memcontrol.c 189.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
B
Balbir Singh 已提交
2 3 4 5 6
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
7 8 9
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
10 11 12 13
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
14 15 16 17
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
B
Balbir Singh 已提交
23 24
 */

25
#include <linux/page_counter.h>
B
Balbir Singh 已提交
26 27
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
28
#include <linux/pagewalk.h>
29
#include <linux/sched/mm.h>
30
#include <linux/shmem_fs.h>
31
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
32
#include <linux/pagemap.h>
33
#include <linux/vm_event_item.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/swap_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
59
#include <linux/tracehook.h>
60
#include <linux/psi.h>
61
#include <linux/seq_buf.h>
K
KAMEZAWA Hiroyuki 已提交
62
#include "internal.h"
G
Glauber Costa 已提交
63
#include <net/sock.h>
M
Michal Hocko 已提交
64
#include <net/ip.h>
65
#include "slab.h"
B
Balbir Singh 已提交
66

67
#include <linux/uaccess.h>
68

69 70
#include <trace/events/vmscan.h>

71 72
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
73

74 75
struct mem_cgroup *root_mem_cgroup __read_mostly;

76
/* The number of times we should retry reclaim failures before giving up. */
77
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
78

79 80 81
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

82 83 84
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

85
/* Whether the swap controller is active */
A
Andrew Morton 已提交
86
#ifdef CONFIG_MEMCG_SWAP
87
bool cgroup_memory_noswap __read_mostly;
88
#else
89
#define cgroup_memory_noswap		1
90
#endif
91

92 93 94 95
#ifdef CONFIG_CGROUP_WRITEBACK
static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
#endif

96 97 98
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
99
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
100 101
}

102 103
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
104

105 106 107 108 109
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

110
struct mem_cgroup_tree_per_node {
111
	struct rb_root rb_root;
112
	struct rb_node *rb_rightmost;
113 114 115 116 117 118 119 120 121
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
122 123 124 125 126
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
127

128 129 130
/*
 * cgroup_event represents events which userspace want to receive.
 */
131
struct mem_cgroup_event {
132
	/*
133
	 * memcg which the event belongs to.
134
	 */
135
	struct mem_cgroup *memcg;
136 137 138 139 140 141 142 143
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
144 145 146 147 148
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
149
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
150
			      struct eventfd_ctx *eventfd, const char *args);
151 152 153 154 155
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
156
	void (*unregister_event)(struct mem_cgroup *memcg,
157
				 struct eventfd_ctx *eventfd);
158 159 160 161 162 163
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
164
	wait_queue_entry_t wait;
165 166 167
	struct work_struct remove;
};

168 169
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
170

171 172
/* Stuffs for move charges at task migration. */
/*
173
 * Types of charges to be moved.
174
 */
175 176 177
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
178

179 180
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
181
	spinlock_t	  lock; /* for from, to */
182
	struct mm_struct  *mm;
183 184
	struct mem_cgroup *from;
	struct mem_cgroup *to;
185
	unsigned long flags;
186
	unsigned long precharge;
187
	unsigned long moved_charge;
188
	unsigned long moved_swap;
189 190 191
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
192
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
193 194
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
195

196 197 198 199
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
200
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
201
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
202

203 204
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
205
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
206
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
207
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
208 209 210
	NR_CHARGE_TYPE,
};

211
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
212 213 214 215
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
216
	_KMEM,
V
Vladimir Davydov 已提交
217
	_TCP,
G
Glauber Costa 已提交
218 219
};

220 221
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
222
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
223 224
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
225

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(root, iter, NULL))

#define for_each_mem_cgroup(iter)			\
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(NULL, iter, NULL))

241 242 243 244 245 246
static inline bool should_force_charge(void)
{
	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
		(current->flags & PF_EXITING);
}

247 248 249 250 251 252 253 254 255 256 257 258 259
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

260
#ifdef CONFIG_MEMCG_KMEM
R
Roman Gushchin 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
extern spinlock_t css_set_lock;

static void obj_cgroup_release(struct percpu_ref *ref)
{
	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
	struct mem_cgroup *memcg;
	unsigned int nr_bytes;
	unsigned int nr_pages;
	unsigned long flags;

	/*
	 * At this point all allocated objects are freed, and
	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
	 *
	 * The following sequence can lead to it:
	 * 1) CPU0: objcg == stock->cached_objcg
	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
	 *          PAGE_SIZE bytes are charged
	 * 3) CPU1: a process from another memcg is allocating something,
	 *          the stock if flushed,
	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
	 * 5) CPU0: we do release this object,
	 *          92 bytes are added to stock->nr_bytes
	 * 6) CPU0: stock is flushed,
	 *          92 bytes are added to objcg->nr_charged_bytes
	 *
	 * In the result, nr_charged_bytes == PAGE_SIZE.
	 * This page will be uncharged in obj_cgroup_release().
	 */
	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
	nr_pages = nr_bytes >> PAGE_SHIFT;

	spin_lock_irqsave(&css_set_lock, flags);
	memcg = obj_cgroup_memcg(objcg);
	if (nr_pages)
		__memcg_kmem_uncharge(memcg, nr_pages);
	list_del(&objcg->list);
	mem_cgroup_put(memcg);
	spin_unlock_irqrestore(&css_set_lock, flags);

	percpu_ref_exit(ref);
	kfree_rcu(objcg, rcu);
}

static struct obj_cgroup *obj_cgroup_alloc(void)
{
	struct obj_cgroup *objcg;
	int ret;

	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
	if (!objcg)
		return NULL;

	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
			      GFP_KERNEL);
	if (ret) {
		kfree(objcg);
		return NULL;
	}
	INIT_LIST_HEAD(&objcg->list);
	return objcg;
}

static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
				  struct mem_cgroup *parent)
{
	struct obj_cgroup *objcg, *iter;

	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);

	spin_lock_irq(&css_set_lock);

	/* Move active objcg to the parent's list */
	xchg(&objcg->memcg, parent);
	css_get(&parent->css);
	list_add(&objcg->list, &parent->objcg_list);

	/* Move already reparented objcgs to the parent's list */
	list_for_each_entry(iter, &memcg->objcg_list, list) {
		css_get(&parent->css);
		xchg(&iter->memcg, parent);
		css_put(&memcg->css);
	}
	list_splice(&memcg->objcg_list, &parent->objcg_list);

	spin_unlock_irq(&css_set_lock);

	percpu_ref_kill(&objcg->refcnt);
}

353
/*
354
 * This will be used as a shrinker list's index.
L
Li Zefan 已提交
355 356 357 358 359
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
360
 *
361 362
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
363
 */
364 365
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
366

367 368 369 370 371 372 373 374 375 376 377 378 379
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

380 381 382 383 384 385
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
386
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
387 388
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
389
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
390 391 392
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
393
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
394

395 396
/*
 * A lot of the calls to the cache allocation functions are expected to be
397
 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
398 399 400
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
401
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
402
EXPORT_SYMBOL(memcg_kmem_enabled_key);
403
#endif
404

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
static int memcg_shrinker_map_size;
static DEFINE_MUTEX(memcg_shrinker_map_mutex);

static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
{
	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
}

static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
					 int size, int old_size)
{
	struct memcg_shrinker_map *new, *old;
	int nid;

	lockdep_assert_held(&memcg_shrinker_map_mutex);

	for_each_node(nid) {
		old = rcu_dereference_protected(
			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
		/* Not yet online memcg */
		if (!old)
			return 0;

428
		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
		if (!new)
			return -ENOMEM;

		/* Set all old bits, clear all new bits */
		memset(new->map, (int)0xff, old_size);
		memset((void *)new->map + old_size, 0, size - old_size);

		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
	}

	return 0;
}

static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *pn;
	struct memcg_shrinker_map *map;
	int nid;

	if (mem_cgroup_is_root(memcg))
		return;

	for_each_node(nid) {
		pn = mem_cgroup_nodeinfo(memcg, nid);
		map = rcu_dereference_protected(pn->shrinker_map, true);
		if (map)
			kvfree(map);
		rcu_assign_pointer(pn->shrinker_map, NULL);
	}
}

static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	struct memcg_shrinker_map *map;
	int nid, size, ret = 0;

	if (mem_cgroup_is_root(memcg))
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	size = memcg_shrinker_map_size;
	for_each_node(nid) {
472
		map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
		if (!map) {
			memcg_free_shrinker_maps(memcg);
			ret = -ENOMEM;
			break;
		}
		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
	}
	mutex_unlock(&memcg_shrinker_map_mutex);

	return ret;
}

int memcg_expand_shrinker_maps(int new_id)
{
	int size, old_size, ret = 0;
	struct mem_cgroup *memcg;

	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
	old_size = memcg_shrinker_map_size;
	if (size <= old_size)
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	if (!root_mem_cgroup)
		goto unlock;

	for_each_mem_cgroup(memcg) {
		if (mem_cgroup_is_root(memcg))
			continue;
		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
503 504
		if (ret) {
			mem_cgroup_iter_break(NULL, memcg);
505
			goto unlock;
506
		}
507 508 509 510 511 512 513
	}
unlock:
	if (!ret)
		memcg_shrinker_map_size = size;
	mutex_unlock(&memcg_shrinker_map_mutex);
	return ret;
}
514 515 516 517 518 519 520 521

void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
{
	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
		struct memcg_shrinker_map *map;

		rcu_read_lock();
		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
522 523
		/* Pairs with smp mb in shrink_slab() */
		smp_mb__before_atomic();
524 525 526 527 528
		set_bit(shrinker_id, map->map);
		rcu_read_unlock();
	}
}

529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

546
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
547 548 549 550 551
		memcg = root_mem_cgroup;

	return &memcg->css;
}

552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
571
	memcg = page->mem_cgroup;
572

573 574 575 576 577 578 579 580
	/*
	 * The lowest bit set means that memcg isn't a valid
	 * memcg pointer, but a obj_cgroups pointer.
	 * In this case the page is shared and doesn't belong
	 * to any specific memory cgroup.
	 */
	if ((unsigned long) memcg & 0x1UL)
		memcg = NULL;
581

582 583 584 585 586 587 588 589
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

590 591
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
592
{
593
	int nid = page_to_nid(page);
594

595
	return memcg->nodeinfo[nid];
596 597
}

598 599
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
600
{
601
	return soft_limit_tree.rb_tree_per_node[nid];
602 603
}

604
static struct mem_cgroup_tree_per_node *
605 606 607 608
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

609
	return soft_limit_tree.rb_tree_per_node[nid];
610 611
}

612 613
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
614
					 unsigned long new_usage_in_excess)
615 616 617
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
618
	struct mem_cgroup_per_node *mz_node;
619
	bool rightmost = true;
620 621 622 623 624 625 626 627 628

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
629
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
630
					tree_node);
631
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
632
			p = &(*p)->rb_left;
633 634 635
			rightmost = false;
		}

636 637 638 639 640 641 642
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
643 644 645 646

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

647 648 649 650 651
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

652 653
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
654 655 656
{
	if (!mz->on_tree)
		return;
657 658 659 660

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

661 662 663 664
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

665 666
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
667
{
668 669 670
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
671
	__mem_cgroup_remove_exceeded(mz, mctz);
672
	spin_unlock_irqrestore(&mctz->lock, flags);
673 674
}

675 676 677
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
678
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
679 680 681 682 683 684 685
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
686 687 688

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
689
	unsigned long excess;
690 691
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
692

693
	mctz = soft_limit_tree_from_page(page);
694 695
	if (!mctz)
		return;
696 697 698 699 700
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
701
		mz = mem_cgroup_page_nodeinfo(memcg, page);
702
		excess = soft_limit_excess(memcg);
703 704 705 706 707
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
708 709 710
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
711 712
			/* if on-tree, remove it */
			if (mz->on_tree)
713
				__mem_cgroup_remove_exceeded(mz, mctz);
714 715 716 717
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
718
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
719
			spin_unlock_irqrestore(&mctz->lock, flags);
720 721 722 723 724 725
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
726 727 728
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
729

730
	for_each_node(nid) {
731 732
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
733 734
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
735 736 737
	}
}

738 739
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
740
{
741
	struct mem_cgroup_per_node *mz;
742 743 744

retry:
	mz = NULL;
745
	if (!mctz->rb_rightmost)
746 747
		goto done;		/* Nothing to reclaim from */

748 749
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
750 751 752 753 754
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
755
	__mem_cgroup_remove_exceeded(mz, mctz);
756
	if (!soft_limit_excess(mz->memcg) ||
S
Shakeel Butt 已提交
757
	    !css_tryget(&mz->memcg->css))
758 759 760 761 762
		goto retry;
done:
	return mz;
}

763 764
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
765
{
766
	struct mem_cgroup_per_node *mz;
767

768
	spin_lock_irq(&mctz->lock);
769
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
770
	spin_unlock_irq(&mctz->lock);
771 772 773
	return mz;
}

774 775 776 777 778 779 780 781
/**
 * __mod_memcg_state - update cgroup memory statistics
 * @memcg: the memory cgroup
 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 * @val: delta to add to the counter, can be negative
 */
void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
{
782
	long x, threshold = MEMCG_CHARGE_BATCH;
783 784 785 786

	if (mem_cgroup_disabled())
		return;

787 788 789
	if (vmstat_item_in_bytes(idx))
		threshold <<= PAGE_SHIFT;

790
	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
791
	if (unlikely(abs(x) > threshold)) {
792 793
		struct mem_cgroup *mi;

794 795 796 797 798
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
799 800
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmstats[idx]);
801 802 803 804 805
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
}

806 807 808 809 810 811 812 813 814 815 816
static struct mem_cgroup_per_node *
parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
{
	struct mem_cgroup *parent;

	parent = parent_mem_cgroup(pn->memcg);
	if (!parent)
		return NULL;
	return mem_cgroup_nodeinfo(parent, nid);
}

817 818
void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			      int val)
819 820
{
	struct mem_cgroup_per_node *pn;
821
	struct mem_cgroup *memcg;
822
	long x, threshold = MEMCG_CHARGE_BATCH;
823 824

	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
825
	memcg = pn->memcg;
826 827

	/* Update memcg */
828
	__mod_memcg_state(memcg, idx, val);
829

830 831 832
	/* Update lruvec */
	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);

833 834 835
	if (vmstat_item_in_bytes(idx))
		threshold <<= PAGE_SHIFT;

836
	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
837
	if (unlikely(abs(x) > threshold)) {
838
		pg_data_t *pgdat = lruvec_pgdat(lruvec);
839 840 841 842
		struct mem_cgroup_per_node *pi;

		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
			atomic_long_add(x, &pi->lruvec_stat[idx]);
843 844 845 846 847
		x = 0;
	}
	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
}

848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
/**
 * __mod_lruvec_state - update lruvec memory statistics
 * @lruvec: the lruvec
 * @idx: the stat item
 * @val: delta to add to the counter, can be negative
 *
 * The lruvec is the intersection of the NUMA node and a cgroup. This
 * function updates the all three counters that are affected by a
 * change of state at this level: per-node, per-cgroup, per-lruvec.
 */
void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			int val)
{
	/* Update node */
	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);

	/* Update memcg and lruvec */
	if (!mem_cgroup_disabled())
		__mod_memcg_lruvec_state(lruvec, idx, val);
}

869 870
void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
{
871
	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
872 873 874 875
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;

	rcu_read_lock();
876
	memcg = mem_cgroup_from_obj(p);
877 878 879 880 881

	/* Untracked pages have no memcg, no lruvec. Update only the node */
	if (!memcg || memcg == root_mem_cgroup) {
		__mod_node_page_state(pgdat, idx, val);
	} else {
882
		lruvec = mem_cgroup_lruvec(memcg, pgdat);
883 884 885 886 887
		__mod_lruvec_state(lruvec, idx, val);
	}
	rcu_read_unlock();
}

888 889 890 891 892 893 894 895 896 897 898
void mod_memcg_obj_state(void *p, int idx, int val)
{
	struct mem_cgroup *memcg;

	rcu_read_lock();
	memcg = mem_cgroup_from_obj(p);
	if (memcg)
		mod_memcg_state(memcg, idx, val);
	rcu_read_unlock();
}

899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
/**
 * __count_memcg_events - account VM events in a cgroup
 * @memcg: the memory cgroup
 * @idx: the event item
 * @count: the number of events that occured
 */
void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
			  unsigned long count)
{
	unsigned long x;

	if (mem_cgroup_disabled())
		return;

	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
915 916
		struct mem_cgroup *mi;

917 918 919 920 921
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->events[idx], x);
922 923
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmevents[idx]);
924 925 926 927 928
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
}

929
static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
930
{
931
	return atomic_long_read(&memcg->vmevents[event]);
932 933
}

934 935
static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
{
936 937 938 939 940 941
	long x = 0;
	int cpu;

	for_each_possible_cpu(cpu)
		x += per_cpu(memcg->vmstats_local->events[event], cpu);
	return x;
942 943
}

944
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
945
					 struct page *page,
946
					 int nr_pages)
947
{
948 949
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
950
		__count_memcg_events(memcg, PGPGIN, 1);
951
	else {
952
		__count_memcg_events(memcg, PGPGOUT, 1);
953 954
		nr_pages = -nr_pages; /* for event */
	}
955

956
	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
957 958
}

959 960
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
961 962 963
{
	unsigned long val, next;

964 965
	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
966
	/* from time_after() in jiffies.h */
967
	if ((long)(next - val) < 0) {
968 969 970 971
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
972 973 974
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
975 976 977
		default:
			break;
		}
978
		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
979
		return true;
980
	}
981
	return false;
982 983 984 985 986 987
}

/*
 * Check events in order.
 *
 */
988
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
989 990
{
	/* threshold event is triggered in finer grain than soft limit */
991 992
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
993
		bool do_softlimit;
994

995 996
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
997
		mem_cgroup_threshold(memcg);
998 999
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
1000
	}
1001 1002
}

1003
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1004
{
1005 1006 1007 1008 1009 1010 1011 1012
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1013
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1014
}
M
Michal Hocko 已提交
1015
EXPORT_SYMBOL(mem_cgroup_from_task);
1016

1017 1018 1019 1020 1021 1022 1023 1024 1025
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
 * returned.
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1026
{
1027 1028 1029 1030
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
1031

