memcontrol.c 190.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
B
Balbir Singh 已提交
2 3 4 5 6
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
7 8 9
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
10 11 12 13
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
14 15 16 17
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
B
Balbir Singh 已提交
23 24
 */

25
#include <linux/page_counter.h>
B
Balbir Singh 已提交
26 27
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
28
#include <linux/pagewalk.h>
29
#include <linux/sched/mm.h>
30
#include <linux/shmem_fs.h>
31
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
32
#include <linux/pagemap.h>
33
#include <linux/vm_event_item.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/swap_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
59
#include <linux/tracehook.h>
60
#include <linux/psi.h>
61
#include <linux/seq_buf.h>
K
KAMEZAWA Hiroyuki 已提交
62
#include "internal.h"
G
Glauber Costa 已提交
63
#include <net/sock.h>
M
Michal Hocko 已提交
64
#include <net/ip.h>
65
#include "slab.h"
B
Balbir Singh 已提交
66

67
#include <linux/uaccess.h>
68

69 70
#include <trace/events/vmscan.h>

71 72
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
73

74 75
struct mem_cgroup *root_mem_cgroup __read_mostly;

76 77 78
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

79 80 81
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

82
/* Whether the swap controller is active */
A
Andrew Morton 已提交
83
#ifdef CONFIG_MEMCG_SWAP
84
bool cgroup_memory_noswap __read_mostly;
85
#else
86
#define cgroup_memory_noswap		1
87
#endif
88

89 90 91 92
#ifdef CONFIG_CGROUP_WRITEBACK
static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
#endif

93 94 95
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
96
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
97 98
}

99 100
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
101

102 103 104 105 106
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

107
struct mem_cgroup_tree_per_node {
108
	struct rb_root rb_root;
109
	struct rb_node *rb_rightmost;
110 111 112 113 114 115 116 117 118
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
119 120 121 122 123
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
124

125 126 127
/*
 * cgroup_event represents events which userspace want to receive.
 */
128
struct mem_cgroup_event {
129
	/*
130
	 * memcg which the event belongs to.
131
	 */
132
	struct mem_cgroup *memcg;
133 134 135 136 137 138 139 140
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
141 142 143 144 145
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
146
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
147
			      struct eventfd_ctx *eventfd, const char *args);
148 149 150 151 152
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
153
	void (*unregister_event)(struct mem_cgroup *memcg,
154
				 struct eventfd_ctx *eventfd);
155 156 157 158 159 160
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
161
	wait_queue_entry_t wait;
162 163 164
	struct work_struct remove;
};

165 166
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
167

168 169
/* Stuffs for move charges at task migration. */
/*
170
 * Types of charges to be moved.
171
 */
172 173 174
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
175

176 177
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
178
	spinlock_t	  lock; /* for from, to */
179
	struct mm_struct  *mm;
180 181
	struct mem_cgroup *from;
	struct mem_cgroup *to;
182
	unsigned long flags;
183
	unsigned long precharge;
184
	unsigned long moved_charge;
185
	unsigned long moved_swap;
186 187 188
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
189
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
190 191
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
192

193 194 195 196
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
197
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
198
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
199

200
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
201 202 203 204
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
205
	_KMEM,
V
Vladimir Davydov 已提交
206
	_TCP,
G
Glauber Costa 已提交
207 208
};

209 210
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
211
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
212 213
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
214

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(root, iter, NULL))

#define for_each_mem_cgroup(iter)			\
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(NULL, iter, NULL))

230 231 232 233 234 235
static inline bool should_force_charge(void)
{
	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
		(current->flags & PF_EXITING);
}

236 237 238 239 240 241 242 243 244 245 246 247 248
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

249
#ifdef CONFIG_MEMCG_KMEM
R
Roman Gushchin 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
extern spinlock_t css_set_lock;

static void obj_cgroup_release(struct percpu_ref *ref)
{
	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
	struct mem_cgroup *memcg;
	unsigned int nr_bytes;
	unsigned int nr_pages;
	unsigned long flags;

	/*
	 * At this point all allocated objects are freed, and
	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
	 *
	 * The following sequence can lead to it:
	 * 1) CPU0: objcg == stock->cached_objcg
	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
	 *          PAGE_SIZE bytes are charged
	 * 3) CPU1: a process from another memcg is allocating something,
	 *          the stock if flushed,
	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
	 * 5) CPU0: we do release this object,
	 *          92 bytes are added to stock->nr_bytes
	 * 6) CPU0: stock is flushed,
	 *          92 bytes are added to objcg->nr_charged_bytes
	 *
	 * In the result, nr_charged_bytes == PAGE_SIZE.
	 * This page will be uncharged in obj_cgroup_release().
	 */
	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
	nr_pages = nr_bytes >> PAGE_SHIFT;

	spin_lock_irqsave(&css_set_lock, flags);
	memcg = obj_cgroup_memcg(objcg);
	if (nr_pages)
		__memcg_kmem_uncharge(memcg, nr_pages);
	list_del(&objcg->list);
	mem_cgroup_put(memcg);
	spin_unlock_irqrestore(&css_set_lock, flags);

	percpu_ref_exit(ref);
	kfree_rcu(objcg, rcu);
}

static struct obj_cgroup *obj_cgroup_alloc(void)
{
	struct obj_cgroup *objcg;
	int ret;

	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
	if (!objcg)
		return NULL;

	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
			      GFP_KERNEL);
	if (ret) {
		kfree(objcg);
		return NULL;
	}
	INIT_LIST_HEAD(&objcg->list);
	return objcg;
}

static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
				  struct mem_cgroup *parent)
{
	struct obj_cgroup *objcg, *iter;

	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);

	spin_lock_irq(&css_set_lock);

	/* Move active objcg to the parent's list */
	xchg(&objcg->memcg, parent);
	css_get(&parent->css);
	list_add(&objcg->list, &parent->objcg_list);

	/* Move already reparented objcgs to the parent's list */
	list_for_each_entry(iter, &memcg->objcg_list, list) {
		css_get(&parent->css);
		xchg(&iter->memcg, parent);
		css_put(&memcg->css);
	}
	list_splice(&memcg->objcg_list, &parent->objcg_list);

	spin_unlock_irq(&css_set_lock);

	percpu_ref_kill(&objcg->refcnt);
}

342
/*
343
 * This will be used as a shrinker list's index.
L
Li Zefan 已提交
344 345 346 347 348
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
349
 *
350 351
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
352
 */
353 354
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
355

356 357 358 359 360 361 362 363 364 365 366 367 368
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

369 370 371 372 373 374
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
375
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
376 377
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
378
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
379 380 381
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
382
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
383

384 385
/*
 * A lot of the calls to the cache allocation functions are expected to be
386
 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
387 388 389
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
390
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
391
EXPORT_SYMBOL(memcg_kmem_enabled_key);
392
#endif
393

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
static int memcg_shrinker_map_size;
static DEFINE_MUTEX(memcg_shrinker_map_mutex);

static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
{
	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
}

static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
					 int size, int old_size)
{
	struct memcg_shrinker_map *new, *old;
	int nid;

	lockdep_assert_held(&memcg_shrinker_map_mutex);

	for_each_node(nid) {
		old = rcu_dereference_protected(
			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
		/* Not yet online memcg */
		if (!old)
			return 0;

417
		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
		if (!new)
			return -ENOMEM;

		/* Set all old bits, clear all new bits */
		memset(new->map, (int)0xff, old_size);
		memset((void *)new->map + old_size, 0, size - old_size);

		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
	}

	return 0;
}

static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *pn;
	struct memcg_shrinker_map *map;
	int nid;

	if (mem_cgroup_is_root(memcg))
		return;

	for_each_node(nid) {
		pn = mem_cgroup_nodeinfo(memcg, nid);
		map = rcu_dereference_protected(pn->shrinker_map, true);
		if (map)
			kvfree(map);
		rcu_assign_pointer(pn->shrinker_map, NULL);
	}
}

static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	struct memcg_shrinker_map *map;
	int nid, size, ret = 0;

	if (mem_cgroup_is_root(memcg))
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	size = memcg_shrinker_map_size;
	for_each_node(nid) {
461
		map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
		if (!map) {
			memcg_free_shrinker_maps(memcg);
			ret = -ENOMEM;
			break;
		}
		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
	}
	mutex_unlock(&memcg_shrinker_map_mutex);

	return ret;
}

int memcg_expand_shrinker_maps(int new_id)
{
	int size, old_size, ret = 0;
	struct mem_cgroup *memcg;

	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
	old_size = memcg_shrinker_map_size;
	if (size <= old_size)
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	if (!root_mem_cgroup)
		goto unlock;

	for_each_mem_cgroup(memcg) {
		if (mem_cgroup_is_root(memcg))
			continue;
		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
492 493
		if (ret) {
			mem_cgroup_iter_break(NULL, memcg);
494
			goto unlock;
495
		}
496 497 498 499 500 501 502
	}
unlock:
	if (!ret)
		memcg_shrinker_map_size = size;
	mutex_unlock(&memcg_shrinker_map_mutex);
	return ret;
}
503 504 505 506 507 508 509 510

void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
{
	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
		struct memcg_shrinker_map *map;

		rcu_read_lock();
		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
511 512
		/* Pairs with smp mb in shrink_slab() */
		smp_mb__before_atomic();
513 514 515 516 517
		set_bit(shrinker_id, map->map);
		rcu_read_unlock();
	}
}

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

535
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
536 537 538 539 540
		memcg = root_mem_cgroup;

	return &memcg->css;
}

541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
560
	memcg = page->mem_cgroup;
561

562 563 564 565 566 567 568 569
	/*
	 * The lowest bit set means that memcg isn't a valid
	 * memcg pointer, but a obj_cgroups pointer.
	 * In this case the page is shared and doesn't belong
	 * to any specific memory cgroup.
	 */
	if ((unsigned long) memcg & 0x1UL)
		memcg = NULL;
570

571 572 573 574 575 576 577 578
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

579 580
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
581
{
582
	int nid = page_to_nid(page);
583

584
	return memcg->nodeinfo[nid];
585 586
}

587 588
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
589
{
590
	return soft_limit_tree.rb_tree_per_node[nid];
591 592
}

593
static struct mem_cgroup_tree_per_node *
594 595 596 597
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

598
	return soft_limit_tree.rb_tree_per_node[nid];
599 600
}

601 602
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
603
					 unsigned long new_usage_in_excess)
604 605 606
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
607
	struct mem_cgroup_per_node *mz_node;
608
	bool rightmost = true;
609 610 611 612 613 614 615 616 617

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
618
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
619
					tree_node);
620
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
621
			p = &(*p)->rb_left;
622 623 624
			rightmost = false;
		}

625 626 627 628 629 630 631
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
632 633 634 635

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

636 637 638 639 640
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

641 642
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
643 644 645
{
	if (!mz->on_tree)
		return;
646 647 648 649

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

650 651 652 653
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

654 655
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
656
{
657 658 659
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
660
	__mem_cgroup_remove_exceeded(mz, mctz);
661
	spin_unlock_irqrestore(&mctz->lock, flags);
662 663
}

664 665 666
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
667
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
668 669 670 671 672 673 674
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
675 676 677

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
678
	unsigned long excess;
679 680
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
681

682
	mctz = soft_limit_tree_from_page(page);
683 684
	if (!mctz)
		return;
685 686 687 688 689
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
690
		mz = mem_cgroup_page_nodeinfo(memcg, page);
691
		excess = soft_limit_excess(memcg);
692 693 694 695 696
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
697 698 699
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
700 701
			/* if on-tree, remove it */
			if (mz->on_tree)
702
				__mem_cgroup_remove_exceeded(mz, mctz);
703 704 705 706
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
707
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
708
			spin_unlock_irqrestore(&mctz->lock, flags);
709 710 711 712 713 714
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
715 716 717
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
718

719
	for_each_node(nid) {
720 721
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
722 723
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
724 725 726
	}
}

727 728
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
729
{
730
	struct mem_cgroup_per_node *mz;
731 732 733

retry:
	mz = NULL;
734
	if (!mctz->rb_rightmost)
735 736
		goto done;		/* Nothing to reclaim from */

737 738
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
739 740 741 742 743
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
744
	__mem_cgroup_remove_exceeded(mz, mctz);
745
	if (!soft_limit_excess(mz->memcg) ||
S
Shakeel Butt 已提交
746
	    !css_tryget(&mz->memcg->css))
747 748 749 750 751
		goto retry;
done:
	return mz;
}

752 753
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
754
{
755
	struct mem_cgroup_per_node *mz;
756

757
	spin_lock_irq(&mctz->lock);
758
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
759
	spin_unlock_irq(&mctz->lock);
760 761 762
	return mz;
}

763 764 765 766 767 768 769 770
/**
 * __mod_memcg_state - update cgroup memory statistics
 * @memcg: the memory cgroup
 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 * @val: delta to add to the counter, can be negative
 */
void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
{
771
	long x, threshold = MEMCG_CHARGE_BATCH;
772 773 774 775

	if (mem_cgroup_disabled())
		return;

776
	if (memcg_stat_item_in_bytes(idx))
777 778
		threshold <<= PAGE_SHIFT;

779
	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
780
	if (unlikely(abs(x) > threshold)) {
781 782
		struct mem_cgroup *mi;

783 784 785 786 787
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
788 789
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmstats[idx]);
790 791 792 793 794
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
}

795 796 797 798 799 800 801 802 803 804 805
static struct mem_cgroup_per_node *
parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
{
	struct mem_cgroup *parent;

	parent = parent_mem_cgroup(pn->memcg);
	if (!parent)
		return NULL;
	return mem_cgroup_nodeinfo(parent, nid);
}

806 807
void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			      int val)
808 809
{
	struct mem_cgroup_per_node *pn;
810
	struct mem_cgroup *memcg;
811
	long x, threshold = MEMCG_CHARGE_BATCH;
812 813

	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
814
	memcg = pn->memcg;
815 816

	/* Update memcg */
817
	__mod_memcg_state(memcg, idx, val);
818

819 820 821
	/* Update lruvec */
	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);

822 823 824
	if (vmstat_item_in_bytes(idx))
		threshold <<= PAGE_SHIFT;

825
	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
826
	if (unlikely(abs(x) > threshold)) {
827
		pg_data_t *pgdat = lruvec_pgdat(lruvec);
828 829 830 831
		struct mem_cgroup_per_node *pi;

		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
			atomic_long_add(x, &pi->lruvec_stat[idx]);
832 833 834 835 836
		x = 0;
	}
	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
}

837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
/**
 * __mod_lruvec_state - update lruvec memory statistics
 * @lruvec: the lruvec
 * @idx: the stat item
 * @val: delta to add to the counter, can be negative
 *
 * The lruvec is the intersection of the NUMA node and a cgroup. This
 * function updates the all three counters that are affected by a
 * change of state at this level: per-node, per-cgroup, per-lruvec.
 */
void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			int val)
{
	/* Update node */
	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);

	/* Update memcg and lruvec */
	if (!mem_cgroup_disabled())
		__mod_memcg_lruvec_state(lruvec, idx, val);
}

858 859
void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
{
860
	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
861 862 863 864
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;

	rcu_read_lock();
865
	memcg = mem_cgroup_from_obj(p);
866 867 868 869 870

	/* Untracked pages have no memcg, no lruvec. Update only the node */
	if (!memcg || memcg == root_mem_cgroup) {
		__mod_node_page_state(pgdat, idx, val);
	} else {
871
		lruvec = mem_cgroup_lruvec(memcg, pgdat);
872 873 874 875 876
		__mod_lruvec_state(lruvec, idx, val);
	}
	rcu_read_unlock();
}

877 878 879 880 881 882 883 884 885 886 887
void mod_memcg_obj_state(void *p, int idx, int val)
{
	struct mem_cgroup *memcg;

	rcu_read_lock();
	memcg = mem_cgroup_from_obj(p);
	if (memcg)
		mod_memcg_state(memcg, idx, val);
	rcu_read_unlock();
}

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
/**
 * __count_memcg_events - account VM events in a cgroup
 * @memcg: the memory cgroup
 * @idx: the event item
 * @count: the number of events that occured
 */
void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
			  unsigned long count)
{
	unsigned long x;

	if (mem_cgroup_disabled())
		return;

	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
904 905
		struct mem_cgroup *mi;

906 907 908 909 910
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->events[idx], x);
911 912
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmevents[idx]);
913 914 915 916 917
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
}

918
static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
919
{
920
	return atomic_long_read(&memcg->vmevents[event]);
921 922
}

923 924
static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
{
925 926 927 928 929 930
	long x = 0;
	int cpu;

	for_each_possible_cpu(cpu)
		x += per_cpu(memcg->vmstats_local->events[event], cpu);
	return x;
931 932
}

933
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
934
					 struct page *page,
935
					 int nr_pages)
936
{
937 938
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
939
		__count_memcg_events(memcg, PGPGIN, 1);
940
	else {
941
		__count_memcg_events(memcg, PGPGOUT, 1);
942 943
		nr_pages = -nr_pages; /* for event */
	}
944

945
	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
946 947
}

948 949
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
950 951 952
{
	unsigned long val, next;

953 954
	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
955
	/* from time_after() in jiffies.h */
956
	if ((long)(next - val) < 0) {
957 958 959 960
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
961 962 963
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
964 965 966
		default:
			break;
		}
967
		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
968
		return true;
969
	}
970
	return false;
971 972 973 974 975 976
}

/*
 * Check events in order.
 *
 */
977
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
978 979
{
	/* threshold event is triggered in finer grain than soft limit */
980 981
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
982
		bool do_softlimit;
983

984 985
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
986
		mem_cgroup_threshold(memcg);
987 988
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
989
	}
990 991
}

992
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
993
{
994 995 996 997 998 999 1000 1001
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1002
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1003
}
M
Michal Hocko 已提交
1004
EXPORT_SYMBOL(mem_cgroup_from_task);
1005

1006 1007 1008 1009 1010 1011 1012 1013 1014
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
 * returned.
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1015
{
1016 1017 1018 1019
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
1020

1021 1022
	rcu_read_lock();
	do {
1023 1024 1025 1026 1027 1028
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1029
			memcg = root_mem_cgroup;
1030 1031 1032 1033 1034
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1035
	} while (!css_tryget(&memcg->css));
1036
	rcu_read_unlock();
1037
	return memcg;
1038
}
1039 1040
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
/**
 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
 * @page: page from which memcg should be extracted.
 *
 * Obtain a reference on page->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned.
 */
struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
{
	struct mem_cgroup *memcg = page->mem_cgroup;

	if (mem_cgroup_disabled())
		return NULL;

	rcu_read_lock();
S
Shakeel Butt 已提交
1056 1057
	/* Page should not get uncharged and freed memcg under us. */
	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1058 1059 1060 1061 1062 1063
		memcg = root_mem_cgroup;
	rcu_read_unlock();
	return memcg;
}
EXPORT_SYMBOL(get_mem_cgroup_from_page);

