memcontrol.c 173.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
B
Balbir Singh 已提交
2 3 4 5 6
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
7 8 9
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
10 11 12 13
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
14 15 16 17
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
B
Balbir Singh 已提交
23 24
 */

25
#include <linux/page_counter.h>
B
Balbir Singh 已提交
26 27
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
28
#include <linux/mm.h>
29
#include <linux/sched/mm.h>
30
#include <linux/shmem_fs.h>
31
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
32
#include <linux/pagemap.h>
33
#include <linux/vm_event_item.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/swap_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
59
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
60
#include "internal.h"
G
Glauber Costa 已提交
61
#include <net/sock.h>
M
Michal Hocko 已提交
62
#include <net/ip.h>
63
#include "slab.h"
B
Balbir Singh 已提交
64

65
#include <linux/uaccess.h>
66

67 68
#include <trace/events/vmscan.h>

69 70
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
71

72 73
struct mem_cgroup *root_mem_cgroup __read_mostly;

74
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
75

76 77 78
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

79 80 81
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

82
/* Whether the swap controller is active */
A
Andrew Morton 已提交
83
#ifdef CONFIG_MEMCG_SWAP
84 85
int do_swap_account __read_mostly;
#else
86
#define do_swap_account		0
87 88
#endif

89 90 91 92 93 94
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

95
static const char *const mem_cgroup_lru_names[] = {
96 97 98 99 100 101 102
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

103 104 105
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
106

107 108 109 110 111
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

112
struct mem_cgroup_tree_per_node {
113
	struct rb_root rb_root;
114
	struct rb_node *rb_rightmost;
115 116 117 118 119 120 121 122 123
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
124 125 126 127 128
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
129

130 131 132
/*
 * cgroup_event represents events which userspace want to receive.
 */
133
struct mem_cgroup_event {
134
	/*
135
	 * memcg which the event belongs to.
136
	 */
137
	struct mem_cgroup *memcg;
138 139 140 141 142 143 144 145
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
146 147 148 149 150
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
151
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
152
			      struct eventfd_ctx *eventfd, const char *args);
153 154 155 156 157
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
158
	void (*unregister_event)(struct mem_cgroup *memcg,
159
				 struct eventfd_ctx *eventfd);
160 161 162 163 164 165
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
166
	wait_queue_entry_t wait;
167 168 169
	struct work_struct remove;
};

170 171
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
172

173 174
/* Stuffs for move charges at task migration. */
/*
175
 * Types of charges to be moved.
176
 */
177 178 179
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
180

181 182
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
183
	spinlock_t	  lock; /* for from, to */
184
	struct mm_struct  *mm;
185 186
	struct mem_cgroup *from;
	struct mem_cgroup *to;
187
	unsigned long flags;
188
	unsigned long precharge;
189
	unsigned long moved_charge;
190
	unsigned long moved_swap;
191 192 193
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
194
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
195 196
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
197

198 199 200 201
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
202
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
203
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
204

205 206
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
207
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
208
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
209
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
210 211 212
	NR_CHARGE_TYPE,
};

213
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
214 215 216 217
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
218
	_KMEM,
V
Vladimir Davydov 已提交
219
	_TCP,
G
Glauber Costa 已提交
220 221
};

222 223
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
224
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
225 226
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
227

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(root, iter, NULL))

#define for_each_mem_cgroup(iter)			\
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(NULL, iter, NULL))

243 244 245 246 247 248
static inline bool should_force_charge(void)
{
	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
		(current->flags & PF_EXITING);
}

249 250 251 252 253 254 255 256 257 258 259 260 261
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

262
#ifdef CONFIG_MEMCG_KMEM
263
/*
264
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
265 266 267 268 269
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
270
 *
271 272
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
273
 */
274 275
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
276

277 278 279 280 281 282 283 284 285 286 287 288 289
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

290 291 292 293 294 295
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
296
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
297 298
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
299
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
300 301 302
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
303
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
304

305 306 307 308 309 310
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
311
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
312
EXPORT_SYMBOL(memcg_kmem_enabled_key);
313

314 315
struct workqueue_struct *memcg_kmem_cache_wq;

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
static int memcg_shrinker_map_size;
static DEFINE_MUTEX(memcg_shrinker_map_mutex);

static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
{
	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
}

static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
					 int size, int old_size)
{
	struct memcg_shrinker_map *new, *old;
	int nid;

	lockdep_assert_held(&memcg_shrinker_map_mutex);

	for_each_node(nid) {
		old = rcu_dereference_protected(
			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
		/* Not yet online memcg */
		if (!old)
			return 0;

		new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
		if (!new)
			return -ENOMEM;

		/* Set all old bits, clear all new bits */
		memset(new->map, (int)0xff, old_size);
		memset((void *)new->map + old_size, 0, size - old_size);

		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
	}

	return 0;
}

static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *pn;
	struct memcg_shrinker_map *map;
	int nid;

	if (mem_cgroup_is_root(memcg))
		return;

	for_each_node(nid) {
		pn = mem_cgroup_nodeinfo(memcg, nid);
		map = rcu_dereference_protected(pn->shrinker_map, true);
		if (map)
			kvfree(map);
		rcu_assign_pointer(pn->shrinker_map, NULL);
	}
}

static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	struct memcg_shrinker_map *map;
	int nid, size, ret = 0;

	if (mem_cgroup_is_root(memcg))
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	size = memcg_shrinker_map_size;
	for_each_node(nid) {
		map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
		if (!map) {
			memcg_free_shrinker_maps(memcg);
			ret = -ENOMEM;
			break;
		}
		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
	}
	mutex_unlock(&memcg_shrinker_map_mutex);

	return ret;
}

int memcg_expand_shrinker_maps(int new_id)
{
	int size, old_size, ret = 0;
	struct mem_cgroup *memcg;

	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
	old_size = memcg_shrinker_map_size;
	if (size <= old_size)
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	if (!root_mem_cgroup)
		goto unlock;

	for_each_mem_cgroup(memcg) {
		if (mem_cgroup_is_root(memcg))
			continue;
		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
		if (ret)
			goto unlock;
	}
unlock:
	if (!ret)
		memcg_shrinker_map_size = size;
	mutex_unlock(&memcg_shrinker_map_mutex);
	return ret;
}
423 424 425 426 427 428 429 430

void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
{
	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
		struct memcg_shrinker_map *map;

		rcu_read_lock();
		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
431 432
		/* Pairs with smp mb in shrink_slab() */
		smp_mb__before_atomic();
433 434 435 436 437
		set_bit(shrinker_id, map->map);
		rcu_read_unlock();
	}
}

438 439 440 441 442 443
#else /* CONFIG_MEMCG_KMEM */
static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	return 0;
}
static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
444
#endif /* CONFIG_MEMCG_KMEM */
445

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

463
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
464 465 466 467 468
		memcg = root_mem_cgroup;

	return &memcg->css;
}

469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

497 498
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
499
{
500
	int nid = page_to_nid(page);
501

502
	return memcg->nodeinfo[nid];
503 504
}

505 506
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
507
{
508
	return soft_limit_tree.rb_tree_per_node[nid];
509 510
}

511
static struct mem_cgroup_tree_per_node *
512 513 514 515
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

516
	return soft_limit_tree.rb_tree_per_node[nid];
517 518
}

519 520
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
521
					 unsigned long new_usage_in_excess)
522 523 524
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
525
	struct mem_cgroup_per_node *mz_node;
526
	bool rightmost = true;
527 528 529 530 531 532 533 534 535

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
536
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
537
					tree_node);
538
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
539
			p = &(*p)->rb_left;
540 541 542
			rightmost = false;
		}

543 544 545 546 547 548 549
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
550 551 552 553

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

554 555 556 557 558
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

559 560
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
561 562 563
{
	if (!mz->on_tree)
		return;
564 565 566 567

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

568 569 570 571
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

572 573
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
574
{
575 576 577
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
578
	__mem_cgroup_remove_exceeded(mz, mctz);
579
	spin_unlock_irqrestore(&mctz->lock, flags);
580 581
}

582 583 584
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
585
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
586 587 588 589 590 591 592
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
593 594 595

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
596
	unsigned long excess;
597 598
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
599

600
	mctz = soft_limit_tree_from_page(page);
601 602
	if (!mctz)
		return;
603 604 605 606 607
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
608
		mz = mem_cgroup_page_nodeinfo(memcg, page);
609
		excess = soft_limit_excess(memcg);
610 611 612 613 614
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
615 616 617
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
618 619
			/* if on-tree, remove it */
			if (mz->on_tree)
620
				__mem_cgroup_remove_exceeded(mz, mctz);
621 622 623 624
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
625
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
626
			spin_unlock_irqrestore(&mctz->lock, flags);
627 628 629 630 631 632
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
633 634 635
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
636

637
	for_each_node(nid) {
638 639
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
640 641
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
642 643 644
	}
}

645 646
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
647
{
648
	struct mem_cgroup_per_node *mz;
649 650 651

retry:
	mz = NULL;
652
	if (!mctz->rb_rightmost)
653 654
		goto done;		/* Nothing to reclaim from */

655 656
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
657 658 659 660 661
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
662
	__mem_cgroup_remove_exceeded(mz, mctz);
663
	if (!soft_limit_excess(mz->memcg) ||
664
	    !css_tryget_online(&mz->memcg->css))
665 666 667 668 669
		goto retry;
done:
	return mz;
}

670 671
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
672
{
673
	struct mem_cgroup_per_node *mz;
674

675
	spin_lock_irq(&mctz->lock);
676
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
677
	spin_unlock_irq(&mctz->lock);
678 679 680
	return mz;
}

681 682 683 684 685 686 687 688 689 690 691 692 693
/**
 * __mod_memcg_state - update cgroup memory statistics
 * @memcg: the memory cgroup
 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 * @val: delta to add to the counter, can be negative
 */
void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
{
	long x;

	if (mem_cgroup_disabled())
		return;

694 695
	__this_cpu_add(memcg->vmstats_local->stat[idx], val);

696 697
	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
698 699 700 701
		struct mem_cgroup *mi;

		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmstats[idx]);
702 703 704 705 706
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
}

707 708 709 710 711 712 713 714 715 716 717
static struct mem_cgroup_per_node *
parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
{
	struct mem_cgroup *parent;

	parent = parent_mem_cgroup(pn->memcg);
	if (!parent)
		return NULL;
	return mem_cgroup_nodeinfo(parent, nid);
}

718 719 720 721 722 723 724 725 726 727 728 729 730
/**
 * __mod_lruvec_state - update lruvec memory statistics
 * @lruvec: the lruvec
 * @idx: the stat item
 * @val: delta to add to the counter, can be negative
 *
 * The lruvec is the intersection of the NUMA node and a cgroup. This
 * function updates the all three counters that are affected by a
 * change of state at this level: per-node, per-cgroup, per-lruvec.
 */
void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			int val)
{
731
	pg_data_t *pgdat = lruvec_pgdat(lruvec);
732
	struct mem_cgroup_per_node *pn;
733
	struct mem_cgroup *memcg;
734 735 736
	long x;

	/* Update node */
737
	__mod_node_page_state(pgdat, idx, val);
738 739 740 741 742

	if (mem_cgroup_disabled())
		return;

	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
743
	memcg = pn->memcg;
744 745

	/* Update memcg */
746
	__mod_memcg_state(memcg, idx, val);
747 748

	/* Update lruvec */
749 750
	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);

751 752
	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
753 754 755 756
		struct mem_cgroup_per_node *pi;

		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
			atomic_long_add(x, &pi->lruvec_stat[idx]);
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
		x = 0;
	}
	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
}

/**
 * __count_memcg_events - account VM events in a cgroup
 * @memcg: the memory cgroup
 * @idx: the event item
 * @count: the number of events that occured
 */
void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
			  unsigned long count)
{
	unsigned long x;

	if (mem_cgroup_disabled())
		return;

776 777
	__this_cpu_add(memcg->vmstats_local->events[idx], count);

778 779
	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
780 781 782 783
		struct mem_cgroup *mi;

		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmevents[idx]);
784 785 786 787 788
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
}

789
static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
790
{
791
	return atomic_long_read(&memcg->vmevents[event]);
792 793
}

794 795
static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
{
796 797 798 799 800 801
	long x = 0;
	int cpu;

	for_each_possible_cpu(cpu)
		x += per_cpu(memcg->vmstats_local->events[event], cpu);
	return x;
802 803
}

804
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
805
					 struct page *page,
806
					 bool compound, int nr_pages)
807
{
808 809 810 811
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
812
	if (PageAnon(page))
813
		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
814
	else {
815
		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
816
		if (PageSwapBacked(page))
817
			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
818
	}
819

820 821
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
822
		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
823
	}
824

825 826
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
827
		__count_memcg_events(memcg, PGPGIN, 1);
828
	else {
829
		__count_memcg_events(memcg, PGPGOUT, 1);
830 831
		nr_pages = -nr_pages; /* for event */
	}
832

833
	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
834 835
}

836 837
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
838 839 840
{
	unsigned long val, next;

841 842
	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
843
	/* from time_after() in jiffies.h */
844
	if ((long)(next - val) < 0) {
845 846 847 848
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
849 850 851
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
852 853 854 855 856 857
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
858
		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
859
		return true;
860
	}
861
	return false;
862 863 864 865 866 867
}

/*
 * Check events in order.
 *
 */
868
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
869 870
{
	/* threshold event is triggered in finer grain than soft limit */
871 872
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
873
		bool do_softlimit;
874
		bool do_numainfo __maybe_unused;
875

876 877
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
878 879 880 881
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
882
		mem_cgroup_threshold(memcg);
883 884
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
885
#if MAX_NUMNODES > 1
886
		if (unlikely(do_numainfo))
887
			atomic_inc(&memcg->numainfo_events);
888
#endif
889
	}
890 891
}

892
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
893
{
894 895 896 897 898 899 900 901
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

902
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
903
}
M
Michal Hocko 已提交
904
EXPORT_SYMBOL(mem_cgroup_from_task);
905

906 907 908 909 910 911 912 913 914
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
 * returned.
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
915
{
916 917 918 919
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
920

921 922
	rcu_read_lock();
	do {
923 924 925 926 927 928
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
929
			memcg = root_mem_cgroup;
930 931 932 933 934
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
935
	} while (!css_tryget_online(&memcg->css));
936
	rcu_read_unlock();
937
	return memcg;
938
}
939 940
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
/**
 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
 * @page: page from which memcg should be extracted.
 *
 * Obtain a reference on page->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned.
 */
struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
{
	struct mem_cgroup *memcg = page->mem_cgroup;

	if (mem_cgroup_disabled())
		return NULL;

	rcu_read_lock();
	if (!memcg || !css_tryget_online(&memcg->css))
		memcg = root_mem_cgroup;
	rcu_read_unlock();
	return memcg;
}
EXPORT_SYMBOL(get_mem_cgroup_from_page);