1032 1033
	rcu_read_lock();
	do {
1034 1035 1036 1037 1038 1039
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1040
			memcg = root_mem_cgroup;
1041 1042 1043 1044 1045
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1046
	} while (!css_tryget(&memcg->css));
1047
	rcu_read_unlock();
1048
	return memcg;
1049
}
1050 1051
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
/**
 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
 * @page: page from which memcg should be extracted.
 *
 * Obtain a reference on page->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned.
 */
struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
{
	struct mem_cgroup *memcg = page->mem_cgroup;

	if (mem_cgroup_disabled())
		return NULL;

	rcu_read_lock();
S
Shakeel Butt 已提交
1067 1068
	/* Page should not get uncharged and freed memcg under us. */
	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1069 1070 1071 1072 1073 1074
		memcg = root_mem_cgroup;
	rcu_read_unlock();
	return memcg;
}
EXPORT_SYMBOL(get_mem_cgroup_from_page);

1075 1076 1077 1078 1079 1080
/**
 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
 */
static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
{
	if (unlikely(current->active_memcg)) {
S
Shakeel Butt 已提交
1081
		struct mem_cgroup *memcg;
1082 1083

		rcu_read_lock();
S
Shakeel Butt 已提交
1084 1085 1086 1087
		/* current->active_memcg must hold a ref. */
		if (WARN_ON_ONCE(!css_tryget(&current->active_memcg->css)))
			memcg = root_mem_cgroup;
		else
1088 1089 1090 1091 1092 1093
			memcg = current->active_memcg;
		rcu_read_unlock();
		return memcg;
	}
	return get_mem_cgroup_from_mm(current->mm);
}
1094

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
1108
 * Reclaimers can specify a node and a priority level in @reclaim to
1109
 * divide up the memcgs in the hierarchy among all concurrent
1110
 * reclaimers operating on the same node and priority.
1111
 */
1112
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1113
				   struct mem_cgroup *prev,
1114
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1115
{
1116
	struct mem_cgroup_reclaim_iter *iter;
1117
	struct cgroup_subsys_state *css = NULL;
1118
	struct mem_cgroup *memcg = NULL;
1119
	struct mem_cgroup *pos = NULL;
1120

1121 1122
	if (mem_cgroup_disabled())
		return NULL;
1123

1124 1125
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1126

1127
	if (prev && !reclaim)
1128
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1129

1130 1131
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1132
			goto out;
1133
		return root;
1134
	}
K
KAMEZAWA Hiroyuki 已提交
1135

1136
	rcu_read_lock();
M
Michal Hocko 已提交
1137

1138
	if (reclaim) {
1139
		struct mem_cgroup_per_node *mz;
1140

1141
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1142
		iter = &mz->iter;
1143 1144 1145 1146

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

1147
		while (1) {
1148
			pos = READ_ONCE(iter->position);
1149 1150
			if (!pos || css_tryget(&pos->css))
				break;
1151
			/*
1152 1153 1154 1155 1156 1157
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
1158
			 */
1159 1160
			(void)cmpxchg(&iter->position, pos, NULL);
		}
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1178
		}
K
KAMEZAWA Hiroyuki 已提交
1179

1180 1181 1182 1183 1184 1185
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1186

1187 1188
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1189

1190 1191
		if (css_tryget(css))
			break;
1192

1193
		memcg = NULL;
1194
	}
1195 1196 1197

	if (reclaim) {
		/*
1198 1199 1200
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
1201
		 */
1202 1203
		(void)cmpxchg(&iter->position, pos, memcg);

1204 1205 1206 1207 1208 1209 1210
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1211
	}
1212

1213 1214
out_unlock:
	rcu_read_unlock();
1215
out:
1216 1217 1218
	if (prev && prev != root)
		css_put(&prev->css);

1219
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1220
}
K
KAMEZAWA Hiroyuki 已提交
1221

1222 1223 1224 1225 1226 1227 1228
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1229 1230 1231 1232 1233 1234
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1235

1236 1237
static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
					struct mem_cgroup *dead_memcg)
1238 1239
{
	struct mem_cgroup_reclaim_iter *iter;
1240 1241
	struct mem_cgroup_per_node *mz;
	int nid;
1242

1243 1244
	for_each_node(nid) {
		mz = mem_cgroup_nodeinfo(from, nid);
1245 1246
		iter = &mz->iter;
		cmpxchg(&iter->position, dead_memcg, NULL);
1247 1248 1249
	}
}

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup *last;

	do {
		__invalidate_reclaim_iterators(memcg, dead_memcg);
		last = memcg;
	} while ((memcg = parent_mem_cgroup(memcg)));

	/*
	 * When cgruop1 non-hierarchy mode is used,
	 * parent_mem_cgroup() does not walk all the way up to the
	 * cgroup root (root_mem_cgroup). So we have to handle
	 * dead_memcg from cgroup root separately.
	 */
	if (last != root_mem_cgroup)
		__invalidate_reclaim_iterators(root_mem_cgroup,
						dead_memcg);
}

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

1296
		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

1308
/**
1309
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1310
 * @page: the page
1311
 * @pgdat: pgdat of the page
1312
 *
1313 1314
 * This function relies on page->mem_cgroup being stable - see the
 * access rules in commit_charge().
1315
 */
M
Mel Gorman 已提交
1316
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
1317
{
1318
	struct mem_cgroup_per_node *mz;
1319
	struct mem_cgroup *memcg;
1320
	struct lruvec *lruvec;
1321

1322
	if (mem_cgroup_disabled()) {
1323
		lruvec = &pgdat->__lruvec;
1324 1325
		goto out;
	}
1326

1327
	memcg = page->mem_cgroup;
1328
	/*
1329
	 * Swapcache readahead pages are added to the LRU - and
1330
	 * possibly migrated - before they are charged.
1331
	 */
1332 1333
	if (!memcg)
		memcg = root_mem_cgroup;
1334

1335
	mz = mem_cgroup_page_nodeinfo(memcg, page);
1336 1337 1338 1339 1340 1341 1342
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
1343 1344
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
1345
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1346
}
1347

1348
/**
1349 1350 1351
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1352
 * @zid: zone id of the accounted pages
1353
 * @nr_pages: positive when adding or negative when removing
1354
 *
1355 1356 1357
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1358
 */
1359
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1360
				int zid, int nr_pages)
1361
{
1362
	struct mem_cgroup_per_node *mz;
1363
	unsigned long *lru_size;
1364
	long size;
1365 1366 1367 1368

	if (mem_cgroup_disabled())
		return;

1369
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1370
	lru_size = &mz->lru_zone_size[zid][lru];
1371 1372 1373 1374 1375

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1376 1377 1378
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1379 1380 1381 1382 1383 1384
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1385
}
1386

1387
/**
1388
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1389
 * @memcg: the memory cgroup
1390
 *
1391
 * Returns the maximum amount of memory @mem can be charged with, in
1392
 * pages.
1393
 */
1394
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1395
{
1396 1397 1398
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1399

1400
	count = page_counter_read(&memcg->memory);
1401
	limit = READ_ONCE(memcg->memory.max);
1402 1403 1404
	if (count < limit)
		margin = limit - count;

1405
	if (do_memsw_account()) {
1406
		count = page_counter_read(&memcg->memsw);
1407
		limit = READ_ONCE(memcg->memsw.max);
1408
		if (count < limit)
1409
			margin = min(margin, limit - count);
1410 1411
		else
			margin = 0;
1412 1413 1414
	}

	return margin;
1415 1416
}

1417
/*
Q
Qiang Huang 已提交
1418
 * A routine for checking "mem" is under move_account() or not.
1419
 *
Q
Qiang Huang 已提交
1420 1421 1422
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1423
 */
1424
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1425
{
1426 1427
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1428
	bool ret = false;
1429 1430 1431 1432 1433 1434 1435 1436 1437
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1438

1439 1440
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1441 1442
unlock:
	spin_unlock(&mc.lock);
1443 1444 1445
	return ret;
}

1446
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1447 1448
{
	if (mc.moving_task && current != mc.moving_task) {
1449
		if (mem_cgroup_under_move(memcg)) {
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1462 1463 1464 1465
static char *memory_stat_format(struct mem_cgroup *memcg)
{
	struct seq_buf s;
	int i;
1466

1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
	if (!s.buffer)
		return NULL;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

	seq_buf_printf(&s, "anon %llu\n",
1483
		       (u64)memcg_page_state(memcg, NR_ANON_MAPPED) *
1484 1485
		       PAGE_SIZE);
	seq_buf_printf(&s, "file %llu\n",
1486
		       (u64)memcg_page_state(memcg, NR_FILE_PAGES) *
1487 1488
		       PAGE_SIZE);
	seq_buf_printf(&s, "kernel_stack %llu\n",
1489
		       (u64)memcg_page_state(memcg, NR_KERNEL_STACK_KB) *
1490 1491
		       1024);
	seq_buf_printf(&s, "slab %llu\n",
1492 1493
		       (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
			     memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B)));
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
	seq_buf_printf(&s, "sock %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_SOCK) *
		       PAGE_SIZE);

	seq_buf_printf(&s, "shmem %llu\n",
		       (u64)memcg_page_state(memcg, NR_SHMEM) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_mapped %llu\n",
		       (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_dirty %llu\n",
		       (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_writeback %llu\n",
		       (u64)memcg_page_state(memcg, NR_WRITEBACK) *
		       PAGE_SIZE);

1511
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1512
	seq_buf_printf(&s, "anon_thp %llu\n",
1513 1514 1515
		       (u64)memcg_page_state(memcg, NR_ANON_THPS) *
		       HPAGE_PMD_SIZE);
#endif
1516 1517

	for (i = 0; i < NR_LRU_LISTS; i++)
1518
		seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1519 1520 1521 1522
			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			       PAGE_SIZE);

	seq_buf_printf(&s, "slab_reclaimable %llu\n",
1523
		       (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B));
1524
	seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1525
		       (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B));
1526 1527 1528

	/* Accumulated memory events */

1529 1530 1531 1532
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
		       memcg_events(memcg, PGFAULT));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
		       memcg_events(memcg, PGMAJFAULT));
1533 1534 1535 1536 1537

	seq_buf_printf(&s, "workingset_refault %lu\n",
		       memcg_page_state(memcg, WORKINGSET_REFAULT));
	seq_buf_printf(&s, "workingset_activate %lu\n",
		       memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1538 1539
	seq_buf_printf(&s, "workingset_restore %lu\n",
		       memcg_page_state(memcg, WORKINGSET_RESTORE));
1540 1541 1542
	seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
		       memcg_page_state(memcg, WORKINGSET_NODERECLAIM));

1543 1544
	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
		       memcg_events(memcg, PGREFILL));
1545 1546 1547 1548 1549 1550
	seq_buf_printf(&s, "pgscan %lu\n",
		       memcg_events(memcg, PGSCAN_KSWAPD) +
		       memcg_events(memcg, PGSCAN_DIRECT));
	seq_buf_printf(&s, "pgsteal %lu\n",
		       memcg_events(memcg, PGSTEAL_KSWAPD) +
		       memcg_events(memcg, PGSTEAL_DIRECT));
1551 1552 1553 1554 1555 1556 1557 1558
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
		       memcg_events(memcg, PGACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
		       memcg_events(memcg, PGDEACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
		       memcg_events(memcg, PGLAZYFREE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
		       memcg_events(memcg, PGLAZYFREED));
1559 1560

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1561
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1562
		       memcg_events(memcg, THP_FAULT_ALLOC));
1563
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1564 1565 1566 1567 1568 1569 1570 1571
		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

	/* The above should easily fit into one page */
	WARN_ON_ONCE(seq_buf_has_overflowed(&s));

	return s.buffer;
}
1572

1573
#define K(x) ((x) << (PAGE_SHIFT-10))
1574
/**
1575 1576
 * mem_cgroup_print_oom_context: Print OOM information relevant to
 * memory controller.
1577 1578 1579 1580 1581 1582
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
1583
void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1584 1585 1586
{
	rcu_read_lock();

1587 1588 1589 1590 1591
	if (memcg) {
		pr_cont(",oom_memcg=");
		pr_cont_cgroup_path(memcg->css.cgroup);
	} else
		pr_cont(",global_oom");
1592
	if (p) {
1593
		pr_cont(",task_memcg=");
1594 1595
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	}
1596
	rcu_read_unlock();
1597 1598 1599 1600 1601 1602 1603 1604 1605
}

/**
 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
 * memory controller.
 * @memcg: The memory cgroup that went over limit
 */
void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
1606
	char *buf;
1607

1608 1609
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1610
		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1611 1612 1613
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->swap)),
1614
			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1615 1616 1617 1618 1619 1620 1621
	else {
		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->memsw)),
			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->kmem)),
			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1622
	}
1623 1624 1625 1626 1627 1628 1629 1630 1631

	pr_info("Memory cgroup stats for ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(":");
	buf = memory_stat_format(memcg);
	if (!buf)
		return;
	pr_info("%s", buf);
	kfree(buf);
1632 1633
}

D
David Rientjes 已提交
1634 1635 1636
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1637
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1638
{
1639
	unsigned long max;
1640

1641
	max = READ_ONCE(memcg->memory.max);
1642
	if (mem_cgroup_swappiness(memcg)) {
1643 1644
		unsigned long memsw_max;
		unsigned long swap_max;
1645

1646
		memsw_max = memcg->memsw.max;
1647
		swap_max = READ_ONCE(memcg->swap.max);
1648 1649
		swap_max = min(swap_max, (unsigned long)total_swap_pages);
		max = min(max + swap_max, memsw_max);
1650
	}
1651
	return max;
D
David Rientjes 已提交
1652 1653
}

1654 1655 1656 1657 1658
unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
{
	return page_counter_read(&memcg->memory);
}

1659
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1660
				     int order)
1661
{
1662 1663 1664
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1665
		.memcg = memcg,
1666 1667 1668
		.gfp_mask = gfp_mask,
		.order = order,
	};
1669
	bool ret;
1670

1671 1672 1673 1674 1675 1676 1677
	if (mutex_lock_killable(&oom_lock))
		return true;
	/*
	 * A few threads which were not waiting at mutex_lock_killable() can
	 * fail to bail out. Therefore, check again after holding oom_lock.
	 */
	ret = should_force_charge() || out_of_memory(&oc);
1678
	mutex_unlock(&oom_lock);
1679
	return ret;
1680 1681
}

1682
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1683
				   pg_data_t *pgdat,
1684 1685 1686 1687 1688 1689 1690 1691 1692
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1693
		.pgdat = pgdat,
1694 1695
	};

1696
	excess = soft_limit_excess(root_memcg);
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1722
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1723
					pgdat, &nr_scanned);
1724
		*total_scanned += nr_scanned;
1725
		if (!soft_limit_excess(root_memcg))
1726
			break;
1727
	}
1728 1729
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1730 1731
}

1732 1733 1734 1735 1736 1737
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1738 1739
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1740 1741 1742 1743
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1744
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1745
{
1746
	struct mem_cgroup *iter, *failed = NULL;
1747

1748 1749
	spin_lock(&memcg_oom_lock);

1750
	for_each_mem_cgroup_tree(iter, memcg) {
1751
		if (iter->oom_lock) {
1752 1753 1754 1755 1756
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1757 1758
			mem_cgroup_iter_break(memcg, iter);
			break;
1759 1760
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1761
	}
K
KAMEZAWA Hiroyuki 已提交
1762

1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1774
		}
1775 1776
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1777 1778 1779 1780

	spin_unlock(&memcg_oom_lock);

	return !failed;
1781
}
1782

1783
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1784
{
K
KAMEZAWA Hiroyuki 已提交
1785 1786
	struct mem_cgroup *iter;

1787
	spin_lock(&memcg_oom_lock);
1788
	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1789
	for_each_mem_cgroup_tree(iter, memcg)
1790
		iter->oom_lock = false;
1791
	spin_unlock(&memcg_oom_lock);
1792 1793
}

1794
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1795 1796 1797
{
	struct mem_cgroup *iter;

1798
	spin_lock(&memcg_oom_lock);
1799
	for_each_mem_cgroup_tree(iter, memcg)
1800 1801
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1802 1803
}

1804
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1805 1806 1807
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1808 1809
	/*
	 * When a new child is created while the hierarchy is under oom,
1810
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1811
	 */
1812
	spin_lock(&memcg_oom_lock);
1813
	for_each_mem_cgroup_tree(iter, memcg)
1814 1815 1816
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1817 1818
}

K
KAMEZAWA Hiroyuki 已提交
1819 1820
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1821
struct oom_wait_info {
1822
	struct mem_cgroup *memcg;
1823
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1824 1825
};

1826
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1827 1828
	unsigned mode, int sync, void *arg)
{
1829 1830
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1831 1832 1833
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1834
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1835

1836 1837
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1838 1839 1840 1841
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1842
static void memcg_oom_recover(struct mem_cgroup *memcg)
1843
{
1844 1845 1846 1847 1848 1849 1850 1851 1852
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1853
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1854 1855
}

1856 1857 1858 1859 1860 1861 1862 1863
enum oom_status {
	OOM_SUCCESS,
	OOM_FAILED,
	OOM_ASYNC,
	OOM_SKIPPED
};

static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1864
{
1865 1866 1867
	enum oom_status ret;
	bool locked;

1868 1869 1870
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		return OOM_SKIPPED;

1871 1872
	memcg_memory_event(memcg, MEMCG_OOM);

K
KAMEZAWA Hiroyuki 已提交
1873
	/*
1874 1875 1876 1877
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1878 1879 1880 1881
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1882
	 *
1883 1884 1885 1886 1887 1888 1889
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
K
KAMEZAWA Hiroyuki 已提交
1890
	 */
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
	if (memcg->oom_kill_disable) {
		if (!current->in_user_fault)
			return OOM_SKIPPED;
		css_get(&memcg->css);
		current->memcg_in_oom = memcg;
		current->memcg_oom_gfp_mask = mask;
		current->memcg_oom_order = order;

		return OOM_ASYNC;
	}

1902 1903 1904 1905 1906 1907 1908 1909
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	mem_cgroup_unmark_under_oom(memcg);
1910
	if (mem_cgroup_out_of_memory(memcg, mask, order))
1911 1912 1913 1914 1915 1916
		ret = OOM_SUCCESS;
	else
		ret = OOM_FAILED;

	if (locked)
		mem_cgroup_oom_unlock(memcg);
1917

1918
	return ret;
1919 1920 1921 1922
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1923
 * @handle: actually kill/wait or just clean up the OOM state
1924
 *
1925 1926
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1927
 *
1928
 * Memcg supports userspace OOM handling where failed allocations must
1929 1930 1931 1932
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1933
 * the end of the page fault to complete the OOM handling.
1934 1935
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1936
 * completed, %false otherwise.
1937
 */
1938
bool mem_cgroup_oom_synchronize(bool handle)
1939
{
T
Tejun Heo 已提交
1940
	struct mem_cgroup *memcg = current->memcg_in_oom;
1941
	struct oom_wait_info owait;
1942
	bool locked;
1943 1944 1945

	/* OOM is global, do not handle */
	if (!memcg)
1946
		return false;
1947

1948
	if (!handle)
1949
		goto cleanup;
1950 1951 1952 1953 1954

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
1955
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
1956

1957
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1968 1969
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1970
	} else {
1971
		schedule();
1972 1973 1974 1975 1976
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1977 1978 1979 1980 1981 1982 1983 1984
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1985
cleanup:
T
Tejun Heo 已提交
1986
	current->memcg_in_oom = NULL;
1987
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1988
	return true;
1989 1990
}

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
/**
 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 * @victim: task to be killed by the OOM killer
 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 *
 * Returns a pointer to a memory cgroup, which has to be cleaned up
 * by killing all belonging OOM-killable tasks.
 *
 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 */
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
					    struct mem_cgroup *oom_domain)
{
	struct mem_cgroup *oom_group = NULL;
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return NULL;

	if (!oom_domain)
		oom_domain = root_mem_cgroup;

	rcu_read_lock();

	memcg = mem_cgroup_from_task(victim);
	if (memcg == root_mem_cgroup)
		goto out;

2019 2020 2021 2022 2023 2024 2025 2026
	/*
	 * If the victim task has been asynchronously moved to a different
	 * memory cgroup, we might end up killing tasks outside oom_domain.
	 * In this case it's better to ignore memory.group.oom.
	 */
	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
		goto out;

2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
	/*
	 * Traverse the memory cgroup hierarchy from the victim task's
	 * cgroup up to the OOMing cgroup (or root) to find the
	 * highest-level memory cgroup with oom.group set.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		if (memcg->oom_group)
			oom_group = memcg;

		if (memcg == oom_domain)
			break;
	}

	if (oom_group)
		css_get(&oom_group->css);
out:
	rcu_read_unlock();

	return oom_group;
}

void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
	pr_info("Tasks in ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(" are going to be killed due to memory.oom.group set\n");
}

2055
/**
2056 2057
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
2058
 *
2059
 * This function protects unlocked LRU pages from being moved to
2060 2061 2062 2063 2064
 * another cgroup.
 *
 * It ensures lifetime of the returned memcg. Caller is responsible
 * for the lifetime of the page; __unlock_page_memcg() is available
 * when @page might get freed inside the locked section.
2065
 */
2066
struct mem_cgroup *lock_page_memcg(struct page *page)
2067
{
2068
	struct page *head = compound_head(page); /* rmap on tail pages */
2069
	struct mem_cgroup *memcg;
2070
	unsigned long flags;
2071

2072 2073 2074 2075
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
2076 2077 2078 2079 2080 2081 2082
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page itself from being freed. E.g. writeback
	 * doesn't hold a page reference and relies on PG_writeback to
	 * keep off truncation, migration and so forth.
         */
2083 2084 2085
	rcu_read_lock();

	if (mem_cgroup_disabled())
2086
		return NULL;
2087
again:
2088
	memcg = head->mem_cgroup;
2089
	if (unlikely(!memcg))
2090
		return NULL;
2091

Q
Qiang Huang 已提交
2092
	if (atomic_read(&memcg->moving_account) <= 0)
2093
		return memcg;
2094

2095
	spin_lock_irqsave(&memcg->move_lock, flags);
2096
	if (memcg != head->mem_cgroup) {
2097
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2098 2099
		goto again;
	}
2100 2101 2102 2103

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
2104
	 * the task who has the lock for unlock_page_memcg().
2105 2106 2107
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2108

2109
	return memcg;
2110
}
2111
EXPORT_SYMBOL(lock_page_memcg);
2112

2113
/**
2114 2115 2116 2117
 * __unlock_page_memcg - unlock and unpin a memcg
 * @memcg: the memcg
 *
 * Unlock and unpin a memcg returned by lock_page_memcg().
2118
 */
2119
void __unlock_page_memcg(struct mem_cgroup *memcg)
2120
{
2121 2122 2123 2124 2125 2126 2127 2128
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2129

2130
	rcu_read_unlock();
2131
}
2132 2133 2134 2135 2136 2137 2138

/**
 * unlock_page_memcg - unlock a page->mem_cgroup binding
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
2139 2140 2141
	struct page *head = compound_head(page);

	__unlock_page_memcg(head->mem_cgroup);
2142
}
2143
EXPORT_SYMBOL(unlock_page_memcg);
2144

2145 2146
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2147
	unsigned int nr_pages;
R
Roman Gushchin 已提交
2148 2149 2150 2151 2152 2153

#ifdef CONFIG_MEMCG_KMEM
	struct obj_cgroup *cached_objcg;
	unsigned int nr_bytes;
#endif

2154
	struct work_struct work;
2155
	unsigned long flags;
2156
#define FLUSHING_CACHED_CHARGE	0
2157 2158
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2159
static DEFINE_MUTEX(percpu_charge_mutex);
2160

R
Roman Gushchin 已提交
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
#ifdef CONFIG_MEMCG_KMEM
static void drain_obj_stock(struct memcg_stock_pcp *stock);
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg);

#else
static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
{
}
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	return false;
}
#endif

2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2187
 */
2188
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2189 2190
{
	struct memcg_stock_pcp *stock;
2191
	unsigned long flags;
2192
	bool ret = false;
2193

2194
	if (nr_pages > MEMCG_CHARGE_BATCH)
2195
		return ret;
2196

2197 2198 2199
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2200
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2201
		stock->nr_pages -= nr_pages;
2202 2203
		ret = true;
	}
2204 2205 2206

	local_irq_restore(flags);

2207 2208 2209 2210
	return ret;
}

/*
2211
 * Returns stocks cached in percpu and reset cached information.
2212 2213 2214 2215 2216
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2217 2218 2219
	if (!old)
		return;

2220
	if (stock->nr_pages) {
2221
		page_counter_uncharge(&old->memory, stock->nr_pages);
2222
		if (do_memsw_account())
2223
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2224
		stock->nr_pages = 0;
2225
	}
2226 2227

	css_put(&old->css);
2228 2229 2230 2231 2232
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
2233 2234 2235
	struct memcg_stock_pcp *stock;
	unsigned long flags;

2236 2237 2238 2239
	/*
	 * The only protection from memory hotplug vs. drain_stock races is
	 * that we always operate on local CPU stock here with IRQ disabled
	 */
2240 2241 2242
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
R
Roman Gushchin 已提交
2243
	drain_obj_stock(stock);
2244
	drain_stock(stock);
2245
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2246 2247

	local_irq_restore(flags);
2248 2249 2250
}

/*
2251
 * Cache charges(val) to local per_cpu area.
2252
 * This will be consumed by consume_stock() function, later.
2253
 */
2254
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2255
{
2256 2257 2258 2259
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
2260

2261
	stock = this_cpu_ptr(&memcg_stock);
2262
	if (stock->cached != memcg) { /* reset if necessary */
2263
		drain_stock(stock);
2264
		css_get(&memcg->css);
2265
		stock->cached = memcg;
2266
	}
2267
	stock->nr_pages += nr_pages;
2268

2269
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2270 2271
		drain_stock(stock);

2272
	local_irq_restore(flags);
2273 2274 2275
}

/*
2276
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2277
 * of the hierarchy under it.
2278
 */
2279
static void drain_all_stock(struct mem_cgroup *root_memcg)
2280
{
2281
	int cpu, curcpu;
2282

2283 2284 2285
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2286 2287 2288 2289 2290 2291
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
2292
	curcpu = get_cpu();
2293 2294
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2295
		struct mem_cgroup *memcg;
2296
		bool flush = false;
2297

2298
		rcu_read_lock();
2299
		memcg = stock->cached;
2300 2301 2302
		if (memcg && stock->nr_pages &&
		    mem_cgroup_is_descendant(memcg, root_memcg))
			flush = true;
R
Roman Gushchin 已提交
2303 2304
		if (obj_stock_flush_required(stock, root_memcg))
			flush = true;
2305 2306 2307 2308
		rcu_read_unlock();

		if (flush &&
		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2309 2310 2311 2312 2313
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2314
	}
2315
	put_cpu();
2316
	mutex_unlock(&percpu_charge_mutex);
2317 2318
}

2319
static int memcg_hotplug_cpu_dead(unsigned int cpu)
2320 2321
{
	struct memcg_stock_pcp *stock;
2322
	struct mem_cgroup *memcg, *mi;
2323 2324 2325

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
2326 2327 2328 2329 2330 2331 2332 2333

	for_each_mem_cgroup(memcg) {
		int i;

		for (i = 0; i < MEMCG_NR_STAT; i++) {
			int nid;
			long x;

2334
			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2335
			if (x)
2336 2337
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmstats[i]);
2338 2339 2340 2341 2342 2343 2344 2345 2346

			if (i >= NR_VM_NODE_STAT_ITEMS)
				continue;

			for_each_node(nid) {
				struct mem_cgroup_per_node *pn;

				pn = mem_cgroup_nodeinfo(memcg, nid);
				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2347
				if (x)
2348 2349 2350
					do {
						atomic_long_add(x, &pn->lruvec_stat[i]);
					} while ((pn = parent_nodeinfo(pn, nid)));
2351 2352 2353
			}
		}

2354
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2355 2356
			long x;

2357
			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2358
			if (x)
2359 2360
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmevents[i]);
2361 2362 2363
		}
	}

2364
	return 0;
2365 2366
}

2367 2368 2369
static unsigned long reclaim_high(struct mem_cgroup *memcg,
				  unsigned int nr_pages,
				  gfp_t gfp_mask)
2370
{
2371 2372
	unsigned long nr_reclaimed = 0;

2373
	do {
2374 2375
		if (page_counter_read(&memcg->memory) <=
		    READ_ONCE(memcg->memory.high))
2376
			continue;
2377
		memcg_memory_event(memcg, MEMCG_HIGH);
2378 2379
		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
							     gfp_mask, true);
2380 2381
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));
2382 2383

	return nr_reclaimed;
2384 2385 2386 2387 2388 2389 2390
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
2391
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2392 2393
}

2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
/*
 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
 * enough to still cause a significant slowdown in most cases, while still
 * allowing diagnostics and tracing to proceed without becoming stuck.
 */
#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)

/*
 * When calculating the delay, we use these either side of the exponentiation to
 * maintain precision and scale to a reasonable number of jiffies (see the table
 * below.
 *
 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
 *   overage ratio to a delay.
 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
 *   to produce a reasonable delay curve.
 *
 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
 * reasonable delay curve compared to precision-adjusted overage, not
 * penalising heavily at first, but still making sure that growth beyond the
 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
 * example, with a high of 100 megabytes:
 *
 *  +-------+------------------------+
 *  | usage | time to allocate in ms |
 *  +-------+------------------------+
 *  | 100M  |                      0 |
 *  | 101M  |                      6 |
 *  | 102M  |                     25 |
 *  | 103M  |                     57 |
 *  | 104M  |                    102 |
 *  | 105M  |                    159 |
 *  | 106M  |                    230 |
 *  | 107M  |                    313 |
 *  | 108M  |                    409 |
 *  | 109M  |                    518 |
 *  | 110M  |                    639 |
 *  | 111M  |                    774 |
 *  | 112M  |                    921 |
 *  | 113M  |                   1081 |
 *  | 114M  |                   1254 |
 *  | 115M  |                   1439 |
 *  | 116M  |                   1638 |
 *  | 117M  |                   1849 |
 *  | 118M  |                   2000 |
 *  | 119M  |                   2000 |
 *  | 120M  |                   2000 |
 *  +-------+------------------------+
 */
 #define MEMCG_DELAY_PRECISION_SHIFT 20
 #define MEMCG_DELAY_SCALING_SHIFT 14

2447
static u64 calculate_overage(unsigned long usage, unsigned long high)
2448
{
2449
	u64 overage;
2450

2451 2452
	if (usage <= high)
		return 0;
2453

2454 2455 2456 2457 2458
	/*
	 * Prevent division by 0 in overage calculation by acting as if
	 * it was a threshold of 1 page
	 */
	high = max(high, 1UL);
2459

2460 2461 2462 2463
	overage = usage - high;
	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
	return div64_u64(overage, high);
}
2464

2465 2466 2467
static u64 mem_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;
2468

2469 2470
	do {
		overage = calculate_overage(page_counter_read(&memcg->memory),
2471
					    READ_ONCE(memcg->memory.high));
2472
		max_overage = max(overage, max_overage);
2473 2474 2475
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

2476 2477 2478
	return max_overage;
}

2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
static u64 swap_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;

	do {
		overage = calculate_overage(page_counter_read(&memcg->swap),
					    READ_ONCE(memcg->swap.high));
		if (overage)
			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
		max_overage = max(overage, max_overage);
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

	return max_overage;
}

2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
/*
 * Get the number of jiffies that we should penalise a mischievous cgroup which
 * is exceeding its memory.high by checking both it and its ancestors.
 */
static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
					  unsigned int nr_pages,
					  u64 max_overage)
{
	unsigned long penalty_jiffies;

2505 2506
	if (!max_overage)
		return 0;
2507 2508 2509 2510 2511 2512 2513 2514 2515

	/*
	 * We use overage compared to memory.high to calculate the number of
	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
	 * fairly lenient on small overages, and increasingly harsh when the
	 * memcg in question makes it clear that it has no intention of stopping
	 * its crazy behaviour, so we exponentially increase the delay based on
	 * overage amount.
	 */
2516 2517 2518
	penalty_jiffies = max_overage * max_overage * HZ;
	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2519 2520 2521 2522 2523 2524 2525 2526 2527

	/*
	 * Factor in the task's own contribution to the overage, such that four
	 * N-sized allocations are throttled approximately the same as one
	 * 4N-sized allocation.
	 *
	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
	 * larger the current charge patch is than that.
	 */
2528
	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
}

/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned long penalty_jiffies;
	unsigned long pflags;
2539
	unsigned long nr_reclaimed;
2540
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2541
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2542
	struct mem_cgroup *memcg;
2543
	bool in_retry = false;
2544 2545 2546 2547 2548 2549 2550

	if (likely(!nr_pages))
		return;

	memcg = get_mem_cgroup_from_mm(current->mm);
	current->memcg_nr_pages_over_high = 0;

2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
retry_reclaim:
	/*
	 * The allocating task should reclaim at least the batch size, but for
	 * subsequent retries we only want to do what's necessary to prevent oom
	 * or breaching resource isolation.
	 *
	 * This is distinct from memory.max or page allocator behaviour because
	 * memory.high is currently batched, whereas memory.max and the page
	 * allocator run every time an allocation is made.
	 */
	nr_reclaimed = reclaim_high(memcg,
				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
				    GFP_KERNEL);

2565 2566 2567 2568
	/*
	 * memory.high is breached and reclaim is unable to keep up. Throttle
	 * allocators proactively to slow down excessive growth.
	 */
2569 2570
	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
					       mem_find_max_overage(memcg));
2571

2572 2573 2574
	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
						swap_find_max_overage(memcg));

2575 2576 2577 2578 2579 2580 2581
	/*
	 * Clamp the max delay per usermode return so as to still keep the
	 * application moving forwards and also permit diagnostics, albeit
	 * extremely slowly.
	 */
	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);

2582 2583 2584 2585 2586 2587 2588 2589 2590
	/*
	 * Don't sleep if the amount of jiffies this memcg owes us is so low
	 * that it's not even worth doing, in an attempt to be nice to those who
	 * go only a small amount over their memory.high value and maybe haven't
	 * been aggressively reclaimed enough yet.
	 */
	if (penalty_jiffies <= HZ / 100)
		goto out;

2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
	/*
	 * If reclaim is making forward progress but we're still over
	 * memory.high, we want to encourage that rather than doing allocator
	 * throttling.
	 */
	if (nr_reclaimed || nr_retries--) {
		in_retry = true;
		goto retry_reclaim;
	}

2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
	/*
	 * If we exit early, we're guaranteed to die (since
	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
	 * need to account for any ill-begotten jiffies to pay them off later.
	 */
	psi_memstall_enter(&pflags);
	schedule_timeout_killable(penalty_jiffies);
	psi_memstall_leave(&pflags);

out:
	css_put(&memcg->css);
2612 2613
}

2614 2615
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2616
{
2617
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2618
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2619
	struct mem_cgroup *mem_over_limit;
2620
	struct page_counter *counter;
2621
	unsigned long nr_reclaimed;
2622 2623
	bool may_swap = true;
	bool drained = false;
2624
	enum oom_status oom_status;
2625

2626
	if (mem_cgroup_is_root(memcg))
2627
		return 0;
2628
retry:
2629
	if (consume_stock(memcg, nr_pages))
2630
		return 0;
2631

2632
	if (!do_memsw_account() ||
2633 2634
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2635
			goto done_restock;
2636
		if (do_memsw_account())
2637 2638
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2639
	} else {
2640
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2641
		may_swap = false;
2642
	}
2643

2644 2645 2646 2647
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2648

2649 2650 2651 2652 2653 2654 2655 2656 2657
	/*
	 * Memcg doesn't have a dedicated reserve for atomic
	 * allocations. But like the global atomic pool, we need to
	 * put the burden of reclaim on regular allocation requests
	 * and let these go through as privileged allocations.
	 */
	if (gfp_mask & __GFP_ATOMIC)
		goto force;

2658 2659 2660 2661 2662 2663
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
2664
	if (unlikely(should_force_charge()))
2665
		goto force;
2666

2667 2668 2669 2670 2671 2672 2673 2674 2675
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2676 2677 2678
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2679
	if (!gfpflags_allow_blocking(gfp_mask))
2680
		goto nomem;
2681

2682
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2683

2684 2685
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2686

2687
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2688
		goto retry;
2689

2690
	if (!drained) {
2691
		drain_all_stock(mem_over_limit);
2692 2693 2694 2695
		drained = true;
		goto retry;
	}

2696 2697
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2698 2699 2700 2701 2702 2703 2704 2705 2706
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2707
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2708 2709 2710 2711 2712 2713 2714 2715
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2716 2717 2718
	if (nr_retries--)
		goto retry;

2719
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2720 2721
		goto nomem;

2722
	if (gfp_mask & __GFP_NOFAIL)
2723
		goto force;
2724

2725
	if (fatal_signal_pending(current))
2726
		goto force;
2727

2728 2729 2730 2731 2732 2733
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2734
		       get_order(nr_pages * PAGE_SIZE));
2735 2736 2737 2738 2739 2740 2741 2742 2743
	switch (oom_status) {
	case OOM_SUCCESS:
		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
		goto retry;
	case OOM_FAILED:
		goto force;
	default:
		goto nomem;
	}
2744
nomem:
2745
	if (!(gfp_mask & __GFP_NOFAIL))
2746
		return -ENOMEM;
2747 2748 2749 2750 2751 2752 2753
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2754
	if (do_memsw_account())
2755 2756 2757
		page_counter_charge(&memcg->memsw, nr_pages);

	return 0;
2758 2759 2760 2761

done_restock:
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2762

2763
	/*
2764 2765
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2766
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2767 2768 2769 2770
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2771 2772
	 */
	do {
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
		bool mem_high, swap_high;

		mem_high = page_counter_read(&memcg->memory) >
			READ_ONCE(memcg->memory.high);
		swap_high = page_counter_read(&memcg->swap) >
			READ_ONCE(memcg->swap.high);

		/* Don't bother a random interrupted task */
		if (in_interrupt()) {
			if (mem_high) {
2783 2784 2785
				schedule_work(&memcg->high_work);
				break;
			}
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
			continue;
		}

		if (mem_high || swap_high) {
			/*
			 * The allocating tasks in this cgroup will need to do
			 * reclaim or be throttled to prevent further growth
			 * of the memory or swap footprints.
			 *
			 * Target some best-effort fairness between the tasks,
			 * and distribute reclaim work and delay penalties
			 * based on how much each task is actually allocating.
			 */
V
Vladimir Davydov 已提交
2799
			current->memcg_nr_pages_over_high += batch;
2800 2801 2802
			set_notify_resume(current);
			break;
		}
2803
	} while ((memcg = parent_mem_cgroup(memcg)));
2804 2805

	return 0;
2806
}
2807

2808
#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2809
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2810
{
2811 2812 2813
	if (mem_cgroup_is_root(memcg))
		return;

2814
	page_counter_uncharge(&memcg->memory, nr_pages);
2815
	if (do_memsw_account())
2816
		page_counter_uncharge(&memcg->memsw, nr_pages);
2817
}
2818
#endif
2819

2820
static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2821
{
2822
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2823
	/*
2824
	 * Any of the following ensures page->mem_cgroup stability:
2825
	 *
2826 2827 2828 2829
	 * - the page lock
	 * - LRU isolation
	 * - lock_page_memcg()
	 * - exclusive reference
2830
	 */
2831
	page->mem_cgroup = memcg;
2832
}
2833

2834
#ifdef CONFIG_MEMCG_KMEM
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
				 gfp_t gfp)
{
	unsigned int objects = objs_per_slab_page(s, page);
	void *vec;

	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
			   page_to_nid(page));
	if (!vec)
		return -ENOMEM;

	if (cmpxchg(&page->obj_cgroups, NULL,
		    (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
		kfree(vec);
	else
		kmemleak_not_leak(vec);

	return 0;
}

2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
/*
 * Returns a pointer to the memory cgroup to which the kernel object is charged.
 *
 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
 * cgroup_mutex, etc.
 */
struct mem_cgroup *mem_cgroup_from_obj(void *p)
{
	struct page *page;

	if (mem_cgroup_disabled())
		return NULL;

	page = virt_to_head_page(p);

	/*
2871 2872 2873
	 * Slab objects are accounted individually, not per-page.
	 * Memcg membership data for each individual object is saved in
	 * the page->obj_cgroups.
2874
	 */
2875 2876 2877 2878 2879 2880
	if (page_has_obj_cgroups(page)) {
		struct obj_cgroup *objcg;
		unsigned int off;

		off = obj_to_index(page->slab_cache, page, p);
		objcg = page_obj_cgroups(page)[off];
2881 2882 2883 2884
		if (objcg)
			return obj_cgroup_memcg(objcg);

		return NULL;
2885
	}
2886 2887 2888 2889 2890

	/* All other pages use page->mem_cgroup */
	return page->mem_cgroup;
}

R
Roman Gushchin 已提交
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
{
	struct obj_cgroup *objcg = NULL;
	struct mem_cgroup *memcg;

	if (unlikely(!current->mm && !current->active_memcg))
		return NULL;

	rcu_read_lock();
	if (unlikely(current->active_memcg))
		memcg = rcu_dereference(current->active_memcg);
	else
		memcg = mem_cgroup_from_task(current);

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		objcg = rcu_dereference(memcg->objcg);
		if (objcg && obj_cgroup_tryget(objcg))
			break;
	}
	rcu_read_unlock();

	return objcg;
}

2915
static int memcg_alloc_cache_id(void)
2916
{
2917 2918 2919
	int id, size;
	int err;

2920
	id = ida_simple_get(&memcg_cache_ida,
2921 2922 2923
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2924

2925
	if (id < memcg_nr_cache_ids)
2926 2927 2928 2929 2930 2931
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2932
	down_write(&memcg_cache_ids_sem);
2933 2934

	size = 2 * (id + 1);
2935 2936 2937 2938 2939
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2940
	err = memcg_update_all_list_lrus(size);
2941 2942 2943 2944 2945
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2946
	if (err) {
2947
		ida_simple_remove(&memcg_cache_ida, id);
2948 2949 2950 2951 2952 2953 2954
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2955
	ida_simple_remove(&memcg_cache_ida, id);
2956 2957
}

2958
/**
2959
 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
2960
 * @memcg: memory cgroup to charge
2961
 * @gfp: reclaim mode
2962
 * @nr_pages: number of pages to charge
2963 2964 2965
 *
 * Returns 0 on success, an error code on failure.
 */
2966 2967
int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
			unsigned int nr_pages)
2968
{
2969
	struct page_counter *counter;
2970 2971
	int ret;

2972
	ret = try_charge(memcg, gfp, nr_pages);
2973
	if (ret)
2974
		return ret;
2975 2976 2977

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2978 2979 2980 2981 2982 2983 2984 2985 2986 2987

		/*
		 * Enforce __GFP_NOFAIL allocation because callers are not
		 * prepared to see failures and likely do not have any failure
		 * handling code.
		 */
		if (gfp & __GFP_NOFAIL) {
			page_counter_charge(&memcg->kmem, nr_pages);
			return 0;
		}
2988 2989
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2990
	}
2991
	return 0;
2992 2993
}

2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
/**
 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
 */
void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
{
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

	page_counter_uncharge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_uncharge(&memcg->memsw, nr_pages);
}

3009
/**
3010
 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3011 3012 3013 3014 3015 3016
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
3017
int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3018
{
3019
	struct mem_cgroup *memcg;
3020
	int ret = 0;
3021

3022
	if (memcg_kmem_bypass())
3023 3024
		return 0;

3025
	memcg = get_mem_cgroup_from_current();
3026
	if (!mem_cgroup_is_root(memcg)) {
3027
		ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3028 3029
		if (!ret) {
			page->mem_cgroup = memcg;
3030
			__SetPageKmemcg(page);
3031
			return 0;
3032
		}
3033
	}
3034
	css_put(&memcg->css);
3035
	return ret;
3036
}
3037

3038
/**
3039
 * __memcg_kmem_uncharge_page: uncharge a kmem page
3040 3041 3042
 * @page: page to uncharge
 * @order: allocation order
 */
3043
void __memcg_kmem_uncharge_page(struct page *page, int order)
3044
{
3045
	struct mem_cgroup *memcg = page->mem_cgroup;
3046
	unsigned int nr_pages = 1 << order;
3047 3048 3049 3050

	if (!memcg)
		return;

3051
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3052
	__memcg_kmem_uncharge(memcg, nr_pages);
3053
	page->mem_cgroup = NULL;
3054
	css_put(&memcg->css);
3055 3056 3057 3058

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);
3059
}
R
Roman Gushchin 已提交
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193

static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
{
	struct memcg_stock_pcp *stock;
	unsigned long flags;
	bool ret = false;

	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
		stock->nr_bytes -= nr_bytes;
		ret = true;
	}

	local_irq_restore(flags);

	return ret;
}

static void drain_obj_stock(struct memcg_stock_pcp *stock)
{
	struct obj_cgroup *old = stock->cached_objcg;

	if (!old)
		return;

	if (stock->nr_bytes) {
		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);

		if (nr_pages) {
			rcu_read_lock();
			__memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
			rcu_read_unlock();
		}

		/*
		 * The leftover is flushed to the centralized per-memcg value.
		 * On the next attempt to refill obj stock it will be moved
		 * to a per-cpu stock (probably, on an other CPU), see
		 * refill_obj_stock().
		 *
		 * How often it's flushed is a trade-off between the memory
		 * limit enforcement accuracy and potential CPU contention,
		 * so it might be changed in the future.
		 */
		atomic_add(nr_bytes, &old->nr_charged_bytes);
		stock->nr_bytes = 0;
	}

	obj_cgroup_put(old);
	stock->cached_objcg = NULL;
}

static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	struct mem_cgroup *memcg;

	if (stock->cached_objcg) {
		memcg = obj_cgroup_memcg(stock->cached_objcg);
		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
			return true;
	}

	return false;
}

static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
{
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
	if (stock->cached_objcg != objcg) { /* reset if necessary */
		drain_obj_stock(stock);
		obj_cgroup_get(objcg);
		stock->cached_objcg = objcg;
		stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
	}
	stock->nr_bytes += nr_bytes;

	if (stock->nr_bytes > PAGE_SIZE)
		drain_obj_stock(stock);

	local_irq_restore(flags);
}

int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
{
	struct mem_cgroup *memcg;
	unsigned int nr_pages, nr_bytes;
	int ret;

	if (consume_obj_stock(objcg, size))
		return 0;

	/*
	 * In theory, memcg->nr_charged_bytes can have enough
	 * pre-charged bytes to satisfy the allocation. However,
	 * flushing memcg->nr_charged_bytes requires two atomic
	 * operations, and memcg->nr_charged_bytes can't be big,
	 * so it's better to ignore it and try grab some new pages.
	 * memcg->nr_charged_bytes will be flushed in
	 * refill_obj_stock(), called from this function or
	 * independently later.
	 */
	rcu_read_lock();
	memcg = obj_cgroup_memcg(objcg);
	css_get(&memcg->css);
	rcu_read_unlock();

	nr_pages = size >> PAGE_SHIFT;
	nr_bytes = size & (PAGE_SIZE - 1);

	if (nr_bytes)
		nr_pages += 1;

	ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
	if (!ret && nr_bytes)
		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);

	css_put(&memcg->css);
	return ret;
}

void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
{
	refill_obj_stock(objcg, size);
}

3194
#endif /* CONFIG_MEMCG_KMEM */
3195

3196 3197 3198 3199
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
3200
 * pgdat->lru_lock and migration entries setup in all page mappings.
3201
 */
3202
void mem_cgroup_split_huge_fixup(struct page *head)
3203
{
3204
	struct mem_cgroup *memcg = head->mem_cgroup;
3205
	int i;
3206

3207 3208
	if (mem_cgroup_disabled())
		return;
3209

3210 3211 3212 3213
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		css_get(&memcg->css);
		head[i].mem_cgroup = memcg;
	}
3214
}
3215
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3216

A
Andrew Morton 已提交
3217
#ifdef CONFIG_MEMCG_SWAP
3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
3229
 * The caller must have charged to @to, IOW, called page_counter_charge() about
3230 3231 3232
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3233
				struct mem_cgroup *from, struct mem_cgroup *to)
3234 3235 3236
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
3237 3238
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3239 3240

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3241 3242
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
3243 3244 3245 3246 3247 3248
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3249
				struct mem_cgroup *from, struct mem_cgroup *to)
3250 3251 3252
{
	return -EINVAL;
}
3253
#endif
K
KAMEZAWA Hiroyuki 已提交
3254

3255
static DEFINE_MUTEX(memcg_max_mutex);
3256

3257 3258
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
3259
{
3260
	bool enlarge = false;
3261
	bool drained = false;
3262
	int ret;
3263 3264
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3265

3266
	do {
3267 3268 3269 3270
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3271

3272
		mutex_lock(&memcg_max_mutex);
3273 3274
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
3275
		 * break our basic invariant rule memory.max <= memsw.max.
3276
		 */
3277
		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3278
					   max <= memcg->memsw.max;
3279
		if (!limits_invariant) {
3280
			mutex_unlock(&memcg_max_mutex);
3281 3282 3283
			ret = -EINVAL;
			break;
		}
3284
		if (max > counter->max)
3285
			enlarge = true;
3286 3287
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
3288 3289 3290 3291

		if (!ret)
			break;

3292 3293 3294 3295 3296 3297
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

3298 3299 3300 3301 3302 3303
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
3304

3305 3306
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3307

3308 3309 3310
	return ret;
}

3311
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3312 3313 3314 3315
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
3316
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3317 3318
	unsigned long reclaimed;
	int loop = 0;
3319
	struct mem_cgroup_tree_per_node *mctz;
3320
	unsigned long excess;
3321 3322 3323 3324 3325
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

3326
	mctz = soft_limit_tree_node(pgdat->node_id);
3327 3328 3329 3330 3331 3332

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
3333
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3334 3335
		return 0;

3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
3350
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3351 3352 3353
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3354
		spin_lock_irq(&mctz->lock);
3355
		__mem_cgroup_remove_exceeded(mz, mctz);
3356 3357 3358 3359 3360 3361

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3362 3363 3364
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3365
		excess = soft_limit_excess(mz->memcg);
3366 3367 3368 3369 3370 3371 3372 3373 3374
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3375
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3376
		spin_unlock_irq(&mctz->lock);
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3394 3395 3396 3397
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
3398
 * hierarchy.  Testing use_hierarchy is the caller's responsibility.
3399
 */
3400 3401
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3402 3403 3404 3405 3406 3407
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3408 3409
}

3410
/*
3411
 * Reclaims as many pages from the given memcg as possible.
3412 3413 3414 3415 3416 3417 3418
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

3419 3420
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3421 3422 3423

	drain_all_stock(memcg);

3424
	/* try to free all pages in this cgroup */
3425
	while (nr_retries && page_counter_read(&memcg->memory)) {
3426
		int progress;
3427

3428 3429 3430
		if (signal_pending(current))
			return -EINTR;

3431 3432
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3433
		if (!progress) {
3434
			nr_retries--;
3435
			/* maybe some writeback is necessary */
3436
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3437
		}
3438 3439

	}
3440 3441

	return 0;
3442 3443
}

3444 3445 3446
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3447
{
3448
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3449

3450 3451
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3452
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3453 3454
}

3455 3456
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3457
{
3458
	return mem_cgroup_from_css(css)->use_hierarchy;
3459 3460
}

3461 3462
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3463 3464
{
	int retval = 0;
3465
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3466
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3467

3468
	if (memcg->use_hierarchy == val)
3469
		return 0;
3470

3471
	/*
3472
	 * If parent's use_hierarchy is set, we can't make any modifications
3473 3474 3475 3476 3477 3478
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3479
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3480
				(val == 1 || val == 0)) {
3481
		if (!memcg_has_children(memcg))
3482
			memcg->use_hierarchy = val;
3483 3484 3485 3486
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3487

3488 3489 3490
	return retval;
}

3491
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3492
{
3493
	unsigned long val;
3494

3495
	if (mem_cgroup_is_root(memcg)) {
3496
		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3497
			memcg_page_state(memcg, NR_ANON_MAPPED);
3498 3499
		if (swap)
			val += memcg_page_state(memcg, MEMCG_SWAP);
3500
	} else {
3501
		if (!swap)
3502
			val = page_counter_read(&memcg->memory);
3503
		else
3504
			val = page_counter_read(&memcg->memsw);
3505
	}
3506
	return val;
3507 3508
}

3509 3510 3511 3512 3513 3514 3515
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3516

3517
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3518
			       struct cftype *cft)
B
Balbir Singh 已提交
3519
{
3520
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3521
	struct page_counter *counter;
3522

3523
	switch (MEMFILE_TYPE(cft->private)) {
3524
	case _MEM:
3525 3526
		counter = &memcg->memory;
		break;
3527
	case _MEMSWAP:
3528 3529
		counter = &memcg->memsw;
		break;
3530
	case _KMEM:
3531
		counter = &memcg->kmem;
3532
		break;
V
Vladimir Davydov 已提交
3533
	case _TCP:
3534
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3535
		break;
3536 3537 3538
	default:
		BUG();
	}
3539 3540 3541 3542

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
3543
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3544
		if (counter == &memcg->memsw)
3545
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3546 3547
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
3548
		return (u64)counter->max * PAGE_SIZE;
3549 3550 3551 3552 3553 3554 3555 3556 3557
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3558
}
3559

3560
static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3561
{
3562
	unsigned long stat[MEMCG_NR_STAT] = {0};
3563 3564 3565 3566
	struct mem_cgroup *mi;
	int node, cpu, i;

	for_each_online_cpu(cpu)
3567
		for (i = 0; i < MEMCG_NR_STAT; i++)
3568
			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3569 3570

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3571
		for (i = 0; i < MEMCG_NR_STAT; i++)
3572 3573 3574 3575 3576 3577
			atomic_long_add(stat[i], &mi->vmstats[i]);

	for_each_node(node) {
		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
		struct mem_cgroup_per_node *pi;

3578
		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3579 3580 3581
			stat[i] = 0;

		for_each_online_cpu(cpu)
3582
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3583 3584
				stat[i] += per_cpu(
					pn->lruvec_stat_cpu->count[i], cpu);
3585 3586

		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3587
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3588 3589 3590 3591
				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
	}
}

3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
{
	unsigned long events[NR_VM_EVENT_ITEMS];
	struct mem_cgroup *mi;
	int cpu, i;

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
		events[i] = 0;

	for_each_online_cpu(cpu)
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3603 3604
			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
					     cpu);
3605 3606 3607 3608 3609 3610

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
			atomic_long_add(events[i], &mi->vmevents[i]);
}

3611
#ifdef CONFIG_MEMCG_KMEM
3612
static int memcg_online_kmem(struct mem_cgroup *memcg)
3613
{
R
Roman Gushchin 已提交
3614
	struct obj_cgroup *objcg;
3615 3616
	int memcg_id;

3617 3618 3619
	if (cgroup_memory_nokmem)
		return 0;

3620
	BUG_ON(memcg->kmemcg_id >= 0);
3621
	BUG_ON(memcg->kmem_state);
3622

3623
	memcg_id = memcg_alloc_cache_id();
3624 3625
	if (memcg_id < 0)
		return memcg_id;
3626

R
Roman Gushchin 已提交
3627 3628 3629 3630 3631 3632 3633 3634
	objcg = obj_cgroup_alloc();
	if (!objcg) {
		memcg_free_cache_id(memcg_id);
		return -ENOMEM;
	}
	objcg->memcg = memcg;
	rcu_assign_pointer(memcg->objcg, objcg);

3635 3636
	static_branch_enable(&memcg_kmem_enabled_key);

3637
	/*
3638
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
3639
	 * kmemcg_id. Setting the id after enabling static branching will
3640 3641 3642
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3643
	memcg->kmemcg_id = memcg_id;
3644
	memcg->kmem_state = KMEM_ONLINE;
3645 3646

	return 0;
3647 3648
}

3649 3650 3651 3652 3653 3654 3655 3656
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
3657

3658 3659 3660 3661 3662 3663
	memcg->kmem_state = KMEM_ALLOCATED;

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

R
Roman Gushchin 已提交
3664
	memcg_reparent_objcgs(memcg, parent);
3665 3666 3667 3668

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

3669 3670 3671 3672 3673 3674 3675 3676
	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
3677
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3678 3679 3680 3681 3682 3683 3684
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
3685 3686
	rcu_read_unlock();

3687
	memcg_drain_all_list_lrus(kmemcg_id, parent);
3688 3689 3690 3691 3692 3693

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
3694 3695 3696
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);
3697
}
3698
#else
3699
static int memcg_online_kmem(struct mem_cgroup *memcg)
3700 3701 3702 3703 3704 3705 3706 3707 3708
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
3709
#endif /* CONFIG_MEMCG_KMEM */
3710

3711 3712
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
3713
{
3714
	int ret;
3715

3716 3717 3718
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
3719
	return ret;
3720
}
3721

3722
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
3723 3724 3725
{
	int ret;

3726
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3727

3728
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
3729 3730 3731
	if (ret)
		goto out;

3732
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3733 3734 3735
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3736 3737 3738
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
3739 3740 3741 3742 3743 3744
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3745
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
3746 3747 3748 3749
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3750
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3751 3752
	}
out:
3753
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3754 3755 3756
	return ret;
}

3757 3758 3759 3760
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3761 3762
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3763
{
3764
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3765
	unsigned long nr_pages;
3766 3767
	int ret;

3768
	buf = strstrip(buf);
3769
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3770 3771
	if (ret)
		return ret;
3772

3773
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3774
	case RES_LIMIT:
3775 3776 3777 3778
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3779 3780
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3781
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3782
			break;
3783
		case _MEMSWAP:
3784
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3785
			break;
3786
		case _KMEM:
3787 3788 3789
			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
				     "Please report your usecase to linux-mm@kvack.org if you "
				     "depend on this functionality.\n");
3790
			ret = memcg_update_kmem_max(memcg, nr_pages);
3791
			break;
V
Vladimir Davydov 已提交
3792
		case _TCP:
3793
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
3794
			break;
3795
		}
3796
		break;
3797 3798 3799
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3800 3801
		break;
	}
3802
	return ret ?: nbytes;
B
Balbir Singh 已提交
3803 3804
}

3805 3806
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3807
{
3808
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3809
	struct page_counter *counter;
3810

3811 3812 3813 3814 3815 3816 3817 3818 3819 3820
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3821
	case _TCP:
3822
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3823
		break;
3824 3825 3826
	default:
		BUG();
	}
3827

3828
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3829
	case RES_MAX_USAGE:
3830
		page_counter_reset_watermark(counter);
3831 3832
		break;
	case RES_FAILCNT:
3833
		counter->failcnt = 0;
3834
		break;
3835 3836
	default:
		BUG();
3837
	}
3838

3839
	return nbytes;
3840 3841
}

3842
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3843 3844
					struct cftype *cft)
{
3845
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3846 3847
}

3848
#ifdef CONFIG_MMU
3849
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3850 3851
					struct cftype *cft, u64 val)
{
3852
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3853

3854
	if (val & ~MOVE_MASK)
3855
		return -EINVAL;
3856

3857
	/*
3858 3859 3860 3861
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3862
	 */
3863
	memcg->move_charge_at_immigrate = val;
3864 3865
	return 0;
}
3866
#else
3867
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3868 3869 3870 3871 3872
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3873

3874
#ifdef CONFIG_NUMA
3875 3876 3877 3878 3879 3880

#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)

static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3881
				int nid, unsigned int lru_mask, bool tree)
3882
{
3883
	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3884 3885 3886 3887 3888 3889 3890 3891
	unsigned long nr = 0;
	enum lru_list lru;

	VM_BUG_ON((unsigned)nid >= nr_node_ids);

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3892 3893 3894 3895
		if (tree)
			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
		else
			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3896 3897 3898 3899 3900
	}
	return nr;
}

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3901 3902
					     unsigned int lru_mask,
					     bool tree)
3903 3904 3905 3906 3907 3908 3909
{
	unsigned long nr = 0;
	enum lru_list lru;

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3910 3911 3912 3913
		if (tree)
			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
		else
			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3914 3915 3916 3917
	}
	return nr;
}

3918
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3919
{
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3932
	int nid;
3933
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3934

3935
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3936 3937 3938 3939 3940 3941 3942
		seq_printf(m, "%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   false));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, false));
3943
		seq_putc(m, '\n');
3944 3945
	}

3946
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3947 3948 3949 3950 3951 3952 3953 3954

		seq_printf(m, "hierarchical_%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   true));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, true));
3955
		seq_putc(m, '\n');
3956 3957 3958 3959 3960 3961
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3962
static const unsigned int memcg1_stats[] = {
3963
	NR_FILE_PAGES,
3964
	NR_ANON_MAPPED,
3965 3966 3967
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	NR_ANON_THPS,
#endif
3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
3978
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3979
	"rss_huge",
3980
#endif
3981 3982 3983 3984 3985 3986 3987
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

3988
/* Universal VM events cgroup1 shows, original sort order */
3989
static const unsigned int memcg1_events[] = {
3990 3991 3992 3993 3994 3995
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

3996
static int memcg_stat_show(struct seq_file *m, void *v)
3997
{
3998
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3999
	unsigned long memory, memsw;
4000 4001
	struct mem_cgroup *mi;
	unsigned int i;
4002

4003
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4004

4005
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4006 4007
		unsigned long nr;

4008
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4009
			continue;
4010 4011 4012 4013 4014 4015
		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
		if (memcg1_stats[i] == NR_ANON_THPS)
			nr *= HPAGE_PMD_NR;
#endif
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4016
	}
L
Lee Schermerhorn 已提交
4017

4018
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4019
		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4020
			   memcg_events_local(memcg, memcg1_events[i]));
4021 4022

	for (i = 0; i < NR_LRU_LISTS; i++)
4023
		seq_printf(m, "%s %lu\n", lru_list_name(i),
4024
			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4025
			   PAGE_SIZE);
4026

K
KAMEZAWA Hiroyuki 已提交
4027
	/* Hierarchical information */
4028 4029
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4030 4031
		memory = min(memory, READ_ONCE(mi->memory.max));
		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4032
	}
4033 4034
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
4035
	if (do_memsw_account())
4036 4037
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
4038

4039
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4040
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4041
			continue;
4042
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4043 4044
			   (u64)memcg_page_state(memcg, memcg1_stats[i]) *
			   PAGE_SIZE);
4045 4046
	}

4047
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4048 4049
		seq_printf(m, "total_%s %llu\n",
			   vm_event_name(memcg1_events[i]),
4050
			   (u64)memcg_events(memcg, memcg1_events[i]));
4051

4052
	for (i = 0; i < NR_LRU_LISTS; i++)
4053
		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4054 4055
			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			   PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
4056

K
KOSAKI Motohiro 已提交
4057 4058
#ifdef CONFIG_DEBUG_VM
	{
4059 4060
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
4061 4062
		unsigned long anon_cost = 0;
		unsigned long file_cost = 0;
K
KOSAKI Motohiro 已提交
4063

4064 4065
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
K
KOSAKI Motohiro 已提交
4066

4067 4068
			anon_cost += mz->lruvec.anon_cost;
			file_cost += mz->lruvec.file_cost;
4069
		}
4070 4071
		seq_printf(m, "anon_cost %lu\n", anon_cost);
		seq_printf(m, "file_cost %lu\n", file_cost);
K
KOSAKI Motohiro 已提交
4072 4073 4074
	}
#endif

4075 4076 4077
	return 0;
}

4078 4079
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
4080
{
4081
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4082

4083
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4084 4085
}

4086 4087
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
4088
{
4089
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4090

4091
	if (val > 100)
K
KOSAKI Motohiro 已提交
4092 4093
		return -EINVAL;

4094
	if (css->parent)
4095 4096 4097
		memcg->swappiness = val;
	else
		vm_swappiness = val;
4098

K
KOSAKI Motohiro 已提交
4099 4100 4101
	return 0;
}

4102 4103 4104
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
4105
	unsigned long usage;
4106 4107 4108 4109
	int i;

	rcu_read_lock();
	if (!swap)
4110
		t = rcu_dereference(memcg->thresholds.primary);
4111
	else
4112
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4113 4114 4115 4116

	if (!t)
		goto unlock;

4117
	usage = mem_cgroup_usage(memcg, swap);
4118 4119

	/*
4120
	 * current_threshold points to threshold just below or equal to usage.
4121 4122 4123
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4124
	i = t->current_threshold;
4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4148
	t->current_threshold = i - 1;
4149 4150 4151 4152 4153 4154
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4155 4156
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
4157
		if (do_memsw_account())
4158 4159 4160 4161
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4162 4163 4164 4165 4166 4167 4168
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

4169 4170 4171 4172 4173 4174 4175
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
4176 4177
}

4178
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4179 4180 4181
{
	struct mem_cgroup_eventfd_list *ev;

4182 4183
	spin_lock(&memcg_oom_lock);

4184
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4185
		eventfd_signal(ev->eventfd, 1);
4186 4187

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4188 4189 4190
	return 0;
}

4191
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4192
{
K
KAMEZAWA Hiroyuki 已提交
4193 4194
	struct mem_cgroup *iter;

4195
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4196
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4197 4198
}

4199
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4200
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4201
{
4202 4203
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4204 4205
	unsigned long threshold;
	unsigned long usage;
4206
	int i, size, ret;
4207

4208
	ret = page_counter_memparse(args, "-1", &threshold);
4209 4210 4211 4212
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4213

4214
	if (type == _MEM) {
4215
		thresholds = &memcg->thresholds;
4216
		usage = mem_cgroup_usage(memcg, false);
4217
	} else if (type == _MEMSWAP) {
4218
		thresholds = &memcg->memsw_thresholds;
4219
		usage = mem_cgroup_usage(memcg, true);
4220
	} else
4221 4222 4223
		BUG();

	/* Check if a threshold crossed before adding a new one */
4224
	if (thresholds->primary)
4225 4226
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4227
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4228 4229

	/* Allocate memory for new array of thresholds */
4230
	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4231
	if (!new) {
4232 4233 4234
		ret = -ENOMEM;
		goto unlock;
	}
4235
	new->size = size;
4236 4237

	/* Copy thresholds (if any) to new array */
4238 4239
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4240
				sizeof(struct mem_cgroup_threshold));
4241 4242
	}

4243
	/* Add new threshold */
4244 4245
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4246 4247

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4248
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4249 4250 4251
			compare_thresholds, NULL);

	/* Find current threshold */
4252
	new->current_threshold = -1;
4253
	for (i = 0; i < size; i++) {
4254
		if (new->entries[i].threshold <= usage) {
4255
			/*
4256 4257
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4258 4259
			 * it here.
			 */
4260
			++new->current_threshold;
4261 4262
		} else
			break;
4263 4264
	}

4265 4266 4267 4268 4269
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4270

4271
	/* To be sure that nobody uses thresholds */
4272 4273 4274 4275 4276 4277 4278 4279
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4280
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4281 4282
	struct eventfd_ctx *eventfd, const char *args)
{
4283
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4284 4285
}

4286
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4287 4288
	struct eventfd_ctx *eventfd, const char *args)
{
4289
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4290 4291
}

4292
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4293
	struct eventfd_ctx *eventfd, enum res_type type)
4294
{
4295 4296
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4297
	unsigned long usage;
4298
	int i, j, size, entries;
4299 4300

	mutex_lock(&memcg->thresholds_lock);
4301 4302

	if (type == _MEM) {
4303
		thresholds = &memcg->thresholds;
4304
		usage = mem_cgroup_usage(memcg, false);
4305
	} else if (type == _MEMSWAP) {
4306
		thresholds = &memcg->memsw_thresholds;
4307
		usage = mem_cgroup_usage(memcg, true);
4308
	} else
4309 4310
		BUG();

4311 4312 4313
	if (!thresholds->primary)
		goto unlock;

4314 4315 4316 4317
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4318
	size = entries = 0;
4319 4320
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4321
			size++;
4322 4323
		else
			entries++;
4324 4325
	}

4326
	new = thresholds->spare;
4327

4328 4329 4330 4331
	/* If no items related to eventfd have been cleared, nothing to do */
	if (!entries)
		goto unlock;

4332 4333
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4334 4335
		kfree(new);
		new = NULL;
4336
		goto swap_buffers;
4337 4338
	}

4339
	new->size = size;
4340 4341

	/* Copy thresholds and find current threshold */
4342 4343 4344
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4345 4346
			continue;

4347
		new->entries[j] = thresholds->primary->entries[i];
4348
		if (new->entries[j].threshold <= usage) {
4349
			/*
4350
			 * new->current_threshold will not be used
4351 4352 4353
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4354
			++new->current_threshold;
4355 4356 4357 4358
		}
		j++;
	}

4359
swap_buffers:
4360 4361
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4362

4363
	rcu_assign_pointer(thresholds->primary, new);
4364

4365
	/* To be sure that nobody uses thresholds */
4366
	synchronize_rcu();
4367 4368 4369 4370 4371 4372

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
4373
unlock:
4374 4375
	mutex_unlock(&memcg->thresholds_lock);
}
4376

4377
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4378 4379
	struct eventfd_ctx *eventfd)
{
4380
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4381 4382
}

4383
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4384 4385
	struct eventfd_ctx *eventfd)
{
4386
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4387 4388
}

4389
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4390
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4391 4392 4393 4394 4395 4396 4397
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4398
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4399 4400 4401 4402 4403

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4404
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
4405
		eventfd_signal(eventfd, 1);
4406
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4407 4408 4409 4410

	return 0;
}

4411
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4412
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4413 4414 4415
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4416
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4417

4418
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4419 4420 4421 4422 4423 4424
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4425
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4426 4427
}

4428
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4429
{
4430
	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4431

4432
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4433
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
R
Roman Gushchin 已提交
4434 4435
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4436 4437 4438
	return 0;
}

4439
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4440 4441
	struct cftype *cft, u64 val)
{
4442
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4443 4444

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4445
	if (!css->parent || !((val == 0) || (val == 1)))
4446 4447
		return -EINVAL;

4448
	memcg->oom_kill_disable = val;
4449
	if (!val)
4450
		memcg_oom_recover(memcg);
4451

4452 4453 4454
	return 0;
}

4455 4456
#ifdef CONFIG_CGROUP_WRITEBACK

4457 4458
#include <trace/events/writeback.h>

T
Tejun Heo 已提交
4459 4460 4461 4462 4463 4464 4465 4466 4467 4468
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

4469 4470 4471 4472 4473
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

4484 4485 4486 4487 4488 4489
/*
 * idx can be of type enum memcg_stat_item or node_stat_item.
 * Keep in sync with memcg_exact_page().
 */
static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
{
4490
	long x = atomic_long_read(&memcg->vmstats[idx]);
4491 4492 4493
	int cpu;

	for_each_online_cpu(cpu)
4494
		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4495 4496 4497 4498 4499
	if (x < 0)
		x = 0;
	return x;
}

4500 4501 4502
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
4503 4504
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
4505 4506 4507
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
4508 4509 4510
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
4511
 *
4512 4513 4514 4515 4516
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
4517
 */
4518 4519 4520
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
4521 4522 4523 4524
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

4525
	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4526

4527
	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4528 4529
	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4530
	*pheadroom = PAGE_COUNTER_MAX;
4531 4532

	while ((parent = parent_mem_cgroup(memcg))) {
4533
		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4534
					    READ_ONCE(memcg->memory.high));
4535 4536
		unsigned long used = page_counter_read(&memcg->memory);

4537
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4538 4539 4540 4541
		memcg = parent;
	}
}

4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595
/*
 * Foreign dirty flushing
 *
 * There's an inherent mismatch between memcg and writeback.  The former
 * trackes ownership per-page while the latter per-inode.  This was a
 * deliberate design decision because honoring per-page ownership in the
 * writeback path is complicated, may lead to higher CPU and IO overheads
 * and deemed unnecessary given that write-sharing an inode across
 * different cgroups isn't a common use-case.
 *
 * Combined with inode majority-writer ownership switching, this works well
 * enough in most cases but there are some pathological cases.  For
 * example, let's say there are two cgroups A and B which keep writing to
 * different but confined parts of the same inode.  B owns the inode and
 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
 * triggering background writeback.  A will be slowed down without a way to
 * make writeback of the dirty pages happen.
 *
 * Conditions like the above can lead to a cgroup getting repatedly and
 * severely throttled after making some progress after each
 * dirty_expire_interval while the underyling IO device is almost
 * completely idle.
 *
 * Solving this problem completely requires matching the ownership tracking
 * granularities between memcg and writeback in either direction.  However,
 * the more egregious behaviors can be avoided by simply remembering the
 * most recent foreign dirtying events and initiating remote flushes on
 * them when local writeback isn't enough to keep the memory clean enough.
 *
 * The following two functions implement such mechanism.  When a foreign
 * page - a page whose memcg and writeback ownerships don't match - is
 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
 * decides that the memcg needs to sleep due to high dirty ratio, it calls
 * mem_cgroup_flush_foreign() which queues writeback on the recorded
 * foreign bdi_writebacks which haven't expired.  Both the numbers of
 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
 * limited to MEMCG_CGWB_FRN_CNT.
 *
 * The mechanism only remembers IDs and doesn't hold any object references.
 * As being wrong occasionally doesn't matter, updates and accesses to the
 * records are lockless and racy.
 */
void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
					     struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = page->mem_cgroup;
	struct memcg_cgwb_frn *frn;
	u64 now = get_jiffies_64();
	u64 oldest_at = now;
	int oldest = -1;
	int i;

4596 4597
	trace_track_foreign_dirty(page, wb);

4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
	/*
	 * Pick the slot to use.  If there is already a slot for @wb, keep
	 * using it.  If not replace the oldest one which isn't being
	 * written out.
	 */
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		frn = &memcg->cgwb_frn[i];
		if (frn->bdi_id == wb->bdi->id &&
		    frn->memcg_id == wb->memcg_css->id)
			break;
		if (time_before64(frn->at, oldest_at) &&
		    atomic_read(&frn->done.cnt) == 1) {
			oldest = i;
			oldest_at = frn->at;
		}
	}

	if (i < MEMCG_CGWB_FRN_CNT) {
		/*
		 * Re-using an existing one.  Update timestamp lazily to
		 * avoid making the cacheline hot.  We want them to be
		 * reasonably up-to-date and significantly shorter than
		 * dirty_expire_interval as that's what expires the record.
		 * Use the shorter of 1s and dirty_expire_interval / 8.
		 */
		unsigned long update_intv =
			min_t(unsigned long, HZ,
			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);

		if (time_before64(frn->at, now - update_intv))
			frn->at = now;
	} else if (oldest >= 0) {
		/* replace the oldest free one */
		frn = &memcg->cgwb_frn[oldest];
		frn->bdi_id = wb->bdi->id;
		frn->memcg_id = wb->memcg_css->id;
		frn->at = now;
	}
}

/* issue foreign writeback flushes for recorded foreign dirtying events */
void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
	u64 now = jiffies_64;
	int i;

	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];

		/*
		 * If the record is older than dirty_expire_interval,
		 * writeback on it has already started.  No need to kick it
		 * off again.  Also, don't start a new one if there's
		 * already one in flight.
		 */
		if (time_after64(frn->at, now - intv) &&
		    atomic_read(&frn->done.cnt) == 1) {
			frn->at = 0;
4658
			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4659 4660 4661 4662 4663 4664 4665
			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
					       WB_REASON_FOREIGN_FLUSH,
					       &frn->done);
		}
	}
}

T
Tejun Heo 已提交
4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

4677 4678 4679 4680
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

4681 4682
#endif	/* CONFIG_CGROUP_WRITEBACK */

4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4696 4697 4698 4699 4700
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4701
static void memcg_event_remove(struct work_struct *work)
4702
{
4703 4704
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4705
	struct mem_cgroup *memcg = event->memcg;
4706 4707 4708

	remove_wait_queue(event->wqh, &event->wait);

4709
	event->unregister_event(memcg, event->eventfd);
4710 4711 4712 4713 4714 4715

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4716
	css_put(&memcg->css);
4717 4718 4719
}

/*
4720
 * Gets called on EPOLLHUP on eventfd when user closes it.
4721 4722 4723
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4724
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4725
			    int sync, void *key)
4726
{
4727 4728
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4729
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
4730
	__poll_t flags = key_to_poll(key);
4731

4732
	if (flags & EPOLLHUP) {
4733 4734 4735 4736 4737 4738 4739 4740 4741
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4742
		spin_lock(&memcg->event_list_lock);
4743 4744 4745 4746 4747 4748 4749 4750
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4751
		spin_unlock(&memcg->event_list_lock);
4752 4753 4754 4755 4756
	}

	return 0;
}

4757
static void memcg_event_ptable_queue_proc(struct file *file,
4758 4759
		wait_queue_head_t *wqh, poll_table *pt)
{
4760 4761
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4762 4763 4764 4765 4766 4767

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4768 4769
 * DO NOT USE IN NEW FILES.
 *
4770 4771 4772 4773 4774
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4775 4776
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4777
{
4778
	struct cgroup_subsys_state *css = of_css(of);
4779
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4780
	struct mem_cgroup_event *event;
4781 4782 4783 4784
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4785
	const char *name;
4786 4787 4788
	char *endp;
	int ret;

4789 4790 4791
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4792 4793
	if (*endp != ' ')
		return -EINVAL;
4794
	buf = endp + 1;
4795

4796
	cfd = simple_strtoul(buf, &endp, 10);
4797 4798
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4799
	buf = endp + 1;
4800 4801 4802 4803 4804

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4805
	event->memcg = memcg;
4806
	INIT_LIST_HEAD(&event->list);
4807 4808 4809
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4835 4836 4837 4838 4839
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4840 4841
	 *
	 * DO NOT ADD NEW FILES.
4842
	 */
A
Al Viro 已提交
4843
	name = cfile.file->f_path.dentry->d_name.name;
4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4855 4856
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4857 4858 4859 4860 4861
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4862
	/*
4863 4864 4865
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4866
	 */
A
Al Viro 已提交
4867
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4868
					       &memory_cgrp_subsys);
4869
	ret = -EINVAL;
4870
	if (IS_ERR(cfile_css))
4871
		goto out_put_cfile;
4872 4873
	if (cfile_css != css) {
		css_put(cfile_css);
4874
		goto out_put_cfile;
4875
	}
4876

4877
	ret = event->register_event(memcg, event->eventfd, buf);
4878 4879 4880
	if (ret)
		goto out_put_css;

4881
	vfs_poll(efile.file, &event->pt);
4882

4883 4884 4885
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4886 4887 4888 4889

	fdput(cfile);
	fdput(efile);

4890
	return nbytes;
4891 4892

out_put_css:
4893
	css_put(css);
4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4906
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4907
	{
4908
		.name = "usage_in_bytes",
4909
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4910
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4911
	},
4912 4913
	{
		.name = "max_usage_in_bytes",
4914
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4915
		.write = mem_cgroup_reset,
4916
		.read_u64 = mem_cgroup_read_u64,
4917
	},
B
Balbir Singh 已提交
4918
	{
4919
		.name = "limit_in_bytes",
4920
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4921
		.write = mem_cgroup_write,
4922
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4923
	},
4924 4925 4926
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4927
		.write = mem_cgroup_write,
4928
		.read_u64 = mem_cgroup_read_u64,
4929
	},
B
Balbir Singh 已提交
4930 4931
	{
		.name = "failcnt",
4932
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4933
		.write = mem_cgroup_reset,
4934
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4935
	},
4936 4937
	{
		.name = "stat",
4938
		.seq_show = memcg_stat_show,
4939
	},
4940 4941
	{
		.name = "force_empty",
4942
		.write = mem_cgroup_force_empty_write,
4943
	},
4944 4945 4946 4947 4948
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4949
	{
4950
		.name = "cgroup.event_control",		/* XXX: for compat */
4951
		.write = memcg_write_event_control,
4952
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4953
	},
K
KOSAKI Motohiro 已提交
4954 4955 4956 4957 4958
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4959 4960 4961 4962 4963
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4964 4965
	{
		.name = "oom_control",
4966
		.seq_show = mem_cgroup_oom_control_read,
4967
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4968 4969
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4970 4971 4972
	{
		.name = "pressure_level",
	},
4973 4974 4975
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4976
		.seq_show = memcg_numa_stat_show,
4977 4978
	},
#endif
4979 4980 4981
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4982
		.write = mem_cgroup_write,
4983
		.read_u64 = mem_cgroup_read_u64,
4984 4985 4986 4987
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4988
		.read_u64 = mem_cgroup_read_u64,
4989 4990 4991 4992
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4993
		.write = mem_cgroup_reset,
4994
		.read_u64 = mem_cgroup_read_u64,
4995 4996 4997 4998
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4999
		.write = mem_cgroup_reset,
5000
		.read_u64 = mem_cgroup_read_u64,
5001
	},
5002 5003
#if defined(CONFIG_MEMCG_KMEM) && \
	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5004 5005
	{
		.name = "kmem.slabinfo",
5006
		.seq_show = memcg_slab_show,
5007 5008
	},
#endif
V
Vladimir Davydov 已提交
5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
5032
	{ },	/* terminate */
5033
};
5034

5035 5036 5037 5038 5039 5040 5041 5042
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
5043
 * However, there usually are many references to the offline CSS after
5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

5061 5062 5063 5064 5065 5066 5067 5068
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

5069 5070
static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
						  unsigned int n)
5071
{
5072
	refcount_add(n, &memcg->id.ref);
5073 5074
}

5075
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5076
{
5077
	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5078
		mem_cgroup_id_remove(memcg);
5079 5080 5081 5082 5083 5084

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

5085 5086 5087 5088 5089
static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

5102
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5103 5104
{
	struct mem_cgroup_per_node *pn;
5105
	int tmp = node;
5106 5107 5108 5109 5110 5111 5112 5113
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5114 5115
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5116
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5117 5118
	if (!pn)
		return 1;
5119

5120 5121 5122 5123 5124 5125
	pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat_local) {
		kfree(pn);
		return 1;
	}

5126 5127
	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat_cpu) {
5128
		free_percpu(pn->lruvec_stat_local);
5129 5130 5131 5132
		kfree(pn);
		return 1;
	}

5133 5134 5135 5136 5137
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

5138
	memcg->nodeinfo[node] = pn;
5139 5140 5141
	return 0;
}

5142
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5143
{
5144 5145
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
5146 5147 5148
	if (!pn)
		return;

5149
	free_percpu(pn->lruvec_stat_cpu);
5150
	free_percpu(pn->lruvec_stat_local);
5151
	kfree(pn);
5152 5153
}

5154
static void __mem_cgroup_free(struct mem_cgroup *memcg)
5155
{
5156
	int node;
5157

5158
	for_each_node(node)
5159
		free_mem_cgroup_per_node_info(memcg, node);
5160
	free_percpu(memcg->vmstats_percpu);
5161
	free_percpu(memcg->vmstats_local);
5162
	kfree(memcg);
5163
}
5164

5165 5166 5167
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
5168 5169 5170 5171
	/*
	 * Flush percpu vmstats and vmevents to guarantee the value correctness
	 * on parent's and all ancestor levels.
	 */
5172
	memcg_flush_percpu_vmstats(memcg);
5173
	memcg_flush_percpu_vmevents(memcg);
5174 5175 5176
	__mem_cgroup_free(memcg);
}

5177
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
5178
{
5179
	struct mem_cgroup *memcg;
5180
	unsigned int size;
5181
	int node;
5182
	int __maybe_unused i;
5183
	long error = -ENOMEM;
B
Balbir Singh 已提交
5184

5185 5186 5187 5188
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
5189
	if (!memcg)
5190
		return ERR_PTR(error);
5191

5192 5193 5194
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
5195 5196
	if (memcg->id.id < 0) {
		error = memcg->id.id;
5197
		goto fail;
5198
	}
5199

5200 5201 5202 5203
	memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
	if (!memcg->vmstats_local)
		goto fail;

5204 5205
	memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
	if (!memcg->vmstats_percpu)
5206
		goto fail;
5207

B
Bob Liu 已提交
5208
	for_each_node(node)
5209
		if (alloc_mem_cgroup_per_node_info(memcg, node))
5210
			goto fail;
5211

5212 5213
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
5214

5215
	INIT_WORK(&memcg->high_work, high_work_func);
5216 5217 5218
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5219
	vmpressure_init(&memcg->vmpressure);
5220 5221
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
5222
	memcg->socket_pressure = jiffies;
5223
#ifdef CONFIG_MEMCG_KMEM
V
Vladimir Davydov 已提交
5224
	memcg->kmemcg_id = -1;
R
Roman Gushchin 已提交
5225
	INIT_LIST_HEAD(&memcg->objcg_list);
V
Vladimir Davydov 已提交
5226
#endif
5227 5228
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
5229 5230 5231
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		memcg->cgwb_frn[i].done =
			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5232 5233 5234 5235 5236
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
	memcg->deferred_split_queue.split_queue_len = 0;
5237
#endif
5238
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5239 5240
	return memcg;
fail:
5241
	mem_cgroup_id_remove(memcg);
5242
	__mem_cgroup_free(memcg);
5243
	return ERR_PTR(error);
5244 5245
}

5246 5247
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5248
{
5249 5250 5251
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
5252

5253
	memcg = mem_cgroup_alloc();
5254 5255
	if (IS_ERR(memcg))
		return ERR_CAST(memcg);
5256

5257
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5258
	memcg->soft_limit = PAGE_COUNTER_MAX;
5259
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5260 5261 5262 5263 5264 5265
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
5266
		page_counter_init(&memcg->memory, &parent->memory);
5267
		page_counter_init(&memcg->swap, &parent->swap);
5268 5269
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
5270
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5271
	} else {
5272
		page_counter_init(&memcg->memory, NULL);
5273
		page_counter_init(&memcg->swap, NULL);
5274 5275
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
5276
		page_counter_init(&memcg->tcpmem, NULL);
5277 5278 5279 5280 5281
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
5282
		if (parent != root_mem_cgroup)
5283
			memory_cgrp_subsys.broken_hierarchy = true;
5284
	}
5285

5286 5287 5288 5289 5290 5291
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

5292
	error = memcg_online_kmem(memcg);
5293 5294
	if (error)
		goto fail;
5295

5296
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5297
		static_branch_inc(&memcg_sockets_enabled_key);
5298

5299 5300
	return &memcg->css;
fail:
5301
	mem_cgroup_id_remove(memcg);
5302
	mem_cgroup_free(memcg);
5303
	return ERR_PTR(error);
5304 5305
}

5306
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5307
{
5308 5309
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5310 5311 5312 5313 5314 5315 5316 5317 5318 5319
	/*
	 * A memcg must be visible for memcg_expand_shrinker_maps()
	 * by the time the maps are allocated. So, we allocate maps
	 * here, when for_each_mem_cgroup() can't skip it.
	 */
	if (memcg_alloc_shrinker_maps(memcg)) {
		mem_cgroup_id_remove(memcg);
		return -ENOMEM;
	}

5320
	/* Online state pins memcg ID, memcg ID pins CSS */
5321
	refcount_set(&memcg->id.ref, 1);
5322
	css_get(css);
5323
	return 0;
B
Balbir Singh 已提交
5324 5325
}

5326
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5327
{
5328
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5329
	struct mem_cgroup_event *event, *tmp;
5330 5331 5332 5333 5334 5335

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
5336 5337
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5338 5339 5340
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
5341
	spin_unlock(&memcg->event_list_lock);
5342

R
Roman Gushchin 已提交
5343
	page_counter_set_min(&memcg->memory, 0);
5344
	page_counter_set_low(&memcg->memory, 0);
5345

5346
	memcg_offline_kmem(memcg);
5347
	wb_memcg_offline(memcg);
5348

5349 5350
	drain_all_stock(memcg);

5351
	mem_cgroup_id_put(memcg);
5352 5353
}

5354 5355 5356 5357 5358 5359 5360
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

5361
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
5362
{
5363
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5364
	int __maybe_unused i;
5365

5366 5367 5368 5369
#ifdef CONFIG_CGROUP_WRITEBACK
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
#endif
5370
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5371
		static_branch_dec(&memcg_sockets_enabled_key);
5372

5373
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
5374
		static_branch_dec(&memcg_sockets_enabled_key);
5375

5376 5377 5378
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
5379
	memcg_free_shrinker_maps(memcg);
5380
	memcg_free_kmem(memcg);
5381
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
5382 5383
}

5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5401 5402 5403 5404 5405
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
R
Roman Gushchin 已提交
5406
	page_counter_set_min(&memcg->memory, 0);
5407
	page_counter_set_low(&memcg->memory, 0);
5408
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5409
	memcg->soft_limit = PAGE_COUNTER_MAX;
5410
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5411
	memcg_wb_domain_size_changed(memcg);
5412 5413
}

5414
#ifdef CONFIG_MMU
5415
/* Handlers for move charge at task migration. */
5416
static int mem_cgroup_do_precharge(unsigned long count)
5417
{
5418
	int ret;
5419

5420 5421
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5422
	if (!ret) {
5423 5424 5425
		mc.precharge += count;
		return ret;
	}
5426

5427
	/* Try charges one by one with reclaim, but do not retry */
5428
	while (count--) {
5429
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5430 5431
		if (ret)
			return ret;
5432
		mc.precharge++;
5433
		cond_resched();
5434
	}
5435
	return 0;
5436 5437 5438 5439
}

union mc_target {
	struct page	*page;
5440
	swp_entry_t	ent;
5441 5442 5443
};

enum mc_target_type {
5444
	MC_TARGET_NONE = 0,
5445
	MC_TARGET_PAGE,
5446
	MC_TARGET_SWAP,
5447
	MC_TARGET_DEVICE,
5448 5449
};

D
Daisuke Nishimura 已提交
5450 5451
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5452
{
5453
	struct page *page = vm_normal_page(vma, addr, ptent);
5454

D
Daisuke Nishimura 已提交
5455 5456 5457
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
5458
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5459
			return NULL;
5460 5461 5462 5463
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
5464 5465 5466 5467 5468 5469
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5470
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
5471
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5472
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
5473 5474 5475 5476
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

5477
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
5478
		return NULL;
5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
		page = device_private_entry_to_page(ent);
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

5496 5497 5498 5499
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5500
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5501
	entry->val = ent.val;
D
Daisuke Nishimura 已提交
5502 5503 5504

	return page;
}
5505 5506
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5507
			pte_t ptent, swp_entry_t *entry)
5508 5509 5510 5511
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5512

5513 5514 5515 5516 5517 5518 5519 5520 5521
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
5522
	if (!(mc.flags & MOVE_FILE))
5523 5524 5525
		return NULL;

	mapping = vma->vm_file->f_mapping;
5526
	pgoff = linear_page_index(vma, addr);
5527 5528

	/* page is moved even if it's not RSS of this task(page-faulted). */
5529 5530
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
5531 5532
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
5533
		if (xa_is_value(page)) {
5534
			swp_entry_t swp = radix_to_swp_entry(page);
5535
			*entry = swp;
5536 5537
			page = find_get_page(swap_address_space(swp),
					     swp_offset(swp));
5538 5539 5540 5541 5542
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
5543
#endif
5544 5545 5546
	return page;
}

5547 5548 5549
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
5550
 * @compound: charge the page as compound or small page
5551 5552 5553
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
5554
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5555 5556 5557 5558 5559
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
5560
				   bool compound,
5561 5562 5563
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
5564 5565
	struct lruvec *from_vec, *to_vec;
	struct pglist_data *pgdat;
5566
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5567 5568 5569 5570
	int ret;

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
5571
	VM_BUG_ON(compound && !PageTransHuge(page));
5572 5573

	/*
5574
	 * Prevent mem_cgroup_migrate() from looking at
5575
	 * page->mem_cgroup of its source page while we change it.
5576
	 */
5577
	ret = -EBUSY;
5578 5579 5580 5581 5582 5583 5584
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

5585
	pgdat = page_pgdat(page);
5586 5587
	from_vec = mem_cgroup_lruvec(from, pgdat);
	to_vec = mem_cgroup_lruvec(to, pgdat);
5588

5589
	lock_page_memcg(page);
5590

5591 5592 5593 5594
	if (PageAnon(page)) {
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5595 5596 5597 5598 5599 5600 5601
			if (PageTransHuge(page)) {
				__mod_lruvec_state(from_vec, NR_ANON_THPS,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_ANON_THPS,
						   nr_pages);
			}

5602 5603
		}
	} else {
5604 5605 5606 5607 5608 5609 5610 5611
		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);

		if (PageSwapBacked(page)) {
			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
		}

5612 5613 5614 5615
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
		}
5616

5617 5618
		if (PageDirty(page)) {
			struct address_space *mapping = page_mapping(page);
5619

5620 5621 5622 5623 5624 5625
			if (mapping_cap_account_dirty(mapping)) {
				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
						   nr_pages);
			}
5626 5627 5628
		}
	}

5629
	if (PageWriteback(page)) {
5630 5631
		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5632 5633 5634
	}

	/*
5635 5636
	 * All state has been migrated, let's switch to the new memcg.
	 *
5637
	 * It is safe to change page->mem_cgroup here because the page
5638 5639 5640 5641 5642 5643 5644 5645
	 * is referenced, charged, isolated, and locked: we can't race
	 * with (un)charging, migration, LRU putback, or anything else
	 * that would rely on a stable page->mem_cgroup.
	 *
	 * Note that lock_page_memcg is a memcg lock, not a page lock,
	 * to save space. As soon as we switch page->mem_cgroup to a
	 * new memcg that isn't locked, the above state can change
	 * concurrently again. Make sure we're truly done with it.
5646
	 */
5647
	smp_mb();
5648

5649 5650 5651 5652
	css_get(&to->css);
	css_put(&from->css);

	page->mem_cgroup = to;
5653

5654
	__unlock_page_memcg(from);
5655 5656 5657 5658

	ret = 0;

	local_irq_disable();
5659
	mem_cgroup_charge_statistics(to, page, nr_pages);
5660
	memcg_check_events(to, page);
5661
	mem_cgroup_charge_statistics(from, page, -nr_pages);
5662 5663 5664 5665 5666 5667 5668 5669
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5685 5686
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
 *     (so ZONE_DEVICE page and thus not on the lru).
5687 5688 5689
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
5690 5691
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5692 5693 5694 5695
 *
 * Called with pte lock held.
 */

5696
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5697 5698 5699
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
5700
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5701 5702 5703 5704 5705
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
5706
		page = mc_handle_swap_pte(vma, ptent, &ent);
5707
	else if (pte_none(ptent))
5708
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5709 5710

	if (!page && !ent.val)
5711
		return ret;
5712 5713
	if (page) {
		/*
5714
		 * Do only loose check w/o serialization.
5715
		 * mem_cgroup_move_account() checks the page is valid or
5716
		 * not under LRU exclusion.
5717
		 */
5718
		if (page->mem_cgroup == mc.from) {
5719
			ret = MC_TARGET_PAGE;
5720
			if (is_device_private_page(page))
5721
				ret = MC_TARGET_DEVICE;
5722 5723 5724 5725 5726 5727
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
5728 5729 5730 5731 5732
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
5733
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5734 5735 5736
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5737 5738 5739 5740
	}
	return ret;
}

5741 5742
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
5743 5744
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
5745 5746 5747 5748 5749 5750 5751 5752
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

5753 5754 5755 5756 5757
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
5758
	page = pmd_page(pmd);
5759
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5760
	if (!(mc.flags & MOVE_ANON))
5761
		return ret;
5762
	if (page->mem_cgroup == mc.from) {
5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5779 5780 5781 5782
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
5783
	struct vm_area_struct *vma = walk->vma;
5784 5785 5786
	pte_t *pte;
	spinlock_t *ptl;

5787 5788
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5789 5790
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5791 5792
		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
		 * this might change.
5793
		 */
5794 5795
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5796
		spin_unlock(ptl);
5797
		return 0;
5798
	}
5799

5800 5801
	if (pmd_trans_unstable(pmd))
		return 0;
5802 5803
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5804
		if (get_mctgt_type(vma, addr, *pte, NULL))
5805 5806 5807 5808
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5809 5810 5811
	return 0;
}

5812 5813 5814 5815
static const struct mm_walk_ops precharge_walk_ops = {
	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
};

5816 5817 5818 5819
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

5820
	mmap_read_lock(mm);
5821
	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5822
	mmap_read_unlock(mm);
5823 5824 5825 5826 5827 5828 5829 5830 5831

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5832 5833 5834 5835 5836
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5837 5838
}

5839 5840
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5841
{
5842 5843 5844
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5845
	/* we must uncharge all the leftover precharges from mc.to */
5846
	if (mc.precharge) {
5847
		cancel_charge(mc.to, mc.precharge);
5848 5849 5850 5851 5852 5853 5854
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5855
		cancel_charge(mc.from, mc.moved_charge);
5856
		mc.moved_charge = 0;
5857
	}
5858 5859 5860
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5861
		if (!mem_cgroup_is_root(mc.from))
5862
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5863

5864 5865
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

5866
		/*
5867 5868
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5869
		 */
5870
		if (!mem_cgroup_is_root(mc.to))
5871 5872
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5873 5874
		mc.moved_swap = 0;
	}
5875 5876 5877 5878 5879 5880 5881
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
5882 5883
	struct mm_struct *mm = mc.mm;

5884 5885 5886 5887 5888 5889
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5890
	spin_lock(&mc.lock);
5891 5892
	mc.from = NULL;
	mc.to = NULL;
5893
	mc.mm = NULL;
5894
	spin_unlock(&mc.lock);
5895 5896

	mmput(mm);
5897 5898
}

5899
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5900
{
5901
	struct cgroup_subsys_state *css;
5902
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5903
	struct mem_cgroup *from;
5904
	struct task_struct *leader, *p;
5905
	struct mm_struct *mm;
5906
	unsigned long move_flags;
5907
	int ret = 0;
5908

5909 5910
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5911 5912
		return 0;

5913 5914 5915 5916 5917 5918 5919
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
5920
	cgroup_taskset_for_each_leader(leader, css, tset) {
5921 5922
		WARN_ON_ONCE(p);
		p = leader;
5923
		memcg = mem_cgroup_from_css(css);
5924 5925 5926 5927
	}
	if (!p)
		return 0;

5928 5929 5930 5931 5932 5933 5934 5935 5936
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
5953
		mc.mm = mm;
5954 5955 5956 5957 5958 5959 5960 5961 5962
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
5963 5964
	} else {
		mmput(mm);
5965 5966 5967 5968
	}
	return ret;
}

5969
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5970
{
5971 5972
	if (mc.to)
		mem_cgroup_clear_mc();
5973 5974
}

5975 5976 5977
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5978
{
5979
	int ret = 0;
5980
	struct vm_area_struct *vma = walk->vma;
5981 5982
	pte_t *pte;
	spinlock_t *ptl;
5983 5984 5985
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5986

5987 5988
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5989
		if (mc.precharge < HPAGE_PMD_NR) {
5990
			spin_unlock(ptl);
5991 5992 5993 5994 5995 5996
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
5997
				if (!mem_cgroup_move_account(page, true,
5998
							     mc.from, mc.to)) {
5999 6000 6001 6002 6003 6004
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
6005 6006 6007 6008 6009 6010 6011 6012
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
6013
		}
6014
		spin_unlock(ptl);
6015
		return 0;
6016 6017
	}

6018 6019
	if (pmd_trans_unstable(pmd))
		return 0;
6020 6021 6022 6023
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6024
		bool device = false;
6025
		swp_entry_t ent;
6026 6027 6028 6029

		if (!mc.precharge)
			break;

6030
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6031 6032
		case MC_TARGET_DEVICE:
			device = true;
J
Joe Perches 已提交
6033
			fallthrough;
6034 6035
		case MC_TARGET_PAGE:
			page = target.page;
6036 6037 6038 6039 6040 6041 6042 6043
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
6044
			if (!device && isolate_lru_page(page))
6045
				goto put;
6046 6047
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
6048
				mc.precharge--;
6049 6050
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6051
			}
6052 6053
			if (!device)
				putback_lru_page(page);
6054
put:			/* get_mctgt_type() gets the page */
6055 6056
			put_page(page);
			break;
6057 6058
		case MC_TARGET_SWAP:
			ent = target.ent;
6059
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6060
				mc.precharge--;
6061 6062
				mem_cgroup_id_get_many(mc.to, 1);
				/* we fixup other refcnts and charges later. */
6063 6064
				mc.moved_swap++;
			}
6065
			break;
6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6080
		ret = mem_cgroup_do_precharge(1);
6081 6082 6083 6084 6085 6086 6087
		if (!ret)
			goto retry;
	}

	return ret;
}

6088 6089 6090 6091
static const struct mm_walk_ops charge_walk_ops = {
	.pmd_entry	= mem_cgroup_move_charge_pte_range,
};

6092
static void mem_cgroup_move_charge(void)
6093 6094
{
	lru_add_drain_all();
6095
	/*
6096 6097 6098
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
6099 6100 6101
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
6102
retry:
6103
	if (unlikely(!mmap_read_trylock(mc.mm))) {
6104
		/*
6105
		 * Someone who are holding the mmap_lock might be waiting in
6106 6107 6108 6109 6110 6111 6112 6113 6114
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6115 6116 6117 6118
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
6119 6120
	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
			NULL);
6121

6122
	mmap_read_unlock(mc.mm);
6123
	atomic_dec(&mc.from->moving_account);
6124 6125
}

6126
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
6127
{
6128 6129
	if (mc.to) {
		mem_cgroup_move_charge();
6130
		mem_cgroup_clear_mc();
6131
	}
B
Balbir Singh 已提交
6132
}
6133
#else	/* !CONFIG_MMU */
6134
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6135 6136 6137
{
	return 0;
}
6138
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6139 6140
{
}
6141
static void mem_cgroup_move_task(void)
6142 6143 6144
{
}
#endif
B
Balbir Singh 已提交
6145

6146 6147
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6148 6149
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
6150
 */
6151
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6152 6153
{
	/*
6154
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
6155 6156 6157
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
6158
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6159 6160 6161
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
6162 6163
}

6164 6165 6166 6167 6168 6169 6170 6171 6172 6173
static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
{
	if (value == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);

	return 0;
}

6174 6175 6176
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
6177 6178 6179
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6180 6181
}

R
Roman Gushchin 已提交
6182 6183
static int memory_min_show(struct seq_file *m, void *v)
{
6184 6185
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
R
Roman Gushchin 已提交
6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

6205 6206
static int memory_low_show(struct seq_file *m, void *v)
{
6207 6208
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6209 6210 6211 6212 6213 6214 6215 6216 6217 6218
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
6219
	err = page_counter_memparse(buf, "max", &low);
6220 6221 6222
	if (err)
		return err;

6223
	page_counter_set_low(&memcg->memory, low);
6224 6225 6226 6227 6228 6229

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
6230 6231
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6232 6233 6234 6235 6236 6237
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6238 6239
	unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
6240 6241 6242 6243
	unsigned long high;
	int err;

	buf = strstrip(buf);
6244
	err = page_counter_memparse(buf, "max", &high);
6245 6246 6247
	if (err)
		return err;

6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269
	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);
		unsigned long reclaimed;

		if (nr_pages <= high)
			break;

		if (signal_pending(current))
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
							 GFP_KERNEL, true);

		if (!reclaimed && !nr_retries--)
			break;
	}
6270

6271 6272
	page_counter_set_high(&memcg->memory, high);

6273 6274 6275 6276 6277
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
6278 6279
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6280 6281 6282 6283 6284 6285
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6286 6287
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
6288 6289 6290 6291
	unsigned long max;
	int err;

	buf = strstrip(buf);
6292
	err = page_counter_memparse(buf, "max", &max);
6293 6294 6295
	if (err)
		return err;

6296
	xchg(&memcg->memory.max, max);
6297 6298 6299 6300 6301 6302 6303

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

6304
		if (signal_pending(current))
6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

6320
		memcg_memory_event(memcg, MEMCG_OOM);
6321 6322 6323
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
6324

6325
	memcg_wb_domain_size_changed(memcg);
6326 6327 6328
	return nbytes;
}

6329 6330 6331 6332 6333 6334 6335 6336 6337 6338
static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
{
	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&events[MEMCG_OOM_KILL]));
}

6339 6340
static int memory_events_show(struct seq_file *m, void *v)
{
6341
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6342

6343 6344 6345 6346 6347 6348 6349
	__memory_events_show(m, memcg->memory_events);
	return 0;
}

static int memory_events_local_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6350

6351
	__memory_events_show(m, memcg->memory_events_local);
6352 6353 6354
	return 0;
}

6355 6356
static int memory_stat_show(struct seq_file *m, void *v)
{
6357
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6358
	char *buf;
6359

6360 6361 6362 6363 6364
	buf = memory_stat_format(memcg);
	if (!buf)
		return -ENOMEM;
	seq_puts(m, buf);
	kfree(buf);
6365 6366 6367
	return 0;
}

6368 6369
static int memory_oom_group_show(struct seq_file *m, void *v)
{
6370
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398

	seq_printf(m, "%d\n", memcg->oom_group);

	return 0;
}

static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
				      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	int ret, oom_group;

	buf = strstrip(buf);
	if (!buf)
		return -EINVAL;

	ret = kstrtoint(buf, 0, &oom_group);
	if (ret)
		return ret;

	if (oom_group != 0 && oom_group != 1)
		return -EINVAL;

	memcg->oom_group = oom_group;

	return nbytes;
}

6399 6400 6401
static struct cftype memory_files[] = {
	{
		.name = "current",
6402
		.flags = CFTYPE_NOT_ON_ROOT,
6403 6404
		.read_u64 = memory_current_read,
	},
R
Roman Gushchin 已提交
6405 6406 6407 6408 6409 6410
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
6432
		.file_offset = offsetof(struct mem_cgroup, events_file),
6433 6434
		.seq_show = memory_events_show,
	},
6435 6436 6437 6438 6439 6440
	{
		.name = "events.local",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, events_local_file),
		.seq_show = memory_events_local_show,
	},
6441 6442 6443 6444
	{
		.name = "stat",
		.seq_show = memory_stat_show,
	},
6445 6446 6447 6448 6449 6450
	{
		.name = "oom.group",
		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
		.seq_show = memory_oom_group_show,
		.write = memory_oom_group_write,
	},
6451 6452 6453
	{ }	/* terminate */
};

6454
struct cgroup_subsys memory_cgrp_subsys = {
6455
	.css_alloc = mem_cgroup_css_alloc,
6456
	.css_online = mem_cgroup_css_online,
6457
	.css_offline = mem_cgroup_css_offline,
6458
	.css_released = mem_cgroup_css_released,
6459
	.css_free = mem_cgroup_css_free,
6460
	.css_reset = mem_cgroup_css_reset,
6461 6462
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
6463
	.post_attach = mem_cgroup_move_task,
6464
	.bind = mem_cgroup_bind,
6465 6466
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
6467
	.early_init = 0,
B
Balbir Singh 已提交
6468
};
6469

6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499
/*
 * This function calculates an individual cgroup's effective
 * protection which is derived from its own memory.min/low, its
 * parent's and siblings' settings, as well as the actual memory
 * distribution in the tree.
 *
 * The following rules apply to the effective protection values:
 *
 * 1. At the first level of reclaim, effective protection is equal to
 *    the declared protection in memory.min and memory.low.
 *
 * 2. To enable safe delegation of the protection configuration, at
 *    subsequent levels the effective protection is capped to the
 *    parent's effective protection.
 *
 * 3. To make complex and dynamic subtrees easier to configure, the
 *    user is allowed to overcommit the declared protection at a given
 *    level. If that is the case, the parent's effective protection is
 *    distributed to the children in proportion to how much protection
 *    they have declared and how much of it they are utilizing.
 *
 *    This makes distribution proportional, but also work-conserving:
 *    if one cgroup claims much more protection than it uses memory,
 *    the unused remainder is available to its siblings.
 *
 * 4. Conversely, when the declared protection is undercommitted at a
 *    given level, the distribution of the larger parental protection
 *    budget is NOT proportional. A cgroup's protection from a sibling
 *    is capped to its own memory.min/low setting.
 *
6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511
 * 5. However, to allow protecting recursive subtrees from each other
 *    without having to declare each individual cgroup's fixed share
 *    of the ancestor's claim to protection, any unutilized -
 *    "floating" - protection from up the tree is distributed in
 *    proportion to each cgroup's *usage*. This makes the protection
 *    neutral wrt sibling cgroups and lets them compete freely over
 *    the shared parental protection budget, but it protects the
 *    subtree as a whole from neighboring subtrees.
 *
 * Note that 4. and 5. are not in conflict: 4. is about protecting
 * against immediate siblings whereas 5. is about protecting against
 * neighboring subtrees.
6512 6513
 */
static unsigned long effective_protection(unsigned long usage,
6514
					  unsigned long parent_usage,
6515 6516 6517 6518 6519
					  unsigned long setting,
					  unsigned long parent_effective,
					  unsigned long siblings_protected)
{
	unsigned long protected;
6520
	unsigned long ep;
6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550

	protected = min(usage, setting);
	/*
	 * If all cgroups at this level combined claim and use more
	 * protection then what the parent affords them, distribute
	 * shares in proportion to utilization.
	 *
	 * We are using actual utilization rather than the statically
	 * claimed protection in order to be work-conserving: claimed
	 * but unused protection is available to siblings that would
	 * otherwise get a smaller chunk than what they claimed.
	 */
	if (siblings_protected > parent_effective)
		return protected * parent_effective / siblings_protected;

	/*
	 * Ok, utilized protection of all children is within what the
	 * parent affords them, so we know whatever this child claims
	 * and utilizes is effectively protected.
	 *
	 * If there is unprotected usage beyond this value, reclaim
	 * will apply pressure in proportion to that amount.
	 *
	 * If there is unutilized protection, the cgroup will be fully
	 * shielded from reclaim, but we do return a smaller value for
	 * protection than what the group could enjoy in theory. This
	 * is okay. With the overcommit distribution above, effective
	 * protection is always dependent on how memory is actually
	 * consumed among the siblings anyway.
	 */
6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563
	ep = protected;

	/*
	 * If the children aren't claiming (all of) the protection
	 * afforded to them by the parent, distribute the remainder in
	 * proportion to the (unprotected) memory of each cgroup. That
	 * way, cgroups that aren't explicitly prioritized wrt each
	 * other compete freely over the allowance, but they are
	 * collectively protected from neighboring trees.
	 *
	 * We're using unprotected memory for the weight so that if
	 * some cgroups DO claim explicit protection, we don't protect
	 * the same bytes twice.
6564 6565 6566 6567
	 *
	 * Check both usage and parent_usage against the respective
	 * protected values. One should imply the other, but they
	 * aren't read atomically - make sure the division is sane.
6568 6569 6570
	 */
	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
		return ep;
6571 6572 6573
	if (parent_effective > siblings_protected &&
	    parent_usage > siblings_protected &&
	    usage > protected) {
6574 6575 6576 6577 6578 6579 6580 6581 6582 6583
		unsigned long unclaimed;

		unclaimed = parent_effective - siblings_protected;
		unclaimed *= usage - protected;
		unclaimed /= parent_usage - siblings_protected;

		ep += unclaimed;
	}

	return ep;
6584 6585
}

6586
/**
R
Roman Gushchin 已提交
6587
 * mem_cgroup_protected - check if memory consumption is in the normal range
6588
 * @root: the top ancestor of the sub-tree being checked
6589 6590
 * @memcg: the memory cgroup to check
 *
6591 6592
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
6593
 *
R
Roman Gushchin 已提交
6594 6595 6596 6597 6598
 * Returns one of the following:
 *   MEMCG_PROT_NONE: cgroup memory is not protected
 *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
 *     an unprotected supply of reclaimable memory from other cgroups.
 *   MEMCG_PROT_MIN: cgroup memory is protected
6599
 */
R
Roman Gushchin 已提交
6600 6601
enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
						struct mem_cgroup *memcg)
6602
{
6603
	unsigned long usage, parent_usage;
6604 6605
	struct mem_cgroup *parent;

6606
	if (mem_cgroup_disabled())
R
Roman Gushchin 已提交
6607
		return MEMCG_PROT_NONE;
6608

6609 6610 6611
	if (!root)
		root = root_mem_cgroup;
	if (memcg == root)
R
Roman Gushchin 已提交
6612
		return MEMCG_PROT_NONE;
6613

6614
	usage = page_counter_read(&memcg->memory);
R
Roman Gushchin 已提交
6615 6616 6617 6618
	if (!usage)
		return MEMCG_PROT_NONE;

	parent = parent_mem_cgroup(memcg);
6619 6620 6621 6622
	/* No parent means a non-hierarchical mode on v1 memcg */
	if (!parent)
		return MEMCG_PROT_NONE;

6623
	if (parent == root) {
6624
		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6625
		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6626
		goto out;
R
Roman Gushchin 已提交
6627 6628
	}

6629 6630
	parent_usage = page_counter_read(&parent->memory);

6631
	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6632 6633
			READ_ONCE(memcg->memory.min),
			READ_ONCE(parent->memory.emin),
6634
			atomic_long_read(&parent->memory.children_min_usage)));
6635

6636
	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6637 6638
			READ_ONCE(memcg->memory.low),
			READ_ONCE(parent->memory.elow),
6639
			atomic_long_read(&parent->memory.children_low_usage)));
6640

6641 6642
out:
	if (usage <= memcg->memory.emin)
R
Roman Gushchin 已提交
6643
		return MEMCG_PROT_MIN;
6644
	else if (usage <= memcg->memory.elow)
R
Roman Gushchin 已提交
6645 6646 6647
		return MEMCG_PROT_LOW;
	else
		return MEMCG_PROT_NONE;
6648 6649
}

6650
/**
6651
 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6652 6653 6654 6655 6656 6657 6658
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
6659
 * Returns 0 on success. Otherwise, an error code is returned.
6660
 */
6661
int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6662
{
6663
	unsigned int nr_pages = hpage_nr_pages(page);
6664 6665 6666 6667 6668 6669 6670
	struct mem_cgroup *memcg = NULL;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
6671 6672 6673
		swp_entry_t ent = { .val = page_private(page), };
		unsigned short id;

6674 6675 6676
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
6677 6678
		 * already charged pages, too.  page->mem_cgroup is protected
		 * by the page lock, which serializes swap cache removal, which
6679 6680
		 * in turn serializes uncharging.
		 */
6681
		VM_BUG_ON_PAGE(!PageLocked(page), page);
6682
		if (compound_head(page)->mem_cgroup)
6683
			goto out;
6684

6685 6686 6687 6688 6689 6690
		id = lookup_swap_cgroup_id(ent);
		rcu_read_lock();
		memcg = mem_cgroup_from_id(id);
		if (memcg && !css_tryget_online(&memcg->css))
			memcg = NULL;
		rcu_read_unlock();
6691 6692 6693 6694 6695 6696
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);
6697 6698
	if (ret)
		goto out_put;
6699

6700
	css_get(&memcg->css);
6701
	commit_charge(page, memcg);
6702 6703

	local_irq_disable();
6704
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6705 6706
	memcg_check_events(memcg, page);
	local_irq_enable();
6707

6708
	if (PageSwapCache(page)) {
6709 6710 6711 6712 6713 6714
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
6715
		mem_cgroup_uncharge_swap(entry, nr_pages);
6716 6717
	}

6718 6719 6720 6721
out_put:
	css_put(&memcg->css);
out:
	return ret;
6722 6723
}

6724 6725
struct uncharge_gather {
	struct mem_cgroup *memcg;
6726
	unsigned long nr_pages;
6727 6728 6729 6730 6731 6732
	unsigned long pgpgout;
	unsigned long nr_kmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6733
{
6734 6735 6736 6737 6738
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
6739 6740
	unsigned long flags;

6741
	if (!mem_cgroup_is_root(ug->memcg)) {
6742
		page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6743
		if (do_memsw_account())
6744
			page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6745 6746 6747
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
6748
	}
6749 6750

	local_irq_save(flags);
6751
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6752
	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6753
	memcg_check_events(ug->memcg, ug->dummy_page);
6754
	local_irq_restore(flags);
6755 6756 6757 6758
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
6759 6760
	unsigned long nr_pages;

6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779
	VM_BUG_ON_PAGE(PageLRU(page), page);

	if (!page->mem_cgroup)
		return;

	/*
	 * Nobody should be changing or seriously looking at
	 * page->mem_cgroup at this point, we have fully
	 * exclusive access to the page.
	 */

	if (ug->memcg != page->mem_cgroup) {
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
		ug->memcg = page->mem_cgroup;
	}

6780 6781
	nr_pages = compound_nr(page);
	ug->nr_pages += nr_pages;
6782

6783
	if (!PageKmemcg(page)) {
6784 6785
		ug->pgpgout++;
	} else {
6786
		ug->nr_kmem += nr_pages;
6787 6788 6789 6790 6791
		__ClearPageKmemcg(page);
	}

	ug->dummy_page = page;
	page->mem_cgroup = NULL;
6792
	css_put(&ug->memcg->css);
6793 6794 6795 6796
}

static void uncharge_list(struct list_head *page_list)
{
6797
	struct uncharge_gather ug;
6798
	struct list_head *next;
6799 6800

	uncharge_gather_clear(&ug);
6801

6802 6803 6804 6805
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
6806 6807
	next = page_list->next;
	do {
6808 6809
		struct page *page;

6810 6811 6812
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

6813
		uncharge_page(page, &ug);
6814 6815
	} while (next != page_list);

6816 6817
	if (ug.memcg)
		uncharge_batch(&ug);
6818 6819
}

6820 6821 6822 6823
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
6824
 * Uncharge a page previously charged with mem_cgroup_charge().
6825 6826 6827
 */
void mem_cgroup_uncharge(struct page *page)
{
6828 6829
	struct uncharge_gather ug;

6830 6831 6832
	if (mem_cgroup_disabled())
		return;

6833
	/* Don't touch page->lru of any random page, pre-check: */
6834
	if (!page->mem_cgroup)
6835 6836
		return;

6837 6838 6839
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
6840
}
6841

6842 6843 6844 6845 6846
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
6847
 * mem_cgroup_charge().
6848 6849 6850 6851 6852
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
6853

6854 6855
	if (!list_empty(page_list))
		uncharge_list(page_list);
6856 6857 6858
}

/**
6859 6860 6861
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
6862
 *
6863 6864
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
6865 6866 6867
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
6868
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6869
{
6870
	struct mem_cgroup *memcg;
6871
	unsigned int nr_pages;
6872
	unsigned long flags;
6873 6874 6875 6876

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6877 6878
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6879 6880 6881 6882 6883

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
6884
	if (newpage->mem_cgroup)
6885 6886
		return;

6887
	/* Swapcache readahead pages can get replaced before being charged */
6888
	memcg = oldpage->mem_cgroup;
6889
	if (!memcg)
6890 6891
		return;

6892
	/* Force-charge the new page. The old one will be freed soon */
6893
	nr_pages = hpage_nr_pages(newpage);
6894 6895 6896 6897

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
6898

6899
	css_get(&memcg->css);
6900
	commit_charge(newpage, memcg);
6901

6902
	local_irq_save(flags);
6903
	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6904
	memcg_check_events(memcg, newpage);
6905
	local_irq_restore(flags);
6906 6907
}

6908
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6909 6910
EXPORT_SYMBOL(memcg_sockets_enabled_key);

6911
void mem_cgroup_sk_alloc(struct sock *sk)
6912 6913 6914
{
	struct mem_cgroup *memcg;

6915 6916 6917
	if (!mem_cgroup_sockets_enabled)
		return;

6918 6919 6920 6921
	/* Do not associate the sock with unrelated interrupted task's memcg. */
	if (in_interrupt())
		return;

6922 6923
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
6924 6925
	if (memcg == root_mem_cgroup)
		goto out;
6926
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6927
		goto out;
S
Shakeel Butt 已提交
6928
	if (css_tryget(&memcg->css))
6929
		sk->sk_memcg = memcg;
6930
out:
6931 6932 6933
	rcu_read_unlock();
}

6934
void mem_cgroup_sk_free(struct sock *sk)
6935
{
6936 6937
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6950
	gfp_t gfp_mask = GFP_KERNEL;
6951

6952
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6953
		struct page_counter *fail;
6954

6955 6956
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
6957 6958
			return true;
		}
6959 6960
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
6961
		return false;
6962
	}
6963

6964 6965 6966 6967
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

6968
	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6969

6970 6971 6972 6973
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6974 6975 6976 6977 6978
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
6979 6980
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
6981 6982 6983
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6984
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6985
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6986 6987
		return;
	}
6988

6989
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6990

6991
	refill_stock(memcg, nr_pages);
6992 6993
}

6994 6995 6996 6997 6998 6999 7000 7001 7002
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
7003 7004
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
7005 7006 7007 7008
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
7009

7010
/*
7011 7012
 * subsys_initcall() for memory controller.
 *
7013 7014 7015 7016
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
7017 7018 7019
 */
static int __init mem_cgroup_init(void)
{
7020 7021
	int cpu, node;

7022 7023
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

7035
		rtpn->rb_root = RB_ROOT;
7036
		rtpn->rb_rightmost = NULL;
7037
		spin_lock_init(&rtpn->lock);
7038 7039 7040
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

7041 7042 7043
	return 0;
}
subsys_initcall(mem_cgroup_init);
7044 7045

#ifdef CONFIG_MEMCG_SWAP
7046 7047
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
7048
	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

7064 7065 7066 7067 7068 7069 7070 7071 7072
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
7073
	struct mem_cgroup *memcg, *swap_memcg;
7074
	unsigned int nr_entries;
7075 7076 7077 7078 7079
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

7080
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7081 7082 7083 7084 7085 7086 7087 7088
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

7089 7090 7091 7092 7093 7094
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
7095 7096 7097 7098 7099 7100
	nr_entries = hpage_nr_pages(page);
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
7101
	VM_BUG_ON_PAGE(oldid, page);
7102
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7103 7104 7105 7106

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
7107
		page_counter_uncharge(&memcg->memory, nr_entries);
7108

7109
	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7110
		if (!mem_cgroup_is_root(swap_memcg))
7111 7112
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
7113 7114
	}

7115 7116
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
7117
	 * i_pages lock which is taken with interrupts-off. It is
7118
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
7119
	 * only synchronisation we have for updating the per-CPU variables.
7120 7121
	 */
	VM_BUG_ON(!irqs_disabled());
7122
	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7123
	memcg_check_events(memcg, page);
7124

7125
	css_put(&memcg->css);
7126 7127
}

7128 7129
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
7130 7131 7132
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
7133
 * Try to charge @page's memcg for the swap space at @entry.
7134 7135 7136 7137 7138
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
7139
	unsigned int nr_pages = hpage_nr_pages(page);
7140
	struct page_counter *counter;
7141
	struct mem_cgroup *memcg;
7142 7143
	unsigned short oldid;

7144
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7145 7146 7147 7148 7149 7150 7151 7152
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

7153 7154
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7155
		return 0;
7156
	}
7157

7158 7159
	memcg = mem_cgroup_id_get_online(memcg);

7160
	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7161
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7162 7163
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7164
		mem_cgroup_id_put(memcg);
7165
		return -ENOMEM;
7166
	}
7167

7168 7169 7170 7171
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7172
	VM_BUG_ON_PAGE(oldid, page);
7173
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7174 7175 7176 7177

	return 0;
}

7178
/**
7179
 * mem_cgroup_uncharge_swap - uncharge swap space
7180
 * @entry: swap entry to uncharge
7181
 * @nr_pages: the amount of swap space to uncharge
7182
 */
7183
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7184 7185 7186 7187
{
	struct mem_cgroup *memcg;
	unsigned short id;

7188
	id = swap_cgroup_record(entry, 0, nr_pages);
7189
	rcu_read_lock();
7190
	memcg = mem_cgroup_from_id(id);
7191
	if (memcg) {
7192
		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7193
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7194
				page_counter_uncharge(&memcg->swap, nr_pages);
7195
			else
7196
				page_counter_uncharge(&memcg->memsw, nr_pages);
7197
		}
7198
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7199
		mem_cgroup_id_put_many(memcg, nr_pages);
7200 7201 7202 7203
	}
	rcu_read_unlock();
}

7204 7205 7206 7207
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

7208
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7209 7210 7211
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
7212
				      READ_ONCE(memcg->swap.max) -
7213 7214 7215 7216
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

7217 7218 7219 7220 7221 7222 7223 7224
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
7225
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7226 7227 7228 7229 7230 7231
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

7232 7233 7234 7235 7236
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		unsigned long usage = page_counter_read(&memcg->swap);

		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
		    usage * 2 >= READ_ONCE(memcg->swap.max))
7237
			return true;
7238
	}
7239 7240 7241 7242

	return false;
}

7243
static int __init setup_swap_account(char *s)
7244 7245
{
	if (!strcmp(s, "1"))
7246
		cgroup_memory_noswap = 0;
7247
	else if (!strcmp(s, "0"))
7248
		cgroup_memory_noswap = 1;
7249 7250
	return 1;
}
7251
__setup("swapaccount=", setup_swap_account);
7252

7253 7254 7255 7256 7257 7258 7259 7260
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283
static int swap_high_show(struct seq_file *m, void *v)
{
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
}

static ssize_t swap_high_write(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &high);
	if (err)
		return err;

	page_counter_set_high(&memcg->swap, high);

	return nbytes;
}

7284 7285
static int swap_max_show(struct seq_file *m, void *v)
{
7286 7287
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

7302
	xchg(&memcg->swap.max, max);
7303 7304 7305 7306

	return nbytes;
}

7307 7308
static int swap_events_show(struct seq_file *m, void *v)
{
7309
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7310

7311 7312
	seq_printf(m, "high %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7313 7314 7315 7316 7317 7318 7319 7320
	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

7321 7322 7323 7324 7325 7326
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
7327 7328 7329 7330 7331 7332
	{
		.name = "swap.high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_high_show,
		.write = swap_high_write,
	},
7333 7334 7335 7336 7337 7338
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
7339 7340 7341 7342 7343 7344
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
7345 7346 7347
	{ }	/* terminate */
};

7348
static struct cftype memsw_files[] = {
7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

7375 7376 7377 7378 7379 7380 7381
/*
 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
 * boot parameter. This may result in premature OOPS inside
 * mem_cgroup_get_nr_swap_pages() function in corner cases.
 */
7382 7383
static int __init mem_cgroup_swap_init(void)
{
7384 7385 7386 7387 7388
	/* No memory control -> no swap control */
	if (mem_cgroup_disabled())
		cgroup_memory_noswap = true;

	if (cgroup_memory_noswap)
7389 7390 7391 7392 7393
		return 0;

	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));

7394 7395
	return 0;
}
7396
core_initcall(mem_cgroup_swap_init);
7397 7398

#endif /* CONFIG_MEMCG_SWAP */