1064 1065 1066 1067 1068 1069
/**
 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
 */
static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
{
	if (unlikely(current->active_memcg)) {
S
Shakeel Butt 已提交
1070
		struct mem_cgroup *memcg;
1071 1072

		rcu_read_lock();
S
Shakeel Butt 已提交
1073 1074 1075 1076
		/* current->active_memcg must hold a ref. */
		if (WARN_ON_ONCE(!css_tryget(&current->active_memcg->css)))
			memcg = root_mem_cgroup;
		else
1077 1078 1079 1080 1081 1082
			memcg = current->active_memcg;
		rcu_read_unlock();
		return memcg;
	}
	return get_mem_cgroup_from_mm(current->mm);
}
1083

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
1097 1098 1099
 * Reclaimers can specify a node in @reclaim to divide up the memcgs
 * in the hierarchy among all concurrent reclaimers operating on the
 * same node.
1100
 */
1101
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1102
				   struct mem_cgroup *prev,
1103
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1104
{
1105
	struct mem_cgroup_reclaim_iter *iter;
1106
	struct cgroup_subsys_state *css = NULL;
1107
	struct mem_cgroup *memcg = NULL;
1108
	struct mem_cgroup *pos = NULL;
1109

1110 1111
	if (mem_cgroup_disabled())
		return NULL;
1112

1113 1114
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1115

1116
	if (prev && !reclaim)
1117
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1118

1119 1120
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1121
			goto out;
1122
		return root;
1123
	}
K
KAMEZAWA Hiroyuki 已提交
1124

1125
	rcu_read_lock();
M
Michal Hocko 已提交
1126

1127
	if (reclaim) {
1128
		struct mem_cgroup_per_node *mz;
1129

1130
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1131
		iter = &mz->iter;
1132 1133 1134 1135

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

1136
		while (1) {
1137
			pos = READ_ONCE(iter->position);
1138 1139
			if (!pos || css_tryget(&pos->css))
				break;
1140
			/*
1141 1142 1143 1144 1145 1146
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
1147
			 */
1148 1149
			(void)cmpxchg(&iter->position, pos, NULL);
		}
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1167
		}
K
KAMEZAWA Hiroyuki 已提交
1168

1169 1170 1171 1172 1173 1174
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1175

1176 1177
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1178

1179 1180
		if (css_tryget(css))
			break;
1181

1182
		memcg = NULL;
1183
	}
1184 1185 1186

	if (reclaim) {
		/*
1187 1188 1189
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
1190
		 */
1191 1192
		(void)cmpxchg(&iter->position, pos, memcg);

1193 1194 1195 1196 1197 1198 1199
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1200
	}
1201

1202 1203
out_unlock:
	rcu_read_unlock();
1204
out:
1205 1206 1207
	if (prev && prev != root)
		css_put(&prev->css);

1208
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1209
}
K
KAMEZAWA Hiroyuki 已提交
1210

1211 1212 1213 1214 1215 1216 1217
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1218 1219 1220 1221 1222 1223
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1224

1225 1226
static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
					struct mem_cgroup *dead_memcg)
1227 1228
{
	struct mem_cgroup_reclaim_iter *iter;
1229 1230
	struct mem_cgroup_per_node *mz;
	int nid;
1231

1232 1233
	for_each_node(nid) {
		mz = mem_cgroup_nodeinfo(from, nid);
1234 1235
		iter = &mz->iter;
		cmpxchg(&iter->position, dead_memcg, NULL);
1236 1237 1238
	}
}

1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup *last;

	do {
		__invalidate_reclaim_iterators(memcg, dead_memcg);
		last = memcg;
	} while ((memcg = parent_mem_cgroup(memcg)));

	/*
	 * When cgruop1 non-hierarchy mode is used,
	 * parent_mem_cgroup() does not walk all the way up to the
	 * cgroup root (root_mem_cgroup). So we have to handle
	 * dead_memcg from cgroup root separately.
	 */
	if (last != root_mem_cgroup)
		__invalidate_reclaim_iterators(root_mem_cgroup,
						dead_memcg);
}

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

1285
		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

1297
/**
1298
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1299
 * @page: the page
1300
 * @pgdat: pgdat of the page
1301
 *
1302 1303
 * This function relies on page->mem_cgroup being stable - see the
 * access rules in commit_charge().
1304
 */
M
Mel Gorman 已提交
1305
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
1306
{
1307
	struct mem_cgroup_per_node *mz;
1308
	struct mem_cgroup *memcg;
1309
	struct lruvec *lruvec;
1310

1311
	if (mem_cgroup_disabled()) {
1312
		lruvec = &pgdat->__lruvec;
1313 1314
		goto out;
	}
1315

1316
	memcg = page->mem_cgroup;
1317
	/*
1318
	 * Swapcache readahead pages are added to the LRU - and
1319
	 * possibly migrated - before they are charged.
1320
	 */
1321 1322
	if (!memcg)
		memcg = root_mem_cgroup;
1323

1324
	mz = mem_cgroup_page_nodeinfo(memcg, page);
1325 1326 1327 1328 1329 1330 1331
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
1332 1333
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
1334
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1335
}
1336

1337
/**
1338 1339 1340
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1341
 * @zid: zone id of the accounted pages
1342
 * @nr_pages: positive when adding or negative when removing
1343
 *
1344 1345 1346
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1347
 */
1348
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1349
				int zid, int nr_pages)
1350
{
1351
	struct mem_cgroup_per_node *mz;
1352
	unsigned long *lru_size;
1353
	long size;
1354 1355 1356 1357

	if (mem_cgroup_disabled())
		return;

1358
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1359
	lru_size = &mz->lru_zone_size[zid][lru];
1360 1361 1362 1363 1364

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1365 1366 1367
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1368 1369 1370 1371 1372 1373
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1374
}
1375

1376
/**
1377
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1378
 * @memcg: the memory cgroup
1379
 *
1380
 * Returns the maximum amount of memory @mem can be charged with, in
1381
 * pages.
1382
 */
1383
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1384
{
1385 1386 1387
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1388

1389
	count = page_counter_read(&memcg->memory);
1390
	limit = READ_ONCE(memcg->memory.max);
1391 1392 1393
	if (count < limit)
		margin = limit - count;

1394
	if (do_memsw_account()) {
1395
		count = page_counter_read(&memcg->memsw);
1396
		limit = READ_ONCE(memcg->memsw.max);
1397
		if (count < limit)
1398
			margin = min(margin, limit - count);
1399 1400
		else
			margin = 0;
1401 1402 1403
	}

	return margin;
1404 1405
}

1406
/*
Q
Qiang Huang 已提交
1407
 * A routine for checking "mem" is under move_account() or not.
1408
 *
Q
Qiang Huang 已提交
1409 1410 1411
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1412
 */
1413
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1414
{
1415 1416
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1417
	bool ret = false;
1418 1419 1420 1421 1422 1423 1424 1425 1426
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1427

1428 1429
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1430 1431
unlock:
	spin_unlock(&mc.lock);
1432 1433 1434
	return ret;
}

1435
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1436 1437
{
	if (mc.moving_task && current != mc.moving_task) {
1438
		if (mem_cgroup_under_move(memcg)) {
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1451 1452 1453 1454
static char *memory_stat_format(struct mem_cgroup *memcg)
{
	struct seq_buf s;
	int i;
1455

1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
	if (!s.buffer)
		return NULL;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

	seq_buf_printf(&s, "anon %llu\n",
1472
		       (u64)memcg_page_state(memcg, NR_ANON_MAPPED) *
1473 1474
		       PAGE_SIZE);
	seq_buf_printf(&s, "file %llu\n",
1475
		       (u64)memcg_page_state(memcg, NR_FILE_PAGES) *
1476 1477
		       PAGE_SIZE);
	seq_buf_printf(&s, "kernel_stack %llu\n",
1478
		       (u64)memcg_page_state(memcg, NR_KERNEL_STACK_KB) *
1479 1480
		       1024);
	seq_buf_printf(&s, "slab %llu\n",
1481 1482
		       (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
			     memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B)));
1483 1484
	seq_buf_printf(&s, "percpu %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_PERCPU_B));
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
	seq_buf_printf(&s, "sock %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_SOCK) *
		       PAGE_SIZE);

	seq_buf_printf(&s, "shmem %llu\n",
		       (u64)memcg_page_state(memcg, NR_SHMEM) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_mapped %llu\n",
		       (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_dirty %llu\n",
		       (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_writeback %llu\n",
		       (u64)memcg_page_state(memcg, NR_WRITEBACK) *
		       PAGE_SIZE);

1502
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1503
	seq_buf_printf(&s, "anon_thp %llu\n",
1504 1505 1506
		       (u64)memcg_page_state(memcg, NR_ANON_THPS) *
		       HPAGE_PMD_SIZE);
#endif
1507 1508

	for (i = 0; i < NR_LRU_LISTS; i++)
1509
		seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1510 1511 1512 1513
			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			       PAGE_SIZE);

	seq_buf_printf(&s, "slab_reclaimable %llu\n",
1514
		       (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B));
1515
	seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1516
		       (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B));
1517 1518 1519

	/* Accumulated memory events */

1520 1521 1522 1523
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
		       memcg_events(memcg, PGFAULT));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
		       memcg_events(memcg, PGMAJFAULT));
1524

1525 1526 1527 1528 1529 1530 1531 1532
	seq_buf_printf(&s, "workingset_refault_anon %lu\n",
		       memcg_page_state(memcg, WORKINGSET_REFAULT_ANON));
	seq_buf_printf(&s, "workingset_refault_file %lu\n",
		       memcg_page_state(memcg, WORKINGSET_REFAULT_FILE));
	seq_buf_printf(&s, "workingset_activate_anon %lu\n",
		       memcg_page_state(memcg, WORKINGSET_ACTIVATE_ANON));
	seq_buf_printf(&s, "workingset_activate_file %lu\n",
		       memcg_page_state(memcg, WORKINGSET_ACTIVATE_FILE));
1533
	seq_buf_printf(&s, "workingset_restore_anon %lu\n",
1534
		       memcg_page_state(memcg, WORKINGSET_RESTORE_ANON));
1535
	seq_buf_printf(&s, "workingset_restore_file %lu\n",
1536
		       memcg_page_state(memcg, WORKINGSET_RESTORE_FILE));
1537 1538 1539
	seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
		       memcg_page_state(memcg, WORKINGSET_NODERECLAIM));

1540 1541
	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
		       memcg_events(memcg, PGREFILL));
1542 1543 1544 1545 1546 1547
	seq_buf_printf(&s, "pgscan %lu\n",
		       memcg_events(memcg, PGSCAN_KSWAPD) +
		       memcg_events(memcg, PGSCAN_DIRECT));
	seq_buf_printf(&s, "pgsteal %lu\n",
		       memcg_events(memcg, PGSTEAL_KSWAPD) +
		       memcg_events(memcg, PGSTEAL_DIRECT));
1548 1549 1550 1551 1552 1553 1554 1555
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
		       memcg_events(memcg, PGACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
		       memcg_events(memcg, PGDEACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
		       memcg_events(memcg, PGLAZYFREE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
		       memcg_events(memcg, PGLAZYFREED));
1556 1557

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1558
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1559
		       memcg_events(memcg, THP_FAULT_ALLOC));
1560
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1561 1562 1563 1564 1565 1566 1567 1568
		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

	/* The above should easily fit into one page */
	WARN_ON_ONCE(seq_buf_has_overflowed(&s));

	return s.buffer;
}
1569

1570
#define K(x) ((x) << (PAGE_SHIFT-10))
1571
/**
1572 1573
 * mem_cgroup_print_oom_context: Print OOM information relevant to
 * memory controller.
1574 1575 1576 1577 1578 1579
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
1580
void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1581 1582 1583
{
	rcu_read_lock();

1584 1585 1586 1587 1588
	if (memcg) {
		pr_cont(",oom_memcg=");
		pr_cont_cgroup_path(memcg->css.cgroup);
	} else
		pr_cont(",global_oom");
1589
	if (p) {
1590
		pr_cont(",task_memcg=");
1591 1592
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	}
1593
	rcu_read_unlock();
1594 1595 1596 1597 1598 1599 1600 1601 1602
}

/**
 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
 * memory controller.
 * @memcg: The memory cgroup that went over limit
 */
void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
1603
	char *buf;
1604

1605 1606
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1607
		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1608 1609 1610
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->swap)),
1611
			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1612 1613 1614 1615 1616 1617 1618
	else {
		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->memsw)),
			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->kmem)),
			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1619
	}
1620 1621 1622 1623 1624 1625 1626 1627 1628

	pr_info("Memory cgroup stats for ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(":");
	buf = memory_stat_format(memcg);
	if (!buf)
		return;
	pr_info("%s", buf);
	kfree(buf);
1629 1630
}

D
David Rientjes 已提交
1631 1632 1633
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1634
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1635
{
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
	unsigned long max = READ_ONCE(memcg->memory.max);

	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
		if (mem_cgroup_swappiness(memcg))
			max += min(READ_ONCE(memcg->swap.max),
				   (unsigned long)total_swap_pages);
	} else { /* v1 */
		if (mem_cgroup_swappiness(memcg)) {
			/* Calculate swap excess capacity from memsw limit */
			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;

			max += min(swap, (unsigned long)total_swap_pages);
		}
1649
	}
1650
	return max;
D
David Rientjes 已提交
1651 1652
}

1653 1654 1655 1656 1657
unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
{
	return page_counter_read(&memcg->memory);
}

1658
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1659
				     int order)
1660
{
1661 1662 1663
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1664
		.memcg = memcg,
1665 1666 1667
		.gfp_mask = gfp_mask,
		.order = order,
	};
1668
	bool ret = true;
1669

1670 1671
	if (mutex_lock_killable(&oom_lock))
		return true;
1672 1673 1674 1675

	if (mem_cgroup_margin(memcg) >= (1 << order))
		goto unlock;

1676 1677 1678 1679 1680
	/*
	 * A few threads which were not waiting at mutex_lock_killable() can
	 * fail to bail out. Therefore, check again after holding oom_lock.
	 */
	ret = should_force_charge() || out_of_memory(&oc);
1681 1682

unlock:
1683
	mutex_unlock(&oom_lock);
1684
	return ret;
1685 1686
}

1687
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1688
				   pg_data_t *pgdat,
1689 1690 1691 1692 1693 1694 1695 1696 1697
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1698
		.pgdat = pgdat,
1699 1700
	};

1701
	excess = soft_limit_excess(root_memcg);
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1727
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1728
					pgdat, &nr_scanned);
1729
		*total_scanned += nr_scanned;
1730
		if (!soft_limit_excess(root_memcg))
1731
			break;
1732
	}
1733 1734
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1735 1736
}

1737 1738 1739 1740 1741 1742
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1743 1744
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1745 1746 1747 1748
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1749
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1750
{
1751
	struct mem_cgroup *iter, *failed = NULL;
1752

1753 1754
	spin_lock(&memcg_oom_lock);

1755
	for_each_mem_cgroup_tree(iter, memcg) {
1756
		if (iter->oom_lock) {
1757 1758 1759 1760 1761
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1762 1763
			mem_cgroup_iter_break(memcg, iter);
			break;
1764 1765
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1766
	}
K
KAMEZAWA Hiroyuki 已提交
1767

1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1779
		}
1780 1781
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1782 1783 1784 1785

	spin_unlock(&memcg_oom_lock);

	return !failed;
1786
}
1787

1788
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1789
{
K
KAMEZAWA Hiroyuki 已提交
1790 1791
	struct mem_cgroup *iter;

1792
	spin_lock(&memcg_oom_lock);
1793
	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1794
	for_each_mem_cgroup_tree(iter, memcg)
1795
		iter->oom_lock = false;
1796
	spin_unlock(&memcg_oom_lock);
1797 1798
}

1799
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1800 1801 1802
{
	struct mem_cgroup *iter;

1803
	spin_lock(&memcg_oom_lock);
1804
	for_each_mem_cgroup_tree(iter, memcg)
1805 1806
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1807 1808
}

1809
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1810 1811 1812
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1813 1814
	/*
	 * When a new child is created while the hierarchy is under oom,
1815
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1816
	 */
1817
	spin_lock(&memcg_oom_lock);
1818
	for_each_mem_cgroup_tree(iter, memcg)
1819 1820 1821
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1822 1823
}

K
KAMEZAWA Hiroyuki 已提交
1824 1825
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1826
struct oom_wait_info {
1827
	struct mem_cgroup *memcg;
1828
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1829 1830
};

1831
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1832 1833
	unsigned mode, int sync, void *arg)
{
1834 1835
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1836 1837 1838
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1839
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1840

1841 1842
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1843 1844 1845 1846
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1847
static void memcg_oom_recover(struct mem_cgroup *memcg)
1848
{
1849 1850 1851 1852 1853 1854 1855 1856 1857
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1858
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1859 1860
}

1861 1862 1863 1864 1865 1866 1867 1868
enum oom_status {
	OOM_SUCCESS,
	OOM_FAILED,
	OOM_ASYNC,
	OOM_SKIPPED
};

static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1869
{
1870 1871 1872
	enum oom_status ret;
	bool locked;

1873 1874 1875
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		return OOM_SKIPPED;

1876 1877
	memcg_memory_event(memcg, MEMCG_OOM);

K
KAMEZAWA Hiroyuki 已提交
1878
	/*
1879 1880 1881 1882
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1883 1884 1885 1886
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1887
	 *
1888 1889 1890 1891 1892 1893 1894
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
K
KAMEZAWA Hiroyuki 已提交
1895
	 */
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
	if (memcg->oom_kill_disable) {
		if (!current->in_user_fault)
			return OOM_SKIPPED;
		css_get(&memcg->css);
		current->memcg_in_oom = memcg;
		current->memcg_oom_gfp_mask = mask;
		current->memcg_oom_order = order;

		return OOM_ASYNC;
	}

1907 1908 1909 1910 1911 1912 1913 1914
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	mem_cgroup_unmark_under_oom(memcg);
1915
	if (mem_cgroup_out_of_memory(memcg, mask, order))
1916 1917 1918 1919 1920 1921
		ret = OOM_SUCCESS;
	else
		ret = OOM_FAILED;

	if (locked)
		mem_cgroup_oom_unlock(memcg);
1922

1923
	return ret;
1924 1925 1926 1927
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1928
 * @handle: actually kill/wait or just clean up the OOM state
1929
 *
1930 1931
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1932
 *
1933
 * Memcg supports userspace OOM handling where failed allocations must
1934 1935 1936 1937
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1938
 * the end of the page fault to complete the OOM handling.
1939 1940
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1941
 * completed, %false otherwise.
1942
 */
1943
bool mem_cgroup_oom_synchronize(bool handle)
1944
{
T
Tejun Heo 已提交
1945
	struct mem_cgroup *memcg = current->memcg_in_oom;
1946
	struct oom_wait_info owait;
1947
	bool locked;
1948 1949 1950

	/* OOM is global, do not handle */
	if (!memcg)
1951
		return false;
1952

1953
	if (!handle)
1954
		goto cleanup;
1955 1956 1957 1958 1959

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
1960
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
1961

1962
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1973 1974
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1975
	} else {
1976
		schedule();
1977 1978 1979 1980 1981
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1982 1983 1984 1985 1986 1987 1988 1989
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1990
cleanup:
T
Tejun Heo 已提交
1991
	current->memcg_in_oom = NULL;
1992
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1993
	return true;
1994 1995
}

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
/**
 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 * @victim: task to be killed by the OOM killer
 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 *
 * Returns a pointer to a memory cgroup, which has to be cleaned up
 * by killing all belonging OOM-killable tasks.
 *
 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 */
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
					    struct mem_cgroup *oom_domain)
{
	struct mem_cgroup *oom_group = NULL;
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return NULL;

	if (!oom_domain)
		oom_domain = root_mem_cgroup;

	rcu_read_lock();

	memcg = mem_cgroup_from_task(victim);
	if (memcg == root_mem_cgroup)
		goto out;

2024 2025 2026 2027 2028 2029 2030 2031
	/*
	 * If the victim task has been asynchronously moved to a different
	 * memory cgroup, we might end up killing tasks outside oom_domain.
	 * In this case it's better to ignore memory.group.oom.
	 */
	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
		goto out;

2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
	/*
	 * Traverse the memory cgroup hierarchy from the victim task's
	 * cgroup up to the OOMing cgroup (or root) to find the
	 * highest-level memory cgroup with oom.group set.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		if (memcg->oom_group)
			oom_group = memcg;

		if (memcg == oom_domain)
			break;
	}

	if (oom_group)
		css_get(&oom_group->css);
out:
	rcu_read_unlock();

	return oom_group;
}

void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
	pr_info("Tasks in ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(" are going to be killed due to memory.oom.group set\n");
}

2060
/**
2061 2062
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
2063
 *
2064
 * This function protects unlocked LRU pages from being moved to
2065 2066 2067 2068 2069
 * another cgroup.
 *
 * It ensures lifetime of the returned memcg. Caller is responsible
 * for the lifetime of the page; __unlock_page_memcg() is available
 * when @page might get freed inside the locked section.
2070
 */
2071
struct mem_cgroup *lock_page_memcg(struct page *page)
2072
{
2073
	struct page *head = compound_head(page); /* rmap on tail pages */
2074
	struct mem_cgroup *memcg;
2075
	unsigned long flags;
2076

2077 2078 2079 2080
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
2081 2082 2083 2084 2085 2086 2087
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page itself from being freed. E.g. writeback
	 * doesn't hold a page reference and relies on PG_writeback to
	 * keep off truncation, migration and so forth.
         */
2088 2089 2090
	rcu_read_lock();

	if (mem_cgroup_disabled())
2091
		return NULL;
2092
again:
2093
	memcg = head->mem_cgroup;
2094
	if (unlikely(!memcg))
2095
		return NULL;
2096

Q
Qiang Huang 已提交
2097
	if (atomic_read(&memcg->moving_account) <= 0)
2098
		return memcg;
2099

2100
	spin_lock_irqsave(&memcg->move_lock, flags);
2101
	if (memcg != head->mem_cgroup) {
2102
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2103 2104
		goto again;
	}
2105 2106 2107 2108

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
2109
	 * the task who has the lock for unlock_page_memcg().
2110 2111 2112
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2113

2114
	return memcg;
2115
}
2116
EXPORT_SYMBOL(lock_page_memcg);
2117

2118
/**
2119 2120 2121 2122
 * __unlock_page_memcg - unlock and unpin a memcg
 * @memcg: the memcg
 *
 * Unlock and unpin a memcg returned by lock_page_memcg().
2123
 */
2124
void __unlock_page_memcg(struct mem_cgroup *memcg)
2125
{
2126 2127 2128 2129 2130 2131 2132 2133
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2134

2135
	rcu_read_unlock();
2136
}
2137 2138 2139 2140 2141 2142 2143

/**
 * unlock_page_memcg - unlock a page->mem_cgroup binding
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
2144 2145 2146
	struct page *head = compound_head(page);

	__unlock_page_memcg(head->mem_cgroup);
2147
}
2148
EXPORT_SYMBOL(unlock_page_memcg);
2149

2150 2151
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2152
	unsigned int nr_pages;
R
Roman Gushchin 已提交
2153 2154 2155 2156 2157 2158

#ifdef CONFIG_MEMCG_KMEM
	struct obj_cgroup *cached_objcg;
	unsigned int nr_bytes;
#endif

2159
	struct work_struct work;
2160
	unsigned long flags;
2161
#define FLUSHING_CACHED_CHARGE	0
2162 2163
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2164
static DEFINE_MUTEX(percpu_charge_mutex);
2165

R
Roman Gushchin 已提交
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
#ifdef CONFIG_MEMCG_KMEM
static void drain_obj_stock(struct memcg_stock_pcp *stock);
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg);

#else
static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
{
}
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	return false;
}
#endif

2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2192
 */
2193
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2194 2195
{
	struct memcg_stock_pcp *stock;
2196
	unsigned long flags;
2197
	bool ret = false;
2198

2199
	if (nr_pages > MEMCG_CHARGE_BATCH)
2200
		return ret;
2201

2202 2203 2204
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2205
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2206
		stock->nr_pages -= nr_pages;
2207 2208
		ret = true;
	}
2209 2210 2211

	local_irq_restore(flags);

2212 2213 2214 2215
	return ret;
}

/*
2216
 * Returns stocks cached in percpu and reset cached information.
2217 2218 2219 2220 2221
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2222 2223 2224
	if (!old)
		return;

2225
	if (stock->nr_pages) {
2226
		page_counter_uncharge(&old->memory, stock->nr_pages);
2227
		if (do_memsw_account())
2228
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2229
		stock->nr_pages = 0;
2230
	}
2231 2232

	css_put(&old->css);
2233 2234 2235 2236 2237
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
2238 2239 2240
	struct memcg_stock_pcp *stock;
	unsigned long flags;

2241 2242 2243 2244
	/*
	 * The only protection from memory hotplug vs. drain_stock races is
	 * that we always operate on local CPU stock here with IRQ disabled
	 */
2245 2246 2247
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
R
Roman Gushchin 已提交
2248
	drain_obj_stock(stock);
2249
	drain_stock(stock);
2250
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2251 2252

	local_irq_restore(flags);
2253 2254 2255
}

/*
2256
 * Cache charges(val) to local per_cpu area.
2257
 * This will be consumed by consume_stock() function, later.
2258
 */
2259
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2260
{
2261 2262 2263 2264
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
2265

2266
	stock = this_cpu_ptr(&memcg_stock);
2267
	if (stock->cached != memcg) { /* reset if necessary */
2268
		drain_stock(stock);
2269
		css_get(&memcg->css);
2270
		stock->cached = memcg;
2271
	}
2272
	stock->nr_pages += nr_pages;
2273

2274
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2275 2276
		drain_stock(stock);

2277
	local_irq_restore(flags);
2278 2279 2280
}

/*
2281
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2282
 * of the hierarchy under it.
2283
 */
2284
static void drain_all_stock(struct mem_cgroup *root_memcg)
2285
{
2286
	int cpu, curcpu;
2287

2288 2289 2290
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2291 2292 2293 2294 2295 2296
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
2297
	curcpu = get_cpu();
2298 2299
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2300
		struct mem_cgroup *memcg;
2301
		bool flush = false;
2302

2303
		rcu_read_lock();
2304
		memcg = stock->cached;
2305 2306 2307
		if (memcg && stock->nr_pages &&
		    mem_cgroup_is_descendant(memcg, root_memcg))
			flush = true;
R
Roman Gushchin 已提交
2308 2309
		if (obj_stock_flush_required(stock, root_memcg))
			flush = true;
2310 2311 2312 2313
		rcu_read_unlock();

		if (flush &&
		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2314 2315 2316 2317 2318
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2319
	}
2320
	put_cpu();
2321
	mutex_unlock(&percpu_charge_mutex);
2322 2323
}

2324
static int memcg_hotplug_cpu_dead(unsigned int cpu)
2325 2326
{
	struct memcg_stock_pcp *stock;
2327
	struct mem_cgroup *memcg, *mi;
2328 2329 2330

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
2331 2332 2333 2334 2335 2336 2337 2338

	for_each_mem_cgroup(memcg) {
		int i;

		for (i = 0; i < MEMCG_NR_STAT; i++) {
			int nid;
			long x;

2339
			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2340
			if (x)
2341 2342
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmstats[i]);
2343 2344 2345 2346 2347 2348 2349 2350 2351

			if (i >= NR_VM_NODE_STAT_ITEMS)
				continue;

			for_each_node(nid) {
				struct mem_cgroup_per_node *pn;

				pn = mem_cgroup_nodeinfo(memcg, nid);
				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2352
				if (x)
2353 2354 2355
					do {
						atomic_long_add(x, &pn->lruvec_stat[i]);
					} while ((pn = parent_nodeinfo(pn, nid)));
2356 2357 2358
			}
		}

2359
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2360 2361
			long x;

2362
			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2363
			if (x)
2364 2365
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmevents[i]);
2366 2367 2368
		}
	}

2369
	return 0;
2370 2371
}

2372 2373 2374
static unsigned long reclaim_high(struct mem_cgroup *memcg,
				  unsigned int nr_pages,
				  gfp_t gfp_mask)
2375
{
2376 2377
	unsigned long nr_reclaimed = 0;

2378
	do {
2379 2380
		unsigned long pflags;

2381 2382
		if (page_counter_read(&memcg->memory) <=
		    READ_ONCE(memcg->memory.high))
2383
			continue;
2384

2385
		memcg_memory_event(memcg, MEMCG_HIGH);
2386 2387

		psi_memstall_enter(&pflags);
2388 2389
		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
							     gfp_mask, true);
2390
		psi_memstall_leave(&pflags);
2391 2392
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));
2393 2394

	return nr_reclaimed;
2395 2396 2397 2398 2399 2400 2401
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
2402
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2403 2404
}

2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
/*
 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
 * enough to still cause a significant slowdown in most cases, while still
 * allowing diagnostics and tracing to proceed without becoming stuck.
 */
#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)

/*
 * When calculating the delay, we use these either side of the exponentiation to
 * maintain precision and scale to a reasonable number of jiffies (see the table
 * below.
 *
 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
 *   overage ratio to a delay.
2419
 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
 *   to produce a reasonable delay curve.
 *
 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
 * reasonable delay curve compared to precision-adjusted overage, not
 * penalising heavily at first, but still making sure that growth beyond the
 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
 * example, with a high of 100 megabytes:
 *
 *  +-------+------------------------+
 *  | usage | time to allocate in ms |
 *  +-------+------------------------+
 *  | 100M  |                      0 |
 *  | 101M  |                      6 |
 *  | 102M  |                     25 |
 *  | 103M  |                     57 |
 *  | 104M  |                    102 |
 *  | 105M  |                    159 |
 *  | 106M  |                    230 |
 *  | 107M  |                    313 |
 *  | 108M  |                    409 |
 *  | 109M  |                    518 |
 *  | 110M  |                    639 |
 *  | 111M  |                    774 |
 *  | 112M  |                    921 |
 *  | 113M  |                   1081 |
 *  | 114M  |                   1254 |
 *  | 115M  |                   1439 |
 *  | 116M  |                   1638 |
 *  | 117M  |                   1849 |
 *  | 118M  |                   2000 |
 *  | 119M  |                   2000 |
 *  | 120M  |                   2000 |
 *  +-------+------------------------+
 */
 #define MEMCG_DELAY_PRECISION_SHIFT 20
 #define MEMCG_DELAY_SCALING_SHIFT 14

2458
static u64 calculate_overage(unsigned long usage, unsigned long high)
2459
{
2460
	u64 overage;
2461

2462 2463
	if (usage <= high)
		return 0;
2464

2465 2466 2467 2468 2469
	/*
	 * Prevent division by 0 in overage calculation by acting as if
	 * it was a threshold of 1 page
	 */
	high = max(high, 1UL);
2470

2471 2472 2473 2474
	overage = usage - high;
	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
	return div64_u64(overage, high);
}
2475

2476 2477 2478
static u64 mem_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;
2479

2480 2481
	do {
		overage = calculate_overage(page_counter_read(&memcg->memory),
2482
					    READ_ONCE(memcg->memory.high));
2483
		max_overage = max(overage, max_overage);
2484 2485 2486
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

2487 2488 2489
	return max_overage;
}

2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
static u64 swap_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;

	do {
		overage = calculate_overage(page_counter_read(&memcg->swap),
					    READ_ONCE(memcg->swap.high));
		if (overage)
			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
		max_overage = max(overage, max_overage);
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

	return max_overage;
}

2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
/*
 * Get the number of jiffies that we should penalise a mischievous cgroup which
 * is exceeding its memory.high by checking both it and its ancestors.
 */
static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
					  unsigned int nr_pages,
					  u64 max_overage)
{
	unsigned long penalty_jiffies;

2516 2517
	if (!max_overage)
		return 0;
2518 2519 2520 2521 2522 2523 2524 2525 2526

	/*
	 * We use overage compared to memory.high to calculate the number of
	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
	 * fairly lenient on small overages, and increasingly harsh when the
	 * memcg in question makes it clear that it has no intention of stopping
	 * its crazy behaviour, so we exponentially increase the delay based on
	 * overage amount.
	 */
2527 2528 2529
	penalty_jiffies = max_overage * max_overage * HZ;
	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2530 2531 2532 2533 2534 2535 2536 2537 2538

	/*
	 * Factor in the task's own contribution to the overage, such that four
	 * N-sized allocations are throttled approximately the same as one
	 * 4N-sized allocation.
	 *
	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
	 * larger the current charge patch is than that.
	 */
2539
	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
}

/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned long penalty_jiffies;
	unsigned long pflags;
2550
	unsigned long nr_reclaimed;
2551
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2552
	int nr_retries = MAX_RECLAIM_RETRIES;
2553
	struct mem_cgroup *memcg;
2554
	bool in_retry = false;
2555 2556 2557 2558 2559 2560 2561

	if (likely(!nr_pages))
		return;

	memcg = get_mem_cgroup_from_mm(current->mm);
	current->memcg_nr_pages_over_high = 0;

2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
retry_reclaim:
	/*
	 * The allocating task should reclaim at least the batch size, but for
	 * subsequent retries we only want to do what's necessary to prevent oom
	 * or breaching resource isolation.
	 *
	 * This is distinct from memory.max or page allocator behaviour because
	 * memory.high is currently batched, whereas memory.max and the page
	 * allocator run every time an allocation is made.
	 */
	nr_reclaimed = reclaim_high(memcg,
				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
				    GFP_KERNEL);

2576 2577 2578 2579
	/*
	 * memory.high is breached and reclaim is unable to keep up. Throttle
	 * allocators proactively to slow down excessive growth.
	 */
2580 2581
	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
					       mem_find_max_overage(memcg));
2582

2583 2584 2585
	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
						swap_find_max_overage(memcg));

2586 2587 2588 2589 2590 2591 2592
	/*
	 * Clamp the max delay per usermode return so as to still keep the
	 * application moving forwards and also permit diagnostics, albeit
	 * extremely slowly.
	 */
	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);

2593 2594 2595 2596 2597 2598 2599 2600 2601
	/*
	 * Don't sleep if the amount of jiffies this memcg owes us is so low
	 * that it's not even worth doing, in an attempt to be nice to those who
	 * go only a small amount over their memory.high value and maybe haven't
	 * been aggressively reclaimed enough yet.
	 */
	if (penalty_jiffies <= HZ / 100)
		goto out;

2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
	/*
	 * If reclaim is making forward progress but we're still over
	 * memory.high, we want to encourage that rather than doing allocator
	 * throttling.
	 */
	if (nr_reclaimed || nr_retries--) {
		in_retry = true;
		goto retry_reclaim;
	}

2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
	/*
	 * If we exit early, we're guaranteed to die (since
	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
	 * need to account for any ill-begotten jiffies to pay them off later.
	 */
	psi_memstall_enter(&pflags);
	schedule_timeout_killable(penalty_jiffies);
	psi_memstall_leave(&pflags);

out:
	css_put(&memcg->css);
2623 2624
}

2625 2626
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2627
{
2628
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2629
	int nr_retries = MAX_RECLAIM_RETRIES;
2630
	struct mem_cgroup *mem_over_limit;
2631
	struct page_counter *counter;
2632
	enum oom_status oom_status;
2633
	unsigned long nr_reclaimed;
2634 2635
	bool may_swap = true;
	bool drained = false;
2636
	unsigned long pflags;
2637

2638
	if (mem_cgroup_is_root(memcg))
2639
		return 0;
2640
retry:
2641
	if (consume_stock(memcg, nr_pages))
2642
		return 0;
2643

2644
	if (!do_memsw_account() ||
2645 2646
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2647
			goto done_restock;
2648
		if (do_memsw_account())
2649 2650
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2651
	} else {
2652
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2653
		may_swap = false;
2654
	}
2655

2656 2657 2658 2659
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2660

2661 2662 2663 2664 2665 2666 2667 2668 2669
	/*
	 * Memcg doesn't have a dedicated reserve for atomic
	 * allocations. But like the global atomic pool, we need to
	 * put the burden of reclaim on regular allocation requests
	 * and let these go through as privileged allocations.
	 */
	if (gfp_mask & __GFP_ATOMIC)
		goto force;

2670 2671 2672 2673 2674 2675
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
2676
	if (unlikely(should_force_charge()))
2677
		goto force;
2678

2679 2680 2681 2682 2683 2684 2685 2686 2687
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2688 2689 2690
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2691
	if (!gfpflags_allow_blocking(gfp_mask))
2692
		goto nomem;
2693

2694
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2695

2696
	psi_memstall_enter(&pflags);
2697 2698
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2699
	psi_memstall_leave(&pflags);
2700

2701
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2702
		goto retry;
2703

2704
	if (!drained) {
2705
		drain_all_stock(mem_over_limit);
2706 2707 2708 2709
		drained = true;
		goto retry;
	}

2710 2711
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2712 2713 2714 2715 2716 2717 2718 2719 2720
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2721
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2722 2723 2724 2725 2726 2727 2728 2729
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2730 2731 2732
	if (nr_retries--)
		goto retry;

2733
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2734 2735
		goto nomem;

2736
	if (gfp_mask & __GFP_NOFAIL)
2737
		goto force;
2738

2739
	if (fatal_signal_pending(current))
2740
		goto force;
2741

2742 2743 2744 2745 2746 2747
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2748
		       get_order(nr_pages * PAGE_SIZE));
2749 2750
	switch (oom_status) {
	case OOM_SUCCESS:
2751
		nr_retries = MAX_RECLAIM_RETRIES;
2752 2753 2754 2755 2756 2757
		goto retry;
	case OOM_FAILED:
		goto force;
	default:
		goto nomem;
	}
2758
nomem:
2759
	if (!(gfp_mask & __GFP_NOFAIL))
2760
		return -ENOMEM;
2761 2762 2763 2764 2765 2766 2767
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2768
	if (do_memsw_account())
2769 2770 2771
		page_counter_charge(&memcg->memsw, nr_pages);

	return 0;
2772 2773 2774 2775

done_restock:
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2776

2777
	/*
2778 2779
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2780
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2781 2782 2783 2784
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2785 2786
	 */
	do {
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
		bool mem_high, swap_high;

		mem_high = page_counter_read(&memcg->memory) >
			READ_ONCE(memcg->memory.high);
		swap_high = page_counter_read(&memcg->swap) >
			READ_ONCE(memcg->swap.high);

		/* Don't bother a random interrupted task */
		if (in_interrupt()) {
			if (mem_high) {
2797 2798 2799
				schedule_work(&memcg->high_work);
				break;
			}
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
			continue;
		}

		if (mem_high || swap_high) {
			/*
			 * The allocating tasks in this cgroup will need to do
			 * reclaim or be throttled to prevent further growth
			 * of the memory or swap footprints.
			 *
			 * Target some best-effort fairness between the tasks,
			 * and distribute reclaim work and delay penalties
			 * based on how much each task is actually allocating.
			 */
V
Vladimir Davydov 已提交
2813
			current->memcg_nr_pages_over_high += batch;
2814 2815 2816
			set_notify_resume(current);
			break;
		}
2817
	} while ((memcg = parent_mem_cgroup(memcg)));
2818 2819

	return 0;
2820
}
2821

2822
#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2823
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2824
{
2825 2826 2827
	if (mem_cgroup_is_root(memcg))
		return;

2828
	page_counter_uncharge(&memcg->memory, nr_pages);
2829
	if (do_memsw_account())
2830
		page_counter_uncharge(&memcg->memsw, nr_pages);
2831
}
2832
#endif
2833

2834
static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2835
{
2836
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2837
	/*
2838
	 * Any of the following ensures page->mem_cgroup stability:
2839
	 *
2840 2841 2842 2843
	 * - the page lock
	 * - LRU isolation
	 * - lock_page_memcg()
	 * - exclusive reference
2844
	 */
2845
	page->mem_cgroup = memcg;
2846
}
2847

2848
#ifdef CONFIG_MEMCG_KMEM
2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
				 gfp_t gfp)
{
	unsigned int objects = objs_per_slab_page(s, page);
	void *vec;

	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
			   page_to_nid(page));
	if (!vec)
		return -ENOMEM;

	if (cmpxchg(&page->obj_cgroups, NULL,
		    (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
		kfree(vec);
	else
		kmemleak_not_leak(vec);

	return 0;
}

2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
/*
 * Returns a pointer to the memory cgroup to which the kernel object is charged.
 *
 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
 * cgroup_mutex, etc.
 */
struct mem_cgroup *mem_cgroup_from_obj(void *p)
{
	struct page *page;

	if (mem_cgroup_disabled())
		return NULL;

	page = virt_to_head_page(p);

2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
	/*
	 * If page->mem_cgroup is set, it's either a simple mem_cgroup pointer
	 * or a pointer to obj_cgroup vector. In the latter case the lowest
	 * bit of the pointer is set.
	 * The page->mem_cgroup pointer can be asynchronously changed
	 * from NULL to (obj_cgroup_vec | 0x1UL), but can't be changed
	 * from a valid memcg pointer to objcg vector or back.
	 */
	if (!page->mem_cgroup)
		return NULL;

2895
	/*
2896 2897 2898
	 * Slab objects are accounted individually, not per-page.
	 * Memcg membership data for each individual object is saved in
	 * the page->obj_cgroups.
2899
	 */
2900 2901 2902 2903 2904 2905
	if (page_has_obj_cgroups(page)) {
		struct obj_cgroup *objcg;
		unsigned int off;

		off = obj_to_index(page->slab_cache, page, p);
		objcg = page_obj_cgroups(page)[off];
2906 2907 2908 2909
		if (objcg)
			return obj_cgroup_memcg(objcg);

		return NULL;
2910
	}
2911 2912 2913 2914 2915

	/* All other pages use page->mem_cgroup */
	return page->mem_cgroup;
}

R
Roman Gushchin 已提交
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
{
	struct obj_cgroup *objcg = NULL;
	struct mem_cgroup *memcg;

	if (unlikely(!current->mm && !current->active_memcg))
		return NULL;

	rcu_read_lock();
	if (unlikely(current->active_memcg))
		memcg = rcu_dereference(current->active_memcg);
	else
		memcg = mem_cgroup_from_task(current);

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		objcg = rcu_dereference(memcg->objcg);
		if (objcg && obj_cgroup_tryget(objcg))
			break;
	}
	rcu_read_unlock();

	return objcg;
}

2940
static int memcg_alloc_cache_id(void)
2941
{
2942 2943 2944
	int id, size;
	int err;

2945
	id = ida_simple_get(&memcg_cache_ida,
2946 2947 2948
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2949

2950
	if (id < memcg_nr_cache_ids)
2951 2952 2953 2954 2955 2956
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2957
	down_write(&memcg_cache_ids_sem);
2958 2959

	size = 2 * (id + 1);
2960 2961 2962 2963 2964
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2965
	err = memcg_update_all_list_lrus(size);
2966 2967 2968 2969 2970
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2971
	if (err) {
2972
		ida_simple_remove(&memcg_cache_ida, id);
2973 2974 2975 2976 2977 2978 2979
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2980
	ida_simple_remove(&memcg_cache_ida, id);
2981 2982
}

2983
/**
2984
 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
2985
 * @memcg: memory cgroup to charge
2986
 * @gfp: reclaim mode
2987
 * @nr_pages: number of pages to charge
2988 2989 2990
 *
 * Returns 0 on success, an error code on failure.
 */
2991 2992
int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
			unsigned int nr_pages)
2993
{
2994
	struct page_counter *counter;
2995 2996
	int ret;

2997
	ret = try_charge(memcg, gfp, nr_pages);
2998
	if (ret)
2999
		return ret;
3000 3001 3002

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012

		/*
		 * Enforce __GFP_NOFAIL allocation because callers are not
		 * prepared to see failures and likely do not have any failure
		 * handling code.
		 */
		if (gfp & __GFP_NOFAIL) {
			page_counter_charge(&memcg->kmem, nr_pages);
			return 0;
		}
3013 3014
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
3015
	}
3016
	return 0;
3017 3018
}

3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
/**
 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
 */
void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
{
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

	page_counter_uncharge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_uncharge(&memcg->memsw, nr_pages);
}

3034
/**
3035
 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3036 3037 3038 3039 3040 3041
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
3042
int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3043
{
3044
	struct mem_cgroup *memcg;
3045
	int ret = 0;
3046

3047
	if (memcg_kmem_bypass())
3048 3049
		return 0;

3050
	memcg = get_mem_cgroup_from_current();
3051
	if (!mem_cgroup_is_root(memcg)) {
3052
		ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3053 3054
		if (!ret) {
			page->mem_cgroup = memcg;
3055
			__SetPageKmemcg(page);
3056
			return 0;
3057
		}
3058
	}
3059
	css_put(&memcg->css);
3060
	return ret;
3061
}
3062

3063
/**
3064
 * __memcg_kmem_uncharge_page: uncharge a kmem page
3065 3066 3067
 * @page: page to uncharge
 * @order: allocation order
 */
3068
void __memcg_kmem_uncharge_page(struct page *page, int order)
3069
{
3070
	struct mem_cgroup *memcg = page->mem_cgroup;
3071
	unsigned int nr_pages = 1 << order;
3072 3073 3074 3075

	if (!memcg)
		return;

3076
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3077
	__memcg_kmem_uncharge(memcg, nr_pages);
3078
	page->mem_cgroup = NULL;
3079
	css_put(&memcg->css);
3080 3081 3082 3083

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);
3084
}
R
Roman Gushchin 已提交
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218

static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
{
	struct memcg_stock_pcp *stock;
	unsigned long flags;
	bool ret = false;

	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
		stock->nr_bytes -= nr_bytes;
		ret = true;
	}

	local_irq_restore(flags);

	return ret;
}

static void drain_obj_stock(struct memcg_stock_pcp *stock)
{
	struct obj_cgroup *old = stock->cached_objcg;

	if (!old)
		return;

	if (stock->nr_bytes) {
		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);

		if (nr_pages) {
			rcu_read_lock();
			__memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
			rcu_read_unlock();
		}

		/*
		 * The leftover is flushed to the centralized per-memcg value.
		 * On the next attempt to refill obj stock it will be moved
		 * to a per-cpu stock (probably, on an other CPU), see
		 * refill_obj_stock().
		 *
		 * How often it's flushed is a trade-off between the memory
		 * limit enforcement accuracy and potential CPU contention,
		 * so it might be changed in the future.
		 */
		atomic_add(nr_bytes, &old->nr_charged_bytes);
		stock->nr_bytes = 0;
	}

	obj_cgroup_put(old);
	stock->cached_objcg = NULL;
}

static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	struct mem_cgroup *memcg;

	if (stock->cached_objcg) {
		memcg = obj_cgroup_memcg(stock->cached_objcg);
		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
			return true;
	}

	return false;
}

static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
{
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
	if (stock->cached_objcg != objcg) { /* reset if necessary */
		drain_obj_stock(stock);
		obj_cgroup_get(objcg);
		stock->cached_objcg = objcg;
		stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
	}
	stock->nr_bytes += nr_bytes;

	if (stock->nr_bytes > PAGE_SIZE)
		drain_obj_stock(stock);

	local_irq_restore(flags);
}

int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
{
	struct mem_cgroup *memcg;
	unsigned int nr_pages, nr_bytes;
	int ret;

	if (consume_obj_stock(objcg, size))
		return 0;

	/*
	 * In theory, memcg->nr_charged_bytes can have enough
	 * pre-charged bytes to satisfy the allocation. However,
	 * flushing memcg->nr_charged_bytes requires two atomic
	 * operations, and memcg->nr_charged_bytes can't be big,
	 * so it's better to ignore it and try grab some new pages.
	 * memcg->nr_charged_bytes will be flushed in
	 * refill_obj_stock(), called from this function or
	 * independently later.
	 */
	rcu_read_lock();
	memcg = obj_cgroup_memcg(objcg);
	css_get(&memcg->css);
	rcu_read_unlock();

	nr_pages = size >> PAGE_SHIFT;
	nr_bytes = size & (PAGE_SIZE - 1);

	if (nr_bytes)
		nr_pages += 1;

	ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
	if (!ret && nr_bytes)
		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);

	css_put(&memcg->css);
	return ret;
}

void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
{
	refill_obj_stock(objcg, size);
}

3219
#endif /* CONFIG_MEMCG_KMEM */
3220

3221 3222 3223 3224
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
3225
 * pgdat->lru_lock and migration entries setup in all page mappings.
3226
 */
3227
void mem_cgroup_split_huge_fixup(struct page *head)
3228
{
3229
	struct mem_cgroup *memcg = head->mem_cgroup;
3230
	int i;
3231

3232 3233
	if (mem_cgroup_disabled())
		return;
3234

3235 3236 3237 3238
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		css_get(&memcg->css);
		head[i].mem_cgroup = memcg;
	}
3239
}
3240
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3241

A
Andrew Morton 已提交
3242
#ifdef CONFIG_MEMCG_SWAP
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
3254
 * The caller must have charged to @to, IOW, called page_counter_charge() about
3255 3256 3257
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3258
				struct mem_cgroup *from, struct mem_cgroup *to)
3259 3260 3261
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
3262 3263
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3264 3265

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3266 3267
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
3268 3269 3270 3271 3272 3273
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3274
				struct mem_cgroup *from, struct mem_cgroup *to)
3275 3276 3277
{
	return -EINVAL;
}
3278
#endif
K
KAMEZAWA Hiroyuki 已提交
3279

3280
static DEFINE_MUTEX(memcg_max_mutex);
3281

3282 3283
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
3284
{
3285
	bool enlarge = false;
3286
	bool drained = false;
3287
	int ret;
3288 3289
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3290

3291
	do {
3292 3293 3294 3295
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3296

3297
		mutex_lock(&memcg_max_mutex);
3298 3299
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
3300
		 * break our basic invariant rule memory.max <= memsw.max.
3301
		 */
3302
		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3303
					   max <= memcg->memsw.max;
3304
		if (!limits_invariant) {
3305
			mutex_unlock(&memcg_max_mutex);
3306 3307 3308
			ret = -EINVAL;
			break;
		}
3309
		if (max > counter->max)
3310
			enlarge = true;
3311 3312
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
3313 3314 3315 3316

		if (!ret)
			break;

3317 3318 3319 3320 3321 3322
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

3323 3324 3325 3326 3327 3328
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
3329

3330 3331
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3332

3333 3334 3335
	return ret;
}

3336
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3337 3338 3339 3340
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
3341
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3342 3343
	unsigned long reclaimed;
	int loop = 0;
3344
	struct mem_cgroup_tree_per_node *mctz;
3345
	unsigned long excess;
3346 3347 3348 3349 3350
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

3351
	mctz = soft_limit_tree_node(pgdat->node_id);
3352 3353 3354 3355 3356 3357

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
3358
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3359 3360
		return 0;

3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
3375
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3376 3377 3378
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3379
		spin_lock_irq(&mctz->lock);
3380
		__mem_cgroup_remove_exceeded(mz, mctz);
3381 3382 3383 3384 3385 3386

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3387 3388 3389
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3390
		excess = soft_limit_excess(mz->memcg);
3391 3392 3393 3394 3395 3396 3397 3398 3399
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3400
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3401
		spin_unlock_irq(&mctz->lock);
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3419 3420 3421 3422
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
3423
 * hierarchy.  Testing use_hierarchy is the caller's responsibility.
3424
 */
3425 3426
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3427 3428 3429 3430 3431 3432
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3433 3434
}

3435
/*
3436
 * Reclaims as many pages from the given memcg as possible.
3437 3438 3439 3440 3441
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
3442
	int nr_retries = MAX_RECLAIM_RETRIES;
3443

3444 3445
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3446 3447 3448

	drain_all_stock(memcg);

3449
	/* try to free all pages in this cgroup */
3450
	while (nr_retries && page_counter_read(&memcg->memory)) {
3451
		int progress;
3452

3453 3454 3455
		if (signal_pending(current))
			return -EINTR;

3456 3457
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3458
		if (!progress) {
3459
			nr_retries--;
3460
			/* maybe some writeback is necessary */
3461
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3462
		}
3463 3464

	}
3465 3466

	return 0;
3467 3468
}

3469 3470 3471
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3472
{
3473
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3474

3475 3476
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3477
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3478 3479
}

3480 3481
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3482
{
3483
	return mem_cgroup_from_css(css)->use_hierarchy;
3484 3485
}

3486 3487
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3488 3489
{
	int retval = 0;
3490
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3491
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3492

3493
	if (memcg->use_hierarchy == val)
3494
		return 0;
3495

3496
	/*
3497
	 * If parent's use_hierarchy is set, we can't make any modifications
3498 3499 3500 3501 3502 3503
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3504
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3505
				(val == 1 || val == 0)) {
3506
		if (!memcg_has_children(memcg))
3507
			memcg->use_hierarchy = val;
3508 3509 3510 3511
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3512

3513 3514 3515
	return retval;
}

3516
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3517
{
3518
	unsigned long val;
3519

3520
	if (mem_cgroup_is_root(memcg)) {
3521
		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3522
			memcg_page_state(memcg, NR_ANON_MAPPED);
3523 3524
		if (swap)
			val += memcg_page_state(memcg, MEMCG_SWAP);
3525
	} else {
3526
		if (!swap)
3527
			val = page_counter_read(&memcg->memory);
3528
		else
3529
			val = page_counter_read(&memcg->memsw);
3530
	}
3531
	return val;
3532 3533
}

3534 3535 3536 3537 3538 3539 3540
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3541

3542
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3543
			       struct cftype *cft)
B
Balbir Singh 已提交
3544
{
3545
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3546
	struct page_counter *counter;
3547

3548
	switch (MEMFILE_TYPE(cft->private)) {
3549
	case _MEM:
3550 3551
		counter = &memcg->memory;
		break;
3552
	case _MEMSWAP:
3553 3554
		counter = &memcg->memsw;
		break;
3555
	case _KMEM:
3556
		counter = &memcg->kmem;
3557
		break;
V
Vladimir Davydov 已提交
3558
	case _TCP:
3559
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3560
		break;
3561 3562 3563
	default:
		BUG();
	}
3564 3565 3566 3567

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
3568
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3569
		if (counter == &memcg->memsw)
3570
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3571 3572
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
3573
		return (u64)counter->max * PAGE_SIZE;
3574 3575 3576 3577 3578 3579 3580 3581 3582
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3583
}
3584

3585
static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3586
{
3587
	unsigned long stat[MEMCG_NR_STAT] = {0};
3588 3589 3590 3591
	struct mem_cgroup *mi;
	int node, cpu, i;

	for_each_online_cpu(cpu)
3592
		for (i = 0; i < MEMCG_NR_STAT; i++)
3593
			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3594 3595

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3596
		for (i = 0; i < MEMCG_NR_STAT; i++)
3597 3598 3599 3600 3601 3602
			atomic_long_add(stat[i], &mi->vmstats[i]);

	for_each_node(node) {
		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
		struct mem_cgroup_per_node *pi;

3603
		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3604 3605 3606
			stat[i] = 0;

		for_each_online_cpu(cpu)
3607
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3608 3609
				stat[i] += per_cpu(
					pn->lruvec_stat_cpu->count[i], cpu);
3610 3611

		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3612
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3613 3614 3615 3616
				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
	}
}

3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
{
	unsigned long events[NR_VM_EVENT_ITEMS];
	struct mem_cgroup *mi;
	int cpu, i;

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
		events[i] = 0;

	for_each_online_cpu(cpu)
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3628 3629
			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
					     cpu);
3630 3631 3632 3633 3634 3635

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
			atomic_long_add(events[i], &mi->vmevents[i]);
}

3636
#ifdef CONFIG_MEMCG_KMEM
3637
static int memcg_online_kmem(struct mem_cgroup *memcg)
3638
{
R
Roman Gushchin 已提交
3639
	struct obj_cgroup *objcg;
3640 3641
	int memcg_id;

3642 3643 3644
	if (cgroup_memory_nokmem)
		return 0;

3645
	BUG_ON(memcg->kmemcg_id >= 0);
3646
	BUG_ON(memcg->kmem_state);
3647

3648
	memcg_id = memcg_alloc_cache_id();
3649 3650
	if (memcg_id < 0)
		return memcg_id;
3651

R
Roman Gushchin 已提交
3652 3653 3654 3655 3656 3657 3658 3659
	objcg = obj_cgroup_alloc();
	if (!objcg) {
		memcg_free_cache_id(memcg_id);
		return -ENOMEM;
	}
	objcg->memcg = memcg;
	rcu_assign_pointer(memcg->objcg, objcg);

3660 3661
	static_branch_enable(&memcg_kmem_enabled_key);

3662
	/*
3663
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
3664
	 * kmemcg_id. Setting the id after enabling static branching will
3665 3666 3667
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3668
	memcg->kmemcg_id = memcg_id;
3669
	memcg->kmem_state = KMEM_ONLINE;
3670 3671

	return 0;
3672 3673
}

3674 3675 3676 3677 3678 3679 3680 3681
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
3682

3683 3684 3685 3686 3687 3688
	memcg->kmem_state = KMEM_ALLOCATED;

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

R
Roman Gushchin 已提交
3689
	memcg_reparent_objcgs(memcg, parent);
3690 3691 3692 3693

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

3694 3695 3696 3697 3698 3699 3700 3701
	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
3702
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3703 3704 3705 3706 3707 3708 3709
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
3710 3711
	rcu_read_unlock();

3712
	memcg_drain_all_list_lrus(kmemcg_id, parent);
3713 3714 3715 3716 3717 3718

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
3719 3720 3721
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);
3722
}
3723
#else
3724
static int memcg_online_kmem(struct mem_cgroup *memcg)
3725 3726 3727 3728 3729 3730 3731 3732 3733
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
3734
#endif /* CONFIG_MEMCG_KMEM */
3735

3736 3737
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
3738
{
3739
	int ret;
3740

3741 3742 3743
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
3744
	return ret;
3745
}
3746

3747
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
3748 3749 3750
{
	int ret;

3751
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3752

3753
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
3754 3755 3756
	if (ret)
		goto out;

3757
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3758 3759 3760
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3761 3762 3763
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
3764 3765 3766 3767 3768 3769
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3770
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
3771 3772 3773 3774
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3775
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3776 3777
	}
out:
3778
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3779 3780 3781
	return ret;
}

3782 3783 3784 3785
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3786 3787
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3788
{
3789
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3790
	unsigned long nr_pages;
3791 3792
	int ret;

3793
	buf = strstrip(buf);
3794
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3795 3796
	if (ret)
		return ret;
3797

3798
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3799
	case RES_LIMIT:
3800 3801 3802 3803
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3804 3805
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3806
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3807
			break;
3808
		case _MEMSWAP:
3809
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3810
			break;
3811
		case _KMEM:
3812 3813 3814
			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
				     "Please report your usecase to linux-mm@kvack.org if you "
				     "depend on this functionality.\n");
3815
			ret = memcg_update_kmem_max(memcg, nr_pages);
3816
			break;
V
Vladimir Davydov 已提交
3817
		case _TCP:
3818
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
3819
			break;
3820
		}
3821
		break;
3822 3823 3824
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3825 3826
		break;
	}
3827
	return ret ?: nbytes;
B
Balbir Singh 已提交
3828 3829
}

3830 3831
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3832
{
3833
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3834
	struct page_counter *counter;
3835

3836 3837 3838 3839 3840 3841 3842 3843 3844 3845
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3846
	case _TCP:
3847
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3848
		break;
3849 3850 3851
	default:
		BUG();
	}
3852

3853
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3854
	case RES_MAX_USAGE:
3855
		page_counter_reset_watermark(counter);
3856 3857
		break;
	case RES_FAILCNT:
3858
		counter->failcnt = 0;
3859
		break;
3860 3861
	default:
		BUG();
3862
	}
3863

3864
	return nbytes;
3865 3866
}

3867
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3868 3869
					struct cftype *cft)
{
3870
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3871 3872
}

3873
#ifdef CONFIG_MMU
3874
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3875 3876
					struct cftype *cft, u64 val)
{
3877
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3878

3879
	if (val & ~MOVE_MASK)
3880
		return -EINVAL;
3881

3882
	/*
3883 3884 3885 3886
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3887
	 */
3888
	memcg->move_charge_at_immigrate = val;
3889 3890
	return 0;
}
3891
#else
3892
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3893 3894 3895 3896 3897
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3898

3899
#ifdef CONFIG_NUMA
3900 3901 3902 3903 3904 3905

#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)

static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3906
				int nid, unsigned int lru_mask, bool tree)
3907
{
3908
	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3909 3910 3911 3912 3913 3914 3915 3916
	unsigned long nr = 0;
	enum lru_list lru;

	VM_BUG_ON((unsigned)nid >= nr_node_ids);

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3917 3918 3919 3920
		if (tree)
			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
		else
			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3921 3922 3923 3924 3925
	}
	return nr;
}

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3926 3927
					     unsigned int lru_mask,
					     bool tree)
3928 3929 3930 3931 3932 3933 3934
{
	unsigned long nr = 0;
	enum lru_list lru;

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3935 3936 3937 3938
		if (tree)
			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
		else
			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3939 3940 3941 3942
	}
	return nr;
}

3943
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3944
{
3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3957
	int nid;
3958
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3959

3960
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3961 3962 3963 3964 3965 3966 3967
		seq_printf(m, "%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   false));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, false));
3968
		seq_putc(m, '\n');
3969 3970
	}

3971
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3972 3973 3974 3975 3976 3977 3978 3979

		seq_printf(m, "hierarchical_%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   true));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, true));
3980
		seq_putc(m, '\n');
3981 3982 3983 3984 3985 3986
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3987
static const unsigned int memcg1_stats[] = {
3988
	NR_FILE_PAGES,
3989
	NR_ANON_MAPPED,
3990 3991 3992
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	NR_ANON_THPS,
#endif
3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
4003
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4004
	"rss_huge",
4005
#endif
4006 4007 4008 4009 4010 4011 4012
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

4013
/* Universal VM events cgroup1 shows, original sort order */
4014
static const unsigned int memcg1_events[] = {
4015 4016 4017 4018 4019 4020
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

4021
static int memcg_stat_show(struct seq_file *m, void *v)
4022
{
4023
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4024
	unsigned long memory, memsw;
4025 4026
	struct mem_cgroup *mi;
	unsigned int i;
4027

4028
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4029

4030
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4031 4032
		unsigned long nr;

4033
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4034
			continue;
4035 4036 4037 4038 4039 4040
		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
		if (memcg1_stats[i] == NR_ANON_THPS)
			nr *= HPAGE_PMD_NR;
#endif
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4041
	}
L
Lee Schermerhorn 已提交
4042

4043
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4044
		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4045
			   memcg_events_local(memcg, memcg1_events[i]));
4046 4047

	for (i = 0; i < NR_LRU_LISTS; i++)
4048
		seq_printf(m, "%s %lu\n", lru_list_name(i),
4049
			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4050
			   PAGE_SIZE);
4051

K
KAMEZAWA Hiroyuki 已提交
4052
	/* Hierarchical information */
4053 4054
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4055 4056
		memory = min(memory, READ_ONCE(mi->memory.max));
		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4057
	}
4058 4059
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
4060
	if (do_memsw_account())
4061 4062
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
4063

4064
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4065
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4066
			continue;
4067
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4068 4069
			   (u64)memcg_page_state(memcg, memcg1_stats[i]) *
			   PAGE_SIZE);
4070 4071
	}

4072
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4073 4074
		seq_printf(m, "total_%s %llu\n",
			   vm_event_name(memcg1_events[i]),
4075
			   (u64)memcg_events(memcg, memcg1_events[i]));
4076

4077
	for (i = 0; i < NR_LRU_LISTS; i++)
4078
		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4079 4080
			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			   PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
4081

K
KOSAKI Motohiro 已提交
4082 4083
#ifdef CONFIG_DEBUG_VM
	{
4084 4085
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
4086 4087
		unsigned long anon_cost = 0;
		unsigned long file_cost = 0;
K
KOSAKI Motohiro 已提交
4088

4089 4090
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
K
KOSAKI Motohiro 已提交
4091

4092 4093
			anon_cost += mz->lruvec.anon_cost;
			file_cost += mz->lruvec.file_cost;
4094
		}
4095 4096
		seq_printf(m, "anon_cost %lu\n", anon_cost);
		seq_printf(m, "file_cost %lu\n", file_cost);
K
KOSAKI Motohiro 已提交
4097 4098 4099
	}
#endif

4100 4101 4102
	return 0;
}

4103 4104
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
4105
{
4106
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4107

4108
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4109 4110
}

4111 4112
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
4113
{
4114
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4115

4116
	if (val > 100)
K
KOSAKI Motohiro 已提交
4117 4118
		return -EINVAL;

4119
	if (css->parent)
4120 4121 4122
		memcg->swappiness = val;
	else
		vm_swappiness = val;
4123

K
KOSAKI Motohiro 已提交
4124 4125 4126
	return 0;
}

4127 4128 4129
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
4130
	unsigned long usage;
4131 4132 4133 4134
	int i;

	rcu_read_lock();
	if (!swap)
4135
		t = rcu_dereference(memcg->thresholds.primary);
4136
	else
4137
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4138 4139 4140 4141

	if (!t)
		goto unlock;

4142
	usage = mem_cgroup_usage(memcg, swap);
4143 4144

	/*
4145
	 * current_threshold points to threshold just below or equal to usage.
4146 4147 4148
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4149
	i = t->current_threshold;
4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4173
	t->current_threshold = i - 1;
4174 4175 4176 4177 4178 4179
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4180 4181
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
4182
		if (do_memsw_account())
4183 4184 4185 4186
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4187 4188 4189 4190 4191 4192 4193
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

4194 4195 4196 4197 4198 4199 4200
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
4201 4202
}

4203
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4204 4205 4206
{
	struct mem_cgroup_eventfd_list *ev;

4207 4208
	spin_lock(&memcg_oom_lock);

4209
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4210
		eventfd_signal(ev->eventfd, 1);
4211 4212

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4213 4214 4215
	return 0;
}

4216
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4217
{
K
KAMEZAWA Hiroyuki 已提交
4218 4219
	struct mem_cgroup *iter;

4220
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4221
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4222 4223
}

4224
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4225
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4226
{
4227 4228
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4229 4230
	unsigned long threshold;
	unsigned long usage;
4231
	int i, size, ret;
4232

4233
	ret = page_counter_memparse(args, "-1", &threshold);
4234 4235 4236 4237
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4238

4239
	if (type == _MEM) {
4240
		thresholds = &memcg->thresholds;
4241
		usage = mem_cgroup_usage(memcg, false);
4242
	} else if (type == _MEMSWAP) {
4243
		thresholds = &memcg->memsw_thresholds;
4244
		usage = mem_cgroup_usage(memcg, true);
4245
	} else
4246 4247 4248
		BUG();

	/* Check if a threshold crossed before adding a new one */
4249
	if (thresholds->primary)
4250 4251
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4252
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4253 4254

	/* Allocate memory for new array of thresholds */
4255
	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4256
	if (!new) {
4257 4258 4259
		ret = -ENOMEM;
		goto unlock;
	}
4260
	new->size = size;
4261 4262

	/* Copy thresholds (if any) to new array */
4263 4264 4265
	if (thresholds->primary)
		memcpy(new->entries, thresholds->primary->entries,
		       flex_array_size(new, entries, size - 1));
4266

4267
	/* Add new threshold */
4268 4269
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4270 4271

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4272
	sort(new->entries, size, sizeof(*new->entries),
4273 4274 4275
			compare_thresholds, NULL);

	/* Find current threshold */
4276
	new->current_threshold = -1;
4277
	for (i = 0; i < size; i++) {
4278
		if (new->entries[i].threshold <= usage) {
4279
			/*
4280 4281
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4282 4283
			 * it here.
			 */
4284
			++new->current_threshold;
4285 4286
		} else
			break;
4287 4288
	}

4289 4290 4291 4292 4293
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4294

4295
	/* To be sure that nobody uses thresholds */
4296 4297 4298 4299 4300 4301 4302 4303
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4304
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4305 4306
	struct eventfd_ctx *eventfd, const char *args)
{
4307
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4308 4309
}

4310
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4311 4312
	struct eventfd_ctx *eventfd, const char *args)
{
4313
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4314 4315
}

4316
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4317
	struct eventfd_ctx *eventfd, enum res_type type)
4318
{
4319 4320
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4321
	unsigned long usage;
4322
	int i, j, size, entries;
4323 4324

	mutex_lock(&memcg->thresholds_lock);
4325 4326

	if (type == _MEM) {
4327
		thresholds = &memcg->thresholds;
4328
		usage = mem_cgroup_usage(memcg, false);
4329
	} else if (type == _MEMSWAP) {
4330
		thresholds = &memcg->memsw_thresholds;
4331
		usage = mem_cgroup_usage(memcg, true);
4332
	} else
4333 4334
		BUG();

4335 4336 4337
	if (!thresholds->primary)
		goto unlock;

4338 4339 4340 4341
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4342
	size = entries = 0;
4343 4344
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4345
			size++;
4346 4347
		else
			entries++;
4348 4349
	}

4350
	new = thresholds->spare;
4351

4352 4353 4354 4355
	/* If no items related to eventfd have been cleared, nothing to do */
	if (!entries)
		goto unlock;

4356 4357
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4358 4359
		kfree(new);
		new = NULL;
4360
		goto swap_buffers;
4361 4362
	}

4363
	new->size = size;
4364 4365

	/* Copy thresholds and find current threshold */
4366 4367 4368
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4369 4370
			continue;

4371
		new->entries[j] = thresholds->primary->entries[i];
4372
		if (new->entries[j].threshold <= usage) {
4373
			/*
4374
			 * new->current_threshold will not be used
4375 4376 4377
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4378
			++new->current_threshold;
4379 4380 4381 4382
		}
		j++;
	}

4383
swap_buffers:
4384 4385
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4386

4387
	rcu_assign_pointer(thresholds->primary, new);
4388

4389
	/* To be sure that nobody uses thresholds */
4390
	synchronize_rcu();
4391 4392 4393 4394 4395 4396

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
4397
unlock:
4398 4399
	mutex_unlock(&memcg->thresholds_lock);
}
4400

4401
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4402 4403
	struct eventfd_ctx *eventfd)
{
4404
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4405 4406
}

4407
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4408 4409
	struct eventfd_ctx *eventfd)
{
4410
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4411 4412
}

4413
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4414
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4415 4416 4417 4418 4419 4420 4421
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4422
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4423 4424 4425 4426 4427

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4428
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
4429
		eventfd_signal(eventfd, 1);
4430
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4431 4432 4433 4434

	return 0;
}

4435
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4436
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4437 4438 4439
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4440
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4441

4442
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4443 4444 4445 4446 4447 4448
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4449
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4450 4451
}

4452
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4453
{
4454
	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4455

4456
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4457
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
R
Roman Gushchin 已提交
4458 4459
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4460 4461 4462
	return 0;
}

4463
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4464 4465
	struct cftype *cft, u64 val)
{
4466
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4467 4468

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4469
	if (!css->parent || !((val == 0) || (val == 1)))
4470 4471
		return -EINVAL;

4472
	memcg->oom_kill_disable = val;
4473
	if (!val)
4474
		memcg_oom_recover(memcg);
4475

4476 4477 4478
	return 0;
}

4479 4480
#ifdef CONFIG_CGROUP_WRITEBACK

4481 4482
#include <trace/events/writeback.h>

T
Tejun Heo 已提交
4483 4484 4485 4486 4487 4488 4489 4490 4491 4492
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

4493 4494 4495 4496 4497
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
4498 4499 4500 4501 4502 4503 4504 4505 4506 4507
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

4508 4509 4510 4511 4512 4513
/*
 * idx can be of type enum memcg_stat_item or node_stat_item.
 * Keep in sync with memcg_exact_page().
 */
static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
{
4514
	long x = atomic_long_read(&memcg->vmstats[idx]);
4515 4516 4517
	int cpu;

	for_each_online_cpu(cpu)
4518
		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4519 4520 4521 4522 4523
	if (x < 0)
		x = 0;
	return x;
}

4524 4525 4526
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
4527 4528
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
4529 4530 4531
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
4532 4533 4534
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
4535
 *
4536 4537 4538 4539 4540
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
4541
 */
4542 4543 4544
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
4545 4546 4547 4548
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

4549
	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4550

4551
	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4552 4553
	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4554
	*pheadroom = PAGE_COUNTER_MAX;
4555 4556

	while ((parent = parent_mem_cgroup(memcg))) {
4557
		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4558
					    READ_ONCE(memcg->memory.high));
4559 4560
		unsigned long used = page_counter_read(&memcg->memory);

4561
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4562 4563 4564 4565
		memcg = parent;
	}
}

4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619
/*
 * Foreign dirty flushing
 *
 * There's an inherent mismatch between memcg and writeback.  The former
 * trackes ownership per-page while the latter per-inode.  This was a
 * deliberate design decision because honoring per-page ownership in the
 * writeback path is complicated, may lead to higher CPU and IO overheads
 * and deemed unnecessary given that write-sharing an inode across
 * different cgroups isn't a common use-case.
 *
 * Combined with inode majority-writer ownership switching, this works well
 * enough in most cases but there are some pathological cases.  For
 * example, let's say there are two cgroups A and B which keep writing to
 * different but confined parts of the same inode.  B owns the inode and
 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
 * triggering background writeback.  A will be slowed down without a way to
 * make writeback of the dirty pages happen.
 *
 * Conditions like the above can lead to a cgroup getting repatedly and
 * severely throttled after making some progress after each
 * dirty_expire_interval while the underyling IO device is almost
 * completely idle.
 *
 * Solving this problem completely requires matching the ownership tracking
 * granularities between memcg and writeback in either direction.  However,
 * the more egregious behaviors can be avoided by simply remembering the
 * most recent foreign dirtying events and initiating remote flushes on
 * them when local writeback isn't enough to keep the memory clean enough.
 *
 * The following two functions implement such mechanism.  When a foreign
 * page - a page whose memcg and writeback ownerships don't match - is
 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
 * decides that the memcg needs to sleep due to high dirty ratio, it calls
 * mem_cgroup_flush_foreign() which queues writeback on the recorded
 * foreign bdi_writebacks which haven't expired.  Both the numbers of
 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
 * limited to MEMCG_CGWB_FRN_CNT.
 *
 * The mechanism only remembers IDs and doesn't hold any object references.
 * As being wrong occasionally doesn't matter, updates and accesses to the
 * records are lockless and racy.
 */
void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
					     struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = page->mem_cgroup;
	struct memcg_cgwb_frn *frn;
	u64 now = get_jiffies_64();
	u64 oldest_at = now;
	int oldest = -1;
	int i;

4620 4621
	trace_track_foreign_dirty(page, wb);

4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681
	/*
	 * Pick the slot to use.  If there is already a slot for @wb, keep
	 * using it.  If not replace the oldest one which isn't being
	 * written out.
	 */
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		frn = &memcg->cgwb_frn[i];
		if (frn->bdi_id == wb->bdi->id &&
		    frn->memcg_id == wb->memcg_css->id)
			break;
		if (time_before64(frn->at, oldest_at) &&
		    atomic_read(&frn->done.cnt) == 1) {
			oldest = i;
			oldest_at = frn->at;
		}
	}

	if (i < MEMCG_CGWB_FRN_CNT) {
		/*
		 * Re-using an existing one.  Update timestamp lazily to
		 * avoid making the cacheline hot.  We want them to be
		 * reasonably up-to-date and significantly shorter than
		 * dirty_expire_interval as that's what expires the record.
		 * Use the shorter of 1s and dirty_expire_interval / 8.
		 */
		unsigned long update_intv =
			min_t(unsigned long, HZ,
			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);

		if (time_before64(frn->at, now - update_intv))
			frn->at = now;
	} else if (oldest >= 0) {
		/* replace the oldest free one */
		frn = &memcg->cgwb_frn[oldest];
		frn->bdi_id = wb->bdi->id;
		frn->memcg_id = wb->memcg_css->id;
		frn->at = now;
	}
}

/* issue foreign writeback flushes for recorded foreign dirtying events */
void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
	u64 now = jiffies_64;
	int i;

	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];

		/*
		 * If the record is older than dirty_expire_interval,
		 * writeback on it has already started.  No need to kick it
		 * off again.  Also, don't start a new one if there's
		 * already one in flight.
		 */
		if (time_after64(frn->at, now - intv) &&
		    atomic_read(&frn->done.cnt) == 1) {
			frn->at = 0;
4682
			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4683 4684 4685 4686 4687 4688 4689
			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
					       WB_REASON_FOREIGN_FLUSH,
					       &frn->done);
		}
	}
}

T
Tejun Heo 已提交
4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

4701 4702 4703 4704
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

4705 4706
#endif	/* CONFIG_CGROUP_WRITEBACK */

4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4720 4721 4722 4723 4724
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4725
static void memcg_event_remove(struct work_struct *work)
4726
{
4727 4728
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4729
	struct mem_cgroup *memcg = event->memcg;
4730 4731 4732

	remove_wait_queue(event->wqh, &event->wait);

4733
	event->unregister_event(memcg, event->eventfd);
4734 4735 4736 4737 4738 4739

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4740
	css_put(&memcg->css);
4741 4742 4743
}

/*
4744
 * Gets called on EPOLLHUP on eventfd when user closes it.
4745 4746 4747
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4748
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4749
			    int sync, void *key)
4750
{
4751 4752
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4753
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
4754
	__poll_t flags = key_to_poll(key);
4755

4756
	if (flags & EPOLLHUP) {
4757 4758 4759 4760 4761 4762 4763 4764 4765
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4766
		spin_lock(&memcg->event_list_lock);
4767 4768 4769 4770 4771 4772 4773 4774
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4775
		spin_unlock(&memcg->event_list_lock);
4776 4777 4778 4779 4780
	}

	return 0;
}

4781
static void memcg_event_ptable_queue_proc(struct file *file,
4782 4783
		wait_queue_head_t *wqh, poll_table *pt)
{
4784 4785
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4786 4787 4788 4789 4790 4791

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4792 4793
 * DO NOT USE IN NEW FILES.
 *
4794 4795 4796 4797 4798
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4799 4800
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4801
{
4802
	struct cgroup_subsys_state *css = of_css(of);
4803
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4804
	struct mem_cgroup_event *event;
4805 4806 4807 4808
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4809
	const char *name;
4810 4811 4812
	char *endp;
	int ret;

4813 4814 4815
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4816 4817
	if (*endp != ' ')
		return -EINVAL;
4818
	buf = endp + 1;
4819

4820
	cfd = simple_strtoul(buf, &endp, 10);
4821 4822
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4823
	buf = endp + 1;
4824 4825 4826 4827 4828

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4829
	event->memcg = memcg;
4830
	INIT_LIST_HEAD(&event->list);
4831 4832 4833
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4859 4860 4861 4862 4863
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4864 4865
	 *
	 * DO NOT ADD NEW FILES.
4866
	 */
A
Al Viro 已提交
4867
	name = cfile.file->f_path.dentry->d_name.name;
4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4879 4880
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4881 4882 4883 4884 4885
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4886
	/*
4887 4888 4889
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4890
	 */
A
Al Viro 已提交
4891
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4892
					       &memory_cgrp_subsys);
4893
	ret = -EINVAL;
4894
	if (IS_ERR(cfile_css))
4895
		goto out_put_cfile;
4896 4897
	if (cfile_css != css) {
		css_put(cfile_css);
4898
		goto out_put_cfile;
4899
	}
4900

4901
	ret = event->register_event(memcg, event->eventfd, buf);
4902 4903 4904
	if (ret)
		goto out_put_css;

4905
	vfs_poll(efile.file, &event->pt);
4906

4907 4908 4909
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4910 4911 4912 4913

	fdput(cfile);
	fdput(efile);

4914
	return nbytes;
4915 4916

out_put_css:
4917
	css_put(css);
4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4930
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4931
	{
4932
		.name = "usage_in_bytes",
4933
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4934
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4935
	},
4936 4937
	{
		.name = "max_usage_in_bytes",
4938
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4939
		.write = mem_cgroup_reset,
4940
		.read_u64 = mem_cgroup_read_u64,
4941
	},
B
Balbir Singh 已提交
4942
	{
4943
		.name = "limit_in_bytes",
4944
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4945
		.write = mem_cgroup_write,
4946
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4947
	},
4948 4949 4950
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4951
		.write = mem_cgroup_write,
4952
		.read_u64 = mem_cgroup_read_u64,
4953
	},
B
Balbir Singh 已提交
4954 4955
	{
		.name = "failcnt",
4956
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4957
		.write = mem_cgroup_reset,
4958
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4959
	},
4960 4961
	{
		.name = "stat",
4962
		.seq_show = memcg_stat_show,
4963
	},
4964 4965
	{
		.name = "force_empty",
4966
		.write = mem_cgroup_force_empty_write,
4967
	},
4968 4969 4970 4971 4972
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4973
	{
4974
		.name = "cgroup.event_control",		/* XXX: for compat */
4975
		.write = memcg_write_event_control,
4976
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4977
	},
K
KOSAKI Motohiro 已提交
4978 4979 4980 4981 4982
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4983 4984 4985 4986 4987
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4988 4989
	{
		.name = "oom_control",
4990
		.seq_show = mem_cgroup_oom_control_read,
4991
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4992 4993
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4994 4995 4996
	{
		.name = "pressure_level",
	},
4997 4998 4999
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5000
		.seq_show = memcg_numa_stat_show,
5001 5002
	},
#endif
5003 5004 5005
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5006
		.write = mem_cgroup_write,
5007
		.read_u64 = mem_cgroup_read_u64,
5008 5009 5010 5011
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5012
		.read_u64 = mem_cgroup_read_u64,
5013 5014 5015 5016
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5017
		.write = mem_cgroup_reset,
5018
		.read_u64 = mem_cgroup_read_u64,
5019 5020 5021 5022
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5023
		.write = mem_cgroup_reset,
5024
		.read_u64 = mem_cgroup_read_u64,
5025
	},
5026 5027
#if defined(CONFIG_MEMCG_KMEM) && \
	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5028 5029
	{
		.name = "kmem.slabinfo",
5030
		.seq_show = memcg_slab_show,
5031 5032
	},
#endif
V
Vladimir Davydov 已提交
5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
5056
	{ },	/* terminate */
5057
};
5058

5059 5060 5061 5062 5063 5064 5065 5066
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
5067
 * However, there usually are many references to the offline CSS after
5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

5085 5086 5087 5088 5089 5090 5091 5092
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

5093 5094
static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
						  unsigned int n)
5095
{
5096
	refcount_add(n, &memcg->id.ref);
5097 5098
}

5099
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5100
{
5101
	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5102
		mem_cgroup_id_remove(memcg);
5103 5104 5105 5106 5107 5108

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

5109 5110 5111 5112 5113
static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

5126
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5127 5128
{
	struct mem_cgroup_per_node *pn;
5129
	int tmp = node;
5130 5131 5132 5133 5134 5135 5136 5137
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5138 5139
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5140
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5141 5142
	if (!pn)
		return 1;
5143

5144 5145
	pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
						 GFP_KERNEL_ACCOUNT);
5146 5147 5148 5149 5150
	if (!pn->lruvec_stat_local) {
		kfree(pn);
		return 1;
	}

5151 5152
	pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
					       GFP_KERNEL_ACCOUNT);
5153
	if (!pn->lruvec_stat_cpu) {
5154
		free_percpu(pn->lruvec_stat_local);
5155 5156 5157 5158
		kfree(pn);
		return 1;
	}

5159 5160 5161 5162 5163
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

5164
	memcg->nodeinfo[node] = pn;
5165 5166 5167
	return 0;
}

5168
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5169
{
5170 5171
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
5172 5173 5174
	if (!pn)
		return;

5175
	free_percpu(pn->lruvec_stat_cpu);
5176
	free_percpu(pn->lruvec_stat_local);
5177
	kfree(pn);
5178 5179
}

5180
static void __mem_cgroup_free(struct mem_cgroup *memcg)
5181
{
5182
	int node;
5183

5184
	for_each_node(node)
5185
		free_mem_cgroup_per_node_info(memcg, node);
5186
	free_percpu(memcg->vmstats_percpu);
5187
	free_percpu(memcg->vmstats_local);
5188
	kfree(memcg);
5189
}
5190

5191 5192 5193
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
5194 5195 5196 5197
	/*
	 * Flush percpu vmstats and vmevents to guarantee the value correctness
	 * on parent's and all ancestor levels.
	 */
5198
	memcg_flush_percpu_vmstats(memcg);
5199
	memcg_flush_percpu_vmevents(memcg);
5200 5201 5202
	__mem_cgroup_free(memcg);
}

5203
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
5204
{
5205
	struct mem_cgroup *memcg;
5206
	unsigned int size;
5207
	int node;
5208
	int __maybe_unused i;
5209
	long error = -ENOMEM;
B
Balbir Singh 已提交
5210

5211 5212 5213 5214
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
5215
	if (!memcg)
5216
		return ERR_PTR(error);
5217

5218 5219 5220
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
5221 5222
	if (memcg->id.id < 0) {
		error = memcg->id.id;
5223
		goto fail;
5224
	}
5225

5226 5227
	memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
						GFP_KERNEL_ACCOUNT);
5228 5229 5230
	if (!memcg->vmstats_local)
		goto fail;

5231 5232
	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
						 GFP_KERNEL_ACCOUNT);
5233
	if (!memcg->vmstats_percpu)
5234
		goto fail;
5235

B
Bob Liu 已提交
5236
	for_each_node(node)
5237
		if (alloc_mem_cgroup_per_node_info(memcg, node))
5238
			goto fail;
5239

5240 5241
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
5242

5243
	INIT_WORK(&memcg->high_work, high_work_func);
5244 5245 5246
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5247
	vmpressure_init(&memcg->vmpressure);
5248 5249
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
5250
	memcg->socket_pressure = jiffies;
5251
#ifdef CONFIG_MEMCG_KMEM
V
Vladimir Davydov 已提交
5252
	memcg->kmemcg_id = -1;
R
Roman Gushchin 已提交
5253
	INIT_LIST_HEAD(&memcg->objcg_list);
V
Vladimir Davydov 已提交
5254
#endif
5255 5256
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
5257 5258 5259
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		memcg->cgwb_frn[i].done =
			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5260 5261 5262 5263 5264
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
	memcg->deferred_split_queue.split_queue_len = 0;
5265
#endif
5266
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5267 5268
	return memcg;
fail:
5269
	mem_cgroup_id_remove(memcg);
5270
	__mem_cgroup_free(memcg);
5271
	return ERR_PTR(error);
5272 5273
}

5274 5275
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5276
{
5277 5278 5279
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
5280

5281
	memalloc_use_memcg(parent);
5282
	memcg = mem_cgroup_alloc();
5283
	memalloc_unuse_memcg();
5284 5285
	if (IS_ERR(memcg))
		return ERR_CAST(memcg);
5286

5287
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5288
	memcg->soft_limit = PAGE_COUNTER_MAX;
5289
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5290 5291 5292 5293 5294 5295
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
5296
		page_counter_init(&memcg->memory, &parent->memory);
5297
		page_counter_init(&memcg->swap, &parent->swap);
5298
		page_counter_init(&memcg->kmem, &parent->kmem);
5299
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5300
	} else {
5301
		page_counter_init(&memcg->memory, NULL);
5302
		page_counter_init(&memcg->swap, NULL);
5303
		page_counter_init(&memcg->kmem, NULL);
5304
		page_counter_init(&memcg->tcpmem, NULL);
5305 5306 5307 5308 5309
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
5310
		if (parent != root_mem_cgroup)
5311
			memory_cgrp_subsys.broken_hierarchy = true;
5312
	}
5313

5314 5315 5316 5317 5318 5319
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

5320
	error = memcg_online_kmem(memcg);
5321 5322
	if (error)
		goto fail;
5323

5324
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5325
		static_branch_inc(&memcg_sockets_enabled_key);
5326

5327 5328
	return &memcg->css;
fail:
5329
	mem_cgroup_id_remove(memcg);
5330
	mem_cgroup_free(memcg);
5331
	return ERR_PTR(error);
5332 5333
}

5334
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5335
{
5336 5337
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5338 5339 5340 5341 5342 5343 5344 5345 5346 5347
	/*
	 * A memcg must be visible for memcg_expand_shrinker_maps()
	 * by the time the maps are allocated. So, we allocate maps
	 * here, when for_each_mem_cgroup() can't skip it.
	 */
	if (memcg_alloc_shrinker_maps(memcg)) {
		mem_cgroup_id_remove(memcg);
		return -ENOMEM;
	}

5348
	/* Online state pins memcg ID, memcg ID pins CSS */
5349
	refcount_set(&memcg->id.ref, 1);
5350
	css_get(css);
5351
	return 0;
B
Balbir Singh 已提交
5352 5353
}

5354
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5355
{
5356
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5357
	struct mem_cgroup_event *event, *tmp;
5358 5359 5360 5361 5362 5363

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
5364 5365
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5366 5367 5368
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
5369
	spin_unlock(&memcg->event_list_lock);
5370

R
Roman Gushchin 已提交
5371
	page_counter_set_min(&memcg->memory, 0);
5372
	page_counter_set_low(&memcg->memory, 0);
5373

5374
	memcg_offline_kmem(memcg);
5375
	wb_memcg_offline(memcg);
5376

5377 5378
	drain_all_stock(memcg);

5379
	mem_cgroup_id_put(memcg);
5380 5381
}

5382 5383 5384 5385 5386 5387 5388
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

5389
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
5390
{
5391
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5392
	int __maybe_unused i;
5393

5394 5395 5396 5397
#ifdef CONFIG_CGROUP_WRITEBACK
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
#endif
5398
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5399
		static_branch_dec(&memcg_sockets_enabled_key);
5400

5401
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
5402
		static_branch_dec(&memcg_sockets_enabled_key);
5403

5404 5405 5406
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
5407
	memcg_free_shrinker_maps(memcg);
5408
	memcg_free_kmem(memcg);
5409
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
5410 5411
}

5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5429 5430 5431 5432
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
R
Roman Gushchin 已提交
5433
	page_counter_set_min(&memcg->memory, 0);
5434
	page_counter_set_low(&memcg->memory, 0);
5435
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5436
	memcg->soft_limit = PAGE_COUNTER_MAX;
5437
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5438
	memcg_wb_domain_size_changed(memcg);
5439 5440
}

5441
#ifdef CONFIG_MMU
5442
/* Handlers for move charge at task migration. */
5443
static int mem_cgroup_do_precharge(unsigned long count)
5444
{
5445
	int ret;
5446

5447 5448
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5449
	if (!ret) {
5450 5451 5452
		mc.precharge += count;
		return ret;
	}
5453

5454
	/* Try charges one by one with reclaim, but do not retry */
5455
	while (count--) {
5456
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5457 5458
		if (ret)
			return ret;
5459
		mc.precharge++;
5460
		cond_resched();
5461
	}
5462
	return 0;
5463 5464 5465 5466
}

union mc_target {
	struct page	*page;
5467
	swp_entry_t	ent;
5468 5469 5470
};

enum mc_target_type {
5471
	MC_TARGET_NONE = 0,
5472
	MC_TARGET_PAGE,
5473
	MC_TARGET_SWAP,
5474
	MC_TARGET_DEVICE,
5475 5476
};

D
Daisuke Nishimura 已提交
5477 5478
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5479
{
5480
	struct page *page = vm_normal_page(vma, addr, ptent);
5481

D
Daisuke Nishimura 已提交
5482 5483 5484
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
5485
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5486
			return NULL;
5487 5488 5489 5490
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
5491 5492 5493 5494 5495 5496
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5497
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
5498
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5499
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
5500 5501 5502 5503
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

5504
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
5505
		return NULL;
5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
		page = device_private_entry_to_page(ent);
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

5523 5524 5525 5526
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5527
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5528
	entry->val = ent.val;
D
Daisuke Nishimura 已提交
5529 5530 5531

	return page;
}
5532 5533
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5534
			pte_t ptent, swp_entry_t *entry)
5535 5536 5537 5538
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5539

5540 5541 5542 5543 5544
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	if (!vma->vm_file) /* anonymous vma */
		return NULL;
5545
	if (!(mc.flags & MOVE_FILE))
5546 5547 5548
		return NULL;

	/* page is moved even if it's not RSS of this task(page-faulted). */
5549
	/* shmem/tmpfs may report page out on swap: account for that too. */
5550 5551
	return find_get_incore_page(vma->vm_file->f_mapping,
			linear_page_index(vma, addr));
5552 5553
}

5554 5555 5556
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
5557
 * @compound: charge the page as compound or small page
5558 5559 5560
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
5561
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5562 5563 5564 5565 5566
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
5567
				   bool compound,
5568 5569 5570
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
5571 5572
	struct lruvec *from_vec, *to_vec;
	struct pglist_data *pgdat;
5573
	unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5574 5575 5576 5577
	int ret;

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
5578
	VM_BUG_ON(compound && !PageTransHuge(page));
5579 5580

	/*
5581
	 * Prevent mem_cgroup_migrate() from looking at
5582
	 * page->mem_cgroup of its source page while we change it.
5583
	 */
5584
	ret = -EBUSY;
5585 5586 5587 5588 5589 5590 5591
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

5592
	pgdat = page_pgdat(page);
5593 5594
	from_vec = mem_cgroup_lruvec(from, pgdat);
	to_vec = mem_cgroup_lruvec(to, pgdat);
5595

5596
	lock_page_memcg(page);
5597

5598 5599 5600 5601
	if (PageAnon(page)) {
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5602 5603 5604 5605 5606 5607 5608
			if (PageTransHuge(page)) {
				__mod_lruvec_state(from_vec, NR_ANON_THPS,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_ANON_THPS,
						   nr_pages);
			}

5609 5610
		}
	} else {
5611 5612 5613 5614 5615 5616 5617 5618
		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);

		if (PageSwapBacked(page)) {
			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
		}

5619 5620 5621 5622
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
		}
5623

5624 5625
		if (PageDirty(page)) {
			struct address_space *mapping = page_mapping(page);
5626

5627
			if (mapping_can_writeback(mapping)) {
5628 5629 5630 5631 5632
				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
						   nr_pages);
			}
5633 5634 5635
		}
	}

5636
	if (PageWriteback(page)) {
5637 5638
		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5639 5640 5641
	}

	/*
5642 5643
	 * All state has been migrated, let's switch to the new memcg.
	 *
5644
	 * It is safe to change page->mem_cgroup here because the page
5645 5646 5647 5648 5649 5650 5651 5652
	 * is referenced, charged, isolated, and locked: we can't race
	 * with (un)charging, migration, LRU putback, or anything else
	 * that would rely on a stable page->mem_cgroup.
	 *
	 * Note that lock_page_memcg is a memcg lock, not a page lock,
	 * to save space. As soon as we switch page->mem_cgroup to a
	 * new memcg that isn't locked, the above state can change
	 * concurrently again. Make sure we're truly done with it.
5653
	 */
5654
	smp_mb();
5655

5656 5657 5658 5659
	css_get(&to->css);
	css_put(&from->css);

	page->mem_cgroup = to;
5660

5661
	__unlock_page_memcg(from);
5662 5663 5664 5665

	ret = 0;

	local_irq_disable();
5666
	mem_cgroup_charge_statistics(to, page, nr_pages);
5667
	memcg_check_events(to, page);
5668
	mem_cgroup_charge_statistics(from, page, -nr_pages);
5669 5670 5671 5672 5673 5674 5675 5676
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5692 5693
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
 *     (so ZONE_DEVICE page and thus not on the lru).
5694 5695 5696
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
5697 5698
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5699 5700 5701 5702
 *
 * Called with pte lock held.
 */

5703
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5704 5705 5706
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
5707
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5708 5709 5710 5711 5712
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
5713
		page = mc_handle_swap_pte(vma, ptent, &ent);
5714
	else if (pte_none(ptent))
5715
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5716 5717

	if (!page && !ent.val)
5718
		return ret;
5719 5720
	if (page) {
		/*
5721
		 * Do only loose check w/o serialization.
5722
		 * mem_cgroup_move_account() checks the page is valid or
5723
		 * not under LRU exclusion.
5724
		 */
5725
		if (page->mem_cgroup == mc.from) {
5726
			ret = MC_TARGET_PAGE;
5727
			if (is_device_private_page(page))
5728
				ret = MC_TARGET_DEVICE;
5729 5730 5731 5732 5733 5734
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
5735 5736 5737 5738 5739
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
5740
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5741 5742 5743
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5744 5745 5746 5747
	}
	return ret;
}

5748 5749
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
5750 5751
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
5752 5753 5754 5755 5756 5757 5758 5759
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

5760 5761 5762 5763 5764
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
5765
	page = pmd_page(pmd);
5766
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5767
	if (!(mc.flags & MOVE_ANON))
5768
		return ret;
5769
	if (page->mem_cgroup == mc.from) {
5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5786 5787 5788 5789
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
5790
	struct vm_area_struct *vma = walk->vma;
5791 5792 5793
	pte_t *pte;
	spinlock_t *ptl;

5794 5795
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5796 5797
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5798 5799
		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
		 * this might change.
5800
		 */
5801 5802
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5803
		spin_unlock(ptl);
5804
		return 0;
5805
	}
5806

5807 5808
	if (pmd_trans_unstable(pmd))
		return 0;
5809 5810
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5811
		if (get_mctgt_type(vma, addr, *pte, NULL))
5812 5813 5814 5815
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5816 5817 5818
	return 0;
}

5819 5820 5821 5822
static const struct mm_walk_ops precharge_walk_ops = {
	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
};

5823 5824 5825 5826
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

5827
	mmap_read_lock(mm);
5828
	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5829
	mmap_read_unlock(mm);
5830 5831 5832 5833 5834 5835 5836 5837 5838

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5839 5840 5841 5842 5843
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5844 5845
}

5846 5847
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5848
{
5849 5850 5851
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5852
	/* we must uncharge all the leftover precharges from mc.to */
5853
	if (mc.precharge) {
5854
		cancel_charge(mc.to, mc.precharge);
5855 5856 5857 5858 5859 5860 5861
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5862
		cancel_charge(mc.from, mc.moved_charge);
5863
		mc.moved_charge = 0;
5864
	}
5865 5866 5867
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5868
		if (!mem_cgroup_is_root(mc.from))
5869
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5870

5871 5872
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

5873
		/*
5874 5875
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5876
		 */
5877
		if (!mem_cgroup_is_root(mc.to))
5878 5879
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5880 5881
		mc.moved_swap = 0;
	}
5882 5883 5884 5885 5886 5887 5888
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
5889 5890
	struct mm_struct *mm = mc.mm;

5891 5892 5893 5894 5895 5896
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5897
	spin_lock(&mc.lock);
5898 5899
	mc.from = NULL;
	mc.to = NULL;
5900
	mc.mm = NULL;
5901
	spin_unlock(&mc.lock);
5902 5903

	mmput(mm);
5904 5905
}

5906
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5907
{
5908
	struct cgroup_subsys_state *css;
5909
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5910
	struct mem_cgroup *from;
5911
	struct task_struct *leader, *p;
5912
	struct mm_struct *mm;
5913
	unsigned long move_flags;
5914
	int ret = 0;
5915

5916 5917
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5918 5919
		return 0;

5920 5921 5922 5923 5924 5925 5926
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
5927
	cgroup_taskset_for_each_leader(leader, css, tset) {
5928 5929
		WARN_ON_ONCE(p);
		p = leader;
5930
		memcg = mem_cgroup_from_css(css);
5931 5932 5933 5934
	}
	if (!p)
		return 0;

5935 5936 5937 5938 5939 5940 5941 5942 5943
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
5960
		mc.mm = mm;
5961 5962 5963 5964 5965 5966 5967 5968 5969
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
5970 5971
	} else {
		mmput(mm);
5972 5973 5974 5975
	}
	return ret;
}

5976
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5977
{
5978 5979
	if (mc.to)
		mem_cgroup_clear_mc();
5980 5981
}

5982 5983 5984
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5985
{
5986
	int ret = 0;
5987
	struct vm_area_struct *vma = walk->vma;
5988 5989
	pte_t *pte;
	spinlock_t *ptl;
5990 5991 5992
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5993

5994 5995
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5996
		if (mc.precharge < HPAGE_PMD_NR) {
5997
			spin_unlock(ptl);
5998 5999 6000 6001 6002 6003
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
6004
				if (!mem_cgroup_move_account(page, true,
6005
							     mc.from, mc.to)) {
6006 6007 6008 6009 6010 6011
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
6012 6013 6014 6015 6016 6017 6018 6019
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
6020
		}
6021
		spin_unlock(ptl);
6022
		return 0;
6023 6024
	}

6025 6026
	if (pmd_trans_unstable(pmd))
		return 0;
6027 6028 6029 6030
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6031
		bool device = false;
6032
		swp_entry_t ent;
6033 6034 6035 6036

		if (!mc.precharge)
			break;

6037
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6038 6039
		case MC_TARGET_DEVICE:
			device = true;
J
Joe Perches 已提交
6040
			fallthrough;
6041 6042
		case MC_TARGET_PAGE:
			page = target.page;
6043 6044 6045 6046 6047 6048 6049 6050
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
6051
			if (!device && isolate_lru_page(page))
6052
				goto put;
6053 6054
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
6055
				mc.precharge--;
6056 6057
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6058
			}
6059 6060
			if (!device)
				putback_lru_page(page);
6061
put:			/* get_mctgt_type() gets the page */
6062 6063
			put_page(page);
			break;
6064 6065
		case MC_TARGET_SWAP:
			ent = target.ent;
6066
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6067
				mc.precharge--;
6068 6069
				mem_cgroup_id_get_many(mc.to, 1);
				/* we fixup other refcnts and charges later. */
6070 6071
				mc.moved_swap++;
			}
6072
			break;
6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6087
		ret = mem_cgroup_do_precharge(1);
6088 6089 6090 6091 6092 6093 6094
		if (!ret)
			goto retry;
	}

	return ret;
}

6095 6096 6097 6098
static const struct mm_walk_ops charge_walk_ops = {
	.pmd_entry	= mem_cgroup_move_charge_pte_range,
};

6099
static void mem_cgroup_move_charge(void)
6100 6101
{
	lru_add_drain_all();
6102
	/*
6103 6104 6105
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
6106 6107 6108
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
6109
retry:
6110
	if (unlikely(!mmap_read_trylock(mc.mm))) {
6111
		/*
6112
		 * Someone who are holding the mmap_lock might be waiting in
6113 6114 6115 6116 6117 6118 6119 6120 6121
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6122 6123 6124 6125
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
6126 6127
	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
			NULL);
6128

6129
	mmap_read_unlock(mc.mm);
6130
	atomic_dec(&mc.from->moving_account);
6131 6132
}

6133
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
6134
{
6135 6136
	if (mc.to) {
		mem_cgroup_move_charge();
6137
		mem_cgroup_clear_mc();
6138
	}
B
Balbir Singh 已提交
6139
}
6140
#else	/* !CONFIG_MMU */
6141
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6142 6143 6144
{
	return 0;
}
6145
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6146 6147
{
}
6148
static void mem_cgroup_move_task(void)
6149 6150 6151
{
}
#endif
B
Balbir Singh 已提交
6152

6153 6154
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6155 6156
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
6157
 */
6158
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6159 6160
{
	/*
6161
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
6162 6163 6164
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
6165
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6166 6167 6168
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
6169 6170
}

6171 6172 6173 6174 6175 6176 6177 6178 6179 6180
static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
{
	if (value == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);

	return 0;
}

6181 6182 6183
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
6184 6185 6186
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6187 6188
}

R
Roman Gushchin 已提交
6189 6190
static int memory_min_show(struct seq_file *m, void *v)
{
6191 6192
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
R
Roman Gushchin 已提交
6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

6212 6213
static int memory_low_show(struct seq_file *m, void *v)
{
6214 6215
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6216 6217 6218 6219 6220 6221 6222 6223 6224 6225
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
6226
	err = page_counter_memparse(buf, "max", &low);
6227 6228 6229
	if (err)
		return err;

6230
	page_counter_set_low(&memcg->memory, low);
6231 6232 6233 6234 6235 6236

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
6237 6238
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6239 6240 6241 6242 6243 6244
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6245
	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6246
	bool drained = false;
6247 6248 6249 6250
	unsigned long high;
	int err;

	buf = strstrip(buf);
6251
	err = page_counter_memparse(buf, "max", &high);
6252 6253 6254
	if (err)
		return err;

6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276
	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);
		unsigned long reclaimed;

		if (nr_pages <= high)
			break;

		if (signal_pending(current))
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
							 GFP_KERNEL, true);

		if (!reclaimed && !nr_retries--)
			break;
	}
6277

6278 6279
	page_counter_set_high(&memcg->memory, high);

6280 6281
	memcg_wb_domain_size_changed(memcg);

6282 6283 6284 6285 6286
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
6287 6288
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6289 6290 6291 6292 6293 6294
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6295
	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6296
	bool drained = false;
6297 6298 6299 6300
	unsigned long max;
	int err;

	buf = strstrip(buf);
6301
	err = page_counter_memparse(buf, "max", &max);
6302 6303 6304
	if (err)
		return err;

6305
	xchg(&memcg->memory.max, max);
6306 6307 6308 6309 6310 6311 6312

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

6313
		if (signal_pending(current))
6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

6329
		memcg_memory_event(memcg, MEMCG_OOM);
6330 6331 6332
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
6333

6334
	memcg_wb_domain_size_changed(memcg);
6335 6336 6337
	return nbytes;
}

6338 6339 6340 6341 6342 6343 6344 6345 6346 6347
static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
{
	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&events[MEMCG_OOM_KILL]));
}

6348 6349
static int memory_events_show(struct seq_file *m, void *v)
{
6350
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6351

6352 6353 6354 6355 6356 6357 6358
	__memory_events_show(m, memcg->memory_events);
	return 0;
}

static int memory_events_local_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6359

6360
	__memory_events_show(m, memcg->memory_events_local);
6361 6362 6363
	return 0;
}

6364 6365
static int memory_stat_show(struct seq_file *m, void *v)
{
6366
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6367
	char *buf;
6368

6369 6370 6371 6372 6373
	buf = memory_stat_format(memcg);
	if (!buf)
		return -ENOMEM;
	seq_puts(m, buf);
	kfree(buf);
6374 6375 6376
	return 0;
}

6377 6378
static int memory_oom_group_show(struct seq_file *m, void *v)
{
6379
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407

	seq_printf(m, "%d\n", memcg->oom_group);

	return 0;
}

static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
				      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	int ret, oom_group;

	buf = strstrip(buf);
	if (!buf)
		return -EINVAL;

	ret = kstrtoint(buf, 0, &oom_group);
	if (ret)
		return ret;

	if (oom_group != 0 && oom_group != 1)
		return -EINVAL;

	memcg->oom_group = oom_group;

	return nbytes;
}

6408 6409 6410
static struct cftype memory_files[] = {
	{
		.name = "current",
6411
		.flags = CFTYPE_NOT_ON_ROOT,
6412 6413
		.read_u64 = memory_current_read,
	},
R
Roman Gushchin 已提交
6414 6415 6416 6417 6418 6419
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
6441
		.file_offset = offsetof(struct mem_cgroup, events_file),
6442 6443
		.seq_show = memory_events_show,
	},
6444 6445 6446 6447 6448 6449
	{
		.name = "events.local",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, events_local_file),
		.seq_show = memory_events_local_show,
	},
6450 6451 6452 6453
	{
		.name = "stat",
		.seq_show = memory_stat_show,
	},
6454 6455 6456 6457 6458 6459
	{
		.name = "oom.group",
		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
		.seq_show = memory_oom_group_show,
		.write = memory_oom_group_write,
	},
6460 6461 6462
	{ }	/* terminate */
};

6463
struct cgroup_subsys memory_cgrp_subsys = {
6464
	.css_alloc = mem_cgroup_css_alloc,
6465
	.css_online = mem_cgroup_css_online,
6466
	.css_offline = mem_cgroup_css_offline,
6467
	.css_released = mem_cgroup_css_released,
6468
	.css_free = mem_cgroup_css_free,
6469
	.css_reset = mem_cgroup_css_reset,
6470 6471
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
6472
	.post_attach = mem_cgroup_move_task,
6473
	.bind = mem_cgroup_bind,
6474 6475
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
6476
	.early_init = 0,
B
Balbir Singh 已提交
6477
};
6478

6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508
/*
 * This function calculates an individual cgroup's effective
 * protection which is derived from its own memory.min/low, its
 * parent's and siblings' settings, as well as the actual memory
 * distribution in the tree.
 *
 * The following rules apply to the effective protection values:
 *
 * 1. At the first level of reclaim, effective protection is equal to
 *    the declared protection in memory.min and memory.low.
 *
 * 2. To enable safe delegation of the protection configuration, at
 *    subsequent levels the effective protection is capped to the
 *    parent's effective protection.
 *
 * 3. To make complex and dynamic subtrees easier to configure, the
 *    user is allowed to overcommit the declared protection at a given
 *    level. If that is the case, the parent's effective protection is
 *    distributed to the children in proportion to how much protection
 *    they have declared and how much of it they are utilizing.
 *
 *    This makes distribution proportional, but also work-conserving:
 *    if one cgroup claims much more protection than it uses memory,
 *    the unused remainder is available to its siblings.
 *
 * 4. Conversely, when the declared protection is undercommitted at a
 *    given level, the distribution of the larger parental protection
 *    budget is NOT proportional. A cgroup's protection from a sibling
 *    is capped to its own memory.min/low setting.
 *
6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520
 * 5. However, to allow protecting recursive subtrees from each other
 *    without having to declare each individual cgroup's fixed share
 *    of the ancestor's claim to protection, any unutilized -
 *    "floating" - protection from up the tree is distributed in
 *    proportion to each cgroup's *usage*. This makes the protection
 *    neutral wrt sibling cgroups and lets them compete freely over
 *    the shared parental protection budget, but it protects the
 *    subtree as a whole from neighboring subtrees.
 *
 * Note that 4. and 5. are not in conflict: 4. is about protecting
 * against immediate siblings whereas 5. is about protecting against
 * neighboring subtrees.
6521 6522
 */
static unsigned long effective_protection(unsigned long usage,
6523
					  unsigned long parent_usage,
6524 6525 6526 6527 6528
					  unsigned long setting,
					  unsigned long parent_effective,
					  unsigned long siblings_protected)
{
	unsigned long protected;
6529
	unsigned long ep;
6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559

	protected = min(usage, setting);
	/*
	 * If all cgroups at this level combined claim and use more
	 * protection then what the parent affords them, distribute
	 * shares in proportion to utilization.
	 *
	 * We are using actual utilization rather than the statically
	 * claimed protection in order to be work-conserving: claimed
	 * but unused protection is available to siblings that would
	 * otherwise get a smaller chunk than what they claimed.
	 */
	if (siblings_protected > parent_effective)
		return protected * parent_effective / siblings_protected;

	/*
	 * Ok, utilized protection of all children is within what the
	 * parent affords them, so we know whatever this child claims
	 * and utilizes is effectively protected.
	 *
	 * If there is unprotected usage beyond this value, reclaim
	 * will apply pressure in proportion to that amount.
	 *
	 * If there is unutilized protection, the cgroup will be fully
	 * shielded from reclaim, but we do return a smaller value for
	 * protection than what the group could enjoy in theory. This
	 * is okay. With the overcommit distribution above, effective
	 * protection is always dependent on how memory is actually
	 * consumed among the siblings anyway.
	 */
6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572
	ep = protected;

	/*
	 * If the children aren't claiming (all of) the protection
	 * afforded to them by the parent, distribute the remainder in
	 * proportion to the (unprotected) memory of each cgroup. That
	 * way, cgroups that aren't explicitly prioritized wrt each
	 * other compete freely over the allowance, but they are
	 * collectively protected from neighboring trees.
	 *
	 * We're using unprotected memory for the weight so that if
	 * some cgroups DO claim explicit protection, we don't protect
	 * the same bytes twice.
6573 6574 6575 6576
	 *
	 * Check both usage and parent_usage against the respective
	 * protected values. One should imply the other, but they
	 * aren't read atomically - make sure the division is sane.
6577 6578 6579
	 */
	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
		return ep;
6580 6581 6582
	if (parent_effective > siblings_protected &&
	    parent_usage > siblings_protected &&
	    usage > protected) {
6583 6584 6585 6586 6587 6588 6589 6590 6591 6592
		unsigned long unclaimed;

		unclaimed = parent_effective - siblings_protected;
		unclaimed *= usage - protected;
		unclaimed /= parent_usage - siblings_protected;

		ep += unclaimed;
	}

	return ep;
6593 6594
}

6595
/**
R
Roman Gushchin 已提交
6596
 * mem_cgroup_protected - check if memory consumption is in the normal range
6597
 * @root: the top ancestor of the sub-tree being checked
6598 6599
 * @memcg: the memory cgroup to check
 *
6600 6601
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
6602
 */
6603 6604
void mem_cgroup_calculate_protection(struct mem_cgroup *root,
				     struct mem_cgroup *memcg)
6605
{
6606
	unsigned long usage, parent_usage;
6607 6608
	struct mem_cgroup *parent;

6609
	if (mem_cgroup_disabled())
6610
		return;
6611

6612 6613
	if (!root)
		root = root_mem_cgroup;
6614 6615 6616 6617 6618 6619 6620 6621

	/*
	 * Effective values of the reclaim targets are ignored so they
	 * can be stale. Have a look at mem_cgroup_protection for more
	 * details.
	 * TODO: calculation should be more robust so that we do not need
	 * that special casing.
	 */
6622
	if (memcg == root)
6623
		return;
6624

6625
	usage = page_counter_read(&memcg->memory);
R
Roman Gushchin 已提交
6626
	if (!usage)
6627
		return;
R
Roman Gushchin 已提交
6628 6629

	parent = parent_mem_cgroup(memcg);
6630 6631
	/* No parent means a non-hierarchical mode on v1 memcg */
	if (!parent)
6632
		return;
6633

6634
	if (parent == root) {
6635
		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6636
		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6637
		return;
R
Roman Gushchin 已提交
6638 6639
	}

6640 6641
	parent_usage = page_counter_read(&parent->memory);

6642
	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6643 6644
			READ_ONCE(memcg->memory.min),
			READ_ONCE(parent->memory.emin),
6645
			atomic_long_read(&parent->memory.children_min_usage)));
6646

6647
	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6648 6649
			READ_ONCE(memcg->memory.low),
			READ_ONCE(parent->memory.elow),
6650
			atomic_long_read(&parent->memory.children_low_usage)));
6651 6652
}

6653
/**
6654
 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6655 6656 6657 6658 6659 6660 6661
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
6662
 * Returns 0 on success. Otherwise, an error code is returned.
6663
 */
6664
int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6665
{
6666
	unsigned int nr_pages = thp_nr_pages(page);
6667 6668 6669 6670 6671 6672 6673
	struct mem_cgroup *memcg = NULL;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
6674 6675 6676
		swp_entry_t ent = { .val = page_private(page), };
		unsigned short id;

6677 6678 6679
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
6680 6681
		 * already charged pages, too.  page->mem_cgroup is protected
		 * by the page lock, which serializes swap cache removal, which
6682 6683
		 * in turn serializes uncharging.
		 */
6684
		VM_BUG_ON_PAGE(!PageLocked(page), page);
6685
		if (compound_head(page)->mem_cgroup)
6686
			goto out;
6687

6688 6689 6690 6691 6692 6693
		id = lookup_swap_cgroup_id(ent);
		rcu_read_lock();
		memcg = mem_cgroup_from_id(id);
		if (memcg && !css_tryget_online(&memcg->css))
			memcg = NULL;
		rcu_read_unlock();
6694 6695 6696 6697 6698 6699
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);
6700 6701
	if (ret)
		goto out_put;
6702

6703
	css_get(&memcg->css);
6704
	commit_charge(page, memcg);
6705 6706

	local_irq_disable();
6707
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6708 6709
	memcg_check_events(memcg, page);
	local_irq_enable();
6710

6711
	if (PageSwapCache(page)) {
6712 6713 6714 6715 6716 6717
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
6718
		mem_cgroup_uncharge_swap(entry, nr_pages);
6719 6720
	}

6721 6722 6723 6724
out_put:
	css_put(&memcg->css);
out:
	return ret;
6725 6726
}

6727 6728
struct uncharge_gather {
	struct mem_cgroup *memcg;
6729
	unsigned long nr_pages;
6730 6731 6732 6733 6734 6735
	unsigned long pgpgout;
	unsigned long nr_kmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6736
{
6737 6738 6739 6740 6741
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
6742 6743
	unsigned long flags;

6744
	if (!mem_cgroup_is_root(ug->memcg)) {
6745
		page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6746
		if (do_memsw_account())
6747
			page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6748 6749 6750
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
6751
	}
6752 6753

	local_irq_save(flags);
6754
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6755
	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6756
	memcg_check_events(ug->memcg, ug->dummy_page);
6757
	local_irq_restore(flags);
6758 6759 6760

	/* drop reference from uncharge_page */
	css_put(&ug->memcg->css);
6761 6762 6763 6764
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
6765 6766
	unsigned long nr_pages;

6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783
	VM_BUG_ON_PAGE(PageLRU(page), page);

	if (!page->mem_cgroup)
		return;

	/*
	 * Nobody should be changing or seriously looking at
	 * page->mem_cgroup at this point, we have fully
	 * exclusive access to the page.
	 */

	if (ug->memcg != page->mem_cgroup) {
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
		ug->memcg = page->mem_cgroup;
6784 6785 6786

		/* pairs with css_put in uncharge_batch */
		css_get(&ug->memcg->css);
6787 6788
	}

6789 6790
	nr_pages = compound_nr(page);
	ug->nr_pages += nr_pages;
6791

6792
	if (!PageKmemcg(page)) {
6793 6794
		ug->pgpgout++;
	} else {
6795
		ug->nr_kmem += nr_pages;
6796 6797 6798 6799 6800
		__ClearPageKmemcg(page);
	}

	ug->dummy_page = page;
	page->mem_cgroup = NULL;
6801
	css_put(&ug->memcg->css);
6802 6803 6804 6805
}

static void uncharge_list(struct list_head *page_list)
{
6806
	struct uncharge_gather ug;
6807
	struct list_head *next;
6808 6809

	uncharge_gather_clear(&ug);
6810

6811 6812 6813 6814
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
6815 6816
	next = page_list->next;
	do {
6817 6818
		struct page *page;

6819 6820 6821
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

6822
		uncharge_page(page, &ug);
6823 6824
	} while (next != page_list);

6825 6826
	if (ug.memcg)
		uncharge_batch(&ug);
6827 6828
}

6829 6830 6831 6832
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
6833
 * Uncharge a page previously charged with mem_cgroup_charge().
6834 6835 6836
 */
void mem_cgroup_uncharge(struct page *page)
{
6837 6838
	struct uncharge_gather ug;

6839 6840 6841
	if (mem_cgroup_disabled())
		return;

6842
	/* Don't touch page->lru of any random page, pre-check: */
6843
	if (!page->mem_cgroup)
6844 6845
		return;

6846 6847 6848
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
6849
}
6850

6851 6852 6853 6854 6855
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
6856
 * mem_cgroup_charge().
6857 6858 6859 6860 6861
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
6862

6863 6864
	if (!list_empty(page_list))
		uncharge_list(page_list);
6865 6866 6867
}

/**
6868 6869 6870
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
6871
 *
6872 6873
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
6874 6875 6876
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
6877
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6878
{
6879
	struct mem_cgroup *memcg;
6880
	unsigned int nr_pages;
6881
	unsigned long flags;
6882 6883 6884 6885

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6886 6887
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6888 6889 6890 6891 6892

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
6893
	if (newpage->mem_cgroup)
6894 6895
		return;

6896
	/* Swapcache readahead pages can get replaced before being charged */
6897
	memcg = oldpage->mem_cgroup;
6898
	if (!memcg)
6899 6900
		return;

6901
	/* Force-charge the new page. The old one will be freed soon */
6902
	nr_pages = thp_nr_pages(newpage);
6903 6904 6905 6906

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
6907

6908
	css_get(&memcg->css);
6909
	commit_charge(newpage, memcg);
6910

6911
	local_irq_save(flags);
6912
	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6913
	memcg_check_events(memcg, newpage);
6914
	local_irq_restore(flags);
6915 6916
}

6917
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6918 6919
EXPORT_SYMBOL(memcg_sockets_enabled_key);

6920
void mem_cgroup_sk_alloc(struct sock *sk)
6921 6922 6923
{
	struct mem_cgroup *memcg;

6924 6925 6926
	if (!mem_cgroup_sockets_enabled)
		return;

6927 6928 6929 6930
	/* Do not associate the sock with unrelated interrupted task's memcg. */
	if (in_interrupt())
		return;

6931 6932
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
6933 6934
	if (memcg == root_mem_cgroup)
		goto out;
6935
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6936
		goto out;
S
Shakeel Butt 已提交
6937
	if (css_tryget(&memcg->css))
6938
		sk->sk_memcg = memcg;
6939
out:
6940 6941 6942
	rcu_read_unlock();
}

6943
void mem_cgroup_sk_free(struct sock *sk)
6944
{
6945 6946
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6959
	gfp_t gfp_mask = GFP_KERNEL;
6960

6961
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6962
		struct page_counter *fail;
6963

6964 6965
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
6966 6967
			return true;
		}
6968 6969
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
6970
		return false;
6971
	}
6972

6973 6974 6975 6976
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

6977
	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6978

6979 6980 6981 6982
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6983 6984 6985 6986 6987
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
6988 6989
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
6990 6991 6992
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6993
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6994
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6995 6996
		return;
	}
6997

6998
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6999

7000
	refill_stock(memcg, nr_pages);
7001 7002
}

7003 7004 7005 7006 7007 7008 7009 7010 7011
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
7012 7013
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
7014 7015 7016 7017
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
7018

7019
/*
7020 7021
 * subsys_initcall() for memory controller.
 *
7022 7023 7024 7025
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
7026 7027 7028
 */
static int __init mem_cgroup_init(void)
{
7029 7030
	int cpu, node;

7031 7032
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

7044
		rtpn->rb_root = RB_ROOT;
7045
		rtpn->rb_rightmost = NULL;
7046
		spin_lock_init(&rtpn->lock);
7047 7048 7049
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

7050 7051 7052
	return 0;
}
subsys_initcall(mem_cgroup_init);
7053 7054

#ifdef CONFIG_MEMCG_SWAP
7055 7056
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
7057
	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

7073 7074 7075 7076 7077 7078 7079 7080 7081
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
7082
	struct mem_cgroup *memcg, *swap_memcg;
7083
	unsigned int nr_entries;
7084 7085 7086 7087 7088
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

7089
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7090 7091 7092 7093 7094 7095 7096 7097
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

7098 7099 7100 7101 7102 7103
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
7104
	nr_entries = thp_nr_pages(page);
7105 7106 7107 7108 7109
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
7110
	VM_BUG_ON_PAGE(oldid, page);
7111
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7112 7113 7114 7115

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
7116
		page_counter_uncharge(&memcg->memory, nr_entries);
7117

7118
	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7119
		if (!mem_cgroup_is_root(swap_memcg))
7120 7121
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
7122 7123
	}

7124 7125
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
7126
	 * i_pages lock which is taken with interrupts-off. It is
7127
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
7128
	 * only synchronisation we have for updating the per-CPU variables.
7129 7130
	 */
	VM_BUG_ON(!irqs_disabled());
7131
	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7132
	memcg_check_events(memcg, page);
7133

7134
	css_put(&memcg->css);
7135 7136
}

7137 7138
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
7139 7140 7141
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
7142
 * Try to charge @page's memcg for the swap space at @entry.
7143 7144 7145 7146 7147
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
7148
	unsigned int nr_pages = thp_nr_pages(page);
7149
	struct page_counter *counter;
7150
	struct mem_cgroup *memcg;
7151 7152
	unsigned short oldid;

7153
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7154 7155 7156 7157 7158 7159 7160 7161
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

7162 7163
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7164
		return 0;
7165
	}
7166

7167 7168
	memcg = mem_cgroup_id_get_online(memcg);

7169
	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7170
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7171 7172
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7173
		mem_cgroup_id_put(memcg);
7174
		return -ENOMEM;
7175
	}
7176

7177 7178 7179 7180
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7181
	VM_BUG_ON_PAGE(oldid, page);
7182
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7183 7184 7185 7186

	return 0;
}

7187
/**
7188
 * mem_cgroup_uncharge_swap - uncharge swap space
7189
 * @entry: swap entry to uncharge
7190
 * @nr_pages: the amount of swap space to uncharge
7191
 */
7192
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7193 7194 7195 7196
{
	struct mem_cgroup *memcg;
	unsigned short id;

7197
	id = swap_cgroup_record(entry, 0, nr_pages);
7198
	rcu_read_lock();
7199
	memcg = mem_cgroup_from_id(id);
7200
	if (memcg) {
7201
		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7202
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7203
				page_counter_uncharge(&memcg->swap, nr_pages);
7204
			else
7205
				page_counter_uncharge(&memcg->memsw, nr_pages);
7206
		}
7207
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7208
		mem_cgroup_id_put_many(memcg, nr_pages);
7209 7210 7211 7212
	}
	rcu_read_unlock();
}

7213 7214 7215 7216
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

7217
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7218 7219 7220
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
7221
				      READ_ONCE(memcg->swap.max) -
7222 7223 7224 7225
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

7226 7227 7228 7229 7230 7231 7232 7233
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
7234
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7235 7236 7237 7238 7239 7240
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

7241 7242 7243 7244 7245
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		unsigned long usage = page_counter_read(&memcg->swap);

		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
		    usage * 2 >= READ_ONCE(memcg->swap.max))
7246
			return true;
7247
	}
7248 7249 7250 7251

	return false;
}

7252
static int __init setup_swap_account(char *s)
7253 7254
{
	if (!strcmp(s, "1"))
7255
		cgroup_memory_noswap = 0;
7256
	else if (!strcmp(s, "0"))
7257
		cgroup_memory_noswap = 1;
7258 7259
	return 1;
}
7260
__setup("swapaccount=", setup_swap_account);
7261

7262 7263 7264 7265 7266 7267 7268 7269
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292
static int swap_high_show(struct seq_file *m, void *v)
{
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
}

static ssize_t swap_high_write(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &high);
	if (err)
		return err;

	page_counter_set_high(&memcg->swap, high);

	return nbytes;
}

7293 7294
static int swap_max_show(struct seq_file *m, void *v)
{
7295 7296
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

7311
	xchg(&memcg->swap.max, max);
7312 7313 7314 7315

	return nbytes;
}

7316 7317
static int swap_events_show(struct seq_file *m, void *v)
{
7318
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7319

7320 7321
	seq_printf(m, "high %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7322 7323 7324 7325 7326 7327 7328 7329
	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

7330 7331 7332 7333 7334 7335
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
7336 7337 7338 7339 7340 7341
	{
		.name = "swap.high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_high_show,
		.write = swap_high_write,
	},
7342 7343 7344 7345 7346 7347
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
7348 7349 7350 7351 7352 7353
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
7354 7355 7356
	{ }	/* terminate */
};

7357
static struct cftype memsw_files[] = {
7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

7384 7385 7386 7387 7388 7389 7390
/*
 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
 * boot parameter. This may result in premature OOPS inside
 * mem_cgroup_get_nr_swap_pages() function in corner cases.
 */
7391 7392
static int __init mem_cgroup_swap_init(void)
{
7393 7394 7395 7396 7397
	/* No memory control -> no swap control */
	if (mem_cgroup_disabled())
		cgroup_memory_noswap = true;

	if (cgroup_memory_noswap)
7398 7399 7400 7401 7402
		return 0;

	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));

7403 7404
	return 0;
}
7405
core_initcall(mem_cgroup_swap_init);
7406 7407

#endif /* CONFIG_MEMCG_SWAP */