963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
/**
 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
 */
static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
{
	if (unlikely(current->active_memcg)) {
		struct mem_cgroup *memcg = root_mem_cgroup;

		rcu_read_lock();
		if (css_tryget_online(&current->active_memcg->css))
			memcg = current->active_memcg;
		rcu_read_unlock();
		return memcg;
	}
	return get_mem_cgroup_from_mm(current->mm);
}
979

980 981 982 983 984 985 986 987 988 989 990 991 992
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
993
 * Reclaimers can specify a node and a priority level in @reclaim to
994
 * divide up the memcgs in the hierarchy among all concurrent
995
 * reclaimers operating on the same node and priority.
996
 */
997
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
998
				   struct mem_cgroup *prev,
999
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1000
{
M
Michal Hocko 已提交
1001
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1002
	struct cgroup_subsys_state *css = NULL;
1003
	struct mem_cgroup *memcg = NULL;
1004
	struct mem_cgroup *pos = NULL;
1005

1006 1007
	if (mem_cgroup_disabled())
		return NULL;
1008

1009 1010
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1011

1012
	if (prev && !reclaim)
1013
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1014

1015 1016
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1017
			goto out;
1018
		return root;
1019
	}
K
KAMEZAWA Hiroyuki 已提交
1020

1021
	rcu_read_lock();
M
Michal Hocko 已提交
1022

1023
	if (reclaim) {
1024
		struct mem_cgroup_per_node *mz;
1025

1026
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1027 1028 1029 1030 1031
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

1032
		while (1) {
1033
			pos = READ_ONCE(iter->position);
1034 1035
			if (!pos || css_tryget(&pos->css))
				break;
1036
			/*
1037 1038 1039 1040 1041 1042
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
1043
			 */
1044 1045
			(void)cmpxchg(&iter->position, pos, NULL);
		}
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1063
		}
K
KAMEZAWA Hiroyuki 已提交
1064

1065 1066 1067 1068 1069 1070
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1071

1072 1073
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1074

1075 1076
		if (css_tryget(css))
			break;
1077

1078
		memcg = NULL;
1079
	}
1080 1081 1082

	if (reclaim) {
		/*
1083 1084 1085
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
1086
		 */
1087 1088
		(void)cmpxchg(&iter->position, pos, memcg);

1089 1090 1091 1092 1093 1094 1095
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1096
	}
1097

1098 1099
out_unlock:
	rcu_read_unlock();
1100
out:
1101 1102 1103
	if (prev && prev != root)
		css_put(&prev->css);

1104
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1105
}
K
KAMEZAWA Hiroyuki 已提交
1106

1107 1108 1109 1110 1111 1112 1113
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1114 1115 1116 1117 1118 1119
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1120

1121 1122 1123 1124
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
1125 1126
	struct mem_cgroup_per_node *mz;
	int nid;
1127 1128
	int i;

1129
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1130
		for_each_node(nid) {
1131 1132 1133 1134 1135
			mz = mem_cgroup_nodeinfo(memcg, nid);
			for (i = 0; i <= DEF_PRIORITY; i++) {
				iter = &mz->iter[i];
				cmpxchg(&iter->position,
					dead_memcg, NULL);
1136 1137 1138 1139 1140
			}
		}
	}
}

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

1166
		css_task_iter_start(&iter->css, 0, &it);
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

1178
/**
1179
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1180
 * @page: the page
1181
 * @pgdat: pgdat of the page
1182 1183 1184 1185
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1186
 */
M
Mel Gorman 已提交
1187
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
1188
{
1189
	struct mem_cgroup_per_node *mz;
1190
	struct mem_cgroup *memcg;
1191
	struct lruvec *lruvec;
1192

1193
	if (mem_cgroup_disabled()) {
M
Mel Gorman 已提交
1194
		lruvec = &pgdat->lruvec;
1195 1196
		goto out;
	}
1197

1198
	memcg = page->mem_cgroup;
1199
	/*
1200
	 * Swapcache readahead pages are added to the LRU - and
1201
	 * possibly migrated - before they are charged.
1202
	 */
1203 1204
	if (!memcg)
		memcg = root_mem_cgroup;
1205

1206
	mz = mem_cgroup_page_nodeinfo(memcg, page);
1207 1208 1209 1210 1211 1212 1213
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
1214 1215
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
1216
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1217
}
1218

1219
/**
1220 1221 1222
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1223
 * @zid: zone id of the accounted pages
1224
 * @nr_pages: positive when adding or negative when removing
1225
 *
1226 1227 1228
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1229
 */
1230
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1231
				int zid, int nr_pages)
1232
{
1233
	struct mem_cgroup_per_node *mz;
1234
	unsigned long *lru_size;
1235
	long size;
1236 1237 1238 1239

	if (mem_cgroup_disabled())
		return;

1240
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1241
	lru_size = &mz->lru_zone_size[zid][lru];
1242 1243 1244 1245 1246

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1247 1248 1249
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1250 1251 1252 1253 1254 1255
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1256
}
1257

1258
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1259
{
1260
	struct mem_cgroup *task_memcg;
1261
	struct task_struct *p;
1262
	bool ret;
1263

1264
	p = find_lock_task_mm(task);
1265
	if (p) {
1266
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1267 1268 1269 1270 1271 1272 1273
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1274
		rcu_read_lock();
1275 1276
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1277
		rcu_read_unlock();
1278
	}
1279 1280
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1281 1282 1283
	return ret;
}

1284
/**
1285
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1286
 * @memcg: the memory cgroup
1287
 *
1288
 * Returns the maximum amount of memory @mem can be charged with, in
1289
 * pages.
1290
 */
1291
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1292
{
1293 1294 1295
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1296

1297
	count = page_counter_read(&memcg->memory);
1298
	limit = READ_ONCE(memcg->memory.max);
1299 1300 1301
	if (count < limit)
		margin = limit - count;

1302
	if (do_memsw_account()) {
1303
		count = page_counter_read(&memcg->memsw);
1304
		limit = READ_ONCE(memcg->memsw.max);
1305 1306
		if (count <= limit)
			margin = min(margin, limit - count);
1307 1308
		else
			margin = 0;
1309 1310 1311
	}

	return margin;
1312 1313
}

1314
/*
Q
Qiang Huang 已提交
1315
 * A routine for checking "mem" is under move_account() or not.
1316
 *
Q
Qiang Huang 已提交
1317 1318 1319
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1320
 */
1321
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1322
{
1323 1324
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1325
	bool ret = false;
1326 1327 1328 1329 1330 1331 1332 1333 1334
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1335

1336 1337
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1338 1339
unlock:
	spin_unlock(&mc.lock);
1340 1341 1342
	return ret;
}

1343
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1344 1345
{
	if (mc.moving_task && current != mc.moving_task) {
1346
		if (mem_cgroup_under_move(memcg)) {
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1359
static const unsigned int memcg1_stats[] = {
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
	MEMCG_CACHE,
	MEMCG_RSS,
	MEMCG_RSS_HUGE,
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
	"rss_huge",
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

1381
#define K(x) ((x) << (PAGE_SHIFT-10))
1382
/**
1383 1384
 * mem_cgroup_print_oom_context: Print OOM information relevant to
 * memory controller.
1385 1386 1387 1388 1389 1390
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
1391
void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1392 1393 1394
{
	rcu_read_lock();

1395 1396 1397 1398 1399
	if (memcg) {
		pr_cont(",oom_memcg=");
		pr_cont_cgroup_path(memcg->css.cgroup);
	} else
		pr_cont(",global_oom");
1400
	if (p) {
1401
		pr_cont(",task_memcg=");
1402 1403
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	}
1404
	rcu_read_unlock();
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
}

/**
 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
 * memory controller.
 * @memcg: The memory cgroup that went over limit
 */
void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
	struct mem_cgroup *iter;
	unsigned int i;
1416

1417 1418
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1419
		K((u64)memcg->memory.max), memcg->memory.failcnt);
1420 1421
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
1422
		K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1423 1424
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
1425
		K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1426 1427

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1428 1429
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1430 1431
		pr_cont(":");

1432 1433
		for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
			if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1434
				continue;
1435
			pr_cont(" %s:%luKB", memcg1_stat_names[i],
1436 1437
				K(memcg_page_state_local(iter,
							 memcg1_stats[i])));
1438 1439 1440 1441
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1442 1443
				K(memcg_page_state_local(iter,
							 NR_LRU_BASE + i)));
1444 1445 1446

		pr_cont("\n");
	}
1447 1448
}

D
David Rientjes 已提交
1449 1450 1451
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1452
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1453
{
1454
	unsigned long max;
1455

1456
	max = memcg->memory.max;
1457
	if (mem_cgroup_swappiness(memcg)) {
1458 1459
		unsigned long memsw_max;
		unsigned long swap_max;
1460

1461 1462 1463 1464
		memsw_max = memcg->memsw.max;
		swap_max = memcg->swap.max;
		swap_max = min(swap_max, (unsigned long)total_swap_pages);
		max = min(max + swap_max, memsw_max);
1465
	}
1466
	return max;
D
David Rientjes 已提交
1467 1468
}

1469
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1470
				     int order)
1471
{
1472 1473 1474
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1475
		.memcg = memcg,
1476 1477 1478
		.gfp_mask = gfp_mask,
		.order = order,
	};
1479
	bool ret;
1480

1481 1482 1483 1484 1485 1486 1487
	if (mutex_lock_killable(&oom_lock))
		return true;
	/*
	 * A few threads which were not waiting at mutex_lock_killable() can
	 * fail to bail out. Therefore, check again after holding oom_lock.
	 */
	ret = should_force_charge() || out_of_memory(&oc);
1488
	mutex_unlock(&oom_lock);
1489
	return ret;
1490 1491
}

1492 1493
#if MAX_NUMNODES > 1

1494 1495
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1496
 * @memcg: the target memcg
1497 1498 1499 1500 1501 1502 1503
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1504
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1505 1506
		int nid, bool noswap)
{
1507 1508
	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);

1509 1510
	if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
	    lruvec_page_state(lruvec, NR_ACTIVE_FILE))
1511 1512 1513
		return true;
	if (noswap || !total_swap_pages)
		return false;
1514 1515
	if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
	    lruvec_page_state(lruvec, NR_ACTIVE_ANON))
1516 1517 1518 1519
		return true;
	return false;

}
1520 1521 1522 1523 1524 1525 1526

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1527
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1528 1529
{
	int nid;
1530 1531 1532 1533
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1534
	if (!atomic_read(&memcg->numainfo_events))
1535
		return;
1536
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1537 1538 1539
		return;

	/* make a nodemask where this memcg uses memory from */
1540
	memcg->scan_nodes = node_states[N_MEMORY];
1541

1542
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1543

1544 1545
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1546
	}
1547

1548 1549
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1564
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1565 1566 1567
{
	int node;

1568 1569
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1570

1571
	node = next_node_in(node, memcg->scan_nodes);
1572
	/*
1573 1574 1575
	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
	 * last time it really checked all the LRUs due to rate limiting.
	 * Fallback to the current node in that case for simplicity.
1576 1577 1578 1579
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1580
	memcg->last_scanned_node = node;
1581 1582 1583
	return node;
}
#else
1584
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1585 1586 1587 1588 1589
{
	return 0;
}
#endif

1590
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1591
				   pg_data_t *pgdat,
1592 1593 1594 1595 1596 1597 1598 1599 1600
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1601
		.pgdat = pgdat,
1602 1603 1604
		.priority = 0,
	};

1605
	excess = soft_limit_excess(root_memcg);
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1631
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1632
					pgdat, &nr_scanned);
1633
		*total_scanned += nr_scanned;
1634
		if (!soft_limit_excess(root_memcg))
1635
			break;
1636
	}
1637 1638
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1639 1640
}

1641 1642 1643 1644 1645 1646
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1647 1648
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1649 1650 1651 1652
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1653
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1654
{
1655
	struct mem_cgroup *iter, *failed = NULL;
1656

1657 1658
	spin_lock(&memcg_oom_lock);

1659
	for_each_mem_cgroup_tree(iter, memcg) {
1660
		if (iter->oom_lock) {
1661 1662 1663 1664 1665
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1666 1667
			mem_cgroup_iter_break(memcg, iter);
			break;
1668 1669
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1670
	}
K
KAMEZAWA Hiroyuki 已提交
1671

1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1683
		}
1684 1685
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1686 1687 1688 1689

	spin_unlock(&memcg_oom_lock);

	return !failed;
1690
}
1691

1692
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1693
{
K
KAMEZAWA Hiroyuki 已提交
1694 1695
	struct mem_cgroup *iter;

1696
	spin_lock(&memcg_oom_lock);
1697
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1698
	for_each_mem_cgroup_tree(iter, memcg)
1699
		iter->oom_lock = false;
1700
	spin_unlock(&memcg_oom_lock);
1701 1702
}

1703
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1704 1705 1706
{
	struct mem_cgroup *iter;

1707
	spin_lock(&memcg_oom_lock);
1708
	for_each_mem_cgroup_tree(iter, memcg)
1709 1710
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1711 1712
}

1713
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1714 1715 1716
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1717 1718
	/*
	 * When a new child is created while the hierarchy is under oom,
1719
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1720
	 */
1721
	spin_lock(&memcg_oom_lock);
1722
	for_each_mem_cgroup_tree(iter, memcg)
1723 1724 1725
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1726 1727
}

K
KAMEZAWA Hiroyuki 已提交
1728 1729
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1730
struct oom_wait_info {
1731
	struct mem_cgroup *memcg;
1732
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1733 1734
};

1735
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1736 1737
	unsigned mode, int sync, void *arg)
{
1738 1739
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1740 1741 1742
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1743
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1744

1745 1746
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1747 1748 1749 1750
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1751
static void memcg_oom_recover(struct mem_cgroup *memcg)
1752
{
1753 1754 1755 1756 1757 1758 1759 1760 1761
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1762
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1763 1764
}

1765 1766 1767 1768 1769 1770 1771 1772
enum oom_status {
	OOM_SUCCESS,
	OOM_FAILED,
	OOM_ASYNC,
	OOM_SKIPPED
};

static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1773
{
1774 1775 1776
	enum oom_status ret;
	bool locked;

1777 1778 1779
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		return OOM_SKIPPED;

1780 1781
	memcg_memory_event(memcg, MEMCG_OOM);

K
KAMEZAWA Hiroyuki 已提交
1782
	/*
1783 1784 1785 1786
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1787 1788 1789 1790
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1791
	 *
1792 1793 1794 1795 1796 1797 1798
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
K
KAMEZAWA Hiroyuki 已提交
1799
	 */
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
	if (memcg->oom_kill_disable) {
		if (!current->in_user_fault)
			return OOM_SKIPPED;
		css_get(&memcg->css);
		current->memcg_in_oom = memcg;
		current->memcg_oom_gfp_mask = mask;
		current->memcg_oom_order = order;

		return OOM_ASYNC;
	}

1811 1812 1813 1814 1815 1816 1817 1818
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	mem_cgroup_unmark_under_oom(memcg);
1819
	if (mem_cgroup_out_of_memory(memcg, mask, order))
1820 1821 1822 1823 1824 1825
		ret = OOM_SUCCESS;
	else
		ret = OOM_FAILED;

	if (locked)
		mem_cgroup_oom_unlock(memcg);
1826

1827
	return ret;
1828 1829 1830 1831
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1832
 * @handle: actually kill/wait or just clean up the OOM state
1833
 *
1834 1835
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1836
 *
1837
 * Memcg supports userspace OOM handling where failed allocations must
1838 1839 1840 1841
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1842
 * the end of the page fault to complete the OOM handling.
1843 1844
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1845
 * completed, %false otherwise.
1846
 */
1847
bool mem_cgroup_oom_synchronize(bool handle)
1848
{
T
Tejun Heo 已提交
1849
	struct mem_cgroup *memcg = current->memcg_in_oom;
1850
	struct oom_wait_info owait;
1851
	bool locked;
1852 1853 1854

	/* OOM is global, do not handle */
	if (!memcg)
1855
		return false;
1856

1857
	if (!handle)
1858
		goto cleanup;
1859 1860 1861 1862 1863

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
1864
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
1865

1866
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1877 1878
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1879
	} else {
1880
		schedule();
1881 1882 1883 1884 1885
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1886 1887 1888 1889 1890 1891 1892 1893
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1894
cleanup:
T
Tejun Heo 已提交
1895
	current->memcg_in_oom = NULL;
1896
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1897
	return true;
1898 1899
}

1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
/**
 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 * @victim: task to be killed by the OOM killer
 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 *
 * Returns a pointer to a memory cgroup, which has to be cleaned up
 * by killing all belonging OOM-killable tasks.
 *
 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 */
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
					    struct mem_cgroup *oom_domain)
{
	struct mem_cgroup *oom_group = NULL;
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return NULL;

	if (!oom_domain)
		oom_domain = root_mem_cgroup;

	rcu_read_lock();

	memcg = mem_cgroup_from_task(victim);
	if (memcg == root_mem_cgroup)
		goto out;

	/*
	 * Traverse the memory cgroup hierarchy from the victim task's
	 * cgroup up to the OOMing cgroup (or root) to find the
	 * highest-level memory cgroup with oom.group set.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		if (memcg->oom_group)
			oom_group = memcg;

		if (memcg == oom_domain)
			break;
	}

	if (oom_group)
		css_get(&oom_group->css);
out:
	rcu_read_unlock();

	return oom_group;
}

void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
	pr_info("Tasks in ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(" are going to be killed due to memory.oom.group set\n");
}

1956
/**
1957 1958
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1959
 *
1960
 * This function protects unlocked LRU pages from being moved to
1961 1962 1963 1964 1965
 * another cgroup.
 *
 * It ensures lifetime of the returned memcg. Caller is responsible
 * for the lifetime of the page; __unlock_page_memcg() is available
 * when @page might get freed inside the locked section.
1966
 */
1967
struct mem_cgroup *lock_page_memcg(struct page *page)
1968 1969
{
	struct mem_cgroup *memcg;
1970
	unsigned long flags;
1971

1972 1973 1974 1975
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
1976 1977 1978 1979 1980 1981 1982
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page itself from being freed. E.g. writeback
	 * doesn't hold a page reference and relies on PG_writeback to
	 * keep off truncation, migration and so forth.
         */
1983 1984 1985
	rcu_read_lock();

	if (mem_cgroup_disabled())
1986
		return NULL;
1987
again:
1988
	memcg = page->mem_cgroup;
1989
	if (unlikely(!memcg))
1990
		return NULL;
1991

Q
Qiang Huang 已提交
1992
	if (atomic_read(&memcg->moving_account) <= 0)
1993
		return memcg;
1994

1995
	spin_lock_irqsave(&memcg->move_lock, flags);
1996
	if (memcg != page->mem_cgroup) {
1997
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1998 1999
		goto again;
	}
2000 2001 2002 2003

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
2004
	 * the task who has the lock for unlock_page_memcg().
2005 2006 2007
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2008

2009
	return memcg;
2010
}
2011
EXPORT_SYMBOL(lock_page_memcg);
2012

2013
/**
2014 2015 2016 2017
 * __unlock_page_memcg - unlock and unpin a memcg
 * @memcg: the memcg
 *
 * Unlock and unpin a memcg returned by lock_page_memcg().
2018
 */
2019
void __unlock_page_memcg(struct mem_cgroup *memcg)
2020
{
2021 2022 2023 2024 2025 2026 2027 2028
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2029

2030
	rcu_read_unlock();
2031
}
2032 2033 2034 2035 2036 2037 2038 2039 2040

/**
 * unlock_page_memcg - unlock a page->mem_cgroup binding
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
	__unlock_page_memcg(page->mem_cgroup);
}
2041
EXPORT_SYMBOL(unlock_page_memcg);
2042

2043 2044
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2045
	unsigned int nr_pages;
2046
	struct work_struct work;
2047
	unsigned long flags;
2048
#define FLUSHING_CACHED_CHARGE	0
2049 2050
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2051
static DEFINE_MUTEX(percpu_charge_mutex);
2052

2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2063
 */
2064
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2065 2066
{
	struct memcg_stock_pcp *stock;
2067
	unsigned long flags;
2068
	bool ret = false;
2069

2070
	if (nr_pages > MEMCG_CHARGE_BATCH)
2071
		return ret;
2072

2073 2074 2075
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2076
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2077
		stock->nr_pages -= nr_pages;
2078 2079
		ret = true;
	}
2080 2081 2082

	local_irq_restore(flags);

2083 2084 2085 2086
	return ret;
}

/*
2087
 * Returns stocks cached in percpu and reset cached information.
2088 2089 2090 2091 2092
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2093
	if (stock->nr_pages) {
2094
		page_counter_uncharge(&old->memory, stock->nr_pages);
2095
		if (do_memsw_account())
2096
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2097
		css_put_many(&old->css, stock->nr_pages);
2098
		stock->nr_pages = 0;
2099 2100 2101 2102 2103 2104
	}
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
2105 2106 2107
	struct memcg_stock_pcp *stock;
	unsigned long flags;

2108 2109 2110 2111
	/*
	 * The only protection from memory hotplug vs. drain_stock races is
	 * that we always operate on local CPU stock here with IRQ disabled
	 */
2112 2113 2114
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2115
	drain_stock(stock);
2116
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2117 2118

	local_irq_restore(flags);
2119 2120 2121
}

/*
2122
 * Cache charges(val) to local per_cpu area.
2123
 * This will be consumed by consume_stock() function, later.
2124
 */
2125
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2126
{
2127 2128 2129 2130
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
2131

2132
	stock = this_cpu_ptr(&memcg_stock);
2133
	if (stock->cached != memcg) { /* reset if necessary */
2134
		drain_stock(stock);
2135
		stock->cached = memcg;
2136
	}
2137
	stock->nr_pages += nr_pages;
2138

2139
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2140 2141
		drain_stock(stock);

2142
	local_irq_restore(flags);
2143 2144 2145
}

/*
2146
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2147
 * of the hierarchy under it.
2148
 */
2149
static void drain_all_stock(struct mem_cgroup *root_memcg)
2150
{
2151
	int cpu, curcpu;
2152

2153 2154 2155
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2156 2157 2158 2159 2160 2161
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
2162
	curcpu = get_cpu();
2163 2164
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2165
		struct mem_cgroup *memcg;
2166

2167
		memcg = stock->cached;
2168
		if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
2169
			continue;
2170 2171
		if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
			css_put(&memcg->css);
2172
			continue;
2173
		}
2174 2175 2176 2177 2178 2179
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2180
		css_put(&memcg->css);
2181
	}
2182
	put_cpu();
2183
	mutex_unlock(&percpu_charge_mutex);
2184 2185
}

2186
static int memcg_hotplug_cpu_dead(unsigned int cpu)
2187 2188
{
	struct memcg_stock_pcp *stock;
2189
	struct mem_cgroup *memcg, *mi;
2190 2191 2192

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
2193 2194 2195 2196 2197 2198 2199 2200

	for_each_mem_cgroup(memcg) {
		int i;

		for (i = 0; i < MEMCG_NR_STAT; i++) {
			int nid;
			long x;

2201
			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2202
			if (x)
2203 2204
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmstats[i]);
2205 2206 2207 2208 2209 2210 2211 2212 2213

			if (i >= NR_VM_NODE_STAT_ITEMS)
				continue;

			for_each_node(nid) {
				struct mem_cgroup_per_node *pn;

				pn = mem_cgroup_nodeinfo(memcg, nid);
				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2214
				if (x)
2215 2216 2217
					do {
						atomic_long_add(x, &pn->lruvec_stat[i]);
					} while ((pn = parent_nodeinfo(pn, nid)));
2218 2219 2220
			}
		}

2221
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2222 2223
			long x;

2224
			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2225
			if (x)
2226 2227
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmevents[i]);
2228 2229 2230
		}
	}

2231
	return 0;
2232 2233
}

2234 2235 2236 2237 2238 2239 2240
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
2241
		memcg_memory_event(memcg, MEMCG_HIGH);
2242 2243 2244 2245 2246 2247 2248 2249 2250
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
2251
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2252 2253
}

2254 2255 2256 2257 2258 2259 2260
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2261
	struct mem_cgroup *memcg;
2262 2263 2264 2265

	if (likely(!nr_pages))
		return;

2266 2267
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
2268 2269 2270 2271
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

2272 2273
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2274
{
2275
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2276
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2277
	struct mem_cgroup *mem_over_limit;
2278
	struct page_counter *counter;
2279
	unsigned long nr_reclaimed;
2280 2281
	bool may_swap = true;
	bool drained = false;
2282
	enum oom_status oom_status;
2283

2284
	if (mem_cgroup_is_root(memcg))
2285
		return 0;
2286
retry:
2287
	if (consume_stock(memcg, nr_pages))
2288
		return 0;
2289

2290
	if (!do_memsw_account() ||
2291 2292
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2293
			goto done_restock;
2294
		if (do_memsw_account())
2295 2296
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2297
	} else {
2298
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2299
		may_swap = false;
2300
	}
2301

2302 2303 2304 2305
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2306

2307 2308 2309 2310 2311 2312
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
2313
	if (unlikely(should_force_charge()))
2314
		goto force;
2315

2316 2317 2318 2319 2320 2321 2322 2323 2324
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2325 2326 2327
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2328
	if (!gfpflags_allow_blocking(gfp_mask))
2329
		goto nomem;
2330

2331
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2332

2333 2334
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2335

2336
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2337
		goto retry;
2338

2339
	if (!drained) {
2340
		drain_all_stock(mem_over_limit);
2341 2342 2343 2344
		drained = true;
		goto retry;
	}

2345 2346
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2347 2348 2349 2350 2351 2352 2353 2354 2355
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2356
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2357 2358 2359 2360 2361 2362 2363 2364
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2365 2366 2367
	if (nr_retries--)
		goto retry;

2368
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2369 2370
		goto nomem;

2371
	if (gfp_mask & __GFP_NOFAIL)
2372
		goto force;
2373

2374
	if (fatal_signal_pending(current))
2375
		goto force;
2376

2377 2378 2379 2380 2381 2382
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2383
		       get_order(nr_pages * PAGE_SIZE));
2384 2385 2386 2387 2388 2389 2390 2391 2392
	switch (oom_status) {
	case OOM_SUCCESS:
		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
		goto retry;
	case OOM_FAILED:
		goto force;
	default:
		goto nomem;
	}
2393
nomem:
2394
	if (!(gfp_mask & __GFP_NOFAIL))
2395
		return -ENOMEM;
2396 2397 2398 2399 2400 2401 2402
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2403
	if (do_memsw_account())
2404 2405 2406 2407
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2408 2409

done_restock:
2410
	css_get_many(&memcg->css, batch);
2411 2412
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2413

2414
	/*
2415 2416
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2417
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2418 2419 2420 2421
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2422 2423
	 */
	do {
2424
		if (page_counter_read(&memcg->memory) > memcg->high) {
2425 2426 2427 2428 2429
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2430
			current->memcg_nr_pages_over_high += batch;
2431 2432 2433
			set_notify_resume(current);
			break;
		}
2434
	} while ((memcg = parent_mem_cgroup(memcg)));
2435 2436

	return 0;
2437
}
2438

2439
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2440
{
2441 2442 2443
	if (mem_cgroup_is_root(memcg))
		return;

2444
	page_counter_uncharge(&memcg->memory, nr_pages);
2445
	if (do_memsw_account())
2446
		page_counter_uncharge(&memcg->memsw, nr_pages);
2447

2448
	css_put_many(&memcg->css, nr_pages);
2449 2450
}

2451 2452
static void lock_page_lru(struct page *page, int *isolated)
{
2453
	pg_data_t *pgdat = page_pgdat(page);
2454

2455
	spin_lock_irq(&pgdat->lru_lock);
2456 2457 2458
	if (PageLRU(page)) {
		struct lruvec *lruvec;

2459
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2460 2461 2462 2463 2464 2465 2466 2467 2468
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
2469
	pg_data_t *pgdat = page_pgdat(page);
2470 2471 2472 2473

	if (isolated) {
		struct lruvec *lruvec;

2474
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2475 2476 2477 2478
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
2479
	spin_unlock_irq(&pgdat->lru_lock);
2480 2481
}

2482
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2483
			  bool lrucare)
2484
{
2485
	int isolated;
2486

2487
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2488 2489 2490 2491 2492

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2493 2494
	if (lrucare)
		lock_page_lru(page, &isolated);
2495

2496 2497
	/*
	 * Nobody should be changing or seriously looking at
2498
	 * page->mem_cgroup at this point:
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2510
	page->mem_cgroup = memcg;
2511

2512 2513
	if (lrucare)
		unlock_page_lru(page, isolated);
2514
}
2515

2516
#ifdef CONFIG_MEMCG_KMEM
2517
static int memcg_alloc_cache_id(void)
2518
{
2519 2520 2521
	int id, size;
	int err;

2522
	id = ida_simple_get(&memcg_cache_ida,
2523 2524 2525
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2526

2527
	if (id < memcg_nr_cache_ids)
2528 2529 2530 2531 2532 2533
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2534
	down_write(&memcg_cache_ids_sem);
2535 2536

	size = 2 * (id + 1);
2537 2538 2539 2540 2541
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2542
	err = memcg_update_all_caches(size);
2543 2544
	if (!err)
		err = memcg_update_all_list_lrus(size);
2545 2546 2547 2548 2549
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2550
	if (err) {
2551
		ida_simple_remove(&memcg_cache_ida, id);
2552 2553 2554 2555 2556 2557 2558
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2559
	ida_simple_remove(&memcg_cache_ida, id);
2560 2561
}

2562
struct memcg_kmem_cache_create_work {
2563 2564 2565 2566 2567
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2568
static void memcg_kmem_cache_create_func(struct work_struct *w)
2569
{
2570 2571
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2572 2573
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2574

2575
	memcg_create_kmem_cache(memcg, cachep);
2576

2577
	css_put(&memcg->css);
2578 2579 2580 2581 2582 2583
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2584
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2585
					       struct kmem_cache *cachep)
2586
{
2587
	struct memcg_kmem_cache_create_work *cw;
2588

2589
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2590
	if (!cw)
2591
		return;
2592 2593

	css_get(&memcg->css);
2594 2595 2596

	cw->memcg = memcg;
	cw->cachep = cachep;
2597
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2598

2599
	queue_work(memcg_kmem_cache_wq, &cw->work);
2600 2601
}

2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
static inline bool memcg_kmem_bypass(void)
{
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;
	return false;
}

/**
 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
 * @cachep: the original global kmem cache
 *
2613 2614 2615
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
2616 2617 2618
 * If the cache does not exist yet, if we are the first user of it, we
 * create it asynchronously in a workqueue and let the current allocation
 * go through with the original cache.
2619
 *
2620 2621 2622 2623
 * This function takes a reference to the cache it returns to assure it
 * won't get destroyed while we are working with it. Once the caller is
 * done with it, memcg_kmem_put_cache() must be called to release the
 * reference.
2624
 */
2625
struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2626 2627
{
	struct mem_cgroup *memcg;
2628
	struct kmem_cache *memcg_cachep;
2629
	int kmemcg_id;
2630

2631
	VM_BUG_ON(!is_root_cache(cachep));
2632

2633
	if (memcg_kmem_bypass())
V
Vladimir Davydov 已提交
2634 2635
		return cachep;

2636
	memcg = get_mem_cgroup_from_current();
2637
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2638
	if (kmemcg_id < 0)
2639
		goto out;
2640

2641
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2642 2643
	if (likely(memcg_cachep))
		return memcg_cachep;
2644 2645 2646 2647 2648 2649 2650 2651 2652

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2653 2654 2655
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2656
	 */
2657
	memcg_schedule_kmem_cache_create(memcg, cachep);
2658
out:
2659
	css_put(&memcg->css);
2660
	return cachep;
2661 2662
}

2663 2664 2665 2666 2667
/**
 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
 * @cachep: the cache returned by memcg_kmem_get_cache
 */
void memcg_kmem_put_cache(struct kmem_cache *cachep)
2668 2669
{
	if (!is_root_cache(cachep))
2670
		css_put(&cachep->memcg_params.memcg->css);
2671 2672
}

2673
/**
2674
 * __memcg_kmem_charge_memcg: charge a kmem page
2675 2676 2677 2678 2679 2680 2681
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 * @memcg: memory cgroup to charge
 *
 * Returns 0 on success, an error code on failure.
 */
2682
int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2683
			    struct mem_cgroup *memcg)
2684
{
2685 2686
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2687 2688
	int ret;

2689
	ret = try_charge(memcg, gfp, nr_pages);
2690
	if (ret)
2691
		return ret;
2692 2693 2694 2695 2696

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2697 2698
	}

2699
	page->mem_cgroup = memcg;
2700

2701
	return 0;
2702 2703
}

2704
/**
2705
 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2706 2707 2708 2709 2710 2711
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
2712
int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2713
{
2714
	struct mem_cgroup *memcg;
2715
	int ret = 0;
2716

2717
	if (memcg_kmem_bypass())
2718 2719
		return 0;

2720
	memcg = get_mem_cgroup_from_current();
2721
	if (!mem_cgroup_is_root(memcg)) {
2722
		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2723 2724 2725
		if (!ret)
			__SetPageKmemcg(page);
	}
2726
	css_put(&memcg->css);
2727
	return ret;
2728
}
2729
/**
2730
 * __memcg_kmem_uncharge: uncharge a kmem page
2731 2732 2733
 * @page: page to uncharge
 * @order: allocation order
 */
2734
void __memcg_kmem_uncharge(struct page *page, int order)
2735
{
2736
	struct mem_cgroup *memcg = page->mem_cgroup;
2737
	unsigned int nr_pages = 1 << order;
2738 2739 2740 2741

	if (!memcg)
		return;

2742
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2743

2744 2745 2746
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

2747
	page_counter_uncharge(&memcg->memory, nr_pages);
2748
	if (do_memsw_account())
2749
		page_counter_uncharge(&memcg->memsw, nr_pages);
2750

2751
	page->mem_cgroup = NULL;
2752 2753 2754 2755 2756

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);

2757
	css_put_many(&memcg->css, nr_pages);
2758
}
2759
#endif /* CONFIG_MEMCG_KMEM */
2760

2761 2762 2763 2764
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2765
 * pgdat->lru_lock and migration entries setup in all page mappings.
2766
 */
2767
void mem_cgroup_split_huge_fixup(struct page *head)
2768
{
2769
	int i;
2770

2771 2772
	if (mem_cgroup_disabled())
		return;
2773

2774
	for (i = 1; i < HPAGE_PMD_NR; i++)
2775
		head[i].mem_cgroup = head->mem_cgroup;
2776

2777
	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2778
}
2779
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2780

A
Andrew Morton 已提交
2781
#ifdef CONFIG_MEMCG_SWAP
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2793
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2794 2795 2796
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2797
				struct mem_cgroup *from, struct mem_cgroup *to)
2798 2799 2800
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2801 2802
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2803 2804

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2805 2806
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
2807 2808 2809 2810 2811 2812
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2813
				struct mem_cgroup *from, struct mem_cgroup *to)
2814 2815 2816
{
	return -EINVAL;
}
2817
#endif
K
KAMEZAWA Hiroyuki 已提交
2818

2819
static DEFINE_MUTEX(memcg_max_mutex);
2820

2821 2822
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
2823
{
2824
	bool enlarge = false;
2825
	bool drained = false;
2826
	int ret;
2827 2828
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2829

2830
	do {
2831 2832 2833 2834
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2835

2836
		mutex_lock(&memcg_max_mutex);
2837 2838
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
2839
		 * break our basic invariant rule memory.max <= memsw.max.
2840
		 */
2841 2842
		limits_invariant = memsw ? max >= memcg->memory.max :
					   max <= memcg->memsw.max;
2843
		if (!limits_invariant) {
2844
			mutex_unlock(&memcg_max_mutex);
2845 2846 2847
			ret = -EINVAL;
			break;
		}
2848
		if (max > counter->max)
2849
			enlarge = true;
2850 2851
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
2852 2853 2854 2855

		if (!ret)
			break;

2856 2857 2858 2859 2860 2861
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

2862 2863 2864 2865 2866 2867
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
2868

2869 2870
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2871

2872 2873 2874
	return ret;
}

2875
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2876 2877 2878 2879
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
2880
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2881 2882
	unsigned long reclaimed;
	int loop = 0;
2883
	struct mem_cgroup_tree_per_node *mctz;
2884
	unsigned long excess;
2885 2886 2887 2888 2889
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

2890
	mctz = soft_limit_tree_node(pgdat->node_id);
2891 2892 2893 2894 2895 2896

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
2897
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2898 2899
		return 0;

2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
2914
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2915 2916 2917
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2918
		spin_lock_irq(&mctz->lock);
2919
		__mem_cgroup_remove_exceeded(mz, mctz);
2920 2921 2922 2923 2924 2925

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2926 2927 2928
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2929
		excess = soft_limit_excess(mz->memcg);
2930 2931 2932 2933 2934 2935 2936 2937 2938
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2939
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2940
		spin_unlock_irq(&mctz->lock);
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2958 2959 2960 2961 2962 2963
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2964 2965
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2966 2967 2968 2969 2970 2971
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2972 2973
}

2974
/*
2975
 * Reclaims as many pages from the given memcg as possible.
2976 2977 2978 2979 2980 2981 2982
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2983 2984
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2985 2986 2987

	drain_all_stock(memcg);

2988
	/* try to free all pages in this cgroup */
2989
	while (nr_retries && page_counter_read(&memcg->memory)) {
2990
		int progress;
2991

2992 2993 2994
		if (signal_pending(current))
			return -EINTR;

2995 2996
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2997
		if (!progress) {
2998
			nr_retries--;
2999
			/* maybe some writeback is necessary */
3000
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3001
		}
3002 3003

	}
3004 3005

	return 0;
3006 3007
}

3008 3009 3010
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3011
{
3012
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3013

3014 3015
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3016
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3017 3018
}

3019 3020
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3021
{
3022
	return mem_cgroup_from_css(css)->use_hierarchy;
3023 3024
}

3025 3026
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3027 3028
{
	int retval = 0;
3029
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3030
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3031

3032
	if (memcg->use_hierarchy == val)
3033
		return 0;
3034

3035
	/*
3036
	 * If parent's use_hierarchy is set, we can't make any modifications
3037 3038 3039 3040 3041 3042
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3043
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3044
				(val == 1 || val == 0)) {
3045
		if (!memcg_has_children(memcg))
3046
			memcg->use_hierarchy = val;
3047 3048 3049 3050
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3051

3052 3053 3054
	return retval;
}

3055
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3056
{
3057
	unsigned long val;
3058

3059
	if (mem_cgroup_is_root(memcg)) {
3060 3061 3062 3063
		val = memcg_page_state(memcg, MEMCG_CACHE) +
			memcg_page_state(memcg, MEMCG_RSS);
		if (swap)
			val += memcg_page_state(memcg, MEMCG_SWAP);
3064
	} else {
3065
		if (!swap)
3066
			val = page_counter_read(&memcg->memory);
3067
		else
3068
			val = page_counter_read(&memcg->memsw);
3069
	}
3070
	return val;
3071 3072
}

3073 3074 3075 3076 3077 3078 3079
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3080

3081
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3082
			       struct cftype *cft)
B
Balbir Singh 已提交
3083
{
3084
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3085
	struct page_counter *counter;
3086

3087
	switch (MEMFILE_TYPE(cft->private)) {
3088
	case _MEM:
3089 3090
		counter = &memcg->memory;
		break;
3091
	case _MEMSWAP:
3092 3093
		counter = &memcg->memsw;
		break;
3094
	case _KMEM:
3095
		counter = &memcg->kmem;
3096
		break;
V
Vladimir Davydov 已提交
3097
	case _TCP:
3098
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3099
		break;
3100 3101 3102
	default:
		BUG();
	}
3103 3104 3105 3106

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
3107
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3108
		if (counter == &memcg->memsw)
3109
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3110 3111
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
3112
		return (u64)counter->max * PAGE_SIZE;
3113 3114 3115 3116 3117 3118 3119 3120 3121
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3122
}
3123

3124
#ifdef CONFIG_MEMCG_KMEM
3125
static int memcg_online_kmem(struct mem_cgroup *memcg)
3126 3127 3128
{
	int memcg_id;

3129 3130 3131
	if (cgroup_memory_nokmem)
		return 0;

3132
	BUG_ON(memcg->kmemcg_id >= 0);
3133
	BUG_ON(memcg->kmem_state);
3134

3135
	memcg_id = memcg_alloc_cache_id();
3136 3137
	if (memcg_id < 0)
		return memcg_id;
3138

3139
	static_branch_inc(&memcg_kmem_enabled_key);
3140
	/*
3141
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
3142
	 * kmemcg_id. Setting the id after enabling static branching will
3143 3144 3145
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3146
	memcg->kmemcg_id = memcg_id;
3147
	memcg->kmem_state = KMEM_ONLINE;
3148
	INIT_LIST_HEAD(&memcg->kmem_caches);
3149 3150

	return 0;
3151 3152
}

3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	memcg_deactivate_kmem_caches(memcg);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
3186
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3187 3188 3189 3190 3191 3192 3193
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
3194 3195
	rcu_read_unlock();

3196
	memcg_drain_all_list_lrus(kmemcg_id, parent);
3197 3198 3199 3200 3201 3202

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
3203 3204 3205 3206
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

3207 3208 3209 3210 3211 3212
	if (memcg->kmem_state == KMEM_ALLOCATED) {
		memcg_destroy_kmem_caches(memcg);
		static_branch_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
}
3213
#else
3214
static int memcg_online_kmem(struct mem_cgroup *memcg)
3215 3216 3217 3218 3219 3220 3221 3222 3223
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
3224
#endif /* CONFIG_MEMCG_KMEM */
3225

3226 3227
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
3228
{
3229
	int ret;
3230

3231 3232 3233
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
3234
	return ret;
3235
}
3236

3237
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
3238 3239 3240
{
	int ret;

3241
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3242

3243
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
3244 3245 3246
	if (ret)
		goto out;

3247
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3248 3249 3250
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3251 3252 3253
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
3254 3255 3256 3257 3258 3259
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3260
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
3261 3262 3263 3264
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3265
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3266 3267
	}
out:
3268
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3269 3270 3271
	return ret;
}

3272 3273 3274 3275
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3276 3277
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3278
{
3279
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3280
	unsigned long nr_pages;
3281 3282
	int ret;

3283
	buf = strstrip(buf);
3284
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3285 3286
	if (ret)
		return ret;
3287

3288
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3289
	case RES_LIMIT:
3290 3291 3292 3293
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3294 3295
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3296
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3297
			break;
3298
		case _MEMSWAP:
3299
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3300
			break;
3301
		case _KMEM:
3302
			ret = memcg_update_kmem_max(memcg, nr_pages);
3303
			break;
V
Vladimir Davydov 已提交
3304
		case _TCP:
3305
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
3306
			break;
3307
		}
3308
		break;
3309 3310 3311
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3312 3313
		break;
	}
3314
	return ret ?: nbytes;
B
Balbir Singh 已提交
3315 3316
}

3317 3318
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3319
{
3320
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3321
	struct page_counter *counter;
3322

3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3333
	case _TCP:
3334
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3335
		break;
3336 3337 3338
	default:
		BUG();
	}
3339

3340
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3341
	case RES_MAX_USAGE:
3342
		page_counter_reset_watermark(counter);
3343 3344
		break;
	case RES_FAILCNT:
3345
		counter->failcnt = 0;
3346
		break;
3347 3348
	default:
		BUG();
3349
	}
3350

3351
	return nbytes;
3352 3353
}

3354
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3355 3356
					struct cftype *cft)
{
3357
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3358 3359
}

3360
#ifdef CONFIG_MMU
3361
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3362 3363
					struct cftype *cft, u64 val)
{
3364
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3365

3366
	if (val & ~MOVE_MASK)
3367
		return -EINVAL;
3368

3369
	/*
3370 3371 3372 3373
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3374
	 */
3375
	memcg->move_charge_at_immigrate = val;
3376 3377
	return 0;
}
3378
#else
3379
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3380 3381 3382 3383 3384
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3385

3386
#ifdef CONFIG_NUMA
3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403

#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)

static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
					   int nid, unsigned int lru_mask)
{
	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
	unsigned long nr = 0;
	enum lru_list lru;

	VM_BUG_ON((unsigned)nid >= nr_node_ids);

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3404
		nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
	}
	return nr;
}

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
					     unsigned int lru_mask)
{
	unsigned long nr = 0;
	enum lru_list lru;

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3418
		nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3419 3420 3421 3422
	}
	return nr;
}

3423
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3424
{
3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3437
	int nid;
3438
	unsigned long nr;
3439
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3440

3441 3442 3443 3444 3445 3446 3447 3448 3449
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3450 3451
	}

3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3467 3468 3469 3470 3471 3472
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3473
/* Universal VM events cgroup1 shows, original sort order */
3474
static const unsigned int memcg1_events[] = {
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

static const char *const memcg1_event_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

3488
static int memcg_stat_show(struct seq_file *m, void *v)
3489
{
3490
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3491
	unsigned long memory, memsw;
3492 3493
	struct mem_cgroup *mi;
	unsigned int i;
3494

3495
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3496 3497
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3498 3499
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3500
			continue;
3501
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3502
			   memcg_page_state_local(memcg, memcg1_stats[i]) *
3503
			   PAGE_SIZE);
3504
	}
L
Lee Schermerhorn 已提交
3505

3506 3507
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3508
			   memcg_events_local(memcg, memcg1_events[i]));
3509 3510 3511

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3512
			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3513
			   PAGE_SIZE);
3514

K
KAMEZAWA Hiroyuki 已提交
3515
	/* Hierarchical information */
3516 3517
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3518 3519
		memory = min(memory, mi->memory.max);
		memsw = min(memsw, mi->memsw.max);
3520
	}
3521 3522
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3523
	if (do_memsw_account())
3524 3525
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3526

3527
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3528
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3529
			continue;
3530
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3531 3532
			   (u64)memcg_page_state(memcg, memcg1_stats[i]) *
			   PAGE_SIZE);
3533 3534
	}

3535 3536
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3537
			   (u64)memcg_events(memcg, memcg1_events[i]));
3538

3539 3540
	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3541 3542
			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			   PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
3543

K
KOSAKI Motohiro 已提交
3544 3545
#ifdef CONFIG_DEBUG_VM
	{
3546 3547
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
3548
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3549 3550 3551
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

3552 3553 3554
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
			rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3555

3556 3557 3558 3559 3560
			recent_rotated[0] += rstat->recent_rotated[0];
			recent_rotated[1] += rstat->recent_rotated[1];
			recent_scanned[0] += rstat->recent_scanned[0];
			recent_scanned[1] += rstat->recent_scanned[1];
		}
3561 3562 3563 3564
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3565 3566 3567
	}
#endif

3568 3569 3570
	return 0;
}

3571 3572
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3573
{
3574
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3575

3576
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3577 3578
}

3579 3580
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3581
{
3582
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3583

3584
	if (val > 100)
K
KOSAKI Motohiro 已提交
3585 3586
		return -EINVAL;

3587
	if (css->parent)
3588 3589 3590
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3591

K
KOSAKI Motohiro 已提交
3592 3593 3594
	return 0;
}

3595 3596 3597
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3598
	unsigned long usage;
3599 3600 3601 3602
	int i;

	rcu_read_lock();
	if (!swap)
3603
		t = rcu_dereference(memcg->thresholds.primary);
3604
	else
3605
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3606 3607 3608 3609

	if (!t)
		goto unlock;

3610
	usage = mem_cgroup_usage(memcg, swap);
3611 3612

	/*
3613
	 * current_threshold points to threshold just below or equal to usage.
3614 3615 3616
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3617
	i = t->current_threshold;
3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3641
	t->current_threshold = i - 1;
3642 3643 3644 3645 3646 3647
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3648 3649
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3650
		if (do_memsw_account())
3651 3652 3653 3654
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3655 3656 3657 3658 3659 3660 3661
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3662 3663 3664 3665 3666 3667 3668
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3669 3670
}

3671
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3672 3673 3674
{
	struct mem_cgroup_eventfd_list *ev;

3675 3676
	spin_lock(&memcg_oom_lock);

3677
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3678
		eventfd_signal(ev->eventfd, 1);
3679 3680

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3681 3682 3683
	return 0;
}

3684
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3685
{
K
KAMEZAWA Hiroyuki 已提交
3686 3687
	struct mem_cgroup *iter;

3688
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3689
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3690 3691
}

3692
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3693
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3694
{
3695 3696
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3697 3698
	unsigned long threshold;
	unsigned long usage;
3699
	int i, size, ret;
3700

3701
	ret = page_counter_memparse(args, "-1", &threshold);
3702 3703 3704 3705
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3706

3707
	if (type == _MEM) {
3708
		thresholds = &memcg->thresholds;
3709
		usage = mem_cgroup_usage(memcg, false);
3710
	} else if (type == _MEMSWAP) {
3711
		thresholds = &memcg->memsw_thresholds;
3712
		usage = mem_cgroup_usage(memcg, true);
3713
	} else
3714 3715 3716
		BUG();

	/* Check if a threshold crossed before adding a new one */
3717
	if (thresholds->primary)
3718 3719
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3720
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3721 3722

	/* Allocate memory for new array of thresholds */
3723
	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
3724
	if (!new) {
3725 3726 3727
		ret = -ENOMEM;
		goto unlock;
	}
3728
	new->size = size;
3729 3730

	/* Copy thresholds (if any) to new array */
3731 3732
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3733
				sizeof(struct mem_cgroup_threshold));
3734 3735
	}

3736
	/* Add new threshold */
3737 3738
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3739 3740

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3741
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3742 3743 3744
			compare_thresholds, NULL);

	/* Find current threshold */
3745
	new->current_threshold = -1;
3746
	for (i = 0; i < size; i++) {
3747
		if (new->entries[i].threshold <= usage) {
3748
			/*
3749 3750
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3751 3752
			 * it here.
			 */
3753
			++new->current_threshold;
3754 3755
		} else
			break;
3756 3757
	}

3758 3759 3760 3761 3762
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3763

3764
	/* To be sure that nobody uses thresholds */
3765 3766 3767 3768 3769 3770 3771 3772
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3773
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3774 3775
	struct eventfd_ctx *eventfd, const char *args)
{
3776
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3777 3778
}

3779
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3780 3781
	struct eventfd_ctx *eventfd, const char *args)
{
3782
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3783 3784
}

3785
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3786
	struct eventfd_ctx *eventfd, enum res_type type)
3787
{
3788 3789
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3790
	unsigned long usage;
3791
	int i, j, size;
3792 3793

	mutex_lock(&memcg->thresholds_lock);
3794 3795

	if (type == _MEM) {
3796
		thresholds = &memcg->thresholds;
3797
		usage = mem_cgroup_usage(memcg, false);
3798
	} else if (type == _MEMSWAP) {
3799
		thresholds = &memcg->memsw_thresholds;
3800
		usage = mem_cgroup_usage(memcg, true);
3801
	} else
3802 3803
		BUG();

3804 3805 3806
	if (!thresholds->primary)
		goto unlock;

3807 3808 3809 3810
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3811 3812 3813
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3814 3815 3816
			size++;
	}

3817
	new = thresholds->spare;
3818

3819 3820
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3821 3822
		kfree(new);
		new = NULL;
3823
		goto swap_buffers;
3824 3825
	}

3826
	new->size = size;
3827 3828

	/* Copy thresholds and find current threshold */
3829 3830 3831
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3832 3833
			continue;

3834
		new->entries[j] = thresholds->primary->entries[i];
3835
		if (new->entries[j].threshold <= usage) {
3836
			/*
3837
			 * new->current_threshold will not be used
3838 3839 3840
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3841
			++new->current_threshold;
3842 3843 3844 3845
		}
		j++;
	}

3846
swap_buffers:
3847 3848
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3849

3850
	rcu_assign_pointer(thresholds->primary, new);
3851

3852
	/* To be sure that nobody uses thresholds */
3853
	synchronize_rcu();
3854 3855 3856 3857 3858 3859

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
3860
unlock:
3861 3862
	mutex_unlock(&memcg->thresholds_lock);
}
3863

3864
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3865 3866
	struct eventfd_ctx *eventfd)
{
3867
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3868 3869
}

3870
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3871 3872
	struct eventfd_ctx *eventfd)
{
3873
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3874 3875
}

3876
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3877
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3878 3879 3880 3881 3882 3883 3884
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3885
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3886 3887 3888 3889 3890

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3891
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3892
		eventfd_signal(eventfd, 1);
3893
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3894 3895 3896 3897

	return 0;
}

3898
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3899
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3900 3901 3902
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3903
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3904

3905
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3906 3907 3908 3909 3910 3911
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3912
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3913 3914
}

3915
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3916
{
3917
	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3918

3919
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3920
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
R
Roman Gushchin 已提交
3921 3922
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3923 3924 3925
	return 0;
}

3926
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3927 3928
	struct cftype *cft, u64 val)
{
3929
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3930 3931

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3932
	if (!css->parent || !((val == 0) || (val == 1)))
3933 3934
		return -EINVAL;

3935
	memcg->oom_kill_disable = val;
3936
	if (!val)
3937
		memcg_oom_recover(memcg);
3938

3939 3940 3941
	return 0;
}

3942 3943
#ifdef CONFIG_CGROUP_WRITEBACK

T
Tejun Heo 已提交
3944 3945 3946 3947 3948 3949 3950 3951 3952 3953
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3954 3955 3956 3957 3958
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3969 3970 3971 3972 3973 3974
/*
 * idx can be of type enum memcg_stat_item or node_stat_item.
 * Keep in sync with memcg_exact_page().
 */
static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
{
3975
	long x = atomic_long_read(&memcg->vmstats[idx]);
3976 3977 3978
	int cpu;

	for_each_online_cpu(cpu)
3979
		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
3980 3981 3982 3983 3984
	if (x < 0)
		x = 0;
	return x;
}

3985 3986 3987
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3988 3989
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3990 3991 3992
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3993 3994 3995
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3996
 *
3997 3998 3999 4000 4001
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
4002
 */
4003 4004 4005
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
4006 4007 4008 4009
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

4010
	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4011 4012

	/* this should eventually include NR_UNSTABLE_NFS */
4013
	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4014 4015
	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4016
	*pheadroom = PAGE_COUNTER_MAX;
4017 4018

	while ((parent = parent_mem_cgroup(memcg))) {
4019
		unsigned long ceiling = min(memcg->memory.max, memcg->high);
4020 4021
		unsigned long used = page_counter_read(&memcg->memory);

4022
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4023 4024 4025 4026
		memcg = parent;
	}
}

T
Tejun Heo 已提交
4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

4038 4039 4040 4041
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

4042 4043
#endif	/* CONFIG_CGROUP_WRITEBACK */

4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4057 4058 4059 4060 4061
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4062
static void memcg_event_remove(struct work_struct *work)
4063
{
4064 4065
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4066
	struct mem_cgroup *memcg = event->memcg;
4067 4068 4069

	remove_wait_queue(event->wqh, &event->wait);

4070
	event->unregister_event(memcg, event->eventfd);
4071 4072 4073 4074 4075 4076

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4077
	css_put(&memcg->css);
4078 4079 4080
}

/*
4081
 * Gets called on EPOLLHUP on eventfd when user closes it.
4082 4083 4084
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4085
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4086
			    int sync, void *key)
4087
{
4088 4089
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4090
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
4091
	__poll_t flags = key_to_poll(key);
4092

4093
	if (flags & EPOLLHUP) {
4094 4095 4096 4097 4098 4099 4100 4101 4102
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4103
		spin_lock(&memcg->event_list_lock);
4104 4105 4106 4107 4108 4109 4110 4111
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4112
		spin_unlock(&memcg->event_list_lock);
4113 4114 4115 4116 4117
	}

	return 0;
}

4118
static void memcg_event_ptable_queue_proc(struct file *file,
4119 4120
		wait_queue_head_t *wqh, poll_table *pt)
{
4121 4122
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4123 4124 4125 4126 4127 4128

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4129 4130
 * DO NOT USE IN NEW FILES.
 *
4131 4132 4133 4134 4135
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4136 4137
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4138
{
4139
	struct cgroup_subsys_state *css = of_css(of);
4140
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4141
	struct mem_cgroup_event *event;
4142 4143 4144 4145
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4146
	const char *name;
4147 4148 4149
	char *endp;
	int ret;

4150 4151 4152
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4153 4154
	if (*endp != ' ')
		return -EINVAL;
4155
	buf = endp + 1;
4156

4157
	cfd = simple_strtoul(buf, &endp, 10);
4158 4159
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4160
	buf = endp + 1;
4161 4162 4163 4164 4165

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4166
	event->memcg = memcg;
4167
	INIT_LIST_HEAD(&event->list);
4168 4169 4170
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4196 4197 4198 4199 4200
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4201 4202
	 *
	 * DO NOT ADD NEW FILES.
4203
	 */
A
Al Viro 已提交
4204
	name = cfile.file->f_path.dentry->d_name.name;
4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4216 4217
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4218 4219 4220 4221 4222
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4223
	/*
4224 4225 4226
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4227
	 */
A
Al Viro 已提交
4228
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4229
					       &memory_cgrp_subsys);
4230
	ret = -EINVAL;
4231
	if (IS_ERR(cfile_css))
4232
		goto out_put_cfile;
4233 4234
	if (cfile_css != css) {
		css_put(cfile_css);
4235
		goto out_put_cfile;
4236
	}
4237

4238
	ret = event->register_event(memcg, event->eventfd, buf);
4239 4240 4241
	if (ret)
		goto out_put_css;

4242
	vfs_poll(efile.file, &event->pt);
4243

4244 4245 4246
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4247 4248 4249 4250

	fdput(cfile);
	fdput(efile);

4251
	return nbytes;
4252 4253

out_put_css:
4254
	css_put(css);
4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4267
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4268
	{
4269
		.name = "usage_in_bytes",
4270
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4271
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4272
	},
4273 4274
	{
		.name = "max_usage_in_bytes",
4275
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4276
		.write = mem_cgroup_reset,
4277
		.read_u64 = mem_cgroup_read_u64,
4278
	},
B
Balbir Singh 已提交
4279
	{
4280
		.name = "limit_in_bytes",
4281
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4282
		.write = mem_cgroup_write,
4283
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4284
	},
4285 4286 4287
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4288
		.write = mem_cgroup_write,
4289
		.read_u64 = mem_cgroup_read_u64,
4290
	},
B
Balbir Singh 已提交
4291 4292
	{
		.name = "failcnt",
4293
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4294
		.write = mem_cgroup_reset,
4295
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4296
	},
4297 4298
	{
		.name = "stat",
4299
		.seq_show = memcg_stat_show,
4300
	},
4301 4302
	{
		.name = "force_empty",
4303
		.write = mem_cgroup_force_empty_write,
4304
	},
4305 4306 4307 4308 4309
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4310
	{
4311
		.name = "cgroup.event_control",		/* XXX: for compat */
4312
		.write = memcg_write_event_control,
4313
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4314
	},
K
KOSAKI Motohiro 已提交
4315 4316 4317 4318 4319
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4320 4321 4322 4323 4324
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4325 4326
	{
		.name = "oom_control",
4327
		.seq_show = mem_cgroup_oom_control_read,
4328
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4329 4330
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4331 4332 4333
	{
		.name = "pressure_level",
	},
4334 4335 4336
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4337
		.seq_show = memcg_numa_stat_show,
4338 4339
	},
#endif
4340 4341 4342
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4343
		.write = mem_cgroup_write,
4344
		.read_u64 = mem_cgroup_read_u64,
4345 4346 4347 4348
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4349
		.read_u64 = mem_cgroup_read_u64,
4350 4351 4352 4353
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4354
		.write = mem_cgroup_reset,
4355
		.read_u64 = mem_cgroup_read_u64,
4356 4357 4358 4359
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4360
		.write = mem_cgroup_reset,
4361
		.read_u64 = mem_cgroup_read_u64,
4362
	},
Y
Yang Shi 已提交
4363
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4364 4365
	{
		.name = "kmem.slabinfo",
4366 4367 4368
		.seq_start = memcg_slab_start,
		.seq_next = memcg_slab_next,
		.seq_stop = memcg_slab_stop,
4369
		.seq_show = memcg_slab_show,
4370 4371
	},
#endif
V
Vladimir Davydov 已提交
4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4395
	{ },	/* terminate */
4396
};
4397

4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
 * However, there usually are many references to the oflline CSS after
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

4424 4425 4426 4427 4428 4429 4430 4431
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

4432
static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4433
{
4434
	refcount_add(n, &memcg->id.ref);
4435 4436
}

4437
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4438
{
4439
	if (refcount_sub_and_test(n, &memcg->id.ref)) {
4440
		mem_cgroup_id_remove(memcg);
4441 4442 4443 4444 4445 4446

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

4447 4448 4449 4450 4451 4452 4453 4454 4455 4456
static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
{
	mem_cgroup_id_get_many(memcg, 1);
}

static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

4469
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4470 4471
{
	struct mem_cgroup_per_node *pn;
4472
	int tmp = node;
4473 4474 4475 4476 4477 4478 4479 4480
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4481 4482
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4483
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4484 4485
	if (!pn)
		return 1;
4486

4487 4488 4489 4490 4491 4492
	pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat_local) {
		kfree(pn);
		return 1;
	}

4493 4494
	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat_cpu) {
4495
		free_percpu(pn->lruvec_stat_local);
4496 4497 4498 4499
		kfree(pn);
		return 1;
	}

4500 4501 4502 4503 4504
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

4505
	memcg->nodeinfo[node] = pn;
4506 4507 4508
	return 0;
}

4509
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4510
{
4511 4512
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
4513 4514 4515
	if (!pn)
		return;

4516
	free_percpu(pn->lruvec_stat_cpu);
4517
	free_percpu(pn->lruvec_stat_local);
4518
	kfree(pn);
4519 4520
}

4521
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4522
{
4523
	int node;
4524

4525
	for_each_node(node)
4526
		free_mem_cgroup_per_node_info(memcg, node);
4527
	free_percpu(memcg->vmstats_percpu);
4528
	free_percpu(memcg->vmstats_local);
4529
	kfree(memcg);
4530
}
4531

4532 4533 4534 4535 4536 4537
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
	__mem_cgroup_free(memcg);
}

4538
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4539
{
4540
	struct mem_cgroup *memcg;
4541
	unsigned int size;
4542
	int node;
B
Balbir Singh 已提交
4543

4544 4545 4546 4547
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4548
	if (!memcg)
4549 4550
		return NULL;

4551 4552 4553 4554 4555 4556
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
	if (memcg->id.id < 0)
		goto fail;

4557 4558 4559 4560
	memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
	if (!memcg->vmstats_local)
		goto fail;

4561 4562
	memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
	if (!memcg->vmstats_percpu)
4563
		goto fail;
4564

B
Bob Liu 已提交
4565
	for_each_node(node)
4566
		if (alloc_mem_cgroup_per_node_info(memcg, node))
4567
			goto fail;
4568

4569 4570
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4571

4572
	INIT_WORK(&memcg->high_work, high_work_func);
4573 4574 4575 4576
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4577
	vmpressure_init(&memcg->vmpressure);
4578 4579
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4580
	memcg->socket_pressure = jiffies;
4581
#ifdef CONFIG_MEMCG_KMEM
V
Vladimir Davydov 已提交
4582 4583
	memcg->kmemcg_id = -1;
#endif
4584 4585 4586
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4587
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4588 4589
	return memcg;
fail:
4590
	mem_cgroup_id_remove(memcg);
4591
	__mem_cgroup_free(memcg);
4592
	return NULL;
4593 4594
}

4595 4596
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4597
{
4598 4599 4600
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
4601

4602 4603 4604
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
4605

4606 4607 4608 4609 4610 4611 4612 4613
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
4614
		page_counter_init(&memcg->memory, &parent->memory);
4615
		page_counter_init(&memcg->swap, &parent->swap);
4616 4617
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4618
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4619
	} else {
4620
		page_counter_init(&memcg->memory, NULL);
4621
		page_counter_init(&memcg->swap, NULL);
4622 4623
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4624
		page_counter_init(&memcg->tcpmem, NULL);
4625 4626 4627 4628 4629
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4630
		if (parent != root_mem_cgroup)
4631
			memory_cgrp_subsys.broken_hierarchy = true;
4632
	}
4633

4634 4635 4636 4637 4638 4639
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

4640
	error = memcg_online_kmem(memcg);
4641 4642
	if (error)
		goto fail;
4643

4644
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4645
		static_branch_inc(&memcg_sockets_enabled_key);
4646

4647 4648
	return &memcg->css;
fail:
4649
	mem_cgroup_id_remove(memcg);
4650
	mem_cgroup_free(memcg);
4651
	return ERR_PTR(-ENOMEM);
4652 4653
}

4654
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4655
{
4656 4657
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4658 4659 4660 4661 4662 4663 4664 4665 4666 4667
	/*
	 * A memcg must be visible for memcg_expand_shrinker_maps()
	 * by the time the maps are allocated. So, we allocate maps
	 * here, when for_each_mem_cgroup() can't skip it.
	 */
	if (memcg_alloc_shrinker_maps(memcg)) {
		mem_cgroup_id_remove(memcg);
		return -ENOMEM;
	}

4668
	/* Online state pins memcg ID, memcg ID pins CSS */
4669
	refcount_set(&memcg->id.ref, 1);
4670
	css_get(css);
4671
	return 0;
B
Balbir Singh 已提交
4672 4673
}

4674
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4675
{
4676
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4677
	struct mem_cgroup_event *event, *tmp;
4678 4679 4680 4681 4682 4683

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4684 4685
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4686 4687 4688
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4689
	spin_unlock(&memcg->event_list_lock);
4690

R
Roman Gushchin 已提交
4691
	page_counter_set_min(&memcg->memory, 0);
4692
	page_counter_set_low(&memcg->memory, 0);
4693

4694
	memcg_offline_kmem(memcg);
4695
	wb_memcg_offline(memcg);
4696

4697 4698
	drain_all_stock(memcg);

4699
	mem_cgroup_id_put(memcg);
4700 4701
}

4702 4703 4704 4705 4706 4707 4708
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4709
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4710
{
4711
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4712

4713
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4714
		static_branch_dec(&memcg_sockets_enabled_key);
4715

4716
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
4717
		static_branch_dec(&memcg_sockets_enabled_key);
4718

4719 4720 4721
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
4722
	memcg_free_shrinker_maps(memcg);
4723
	memcg_free_kmem(memcg);
4724
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4725 4726
}

4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4744 4745 4746 4747 4748
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
R
Roman Gushchin 已提交
4749
	page_counter_set_min(&memcg->memory, 0);
4750
	page_counter_set_low(&memcg->memory, 0);
4751
	memcg->high = PAGE_COUNTER_MAX;
4752
	memcg->soft_limit = PAGE_COUNTER_MAX;
4753
	memcg_wb_domain_size_changed(memcg);
4754 4755
}

4756
#ifdef CONFIG_MMU
4757
/* Handlers for move charge at task migration. */
4758
static int mem_cgroup_do_precharge(unsigned long count)
4759
{
4760
	int ret;
4761

4762 4763
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4764
	if (!ret) {
4765 4766 4767
		mc.precharge += count;
		return ret;
	}
4768

4769
	/* Try charges one by one with reclaim, but do not retry */
4770
	while (count--) {
4771
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4772 4773
		if (ret)
			return ret;
4774
		mc.precharge++;
4775
		cond_resched();
4776
	}
4777
	return 0;
4778 4779 4780 4781
}

union mc_target {
	struct page	*page;
4782
	swp_entry_t	ent;
4783 4784 4785
};

enum mc_target_type {
4786
	MC_TARGET_NONE = 0,
4787
	MC_TARGET_PAGE,
4788
	MC_TARGET_SWAP,
4789
	MC_TARGET_DEVICE,
4790 4791
};

D
Daisuke Nishimura 已提交
4792 4793
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4794
{
4795
	struct page *page = _vm_normal_page(vma, addr, ptent, true);
4796

D
Daisuke Nishimura 已提交
4797 4798 4799
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4800
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4801
			return NULL;
4802 4803 4804 4805
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4806 4807 4808 4809 4810 4811
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4812
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
4813
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4814
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
4815 4816 4817 4818
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4819
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4820
		return NULL;
4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
		page = device_private_entry_to_page(ent);
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

4838 4839 4840 4841
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4842
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4843
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4844 4845 4846 4847
		entry->val = ent.val;

	return page;
}
4848 4849
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4850
			pte_t ptent, swp_entry_t *entry)
4851 4852 4853 4854
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4855

4856 4857 4858 4859 4860 4861 4862 4863 4864
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4865
	if (!(mc.flags & MOVE_FILE))
4866 4867 4868
		return NULL;

	mapping = vma->vm_file->f_mapping;
4869
	pgoff = linear_page_index(vma, addr);
4870 4871

	/* page is moved even if it's not RSS of this task(page-faulted). */
4872 4873
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4874 4875
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
4876
		if (xa_is_value(page)) {
4877
			swp_entry_t swp = radix_to_swp_entry(page);
4878
			if (do_memsw_account())
4879
				*entry = swp;
4880 4881
			page = find_get_page(swap_address_space(swp),
					     swp_offset(swp));
4882 4883 4884 4885 4886
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4887
#endif
4888 4889 4890
	return page;
}

4891 4892 4893
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
4894
 * @compound: charge the page as compound or small page
4895 4896 4897
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
4898
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4899 4900 4901 4902 4903
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
4904
				   bool compound,
4905 4906 4907 4908
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
4909
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4910
	int ret;
4911
	bool anon;
4912 4913 4914

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
4915
	VM_BUG_ON(compound && !PageTransHuge(page));
4916 4917

	/*
4918
	 * Prevent mem_cgroup_migrate() from looking at
4919
	 * page->mem_cgroup of its source page while we change it.
4920
	 */
4921
	ret = -EBUSY;
4922 4923 4924 4925 4926 4927 4928
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4929 4930
	anon = PageAnon(page);

4931 4932
	spin_lock_irqsave(&from->move_lock, flags);

4933
	if (!anon && page_mapped(page)) {
4934 4935
		__mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
		__mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
4936 4937
	}

4938 4939
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
4940
	 * mod_memcg_page_state will serialize updates to PageDirty.
4941 4942 4943 4944 4945 4946
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
4947 4948
			__mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
			__mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
4949 4950 4951
		}
	}

4952
	if (PageWriteback(page)) {
4953 4954
		__mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
		__mod_memcg_state(to, NR_WRITEBACK, nr_pages);
4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
4970
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4971
	memcg_check_events(to, page);
4972
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4973 4974 4975 4976 4977 4978 4979 4980
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4996 4997 4998 4999 5000
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PUBLIC
 *     or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
5001 5002
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5003 5004 5005 5006
 *
 * Called with pte lock held.
 */

5007
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5008 5009 5010
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
5011
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5012 5013 5014 5015 5016
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
5017
		page = mc_handle_swap_pte(vma, ptent, &ent);
5018
	else if (pte_none(ptent))
5019
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5020 5021

	if (!page && !ent.val)
5022
		return ret;
5023 5024
	if (page) {
		/*
5025
		 * Do only loose check w/o serialization.
5026
		 * mem_cgroup_move_account() checks the page is valid or
5027
		 * not under LRU exclusion.
5028
		 */
5029
		if (page->mem_cgroup == mc.from) {
5030
			ret = MC_TARGET_PAGE;
5031 5032
			if (is_device_private_page(page) ||
			    is_device_public_page(page))
5033
				ret = MC_TARGET_DEVICE;
5034 5035 5036 5037 5038 5039
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
5040 5041 5042 5043 5044
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
5045
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5046 5047 5048
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5049 5050 5051 5052
	}
	return ret;
}

5053 5054
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
5055 5056
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
5057 5058 5059 5060 5061 5062 5063 5064
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

5065 5066 5067 5068 5069
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
5070
	page = pmd_page(pmd);
5071
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5072
	if (!(mc.flags & MOVE_ANON))
5073
		return ret;
5074
	if (page->mem_cgroup == mc.from) {
5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5091 5092 5093 5094
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
5095
	struct vm_area_struct *vma = walk->vma;
5096 5097 5098
	pte_t *pte;
	spinlock_t *ptl;

5099 5100
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5101 5102 5103 5104 5105
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
		 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
		 * MEMORY_DEVICE_PRIVATE but this might change.
		 */
5106 5107
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5108
		spin_unlock(ptl);
5109
		return 0;
5110
	}
5111

5112 5113
	if (pmd_trans_unstable(pmd))
		return 0;
5114 5115
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5116
		if (get_mctgt_type(vma, addr, *pte, NULL))
5117 5118 5119 5120
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5121 5122 5123
	return 0;
}

5124 5125 5126 5127
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

5128 5129 5130 5131
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
5132
	down_read(&mm->mmap_sem);
5133 5134
	walk_page_range(0, mm->highest_vm_end,
			&mem_cgroup_count_precharge_walk);
5135
	up_read(&mm->mmap_sem);
5136 5137 5138 5139 5140 5141 5142 5143 5144

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5145 5146 5147 5148 5149
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5150 5151
}

5152 5153
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5154
{
5155 5156 5157
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5158
	/* we must uncharge all the leftover precharges from mc.to */
5159
	if (mc.precharge) {
5160
		cancel_charge(mc.to, mc.precharge);
5161 5162 5163 5164 5165 5166 5167
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5168
		cancel_charge(mc.from, mc.moved_charge);
5169
		mc.moved_charge = 0;
5170
	}
5171 5172 5173
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5174
		if (!mem_cgroup_is_root(mc.from))
5175
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5176

5177 5178
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

5179
		/*
5180 5181
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5182
		 */
5183
		if (!mem_cgroup_is_root(mc.to))
5184 5185
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5186 5187
		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
		css_put_many(&mc.to->css, mc.moved_swap);
5188

5189 5190
		mc.moved_swap = 0;
	}
5191 5192 5193 5194 5195 5196 5197
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
5198 5199
	struct mm_struct *mm = mc.mm;

5200 5201 5202 5203 5204 5205
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5206
	spin_lock(&mc.lock);
5207 5208
	mc.from = NULL;
	mc.to = NULL;
5209
	mc.mm = NULL;
5210
	spin_unlock(&mc.lock);
5211 5212

	mmput(mm);
5213 5214
}

5215
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5216
{
5217
	struct cgroup_subsys_state *css;
5218
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5219
	struct mem_cgroup *from;
5220
	struct task_struct *leader, *p;
5221
	struct mm_struct *mm;
5222
	unsigned long move_flags;
5223
	int ret = 0;
5224

5225 5226
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5227 5228
		return 0;

5229 5230 5231 5232 5233 5234 5235
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
5236
	cgroup_taskset_for_each_leader(leader, css, tset) {
5237 5238
		WARN_ON_ONCE(p);
		p = leader;
5239
		memcg = mem_cgroup_from_css(css);
5240 5241 5242 5243
	}
	if (!p)
		return 0;

5244 5245 5246 5247 5248 5249 5250 5251 5252
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
5269
		mc.mm = mm;
5270 5271 5272 5273 5274 5275 5276 5277 5278
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
5279 5280
	} else {
		mmput(mm);
5281 5282 5283 5284
	}
	return ret;
}

5285
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5286
{
5287 5288
	if (mc.to)
		mem_cgroup_clear_mc();
5289 5290
}

5291 5292 5293
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5294
{
5295
	int ret = 0;
5296
	struct vm_area_struct *vma = walk->vma;
5297 5298
	pte_t *pte;
	spinlock_t *ptl;
5299 5300 5301
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5302

5303 5304
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5305
		if (mc.precharge < HPAGE_PMD_NR) {
5306
			spin_unlock(ptl);
5307 5308 5309 5310 5311 5312
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
5313
				if (!mem_cgroup_move_account(page, true,
5314
							     mc.from, mc.to)) {
5315 5316 5317 5318 5319 5320
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
5321 5322 5323 5324 5325 5326 5327 5328
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
5329
		}
5330
		spin_unlock(ptl);
5331
		return 0;
5332 5333
	}

5334 5335
	if (pmd_trans_unstable(pmd))
		return 0;
5336 5337 5338 5339
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5340
		bool device = false;
5341
		swp_entry_t ent;
5342 5343 5344 5345

		if (!mc.precharge)
			break;

5346
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5347 5348 5349
		case MC_TARGET_DEVICE:
			device = true;
			/* fall through */
5350 5351
		case MC_TARGET_PAGE:
			page = target.page;
5352 5353 5354 5355 5356 5357 5358 5359
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
5360
			if (!device && isolate_lru_page(page))
5361
				goto put;
5362 5363
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
5364
				mc.precharge--;
5365 5366
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5367
			}
5368 5369
			if (!device)
				putback_lru_page(page);
5370
put:			/* get_mctgt_type() gets the page */
5371 5372
			put_page(page);
			break;
5373 5374
		case MC_TARGET_SWAP:
			ent = target.ent;
5375
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5376
				mc.precharge--;
5377 5378 5379
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5380
			break;
5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5395
		ret = mem_cgroup_do_precharge(1);
5396 5397 5398 5399 5400 5401 5402
		if (!ret)
			goto retry;
	}

	return ret;
}

5403
static void mem_cgroup_move_charge(void)
5404
{
5405 5406
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
5407
		.mm = mc.mm,
5408
	};
5409 5410

	lru_add_drain_all();
5411
	/*
5412 5413 5414
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
5415 5416 5417
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5418
retry:
5419
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5431 5432 5433 5434
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
5435 5436
	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);

5437
	up_read(&mc.mm->mmap_sem);
5438
	atomic_dec(&mc.from->moving_account);
5439 5440
}

5441
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
5442
{
5443 5444
	if (mc.to) {
		mem_cgroup_move_charge();
5445
		mem_cgroup_clear_mc();
5446
	}
B
Balbir Singh 已提交
5447
}
5448
#else	/* !CONFIG_MMU */
5449
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5450 5451 5452
{
	return 0;
}
5453
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5454 5455
{
}
5456
static void mem_cgroup_move_task(void)
5457 5458 5459
{
}
#endif
B
Balbir Singh 已提交
5460

5461 5462
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5463 5464
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5465
 */
5466
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5467 5468
{
	/*
5469
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5470 5471 5472
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5473
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5474 5475 5476
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5477 5478
}

5479 5480 5481 5482 5483 5484 5485 5486 5487 5488
static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
{
	if (value == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);

	return 0;
}

5489 5490 5491
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5492 5493 5494
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5495 5496
}

R
Roman Gushchin 已提交
5497 5498
static int memory_min_show(struct seq_file *m, void *v)
{
5499 5500
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
R
Roman Gushchin 已提交
5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

5520 5521
static int memory_low_show(struct seq_file *m, void *v)
{
5522 5523
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5524 5525 5526 5527 5528 5529 5530 5531 5532 5533
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5534
	err = page_counter_memparse(buf, "max", &low);
5535 5536 5537
	if (err)
		return err;

5538
	page_counter_set_low(&memcg->memory, low);
5539 5540 5541 5542 5543 5544

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
5545
	return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
5546 5547 5548 5549 5550 5551
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5552
	unsigned long nr_pages;
5553 5554 5555 5556
	unsigned long high;
	int err;

	buf = strstrip(buf);
5557
	err = page_counter_memparse(buf, "max", &high);
5558 5559 5560 5561 5562
	if (err)
		return err;

	memcg->high = high;

5563 5564 5565 5566 5567
	nr_pages = page_counter_read(&memcg->memory);
	if (nr_pages > high)
		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
					     GFP_KERNEL, true);

5568
	memcg_wb_domain_size_changed(memcg);
5569 5570 5571 5572 5573
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
5574 5575
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
5576 5577 5578 5579 5580 5581
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5582 5583
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
5584 5585 5586 5587
	unsigned long max;
	int err;

	buf = strstrip(buf);
5588
	err = page_counter_memparse(buf, "max", &max);
5589 5590 5591
	if (err)
		return err;

5592
	xchg(&memcg->memory.max, max);
5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

		if (signal_pending(current)) {
			err = -EINTR;
			break;
		}

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

5618
		memcg_memory_event(memcg, MEMCG_OOM);
5619 5620 5621
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
5622

5623
	memcg_wb_domain_size_changed(memcg);
5624 5625 5626 5627 5628
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
5629
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5630

5631 5632 5633 5634 5635 5636 5637 5638
	seq_printf(m, "low %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
R
Roman Gushchin 已提交
5639 5640
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
5641 5642 5643 5644

	return 0;
}

5645 5646
static int memory_stat_show(struct seq_file *m, void *v)
{
5647
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661
	int i;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

	seq_printf(m, "anon %llu\n",
5662
		   (u64)memcg_page_state(memcg, MEMCG_RSS) * PAGE_SIZE);
5663
	seq_printf(m, "file %llu\n",
5664
		   (u64)memcg_page_state(memcg, MEMCG_CACHE) * PAGE_SIZE);
5665
	seq_printf(m, "kernel_stack %llu\n",
5666
		   (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) * 1024);
5667
	seq_printf(m, "slab %llu\n",
5668 5669 5670
		   (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
			 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
		   PAGE_SIZE);
5671
	seq_printf(m, "sock %llu\n",
5672
		   (u64)memcg_page_state(memcg, MEMCG_SOCK) * PAGE_SIZE);
5673

5674
	seq_printf(m, "shmem %llu\n",
5675
		   (u64)memcg_page_state(memcg, NR_SHMEM) * PAGE_SIZE);
5676
	seq_printf(m, "file_mapped %llu\n",
5677
		   (u64)memcg_page_state(memcg, NR_FILE_MAPPED) * PAGE_SIZE);
5678
	seq_printf(m, "file_dirty %llu\n",
5679
		   (u64)memcg_page_state(memcg, NR_FILE_DIRTY) * PAGE_SIZE);
5680
	seq_printf(m, "file_writeback %llu\n",
5681
		   (u64)memcg_page_state(memcg, NR_WRITEBACK) * PAGE_SIZE);
5682

5683 5684 5685 5686 5687 5688 5689
	/*
	 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
	 * with the NR_ANON_THP vm counter, but right now it's a pain in the
	 * arse because it requires migrating the work out of rmap to a place
	 * where the page->mem_cgroup is set up and stable.
	 */
	seq_printf(m, "anon_thp %llu\n",
5690
		   (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) * PAGE_SIZE);
5691

5692 5693
	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i],
5694 5695
			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			   PAGE_SIZE);
5696

5697
	seq_printf(m, "slab_reclaimable %llu\n",
5698 5699
		   (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
		   PAGE_SIZE);
5700
	seq_printf(m, "slab_unreclaimable %llu\n",
5701 5702
		   (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
		   PAGE_SIZE);
5703

5704 5705
	/* Accumulated memory events */

5706 5707
	seq_printf(m, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
	seq_printf(m, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));
5708

5709
	seq_printf(m, "workingset_refault %lu\n",
5710
		   memcg_page_state(memcg, WORKINGSET_REFAULT));
5711
	seq_printf(m, "workingset_activate %lu\n",
5712
		   memcg_page_state(memcg, WORKINGSET_ACTIVATE));
5713
	seq_printf(m, "workingset_nodereclaim %lu\n",
5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724
		   memcg_page_state(memcg, WORKINGSET_NODERECLAIM));

	seq_printf(m, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
	seq_printf(m, "pgscan %lu\n", memcg_events(memcg, PGSCAN_KSWAPD) +
		   memcg_events(memcg, PGSCAN_DIRECT));
	seq_printf(m, "pgsteal %lu\n", memcg_events(memcg, PGSTEAL_KSWAPD) +
		   memcg_events(memcg, PGSTEAL_DIRECT));
	seq_printf(m, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
	seq_printf(m, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
	seq_printf(m, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
	seq_printf(m, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));
5725

5726
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5727 5728
	seq_printf(m, "thp_fault_alloc %lu\n",
		   memcg_events(memcg, THP_FAULT_ALLOC));
5729
	seq_printf(m, "thp_collapse_alloc %lu\n",
5730
		   memcg_events(memcg, THP_COLLAPSE_ALLOC));
5731 5732
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

5733 5734 5735
	return 0;
}

5736 5737
static int memory_oom_group_show(struct seq_file *m, void *v)
{
5738
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766

	seq_printf(m, "%d\n", memcg->oom_group);

	return 0;
}

static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
				      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	int ret, oom_group;

	buf = strstrip(buf);
	if (!buf)
		return -EINVAL;

	ret = kstrtoint(buf, 0, &oom_group);
	if (ret)
		return ret;

	if (oom_group != 0 && oom_group != 1)
		return -EINVAL;

	memcg->oom_group = oom_group;

	return nbytes;
}

5767 5768 5769
static struct cftype memory_files[] = {
	{
		.name = "current",
5770
		.flags = CFTYPE_NOT_ON_ROOT,
5771 5772
		.read_u64 = memory_current_read,
	},
R
Roman Gushchin 已提交
5773 5774 5775 5776 5777 5778
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5800
		.file_offset = offsetof(struct mem_cgroup, events_file),
5801 5802
		.seq_show = memory_events_show,
	},
5803 5804 5805 5806 5807
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
5808 5809 5810 5811 5812 5813
	{
		.name = "oom.group",
		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
		.seq_show = memory_oom_group_show,
		.write = memory_oom_group_write,
	},
5814 5815 5816
	{ }	/* terminate */
};

5817
struct cgroup_subsys memory_cgrp_subsys = {
5818
	.css_alloc = mem_cgroup_css_alloc,
5819
	.css_online = mem_cgroup_css_online,
5820
	.css_offline = mem_cgroup_css_offline,
5821
	.css_released = mem_cgroup_css_released,
5822
	.css_free = mem_cgroup_css_free,
5823
	.css_reset = mem_cgroup_css_reset,
5824 5825
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
5826
	.post_attach = mem_cgroup_move_task,
5827
	.bind = mem_cgroup_bind,
5828 5829
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5830
	.early_init = 0,
B
Balbir Singh 已提交
5831
};
5832

5833
/**
R
Roman Gushchin 已提交
5834
 * mem_cgroup_protected - check if memory consumption is in the normal range
5835
 * @root: the top ancestor of the sub-tree being checked
5836 5837
 * @memcg: the memory cgroup to check
 *
5838 5839
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
5840
 *
R
Roman Gushchin 已提交
5841 5842 5843 5844 5845
 * Returns one of the following:
 *   MEMCG_PROT_NONE: cgroup memory is not protected
 *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
 *     an unprotected supply of reclaimable memory from other cgroups.
 *   MEMCG_PROT_MIN: cgroup memory is protected
5846
 *
R
Roman Gushchin 已提交
5847
 * @root is exclusive; it is never protected when looked at directly
5848
 *
R
Roman Gushchin 已提交
5849 5850 5851
 * To provide a proper hierarchical behavior, effective memory.min/low values
 * are used. Below is the description of how effective memory.low is calculated.
 * Effective memory.min values is calculated in the same way.
5852
 *
5853 5854 5855 5856 5857 5858 5859
 * Effective memory.low is always equal or less than the original memory.low.
 * If there is no memory.low overcommittment (which is always true for
 * top-level memory cgroups), these two values are equal.
 * Otherwise, it's a part of parent's effective memory.low,
 * calculated as a cgroup's memory.low usage divided by sum of sibling's
 * memory.low usages, where memory.low usage is the size of actually
 * protected memory.
5860
 *
5861 5862 5863
 *                                             low_usage
 * elow = min( memory.low, parent->elow * ------------------ ),
 *                                        siblings_low_usage
5864
 *
5865 5866
 *             | memory.current, if memory.current < memory.low
 * low_usage = |
5867
 *	       | 0, otherwise.
5868
 *
5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895
 *
 * Such definition of the effective memory.low provides the expected
 * hierarchical behavior: parent's memory.low value is limiting
 * children, unprotected memory is reclaimed first and cgroups,
 * which are not using their guarantee do not affect actual memory
 * distribution.
 *
 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
 *
 *     A      A/memory.low = 2G, A/memory.current = 6G
 *    //\\
 *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
 *            C/memory.low = 1G  C/memory.current = 2G
 *            D/memory.low = 0   D/memory.current = 2G
 *            E/memory.low = 10G E/memory.current = 0
 *
 * and the memory pressure is applied, the following memory distribution
 * is expected (approximately):
 *
 *     A/memory.current = 2G
 *
 *     B/memory.current = 1.3G
 *     C/memory.current = 0.6G
 *     D/memory.current = 0
 *     E/memory.current = 0
 *
 * These calculations require constant tracking of the actual low usages
R
Roman Gushchin 已提交
5896 5897
 * (see propagate_protected_usage()), as well as recursive calculation of
 * effective memory.low values. But as we do call mem_cgroup_protected()
5898 5899 5900 5901
 * path for each memory cgroup top-down from the reclaim,
 * it's possible to optimize this part, and save calculated elow
 * for next usage. This part is intentionally racy, but it's ok,
 * as memory.low is a best-effort mechanism.
5902
 */
R
Roman Gushchin 已提交
5903 5904
enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
						struct mem_cgroup *memcg)
5905
{
5906
	struct mem_cgroup *parent;
R
Roman Gushchin 已提交
5907 5908 5909
	unsigned long emin, parent_emin;
	unsigned long elow, parent_elow;
	unsigned long usage;
5910

5911
	if (mem_cgroup_disabled())
R
Roman Gushchin 已提交
5912
		return MEMCG_PROT_NONE;
5913

5914 5915 5916
	if (!root)
		root = root_mem_cgroup;
	if (memcg == root)
R
Roman Gushchin 已提交
5917
		return MEMCG_PROT_NONE;
5918

5919
	usage = page_counter_read(&memcg->memory);
R
Roman Gushchin 已提交
5920 5921 5922 5923 5924
	if (!usage)
		return MEMCG_PROT_NONE;

	emin = memcg->memory.min;
	elow = memcg->memory.low;
5925

R
Roman Gushchin 已提交
5926
	parent = parent_mem_cgroup(memcg);
5927 5928 5929 5930
	/* No parent means a non-hierarchical mode on v1 memcg */
	if (!parent)
		return MEMCG_PROT_NONE;

5931 5932 5933
	if (parent == root)
		goto exit;

R
Roman Gushchin 已提交
5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947
	parent_emin = READ_ONCE(parent->memory.emin);
	emin = min(emin, parent_emin);
	if (emin && parent_emin) {
		unsigned long min_usage, siblings_min_usage;

		min_usage = min(usage, memcg->memory.min);
		siblings_min_usage = atomic_long_read(
			&parent->memory.children_min_usage);

		if (min_usage && siblings_min_usage)
			emin = min(emin, parent_emin * min_usage /
				   siblings_min_usage);
	}

5948 5949
	parent_elow = READ_ONCE(parent->memory.elow);
	elow = min(elow, parent_elow);
R
Roman Gushchin 已提交
5950 5951
	if (elow && parent_elow) {
		unsigned long low_usage, siblings_low_usage;
5952

R
Roman Gushchin 已提交
5953 5954 5955
		low_usage = min(usage, memcg->memory.low);
		siblings_low_usage = atomic_long_read(
			&parent->memory.children_low_usage);
5956

R
Roman Gushchin 已提交
5957 5958 5959 5960
		if (low_usage && siblings_low_usage)
			elow = min(elow, parent_elow * low_usage /
				   siblings_low_usage);
	}
5961 5962

exit:
R
Roman Gushchin 已提交
5963
	memcg->memory.emin = emin;
5964
	memcg->memory.elow = elow;
R
Roman Gushchin 已提交
5965 5966 5967 5968 5969 5970 5971

	if (usage <= emin)
		return MEMCG_PROT_MIN;
	else if (usage <= elow)
		return MEMCG_PROT_LOW;
	else
		return MEMCG_PROT_NONE;
5972 5973
}

5974 5975 5976 5977 5978 5979
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
5980
 * @compound: charge the page as compound or small page
5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5993 5994
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
5995 5996
{
	struct mem_cgroup *memcg = NULL;
5997
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
6011
		VM_BUG_ON_PAGE(!PageLocked(page), page);
6012
		if (compound_head(page)->mem_cgroup)
6013
			goto out;
6014

6015
		if (do_swap_account) {
6016 6017 6018 6019 6020 6021 6022 6023 6024
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050
int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
{
	struct mem_cgroup *memcg;
	int ret;

	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
	memcg = *memcgp;
	mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
	return ret;
}

6051 6052 6053 6054 6055
/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
6056
 * @compound: charge the page as compound or small page
6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6069
			      bool lrucare, bool compound)
6070
{
6071
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

6086 6087 6088
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
6089
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6090 6091
	memcg_check_events(memcg, page);
	local_irq_enable();
6092

6093
	if (do_memsw_account() && PageSwapCache(page)) {
6094 6095 6096 6097 6098 6099
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
6100
		mem_cgroup_uncharge_swap(entry, nr_pages);
6101 6102 6103 6104 6105 6106 6107
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
6108
 * @compound: charge the page as compound or small page
6109 6110 6111
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
6112 6113
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
6114
{
6115
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141
struct uncharge_gather {
	struct mem_cgroup *memcg;
	unsigned long pgpgout;
	unsigned long nr_anon;
	unsigned long nr_file;
	unsigned long nr_kmem;
	unsigned long nr_huge;
	unsigned long nr_shmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6142
{
6143 6144 6145 6146 6147 6148
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6149 6150
	unsigned long flags;

6151 6152
	if (!mem_cgroup_is_root(ug->memcg)) {
		page_counter_uncharge(&ug->memcg->memory, nr_pages);
6153
		if (do_memsw_account())
6154 6155 6156 6157
			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
6158
	}
6159 6160

	local_irq_save(flags);
6161 6162 6163 6164 6165
	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6166
	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6167
	memcg_check_events(ug->memcg, ug->dummy_page);
6168
	local_irq_restore(flags);
6169

6170 6171 6172 6173 6174 6175 6176
	if (!mem_cgroup_is_root(ug->memcg))
		css_put_many(&ug->memcg->css, nr_pages);
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
	VM_BUG_ON_PAGE(PageLRU(page), page);
6177 6178
	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
			!PageHWPoison(page) , page);
6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218

	if (!page->mem_cgroup)
		return;

	/*
	 * Nobody should be changing or seriously looking at
	 * page->mem_cgroup at this point, we have fully
	 * exclusive access to the page.
	 */

	if (ug->memcg != page->mem_cgroup) {
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
		ug->memcg = page->mem_cgroup;
	}

	if (!PageKmemcg(page)) {
		unsigned int nr_pages = 1;

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			ug->nr_huge += nr_pages;
		}
		if (PageAnon(page))
			ug->nr_anon += nr_pages;
		else {
			ug->nr_file += nr_pages;
			if (PageSwapBacked(page))
				ug->nr_shmem += nr_pages;
		}
		ug->pgpgout++;
	} else {
		ug->nr_kmem += 1 << compound_order(page);
		__ClearPageKmemcg(page);
	}

	ug->dummy_page = page;
	page->mem_cgroup = NULL;
6219 6220 6221 6222
}

static void uncharge_list(struct list_head *page_list)
{
6223
	struct uncharge_gather ug;
6224
	struct list_head *next;
6225 6226

	uncharge_gather_clear(&ug);
6227

6228 6229 6230 6231
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
6232 6233
	next = page_list->next;
	do {
6234 6235
		struct page *page;

6236 6237 6238
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

6239
		uncharge_page(page, &ug);
6240 6241
	} while (next != page_list);

6242 6243
	if (ug.memcg)
		uncharge_batch(&ug);
6244 6245
}

6246 6247 6248 6249 6250 6251 6252 6253 6254
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
6255 6256
	struct uncharge_gather ug;

6257 6258 6259
	if (mem_cgroup_disabled())
		return;

6260
	/* Don't touch page->lru of any random page, pre-check: */
6261
	if (!page->mem_cgroup)
6262 6263
		return;

6264 6265 6266
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
6267
}
6268

6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
6280

6281 6282
	if (!list_empty(page_list))
		uncharge_list(page_list);
6283 6284 6285
}

/**
6286 6287 6288
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
6289
 *
6290 6291
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
6292 6293 6294
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
6295
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6296
{
6297
	struct mem_cgroup *memcg;
6298 6299
	unsigned int nr_pages;
	bool compound;
6300
	unsigned long flags;
6301 6302 6303 6304

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6305 6306
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6307 6308 6309 6310 6311

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
6312
	if (newpage->mem_cgroup)
6313 6314
		return;

6315
	/* Swapcache readahead pages can get replaced before being charged */
6316
	memcg = oldpage->mem_cgroup;
6317
	if (!memcg)
6318 6319
		return;

6320 6321 6322 6323 6324 6325 6326 6327
	/* Force-charge the new page. The old one will be freed soon */
	compound = PageTransHuge(newpage);
	nr_pages = compound ? hpage_nr_pages(newpage) : 1;

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
6328

6329
	commit_charge(newpage, memcg, false);
6330

6331
	local_irq_save(flags);
6332 6333
	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
	memcg_check_events(memcg, newpage);
6334
	local_irq_restore(flags);
6335 6336
}

6337
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6338 6339
EXPORT_SYMBOL(memcg_sockets_enabled_key);

6340
void mem_cgroup_sk_alloc(struct sock *sk)
6341 6342 6343
{
	struct mem_cgroup *memcg;

6344 6345 6346
	if (!mem_cgroup_sockets_enabled)
		return;

6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360
	/*
	 * Socket cloning can throw us here with sk_memcg already
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		css_get(&sk->sk_memcg->css);
		return;
	}

6361 6362
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
6363 6364
	if (memcg == root_mem_cgroup)
		goto out;
6365
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6366 6367
		goto out;
	if (css_tryget_online(&memcg->css))
6368
		sk->sk_memcg = memcg;
6369
out:
6370 6371 6372
	rcu_read_unlock();
}

6373
void mem_cgroup_sk_free(struct sock *sk)
6374
{
6375 6376
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6389
	gfp_t gfp_mask = GFP_KERNEL;
6390

6391
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6392
		struct page_counter *fail;
6393

6394 6395
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
6396 6397
			return true;
		}
6398 6399
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
6400
		return false;
6401
	}
6402

6403 6404 6405 6406
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

6407
	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6408

6409 6410 6411 6412
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6413 6414 6415 6416 6417
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
6418 6419
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
6420 6421 6422
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6423
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6424
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6425 6426
		return;
	}
6427

6428
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6429

6430
	refill_stock(memcg, nr_pages);
6431 6432
}

6433 6434 6435 6436 6437 6438 6439 6440 6441
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
6442 6443
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
6444 6445 6446 6447
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
6448

6449
/*
6450 6451
 * subsys_initcall() for memory controller.
 *
6452 6453 6454 6455
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
6456 6457 6458
 */
static int __init mem_cgroup_init(void)
{
6459 6460
	int cpu, node;

6461
#ifdef CONFIG_MEMCG_KMEM
6462 6463
	/*
	 * Kmem cache creation is mostly done with the slab_mutex held,
6464 6465 6466
	 * so use a workqueue with limited concurrency to avoid stalling
	 * all worker threads in case lots of cgroups are created and
	 * destroyed simultaneously.
6467
	 */
6468 6469
	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
	BUG_ON(!memcg_kmem_cache_wq);
6470 6471
#endif

6472 6473
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

6485
		rtpn->rb_root = RB_ROOT;
6486
		rtpn->rb_rightmost = NULL;
6487
		spin_lock_init(&rtpn->lock);
6488 6489 6490
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

6491 6492 6493
	return 0;
}
subsys_initcall(mem_cgroup_init);
6494 6495

#ifdef CONFIG_MEMCG_SWAP
6496 6497
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
6498
	while (!refcount_inc_not_zero(&memcg->id.ref)) {
6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

6514 6515 6516 6517 6518 6519 6520 6521 6522
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
6523
	struct mem_cgroup *memcg, *swap_memcg;
6524
	unsigned int nr_entries;
6525 6526 6527 6528 6529
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

6530
	if (!do_memsw_account())
6531 6532 6533 6534 6535 6536 6537 6538
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

6539 6540 6541 6542 6543 6544
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
6545 6546 6547 6548 6549 6550
	nr_entries = hpage_nr_pages(page);
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
6551
	VM_BUG_ON_PAGE(oldid, page);
6552
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6553 6554 6555 6556

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
6557
		page_counter_uncharge(&memcg->memory, nr_entries);
6558

6559 6560
	if (memcg != swap_memcg) {
		if (!mem_cgroup_is_root(swap_memcg))
6561 6562
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
6563 6564
	}

6565 6566
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
6567
	 * i_pages lock which is taken with interrupts-off. It is
6568
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
6569
	 * only synchronisation we have for updating the per-CPU variables.
6570 6571
	 */
	VM_BUG_ON(!irqs_disabled());
6572 6573
	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
				     -nr_entries);
6574
	memcg_check_events(memcg, page);
6575 6576

	if (!mem_cgroup_is_root(memcg))
6577
		css_put_many(&memcg->css, nr_entries);
6578 6579
}

6580 6581
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
6582 6583 6584
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
6585
 * Try to charge @page's memcg for the swap space at @entry.
6586 6587 6588 6589 6590
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
6591
	unsigned int nr_pages = hpage_nr_pages(page);
6592
	struct page_counter *counter;
6593
	struct mem_cgroup *memcg;
6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

6605 6606
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6607
		return 0;
6608
	}
6609

6610 6611
	memcg = mem_cgroup_id_get_online(memcg);

6612
	if (!mem_cgroup_is_root(memcg) &&
6613
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6614 6615
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6616
		mem_cgroup_id_put(memcg);
6617
		return -ENOMEM;
6618
	}
6619

6620 6621 6622 6623
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6624
	VM_BUG_ON_PAGE(oldid, page);
6625
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6626 6627 6628 6629

	return 0;
}

6630
/**
6631
 * mem_cgroup_uncharge_swap - uncharge swap space
6632
 * @entry: swap entry to uncharge
6633
 * @nr_pages: the amount of swap space to uncharge
6634
 */
6635
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6636 6637 6638 6639
{
	struct mem_cgroup *memcg;
	unsigned short id;

6640
	if (!do_swap_account)
6641 6642
		return;

6643
	id = swap_cgroup_record(entry, 0, nr_pages);
6644
	rcu_read_lock();
6645
	memcg = mem_cgroup_from_id(id);
6646
	if (memcg) {
6647 6648
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6649
				page_counter_uncharge(&memcg->swap, nr_pages);
6650
			else
6651
				page_counter_uncharge(&memcg->memsw, nr_pages);
6652
		}
6653
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6654
		mem_cgroup_id_put_many(memcg, nr_pages);
6655 6656 6657 6658
	}
	rcu_read_unlock();
}

6659 6660 6661 6662 6663 6664 6665 6666
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
6667
				      READ_ONCE(memcg->swap.max) -
6668 6669 6670 6671
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6688
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6689 6690 6691 6692 6693
			return true;

	return false;
}

6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

6711 6712 6713 6714 6715 6716 6717 6718 6719 6720
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
6721 6722
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

6737
	xchg(&memcg->swap.max, max);
6738 6739 6740 6741

	return nbytes;
}

6742 6743
static int swap_events_show(struct seq_file *m, void *v)
{
6744
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6745 6746 6747 6748 6749 6750 6751 6752 6753

	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
6766 6767 6768 6769 6770 6771
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
6772 6773 6774
	{ }	/* terminate */
};

6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
6806 6807
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
6808 6809 6810 6811 6812 6813 6814 6815
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */