nr(page);
6618 6619 6620 6621 6622
		__ClearPageKmemcg(page);
	}

	ug->dummy_page = page;
	page->mem_cgroup = NULL;
6623 6624 6625 6626
}

static void uncharge_list(struct list_head *page_list)
{
6627
	struct uncharge_gather ug;
6628
	struct list_head *next;
6629 6630

	uncharge_gather_clear(&ug);
6631

6632 6633 6634 6635
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
6636 6637
	next = page_list->next;
	do {
6638 6639
		struct page *page;

6640 6641 6642
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

6643
		uncharge_page(page, &ug);
6644 6645
	} while (next != page_list);

6646 6647
	if (ug.memcg)
		uncharge_batch(&ug);
6648 6649
}

6650 6651 6652 6653 6654 6655 6656 6657 6658
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
6659 6660
	struct uncharge_gather ug;

6661 6662 6663
	if (mem_cgroup_disabled())
		return;

6664
	/* Don't touch page->lru of any random page, pre-check: */
6665
	if (!page->mem_cgroup)
6666 6667
		return;

6668 6669 6670
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
6671
}
6672

6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
6684

6685 6686
	if (!list_empty(page_list))
		uncharge_list(page_list);
6687 6688 6689
}

/**
6690 6691 6692
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
6693
 *
6694 6695
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
6696 6697 6698
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
6699
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6700
{
6701
	struct mem_cgroup *memcg;
6702
	unsigned int nr_pages;
6703
	unsigned long flags;
6704 6705 6706 6707

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6708 6709
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6710 6711 6712 6713 6714

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
6715
	if (newpage->mem_cgroup)
6716 6717
		return;

6718
	/* Swapcache readahead pages can get replaced before being charged */
6719
	memcg = oldpage->mem_cgroup;
6720
	if (!memcg)
6721 6722
		return;

6723
	/* Force-charge the new page. The old one will be freed soon */
6724
	nr_pages = hpage_nr_pages(newpage);
6725 6726 6727 6728 6729

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
6730

6731
	commit_charge(newpage, memcg, false);
6732

6733
	local_irq_save(flags);
6734 6735
	mem_cgroup_charge_statistics(memcg, newpage, PageTransHuge(newpage),
			nr_pages);
6736
	memcg_check_events(memcg, newpage);
6737
	local_irq_restore(flags);
6738 6739
}

6740
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6741 6742
EXPORT_SYMBOL(memcg_sockets_enabled_key);

6743
void mem_cgroup_sk_alloc(struct sock *sk)
6744 6745 6746
{
	struct mem_cgroup *memcg;

6747 6748 6749
	if (!mem_cgroup_sockets_enabled)
		return;

6750 6751 6752 6753
	/* Do not associate the sock with unrelated interrupted task's memcg. */
	if (in_interrupt())
		return;

6754 6755
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
6756 6757
	if (memcg == root_mem_cgroup)
		goto out;
6758
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6759 6760
		goto out;
	if (css_tryget_online(&memcg->css))
6761
		sk->sk_memcg = memcg;
6762
out:
6763 6764 6765
	rcu_read_unlock();
}

6766
void mem_cgroup_sk_free(struct sock *sk)
6767
{
6768 6769
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6782
	gfp_t gfp_mask = GFP_KERNEL;
6783

6784
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6785
		struct page_counter *fail;
6786

6787 6788
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
6789 6790
			return true;
		}
6791 6792
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
6793
		return false;
6794
	}
6795

6796 6797 6798 6799
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

6800
	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6801

6802 6803 6804 6805
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6806 6807 6808 6809 6810
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
6811 6812
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
6813 6814 6815
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6816
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6817
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6818 6819
		return;
	}
6820

6821
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6822

6823
	refill_stock(memcg, nr_pages);
6824 6825
}

6826 6827 6828 6829 6830 6831 6832 6833 6834
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
6835 6836
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
6837 6838 6839 6840
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
6841

6842
/*
6843 6844
 * subsys_initcall() for memory controller.
 *
6845 6846 6847 6848
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
6849 6850 6851
 */
static int __init mem_cgroup_init(void)
{
6852 6853
	int cpu, node;

6854
#ifdef CONFIG_MEMCG_KMEM
6855 6856
	/*
	 * Kmem cache creation is mostly done with the slab_mutex held,
6857 6858 6859
	 * so use a workqueue with limited concurrency to avoid stalling
	 * all worker threads in case lots of cgroups are created and
	 * destroyed simultaneously.
6860
	 */
6861 6862
	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
	BUG_ON(!memcg_kmem_cache_wq);
6863 6864
#endif

6865 6866
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

6878
		rtpn->rb_root = RB_ROOT;
6879
		rtpn->rb_rightmost = NULL;
6880
		spin_lock_init(&rtpn->lock);
6881 6882 6883
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

6884 6885 6886
	return 0;
}
subsys_initcall(mem_cgroup_init);
6887 6888

#ifdef CONFIG_MEMCG_SWAP
6889 6890
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
6891
	while (!refcount_inc_not_zero(&memcg->id.ref)) {
6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

6907 6908 6909 6910 6911 6912 6913 6914 6915
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
6916
	struct mem_cgroup *memcg, *swap_memcg;
6917
	unsigned int nr_entries;
6918 6919 6920 6921 6922
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

6923
	if (!do_memsw_account())
6924 6925 6926 6927 6928 6929 6930 6931
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

6932 6933 6934 6935 6936 6937
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
6938 6939 6940 6941 6942 6943
	nr_entries = hpage_nr_pages(page);
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
6944
	VM_BUG_ON_PAGE(oldid, page);
6945
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6946 6947 6948 6949

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
6950
		page_counter_uncharge(&memcg->memory, nr_entries);
6951

6952 6953
	if (memcg != swap_memcg) {
		if (!mem_cgroup_is_root(swap_memcg))
6954 6955
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
6956 6957
	}

6958 6959
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
6960
	 * i_pages lock which is taken with interrupts-off. It is
6961
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
6962
	 * only synchronisation we have for updating the per-CPU variables.
6963 6964
	 */
	VM_BUG_ON(!irqs_disabled());
6965 6966
	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
				     -nr_entries);
6967
	memcg_check_events(memcg, page);
6968 6969

	if (!mem_cgroup_is_root(memcg))
6970
		css_put_many(&memcg->css, nr_entries);
6971 6972
}

6973 6974
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
6975 6976 6977
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
6978
 * Try to charge @page's memcg for the swap space at @entry.
6979 6980 6981 6982 6983
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
6984
	unsigned int nr_pages = hpage_nr_pages(page);
6985
	struct page_counter *counter;
6986
	struct mem_cgroup *memcg;
6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

6998 6999
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7000
		return 0;
7001
	}
7002

7003 7004
	memcg = mem_cgroup_id_get_online(memcg);

7005
	if (!mem_cgroup_is_root(memcg) &&
7006
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7007 7008
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7009
		mem_cgroup_id_put(memcg);
7010
		return -ENOMEM;
7011
	}
7012

7013 7014 7015 7016
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7017
	VM_BUG_ON_PAGE(oldid, page);
7018
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7019 7020 7021 7022

	return 0;
}

7023
/**
7024
 * mem_cgroup_uncharge_swap - uncharge swap space
7025
 * @entry: swap entry to uncharge
7026
 * @nr_pages: the amount of swap space to uncharge
7027
 */
7028
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7029 7030 7031 7032
{
	struct mem_cgroup *memcg;
	unsigned short id;

7033
	if (!do_swap_account)
7034 7035
		return;

7036
	id = swap_cgroup_record(entry, 0, nr_pages);
7037
	rcu_read_lock();
7038
	memcg = mem_cgroup_from_id(id);
7039
	if (memcg) {
7040 7041
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7042
				page_counter_uncharge(&memcg->swap, nr_pages);
7043
			else
7044
				page_counter_uncharge(&memcg->memsw, nr_pages);
7045
		}
7046
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7047
		mem_cgroup_id_put_many(memcg, nr_pages);
7048 7049 7050 7051
	}
	rcu_read_unlock();
}

7052 7053 7054 7055 7056 7057 7058 7059
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
7060
				      READ_ONCE(memcg->swap.max) -
7061 7062 7063 7064
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7081
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
7082 7083 7084 7085 7086
			return true;

	return false;
}

7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

7104 7105 7106 7107 7108 7109 7110 7111 7112 7113
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
7114 7115
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

7130
	xchg(&memcg->swap.max, max);
7131 7132 7133 7134

	return nbytes;
}

7135 7136
static int swap_events_show(struct seq_file *m, void *v)
{
7137
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7138 7139 7140 7141 7142 7143 7144 7145 7146

	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
7159 7160 7161 7162 7163 7164
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
7165 7166 7167
	{ }	/* terminate */
};

7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
7199 7200
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
7201 7202 7203 7204 7205 7206 7207 7208
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */