memcontrol.c 187.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
B
Balbir Singh 已提交
2 3 4 5 6
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
7 8 9
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
10 11 12 13
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
14 15 16 17
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
B
Balbir Singh 已提交
23 24
 */

25
#include <linux/page_counter.h>
B
Balbir Singh 已提交
26 27
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
28
#include <linux/pagewalk.h>
29
#include <linux/sched/mm.h>
30
#include <linux/shmem_fs.h>
31
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
32
#include <linux/pagemap.h>
33
#include <linux/vm_event_item.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/swap_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
59
#include <linux/tracehook.h>
60
#include <linux/psi.h>
61
#include <linux/seq_buf.h>
K
KAMEZAWA Hiroyuki 已提交
62
#include "internal.h"
G
Glauber Costa 已提交
63
#include <net/sock.h>
M
Michal Hocko 已提交
64
#include <net/ip.h>
65
#include "slab.h"
B
Balbir Singh 已提交
66

67
#include <linux/uaccess.h>
68

69 70
#include <trace/events/vmscan.h>

71 72
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
73

74 75
struct mem_cgroup *root_mem_cgroup __read_mostly;

76
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
77

78 79 80
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

81 82 83
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

84
/* Whether the swap controller is active */
A
Andrew Morton 已提交
85
#ifdef CONFIG_MEMCG_SWAP
86 87
int do_swap_account __read_mostly;
#else
88
#define do_swap_account		0
89 90
#endif

91 92 93 94
#ifdef CONFIG_CGROUP_WRITEBACK
static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
#endif

95 96 97 98 99 100
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

101 102
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
103

104 105 106 107 108
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

109
struct mem_cgroup_tree_per_node {
110
	struct rb_root rb_root;
111
	struct rb_node *rb_rightmost;
112 113 114 115 116 117 118 119 120
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
121 122 123 124 125
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
126

127 128 129
/*
 * cgroup_event represents events which userspace want to receive.
 */
130
struct mem_cgroup_event {
131
	/*
132
	 * memcg which the event belongs to.
133
	 */
134
	struct mem_cgroup *memcg;
135 136 137 138 139 140 141 142
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
143 144 145 146 147
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
148
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
149
			      struct eventfd_ctx *eventfd, const char *args);
150 151 152 153 154
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
155
	void (*unregister_event)(struct mem_cgroup *memcg,
156
				 struct eventfd_ctx *eventfd);
157 158 159 160 161 162
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
163
	wait_queue_entry_t wait;
164 165 166
	struct work_struct remove;
};

167 168
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
169

170 171
/* Stuffs for move charges at task migration. */
/*
172
 * Types of charges to be moved.
173
 */
174 175 176
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
177

178 179
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
180
	spinlock_t	  lock; /* for from, to */
181
	struct mm_struct  *mm;
182 183
	struct mem_cgroup *from;
	struct mem_cgroup *to;
184
	unsigned long flags;
185
	unsigned long precharge;
186
	unsigned long moved_charge;
187
	unsigned long moved_swap;
188 189 190
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
191
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
192 193
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
194

195 196 197 198
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
199
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
200
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
201

202 203
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
204
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
205
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
206
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
207 208 209
	NR_CHARGE_TYPE,
};

210
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
211 212 213 214
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
215
	_KMEM,
V
Vladimir Davydov 已提交
216
	_TCP,
G
Glauber Costa 已提交
217 218
};

219 220
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
221
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
222 223
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
224

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(root, iter, NULL))

#define for_each_mem_cgroup(iter)			\
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(NULL, iter, NULL))

240 241 242 243 244 245
static inline bool should_force_charge(void)
{
	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
		(current->flags & PF_EXITING);
}

246 247 248 249 250 251 252 253 254 255 256 257 258
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

259
#ifdef CONFIG_MEMCG_KMEM
260
/*
261
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
262 263 264 265 266
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
267
 *
268 269
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
270
 */
271 272
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
273

274 275 276 277 278 279 280 281 282 283 284 285 286
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

287 288 289 290 291 292
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
293
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
294 295
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
296
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
297 298 299
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
300
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
301

302 303 304 305 306 307
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
308
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
309
EXPORT_SYMBOL(memcg_kmem_enabled_key);
310

311
struct workqueue_struct *memcg_kmem_cache_wq;
312
#endif
313

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
static int memcg_shrinker_map_size;
static DEFINE_MUTEX(memcg_shrinker_map_mutex);

static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
{
	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
}

static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
					 int size, int old_size)
{
	struct memcg_shrinker_map *new, *old;
	int nid;

	lockdep_assert_held(&memcg_shrinker_map_mutex);

	for_each_node(nid) {
		old = rcu_dereference_protected(
			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
		/* Not yet online memcg */
		if (!old)
			return 0;

337
		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
		if (!new)
			return -ENOMEM;

		/* Set all old bits, clear all new bits */
		memset(new->map, (int)0xff, old_size);
		memset((void *)new->map + old_size, 0, size - old_size);

		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
	}

	return 0;
}

static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *pn;
	struct memcg_shrinker_map *map;
	int nid;

	if (mem_cgroup_is_root(memcg))
		return;

	for_each_node(nid) {
		pn = mem_cgroup_nodeinfo(memcg, nid);
		map = rcu_dereference_protected(pn->shrinker_map, true);
		if (map)
			kvfree(map);
		rcu_assign_pointer(pn->shrinker_map, NULL);
	}
}

static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	struct memcg_shrinker_map *map;
	int nid, size, ret = 0;

	if (mem_cgroup_is_root(memcg))
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	size = memcg_shrinker_map_size;
	for_each_node(nid) {
381
		map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
		if (!map) {
			memcg_free_shrinker_maps(memcg);
			ret = -ENOMEM;
			break;
		}
		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
	}
	mutex_unlock(&memcg_shrinker_map_mutex);

	return ret;
}

int memcg_expand_shrinker_maps(int new_id)
{
	int size, old_size, ret = 0;
	struct mem_cgroup *memcg;

	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
	old_size = memcg_shrinker_map_size;
	if (size <= old_size)
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	if (!root_mem_cgroup)
		goto unlock;

	for_each_mem_cgroup(memcg) {
		if (mem_cgroup_is_root(memcg))
			continue;
		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
412 413
		if (ret) {
			mem_cgroup_iter_break(NULL, memcg);
414
			goto unlock;
415
		}
416 417 418 419 420 421 422
	}
unlock:
	if (!ret)
		memcg_shrinker_map_size = size;
	mutex_unlock(&memcg_shrinker_map_mutex);
	return ret;
}
423 424 425 426 427 428 429 430

void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
{
	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
		struct memcg_shrinker_map *map;

		rcu_read_lock();
		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
431 432
		/* Pairs with smp mb in shrink_slab() */
		smp_mb__before_atomic();
433 434 435 436 437
		set_bit(shrinker_id, map->map);
		rcu_read_unlock();
	}
}

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

455
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
456 457 458 459 460
		memcg = root_mem_cgroup;

	return &memcg->css;
}

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
480
	if (PageSlab(page) && !PageTail(page))
481 482 483
		memcg = memcg_from_slab_page(page);
	else
		memcg = READ_ONCE(page->mem_cgroup);
484 485 486 487 488 489 490 491
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

492 493
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
494
{
495
	int nid = page_to_nid(page);
496

497
	return memcg->nodeinfo[nid];
498 499
}

500 501
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
502
{
503
	return soft_limit_tree.rb_tree_per_node[nid];
504 505
}

506
static struct mem_cgroup_tree_per_node *
507 508 509 510
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

511
	return soft_limit_tree.rb_tree_per_node[nid];
512 513
}

514 515
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
516
					 unsigned long new_usage_in_excess)
517 518 519
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
520
	struct mem_cgroup_per_node *mz_node;
521
	bool rightmost = true;
522 523 524 525 526 527 528 529 530

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
531
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
532
					tree_node);
533
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
534
			p = &(*p)->rb_left;
535 536 537
			rightmost = false;
		}

538 539 540 541 542 543 544
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
545 546 547 548

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

549 550 551 552 553
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

554 555
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
556 557 558
{
	if (!mz->on_tree)
		return;
559 560 561 562

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

563 564 565 566
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

567 568
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
569
{
570 571 572
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
573
	__mem_cgroup_remove_exceeded(mz, mctz);
574
	spin_unlock_irqrestore(&mctz->lock, flags);
575 576
}

577 578 579
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
580
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
581 582 583 584 585 586 587
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
588 589 590

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
591
	unsigned long excess;
592 593
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
594

595
	mctz = soft_limit_tree_from_page(page);
596 597
	if (!mctz)
		return;
598 599 600 601 602
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
603
		mz = mem_cgroup_page_nodeinfo(memcg, page);
604
		excess = soft_limit_excess(memcg);
605 606 607 608 609
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
610 611 612
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
613 614
			/* if on-tree, remove it */
			if (mz->on_tree)
615
				__mem_cgroup_remove_exceeded(mz, mctz);
616 617 618 619
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
620
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
621
			spin_unlock_irqrestore(&mctz->lock, flags);
622 623 624 625 626 627
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
628 629 630
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
631

632
	for_each_node(nid) {
633 634
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
635 636
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
637 638 639
	}
}

640 641
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
642
{
643
	struct mem_cgroup_per_node *mz;
644 645 646

retry:
	mz = NULL;
647
	if (!mctz->rb_rightmost)
648 649
		goto done;		/* Nothing to reclaim from */

650 651
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
652 653 654 655 656
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
657
	__mem_cgroup_remove_exceeded(mz, mctz);
658
	if (!soft_limit_excess(mz->memcg) ||
S
Shakeel Butt 已提交
659
	    !css_tryget(&mz->memcg->css))
660 661 662 663 664
		goto retry;
done:
	return mz;
}

665 666
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
667
{
668
	struct mem_cgroup_per_node *mz;
669

670
	spin_lock_irq(&mctz->lock);
671
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
672
	spin_unlock_irq(&mctz->lock);
673 674 675
	return mz;
}

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
/**
 * __mod_memcg_state - update cgroup memory statistics
 * @memcg: the memory cgroup
 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 * @val: delta to add to the counter, can be negative
 */
void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
{
	long x;

	if (mem_cgroup_disabled())
		return;

	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
691 692
		struct mem_cgroup *mi;

693 694 695 696 697
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
698 699
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmstats[idx]);
700 701 702 703 704
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
}

705 706 707 708 709 710 711 712 713 714 715
static struct mem_cgroup_per_node *
parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
{
	struct mem_cgroup *parent;

	parent = parent_mem_cgroup(pn->memcg);
	if (!parent)
		return NULL;
	return mem_cgroup_nodeinfo(parent, nid);
}

716 717 718 719 720 721 722 723 724 725 726 727 728
/**
 * __mod_lruvec_state - update lruvec memory statistics
 * @lruvec: the lruvec
 * @idx: the stat item
 * @val: delta to add to the counter, can be negative
 *
 * The lruvec is the intersection of the NUMA node and a cgroup. This
 * function updates the all three counters that are affected by a
 * change of state at this level: per-node, per-cgroup, per-lruvec.
 */
void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			int val)
{
729
	pg_data_t *pgdat = lruvec_pgdat(lruvec);
730
	struct mem_cgroup_per_node *pn;
731
	struct mem_cgroup *memcg;
732 733 734
	long x;

	/* Update node */
735
	__mod_node_page_state(pgdat, idx, val);
736 737 738 739 740

	if (mem_cgroup_disabled())
		return;

	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
741
	memcg = pn->memcg;
742 743

	/* Update memcg */
744
	__mod_memcg_state(memcg, idx, val);
745

746 747 748
	/* Update lruvec */
	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);

749 750
	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
751 752 753 754
		struct mem_cgroup_per_node *pi;

		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
			atomic_long_add(x, &pi->lruvec_stat[idx]);
755 756 757 758 759
		x = 0;
	}
	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
}

760 761
void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
{
762
	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
763 764 765 766
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;

	rcu_read_lock();
767
	memcg = mem_cgroup_from_obj(p);
768 769 770 771 772

	/* Untracked pages have no memcg, no lruvec. Update only the node */
	if (!memcg || memcg == root_mem_cgroup) {
		__mod_node_page_state(pgdat, idx, val);
	} else {
773
		lruvec = mem_cgroup_lruvec(memcg, pgdat);
774 775 776 777 778
		__mod_lruvec_state(lruvec, idx, val);
	}
	rcu_read_unlock();
}

779 780 781 782 783 784 785 786 787 788 789
void mod_memcg_obj_state(void *p, int idx, int val)
{
	struct mem_cgroup *memcg;

	rcu_read_lock();
	memcg = mem_cgroup_from_obj(p);
	if (memcg)
		mod_memcg_state(memcg, idx, val);
	rcu_read_unlock();
}

790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
/**
 * __count_memcg_events - account VM events in a cgroup
 * @memcg: the memory cgroup
 * @idx: the event item
 * @count: the number of events that occured
 */
void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
			  unsigned long count)
{
	unsigned long x;

	if (mem_cgroup_disabled())
		return;

	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
806 807
		struct mem_cgroup *mi;

808 809 810 811 812
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->events[idx], x);
813 814
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmevents[idx]);
815 816 817 818 819
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
}

820
static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
821
{
822
	return atomic_long_read(&memcg->vmevents[event]);
823 824
}

825 826
static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
{
827 828 829 830 831 832
	long x = 0;
	int cpu;

	for_each_possible_cpu(cpu)
		x += per_cpu(memcg->vmstats_local->events[event], cpu);
	return x;
833 834
}

835
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
836
					 struct page *page,
837
					 bool compound, int nr_pages)
838
{
839 840 841 842
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
843
	if (PageAnon(page))
844
		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
845
	else {
846
		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
847
		if (PageSwapBacked(page))
848
			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
849
	}
850

851 852
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
853
		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
854
	}
855

856 857
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
858
		__count_memcg_events(memcg, PGPGIN, 1);
859
	else {
860
		__count_memcg_events(memcg, PGPGOUT, 1);
861 862
		nr_pages = -nr_pages; /* for event */
	}
863

864
	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
865 866
}

867 868
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
869 870 871
{
	unsigned long val, next;

872 873
	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
874
	/* from time_after() in jiffies.h */
875
	if ((long)(next - val) < 0) {
876 877 878 879
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
880 881 882
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
883 884 885
		default:
			break;
		}
886
		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
887
		return true;
888
	}
889
	return false;
890 891 892 893 894 895
}

/*
 * Check events in order.
 *
 */
896
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
897 898
{
	/* threshold event is triggered in finer grain than soft limit */
899 900
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
901
		bool do_softlimit;
902

903 904
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
905
		mem_cgroup_threshold(memcg);
906 907
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
908
	}
909 910
}

911
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
912
{
913 914 915 916 917 918 919 920
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

921
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
922
}
M
Michal Hocko 已提交
923
EXPORT_SYMBOL(mem_cgroup_from_task);
924

925 926 927 928 929 930 931 932 933
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
 * returned.
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
934
{
935 936 937 938
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
939

940 941
	rcu_read_lock();
	do {
942 943 944 945 946 947
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
948
			memcg = root_mem_cgroup;
949 950 951 952 953
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
954
	} while (!css_tryget(&memcg->css));
955
	rcu_read_unlock();
956
	return memcg;
957
}
958 959
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
/**
 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
 * @page: page from which memcg should be extracted.
 *
 * Obtain a reference on page->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned.
 */
struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
{
	struct mem_cgroup *memcg = page->mem_cgroup;

	if (mem_cgroup_disabled())
		return NULL;

	rcu_read_lock();
S
Shakeel Butt 已提交
975 976
	/* Page should not get uncharged and freed memcg under us. */
	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
977 978 979 980 981 982
		memcg = root_mem_cgroup;
	rcu_read_unlock();
	return memcg;
}
EXPORT_SYMBOL(get_mem_cgroup_from_page);

983 984 985 986 987 988
/**
 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
 */
static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
{
	if (unlikely(current->active_memcg)) {
S
Shakeel Butt 已提交
989
		struct mem_cgroup *memcg;
990 991

		rcu_read_lock();
S
Shakeel Butt 已提交
992 993 994 995
		/* current->active_memcg must hold a ref. */
		if (WARN_ON_ONCE(!css_tryget(&current->active_memcg->css)))
			memcg = root_mem_cgroup;
		else
996 997 998 999 1000 1001
			memcg = current->active_memcg;
		rcu_read_unlock();
		return memcg;
	}
	return get_mem_cgroup_from_mm(current->mm);
}
1002

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
1016
 * Reclaimers can specify a node and a priority level in @reclaim to
1017
 * divide up the memcgs in the hierarchy among all concurrent
1018
 * reclaimers operating on the same node and priority.
1019
 */
1020
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1021
				   struct mem_cgroup *prev,
1022
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1023
{
M
Michal Hocko 已提交
1024
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1025
	struct cgroup_subsys_state *css = NULL;
1026
	struct mem_cgroup *memcg = NULL;
1027
	struct mem_cgroup *pos = NULL;
1028

1029 1030
	if (mem_cgroup_disabled())
		return NULL;
1031

1032 1033
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1034

1035
	if (prev && !reclaim)
1036
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1037

1038 1039
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1040
			goto out;
1041
		return root;
1042
	}
K
KAMEZAWA Hiroyuki 已提交
1043

1044
	rcu_read_lock();
M
Michal Hocko 已提交
1045

1046
	if (reclaim) {
1047
		struct mem_cgroup_per_node *mz;
1048

1049
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1050
		iter = &mz->iter;
1051 1052 1053 1054

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

1055
		while (1) {
1056
			pos = READ_ONCE(iter->position);
1057 1058
			if (!pos || css_tryget(&pos->css))
				break;
1059
			/*
1060 1061 1062 1063 1064 1065
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
1066
			 */
1067 1068
			(void)cmpxchg(&iter->position, pos, NULL);
		}
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1086
		}
K
KAMEZAWA Hiroyuki 已提交
1087

1088 1089 1090 1091 1092 1093
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1094

1095 1096
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1097

1098 1099
		if (css_tryget(css))
			break;
1100

1101
		memcg = NULL;
1102
	}
1103 1104 1105

	if (reclaim) {
		/*
1106 1107 1108
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
1109
		 */
1110 1111
		(void)cmpxchg(&iter->position, pos, memcg);

1112 1113 1114 1115 1116 1117 1118
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1119
	}
1120

1121 1122
out_unlock:
	rcu_read_unlock();
1123
out:
1124 1125 1126
	if (prev && prev != root)
		css_put(&prev->css);

1127
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1128
}
K
KAMEZAWA Hiroyuki 已提交
1129

1130 1131 1132 1133 1134 1135 1136
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1137 1138 1139 1140 1141 1142
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1143

1144 1145
static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
					struct mem_cgroup *dead_memcg)
1146 1147
{
	struct mem_cgroup_reclaim_iter *iter;
1148 1149
	struct mem_cgroup_per_node *mz;
	int nid;
1150

1151 1152
	for_each_node(nid) {
		mz = mem_cgroup_nodeinfo(from, nid);
1153 1154
		iter = &mz->iter;
		cmpxchg(&iter->position, dead_memcg, NULL);
1155 1156 1157
	}
}

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup *last;

	do {
		__invalidate_reclaim_iterators(memcg, dead_memcg);
		last = memcg;
	} while ((memcg = parent_mem_cgroup(memcg)));

	/*
	 * When cgruop1 non-hierarchy mode is used,
	 * parent_mem_cgroup() does not walk all the way up to the
	 * cgroup root (root_mem_cgroup). So we have to handle
	 * dead_memcg from cgroup root separately.
	 */
	if (last != root_mem_cgroup)
		__invalidate_reclaim_iterators(root_mem_cgroup,
						dead_memcg);
}

1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

1204
		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

1216
/**
1217
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1218
 * @page: the page
1219
 * @pgdat: pgdat of the page
1220 1221 1222 1223
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1224
 */
M
Mel Gorman 已提交
1225
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
1226
{
1227
	struct mem_cgroup_per_node *mz;
1228
	struct mem_cgroup *memcg;
1229
	struct lruvec *lruvec;
1230

1231
	if (mem_cgroup_disabled()) {
1232
		lruvec = &pgdat->__lruvec;
1233 1234
		goto out;
	}
1235

1236
	memcg = page->mem_cgroup;
1237
	/*
1238
	 * Swapcache readahead pages are added to the LRU - and
1239
	 * possibly migrated - before they are charged.
1240
	 */
1241 1242
	if (!memcg)
		memcg = root_mem_cgroup;
1243

1244
	mz = mem_cgroup_page_nodeinfo(memcg, page);
1245 1246 1247 1248 1249 1250 1251
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
1252 1253
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
1254
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1255
}
1256

1257
/**
1258 1259 1260
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1261
 * @zid: zone id of the accounted pages
1262
 * @nr_pages: positive when adding or negative when removing
1263
 *
1264 1265 1266
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1267
 */
1268
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1269
				int zid, int nr_pages)
1270
{
1271
	struct mem_cgroup_per_node *mz;
1272
	unsigned long *lru_size;
1273
	long size;
1274 1275 1276 1277

	if (mem_cgroup_disabled())
		return;

1278
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1279
	lru_size = &mz->lru_zone_size[zid][lru];
1280 1281 1282 1283 1284

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1285 1286 1287
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1288 1289 1290 1291 1292 1293
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1294
}
1295

1296
/**
1297
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1298
 * @memcg: the memory cgroup
1299
 *
1300
 * Returns the maximum amount of memory @mem can be charged with, in
1301
 * pages.
1302
 */
1303
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1304
{
1305 1306 1307
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1308

1309
	count = page_counter_read(&memcg->memory);
1310
	limit = READ_ONCE(memcg->memory.max);
1311 1312 1313
	if (count < limit)
		margin = limit - count;

1314
	if (do_memsw_account()) {
1315
		count = page_counter_read(&memcg->memsw);
1316
		limit = READ_ONCE(memcg->memsw.max);
1317 1318
		if (count <= limit)
			margin = min(margin, limit - count);
1319 1320
		else
			margin = 0;
1321 1322 1323
	}

	return margin;
1324 1325
}

1326
/*
Q
Qiang Huang 已提交
1327
 * A routine for checking "mem" is under move_account() or not.
1328
 *
Q
Qiang Huang 已提交
1329 1330 1331
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1332
 */
1333
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1334
{
1335 1336
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1337
	bool ret = false;
1338 1339 1340 1341 1342 1343 1344 1345 1346
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1347

1348 1349
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1350 1351
unlock:
	spin_unlock(&mc.lock);
1352 1353 1354
	return ret;
}

1355
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1356 1357
{
	if (mc.moving_task && current != mc.moving_task) {
1358
		if (mem_cgroup_under_move(memcg)) {
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1371 1372 1373 1374
static char *memory_stat_format(struct mem_cgroup *memcg)
{
	struct seq_buf s;
	int i;
1375

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
	if (!s.buffer)
		return NULL;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

	seq_buf_printf(&s, "anon %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_RSS) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_CACHE) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "kernel_stack %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
		       1024);
	seq_buf_printf(&s, "slab %llu\n",
		       (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
			     memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "sock %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_SOCK) *
		       PAGE_SIZE);

	seq_buf_printf(&s, "shmem %llu\n",
		       (u64)memcg_page_state(memcg, NR_SHMEM) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_mapped %llu\n",
		       (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_dirty %llu\n",
		       (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_writeback %llu\n",
		       (u64)memcg_page_state(memcg, NR_WRITEBACK) *
		       PAGE_SIZE);

	/*
	 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
	 * with the NR_ANON_THP vm counter, but right now it's a pain in the
	 * arse because it requires migrating the work out of rmap to a place
	 * where the page->mem_cgroup is set up and stable.
	 */
	seq_buf_printf(&s, "anon_thp %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
		       PAGE_SIZE);

	for (i = 0; i < NR_LRU_LISTS; i++)
1432
		seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			       PAGE_SIZE);

	seq_buf_printf(&s, "slab_reclaimable %llu\n",
		       (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "slab_unreclaimable %llu\n",
		       (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
		       PAGE_SIZE);

	/* Accumulated memory events */

1445 1446 1447 1448
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
		       memcg_events(memcg, PGFAULT));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
		       memcg_events(memcg, PGMAJFAULT));
1449 1450 1451 1452 1453 1454 1455 1456

	seq_buf_printf(&s, "workingset_refault %lu\n",
		       memcg_page_state(memcg, WORKINGSET_REFAULT));
	seq_buf_printf(&s, "workingset_activate %lu\n",
		       memcg_page_state(memcg, WORKINGSET_ACTIVATE));
	seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
		       memcg_page_state(memcg, WORKINGSET_NODERECLAIM));

1457 1458
	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
		       memcg_events(memcg, PGREFILL));
1459 1460 1461 1462 1463 1464
	seq_buf_printf(&s, "pgscan %lu\n",
		       memcg_events(memcg, PGSCAN_KSWAPD) +
		       memcg_events(memcg, PGSCAN_DIRECT));
	seq_buf_printf(&s, "pgsteal %lu\n",
		       memcg_events(memcg, PGSTEAL_KSWAPD) +
		       memcg_events(memcg, PGSTEAL_DIRECT));
1465 1466 1467 1468 1469 1470 1471 1472
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
		       memcg_events(memcg, PGACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
		       memcg_events(memcg, PGDEACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
		       memcg_events(memcg, PGLAZYFREE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
		       memcg_events(memcg, PGLAZYFREED));
1473 1474

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1475
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1476
		       memcg_events(memcg, THP_FAULT_ALLOC));
1477
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1478 1479 1480 1481 1482 1483 1484 1485
		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

	/* The above should easily fit into one page */
	WARN_ON_ONCE(seq_buf_has_overflowed(&s));

	return s.buffer;
}
1486

1487
#define K(x) ((x) << (PAGE_SHIFT-10))
1488
/**
1489 1490
 * mem_cgroup_print_oom_context: Print OOM information relevant to
 * memory controller.
1491 1492 1493 1494 1495 1496
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
1497
void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1498 1499 1500
{
	rcu_read_lock();

1501 1502 1503 1504 1505
	if (memcg) {
		pr_cont(",oom_memcg=");
		pr_cont_cgroup_path(memcg->css.cgroup);
	} else
		pr_cont(",global_oom");
1506
	if (p) {
1507
		pr_cont(",task_memcg=");
1508 1509
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	}
1510
	rcu_read_unlock();
1511 1512 1513 1514 1515 1516 1517 1518 1519
}

/**
 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
 * memory controller.
 * @memcg: The memory cgroup that went over limit
 */
void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
1520
	char *buf;
1521

1522 1523
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1524
		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1525 1526 1527
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->swap)),
1528
			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1529 1530 1531 1532 1533 1534 1535
	else {
		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->memsw)),
			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->kmem)),
			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1536
	}
1537 1538 1539 1540 1541 1542 1543 1544 1545

	pr_info("Memory cgroup stats for ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(":");
	buf = memory_stat_format(memcg);
	if (!buf)
		return;
	pr_info("%s", buf);
	kfree(buf);
1546 1547
}

D
David Rientjes 已提交
1548 1549 1550
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1551
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1552
{
1553
	unsigned long max;
1554

1555
	max = READ_ONCE(memcg->memory.max);
1556
	if (mem_cgroup_swappiness(memcg)) {
1557 1558
		unsigned long memsw_max;
		unsigned long swap_max;
1559

1560
		memsw_max = memcg->memsw.max;
1561
		swap_max = READ_ONCE(memcg->swap.max);
1562 1563
		swap_max = min(swap_max, (unsigned long)total_swap_pages);
		max = min(max + swap_max, memsw_max);
1564
	}
1565
	return max;
D
David Rientjes 已提交
1566 1567
}

1568 1569 1570 1571 1572
unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
{
	return page_counter_read(&memcg->memory);
}

1573
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1574
				     int order)
1575
{
1576 1577 1578
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1579
		.memcg = memcg,
1580 1581 1582
		.gfp_mask = gfp_mask,
		.order = order,
	};
1583
	bool ret;
1584

1585 1586 1587 1588 1589 1590 1591
	if (mutex_lock_killable(&oom_lock))
		return true;
	/*
	 * A few threads which were not waiting at mutex_lock_killable() can
	 * fail to bail out. Therefore, check again after holding oom_lock.
	 */
	ret = should_force_charge() || out_of_memory(&oc);
1592
	mutex_unlock(&oom_lock);
1593
	return ret;
1594 1595
}

1596
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1597
				   pg_data_t *pgdat,
1598 1599 1600 1601 1602 1603 1604 1605 1606
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1607
		.pgdat = pgdat,
1608 1609
	};

1610
	excess = soft_limit_excess(root_memcg);
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1636
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1637
					pgdat, &nr_scanned);
1638
		*total_scanned += nr_scanned;
1639
		if (!soft_limit_excess(root_memcg))
1640
			break;
1641
	}
1642 1643
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1644 1645
}

1646 1647 1648 1649 1650 1651
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1652 1653
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1654 1655 1656 1657
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1658
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1659
{
1660
	struct mem_cgroup *iter, *failed = NULL;
1661

1662 1663
	spin_lock(&memcg_oom_lock);

1664
	for_each_mem_cgroup_tree(iter, memcg) {
1665
		if (iter->oom_lock) {
1666 1667 1668 1669 1670
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1671 1672
			mem_cgroup_iter_break(memcg, iter);
			break;
1673 1674
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1675
	}
K
KAMEZAWA Hiroyuki 已提交
1676

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1688
		}
1689 1690
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1691 1692 1693 1694

	spin_unlock(&memcg_oom_lock);

	return !failed;
1695
}
1696

1697
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1698
{
K
KAMEZAWA Hiroyuki 已提交
1699 1700
	struct mem_cgroup *iter;

1701
	spin_lock(&memcg_oom_lock);
1702
	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1703
	for_each_mem_cgroup_tree(iter, memcg)
1704
		iter->oom_lock = false;
1705
	spin_unlock(&memcg_oom_lock);
1706 1707
}

1708
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1709 1710 1711
{
	struct mem_cgroup *iter;

1712
	spin_lock(&memcg_oom_lock);
1713
	for_each_mem_cgroup_tree(iter, memcg)
1714 1715
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1716 1717
}

1718
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1719 1720 1721
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1722 1723
	/*
	 * When a new child is created while the hierarchy is under oom,
1724
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1725
	 */
1726
	spin_lock(&memcg_oom_lock);
1727
	for_each_mem_cgroup_tree(iter, memcg)
1728 1729 1730
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1731 1732
}

K
KAMEZAWA Hiroyuki 已提交
1733 1734
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1735
struct oom_wait_info {
1736
	struct mem_cgroup *memcg;
1737
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1738 1739
};

1740
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1741 1742
	unsigned mode, int sync, void *arg)
{
1743 1744
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1745 1746 1747
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1748
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1749

1750 1751
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1752 1753 1754 1755
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1756
static void memcg_oom_recover(struct mem_cgroup *memcg)
1757
{
1758 1759 1760 1761 1762 1763 1764 1765 1766
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1767
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1768 1769
}

1770 1771 1772 1773 1774 1775 1776 1777
enum oom_status {
	OOM_SUCCESS,
	OOM_FAILED,
	OOM_ASYNC,
	OOM_SKIPPED
};

static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1778
{
1779 1780 1781
	enum oom_status ret;
	bool locked;

1782 1783 1784
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		return OOM_SKIPPED;

1785 1786
	memcg_memory_event(memcg, MEMCG_OOM);

K
KAMEZAWA Hiroyuki 已提交
1787
	/*
1788 1789 1790 1791
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1792 1793 1794 1795
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1796
	 *
1797 1798 1799 1800 1801 1802 1803
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
K
KAMEZAWA Hiroyuki 已提交
1804
	 */
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
	if (memcg->oom_kill_disable) {
		if (!current->in_user_fault)
			return OOM_SKIPPED;
		css_get(&memcg->css);
		current->memcg_in_oom = memcg;
		current->memcg_oom_gfp_mask = mask;
		current->memcg_oom_order = order;

		return OOM_ASYNC;
	}

1816 1817 1818 1819 1820 1821 1822 1823
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	mem_cgroup_unmark_under_oom(memcg);
1824
	if (mem_cgroup_out_of_memory(memcg, mask, order))
1825 1826 1827 1828 1829 1830
		ret = OOM_SUCCESS;
	else
		ret = OOM_FAILED;

	if (locked)
		mem_cgroup_oom_unlock(memcg);
1831

1832
	return ret;
1833 1834 1835 1836
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1837
 * @handle: actually kill/wait or just clean up the OOM state
1838
 *
1839 1840
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1841
 *
1842
 * Memcg supports userspace OOM handling where failed allocations must
1843 1844 1845 1846
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1847
 * the end of the page fault to complete the OOM handling.
1848 1849
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1850
 * completed, %false otherwise.
1851
 */
1852
bool mem_cgroup_oom_synchronize(bool handle)
1853
{
T
Tejun Heo 已提交
1854
	struct mem_cgroup *memcg = current->memcg_in_oom;
1855
	struct oom_wait_info owait;
1856
	bool locked;
1857 1858 1859

	/* OOM is global, do not handle */
	if (!memcg)
1860
		return false;
1861

1862
	if (!handle)
1863
		goto cleanup;
1864 1865 1866 1867 1868

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
1869
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
1870

1871
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1882 1883
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1884
	} else {
1885
		schedule();
1886 1887 1888 1889 1890
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1891 1892 1893 1894 1895 1896 1897 1898
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1899
cleanup:
T
Tejun Heo 已提交
1900
	current->memcg_in_oom = NULL;
1901
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1902
	return true;
1903 1904
}

1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
/**
 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 * @victim: task to be killed by the OOM killer
 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 *
 * Returns a pointer to a memory cgroup, which has to be cleaned up
 * by killing all belonging OOM-killable tasks.
 *
 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 */
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
					    struct mem_cgroup *oom_domain)
{
	struct mem_cgroup *oom_group = NULL;
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return NULL;

	if (!oom_domain)
		oom_domain = root_mem_cgroup;

	rcu_read_lock();

	memcg = mem_cgroup_from_task(victim);
	if (memcg == root_mem_cgroup)
		goto out;

	/*
	 * Traverse the memory cgroup hierarchy from the victim task's
	 * cgroup up to the OOMing cgroup (or root) to find the
	 * highest-level memory cgroup with oom.group set.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		if (memcg->oom_group)
			oom_group = memcg;

		if (memcg == oom_domain)
			break;
	}

	if (oom_group)
		css_get(&oom_group->css);
out:
	rcu_read_unlock();

	return oom_group;
}

void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
	pr_info("Tasks in ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(" are going to be killed due to memory.oom.group set\n");
}

1961
/**
1962 1963
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1964
 *
1965
 * This function protects unlocked LRU pages from being moved to
1966 1967 1968 1969 1970
 * another cgroup.
 *
 * It ensures lifetime of the returned memcg. Caller is responsible
 * for the lifetime of the page; __unlock_page_memcg() is available
 * when @page might get freed inside the locked section.
1971
 */
1972
struct mem_cgroup *lock_page_memcg(struct page *page)
1973 1974
{
	struct mem_cgroup *memcg;
1975
	unsigned long flags;
1976

1977 1978 1979 1980
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
1981 1982 1983 1984 1985 1986 1987
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page itself from being freed. E.g. writeback
	 * doesn't hold a page reference and relies on PG_writeback to
	 * keep off truncation, migration and so forth.
         */
1988 1989 1990
	rcu_read_lock();

	if (mem_cgroup_disabled())
1991
		return NULL;
1992
again:
1993
	memcg = page->mem_cgroup;
1994
	if (unlikely(!memcg))
1995
		return NULL;
1996

Q
Qiang Huang 已提交
1997
	if (atomic_read(&memcg->moving_account) <= 0)
1998
		return memcg;
1999

2000
	spin_lock_irqsave(&memcg->move_lock, flags);
2001
	if (memcg != page->mem_cgroup) {
2002
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2003 2004
		goto again;
	}
2005 2006 2007 2008

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
2009
	 * the task who has the lock for unlock_page_memcg().
2010 2011 2012
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2013

2014
	return memcg;
2015
}
2016
EXPORT_SYMBOL(lock_page_memcg);
2017

2018
/**
2019 2020 2021 2022
 * __unlock_page_memcg - unlock and unpin a memcg
 * @memcg: the memcg
 *
 * Unlock and unpin a memcg returned by lock_page_memcg().
2023
 */
2024
void __unlock_page_memcg(struct mem_cgroup *memcg)
2025
{
2026 2027 2028 2029 2030 2031 2032 2033
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2034

2035
	rcu_read_unlock();
2036
}
2037 2038 2039 2040 2041 2042 2043 2044 2045

/**
 * unlock_page_memcg - unlock a page->mem_cgroup binding
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
	__unlock_page_memcg(page->mem_cgroup);
}
2046
EXPORT_SYMBOL(unlock_page_memcg);
2047

2048 2049
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2050
	unsigned int nr_pages;
2051
	struct work_struct work;
2052
	unsigned long flags;
2053
#define FLUSHING_CACHED_CHARGE	0
2054 2055
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2056
static DEFINE_MUTEX(percpu_charge_mutex);
2057

2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2068
 */
2069
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2070 2071
{
	struct memcg_stock_pcp *stock;
2072
	unsigned long flags;
2073
	bool ret = false;
2074

2075
	if (nr_pages > MEMCG_CHARGE_BATCH)
2076
		return ret;
2077

2078 2079 2080
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2081
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2082
		stock->nr_pages -= nr_pages;
2083 2084
		ret = true;
	}
2085 2086 2087

	local_irq_restore(flags);

2088 2089 2090 2091
	return ret;
}

/*
2092
 * Returns stocks cached in percpu and reset cached information.
2093 2094 2095 2096 2097
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2098
	if (stock->nr_pages) {
2099
		page_counter_uncharge(&old->memory, stock->nr_pages);
2100
		if (do_memsw_account())
2101
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2102
		css_put_many(&old->css, stock->nr_pages);
2103
		stock->nr_pages = 0;
2104 2105 2106 2107 2108 2109
	}
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
2110 2111 2112
	struct memcg_stock_pcp *stock;
	unsigned long flags;

2113 2114 2115 2116
	/*
	 * The only protection from memory hotplug vs. drain_stock races is
	 * that we always operate on local CPU stock here with IRQ disabled
	 */
2117 2118 2119
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2120
	drain_stock(stock);
2121
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2122 2123

	local_irq_restore(flags);
2124 2125 2126
}

/*
2127
 * Cache charges(val) to local per_cpu area.
2128
 * This will be consumed by consume_stock() function, later.
2129
 */
2130
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2131
{
2132 2133 2134 2135
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
2136

2137
	stock = this_cpu_ptr(&memcg_stock);
2138
	if (stock->cached != memcg) { /* reset if necessary */
2139
		drain_stock(stock);
2140
		stock->cached = memcg;
2141
	}
2142
	stock->nr_pages += nr_pages;
2143

2144
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2145 2146
		drain_stock(stock);

2147
	local_irq_restore(flags);
2148 2149 2150
}

/*
2151
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2152
 * of the hierarchy under it.
2153
 */
2154
static void drain_all_stock(struct mem_cgroup *root_memcg)
2155
{
2156
	int cpu, curcpu;
2157

2158 2159 2160
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2161 2162 2163 2164 2165 2166
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
2167
	curcpu = get_cpu();
2168 2169
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2170
		struct mem_cgroup *memcg;
2171
		bool flush = false;
2172

2173
		rcu_read_lock();
2174
		memcg = stock->cached;
2175 2176 2177 2178 2179 2180 2181
		if (memcg && stock->nr_pages &&
		    mem_cgroup_is_descendant(memcg, root_memcg))
			flush = true;
		rcu_read_unlock();

		if (flush &&
		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2182 2183 2184 2185 2186
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2187
	}
2188
	put_cpu();
2189
	mutex_unlock(&percpu_charge_mutex);
2190 2191
}

2192
static int memcg_hotplug_cpu_dead(unsigned int cpu)
2193 2194
{
	struct memcg_stock_pcp *stock;
2195
	struct mem_cgroup *memcg, *mi;
2196 2197 2198

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
2199 2200 2201 2202 2203 2204 2205 2206

	for_each_mem_cgroup(memcg) {
		int i;

		for (i = 0; i < MEMCG_NR_STAT; i++) {
			int nid;
			long x;

2207
			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2208
			if (x)
2209 2210
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmstats[i]);
2211 2212 2213 2214 2215 2216 2217 2218 2219

			if (i >= NR_VM_NODE_STAT_ITEMS)
				continue;

			for_each_node(nid) {
				struct mem_cgroup_per_node *pn;

				pn = mem_cgroup_nodeinfo(memcg, nid);
				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2220
				if (x)
2221 2222 2223
					do {
						atomic_long_add(x, &pn->lruvec_stat[i]);
					} while ((pn = parent_nodeinfo(pn, nid)));
2224 2225 2226
			}
		}

2227
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2228 2229
			long x;

2230
			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2231
			if (x)
2232 2233
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmevents[i]);
2234 2235 2236
		}
	}

2237
	return 0;
2238 2239
}

2240 2241 2242 2243 2244
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
2245
		if (page_counter_read(&memcg->memory) <= READ_ONCE(memcg->high))
2246
			continue;
2247
		memcg_memory_event(memcg, MEMCG_HIGH);
2248 2249 2250 2251 2252 2253 2254 2255 2256
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
2257
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2258 2259
}

2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
/*
 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
 * enough to still cause a significant slowdown in most cases, while still
 * allowing diagnostics and tracing to proceed without becoming stuck.
 */
#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)

/*
 * When calculating the delay, we use these either side of the exponentiation to
 * maintain precision and scale to a reasonable number of jiffies (see the table
 * below.
 *
 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
 *   overage ratio to a delay.
 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
 *   to produce a reasonable delay curve.
 *
 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
 * reasonable delay curve compared to precision-adjusted overage, not
 * penalising heavily at first, but still making sure that growth beyond the
 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
 * example, with a high of 100 megabytes:
 *
 *  +-------+------------------------+
 *  | usage | time to allocate in ms |
 *  +-------+------------------------+
 *  | 100M  |                      0 |
 *  | 101M  |                      6 |
 *  | 102M  |                     25 |
 *  | 103M  |                     57 |
 *  | 104M  |                    102 |
 *  | 105M  |                    159 |
 *  | 106M  |                    230 |
 *  | 107M  |                    313 |
 *  | 108M  |                    409 |
 *  | 109M  |                    518 |
 *  | 110M  |                    639 |
 *  | 111M  |                    774 |
 *  | 112M  |                    921 |
 *  | 113M  |                   1081 |
 *  | 114M  |                   1254 |
 *  | 115M  |                   1439 |
 *  | 116M  |                   1638 |
 *  | 117M  |                   1849 |
 *  | 118M  |                   2000 |
 *  | 119M  |                   2000 |
 *  | 120M  |                   2000 |
 *  +-------+------------------------+
 */
 #define MEMCG_DELAY_PRECISION_SHIFT 20
 #define MEMCG_DELAY_SCALING_SHIFT 14

2313
/*
2314 2315
 * Get the number of jiffies that we should penalise a mischievous cgroup which
 * is exceeding its memory.high by checking both it and its ancestors.
2316
 */
2317 2318
static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
					  unsigned int nr_pages)
2319
{
2320 2321
	unsigned long penalty_jiffies;
	u64 max_overage = 0;
2322

2323 2324 2325
	do {
		unsigned long usage, high;
		u64 overage;
2326

2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
		usage = page_counter_read(&memcg->memory);
		high = READ_ONCE(memcg->high);

		/*
		 * Prevent division by 0 in overage calculation by acting as if
		 * it was a threshold of 1 page
		 */
		high = max(high, 1UL);

		overage = usage - high;
		overage <<= MEMCG_DELAY_PRECISION_SHIFT;
		overage = div64_u64(overage, high);

		if (overage > max_overage)
			max_overage = overage;
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

	if (!max_overage)
		return 0;
2347 2348 2349 2350 2351 2352 2353 2354 2355

	/*
	 * We use overage compared to memory.high to calculate the number of
	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
	 * fairly lenient on small overages, and increasingly harsh when the
	 * memcg in question makes it clear that it has no intention of stopping
	 * its crazy behaviour, so we exponentially increase the delay based on
	 * overage amount.
	 */
2356 2357 2358
	penalty_jiffies = max_overage * max_overage * HZ;
	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374

	/*
	 * Factor in the task's own contribution to the overage, such that four
	 * N-sized allocations are throttled approximately the same as one
	 * 4N-sized allocation.
	 *
	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
	 * larger the current charge patch is than that.
	 */
	penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;

	/*
	 * Clamp the max delay per usermode return so as to still keep the
	 * application moving forwards and also permit diagnostics, albeit
	 * extremely slowly.
	 */
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
	return min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
}

/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned long penalty_jiffies;
	unsigned long pflags;
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
	struct mem_cgroup *memcg;

	if (likely(!nr_pages))
		return;

	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
	current->memcg_nr_pages_over_high = 0;

	/*
	 * memory.high is breached and reclaim is unable to keep up. Throttle
	 * allocators proactively to slow down excessive growth.
	 */
	penalty_jiffies = calculate_high_delay(memcg, nr_pages);
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421

	/*
	 * Don't sleep if the amount of jiffies this memcg owes us is so low
	 * that it's not even worth doing, in an attempt to be nice to those who
	 * go only a small amount over their memory.high value and maybe haven't
	 * been aggressively reclaimed enough yet.
	 */
	if (penalty_jiffies <= HZ / 100)
		goto out;

	/*
	 * If we exit early, we're guaranteed to die (since
	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
	 * need to account for any ill-begotten jiffies to pay them off later.
	 */
	psi_memstall_enter(&pflags);
	schedule_timeout_killable(penalty_jiffies);
	psi_memstall_leave(&pflags);

out:
	css_put(&memcg->css);
2422 2423
}

2424 2425
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2426
{
2427
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2428
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2429
	struct mem_cgroup *mem_over_limit;
2430
	struct page_counter *counter;
2431
	unsigned long nr_reclaimed;
2432 2433
	bool may_swap = true;
	bool drained = false;
2434
	enum oom_status oom_status;
2435

2436
	if (mem_cgroup_is_root(memcg))
2437
		return 0;
2438
retry:
2439
	if (consume_stock(memcg, nr_pages))
2440
		return 0;
2441

2442
	if (!do_memsw_account() ||
2443 2444
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2445
			goto done_restock;
2446
		if (do_memsw_account())
2447 2448
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2449
	} else {
2450
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2451
		may_swap = false;
2452
	}
2453

2454 2455 2456 2457
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2458

2459 2460 2461 2462 2463 2464 2465 2466 2467
	/*
	 * Memcg doesn't have a dedicated reserve for atomic
	 * allocations. But like the global atomic pool, we need to
	 * put the burden of reclaim on regular allocation requests
	 * and let these go through as privileged allocations.
	 */
	if (gfp_mask & __GFP_ATOMIC)
		goto force;

2468 2469 2470 2471 2472 2473
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
2474
	if (unlikely(should_force_charge()))
2475
		goto force;
2476

2477 2478 2479 2480 2481 2482 2483 2484 2485
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2486 2487 2488
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2489
	if (!gfpflags_allow_blocking(gfp_mask))
2490
		goto nomem;
2491

2492
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2493

2494 2495
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2496

2497
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2498
		goto retry;
2499

2500
	if (!drained) {
2501
		drain_all_stock(mem_over_limit);
2502 2503 2504 2505
		drained = true;
		goto retry;
	}

2506 2507
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2508 2509 2510 2511 2512 2513 2514 2515 2516
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2517
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2518 2519 2520 2521 2522 2523 2524 2525
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2526 2527 2528
	if (nr_retries--)
		goto retry;

2529
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2530 2531
		goto nomem;

2532
	if (gfp_mask & __GFP_NOFAIL)
2533
		goto force;
2534

2535
	if (fatal_signal_pending(current))
2536
		goto force;
2537

2538 2539 2540 2541 2542 2543
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2544
		       get_order(nr_pages * PAGE_SIZE));
2545 2546 2547 2548 2549 2550 2551 2552 2553
	switch (oom_status) {
	case OOM_SUCCESS:
		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
		goto retry;
	case OOM_FAILED:
		goto force;
	default:
		goto nomem;
	}
2554
nomem:
2555
	if (!(gfp_mask & __GFP_NOFAIL))
2556
		return -ENOMEM;
2557 2558 2559 2560 2561 2562 2563
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2564
	if (do_memsw_account())
2565 2566 2567 2568
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2569 2570

done_restock:
2571
	css_get_many(&memcg->css, batch);
2572 2573
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2574

2575
	/*
2576 2577
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2578
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2579 2580 2581 2582
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2583 2584
	 */
	do {
2585
		if (page_counter_read(&memcg->memory) > READ_ONCE(memcg->high)) {
2586 2587 2588 2589 2590
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2591
			current->memcg_nr_pages_over_high += batch;
2592 2593 2594
			set_notify_resume(current);
			break;
		}
2595
	} while ((memcg = parent_mem_cgroup(memcg)));
2596 2597

	return 0;
2598
}
2599

2600
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2601
{
2602 2603 2604
	if (mem_cgroup_is_root(memcg))
		return;

2605
	page_counter_uncharge(&memcg->memory, nr_pages);
2606
	if (do_memsw_account())
2607
		page_counter_uncharge(&memcg->memsw, nr_pages);
2608

2609
	css_put_many(&memcg->css, nr_pages);
2610 2611
}

2612 2613
static void lock_page_lru(struct page *page, int *isolated)
{
2614
	pg_data_t *pgdat = page_pgdat(page);
2615

2616
	spin_lock_irq(&pgdat->lru_lock);
2617 2618 2619
	if (PageLRU(page)) {
		struct lruvec *lruvec;

2620
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2621 2622 2623 2624 2625 2626 2627 2628 2629
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
2630
	pg_data_t *pgdat = page_pgdat(page);
2631 2632 2633 2634

	if (isolated) {
		struct lruvec *lruvec;

2635
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2636 2637 2638 2639
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
2640
	spin_unlock_irq(&pgdat->lru_lock);
2641 2642
}

2643
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2644
			  bool lrucare)
2645
{
2646
	int isolated;
2647

2648
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2649 2650 2651 2652 2653

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2654 2655
	if (lrucare)
		lock_page_lru(page, &isolated);
2656

2657 2658
	/*
	 * Nobody should be changing or seriously looking at
2659
	 * page->mem_cgroup at this point:
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2671
	page->mem_cgroup = memcg;
2672

2673 2674
	if (lrucare)
		unlock_page_lru(page, isolated);
2675
}
2676

2677
#ifdef CONFIG_MEMCG_KMEM
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
/*
 * Returns a pointer to the memory cgroup to which the kernel object is charged.
 *
 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
 * cgroup_mutex, etc.
 */
struct mem_cgroup *mem_cgroup_from_obj(void *p)
{
	struct page *page;

	if (mem_cgroup_disabled())
		return NULL;

	page = virt_to_head_page(p);

	/*
	 * Slab pages don't have page->mem_cgroup set because corresponding
	 * kmem caches can be reparented during the lifetime. That's why
	 * memcg_from_slab_page() should be used instead.
	 */
	if (PageSlab(page))
		return memcg_from_slab_page(page);

	/* All other pages use page->mem_cgroup */
	return page->mem_cgroup;
}

2705
static int memcg_alloc_cache_id(void)
2706
{
2707 2708 2709
	int id, size;
	int err;

2710
	id = ida_simple_get(&memcg_cache_ida,
2711 2712 2713
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2714

2715
	if (id < memcg_nr_cache_ids)
2716 2717 2718 2719 2720 2721
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2722
	down_write(&memcg_cache_ids_sem);
2723 2724

	size = 2 * (id + 1);
2725 2726 2727 2728 2729
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2730
	err = memcg_update_all_caches(size);
2731 2732
	if (!err)
		err = memcg_update_all_list_lrus(size);
2733 2734 2735 2736 2737
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2738
	if (err) {
2739
		ida_simple_remove(&memcg_cache_ida, id);
2740 2741 2742 2743 2744 2745 2746
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2747
	ida_simple_remove(&memcg_cache_ida, id);
2748 2749
}

2750
struct memcg_kmem_cache_create_work {
2751 2752 2753 2754 2755
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2756
static void memcg_kmem_cache_create_func(struct work_struct *w)
2757
{
2758 2759
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2760 2761
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2762

2763
	memcg_create_kmem_cache(memcg, cachep);
2764

2765
	css_put(&memcg->css);
2766 2767 2768 2769 2770 2771
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2772
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2773
					       struct kmem_cache *cachep)
2774
{
2775
	struct memcg_kmem_cache_create_work *cw;
2776

2777 2778 2779
	if (!css_tryget_online(&memcg->css))
		return;

2780
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2781
	if (!cw)
2782
		return;
2783

2784 2785
	cw->memcg = memcg;
	cw->cachep = cachep;
2786
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2787

2788
	queue_work(memcg_kmem_cache_wq, &cw->work);
2789 2790
}

2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
static inline bool memcg_kmem_bypass(void)
{
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;
	return false;
}

/**
 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
 * @cachep: the original global kmem cache
 *
2802 2803 2804
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
2805 2806 2807
 * If the cache does not exist yet, if we are the first user of it, we
 * create it asynchronously in a workqueue and let the current allocation
 * go through with the original cache.
2808
 *
2809 2810 2811 2812
 * This function takes a reference to the cache it returns to assure it
 * won't get destroyed while we are working with it. Once the caller is
 * done with it, memcg_kmem_put_cache() must be called to release the
 * reference.
2813
 */
2814
struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2815 2816
{
	struct mem_cgroup *memcg;
2817
	struct kmem_cache *memcg_cachep;
2818
	struct memcg_cache_array *arr;
2819
	int kmemcg_id;
2820

2821
	VM_BUG_ON(!is_root_cache(cachep));
2822

2823
	if (memcg_kmem_bypass())
V
Vladimir Davydov 已提交
2824 2825
		return cachep;

2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
	rcu_read_lock();

	if (unlikely(current->active_memcg))
		memcg = current->active_memcg;
	else
		memcg = mem_cgroup_from_task(current);

	if (!memcg || memcg == root_mem_cgroup)
		goto out_unlock;

2836
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2837
	if (kmemcg_id < 0)
2838
		goto out_unlock;
2839

2840 2841 2842 2843 2844 2845 2846 2847
	arr = rcu_dereference(cachep->memcg_params.memcg_caches);

	/*
	 * Make sure we will access the up-to-date value. The code updating
	 * memcg_caches issues a write barrier to match the data dependency
	 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
	 */
	memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2848 2849 2850 2851 2852 2853 2854 2855 2856

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2857 2858 2859
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2860 2861 2862 2863 2864 2865 2866
	 *
	 * If the memcg is dying or memcg_cache is about to be released,
	 * don't bother creating new kmem_caches. Because memcg_cachep
	 * is ZEROed as the fist step of kmem offlining, we don't need
	 * percpu_ref_tryget_live() here. css_tryget_online() check in
	 * memcg_schedule_kmem_cache_create() will prevent us from
	 * creation of a new kmem_cache.
2867
	 */
2868 2869 2870 2871 2872 2873
	if (unlikely(!memcg_cachep))
		memcg_schedule_kmem_cache_create(memcg, cachep);
	else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
		cachep = memcg_cachep;
out_unlock:
	rcu_read_unlock();
2874
	return cachep;
2875 2876
}

2877 2878 2879 2880 2881
/**
 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
 * @cachep: the cache returned by memcg_kmem_get_cache
 */
void memcg_kmem_put_cache(struct kmem_cache *cachep)
2882 2883
{
	if (!is_root_cache(cachep))
2884
		percpu_ref_put(&cachep->memcg_params.refcnt);
2885 2886
}

2887
/**
2888
 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
2889
 * @memcg: memory cgroup to charge
2890
 * @gfp: reclaim mode
2891
 * @nr_pages: number of pages to charge
2892 2893 2894
 *
 * Returns 0 on success, an error code on failure.
 */
2895 2896
int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
			unsigned int nr_pages)
2897
{
2898
	struct page_counter *counter;
2899 2900
	int ret;

2901
	ret = try_charge(memcg, gfp, nr_pages);
2902
	if (ret)
2903
		return ret;
2904 2905 2906

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2907 2908 2909 2910 2911 2912 2913 2914 2915 2916

		/*
		 * Enforce __GFP_NOFAIL allocation because callers are not
		 * prepared to see failures and likely do not have any failure
		 * handling code.
		 */
		if (gfp & __GFP_NOFAIL) {
			page_counter_charge(&memcg->kmem, nr_pages);
			return 0;
		}
2917 2918
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2919
	}
2920
	return 0;
2921 2922
}

2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
/**
 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
 */
void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
{
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

	page_counter_uncharge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_uncharge(&memcg->memsw, nr_pages);
}

2938
/**
2939
 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2940 2941 2942 2943 2944 2945
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
2946
int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2947
{
2948
	struct mem_cgroup *memcg;
2949
	int ret = 0;
2950

2951
	if (memcg_kmem_bypass())
2952 2953
		return 0;

2954
	memcg = get_mem_cgroup_from_current();
2955
	if (!mem_cgroup_is_root(memcg)) {
2956
		ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
2957 2958
		if (!ret) {
			page->mem_cgroup = memcg;
2959
			__SetPageKmemcg(page);
2960
		}
2961
	}
2962
	css_put(&memcg->css);
2963
	return ret;
2964
}
2965

2966
/**
2967
 * __memcg_kmem_uncharge_page: uncharge a kmem page
2968 2969 2970
 * @page: page to uncharge
 * @order: allocation order
 */
2971
void __memcg_kmem_uncharge_page(struct page *page, int order)
2972
{
2973
	struct mem_cgroup *memcg = page->mem_cgroup;
2974
	unsigned int nr_pages = 1 << order;
2975 2976 2977 2978

	if (!memcg)
		return;

2979
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2980
	__memcg_kmem_uncharge(memcg, nr_pages);
2981
	page->mem_cgroup = NULL;
2982 2983 2984 2985 2986

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);

2987
	css_put_many(&memcg->css, nr_pages);
2988
}
2989
#endif /* CONFIG_MEMCG_KMEM */
2990

2991 2992 2993 2994
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2995
 * pgdat->lru_lock and migration entries setup in all page mappings.
2996
 */
2997
void mem_cgroup_split_huge_fixup(struct page *head)
2998
{
2999
	int i;
3000

3001 3002
	if (mem_cgroup_disabled())
		return;
3003

3004
	for (i = 1; i < HPAGE_PMD_NR; i++)
3005
		head[i].mem_cgroup = head->mem_cgroup;
3006

3007
	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
3008
}
3009
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3010

A
Andrew Morton 已提交
3011
#ifdef CONFIG_MEMCG_SWAP
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
3023
 * The caller must have charged to @to, IOW, called page_counter_charge() about
3024 3025 3026
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3027
				struct mem_cgroup *from, struct mem_cgroup *to)
3028 3029 3030
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
3031 3032
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3033 3034

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3035 3036
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
3037 3038 3039 3040 3041 3042
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3043
				struct mem_cgroup *from, struct mem_cgroup *to)
3044 3045 3046
{
	return -EINVAL;
}
3047
#endif
K
KAMEZAWA Hiroyuki 已提交
3048

3049
static DEFINE_MUTEX(memcg_max_mutex);
3050

3051 3052
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
3053
{
3054
	bool enlarge = false;
3055
	bool drained = false;
3056
	int ret;
3057 3058
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3059

3060
	do {
3061 3062 3063 3064
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3065

3066
		mutex_lock(&memcg_max_mutex);
3067 3068
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
3069
		 * break our basic invariant rule memory.max <= memsw.max.
3070
		 */
3071
		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3072
					   max <= memcg->memsw.max;
3073
		if (!limits_invariant) {
3074
			mutex_unlock(&memcg_max_mutex);
3075 3076 3077
			ret = -EINVAL;
			break;
		}
3078
		if (max > counter->max)
3079
			enlarge = true;
3080 3081
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
3082 3083 3084 3085

		if (!ret)
			break;

3086 3087 3088 3089 3090 3091
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

3092 3093 3094 3095 3096 3097
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
3098

3099 3100
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3101

3102 3103 3104
	return ret;
}

3105
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3106 3107 3108 3109
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
3110
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3111 3112
	unsigned long reclaimed;
	int loop = 0;
3113
	struct mem_cgroup_tree_per_node *mctz;
3114
	unsigned long excess;
3115 3116 3117 3118 3119
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

3120
	mctz = soft_limit_tree_node(pgdat->node_id);
3121 3122 3123 3124 3125 3126

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
3127
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3128 3129
		return 0;

3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
3144
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3145 3146 3147
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3148
		spin_lock_irq(&mctz->lock);
3149
		__mem_cgroup_remove_exceeded(mz, mctz);
3150 3151 3152 3153 3154 3155

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3156 3157 3158
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3159
		excess = soft_limit_excess(mz->memcg);
3160 3161 3162 3163 3164 3165 3166 3167 3168
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3169
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3170
		spin_unlock_irq(&mctz->lock);
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3188 3189 3190 3191 3192 3193
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
3194 3195
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3196 3197 3198 3199 3200 3201
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3202 3203
}

3204
/*
3205
 * Reclaims as many pages from the given memcg as possible.
3206 3207 3208 3209 3210 3211 3212
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

3213 3214
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3215 3216 3217

	drain_all_stock(memcg);

3218
	/* try to free all pages in this cgroup */
3219
	while (nr_retries && page_counter_read(&memcg->memory)) {
3220
		int progress;
3221

3222 3223 3224
		if (signal_pending(current))
			return -EINTR;

3225 3226
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3227
		if (!progress) {
3228
			nr_retries--;
3229
			/* maybe some writeback is necessary */
3230
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3231
		}
3232 3233

	}
3234 3235

	return 0;
3236 3237
}

3238 3239 3240
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3241
{
3242
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3243

3244 3245
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3246
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3247 3248
}

3249 3250
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3251
{
3252
	return mem_cgroup_from_css(css)->use_hierarchy;
3253 3254
}

3255 3256
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3257 3258
{
	int retval = 0;
3259
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3260
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3261

3262
	if (memcg->use_hierarchy == val)
3263
		return 0;
3264

3265
	/*
3266
	 * If parent's use_hierarchy is set, we can't make any modifications
3267 3268 3269 3270 3271 3272
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3273
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3274
				(val == 1 || val == 0)) {
3275
		if (!memcg_has_children(memcg))
3276
			memcg->use_hierarchy = val;
3277 3278 3279 3280
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3281

3282 3283 3284
	return retval;
}

3285
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3286
{
3287
	unsigned long val;
3288

3289
	if (mem_cgroup_is_root(memcg)) {
3290 3291 3292 3293
		val = memcg_page_state(memcg, MEMCG_CACHE) +
			memcg_page_state(memcg, MEMCG_RSS);
		if (swap)
			val += memcg_page_state(memcg, MEMCG_SWAP);
3294
	} else {
3295
		if (!swap)
3296
			val = page_counter_read(&memcg->memory);
3297
		else
3298
			val = page_counter_read(&memcg->memsw);
3299
	}
3300
	return val;
3301 3302
}

3303 3304 3305 3306 3307 3308 3309
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3310

3311
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3312
			       struct cftype *cft)
B
Balbir Singh 已提交
3313
{
3314
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3315
	struct page_counter *counter;
3316

3317
	switch (MEMFILE_TYPE(cft->private)) {
3318
	case _MEM:
3319 3320
		counter = &memcg->memory;
		break;
3321
	case _MEMSWAP:
3322 3323
		counter = &memcg->memsw;
		break;
3324
	case _KMEM:
3325
		counter = &memcg->kmem;
3326
		break;
V
Vladimir Davydov 已提交
3327
	case _TCP:
3328
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3329
		break;
3330 3331 3332
	default:
		BUG();
	}
3333 3334 3335 3336

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
3337
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3338
		if (counter == &memcg->memsw)
3339
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3340 3341
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
3342
		return (u64)counter->max * PAGE_SIZE;
3343 3344 3345 3346 3347 3348 3349 3350 3351
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3352
}
3353

3354
static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3355
{
3356
	unsigned long stat[MEMCG_NR_STAT] = {0};
3357 3358 3359 3360
	struct mem_cgroup *mi;
	int node, cpu, i;

	for_each_online_cpu(cpu)
3361
		for (i = 0; i < MEMCG_NR_STAT; i++)
3362
			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3363 3364

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3365
		for (i = 0; i < MEMCG_NR_STAT; i++)
3366 3367 3368 3369 3370 3371
			atomic_long_add(stat[i], &mi->vmstats[i]);

	for_each_node(node) {
		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
		struct mem_cgroup_per_node *pi;

3372
		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3373 3374 3375
			stat[i] = 0;

		for_each_online_cpu(cpu)
3376
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3377 3378
				stat[i] += per_cpu(
					pn->lruvec_stat_cpu->count[i], cpu);
3379 3380

		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3381
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3382 3383 3384 3385
				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
	}
}

3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
{
	unsigned long events[NR_VM_EVENT_ITEMS];
	struct mem_cgroup *mi;
	int cpu, i;

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
		events[i] = 0;

	for_each_online_cpu(cpu)
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3397 3398
			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
					     cpu);
3399 3400 3401 3402 3403 3404

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
			atomic_long_add(events[i], &mi->vmevents[i]);
}

3405
#ifdef CONFIG_MEMCG_KMEM
3406
static int memcg_online_kmem(struct mem_cgroup *memcg)
3407 3408 3409
{
	int memcg_id;

3410 3411 3412
	if (cgroup_memory_nokmem)
		return 0;

3413
	BUG_ON(memcg->kmemcg_id >= 0);
3414
	BUG_ON(memcg->kmem_state);
3415

3416
	memcg_id = memcg_alloc_cache_id();
3417 3418
	if (memcg_id < 0)
		return memcg_id;
3419

3420
	static_branch_inc(&memcg_kmem_enabled_key);
3421
	/*
3422
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
3423
	 * kmemcg_id. Setting the id after enabling static branching will
3424 3425 3426
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3427
	memcg->kmemcg_id = memcg_id;
3428
	memcg->kmem_state = KMEM_ONLINE;
3429
	INIT_LIST_HEAD(&memcg->kmem_caches);
3430 3431

	return 0;
3432 3433
}

3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

3454
	/*
3455
	 * Deactivate and reparent kmem_caches.
3456
	 */
3457 3458 3459 3460 3461
	memcg_deactivate_kmem_caches(memcg, parent);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

3462 3463 3464 3465 3466 3467 3468 3469
	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
3470
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3471 3472 3473 3474 3475 3476 3477
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
3478 3479
	rcu_read_unlock();

3480
	memcg_drain_all_list_lrus(kmemcg_id, parent);
3481 3482 3483 3484 3485 3486

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
3487 3488 3489 3490
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

3491
	if (memcg->kmem_state == KMEM_ALLOCATED) {
3492
		WARN_ON(!list_empty(&memcg->kmem_caches));
3493 3494 3495
		static_branch_dec(&memcg_kmem_enabled_key);
	}
}
3496
#else
3497
static int memcg_online_kmem(struct mem_cgroup *memcg)
3498 3499 3500 3501 3502 3503 3504 3505 3506
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
3507
#endif /* CONFIG_MEMCG_KMEM */
3508

3509 3510
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
3511
{
3512
	int ret;
3513

3514 3515 3516
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
3517
	return ret;
3518
}
3519

3520
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
3521 3522 3523
{
	int ret;

3524
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3525

3526
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
3527 3528 3529
	if (ret)
		goto out;

3530
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3531 3532 3533
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3534 3535 3536
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
3537 3538 3539 3540 3541 3542
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3543
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
3544 3545 3546 3547
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3548
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3549 3550
	}
out:
3551
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3552 3553 3554
	return ret;
}

3555 3556 3557 3558
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3559 3560
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3561
{
3562
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3563
	unsigned long nr_pages;
3564 3565
	int ret;

3566
	buf = strstrip(buf);
3567
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3568 3569
	if (ret)
		return ret;
3570

3571
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3572
	case RES_LIMIT:
3573 3574 3575 3576
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3577 3578
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3579
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3580
			break;
3581
		case _MEMSWAP:
3582
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3583
			break;
3584
		case _KMEM:
3585 3586 3587
			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
				     "Please report your usecase to linux-mm@kvack.org if you "
				     "depend on this functionality.\n");
3588
			ret = memcg_update_kmem_max(memcg, nr_pages);
3589
			break;
V
Vladimir Davydov 已提交
3590
		case _TCP:
3591
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
3592
			break;
3593
		}
3594
		break;
3595 3596 3597
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3598 3599
		break;
	}
3600
	return ret ?: nbytes;
B
Balbir Singh 已提交
3601 3602
}

3603 3604
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3605
{
3606
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3607
	struct page_counter *counter;
3608

3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3619
	case _TCP:
3620
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3621
		break;
3622 3623 3624
	default:
		BUG();
	}
3625

3626
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3627
	case RES_MAX_USAGE:
3628
		page_counter_reset_watermark(counter);
3629 3630
		break;
	case RES_FAILCNT:
3631
		counter->failcnt = 0;
3632
		break;
3633 3634
	default:
		BUG();
3635
	}
3636

3637
	return nbytes;
3638 3639
}

3640
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3641 3642
					struct cftype *cft)
{
3643
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3644 3645
}

3646
#ifdef CONFIG_MMU
3647
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3648 3649
					struct cftype *cft, u64 val)
{
3650
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3651

3652
	if (val & ~MOVE_MASK)
3653
		return -EINVAL;
3654

3655
	/*
3656 3657 3658 3659
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3660
	 */
3661
	memcg->move_charge_at_immigrate = val;
3662 3663
	return 0;
}
3664
#else
3665
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3666 3667 3668 3669 3670
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3671

3672
#ifdef CONFIG_NUMA
3673 3674 3675 3676 3677 3678 3679 3680

#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)

static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
					   int nid, unsigned int lru_mask)
{
3681
	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3682 3683 3684 3685 3686 3687 3688 3689
	unsigned long nr = 0;
	enum lru_list lru;

	VM_BUG_ON((unsigned)nid >= nr_node_ids);

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3690
		nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
	}
	return nr;
}

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
					     unsigned int lru_mask)
{
	unsigned long nr = 0;
	enum lru_list lru;

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3704
		nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3705 3706 3707 3708
	}
	return nr;
}

3709
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3710
{
3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3723
	int nid;
3724
	unsigned long nr;
3725
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3726

3727 3728 3729 3730 3731 3732 3733 3734 3735
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3736 3737
	}

3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3753 3754 3755 3756 3757 3758
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780
static const unsigned int memcg1_stats[] = {
	MEMCG_CACHE,
	MEMCG_RSS,
	MEMCG_RSS_HUGE,
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
	"rss_huge",
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

3781
/* Universal VM events cgroup1 shows, original sort order */
3782
static const unsigned int memcg1_events[] = {
3783 3784 3785 3786 3787 3788
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

3789
static int memcg_stat_show(struct seq_file *m, void *v)
3790
{
3791
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3792
	unsigned long memory, memsw;
3793 3794
	struct mem_cgroup *mi;
	unsigned int i;
3795

3796
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3797

3798 3799
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3800
			continue;
3801
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3802
			   memcg_page_state_local(memcg, memcg1_stats[i]) *
3803
			   PAGE_SIZE);
3804
	}
L
Lee Schermerhorn 已提交
3805

3806
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3807
		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3808
			   memcg_events_local(memcg, memcg1_events[i]));
3809 3810

	for (i = 0; i < NR_LRU_LISTS; i++)
3811
		seq_printf(m, "%s %lu\n", lru_list_name(i),
3812
			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3813
			   PAGE_SIZE);
3814

K
KAMEZAWA Hiroyuki 已提交
3815
	/* Hierarchical information */
3816 3817
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3818 3819
		memory = min(memory, READ_ONCE(mi->memory.max));
		memsw = min(memsw, READ_ONCE(mi->memsw.max));
3820
	}
3821 3822
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3823
	if (do_memsw_account())
3824 3825
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3826

3827
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3828
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3829
			continue;
3830
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3831 3832
			   (u64)memcg_page_state(memcg, memcg1_stats[i]) *
			   PAGE_SIZE);
3833 3834
	}

3835
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3836 3837
		seq_printf(m, "total_%s %llu\n",
			   vm_event_name(memcg1_events[i]),
3838
			   (u64)memcg_events(memcg, memcg1_events[i]));
3839

3840
	for (i = 0; i < NR_LRU_LISTS; i++)
3841
		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
3842 3843
			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			   PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
3844

K
KOSAKI Motohiro 已提交
3845 3846
#ifdef CONFIG_DEBUG_VM
	{
3847 3848
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
3849
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3850 3851 3852
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

3853 3854 3855
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
			rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3856

3857 3858 3859 3860 3861
			recent_rotated[0] += rstat->recent_rotated[0];
			recent_rotated[1] += rstat->recent_rotated[1];
			recent_scanned[0] += rstat->recent_scanned[0];
			recent_scanned[1] += rstat->recent_scanned[1];
		}
3862 3863 3864 3865
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3866 3867 3868
	}
#endif

3869 3870 3871
	return 0;
}

3872 3873
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3874
{
3875
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3876

3877
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3878 3879
}

3880 3881
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3882
{
3883
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3884

3885
	if (val > 100)
K
KOSAKI Motohiro 已提交
3886 3887
		return -EINVAL;

3888
	if (css->parent)
3889 3890 3891
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3892

K
KOSAKI Motohiro 已提交
3893 3894 3895
	return 0;
}

3896 3897 3898
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3899
	unsigned long usage;
3900 3901 3902 3903
	int i;

	rcu_read_lock();
	if (!swap)
3904
		t = rcu_dereference(memcg->thresholds.primary);
3905
	else
3906
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3907 3908 3909 3910

	if (!t)
		goto unlock;

3911
	usage = mem_cgroup_usage(memcg, swap);
3912 3913

	/*
3914
	 * current_threshold points to threshold just below or equal to usage.
3915 3916 3917
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3918
	i = t->current_threshold;
3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3942
	t->current_threshold = i - 1;
3943 3944 3945 3946 3947 3948
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3949 3950
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3951
		if (do_memsw_account())
3952 3953 3954 3955
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3956 3957 3958 3959 3960 3961 3962
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3963 3964 3965 3966 3967 3968 3969
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3970 3971
}

3972
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3973 3974 3975
{
	struct mem_cgroup_eventfd_list *ev;

3976 3977
	spin_lock(&memcg_oom_lock);

3978
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3979
		eventfd_signal(ev->eventfd, 1);
3980 3981

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3982 3983 3984
	return 0;
}

3985
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3986
{
K
KAMEZAWA Hiroyuki 已提交
3987 3988
	struct mem_cgroup *iter;

3989
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3990
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3991 3992
}

3993
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3994
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3995
{
3996 3997
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3998 3999
	unsigned long threshold;
	unsigned long usage;
4000
	int i, size, ret;
4001

4002
	ret = page_counter_memparse(args, "-1", &threshold);
4003 4004 4005 4006
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4007

4008
	if (type == _MEM) {
4009
		thresholds = &memcg->thresholds;
4010
		usage = mem_cgroup_usage(memcg, false);
4011
	} else if (type == _MEMSWAP) {
4012
		thresholds = &memcg->memsw_thresholds;
4013
		usage = mem_cgroup_usage(memcg, true);
4014
	} else
4015 4016 4017
		BUG();

	/* Check if a threshold crossed before adding a new one */
4018
	if (thresholds->primary)
4019 4020
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4021
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4022 4023

	/* Allocate memory for new array of thresholds */
4024
	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4025
	if (!new) {
4026 4027 4028
		ret = -ENOMEM;
		goto unlock;
	}
4029
	new->size = size;
4030 4031

	/* Copy thresholds (if any) to new array */
4032 4033
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4034
				sizeof(struct mem_cgroup_threshold));
4035 4036
	}

4037
	/* Add new threshold */
4038 4039
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4040 4041

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4042
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4043 4044 4045
			compare_thresholds, NULL);

	/* Find current threshold */
4046
	new->current_threshold = -1;
4047
	for (i = 0; i < size; i++) {
4048
		if (new->entries[i].threshold <= usage) {
4049
			/*
4050 4051
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4052 4053
			 * it here.
			 */
4054
			++new->current_threshold;
4055 4056
		} else
			break;
4057 4058
	}

4059 4060 4061 4062 4063
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4064

4065
	/* To be sure that nobody uses thresholds */
4066 4067 4068 4069 4070 4071 4072 4073
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4074
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4075 4076
	struct eventfd_ctx *eventfd, const char *args)
{
4077
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4078 4079
}

4080
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4081 4082
	struct eventfd_ctx *eventfd, const char *args)
{
4083
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4084 4085
}

4086
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4087
	struct eventfd_ctx *eventfd, enum res_type type)
4088
{
4089 4090
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4091
	unsigned long usage;
4092
	int i, j, size, entries;
4093 4094

	mutex_lock(&memcg->thresholds_lock);
4095 4096

	if (type == _MEM) {
4097
		thresholds = &memcg->thresholds;
4098
		usage = mem_cgroup_usage(memcg, false);
4099
	} else if (type == _MEMSWAP) {
4100
		thresholds = &memcg->memsw_thresholds;
4101
		usage = mem_cgroup_usage(memcg, true);
4102
	} else
4103 4104
		BUG();

4105 4106 4107
	if (!thresholds->primary)
		goto unlock;

4108 4109 4110 4111
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4112
	size = entries = 0;
4113 4114
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4115
			size++;
4116 4117
		else
			entries++;
4118 4119
	}

4120
	new = thresholds->spare;
4121

4122 4123 4124 4125
	/* If no items related to eventfd have been cleared, nothing to do */
	if (!entries)
		goto unlock;

4126 4127
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4128 4129
		kfree(new);
		new = NULL;
4130
		goto swap_buffers;
4131 4132
	}

4133
	new->size = size;
4134 4135

	/* Copy thresholds and find current threshold */
4136 4137 4138
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4139 4140
			continue;

4141
		new->entries[j] = thresholds->primary->entries[i];
4142
		if (new->entries[j].threshold <= usage) {
4143
			/*
4144
			 * new->current_threshold will not be used
4145 4146 4147
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4148
			++new->current_threshold;
4149 4150 4151 4152
		}
		j++;
	}

4153
swap_buffers:
4154 4155
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4156

4157
	rcu_assign_pointer(thresholds->primary, new);
4158

4159
	/* To be sure that nobody uses thresholds */
4160
	synchronize_rcu();
4161 4162 4163 4164 4165 4166

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
4167
unlock:
4168 4169
	mutex_unlock(&memcg->thresholds_lock);
}
4170

4171
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4172 4173
	struct eventfd_ctx *eventfd)
{
4174
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4175 4176
}

4177
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4178 4179
	struct eventfd_ctx *eventfd)
{
4180
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4181 4182
}

4183
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4184
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4185 4186 4187 4188 4189 4190 4191
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4192
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4193 4194 4195 4196 4197

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4198
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
4199
		eventfd_signal(eventfd, 1);
4200
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4201 4202 4203 4204

	return 0;
}

4205
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4206
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4207 4208 4209
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4210
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4211

4212
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4213 4214 4215 4216 4217 4218
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4219
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4220 4221
}

4222
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4223
{
4224
	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4225

4226
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4227
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
R
Roman Gushchin 已提交
4228 4229
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4230 4231 4232
	return 0;
}

4233
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4234 4235
	struct cftype *cft, u64 val)
{
4236
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4237 4238

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4239
	if (!css->parent || !((val == 0) || (val == 1)))
4240 4241
		return -EINVAL;

4242
	memcg->oom_kill_disable = val;
4243
	if (!val)
4244
		memcg_oom_recover(memcg);
4245

4246 4247 4248
	return 0;
}

4249 4250
#ifdef CONFIG_CGROUP_WRITEBACK

4251 4252
#include <trace/events/writeback.h>

T
Tejun Heo 已提交
4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

4263 4264 4265 4266 4267
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
4268 4269 4270 4271 4272 4273 4274 4275 4276 4277
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

4278 4279 4280 4281 4282 4283
/*
 * idx can be of type enum memcg_stat_item or node_stat_item.
 * Keep in sync with memcg_exact_page().
 */
static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
{
4284
	long x = atomic_long_read(&memcg->vmstats[idx]);
4285 4286 4287
	int cpu;

	for_each_online_cpu(cpu)
4288
		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4289 4290 4291 4292 4293
	if (x < 0)
		x = 0;
	return x;
}

4294 4295 4296
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
4297 4298
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
4299 4300 4301
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
4302 4303 4304
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
4305
 *
4306 4307 4308 4309 4310
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
4311
 */
4312 4313 4314
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
4315 4316 4317 4318
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

4319
	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4320 4321

	/* this should eventually include NR_UNSTABLE_NFS */
4322
	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4323 4324
	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4325
	*pheadroom = PAGE_COUNTER_MAX;
4326 4327

	while ((parent = parent_mem_cgroup(memcg))) {
4328
		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4329
					    READ_ONCE(memcg->high));
4330 4331
		unsigned long used = page_counter_read(&memcg->memory);

4332
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4333 4334 4335 4336
		memcg = parent;
	}
}

4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390
/*
 * Foreign dirty flushing
 *
 * There's an inherent mismatch between memcg and writeback.  The former
 * trackes ownership per-page while the latter per-inode.  This was a
 * deliberate design decision because honoring per-page ownership in the
 * writeback path is complicated, may lead to higher CPU and IO overheads
 * and deemed unnecessary given that write-sharing an inode across
 * different cgroups isn't a common use-case.
 *
 * Combined with inode majority-writer ownership switching, this works well
 * enough in most cases but there are some pathological cases.  For
 * example, let's say there are two cgroups A and B which keep writing to
 * different but confined parts of the same inode.  B owns the inode and
 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
 * triggering background writeback.  A will be slowed down without a way to
 * make writeback of the dirty pages happen.
 *
 * Conditions like the above can lead to a cgroup getting repatedly and
 * severely throttled after making some progress after each
 * dirty_expire_interval while the underyling IO device is almost
 * completely idle.
 *
 * Solving this problem completely requires matching the ownership tracking
 * granularities between memcg and writeback in either direction.  However,
 * the more egregious behaviors can be avoided by simply remembering the
 * most recent foreign dirtying events and initiating remote flushes on
 * them when local writeback isn't enough to keep the memory clean enough.
 *
 * The following two functions implement such mechanism.  When a foreign
 * page - a page whose memcg and writeback ownerships don't match - is
 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
 * decides that the memcg needs to sleep due to high dirty ratio, it calls
 * mem_cgroup_flush_foreign() which queues writeback on the recorded
 * foreign bdi_writebacks which haven't expired.  Both the numbers of
 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
 * limited to MEMCG_CGWB_FRN_CNT.
 *
 * The mechanism only remembers IDs and doesn't hold any object references.
 * As being wrong occasionally doesn't matter, updates and accesses to the
 * records are lockless and racy.
 */
void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
					     struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = page->mem_cgroup;
	struct memcg_cgwb_frn *frn;
	u64 now = get_jiffies_64();
	u64 oldest_at = now;
	int oldest = -1;
	int i;

4391 4392
	trace_track_foreign_dirty(page, wb);

4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452
	/*
	 * Pick the slot to use.  If there is already a slot for @wb, keep
	 * using it.  If not replace the oldest one which isn't being
	 * written out.
	 */
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		frn = &memcg->cgwb_frn[i];
		if (frn->bdi_id == wb->bdi->id &&
		    frn->memcg_id == wb->memcg_css->id)
			break;
		if (time_before64(frn->at, oldest_at) &&
		    atomic_read(&frn->done.cnt) == 1) {
			oldest = i;
			oldest_at = frn->at;
		}
	}

	if (i < MEMCG_CGWB_FRN_CNT) {
		/*
		 * Re-using an existing one.  Update timestamp lazily to
		 * avoid making the cacheline hot.  We want them to be
		 * reasonably up-to-date and significantly shorter than
		 * dirty_expire_interval as that's what expires the record.
		 * Use the shorter of 1s and dirty_expire_interval / 8.
		 */
		unsigned long update_intv =
			min_t(unsigned long, HZ,
			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);

		if (time_before64(frn->at, now - update_intv))
			frn->at = now;
	} else if (oldest >= 0) {
		/* replace the oldest free one */
		frn = &memcg->cgwb_frn[oldest];
		frn->bdi_id = wb->bdi->id;
		frn->memcg_id = wb->memcg_css->id;
		frn->at = now;
	}
}

/* issue foreign writeback flushes for recorded foreign dirtying events */
void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
	u64 now = jiffies_64;
	int i;

	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];

		/*
		 * If the record is older than dirty_expire_interval,
		 * writeback on it has already started.  No need to kick it
		 * off again.  Also, don't start a new one if there's
		 * already one in flight.
		 */
		if (time_after64(frn->at, now - intv) &&
		    atomic_read(&frn->done.cnt) == 1) {
			frn->at = 0;
4453
			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4454 4455 4456 4457 4458 4459 4460
			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
					       WB_REASON_FOREIGN_FLUSH,
					       &frn->done);
		}
	}
}

T
Tejun Heo 已提交
4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

4472 4473 4474 4475
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

4476 4477
#endif	/* CONFIG_CGROUP_WRITEBACK */

4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4491 4492 4493 4494 4495
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4496
static void memcg_event_remove(struct work_struct *work)
4497
{
4498 4499
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4500
	struct mem_cgroup *memcg = event->memcg;
4501 4502 4503

	remove_wait_queue(event->wqh, &event->wait);

4504
	event->unregister_event(memcg, event->eventfd);
4505 4506 4507 4508 4509 4510

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4511
	css_put(&memcg->css);
4512 4513 4514
}

/*
4515
 * Gets called on EPOLLHUP on eventfd when user closes it.
4516 4517 4518
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4519
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4520
			    int sync, void *key)
4521
{
4522 4523
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4524
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
4525
	__poll_t flags = key_to_poll(key);
4526

4527
	if (flags & EPOLLHUP) {
4528 4529 4530 4531 4532 4533 4534 4535 4536
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4537
		spin_lock(&memcg->event_list_lock);
4538 4539 4540 4541 4542 4543 4544 4545
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4546
		spin_unlock(&memcg->event_list_lock);
4547 4548 4549 4550 4551
	}

	return 0;
}

4552
static void memcg_event_ptable_queue_proc(struct file *file,
4553 4554
		wait_queue_head_t *wqh, poll_table *pt)
{
4555 4556
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4557 4558 4559 4560 4561 4562

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4563 4564
 * DO NOT USE IN NEW FILES.
 *
4565 4566 4567 4568 4569
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4570 4571
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4572
{
4573
	struct cgroup_subsys_state *css = of_css(of);
4574
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4575
	struct mem_cgroup_event *event;
4576 4577 4578 4579
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4580
	const char *name;
4581 4582 4583
	char *endp;
	int ret;

4584 4585 4586
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4587 4588
	if (*endp != ' ')
		return -EINVAL;
4589
	buf = endp + 1;
4590

4591
	cfd = simple_strtoul(buf, &endp, 10);
4592 4593
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4594
	buf = endp + 1;
4595 4596 4597 4598 4599

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4600
	event->memcg = memcg;
4601
	INIT_LIST_HEAD(&event->list);
4602 4603 4604
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4630 4631 4632 4633 4634
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4635 4636
	 *
	 * DO NOT ADD NEW FILES.
4637
	 */
A
Al Viro 已提交
4638
	name = cfile.file->f_path.dentry->d_name.name;
4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4650 4651
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4652 4653 4654 4655 4656
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4657
	/*
4658 4659 4660
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4661
	 */
A
Al Viro 已提交
4662
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4663
					       &memory_cgrp_subsys);
4664
	ret = -EINVAL;
4665
	if (IS_ERR(cfile_css))
4666
		goto out_put_cfile;
4667 4668
	if (cfile_css != css) {
		css_put(cfile_css);
4669
		goto out_put_cfile;
4670
	}
4671

4672
	ret = event->register_event(memcg, event->eventfd, buf);
4673 4674 4675
	if (ret)
		goto out_put_css;

4676
	vfs_poll(efile.file, &event->pt);
4677

4678 4679 4680
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4681 4682 4683 4684

	fdput(cfile);
	fdput(efile);

4685
	return nbytes;
4686 4687

out_put_css:
4688
	css_put(css);
4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4701
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4702
	{
4703
		.name = "usage_in_bytes",
4704
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4705
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4706
	},
4707 4708
	{
		.name = "max_usage_in_bytes",
4709
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4710
		.write = mem_cgroup_reset,
4711
		.read_u64 = mem_cgroup_read_u64,
4712
	},
B
Balbir Singh 已提交
4713
	{
4714
		.name = "limit_in_bytes",
4715
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4716
		.write = mem_cgroup_write,
4717
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4718
	},
4719 4720 4721
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4722
		.write = mem_cgroup_write,
4723
		.read_u64 = mem_cgroup_read_u64,
4724
	},
B
Balbir Singh 已提交
4725 4726
	{
		.name = "failcnt",
4727
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4728
		.write = mem_cgroup_reset,
4729
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4730
	},
4731 4732
	{
		.name = "stat",
4733
		.seq_show = memcg_stat_show,
4734
	},
4735 4736
	{
		.name = "force_empty",
4737
		.write = mem_cgroup_force_empty_write,
4738
	},
4739 4740 4741 4742 4743
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4744
	{
4745
		.name = "cgroup.event_control",		/* XXX: for compat */
4746
		.write = memcg_write_event_control,
4747
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4748
	},
K
KOSAKI Motohiro 已提交
4749 4750 4751 4752 4753
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4754 4755 4756 4757 4758
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4759 4760
	{
		.name = "oom_control",
4761
		.seq_show = mem_cgroup_oom_control_read,
4762
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4763 4764
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4765 4766 4767
	{
		.name = "pressure_level",
	},
4768 4769 4770
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4771
		.seq_show = memcg_numa_stat_show,
4772 4773
	},
#endif
4774 4775 4776
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4777
		.write = mem_cgroup_write,
4778
		.read_u64 = mem_cgroup_read_u64,
4779 4780 4781 4782
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4783
		.read_u64 = mem_cgroup_read_u64,
4784 4785 4786 4787
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4788
		.write = mem_cgroup_reset,
4789
		.read_u64 = mem_cgroup_read_u64,
4790 4791 4792 4793
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4794
		.write = mem_cgroup_reset,
4795
		.read_u64 = mem_cgroup_read_u64,
4796
	},
4797 4798
#if defined(CONFIG_MEMCG_KMEM) && \
	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4799 4800
	{
		.name = "kmem.slabinfo",
4801 4802 4803
		.seq_start = memcg_slab_start,
		.seq_next = memcg_slab_next,
		.seq_stop = memcg_slab_stop,
4804
		.seq_show = memcg_slab_show,
4805 4806
	},
#endif
V
Vladimir Davydov 已提交
4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4830
	{ },	/* terminate */
4831
};
4832

4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
 * However, there usually are many references to the oflline CSS after
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

4859 4860 4861 4862 4863 4864 4865 4866
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

4867 4868
static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
						  unsigned int n)
4869
{
4870
	refcount_add(n, &memcg->id.ref);
4871 4872
}

4873
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4874
{
4875
	if (refcount_sub_and_test(n, &memcg->id.ref)) {
4876
		mem_cgroup_id_remove(memcg);
4877 4878 4879 4880 4881 4882

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

4883 4884 4885 4886 4887
static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

4900
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4901 4902
{
	struct mem_cgroup_per_node *pn;
4903
	int tmp = node;
4904 4905 4906 4907 4908 4909 4910 4911
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4912 4913
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4914
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4915 4916
	if (!pn)
		return 1;
4917

4918 4919 4920 4921 4922 4923
	pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat_local) {
		kfree(pn);
		return 1;
	}

4924 4925
	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat_cpu) {
4926
		free_percpu(pn->lruvec_stat_local);
4927 4928 4929 4930
		kfree(pn);
		return 1;
	}

4931 4932 4933 4934 4935
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

4936
	memcg->nodeinfo[node] = pn;
4937 4938 4939
	return 0;
}

4940
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4941
{
4942 4943
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
4944 4945 4946
	if (!pn)
		return;

4947
	free_percpu(pn->lruvec_stat_cpu);
4948
	free_percpu(pn->lruvec_stat_local);
4949
	kfree(pn);
4950 4951
}

4952
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4953
{
4954
	int node;
4955

4956
	for_each_node(node)
4957
		free_mem_cgroup_per_node_info(memcg, node);
4958
	free_percpu(memcg->vmstats_percpu);
4959
	free_percpu(memcg->vmstats_local);
4960
	kfree(memcg);
4961
}
4962

4963 4964 4965
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
4966 4967 4968 4969
	/*
	 * Flush percpu vmstats and vmevents to guarantee the value correctness
	 * on parent's and all ancestor levels.
	 */
4970
	memcg_flush_percpu_vmstats(memcg);
4971
	memcg_flush_percpu_vmevents(memcg);
4972 4973 4974
	__mem_cgroup_free(memcg);
}

4975
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4976
{
4977
	struct mem_cgroup *memcg;
4978
	unsigned int size;
4979
	int node;
4980
	int __maybe_unused i;
B
Balbir Singh 已提交
4981

4982 4983 4984 4985
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4986
	if (!memcg)
4987 4988
		return NULL;

4989 4990 4991 4992 4993 4994
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
	if (memcg->id.id < 0)
		goto fail;

4995 4996 4997 4998
	memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
	if (!memcg->vmstats_local)
		goto fail;

4999 5000
	memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
	if (!memcg->vmstats_percpu)
5001
		goto fail;
5002

B
Bob Liu 已提交
5003
	for_each_node(node)
5004
		if (alloc_mem_cgroup_per_node_info(memcg, node))
5005
			goto fail;
5006

5007 5008
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
5009

5010
	INIT_WORK(&memcg->high_work, high_work_func);
5011 5012 5013
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5014
	vmpressure_init(&memcg->vmpressure);
5015 5016
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
5017
	memcg->socket_pressure = jiffies;
5018
#ifdef CONFIG_MEMCG_KMEM
V
Vladimir Davydov 已提交
5019 5020
	memcg->kmemcg_id = -1;
#endif
5021 5022
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
5023 5024 5025
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		memcg->cgwb_frn[i].done =
			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5026 5027 5028 5029 5030
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
	memcg->deferred_split_queue.split_queue_len = 0;
5031
#endif
5032
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5033 5034
	return memcg;
fail:
5035
	mem_cgroup_id_remove(memcg);
5036
	__mem_cgroup_free(memcg);
5037
	return NULL;
5038 5039
}

5040 5041
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5042
{
5043 5044 5045
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
5046

5047 5048 5049
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
5050

5051
	WRITE_ONCE(memcg->high, PAGE_COUNTER_MAX);
5052 5053 5054 5055 5056 5057 5058
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
5059
		page_counter_init(&memcg->memory, &parent->memory);
5060
		page_counter_init(&memcg->swap, &parent->swap);
5061 5062
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
5063
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5064
	} else {
5065
		page_counter_init(&memcg->memory, NULL);
5066
		page_counter_init(&memcg->swap, NULL);
5067 5068
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
5069
		page_counter_init(&memcg->tcpmem, NULL);
5070 5071 5072 5073 5074
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
5075
		if (parent != root_mem_cgroup)
5076
			memory_cgrp_subsys.broken_hierarchy = true;
5077
	}
5078

5079 5080
	/* The following stuff does not apply to the root */
	if (!parent) {
5081 5082 5083
#ifdef CONFIG_MEMCG_KMEM
		INIT_LIST_HEAD(&memcg->kmem_caches);
#endif
5084 5085 5086 5087
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

5088
	error = memcg_online_kmem(memcg);
5089 5090
	if (error)
		goto fail;
5091

5092
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5093
		static_branch_inc(&memcg_sockets_enabled_key);
5094

5095 5096
	return &memcg->css;
fail:
5097
	mem_cgroup_id_remove(memcg);
5098
	mem_cgroup_free(memcg);
5099
	return ERR_PTR(-ENOMEM);
5100 5101
}

5102
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5103
{
5104 5105
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5106 5107 5108 5109 5110 5111 5112 5113 5114 5115
	/*
	 * A memcg must be visible for memcg_expand_shrinker_maps()
	 * by the time the maps are allocated. So, we allocate maps
	 * here, when for_each_mem_cgroup() can't skip it.
	 */
	if (memcg_alloc_shrinker_maps(memcg)) {
		mem_cgroup_id_remove(memcg);
		return -ENOMEM;
	}

5116
	/* Online state pins memcg ID, memcg ID pins CSS */
5117
	refcount_set(&memcg->id.ref, 1);
5118
	css_get(css);
5119
	return 0;
B
Balbir Singh 已提交
5120 5121
}

5122
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5123
{
5124
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5125
	struct mem_cgroup_event *event, *tmp;
5126 5127 5128 5129 5130 5131

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
5132 5133
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5134 5135 5136
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
5137
	spin_unlock(&memcg->event_list_lock);
5138

R
Roman Gushchin 已提交
5139
	page_counter_set_min(&memcg->memory, 0);
5140
	page_counter_set_low(&memcg->memory, 0);
5141

5142
	memcg_offline_kmem(memcg);
5143
	wb_memcg_offline(memcg);
5144

5145 5146
	drain_all_stock(memcg);

5147
	mem_cgroup_id_put(memcg);
5148 5149
}

5150 5151 5152 5153 5154 5155 5156
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

5157
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
5158
{
5159
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5160
	int __maybe_unused i;
5161

5162 5163 5164 5165
#ifdef CONFIG_CGROUP_WRITEBACK
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
#endif
5166
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5167
		static_branch_dec(&memcg_sockets_enabled_key);
5168

5169
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
5170
		static_branch_dec(&memcg_sockets_enabled_key);
5171

5172 5173 5174
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
5175
	memcg_free_shrinker_maps(memcg);
5176
	memcg_free_kmem(memcg);
5177
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
5178 5179
}

5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5197 5198 5199 5200 5201
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
R
Roman Gushchin 已提交
5202
	page_counter_set_min(&memcg->memory, 0);
5203
	page_counter_set_low(&memcg->memory, 0);
5204
	WRITE_ONCE(memcg->high, PAGE_COUNTER_MAX);
5205
	memcg->soft_limit = PAGE_COUNTER_MAX;
5206
	memcg_wb_domain_size_changed(memcg);
5207 5208
}

5209
#ifdef CONFIG_MMU
5210
/* Handlers for move charge at task migration. */
5211
static int mem_cgroup_do_precharge(unsigned long count)
5212
{
5213
	int ret;
5214

5215 5216
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5217
	if (!ret) {
5218 5219 5220
		mc.precharge += count;
		return ret;
	}
5221

5222
	/* Try charges one by one with reclaim, but do not retry */
5223
	while (count--) {
5224
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5225 5226
		if (ret)
			return ret;
5227
		mc.precharge++;
5228
		cond_resched();
5229
	}
5230
	return 0;
5231 5232 5233 5234
}

union mc_target {
	struct page	*page;
5235
	swp_entry_t	ent;
5236 5237 5238
};

enum mc_target_type {
5239
	MC_TARGET_NONE = 0,
5240
	MC_TARGET_PAGE,
5241
	MC_TARGET_SWAP,
5242
	MC_TARGET_DEVICE,
5243 5244
};

D
Daisuke Nishimura 已提交
5245 5246
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5247
{
5248
	struct page *page = vm_normal_page(vma, addr, ptent);
5249

D
Daisuke Nishimura 已提交
5250 5251 5252
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
5253
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5254
			return NULL;
5255 5256 5257 5258
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
5259 5260 5261 5262 5263 5264
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5265
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
5266
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5267
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
5268 5269 5270 5271
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

5272
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
5273
		return NULL;
5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
		page = device_private_entry_to_page(ent);
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

5291 5292 5293 5294
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5295
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5296
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
5297 5298 5299 5300
		entry->val = ent.val;

	return page;
}
5301 5302
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5303
			pte_t ptent, swp_entry_t *entry)
5304 5305 5306 5307
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5308

5309 5310 5311 5312 5313 5314 5315 5316 5317
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
5318
	if (!(mc.flags & MOVE_FILE))
5319 5320 5321
		return NULL;

	mapping = vma->vm_file->f_mapping;
5322
	pgoff = linear_page_index(vma, addr);
5323 5324

	/* page is moved even if it's not RSS of this task(page-faulted). */
5325 5326
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
5327 5328
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
5329
		if (xa_is_value(page)) {
5330
			swp_entry_t swp = radix_to_swp_entry(page);
5331
			if (do_memsw_account())
5332
				*entry = swp;
5333 5334
			page = find_get_page(swap_address_space(swp),
					     swp_offset(swp));
5335 5336 5337 5338 5339
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
5340
#endif
5341 5342 5343
	return page;
}

5344 5345 5346
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
5347
 * @compound: charge the page as compound or small page
5348 5349 5350
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
5351
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5352 5353 5354 5355 5356
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
5357
				   bool compound,
5358 5359 5360
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
5361 5362
	struct lruvec *from_vec, *to_vec;
	struct pglist_data *pgdat;
5363
	unsigned long flags;
5364
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5365
	int ret;
5366
	bool anon;
5367 5368 5369

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
5370
	VM_BUG_ON(compound && !PageTransHuge(page));
5371 5372

	/*
5373
	 * Prevent mem_cgroup_migrate() from looking at
5374
	 * page->mem_cgroup of its source page while we change it.
5375
	 */
5376
	ret = -EBUSY;
5377 5378 5379 5380 5381 5382 5383
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

5384 5385
	anon = PageAnon(page);

5386
	pgdat = page_pgdat(page);
5387 5388
	from_vec = mem_cgroup_lruvec(from, pgdat);
	to_vec = mem_cgroup_lruvec(to, pgdat);
5389

5390 5391
	spin_lock_irqsave(&from->move_lock, flags);

5392
	if (!anon && page_mapped(page)) {
5393 5394
		__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
		__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5395 5396
	}

5397 5398
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
5399
	 * mod_memcg_page_state will serialize updates to PageDirty.
5400 5401 5402 5403 5404 5405
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
5406 5407
			__mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
			__mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
5408 5409 5410
		}
	}

5411
	if (PageWriteback(page)) {
5412 5413
		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5414 5415 5416 5417 5418 5419 5420 5421 5422 5423
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
5424

5425 5426 5427 5428 5429
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
5430
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5431
	memcg_check_events(to, page);
5432
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5433 5434 5435 5436 5437 5438 5439 5440
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5456 5457
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
 *     (so ZONE_DEVICE page and thus not on the lru).
5458 5459 5460
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
5461 5462
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5463 5464 5465 5466
 *
 * Called with pte lock held.
 */

5467
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5468 5469 5470
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
5471
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5472 5473 5474 5475 5476
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
5477
		page = mc_handle_swap_pte(vma, ptent, &ent);
5478
	else if (pte_none(ptent))
5479
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5480 5481

	if (!page && !ent.val)
5482
		return ret;
5483 5484
	if (page) {
		/*
5485
		 * Do only loose check w/o serialization.
5486
		 * mem_cgroup_move_account() checks the page is valid or
5487
		 * not under LRU exclusion.
5488
		 */
5489
		if (page->mem_cgroup == mc.from) {
5490
			ret = MC_TARGET_PAGE;
5491
			if (is_device_private_page(page))
5492
				ret = MC_TARGET_DEVICE;
5493 5494 5495 5496 5497 5498
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
5499 5500 5501 5502 5503
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
5504
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5505 5506 5507
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5508 5509 5510 5511
	}
	return ret;
}

5512 5513
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
5514 5515
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
5516 5517 5518 5519 5520 5521 5522 5523
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

5524 5525 5526 5527 5528
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
5529
	page = pmd_page(pmd);
5530
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5531
	if (!(mc.flags & MOVE_ANON))
5532
		return ret;
5533
	if (page->mem_cgroup == mc.from) {
5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5550 5551 5552 5553
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
5554
	struct vm_area_struct *vma = walk->vma;
5555 5556 5557
	pte_t *pte;
	spinlock_t *ptl;

5558 5559
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5560 5561
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5562 5563
		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
		 * this might change.
5564
		 */
5565 5566
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5567
		spin_unlock(ptl);
5568
		return 0;
5569
	}
5570

5571 5572
	if (pmd_trans_unstable(pmd))
		return 0;
5573 5574
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5575
		if (get_mctgt_type(vma, addr, *pte, NULL))
5576 5577 5578 5579
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5580 5581 5582
	return 0;
}

5583 5584 5585 5586
static const struct mm_walk_ops precharge_walk_ops = {
	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
};

5587 5588 5589 5590
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

5591
	down_read(&mm->mmap_sem);
5592
	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5593
	up_read(&mm->mmap_sem);
5594 5595 5596 5597 5598 5599 5600 5601 5602

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5603 5604 5605 5606 5607
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5608 5609
}

5610 5611
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5612
{
5613 5614 5615
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5616
	/* we must uncharge all the leftover precharges from mc.to */
5617
	if (mc.precharge) {
5618
		cancel_charge(mc.to, mc.precharge);
5619 5620 5621 5622 5623 5624 5625
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5626
		cancel_charge(mc.from, mc.moved_charge);
5627
		mc.moved_charge = 0;
5628
	}
5629 5630 5631
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5632
		if (!mem_cgroup_is_root(mc.from))
5633
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5634

5635 5636
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

5637
		/*
5638 5639
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5640
		 */
5641
		if (!mem_cgroup_is_root(mc.to))
5642 5643
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5644 5645
		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
		css_put_many(&mc.to->css, mc.moved_swap);
5646

5647 5648
		mc.moved_swap = 0;
	}
5649 5650 5651 5652 5653 5654 5655
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
5656 5657
	struct mm_struct *mm = mc.mm;

5658 5659 5660 5661 5662 5663
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5664
	spin_lock(&mc.lock);
5665 5666
	mc.from = NULL;
	mc.to = NULL;
5667
	mc.mm = NULL;
5668
	spin_unlock(&mc.lock);
5669 5670

	mmput(mm);
5671 5672
}

5673
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5674
{
5675
	struct cgroup_subsys_state *css;
5676
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5677
	struct mem_cgroup *from;
5678
	struct task_struct *leader, *p;
5679
	struct mm_struct *mm;
5680
	unsigned long move_flags;
5681
	int ret = 0;
5682

5683 5684
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5685 5686
		return 0;

5687 5688 5689 5690 5691 5692 5693
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
5694
	cgroup_taskset_for_each_leader(leader, css, tset) {
5695 5696
		WARN_ON_ONCE(p);
		p = leader;
5697
		memcg = mem_cgroup_from_css(css);
5698 5699 5700 5701
	}
	if (!p)
		return 0;

5702 5703 5704 5705 5706 5707 5708 5709 5710
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
5727
		mc.mm = mm;
5728 5729 5730 5731 5732 5733 5734 5735 5736
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
5737 5738
	} else {
		mmput(mm);
5739 5740 5741 5742
	}
	return ret;
}

5743
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5744
{
5745 5746
	if (mc.to)
		mem_cgroup_clear_mc();
5747 5748
}

5749 5750 5751
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5752
{
5753
	int ret = 0;
5754
	struct vm_area_struct *vma = walk->vma;
5755 5756
	pte_t *pte;
	spinlock_t *ptl;
5757 5758 5759
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5760

5761 5762
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5763
		if (mc.precharge < HPAGE_PMD_NR) {
5764
			spin_unlock(ptl);
5765 5766 5767 5768 5769 5770
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
5771
				if (!mem_cgroup_move_account(page, true,
5772
							     mc.from, mc.to)) {
5773 5774 5775 5776 5777 5778
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
5779 5780 5781 5782 5783 5784 5785 5786
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
5787
		}
5788
		spin_unlock(ptl);
5789
		return 0;
5790 5791
	}

5792 5793
	if (pmd_trans_unstable(pmd))
		return 0;
5794 5795 5796 5797
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5798
		bool device = false;
5799
		swp_entry_t ent;
5800 5801 5802 5803

		if (!mc.precharge)
			break;

5804
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5805 5806 5807
		case MC_TARGET_DEVICE:
			device = true;
			/* fall through */
5808 5809
		case MC_TARGET_PAGE:
			page = target.page;
5810 5811 5812 5813 5814 5815 5816 5817
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
5818
			if (!device && isolate_lru_page(page))
5819
				goto put;
5820 5821
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
5822
				mc.precharge--;
5823 5824
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5825
			}
5826 5827
			if (!device)
				putback_lru_page(page);
5828
put:			/* get_mctgt_type() gets the page */
5829 5830
			put_page(page);
			break;
5831 5832
		case MC_TARGET_SWAP:
			ent = target.ent;
5833
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5834
				mc.precharge--;
5835 5836 5837
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5838
			break;
5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5853
		ret = mem_cgroup_do_precharge(1);
5854 5855 5856 5857 5858 5859 5860
		if (!ret)
			goto retry;
	}

	return ret;
}

5861 5862 5863 5864
static const struct mm_walk_ops charge_walk_ops = {
	.pmd_entry	= mem_cgroup_move_charge_pte_range,
};

5865
static void mem_cgroup_move_charge(void)
5866 5867
{
	lru_add_drain_all();
5868
	/*
5869 5870 5871
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
5872 5873 5874
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5875
retry:
5876
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5888 5889 5890 5891
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
5892 5893
	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
			NULL);
5894

5895
	up_read(&mc.mm->mmap_sem);
5896
	atomic_dec(&mc.from->moving_account);
5897 5898
}

5899
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
5900
{
5901 5902
	if (mc.to) {
		mem_cgroup_move_charge();
5903
		mem_cgroup_clear_mc();
5904
	}
B
Balbir Singh 已提交
5905
}
5906
#else	/* !CONFIG_MMU */
5907
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5908 5909 5910
{
	return 0;
}
5911
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5912 5913
{
}
5914
static void mem_cgroup_move_task(void)
5915 5916 5917
{
}
#endif
B
Balbir Singh 已提交
5918

5919 5920
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5921 5922
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5923
 */
5924
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5925 5926
{
	/*
5927
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5928 5929 5930
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5931
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5932 5933 5934
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5935 5936
}

5937 5938 5939 5940 5941 5942 5943 5944 5945 5946
static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
{
	if (value == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);

	return 0;
}

5947 5948 5949
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5950 5951 5952
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5953 5954
}

R
Roman Gushchin 已提交
5955 5956
static int memory_min_show(struct seq_file *m, void *v)
{
5957 5958
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
R
Roman Gushchin 已提交
5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

5978 5979
static int memory_low_show(struct seq_file *m, void *v)
{
5980 5981
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5982 5983 5984 5985 5986 5987 5988 5989 5990 5991
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5992
	err = page_counter_memparse(buf, "max", &low);
5993 5994 5995
	if (err)
		return err;

5996
	page_counter_set_low(&memcg->memory, low);
5997 5998 5999 6000 6001 6002

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
6003
	return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
6004 6005 6006 6007 6008 6009
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6010 6011
	unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
6012 6013 6014 6015
	unsigned long high;
	int err;

	buf = strstrip(buf);
6016
	err = page_counter_memparse(buf, "max", &high);
6017 6018 6019
	if (err)
		return err;

6020
	WRITE_ONCE(memcg->high, high);
6021

6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043
	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);
		unsigned long reclaimed;

		if (nr_pages <= high)
			break;

		if (signal_pending(current))
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
							 GFP_KERNEL, true);

		if (!reclaimed && !nr_retries--)
			break;
	}
6044

6045 6046 6047 6048 6049
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
6050 6051
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6052 6053 6054 6055 6056 6057
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6058 6059
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
6060 6061 6062 6063
	unsigned long max;
	int err;

	buf = strstrip(buf);
6064
	err = page_counter_memparse(buf, "max", &max);
6065 6066 6067
	if (err)
		return err;

6068
	xchg(&memcg->memory.max, max);
6069 6070 6071 6072 6073 6074 6075

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

6076
		if (signal_pending(current))
6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

6092
		memcg_memory_event(memcg, MEMCG_OOM);
6093 6094 6095
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
6096

6097
	memcg_wb_domain_size_changed(memcg);
6098 6099 6100
	return nbytes;
}

6101 6102 6103 6104 6105 6106 6107 6108 6109 6110
static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
{
	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&events[MEMCG_OOM_KILL]));
}

6111 6112
static int memory_events_show(struct seq_file *m, void *v)
{
6113
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6114

6115 6116 6117 6118 6119 6120 6121
	__memory_events_show(m, memcg->memory_events);
	return 0;
}

static int memory_events_local_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6122

6123
	__memory_events_show(m, memcg->memory_events_local);
6124 6125 6126
	return 0;
}

6127 6128
static int memory_stat_show(struct seq_file *m, void *v)
{
6129
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6130
	char *buf;
6131

6132 6133 6134 6135 6136
	buf = memory_stat_format(memcg);
	if (!buf)
		return -ENOMEM;
	seq_puts(m, buf);
	kfree(buf);
6137 6138 6139
	return 0;
}

6140 6141
static int memory_oom_group_show(struct seq_file *m, void *v)
{
6142
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170

	seq_printf(m, "%d\n", memcg->oom_group);

	return 0;
}

static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
				      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	int ret, oom_group;

	buf = strstrip(buf);
	if (!buf)
		return -EINVAL;

	ret = kstrtoint(buf, 0, &oom_group);
	if (ret)
		return ret;

	if (oom_group != 0 && oom_group != 1)
		return -EINVAL;

	memcg->oom_group = oom_group;

	return nbytes;
}

6171 6172 6173
static struct cftype memory_files[] = {
	{
		.name = "current",
6174
		.flags = CFTYPE_NOT_ON_ROOT,
6175 6176
		.read_u64 = memory_current_read,
	},
R
Roman Gushchin 已提交
6177 6178 6179 6180 6181 6182
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
6204
		.file_offset = offsetof(struct mem_cgroup, events_file),
6205 6206
		.seq_show = memory_events_show,
	},
6207 6208 6209 6210 6211 6212
	{
		.name = "events.local",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, events_local_file),
		.seq_show = memory_events_local_show,
	},
6213 6214 6215 6216 6217
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
6218 6219 6220 6221 6222 6223
	{
		.name = "oom.group",
		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
		.seq_show = memory_oom_group_show,
		.write = memory_oom_group_write,
	},
6224 6225 6226
	{ }	/* terminate */
};

6227
struct cgroup_subsys memory_cgrp_subsys = {
6228
	.css_alloc = mem_cgroup_css_alloc,
6229
	.css_online = mem_cgroup_css_online,
6230
	.css_offline = mem_cgroup_css_offline,
6231
	.css_released = mem_cgroup_css_released,
6232
	.css_free = mem_cgroup_css_free,
6233
	.css_reset = mem_cgroup_css_reset,
6234 6235
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
6236
	.post_attach = mem_cgroup_move_task,
6237
	.bind = mem_cgroup_bind,
6238 6239
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
6240
	.early_init = 0,
B
Balbir Singh 已提交
6241
};
6242

6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272
/*
 * This function calculates an individual cgroup's effective
 * protection which is derived from its own memory.min/low, its
 * parent's and siblings' settings, as well as the actual memory
 * distribution in the tree.
 *
 * The following rules apply to the effective protection values:
 *
 * 1. At the first level of reclaim, effective protection is equal to
 *    the declared protection in memory.min and memory.low.
 *
 * 2. To enable safe delegation of the protection configuration, at
 *    subsequent levels the effective protection is capped to the
 *    parent's effective protection.
 *
 * 3. To make complex and dynamic subtrees easier to configure, the
 *    user is allowed to overcommit the declared protection at a given
 *    level. If that is the case, the parent's effective protection is
 *    distributed to the children in proportion to how much protection
 *    they have declared and how much of it they are utilizing.
 *
 *    This makes distribution proportional, but also work-conserving:
 *    if one cgroup claims much more protection than it uses memory,
 *    the unused remainder is available to its siblings.
 *
 * 4. Conversely, when the declared protection is undercommitted at a
 *    given level, the distribution of the larger parental protection
 *    budget is NOT proportional. A cgroup's protection from a sibling
 *    is capped to its own memory.min/low setting.
 *
6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284
 * 5. However, to allow protecting recursive subtrees from each other
 *    without having to declare each individual cgroup's fixed share
 *    of the ancestor's claim to protection, any unutilized -
 *    "floating" - protection from up the tree is distributed in
 *    proportion to each cgroup's *usage*. This makes the protection
 *    neutral wrt sibling cgroups and lets them compete freely over
 *    the shared parental protection budget, but it protects the
 *    subtree as a whole from neighboring subtrees.
 *
 * Note that 4. and 5. are not in conflict: 4. is about protecting
 * against immediate siblings whereas 5. is about protecting against
 * neighboring subtrees.
6285 6286
 */
static unsigned long effective_protection(unsigned long usage,
6287
					  unsigned long parent_usage,
6288 6289 6290 6291 6292
					  unsigned long setting,
					  unsigned long parent_effective,
					  unsigned long siblings_protected)
{
	unsigned long protected;
6293
	unsigned long ep;
6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323

	protected = min(usage, setting);
	/*
	 * If all cgroups at this level combined claim and use more
	 * protection then what the parent affords them, distribute
	 * shares in proportion to utilization.
	 *
	 * We are using actual utilization rather than the statically
	 * claimed protection in order to be work-conserving: claimed
	 * but unused protection is available to siblings that would
	 * otherwise get a smaller chunk than what they claimed.
	 */
	if (siblings_protected > parent_effective)
		return protected * parent_effective / siblings_protected;

	/*
	 * Ok, utilized protection of all children is within what the
	 * parent affords them, so we know whatever this child claims
	 * and utilizes is effectively protected.
	 *
	 * If there is unprotected usage beyond this value, reclaim
	 * will apply pressure in proportion to that amount.
	 *
	 * If there is unutilized protection, the cgroup will be fully
	 * shielded from reclaim, but we do return a smaller value for
	 * protection than what the group could enjoy in theory. This
	 * is okay. With the overcommit distribution above, effective
	 * protection is always dependent on how memory is actually
	 * consumed among the siblings anyway.
	 */
6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351
	ep = protected;

	/*
	 * If the children aren't claiming (all of) the protection
	 * afforded to them by the parent, distribute the remainder in
	 * proportion to the (unprotected) memory of each cgroup. That
	 * way, cgroups that aren't explicitly prioritized wrt each
	 * other compete freely over the allowance, but they are
	 * collectively protected from neighboring trees.
	 *
	 * We're using unprotected memory for the weight so that if
	 * some cgroups DO claim explicit protection, we don't protect
	 * the same bytes twice.
	 */
	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
		return ep;

	if (parent_effective > siblings_protected && usage > protected) {
		unsigned long unclaimed;

		unclaimed = parent_effective - siblings_protected;
		unclaimed *= usage - protected;
		unclaimed /= parent_usage - siblings_protected;

		ep += unclaimed;
	}

	return ep;
6352 6353
}

6354
/**
R
Roman Gushchin 已提交
6355
 * mem_cgroup_protected - check if memory consumption is in the normal range
6356
 * @root: the top ancestor of the sub-tree being checked
6357 6358
 * @memcg: the memory cgroup to check
 *
6359 6360
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
6361
 *
R
Roman Gushchin 已提交
6362 6363 6364 6365 6366
 * Returns one of the following:
 *   MEMCG_PROT_NONE: cgroup memory is not protected
 *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
 *     an unprotected supply of reclaimable memory from other cgroups.
 *   MEMCG_PROT_MIN: cgroup memory is protected
6367
 */
R
Roman Gushchin 已提交
6368 6369
enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
						struct mem_cgroup *memcg)
6370
{
6371
	unsigned long usage, parent_usage;
6372 6373
	struct mem_cgroup *parent;

6374
	if (mem_cgroup_disabled())
R
Roman Gushchin 已提交
6375
		return MEMCG_PROT_NONE;
6376

6377 6378 6379
	if (!root)
		root = root_mem_cgroup;
	if (memcg == root)
R
Roman Gushchin 已提交
6380
		return MEMCG_PROT_NONE;
6381

6382
	usage = page_counter_read(&memcg->memory);
R
Roman Gushchin 已提交
6383 6384 6385 6386
	if (!usage)
		return MEMCG_PROT_NONE;

	parent = parent_mem_cgroup(memcg);
6387 6388 6389 6390
	/* No parent means a non-hierarchical mode on v1 memcg */
	if (!parent)
		return MEMCG_PROT_NONE;

6391
	if (parent == root) {
6392
		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6393 6394
		memcg->memory.elow = memcg->memory.low;
		goto out;
R
Roman Gushchin 已提交
6395 6396
	}

6397 6398
	parent_usage = page_counter_read(&parent->memory);

6399
	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6400 6401
			READ_ONCE(memcg->memory.min),
			READ_ONCE(parent->memory.emin),
6402
			atomic_long_read(&parent->memory.children_min_usage)));
6403

6404
	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6405
			memcg->memory.low, READ_ONCE(parent->memory.elow),
6406
			atomic_long_read(&parent->memory.children_low_usage)));
6407

6408 6409
out:
	if (usage <= memcg->memory.emin)
R
Roman Gushchin 已提交
6410
		return MEMCG_PROT_MIN;
6411
	else if (usage <= memcg->memory.elow)
R
Roman Gushchin 已提交
6412 6413 6414
		return MEMCG_PROT_LOW;
	else
		return MEMCG_PROT_NONE;
6415 6416
}

6417 6418 6419 6420 6421 6422
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
6423
 * @compound: charge the page as compound or small page
6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6436 6437
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
6438 6439
{
	struct mem_cgroup *memcg = NULL;
6440
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
6454
		VM_BUG_ON_PAGE(!PageLocked(page), page);
6455
		if (compound_head(page)->mem_cgroup)
6456
			goto out;
6457

6458
		if (do_swap_account) {
6459 6460 6461 6462 6463 6464 6465 6466 6467
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493
int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
{
	struct mem_cgroup *memcg;
	int ret;

	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
	memcg = *memcgp;
	mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
	return ret;
}

6494 6495 6496 6497 6498
/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
6499
 * @compound: charge the page as compound or small page
6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6512
			      bool lrucare, bool compound)
6513
{
6514
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

6529 6530 6531
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
6532
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6533 6534
	memcg_check_events(memcg, page);
	local_irq_enable();
6535

6536
	if (do_memsw_account() && PageSwapCache(page)) {
6537 6538 6539 6540 6541 6542
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
6543
		mem_cgroup_uncharge_swap(entry, nr_pages);
6544 6545 6546 6547 6548 6549 6550
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
6551
 * @compound: charge the page as compound or small page
6552 6553 6554
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
6555 6556
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
6557
{
6558
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584
struct uncharge_gather {
	struct mem_cgroup *memcg;
	unsigned long pgpgout;
	unsigned long nr_anon;
	unsigned long nr_file;
	unsigned long nr_kmem;
	unsigned long nr_huge;
	unsigned long nr_shmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6585
{
6586 6587 6588 6589 6590 6591
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6592 6593
	unsigned long flags;

6594 6595
	if (!mem_cgroup_is_root(ug->memcg)) {
		page_counter_uncharge(&ug->memcg->memory, nr_pages);
6596
		if (do_memsw_account())
6597 6598 6599 6600
			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
6601
	}
6602 6603

	local_irq_save(flags);
6604 6605 6606 6607 6608
	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6609
	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6610
	memcg_check_events(ug->memcg, ug->dummy_page);
6611
	local_irq_restore(flags);
6612

6613 6614 6615 6616 6617 6618 6619
	if (!mem_cgroup_is_root(ug->memcg))
		css_put_many(&ug->memcg->css, nr_pages);
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
	VM_BUG_ON_PAGE(PageLRU(page), page);
6620 6621
	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
			!PageHWPoison(page) , page);
6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643

	if (!page->mem_cgroup)
		return;

	/*
	 * Nobody should be changing or seriously looking at
	 * page->mem_cgroup at this point, we have fully
	 * exclusive access to the page.
	 */

	if (ug->memcg != page->mem_cgroup) {
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
		ug->memcg = page->mem_cgroup;
	}

	if (!PageKmemcg(page)) {
		unsigned int nr_pages = 1;

		if (PageTransHuge(page)) {
6644
			nr_pages = compound_nr(page);
6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655
			ug->nr_huge += nr_pages;
		}
		if (PageAnon(page))
			ug->nr_anon += nr_pages;
		else {
			ug->nr_file += nr_pages;
			if (PageSwapBacked(page))
				ug->nr_shmem += nr_pages;
		}
		ug->pgpgout++;
	} else {
6656
		ug->nr_kmem += compound_nr(page);
6657 6658 6659 6660 6661
		__ClearPageKmemcg(page);
	}

	ug->dummy_page = page;
	page->mem_cgroup = NULL;
6662 6663 6664 6665
}

static void uncharge_list(struct list_head *page_list)
{
6666
	struct uncharge_gather ug;
6667
	struct list_head *next;
6668 6669

	uncharge_gather_clear(&ug);
6670

6671 6672 6673 6674
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
6675 6676
	next = page_list->next;
	do {
6677 6678
		struct page *page;

6679 6680 6681
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

6682
		uncharge_page(page, &ug);
6683 6684
	} while (next != page_list);

6685 6686
	if (ug.memcg)
		uncharge_batch(&ug);
6687 6688
}

6689 6690 6691 6692 6693 6694 6695 6696 6697
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
6698 6699
	struct uncharge_gather ug;

6700 6701 6702
	if (mem_cgroup_disabled())
		return;

6703
	/* Don't touch page->lru of any random page, pre-check: */
6704
	if (!page->mem_cgroup)
6705 6706
		return;

6707 6708 6709
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
6710
}
6711

6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
6723

6724 6725
	if (!list_empty(page_list))
		uncharge_list(page_list);
6726 6727 6728
}

/**
6729 6730 6731
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
6732
 *
6733 6734
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
6735 6736 6737
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
6738
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6739
{
6740
	struct mem_cgroup *memcg;
6741
	unsigned int nr_pages;
6742
	unsigned long flags;
6743 6744 6745 6746

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6747 6748
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6749 6750 6751 6752 6753

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
6754
	if (newpage->mem_cgroup)
6755 6756
		return;

6757
	/* Swapcache readahead pages can get replaced before being charged */
6758
	memcg = oldpage->mem_cgroup;
6759
	if (!memcg)
6760 6761
		return;

6762
	/* Force-charge the new page. The old one will be freed soon */
6763
	nr_pages = hpage_nr_pages(newpage);
6764 6765 6766 6767 6768

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
6769

6770
	commit_charge(newpage, memcg, false);
6771

6772
	local_irq_save(flags);
6773 6774
	mem_cgroup_charge_statistics(memcg, newpage, PageTransHuge(newpage),
			nr_pages);
6775
	memcg_check_events(memcg, newpage);
6776
	local_irq_restore(flags);
6777 6778
}

6779
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6780 6781
EXPORT_SYMBOL(memcg_sockets_enabled_key);

6782
void mem_cgroup_sk_alloc(struct sock *sk)
6783 6784 6785
{
	struct mem_cgroup *memcg;

6786 6787 6788
	if (!mem_cgroup_sockets_enabled)
		return;

6789 6790 6791 6792
	/* Do not associate the sock with unrelated interrupted task's memcg. */
	if (in_interrupt())
		return;

6793 6794
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
6795 6796
	if (memcg == root_mem_cgroup)
		goto out;
6797
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6798
		goto out;
S
Shakeel Butt 已提交
6799
	if (css_tryget(&memcg->css))
6800
		sk->sk_memcg = memcg;
6801
out:
6802 6803 6804
	rcu_read_unlock();
}

6805
void mem_cgroup_sk_free(struct sock *sk)
6806
{
6807 6808
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6821
	gfp_t gfp_mask = GFP_KERNEL;
6822

6823
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6824
		struct page_counter *fail;
6825

6826 6827
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
6828 6829
			return true;
		}
6830 6831
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
6832
		return false;
6833
	}
6834

6835 6836 6837 6838
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

6839
	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6840

6841 6842 6843 6844
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6845 6846 6847 6848 6849
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
6850 6851
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
6852 6853 6854
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6855
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6856
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6857 6858
		return;
	}
6859

6860
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6861

6862
	refill_stock(memcg, nr_pages);
6863 6864
}

6865 6866 6867 6868 6869 6870 6871 6872 6873
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
6874 6875
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
6876 6877 6878 6879
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
6880

6881
/*
6882 6883
 * subsys_initcall() for memory controller.
 *
6884 6885 6886 6887
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
6888 6889 6890
 */
static int __init mem_cgroup_init(void)
{
6891 6892
	int cpu, node;

6893
#ifdef CONFIG_MEMCG_KMEM
6894 6895
	/*
	 * Kmem cache creation is mostly done with the slab_mutex held,
6896 6897 6898
	 * so use a workqueue with limited concurrency to avoid stalling
	 * all worker threads in case lots of cgroups are created and
	 * destroyed simultaneously.
6899
	 */
6900 6901
	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
	BUG_ON(!memcg_kmem_cache_wq);
6902 6903
#endif

6904 6905
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

6917
		rtpn->rb_root = RB_ROOT;
6918
		rtpn->rb_rightmost = NULL;
6919
		spin_lock_init(&rtpn->lock);
6920 6921 6922
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

6923 6924 6925
	return 0;
}
subsys_initcall(mem_cgroup_init);
6926 6927

#ifdef CONFIG_MEMCG_SWAP
6928 6929
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
6930
	while (!refcount_inc_not_zero(&memcg->id.ref)) {
6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

6946 6947 6948 6949 6950 6951 6952 6953 6954
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
6955
	struct mem_cgroup *memcg, *swap_memcg;
6956
	unsigned int nr_entries;
6957 6958 6959 6960 6961
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

6962
	if (!do_memsw_account())
6963 6964 6965 6966 6967 6968 6969 6970
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

6971 6972 6973 6974 6975 6976
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
6977 6978 6979 6980 6981 6982
	nr_entries = hpage_nr_pages(page);
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
6983
	VM_BUG_ON_PAGE(oldid, page);
6984
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6985 6986 6987 6988

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
6989
		page_counter_uncharge(&memcg->memory, nr_entries);
6990

6991 6992
	if (memcg != swap_memcg) {
		if (!mem_cgroup_is_root(swap_memcg))
6993 6994
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
6995 6996
	}

6997 6998
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
6999
	 * i_pages lock which is taken with interrupts-off. It is
7000
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
7001
	 * only synchronisation we have for updating the per-CPU variables.
7002 7003
	 */
	VM_BUG_ON(!irqs_disabled());
7004 7005
	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
				     -nr_entries);
7006
	memcg_check_events(memcg, page);
7007 7008

	if (!mem_cgroup_is_root(memcg))
7009
		css_put_many(&memcg->css, nr_entries);
7010 7011
}

7012 7013
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
7014 7015 7016
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
7017
 * Try to charge @page's memcg for the swap space at @entry.
7018 7019 7020 7021 7022
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
7023
	unsigned int nr_pages = hpage_nr_pages(page);
7024
	struct page_counter *counter;
7025
	struct mem_cgroup *memcg;
7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

7037 7038
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7039
		return 0;
7040
	}
7041

7042 7043
	memcg = mem_cgroup_id_get_online(memcg);

7044
	if (!mem_cgroup_is_root(memcg) &&
7045
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7046 7047
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7048
		mem_cgroup_id_put(memcg);
7049
		return -ENOMEM;
7050
	}
7051

7052 7053 7054 7055
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7056
	VM_BUG_ON_PAGE(oldid, page);
7057
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7058 7059 7060 7061

	return 0;
}

7062
/**
7063
 * mem_cgroup_uncharge_swap - uncharge swap space
7064
 * @entry: swap entry to uncharge
7065
 * @nr_pages: the amount of swap space to uncharge
7066
 */
7067
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7068 7069 7070 7071
{
	struct mem_cgroup *memcg;
	unsigned short id;

7072
	if (!do_swap_account)
7073 7074
		return;

7075
	id = swap_cgroup_record(entry, 0, nr_pages);
7076
	rcu_read_lock();
7077
	memcg = mem_cgroup_from_id(id);
7078
	if (memcg) {
7079 7080
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7081
				page_counter_uncharge(&memcg->swap, nr_pages);
7082
			else
7083
				page_counter_uncharge(&memcg->memsw, nr_pages);
7084
		}
7085
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7086
		mem_cgroup_id_put_many(memcg, nr_pages);
7087 7088 7089 7090
	}
	rcu_read_unlock();
}

7091 7092 7093 7094 7095 7096 7097 7098
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
7099
				      READ_ONCE(memcg->swap.max) -
7100 7101 7102 7103
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7120 7121
		if (page_counter_read(&memcg->swap) * 2 >=
		    READ_ONCE(memcg->swap.max))
7122 7123 7124 7125 7126
			return true;

	return false;
}

7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

7144 7145 7146 7147 7148 7149 7150 7151 7152 7153
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
7154 7155
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

7170
	xchg(&memcg->swap.max, max);
7171 7172 7173 7174

	return nbytes;
}

7175 7176
static int swap_events_show(struct seq_file *m, void *v)
{
7177
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7178 7179 7180 7181 7182 7183 7184 7185 7186

	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
7199 7200 7201 7202 7203 7204
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
7205 7206 7207
	{ }	/* terminate */
};

7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
7239 7240
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
7241 7242 7243 7244 7245 7246 7247 7248
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */