memcontrol.c 160.1 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/sched/mm.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
41
#include <linux/pagemap.h>
42
#include <linux/smp.h>
43
#include <linux/page-flags.h>
44
#include <linux/backing-dev.h>
45 46
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
47
#include <linux/limits.h>
48
#include <linux/export.h>
49
#include <linux/mutex.h>
50
#include <linux/rbtree.h>
51
#include <linux/slab.h>
52
#include <linux/swap.h>
53
#include <linux/swapops.h>
54
#include <linux/spinlock.h>
55
#include <linux/eventfd.h>
56
#include <linux/poll.h>
57
#include <linux/sort.h>
58
#include <linux/fs.h>
59
#include <linux/seq_file.h>
60
#include <linux/vmpressure.h>
61
#include <linux/mm_inline.h>
62
#include <linux/swap_cgroup.h>
63
#include <linux/cpu.h>
64
#include <linux/oom.h>
65
#include <linux/lockdep.h>
66
#include <linux/file.h>
67
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
68
#include "internal.h"
G
Glauber Costa 已提交
69
#include <net/sock.h>
M
Michal Hocko 已提交
70
#include <net/ip.h>
71
#include "slab.h"
B
Balbir Singh 已提交
72

73
#include <linux/uaccess.h>
74

75 76
#include <trace/events/vmscan.h>

77 78
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
79

80 81
struct mem_cgroup *root_mem_cgroup __read_mostly;

82
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
83

84 85 86
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

87 88 89
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

90
/* Whether the swap controller is active */
A
Andrew Morton 已提交
91
#ifdef CONFIG_MEMCG_SWAP
92 93
int do_swap_account __read_mostly;
#else
94
#define do_swap_account		0
95 96
#endif

97 98 99 100 101 102
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

103
static const char *const mem_cgroup_lru_names[] = {
104 105 106 107 108 109 110
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

111 112 113
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
114

115 116 117 118 119
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

120
struct mem_cgroup_tree_per_node {
121
	struct rb_root rb_root;
122
	struct rb_node *rb_rightmost;
123 124 125 126 127 128 129 130 131
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
132 133 134 135 136
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
137

138 139 140
/*
 * cgroup_event represents events which userspace want to receive.
 */
141
struct mem_cgroup_event {
142
	/*
143
	 * memcg which the event belongs to.
144
	 */
145
	struct mem_cgroup *memcg;
146 147 148 149 150 151 152 153
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
154 155 156 157 158
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
159
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
160
			      struct eventfd_ctx *eventfd, const char *args);
161 162 163 164 165
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
166
	void (*unregister_event)(struct mem_cgroup *memcg,
167
				 struct eventfd_ctx *eventfd);
168 169 170 171 172 173
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
174
	wait_queue_entry_t wait;
175 176 177
	struct work_struct remove;
};

178 179
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
180

181 182
/* Stuffs for move charges at task migration. */
/*
183
 * Types of charges to be moved.
184
 */
185 186 187
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
188

189 190
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
191
	spinlock_t	  lock; /* for from, to */
192
	struct mm_struct  *mm;
193 194
	struct mem_cgroup *from;
	struct mem_cgroup *to;
195
	unsigned long flags;
196
	unsigned long precharge;
197
	unsigned long moved_charge;
198
	unsigned long moved_swap;
199 200 201
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
202
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
203 204
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
205

206 207 208 209
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
210
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
211
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
212

213 214
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
215
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
216
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
217
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
218 219 220
	NR_CHARGE_TYPE,
};

221
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
222 223 224 225
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
226
	_KMEM,
V
Vladimir Davydov 已提交
227
	_TCP,
G
Glauber Costa 已提交
228 229
};

230 231
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
232
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
233 234
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
235

236 237 238 239 240 241 242 243 244 245 246 247 248
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

249 250 251 252 253
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

254
#ifndef CONFIG_SLOB
255
/*
256
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
257 258 259 260 261
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
262
 *
263 264
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
265
 */
266 267
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
268

269 270 271 272 273 274 275 276 277 278 279 280 281
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

282 283 284 285 286 287
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
288
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
289 290
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
291
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
292 293 294
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
295
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
296

297 298 299 300 301 302
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
303
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
304
EXPORT_SYMBOL(memcg_kmem_enabled_key);
305

306 307
struct workqueue_struct *memcg_kmem_cache_wq;

308
#endif /* !CONFIG_SLOB */
309

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

327
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
328 329 330 331 332
		memcg = root_mem_cgroup;

	return &memcg->css;
}

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

361 362
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
363
{
364
	int nid = page_to_nid(page);
365

366
	return memcg->nodeinfo[nid];
367 368
}

369 370
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
371
{
372
	return soft_limit_tree.rb_tree_per_node[nid];
373 374
}

375
static struct mem_cgroup_tree_per_node *
376 377 378 379
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

380
	return soft_limit_tree.rb_tree_per_node[nid];
381 382
}

383 384
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
385
					 unsigned long new_usage_in_excess)
386 387 388
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
389
	struct mem_cgroup_per_node *mz_node;
390
	bool rightmost = true;
391 392 393 394 395 396 397 398 399

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
400
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
401
					tree_node);
402
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
403
			p = &(*p)->rb_left;
404 405 406
			rightmost = false;
		}

407 408 409 410 411 412 413
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
414 415 416 417

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

418 419 420 421 422
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

423 424
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
425 426 427
{
	if (!mz->on_tree)
		return;
428 429 430 431

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

432 433 434 435
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

436 437
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
438
{
439 440 441
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
442
	__mem_cgroup_remove_exceeded(mz, mctz);
443
	spin_unlock_irqrestore(&mctz->lock, flags);
444 445
}

446 447 448
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
449
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
450 451 452 453 454 455 456
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
457 458 459

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
460
	unsigned long excess;
461 462
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
463

464
	mctz = soft_limit_tree_from_page(page);
465 466
	if (!mctz)
		return;
467 468 469 470 471
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
472
		mz = mem_cgroup_page_nodeinfo(memcg, page);
473
		excess = soft_limit_excess(memcg);
474 475 476 477 478
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
479 480 481
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
482 483
			/* if on-tree, remove it */
			if (mz->on_tree)
484
				__mem_cgroup_remove_exceeded(mz, mctz);
485 486 487 488
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
489
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
490
			spin_unlock_irqrestore(&mctz->lock, flags);
491 492 493 494 495 496
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
497 498 499
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
500

501
	for_each_node(nid) {
502 503
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
504 505
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
506 507 508
	}
}

509 510
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
511
{
512
	struct mem_cgroup_per_node *mz;
513 514 515

retry:
	mz = NULL;
516
	if (!mctz->rb_rightmost)
517 518
		goto done;		/* Nothing to reclaim from */

519 520
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
521 522 523 524 525
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
526
	__mem_cgroup_remove_exceeded(mz, mctz);
527
	if (!soft_limit_excess(mz->memcg) ||
528
	    !css_tryget_online(&mz->memcg->css))
529 530 531 532 533
		goto retry;
done:
	return mz;
}

534 535
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
536
{
537
	struct mem_cgroup_per_node *mz;
538

539
	spin_lock_irq(&mctz->lock);
540
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
541
	spin_unlock_irq(&mctz->lock);
542 543 544
	return mz;
}

545
static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
546
				      int event)
547
{
548
	return atomic_long_read(&memcg->events[event]);
549 550
}

551
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
552
					 struct page *page,
553
					 bool compound, int nr_pages)
554
{
555 556 557 558
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
559
	if (PageAnon(page))
560
		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
561
	else {
562
		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
563
		if (PageSwapBacked(page))
564
			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
565
	}
566

567 568
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
569
		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
570
	}
571

572 573
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
574
		__count_memcg_events(memcg, PGPGIN, 1);
575
	else {
576
		__count_memcg_events(memcg, PGPGOUT, 1);
577 578
		nr_pages = -nr_pages; /* for event */
	}
579

580
	__this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
581 582
}

583 584
unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
					   int nid, unsigned int lru_mask)
585
{
586
	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
587
	unsigned long nr = 0;
588
	enum lru_list lru;
589

590
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
591

592 593 594
	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
595
		nr += mem_cgroup_get_lru_size(lruvec, lru);
596 597
	}
	return nr;
598
}
599

600
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
601
			unsigned int lru_mask)
602
{
603
	unsigned long nr = 0;
604
	int nid;
605

606
	for_each_node_state(nid, N_MEMORY)
607 608
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
609 610
}

611 612
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
613 614 615
{
	unsigned long val, next;

616 617
	val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
	next = __this_cpu_read(memcg->stat_cpu->targets[target]);
618
	/* from time_after() in jiffies.h */
619
	if ((long)(next - val) < 0) {
620 621 622 623
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
624 625 626
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
627 628 629 630 631 632
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
633
		__this_cpu_write(memcg->stat_cpu->targets[target], next);
634
		return true;
635
	}
636
	return false;
637 638 639 640 641 642
}

/*
 * Check events in order.
 *
 */
643
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
644 645
{
	/* threshold event is triggered in finer grain than soft limit */
646 647
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
648
		bool do_softlimit;
649
		bool do_numainfo __maybe_unused;
650

651 652
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
653 654 655 656
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
657
		mem_cgroup_threshold(memcg);
658 659
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
660
#if MAX_NUMNODES > 1
661
		if (unlikely(do_numainfo))
662
			atomic_inc(&memcg->numainfo_events);
663
#endif
664
	}
665 666
}

667
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
668
{
669 670 671 672 673 674 675 676
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

677
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
678
}
M
Michal Hocko 已提交
679
EXPORT_SYMBOL(mem_cgroup_from_task);
680

681
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
682
{
683
	struct mem_cgroup *memcg = NULL;
684

685 686
	rcu_read_lock();
	do {
687 688 689 690 691 692
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
693
			memcg = root_mem_cgroup;
694 695 696 697 698
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
699
	} while (!css_tryget_online(&memcg->css));
700
	rcu_read_unlock();
701
	return memcg;
702 703
}

704 705 706 707 708 709 710 711 712 713 714 715 716
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
717
 * Reclaimers can specify a node and a priority level in @reclaim to
718
 * divide up the memcgs in the hierarchy among all concurrent
719
 * reclaimers operating on the same node and priority.
720
 */
721
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
722
				   struct mem_cgroup *prev,
723
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
724
{
M
Michal Hocko 已提交
725
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
726
	struct cgroup_subsys_state *css = NULL;
727
	struct mem_cgroup *memcg = NULL;
728
	struct mem_cgroup *pos = NULL;
729

730 731
	if (mem_cgroup_disabled())
		return NULL;
732

733 734
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
735

736
	if (prev && !reclaim)
737
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
738

739 740
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
741
			goto out;
742
		return root;
743
	}
K
KAMEZAWA Hiroyuki 已提交
744

745
	rcu_read_lock();
M
Michal Hocko 已提交
746

747
	if (reclaim) {
748
		struct mem_cgroup_per_node *mz;
749

750
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
751 752 753 754 755
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

756
		while (1) {
757
			pos = READ_ONCE(iter->position);
758 759
			if (!pos || css_tryget(&pos->css))
				break;
760
			/*
761 762 763 764 765 766
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
767
			 */
768 769
			(void)cmpxchg(&iter->position, pos, NULL);
		}
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
787
		}
K
KAMEZAWA Hiroyuki 已提交
788

789 790 791 792 793 794
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
795

796 797
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
798

799 800
		if (css_tryget(css))
			break;
801

802
		memcg = NULL;
803
	}
804 805 806

	if (reclaim) {
		/*
807 808 809
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
810
		 */
811 812
		(void)cmpxchg(&iter->position, pos, memcg);

813 814 815 816 817 818 819
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
820
	}
821

822 823
out_unlock:
	rcu_read_unlock();
824
out:
825 826 827
	if (prev && prev != root)
		css_put(&prev->css);

828
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
829
}
K
KAMEZAWA Hiroyuki 已提交
830

831 832 833 834 835 836 837
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
838 839 840 841 842 843
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
844

845 846 847 848
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
849 850
	struct mem_cgroup_per_node *mz;
	int nid;
851 852 853 854
	int i;

	while ((memcg = parent_mem_cgroup(memcg))) {
		for_each_node(nid) {
855 856 857 858 859
			mz = mem_cgroup_nodeinfo(memcg, nid);
			for (i = 0; i <= DEF_PRIORITY; i++) {
				iter = &mz->iter[i];
				cmpxchg(&iter->position,
					dead_memcg, NULL);
860 861 862 863 864
			}
		}
	}
}

865 866 867 868 869 870
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
871
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
872
	     iter != NULL;				\
873
	     iter = mem_cgroup_iter(root, iter, NULL))
874

875
#define for_each_mem_cgroup(iter)			\
876
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
877
	     iter != NULL;				\
878
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
879

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

905
		css_task_iter_start(&iter->css, 0, &it);
906 907 908 909 910 911 912 913 914 915 916
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

917
/**
918
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
919
 * @page: the page
920
 * @pgdat: pgdat of the page
921 922 923 924
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
925
 */
M
Mel Gorman 已提交
926
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
927
{
928
	struct mem_cgroup_per_node *mz;
929
	struct mem_cgroup *memcg;
930
	struct lruvec *lruvec;
931

932
	if (mem_cgroup_disabled()) {
M
Mel Gorman 已提交
933
		lruvec = &pgdat->lruvec;
934 935
		goto out;
	}
936

937
	memcg = page->mem_cgroup;
938
	/*
939
	 * Swapcache readahead pages are added to the LRU - and
940
	 * possibly migrated - before they are charged.
941
	 */
942 943
	if (!memcg)
		memcg = root_mem_cgroup;
944

945
	mz = mem_cgroup_page_nodeinfo(memcg, page);
946 947 948 949 950 951 952
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
953 954
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
955
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
956
}
957

958
/**
959 960 961
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
962
 * @zid: zone id of the accounted pages
963
 * @nr_pages: positive when adding or negative when removing
964
 *
965 966 967
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
968
 */
969
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
970
				int zid, int nr_pages)
971
{
972
	struct mem_cgroup_per_node *mz;
973
	unsigned long *lru_size;
974
	long size;
975 976 977 978

	if (mem_cgroup_disabled())
		return;

979
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
980
	lru_size = &mz->lru_zone_size[zid][lru];
981 982 983 984 985

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
986 987 988
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
989 990 991 992 993 994
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
995
}
996

997
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
998
{
999
	struct mem_cgroup *task_memcg;
1000
	struct task_struct *p;
1001
	bool ret;
1002

1003
	p = find_lock_task_mm(task);
1004
	if (p) {
1005
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1006 1007 1008 1009 1010 1011 1012
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1013
		rcu_read_lock();
1014 1015
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1016
		rcu_read_unlock();
1017
	}
1018 1019
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1020 1021 1022
	return ret;
}

1023
/**
1024
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1025
 * @memcg: the memory cgroup
1026
 *
1027
 * Returns the maximum amount of memory @mem can be charged with, in
1028
 * pages.
1029
 */
1030
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1031
{
1032 1033 1034
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1035

1036
	count = page_counter_read(&memcg->memory);
1037
	limit = READ_ONCE(memcg->memory.max);
1038 1039 1040
	if (count < limit)
		margin = limit - count;

1041
	if (do_memsw_account()) {
1042
		count = page_counter_read(&memcg->memsw);
1043
		limit = READ_ONCE(memcg->memsw.max);
1044 1045
		if (count <= limit)
			margin = min(margin, limit - count);
1046 1047
		else
			margin = 0;
1048 1049 1050
	}

	return margin;
1051 1052
}

1053
/*
Q
Qiang Huang 已提交
1054
 * A routine for checking "mem" is under move_account() or not.
1055
 *
Q
Qiang Huang 已提交
1056 1057 1058
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1059
 */
1060
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1061
{
1062 1063
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1064
	bool ret = false;
1065 1066 1067 1068 1069 1070 1071 1072 1073
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1074

1075 1076
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1077 1078
unlock:
	spin_unlock(&mc.lock);
1079 1080 1081
	return ret;
}

1082
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1083 1084
{
	if (mc.moving_task && current != mc.moving_task) {
1085
		if (mem_cgroup_under_move(memcg)) {
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1098
static const unsigned int memcg1_stats[] = {
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
	MEMCG_CACHE,
	MEMCG_RSS,
	MEMCG_RSS_HUGE,
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
	"rss_huge",
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

1120
#define K(x) ((x) << (PAGE_SHIFT-10))
1121
/**
1122
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1123 1124 1125 1126 1127 1128 1129 1130
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
1131 1132
	struct mem_cgroup *iter;
	unsigned int i;
1133 1134 1135

	rcu_read_lock();

1136 1137 1138 1139 1140 1141 1142 1143
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1144
	pr_cont_cgroup_path(memcg->css.cgroup);
1145
	pr_cont("\n");
1146 1147 1148

	rcu_read_unlock();

1149 1150
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1151
		K((u64)memcg->memory.max), memcg->memory.failcnt);
1152 1153
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
1154
		K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1155 1156
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
1157
		K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1158 1159

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1160 1161
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1162 1163
		pr_cont(":");

1164 1165
		for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
			if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1166
				continue;
1167
			pr_cont(" %s:%luKB", memcg1_stat_names[i],
1168
				K(memcg_page_state(iter, memcg1_stats[i])));
1169 1170 1171 1172 1173 1174 1175 1176
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1177 1178
}

D
David Rientjes 已提交
1179 1180 1181
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1182
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1183
{
1184
	unsigned long max;
1185

1186
	max = memcg->memory.max;
1187
	if (mem_cgroup_swappiness(memcg)) {
1188 1189
		unsigned long memsw_max;
		unsigned long swap_max;
1190

1191 1192 1193 1194
		memsw_max = memcg->memsw.max;
		swap_max = memcg->swap.max;
		swap_max = min(swap_max, (unsigned long)total_swap_pages);
		max = min(max + swap_max, memsw_max);
1195
	}
1196
	return max;
D
David Rientjes 已提交
1197 1198
}

1199
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1200
				     int order)
1201
{
1202 1203 1204
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1205
		.memcg = memcg,
1206 1207 1208
		.gfp_mask = gfp_mask,
		.order = order,
	};
1209
	bool ret;
1210

1211
	mutex_lock(&oom_lock);
1212
	ret = out_of_memory(&oc);
1213
	mutex_unlock(&oom_lock);
1214
	return ret;
1215 1216
}

1217 1218
#if MAX_NUMNODES > 1

1219 1220
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1221
 * @memcg: the target memcg
1222 1223 1224 1225 1226 1227 1228
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1229
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1230 1231
		int nid, bool noswap)
{
1232
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1233 1234 1235
		return true;
	if (noswap || !total_swap_pages)
		return false;
1236
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1237 1238 1239 1240
		return true;
	return false;

}
1241 1242 1243 1244 1245 1246 1247

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1248
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1249 1250
{
	int nid;
1251 1252 1253 1254
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1255
	if (!atomic_read(&memcg->numainfo_events))
1256
		return;
1257
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1258 1259 1260
		return;

	/* make a nodemask where this memcg uses memory from */
1261
	memcg->scan_nodes = node_states[N_MEMORY];
1262

1263
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1264

1265 1266
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1267
	}
1268

1269 1270
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1285
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1286 1287 1288
{
	int node;

1289 1290
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1291

1292
	node = next_node_in(node, memcg->scan_nodes);
1293
	/*
1294 1295 1296
	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
	 * last time it really checked all the LRUs due to rate limiting.
	 * Fallback to the current node in that case for simplicity.
1297 1298 1299 1300
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1301
	memcg->last_scanned_node = node;
1302 1303 1304
	return node;
}
#else
1305
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1306 1307 1308 1309 1310
{
	return 0;
}
#endif

1311
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1312
				   pg_data_t *pgdat,
1313 1314 1315 1316 1317 1318 1319 1320 1321
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1322
		.pgdat = pgdat,
1323 1324 1325
		.priority = 0,
	};

1326
	excess = soft_limit_excess(root_memcg);
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1352
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1353
					pgdat, &nr_scanned);
1354
		*total_scanned += nr_scanned;
1355
		if (!soft_limit_excess(root_memcg))
1356
			break;
1357
	}
1358 1359
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1360 1361
}

1362 1363 1364 1365 1366 1367
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1368 1369
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1370 1371 1372 1373
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1374
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1375
{
1376
	struct mem_cgroup *iter, *failed = NULL;
1377

1378 1379
	spin_lock(&memcg_oom_lock);

1380
	for_each_mem_cgroup_tree(iter, memcg) {
1381
		if (iter->oom_lock) {
1382 1383 1384 1385 1386
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1387 1388
			mem_cgroup_iter_break(memcg, iter);
			break;
1389 1390
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1391
	}
K
KAMEZAWA Hiroyuki 已提交
1392

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1404
		}
1405 1406
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1407 1408 1409 1410

	spin_unlock(&memcg_oom_lock);

	return !failed;
1411
}
1412

1413
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1414
{
K
KAMEZAWA Hiroyuki 已提交
1415 1416
	struct mem_cgroup *iter;

1417
	spin_lock(&memcg_oom_lock);
1418
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1419
	for_each_mem_cgroup_tree(iter, memcg)
1420
		iter->oom_lock = false;
1421
	spin_unlock(&memcg_oom_lock);
1422 1423
}

1424
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1425 1426 1427
{
	struct mem_cgroup *iter;

1428
	spin_lock(&memcg_oom_lock);
1429
	for_each_mem_cgroup_tree(iter, memcg)
1430 1431
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1432 1433
}

1434
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1435 1436 1437
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1438 1439
	/*
	 * When a new child is created while the hierarchy is under oom,
1440
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1441
	 */
1442
	spin_lock(&memcg_oom_lock);
1443
	for_each_mem_cgroup_tree(iter, memcg)
1444 1445 1446
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1447 1448
}

K
KAMEZAWA Hiroyuki 已提交
1449 1450
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1451
struct oom_wait_info {
1452
	struct mem_cgroup *memcg;
1453
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1454 1455
};

1456
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1457 1458
	unsigned mode, int sync, void *arg)
{
1459 1460
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1461 1462 1463
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1464
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1465

1466 1467
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1468 1469 1470 1471
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1472
static void memcg_oom_recover(struct mem_cgroup *memcg)
1473
{
1474 1475 1476 1477 1478 1479 1480 1481 1482
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1483
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1484 1485
}

1486
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1487
{
1488
	if (!current->memcg_may_oom || order > PAGE_ALLOC_COSTLY_ORDER)
1489
		return;
K
KAMEZAWA Hiroyuki 已提交
1490
	/*
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1503
	 */
1504
	css_get(&memcg->css);
T
Tejun Heo 已提交
1505 1506 1507
	current->memcg_in_oom = memcg;
	current->memcg_oom_gfp_mask = mask;
	current->memcg_oom_order = order;
1508 1509 1510 1511
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1512
 * @handle: actually kill/wait or just clean up the OOM state
1513
 *
1514 1515
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1516
 *
1517
 * Memcg supports userspace OOM handling where failed allocations must
1518 1519 1520 1521
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1522
 * the end of the page fault to complete the OOM handling.
1523 1524
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1525
 * completed, %false otherwise.
1526
 */
1527
bool mem_cgroup_oom_synchronize(bool handle)
1528
{
T
Tejun Heo 已提交
1529
	struct mem_cgroup *memcg = current->memcg_in_oom;
1530
	struct oom_wait_info owait;
1531
	bool locked;
1532 1533 1534

	/* OOM is global, do not handle */
	if (!memcg)
1535
		return false;
1536

1537
	if (!handle)
1538
		goto cleanup;
1539 1540 1541 1542 1543

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
1544
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
1545

1546
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1557 1558
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1559
	} else {
1560
		schedule();
1561 1562 1563 1564 1565
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1566 1567 1568 1569 1570 1571 1572 1573
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1574
cleanup:
T
Tejun Heo 已提交
1575
	current->memcg_in_oom = NULL;
1576
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1577
	return true;
1578 1579
}

1580
/**
1581 1582
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1583
 *
1584
 * This function protects unlocked LRU pages from being moved to
1585 1586 1587 1588 1589
 * another cgroup.
 *
 * It ensures lifetime of the returned memcg. Caller is responsible
 * for the lifetime of the page; __unlock_page_memcg() is available
 * when @page might get freed inside the locked section.
1590
 */
1591
struct mem_cgroup *lock_page_memcg(struct page *page)
1592 1593
{
	struct mem_cgroup *memcg;
1594
	unsigned long flags;
1595

1596 1597 1598 1599
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
1600 1601 1602 1603 1604 1605 1606
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page itself from being freed. E.g. writeback
	 * doesn't hold a page reference and relies on PG_writeback to
	 * keep off truncation, migration and so forth.
         */
1607 1608 1609
	rcu_read_lock();

	if (mem_cgroup_disabled())
1610
		return NULL;
1611
again:
1612
	memcg = page->mem_cgroup;
1613
	if (unlikely(!memcg))
1614
		return NULL;
1615

Q
Qiang Huang 已提交
1616
	if (atomic_read(&memcg->moving_account) <= 0)
1617
		return memcg;
1618

1619
	spin_lock_irqsave(&memcg->move_lock, flags);
1620
	if (memcg != page->mem_cgroup) {
1621
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1622 1623
		goto again;
	}
1624 1625 1626 1627

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
1628
	 * the task who has the lock for unlock_page_memcg().
1629 1630 1631
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1632

1633
	return memcg;
1634
}
1635
EXPORT_SYMBOL(lock_page_memcg);
1636

1637
/**
1638 1639 1640 1641
 * __unlock_page_memcg - unlock and unpin a memcg
 * @memcg: the memcg
 *
 * Unlock and unpin a memcg returned by lock_page_memcg().
1642
 */
1643
void __unlock_page_memcg(struct mem_cgroup *memcg)
1644
{
1645 1646 1647 1648 1649 1650 1651 1652
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1653

1654
	rcu_read_unlock();
1655
}
1656 1657 1658 1659 1660 1661 1662 1663 1664

/**
 * unlock_page_memcg - unlock a page->mem_cgroup binding
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
	__unlock_page_memcg(page->mem_cgroup);
}
1665
EXPORT_SYMBOL(unlock_page_memcg);
1666

1667 1668
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1669
	unsigned int nr_pages;
1670
	struct work_struct work;
1671
	unsigned long flags;
1672
#define FLUSHING_CACHED_CHARGE	0
1673 1674
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1675
static DEFINE_MUTEX(percpu_charge_mutex);
1676

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1687
 */
1688
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1689 1690
{
	struct memcg_stock_pcp *stock;
1691
	unsigned long flags;
1692
	bool ret = false;
1693

1694
	if (nr_pages > MEMCG_CHARGE_BATCH)
1695
		return ret;
1696

1697 1698 1699
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
1700
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1701
		stock->nr_pages -= nr_pages;
1702 1703
		ret = true;
	}
1704 1705 1706

	local_irq_restore(flags);

1707 1708 1709 1710
	return ret;
}

/*
1711
 * Returns stocks cached in percpu and reset cached information.
1712 1713 1714 1715 1716
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1717
	if (stock->nr_pages) {
1718
		page_counter_uncharge(&old->memory, stock->nr_pages);
1719
		if (do_memsw_account())
1720
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1721
		css_put_many(&old->css, stock->nr_pages);
1722
		stock->nr_pages = 0;
1723 1724 1725 1726 1727 1728
	}
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
1729 1730 1731
	struct memcg_stock_pcp *stock;
	unsigned long flags;

1732 1733 1734 1735
	/*
	 * The only protection from memory hotplug vs. drain_stock races is
	 * that we always operate on local CPU stock here with IRQ disabled
	 */
1736 1737 1738
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
1739
	drain_stock(stock);
1740
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1741 1742

	local_irq_restore(flags);
1743 1744 1745
}

/*
1746
 * Cache charges(val) to local per_cpu area.
1747
 * This will be consumed by consume_stock() function, later.
1748
 */
1749
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1750
{
1751 1752 1753 1754
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
1755

1756
	stock = this_cpu_ptr(&memcg_stock);
1757
	if (stock->cached != memcg) { /* reset if necessary */
1758
		drain_stock(stock);
1759
		stock->cached = memcg;
1760
	}
1761
	stock->nr_pages += nr_pages;
1762

1763
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
1764 1765
		drain_stock(stock);

1766
	local_irq_restore(flags);
1767 1768 1769
}

/*
1770
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1771
 * of the hierarchy under it.
1772
 */
1773
static void drain_all_stock(struct mem_cgroup *root_memcg)
1774
{
1775
	int cpu, curcpu;
1776

1777 1778 1779
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1780 1781 1782 1783 1784 1785
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
1786
	curcpu = get_cpu();
1787 1788
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1789
		struct mem_cgroup *memcg;
1790

1791
		memcg = stock->cached;
1792
		if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
1793
			continue;
1794 1795
		if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
			css_put(&memcg->css);
1796
			continue;
1797
		}
1798 1799 1800 1801 1802 1803
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1804
		css_put(&memcg->css);
1805
	}
1806
	put_cpu();
1807
	mutex_unlock(&percpu_charge_mutex);
1808 1809
}

1810
static int memcg_hotplug_cpu_dead(unsigned int cpu)
1811 1812
{
	struct memcg_stock_pcp *stock;
1813
	struct mem_cgroup *memcg;
1814 1815 1816

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841

	for_each_mem_cgroup(memcg) {
		int i;

		for (i = 0; i < MEMCG_NR_STAT; i++) {
			int nid;
			long x;

			x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
			if (x)
				atomic_long_add(x, &memcg->stat[i]);

			if (i >= NR_VM_NODE_STAT_ITEMS)
				continue;

			for_each_node(nid) {
				struct mem_cgroup_per_node *pn;

				pn = mem_cgroup_nodeinfo(memcg, nid);
				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
				if (x)
					atomic_long_add(x, &pn->lruvec_stat[i]);
			}
		}

1842
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
1843 1844 1845 1846 1847 1848 1849 1850
			long x;

			x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
			if (x)
				atomic_long_add(x, &memcg->events[i]);
		}
	}

1851
	return 0;
1852 1853
}

1854 1855 1856 1857 1858 1859 1860
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
1861
		memcg_memory_event(memcg, MEMCG_HIGH);
1862 1863 1864 1865 1866 1867 1868 1869 1870
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
1871
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
1872 1873
}

1874 1875 1876 1877 1878 1879 1880
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1881
	struct mem_cgroup *memcg;
1882 1883 1884 1885

	if (likely(!nr_pages))
		return;

1886 1887
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1888 1889 1890 1891
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

1892 1893
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
1894
{
1895
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
1896
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1897
	struct mem_cgroup *mem_over_limit;
1898
	struct page_counter *counter;
1899
	unsigned long nr_reclaimed;
1900 1901
	bool may_swap = true;
	bool drained = false;
1902

1903
	if (mem_cgroup_is_root(memcg))
1904
		return 0;
1905
retry:
1906
	if (consume_stock(memcg, nr_pages))
1907
		return 0;
1908

1909
	if (!do_memsw_account() ||
1910 1911
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1912
			goto done_restock;
1913
		if (do_memsw_account())
1914 1915
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1916
	} else {
1917
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1918
		may_swap = false;
1919
	}
1920

1921 1922 1923 1924
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
1925

1926 1927 1928 1929 1930 1931
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
1932
	if (unlikely(tsk_is_oom_victim(current) ||
1933 1934
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
1935
		goto force;
1936

1937 1938 1939 1940 1941 1942 1943 1944 1945
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

1946 1947 1948
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

1949
	if (!gfpflags_allow_blocking(gfp_mask))
1950
		goto nomem;
1951

1952
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
1953

1954 1955
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
1956

1957
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1958
		goto retry;
1959

1960
	if (!drained) {
1961
		drain_all_stock(mem_over_limit);
1962 1963 1964 1965
		drained = true;
		goto retry;
	}

1966 1967
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
1968 1969 1970 1971 1972 1973 1974 1975 1976
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
1977
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1978 1979 1980 1981 1982 1983 1984 1985
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

1986 1987 1988
	if (nr_retries--)
		goto retry;

1989
	if (gfp_mask & __GFP_NOFAIL)
1990
		goto force;
1991

1992
	if (fatal_signal_pending(current))
1993
		goto force;
1994

1995
	memcg_memory_event(mem_over_limit, MEMCG_OOM);
1996

1997 1998
	mem_cgroup_oom(mem_over_limit, gfp_mask,
		       get_order(nr_pages * PAGE_SIZE));
1999
nomem:
2000
	if (!(gfp_mask & __GFP_NOFAIL))
2001
		return -ENOMEM;
2002 2003 2004 2005 2006 2007 2008
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2009
	if (do_memsw_account())
2010 2011 2012 2013
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2014 2015

done_restock:
2016
	css_get_many(&memcg->css, batch);
2017 2018
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2019

2020
	/*
2021 2022
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2023
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2024 2025 2026 2027
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2028 2029
	 */
	do {
2030
		if (page_counter_read(&memcg->memory) > memcg->high) {
2031 2032 2033 2034 2035
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2036
			current->memcg_nr_pages_over_high += batch;
2037 2038 2039
			set_notify_resume(current);
			break;
		}
2040
	} while ((memcg = parent_mem_cgroup(memcg)));
2041 2042

	return 0;
2043
}
2044

2045
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2046
{
2047 2048 2049
	if (mem_cgroup_is_root(memcg))
		return;

2050
	page_counter_uncharge(&memcg->memory, nr_pages);
2051
	if (do_memsw_account())
2052
		page_counter_uncharge(&memcg->memsw, nr_pages);
2053

2054
	css_put_many(&memcg->css, nr_pages);
2055 2056
}

2057 2058 2059 2060
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

2061
	spin_lock_irq(zone_lru_lock(zone));
2062 2063 2064
	if (PageLRU(page)) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2065
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2080
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2081 2082 2083 2084
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
2085
	spin_unlock_irq(zone_lru_lock(zone));
2086 2087
}

2088
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2089
			  bool lrucare)
2090
{
2091
	int isolated;
2092

2093
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2094 2095 2096 2097 2098

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2099 2100
	if (lrucare)
		lock_page_lru(page, &isolated);
2101

2102 2103
	/*
	 * Nobody should be changing or seriously looking at
2104
	 * page->mem_cgroup at this point:
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2116
	page->mem_cgroup = memcg;
2117

2118 2119
	if (lrucare)
		unlock_page_lru(page, isolated);
2120
}
2121

2122
#ifndef CONFIG_SLOB
2123
static int memcg_alloc_cache_id(void)
2124
{
2125 2126 2127
	int id, size;
	int err;

2128
	id = ida_simple_get(&memcg_cache_ida,
2129 2130 2131
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2132

2133
	if (id < memcg_nr_cache_ids)
2134 2135 2136 2137 2138 2139
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2140
	down_write(&memcg_cache_ids_sem);
2141 2142

	size = 2 * (id + 1);
2143 2144 2145 2146 2147
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2148
	err = memcg_update_all_caches(size);
2149 2150
	if (!err)
		err = memcg_update_all_list_lrus(size);
2151 2152 2153 2154 2155
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2156
	if (err) {
2157
		ida_simple_remove(&memcg_cache_ida, id);
2158 2159 2160 2161 2162 2163 2164
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2165
	ida_simple_remove(&memcg_cache_ida, id);
2166 2167
}

2168
struct memcg_kmem_cache_create_work {
2169 2170 2171 2172 2173
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2174
static void memcg_kmem_cache_create_func(struct work_struct *w)
2175
{
2176 2177
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2178 2179
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2180

2181
	memcg_create_kmem_cache(memcg, cachep);
2182

2183
	css_put(&memcg->css);
2184 2185 2186 2187 2188 2189
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2190 2191
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2192
{
2193
	struct memcg_kmem_cache_create_work *cw;
2194

2195
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2196
	if (!cw)
2197
		return;
2198 2199

	css_get(&memcg->css);
2200 2201 2202

	cw->memcg = memcg;
	cw->cachep = cachep;
2203
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2204

2205
	queue_work(memcg_kmem_cache_wq, &cw->work);
2206 2207
}

2208 2209
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2210 2211 2212 2213
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2214
	 * in __memcg_schedule_kmem_cache_create will recurse.
2215 2216 2217 2218 2219 2220 2221
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2222
	current->memcg_kmem_skip_account = 1;
2223
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2224
	current->memcg_kmem_skip_account = 0;
2225
}
2226

2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
static inline bool memcg_kmem_bypass(void)
{
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;
	return false;
}

/**
 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
 * @cachep: the original global kmem cache
 *
2238 2239 2240
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
2241 2242 2243
 * If the cache does not exist yet, if we are the first user of it, we
 * create it asynchronously in a workqueue and let the current allocation
 * go through with the original cache.
2244
 *
2245 2246 2247 2248
 * This function takes a reference to the cache it returns to assure it
 * won't get destroyed while we are working with it. Once the caller is
 * done with it, memcg_kmem_put_cache() must be called to release the
 * reference.
2249
 */
2250
struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2251 2252
{
	struct mem_cgroup *memcg;
2253
	struct kmem_cache *memcg_cachep;
2254
	int kmemcg_id;
2255

2256
	VM_BUG_ON(!is_root_cache(cachep));
2257

2258
	if (memcg_kmem_bypass())
V
Vladimir Davydov 已提交
2259 2260
		return cachep;

2261
	if (current->memcg_kmem_skip_account)
2262 2263
		return cachep;

2264
	memcg = get_mem_cgroup_from_mm(current->mm);
2265
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2266
	if (kmemcg_id < 0)
2267
		goto out;
2268

2269
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2270 2271
	if (likely(memcg_cachep))
		return memcg_cachep;
2272 2273 2274 2275 2276 2277 2278 2279 2280

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2281 2282 2283
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2284
	 */
2285
	memcg_schedule_kmem_cache_create(memcg, cachep);
2286
out:
2287
	css_put(&memcg->css);
2288
	return cachep;
2289 2290
}

2291 2292 2293 2294 2295
/**
 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
 * @cachep: the cache returned by memcg_kmem_get_cache
 */
void memcg_kmem_put_cache(struct kmem_cache *cachep)
2296 2297
{
	if (!is_root_cache(cachep))
2298
		css_put(&cachep->memcg_params.memcg->css);
2299 2300
}

2301
/**
2302
 * memcg_kmem_charge_memcg: charge a kmem page
2303 2304 2305 2306 2307 2308 2309 2310 2311
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 * @memcg: memory cgroup to charge
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			    struct mem_cgroup *memcg)
2312
{
2313 2314
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2315 2316
	int ret;

2317
	ret = try_charge(memcg, gfp, nr_pages);
2318
	if (ret)
2319
		return ret;
2320 2321 2322 2323 2324

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2325 2326
	}

2327
	page->mem_cgroup = memcg;
2328

2329
	return 0;
2330 2331
}

2332 2333 2334 2335 2336 2337 2338 2339 2340
/**
 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2341
{
2342
	struct mem_cgroup *memcg;
2343
	int ret = 0;
2344

2345 2346 2347
	if (memcg_kmem_bypass())
		return 0;

2348
	memcg = get_mem_cgroup_from_mm(current->mm);
2349
	if (!mem_cgroup_is_root(memcg)) {
2350
		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2351 2352 2353
		if (!ret)
			__SetPageKmemcg(page);
	}
2354
	css_put(&memcg->css);
2355
	return ret;
2356
}
2357 2358 2359 2360 2361 2362
/**
 * memcg_kmem_uncharge: uncharge a kmem page
 * @page: page to uncharge
 * @order: allocation order
 */
void memcg_kmem_uncharge(struct page *page, int order)
2363
{
2364
	struct mem_cgroup *memcg = page->mem_cgroup;
2365
	unsigned int nr_pages = 1 << order;
2366 2367 2368 2369

	if (!memcg)
		return;

2370
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2371

2372 2373 2374
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

2375
	page_counter_uncharge(&memcg->memory, nr_pages);
2376
	if (do_memsw_account())
2377
		page_counter_uncharge(&memcg->memsw, nr_pages);
2378

2379
	page->mem_cgroup = NULL;
2380 2381 2382 2383 2384

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);

2385
	css_put_many(&memcg->css, nr_pages);
2386
}
2387
#endif /* !CONFIG_SLOB */
2388

2389 2390 2391 2392
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2393
 * zone_lru_lock and migration entries setup in all page mappings.
2394
 */
2395
void mem_cgroup_split_huge_fixup(struct page *head)
2396
{
2397
	int i;
2398

2399 2400
	if (mem_cgroup_disabled())
		return;
2401

2402
	for (i = 1; i < HPAGE_PMD_NR; i++)
2403
		head[i].mem_cgroup = head->mem_cgroup;
2404

2405
	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2406
}
2407
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2408

A
Andrew Morton 已提交
2409
#ifdef CONFIG_MEMCG_SWAP
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2421
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2422 2423 2424
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2425
				struct mem_cgroup *from, struct mem_cgroup *to)
2426 2427 2428
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2429 2430
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2431 2432

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2433 2434
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
2435 2436 2437 2438 2439 2440
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2441
				struct mem_cgroup *from, struct mem_cgroup *to)
2442 2443 2444
{
	return -EINVAL;
}
2445
#endif
K
KAMEZAWA Hiroyuki 已提交
2446

2447
static DEFINE_MUTEX(memcg_max_mutex);
2448

2449 2450
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
2451
{
2452
	bool enlarge = false;
2453
	bool drained = false;
2454
	int ret;
2455 2456
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2457

2458
	do {
2459 2460 2461 2462
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2463

2464
		mutex_lock(&memcg_max_mutex);
2465 2466
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
2467
		 * break our basic invariant rule memory.max <= memsw.max.
2468
		 */
2469 2470
		limits_invariant = memsw ? max >= memcg->memory.max :
					   max <= memcg->memsw.max;
2471
		if (!limits_invariant) {
2472
			mutex_unlock(&memcg_max_mutex);
2473 2474 2475
			ret = -EINVAL;
			break;
		}
2476
		if (max > counter->max)
2477
			enlarge = true;
2478 2479
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
2480 2481 2482 2483

		if (!ret)
			break;

2484 2485 2486 2487 2488 2489
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

2490 2491 2492 2493 2494 2495
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
2496

2497 2498
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2499

2500 2501 2502
	return ret;
}

2503
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2504 2505 2506 2507
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
2508
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2509 2510
	unsigned long reclaimed;
	int loop = 0;
2511
	struct mem_cgroup_tree_per_node *mctz;
2512
	unsigned long excess;
2513 2514 2515 2516 2517
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

2518
	mctz = soft_limit_tree_node(pgdat->node_id);
2519 2520 2521 2522 2523 2524

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
2525
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2526 2527
		return 0;

2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
2542
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2543 2544 2545
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2546
		spin_lock_irq(&mctz->lock);
2547
		__mem_cgroup_remove_exceeded(mz, mctz);
2548 2549 2550 2551 2552 2553

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2554 2555 2556
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2557
		excess = soft_limit_excess(mz->memcg);
2558 2559 2560 2561 2562 2563 2564 2565 2566
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2567
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2568
		spin_unlock_irq(&mctz->lock);
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2586 2587 2588 2589 2590 2591
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2592 2593
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2594 2595 2596 2597 2598 2599
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2600 2601
}

2602
/*
2603
 * Reclaims as many pages from the given memcg as possible.
2604 2605 2606 2607 2608 2609 2610
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2611 2612
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2613 2614 2615

	drain_all_stock(memcg);

2616
	/* try to free all pages in this cgroup */
2617
	while (nr_retries && page_counter_read(&memcg->memory)) {
2618
		int progress;
2619

2620 2621 2622
		if (signal_pending(current))
			return -EINTR;

2623 2624
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2625
		if (!progress) {
2626
			nr_retries--;
2627
			/* maybe some writeback is necessary */
2628
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2629
		}
2630 2631

	}
2632 2633

	return 0;
2634 2635
}

2636 2637 2638
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2639
{
2640
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2641

2642 2643
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2644
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2645 2646
}

2647 2648
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2649
{
2650
	return mem_cgroup_from_css(css)->use_hierarchy;
2651 2652
}

2653 2654
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2655 2656
{
	int retval = 0;
2657
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2658
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2659

2660
	if (memcg->use_hierarchy == val)
2661
		return 0;
2662

2663
	/*
2664
	 * If parent's use_hierarchy is set, we can't make any modifications
2665 2666 2667 2668 2669 2670
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2671
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2672
				(val == 1 || val == 0)) {
2673
		if (!memcg_has_children(memcg))
2674
			memcg->use_hierarchy = val;
2675 2676 2677 2678
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2679

2680 2681 2682
	return retval;
}

2683
static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2684 2685
{
	struct mem_cgroup *iter;
2686
	int i;
2687

2688
	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2689

2690 2691
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_STAT; i++)
2692
			stat[i] += memcg_page_state(iter, i);
2693
	}
2694 2695
}

2696
static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2697 2698
{
	struct mem_cgroup *iter;
2699
	int i;
2700

2701
	memset(events, 0, sizeof(*events) * NR_VM_EVENT_ITEMS);
2702

2703
	for_each_mem_cgroup_tree(iter, memcg) {
2704
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
2705
			events[i] += memcg_sum_events(iter, i);
2706
	}
2707 2708
}

2709
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2710
{
2711
	unsigned long val = 0;
2712

2713
	if (mem_cgroup_is_root(memcg)) {
2714 2715 2716
		struct mem_cgroup *iter;

		for_each_mem_cgroup_tree(iter, memcg) {
2717 2718
			val += memcg_page_state(iter, MEMCG_CACHE);
			val += memcg_page_state(iter, MEMCG_RSS);
2719
			if (swap)
2720
				val += memcg_page_state(iter, MEMCG_SWAP);
2721
		}
2722
	} else {
2723
		if (!swap)
2724
			val = page_counter_read(&memcg->memory);
2725
		else
2726
			val = page_counter_read(&memcg->memsw);
2727
	}
2728
	return val;
2729 2730
}

2731 2732 2733 2734 2735 2736 2737
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2738

2739
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2740
			       struct cftype *cft)
B
Balbir Singh 已提交
2741
{
2742
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2743
	struct page_counter *counter;
2744

2745
	switch (MEMFILE_TYPE(cft->private)) {
2746
	case _MEM:
2747 2748
		counter = &memcg->memory;
		break;
2749
	case _MEMSWAP:
2750 2751
		counter = &memcg->memsw;
		break;
2752
	case _KMEM:
2753
		counter = &memcg->kmem;
2754
		break;
V
Vladimir Davydov 已提交
2755
	case _TCP:
2756
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
2757
		break;
2758 2759 2760
	default:
		BUG();
	}
2761 2762 2763 2764

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
2765
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2766
		if (counter == &memcg->memsw)
2767
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2768 2769
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
2770
		return (u64)counter->max * PAGE_SIZE;
2771 2772 2773 2774 2775 2776 2777 2778 2779
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2780
}
2781

2782
#ifndef CONFIG_SLOB
2783
static int memcg_online_kmem(struct mem_cgroup *memcg)
2784 2785 2786
{
	int memcg_id;

2787 2788 2789
	if (cgroup_memory_nokmem)
		return 0;

2790
	BUG_ON(memcg->kmemcg_id >= 0);
2791
	BUG_ON(memcg->kmem_state);
2792

2793
	memcg_id = memcg_alloc_cache_id();
2794 2795
	if (memcg_id < 0)
		return memcg_id;
2796

2797
	static_branch_inc(&memcg_kmem_enabled_key);
2798
	/*
2799
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
2800
	 * kmemcg_id. Setting the id after enabling static branching will
2801 2802 2803
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2804
	memcg->kmemcg_id = memcg_id;
2805
	memcg->kmem_state = KMEM_ONLINE;
2806
	INIT_LIST_HEAD(&memcg->kmem_caches);
2807 2808

	return 0;
2809 2810
}

2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	memcg_deactivate_kmem_caches(memcg);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
2844
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2845 2846 2847 2848 2849 2850 2851
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
2852 2853
	rcu_read_unlock();

2854 2855 2856 2857 2858 2859 2860
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
2861 2862 2863 2864
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

2865 2866 2867 2868 2869 2870
	if (memcg->kmem_state == KMEM_ALLOCATED) {
		memcg_destroy_kmem_caches(memcg);
		static_branch_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
}
2871
#else
2872
static int memcg_online_kmem(struct mem_cgroup *memcg)
2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
#endif /* !CONFIG_SLOB */

2884 2885
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
2886
{
2887
	int ret;
2888

2889 2890 2891
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
2892
	return ret;
2893
}
2894

2895
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
2896 2897 2898
{
	int ret;

2899
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
2900

2901
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
2902 2903 2904
	if (ret)
		goto out;

2905
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
2906 2907 2908
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
2909 2910 2911
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
2912 2913 2914 2915 2916 2917
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
2918
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
2919 2920 2921 2922
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
2923
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
2924 2925
	}
out:
2926
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
2927 2928 2929
	return ret;
}

2930 2931 2932 2933
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2934 2935
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
2936
{
2937
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2938
	unsigned long nr_pages;
2939 2940
	int ret;

2941
	buf = strstrip(buf);
2942
	ret = page_counter_memparse(buf, "-1", &nr_pages);
2943 2944
	if (ret)
		return ret;
2945

2946
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2947
	case RES_LIMIT:
2948 2949 2950 2951
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
2952 2953
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
2954
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
2955
			break;
2956
		case _MEMSWAP:
2957
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
2958
			break;
2959
		case _KMEM:
2960
			ret = memcg_update_kmem_max(memcg, nr_pages);
2961
			break;
V
Vladimir Davydov 已提交
2962
		case _TCP:
2963
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
2964
			break;
2965
		}
2966
		break;
2967 2968 2969
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
2970 2971
		break;
	}
2972
	return ret ?: nbytes;
B
Balbir Singh 已提交
2973 2974
}

2975 2976
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
2977
{
2978
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2979
	struct page_counter *counter;
2980

2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
2991
	case _TCP:
2992
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
2993
		break;
2994 2995 2996
	default:
		BUG();
	}
2997

2998
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2999
	case RES_MAX_USAGE:
3000
		page_counter_reset_watermark(counter);
3001 3002
		break;
	case RES_FAILCNT:
3003
		counter->failcnt = 0;
3004
		break;
3005 3006
	default:
		BUG();
3007
	}
3008

3009
	return nbytes;
3010 3011
}

3012
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3013 3014
					struct cftype *cft)
{
3015
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3016 3017
}

3018
#ifdef CONFIG_MMU
3019
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3020 3021
					struct cftype *cft, u64 val)
{
3022
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3023

3024
	if (val & ~MOVE_MASK)
3025
		return -EINVAL;
3026

3027
	/*
3028 3029 3030 3031
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3032
	 */
3033
	memcg->move_charge_at_immigrate = val;
3034 3035
	return 0;
}
3036
#else
3037
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3038 3039 3040 3041 3042
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3043

3044
#ifdef CONFIG_NUMA
3045
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3046
{
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3059
	int nid;
3060
	unsigned long nr;
3061
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3062

3063 3064 3065 3066 3067 3068 3069 3070 3071
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3072 3073
	}

3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3089 3090 3091 3092 3093 3094
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3095
/* Universal VM events cgroup1 shows, original sort order */
3096
static const unsigned int memcg1_events[] = {
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

static const char *const memcg1_event_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

3110
static int memcg_stat_show(struct seq_file *m, void *v)
3111
{
3112
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3113
	unsigned long memory, memsw;
3114 3115
	struct mem_cgroup *mi;
	unsigned int i;
3116

3117
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3118 3119
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3120 3121
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3122
			continue;
3123
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3124
			   memcg_page_state(memcg, memcg1_stats[i]) *
3125
			   PAGE_SIZE);
3126
	}
L
Lee Schermerhorn 已提交
3127

3128 3129
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3130
			   memcg_sum_events(memcg, memcg1_events[i]));
3131 3132 3133 3134 3135

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3136
	/* Hierarchical information */
3137 3138
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3139 3140
		memory = min(memory, mi->memory.max);
		memsw = min(memsw, mi->memsw.max);
3141
	}
3142 3143
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3144
	if (do_memsw_account())
3145 3146
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3147

3148
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3149
		unsigned long long val = 0;
3150

3151
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3152
			continue;
3153
		for_each_mem_cgroup_tree(mi, memcg)
3154
			val += memcg_page_state(mi, memcg1_stats[i]) *
3155 3156
			PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
3157 3158
	}

3159
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
3160 3161 3162
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
3163
			val += memcg_sum_events(mi, memcg1_events[i]);
3164
		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
3165 3166 3167 3168 3169 3170 3171 3172
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3173
	}
K
KAMEZAWA Hiroyuki 已提交
3174

K
KOSAKI Motohiro 已提交
3175 3176
#ifdef CONFIG_DEBUG_VM
	{
3177 3178
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
3179
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3180 3181 3182
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

3183 3184 3185
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
			rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3186

3187 3188 3189 3190 3191
			recent_rotated[0] += rstat->recent_rotated[0];
			recent_rotated[1] += rstat->recent_rotated[1];
			recent_scanned[0] += rstat->recent_scanned[0];
			recent_scanned[1] += rstat->recent_scanned[1];
		}
3192 3193 3194 3195
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3196 3197 3198
	}
#endif

3199 3200 3201
	return 0;
}

3202 3203
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3204
{
3205
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3206

3207
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3208 3209
}

3210 3211
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3212
{
3213
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3214

3215
	if (val > 100)
K
KOSAKI Motohiro 已提交
3216 3217
		return -EINVAL;

3218
	if (css->parent)
3219 3220 3221
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3222

K
KOSAKI Motohiro 已提交
3223 3224 3225
	return 0;
}

3226 3227 3228
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3229
	unsigned long usage;
3230 3231 3232 3233
	int i;

	rcu_read_lock();
	if (!swap)
3234
		t = rcu_dereference(memcg->thresholds.primary);
3235
	else
3236
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3237 3238 3239 3240

	if (!t)
		goto unlock;

3241
	usage = mem_cgroup_usage(memcg, swap);
3242 3243

	/*
3244
	 * current_threshold points to threshold just below or equal to usage.
3245 3246 3247
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3248
	i = t->current_threshold;
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3272
	t->current_threshold = i - 1;
3273 3274 3275 3276 3277 3278
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3279 3280
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3281
		if (do_memsw_account())
3282 3283 3284 3285
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3286 3287 3288 3289 3290 3291 3292
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3293 3294 3295 3296 3297 3298 3299
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3300 3301
}

3302
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3303 3304 3305
{
	struct mem_cgroup_eventfd_list *ev;

3306 3307
	spin_lock(&memcg_oom_lock);

3308
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3309
		eventfd_signal(ev->eventfd, 1);
3310 3311

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3312 3313 3314
	return 0;
}

3315
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3316
{
K
KAMEZAWA Hiroyuki 已提交
3317 3318
	struct mem_cgroup *iter;

3319
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3320
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3321 3322
}

3323
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3324
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3325
{
3326 3327
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3328 3329
	unsigned long threshold;
	unsigned long usage;
3330
	int i, size, ret;
3331

3332
	ret = page_counter_memparse(args, "-1", &threshold);
3333 3334 3335 3336
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3337

3338
	if (type == _MEM) {
3339
		thresholds = &memcg->thresholds;
3340
		usage = mem_cgroup_usage(memcg, false);
3341
	} else if (type == _MEMSWAP) {
3342
		thresholds = &memcg->memsw_thresholds;
3343
		usage = mem_cgroup_usage(memcg, true);
3344
	} else
3345 3346 3347
		BUG();

	/* Check if a threshold crossed before adding a new one */
3348
	if (thresholds->primary)
3349 3350
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3351
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3352 3353

	/* Allocate memory for new array of thresholds */
3354
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3355
			GFP_KERNEL);
3356
	if (!new) {
3357 3358 3359
		ret = -ENOMEM;
		goto unlock;
	}
3360
	new->size = size;
3361 3362

	/* Copy thresholds (if any) to new array */
3363 3364
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3365
				sizeof(struct mem_cgroup_threshold));
3366 3367
	}

3368
	/* Add new threshold */
3369 3370
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3371 3372

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3373
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3374 3375 3376
			compare_thresholds, NULL);

	/* Find current threshold */
3377
	new->current_threshold = -1;
3378
	for (i = 0; i < size; i++) {
3379
		if (new->entries[i].threshold <= usage) {
3380
			/*
3381 3382
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3383 3384
			 * it here.
			 */
3385
			++new->current_threshold;
3386 3387
		} else
			break;
3388 3389
	}

3390 3391 3392 3393 3394
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3395

3396
	/* To be sure that nobody uses thresholds */
3397 3398 3399 3400 3401 3402 3403 3404
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3405
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3406 3407
	struct eventfd_ctx *eventfd, const char *args)
{
3408
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3409 3410
}

3411
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3412 3413
	struct eventfd_ctx *eventfd, const char *args)
{
3414
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3415 3416
}

3417
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3418
	struct eventfd_ctx *eventfd, enum res_type type)
3419
{
3420 3421
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3422
	unsigned long usage;
3423
	int i, j, size;
3424 3425

	mutex_lock(&memcg->thresholds_lock);
3426 3427

	if (type == _MEM) {
3428
		thresholds = &memcg->thresholds;
3429
		usage = mem_cgroup_usage(memcg, false);
3430
	} else if (type == _MEMSWAP) {
3431
		thresholds = &memcg->memsw_thresholds;
3432
		usage = mem_cgroup_usage(memcg, true);
3433
	} else
3434 3435
		BUG();

3436 3437 3438
	if (!thresholds->primary)
		goto unlock;

3439 3440 3441 3442
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3443 3444 3445
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3446 3447 3448
			size++;
	}

3449
	new = thresholds->spare;
3450

3451 3452
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3453 3454
		kfree(new);
		new = NULL;
3455
		goto swap_buffers;
3456 3457
	}

3458
	new->size = size;
3459 3460

	/* Copy thresholds and find current threshold */
3461 3462 3463
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3464 3465
			continue;

3466
		new->entries[j] = thresholds->primary->entries[i];
3467
		if (new->entries[j].threshold <= usage) {
3468
			/*
3469
			 * new->current_threshold will not be used
3470 3471 3472
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3473
			++new->current_threshold;
3474 3475 3476 3477
		}
		j++;
	}

3478
swap_buffers:
3479 3480
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3481

3482
	rcu_assign_pointer(thresholds->primary, new);
3483

3484
	/* To be sure that nobody uses thresholds */
3485
	synchronize_rcu();
3486 3487 3488 3489 3490 3491

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
3492
unlock:
3493 3494
	mutex_unlock(&memcg->thresholds_lock);
}
3495

3496
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3497 3498
	struct eventfd_ctx *eventfd)
{
3499
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3500 3501
}

3502
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3503 3504
	struct eventfd_ctx *eventfd)
{
3505
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3506 3507
}

3508
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3509
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3510 3511 3512 3513 3514 3515 3516
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3517
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3518 3519 3520 3521 3522

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3523
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3524
		eventfd_signal(eventfd, 1);
3525
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3526 3527 3528 3529

	return 0;
}

3530
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3531
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3532 3533 3534
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3535
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3536

3537
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3538 3539 3540 3541 3542 3543
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3544
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3545 3546
}

3547
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3548
{
3549
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3550

3551
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3552
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3553
	seq_printf(sf, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
3554 3555 3556
	return 0;
}

3557
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3558 3559
	struct cftype *cft, u64 val)
{
3560
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3561 3562

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3563
	if (!css->parent || !((val == 0) || (val == 1)))
3564 3565
		return -EINVAL;

3566
	memcg->oom_kill_disable = val;
3567
	if (!val)
3568
		memcg_oom_recover(memcg);
3569

3570 3571 3572
	return 0;
}

3573 3574
#ifdef CONFIG_CGROUP_WRITEBACK

T
Tejun Heo 已提交
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3585 3586 3587 3588 3589
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3600 3601 3602
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3603 3604
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3605 3606 3607
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3608 3609 3610
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3611
 *
3612 3613 3614 3615 3616
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3617
 */
3618 3619 3620
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3621 3622 3623 3624
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

3625
	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3626 3627

	/* this should eventually include NR_UNSTABLE_NFS */
3628
	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3629 3630 3631
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3632 3633

	while ((parent = parent_mem_cgroup(memcg))) {
3634
		unsigned long ceiling = min(memcg->memory.max, memcg->high);
3635 3636
		unsigned long used = page_counter_read(&memcg->memory);

3637
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3638 3639 3640 3641
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3653 3654 3655 3656
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3657 3658
#endif	/* CONFIG_CGROUP_WRITEBACK */

3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3672 3673 3674 3675 3676
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3677
static void memcg_event_remove(struct work_struct *work)
3678
{
3679 3680
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3681
	struct mem_cgroup *memcg = event->memcg;
3682 3683 3684

	remove_wait_queue(event->wqh, &event->wait);

3685
	event->unregister_event(memcg, event->eventfd);
3686 3687 3688 3689 3690 3691

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3692
	css_put(&memcg->css);
3693 3694 3695
}

/*
3696
 * Gets called on EPOLLHUP on eventfd when user closes it.
3697 3698 3699
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3700
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3701
			    int sync, void *key)
3702
{
3703 3704
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3705
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
3706
	__poll_t flags = key_to_poll(key);
3707

3708
	if (flags & EPOLLHUP) {
3709 3710 3711 3712 3713 3714 3715 3716 3717
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3718
		spin_lock(&memcg->event_list_lock);
3719 3720 3721 3722 3723 3724 3725 3726
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3727
		spin_unlock(&memcg->event_list_lock);
3728 3729 3730 3731 3732
	}

	return 0;
}

3733
static void memcg_event_ptable_queue_proc(struct file *file,
3734 3735
		wait_queue_head_t *wqh, poll_table *pt)
{
3736 3737
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3738 3739 3740 3741 3742 3743

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3744 3745
 * DO NOT USE IN NEW FILES.
 *
3746 3747 3748 3749 3750
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3751 3752
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3753
{
3754
	struct cgroup_subsys_state *css = of_css(of);
3755
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3756
	struct mem_cgroup_event *event;
3757 3758 3759 3760
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3761
	const char *name;
3762 3763 3764
	char *endp;
	int ret;

3765 3766 3767
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3768 3769
	if (*endp != ' ')
		return -EINVAL;
3770
	buf = endp + 1;
3771

3772
	cfd = simple_strtoul(buf, &endp, 10);
3773 3774
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3775
	buf = endp + 1;
3776 3777 3778 3779 3780

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3781
	event->memcg = memcg;
3782
	INIT_LIST_HEAD(&event->list);
3783 3784 3785
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3811 3812 3813 3814 3815
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3816 3817
	 *
	 * DO NOT ADD NEW FILES.
3818
	 */
A
Al Viro 已提交
3819
	name = cfile.file->f_path.dentry->d_name.name;
3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3831 3832
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3833 3834 3835 3836 3837
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3838
	/*
3839 3840 3841
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
3842
	 */
A
Al Viro 已提交
3843
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3844
					       &memory_cgrp_subsys);
3845
	ret = -EINVAL;
3846
	if (IS_ERR(cfile_css))
3847
		goto out_put_cfile;
3848 3849
	if (cfile_css != css) {
		css_put(cfile_css);
3850
		goto out_put_cfile;
3851
	}
3852

3853
	ret = event->register_event(memcg, event->eventfd, buf);
3854 3855 3856
	if (ret)
		goto out_put_css;

3857
	vfs_poll(efile.file, &event->pt);
3858

3859 3860 3861
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
3862 3863 3864 3865

	fdput(cfile);
	fdput(efile);

3866
	return nbytes;
3867 3868

out_put_css:
3869
	css_put(css);
3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

3882
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
3883
	{
3884
		.name = "usage_in_bytes",
3885
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3886
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3887
	},
3888 3889
	{
		.name = "max_usage_in_bytes",
3890
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3891
		.write = mem_cgroup_reset,
3892
		.read_u64 = mem_cgroup_read_u64,
3893
	},
B
Balbir Singh 已提交
3894
	{
3895
		.name = "limit_in_bytes",
3896
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3897
		.write = mem_cgroup_write,
3898
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3899
	},
3900 3901 3902
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3903
		.write = mem_cgroup_write,
3904
		.read_u64 = mem_cgroup_read_u64,
3905
	},
B
Balbir Singh 已提交
3906 3907
	{
		.name = "failcnt",
3908
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3909
		.write = mem_cgroup_reset,
3910
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3911
	},
3912 3913
	{
		.name = "stat",
3914
		.seq_show = memcg_stat_show,
3915
	},
3916 3917
	{
		.name = "force_empty",
3918
		.write = mem_cgroup_force_empty_write,
3919
	},
3920 3921 3922 3923 3924
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
3925
	{
3926
		.name = "cgroup.event_control",		/* XXX: for compat */
3927
		.write = memcg_write_event_control,
3928
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3929
	},
K
KOSAKI Motohiro 已提交
3930 3931 3932 3933 3934
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3935 3936 3937 3938 3939
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
3940 3941
	{
		.name = "oom_control",
3942
		.seq_show = mem_cgroup_oom_control_read,
3943
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
3944 3945
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
3946 3947 3948
	{
		.name = "pressure_level",
	},
3949 3950 3951
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
3952
		.seq_show = memcg_numa_stat_show,
3953 3954
	},
#endif
3955 3956 3957
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3958
		.write = mem_cgroup_write,
3959
		.read_u64 = mem_cgroup_read_u64,
3960 3961 3962 3963
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3964
		.read_u64 = mem_cgroup_read_u64,
3965 3966 3967 3968
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3969
		.write = mem_cgroup_reset,
3970
		.read_u64 = mem_cgroup_read_u64,
3971 3972 3973 3974
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
3975
		.write = mem_cgroup_reset,
3976
		.read_u64 = mem_cgroup_read_u64,
3977
	},
Y
Yang Shi 已提交
3978
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
3979 3980
	{
		.name = "kmem.slabinfo",
3981 3982 3983
		.seq_start = memcg_slab_start,
		.seq_next = memcg_slab_next,
		.seq_stop = memcg_slab_stop,
3984
		.seq_show = memcg_slab_show,
3985 3986
	},
#endif
V
Vladimir Davydov 已提交
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4010
	{ },	/* terminate */
4011
};
4012

4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
 * However, there usually are many references to the oflline CSS after
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

4039
static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4040
{
4041
	VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4042
	atomic_add(n, &memcg->id.ref);
4043 4044
}

4045
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4046
{
4047
	VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4048
	if (atomic_sub_and_test(n, &memcg->id.ref)) {
4049 4050 4051 4052 4053 4054 4055 4056
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

4057 4058 4059 4060 4061 4062 4063 4064 4065 4066
static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
{
	mem_cgroup_id_get_many(memcg, 1);
}

static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

4079
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4080 4081
{
	struct mem_cgroup_per_node *pn;
4082
	int tmp = node;
4083 4084 4085 4086 4087 4088 4089 4090
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4091 4092
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4093
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4094 4095
	if (!pn)
		return 1;
4096

4097 4098
	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat_cpu) {
4099 4100 4101 4102
		kfree(pn);
		return 1;
	}

4103 4104 4105 4106 4107
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

4108
	memcg->nodeinfo[node] = pn;
4109 4110 4111
	return 0;
}

4112
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4113
{
4114 4115
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
4116 4117 4118
	if (!pn)
		return;

4119
	free_percpu(pn->lruvec_stat_cpu);
4120
	kfree(pn);
4121 4122
}

4123
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4124
{
4125
	int node;
4126

4127
	for_each_node(node)
4128
		free_mem_cgroup_per_node_info(memcg, node);
4129
	free_percpu(memcg->stat_cpu);
4130
	kfree(memcg);
4131
}
4132

4133 4134 4135 4136 4137 4138
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
	__mem_cgroup_free(memcg);
}

4139
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4140
{
4141
	struct mem_cgroup *memcg;
4142
	size_t size;
4143
	int node;
B
Balbir Singh 已提交
4144

4145 4146 4147 4148
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4149
	if (!memcg)
4150 4151
		return NULL;

4152 4153 4154 4155 4156 4157
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
	if (memcg->id.id < 0)
		goto fail;

4158 4159
	memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat_cpu)
4160
		goto fail;
4161

B
Bob Liu 已提交
4162
	for_each_node(node)
4163
		if (alloc_mem_cgroup_per_node_info(memcg, node))
4164
			goto fail;
4165

4166 4167
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4168

4169
	INIT_WORK(&memcg->high_work, high_work_func);
4170 4171 4172 4173
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4174
	vmpressure_init(&memcg->vmpressure);
4175 4176
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4177
	memcg->socket_pressure = jiffies;
4178
#ifndef CONFIG_SLOB
V
Vladimir Davydov 已提交
4179 4180
	memcg->kmemcg_id = -1;
#endif
4181 4182 4183
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4184
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4185 4186
	return memcg;
fail:
4187 4188
	if (memcg->id.id > 0)
		idr_remove(&mem_cgroup_idr, memcg->id.id);
4189
	__mem_cgroup_free(memcg);
4190
	return NULL;
4191 4192
}

4193 4194
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4195
{
4196 4197 4198
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
4199

4200 4201 4202
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
4203

4204 4205 4206 4207 4208 4209 4210 4211
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
4212
		page_counter_init(&memcg->memory, &parent->memory);
4213
		page_counter_init(&memcg->swap, &parent->swap);
4214 4215
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4216
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4217
	} else {
4218
		page_counter_init(&memcg->memory, NULL);
4219
		page_counter_init(&memcg->swap, NULL);
4220 4221
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4222
		page_counter_init(&memcg->tcpmem, NULL);
4223 4224 4225 4226 4227
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4228
		if (parent != root_mem_cgroup)
4229
			memory_cgrp_subsys.broken_hierarchy = true;
4230
	}
4231

4232 4233 4234 4235 4236 4237
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

4238
	error = memcg_online_kmem(memcg);
4239 4240
	if (error)
		goto fail;
4241

4242
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4243
		static_branch_inc(&memcg_sockets_enabled_key);
4244

4245 4246 4247
	return &memcg->css;
fail:
	mem_cgroup_free(memcg);
4248
	return ERR_PTR(-ENOMEM);
4249 4250
}

4251
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4252
{
4253 4254
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4255
	/* Online state pins memcg ID, memcg ID pins CSS */
4256
	atomic_set(&memcg->id.ref, 1);
4257
	css_get(css);
4258
	return 0;
B
Balbir Singh 已提交
4259 4260
}

4261
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4262
{
4263
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4264
	struct mem_cgroup_event *event, *tmp;
4265 4266 4267 4268 4269 4270

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4271 4272
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4273 4274 4275
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4276
	spin_unlock(&memcg->event_list_lock);
4277

4278
	page_counter_set_low(&memcg->memory, 0);
4279

4280
	memcg_offline_kmem(memcg);
4281
	wb_memcg_offline(memcg);
4282 4283

	mem_cgroup_id_put(memcg);
4284 4285
}

4286 4287 4288 4289 4290 4291 4292
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4293
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4294
{
4295
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4296

4297
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4298
		static_branch_dec(&memcg_sockets_enabled_key);
4299

4300
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
4301
		static_branch_dec(&memcg_sockets_enabled_key);
4302

4303 4304 4305
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
4306
	memcg_free_kmem(memcg);
4307
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4308 4309
}

4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4327 4328 4329 4330 4331
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
4332
	page_counter_set_low(&memcg->memory, 0);
4333
	memcg->high = PAGE_COUNTER_MAX;
4334
	memcg->soft_limit = PAGE_COUNTER_MAX;
4335
	memcg_wb_domain_size_changed(memcg);
4336 4337
}

4338
#ifdef CONFIG_MMU
4339
/* Handlers for move charge at task migration. */
4340
static int mem_cgroup_do_precharge(unsigned long count)
4341
{
4342
	int ret;
4343

4344 4345
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4346
	if (!ret) {
4347 4348 4349
		mc.precharge += count;
		return ret;
	}
4350

4351
	/* Try charges one by one with reclaim, but do not retry */
4352
	while (count--) {
4353
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4354 4355
		if (ret)
			return ret;
4356
		mc.precharge++;
4357
		cond_resched();
4358
	}
4359
	return 0;
4360 4361 4362 4363
}

union mc_target {
	struct page	*page;
4364
	swp_entry_t	ent;
4365 4366 4367
};

enum mc_target_type {
4368
	MC_TARGET_NONE = 0,
4369
	MC_TARGET_PAGE,
4370
	MC_TARGET_SWAP,
4371
	MC_TARGET_DEVICE,
4372 4373
};

D
Daisuke Nishimura 已提交
4374 4375
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4376
{
4377
	struct page *page = _vm_normal_page(vma, addr, ptent, true);
4378

D
Daisuke Nishimura 已提交
4379 4380 4381
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4382
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4383
			return NULL;
4384 4385 4386 4387
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4388 4389 4390 4391 4392 4393
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4394
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
4395
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4396
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
4397 4398 4399 4400
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4401
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4402
		return NULL;
4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
		page = device_private_entry_to_page(ent);
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

4420 4421 4422 4423
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4424
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4425
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4426 4427 4428 4429
		entry->val = ent.val;

	return page;
}
4430 4431
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4432
			pte_t ptent, swp_entry_t *entry)
4433 4434 4435 4436
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4437

4438 4439 4440 4441 4442 4443 4444 4445 4446
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4447
	if (!(mc.flags & MOVE_FILE))
4448 4449 4450
		return NULL;

	mapping = vma->vm_file->f_mapping;
4451
	pgoff = linear_page_index(vma, addr);
4452 4453

	/* page is moved even if it's not RSS of this task(page-faulted). */
4454 4455
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4456 4457 4458 4459
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
4460
			if (do_memsw_account())
4461
				*entry = swp;
4462 4463
			page = find_get_page(swap_address_space(swp),
					     swp_offset(swp));
4464 4465 4466 4467 4468
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4469
#endif
4470 4471 4472
	return page;
}

4473 4474 4475
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
4476
 * @compound: charge the page as compound or small page
4477 4478 4479
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
4480
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4481 4482 4483 4484 4485
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
4486
				   bool compound,
4487 4488 4489 4490
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
4491
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4492
	int ret;
4493
	bool anon;
4494 4495 4496

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
4497
	VM_BUG_ON(compound && !PageTransHuge(page));
4498 4499

	/*
4500
	 * Prevent mem_cgroup_migrate() from looking at
4501
	 * page->mem_cgroup of its source page while we change it.
4502
	 */
4503
	ret = -EBUSY;
4504 4505 4506 4507 4508 4509 4510
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4511 4512
	anon = PageAnon(page);

4513 4514
	spin_lock_irqsave(&from->move_lock, flags);

4515
	if (!anon && page_mapped(page)) {
4516 4517
		__mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
		__mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
4518 4519
	}

4520 4521
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
4522
	 * mod_memcg_page_state will serialize updates to PageDirty.
4523 4524 4525 4526 4527 4528
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
4529 4530
			__mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
			__mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
4531 4532 4533
		}
	}

4534
	if (PageWriteback(page)) {
4535 4536
		__mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
		__mod_memcg_state(to, NR_WRITEBACK, nr_pages);
4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
4552
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4553
	memcg_check_events(to, page);
4554
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4555 4556 4557 4558 4559 4560 4561 4562
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4578 4579 4580 4581 4582
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PUBLIC
 *     or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
4583 4584
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
4585 4586 4587 4588
 *
 * Called with pte lock held.
 */

4589
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4590 4591 4592
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4593
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4594 4595 4596 4597 4598
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
4599
		page = mc_handle_swap_pte(vma, ptent, &ent);
4600
	else if (pte_none(ptent))
4601
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4602 4603

	if (!page && !ent.val)
4604
		return ret;
4605 4606
	if (page) {
		/*
4607
		 * Do only loose check w/o serialization.
4608
		 * mem_cgroup_move_account() checks the page is valid or
4609
		 * not under LRU exclusion.
4610
		 */
4611
		if (page->mem_cgroup == mc.from) {
4612
			ret = MC_TARGET_PAGE;
4613 4614
			if (is_device_private_page(page) ||
			    is_device_public_page(page))
4615
				ret = MC_TARGET_DEVICE;
4616 4617 4618 4619 4620 4621
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
4622 4623 4624 4625 4626
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
4627
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4628 4629 4630
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4631 4632 4633 4634
	}
	return ret;
}

4635 4636
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
4637 4638
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
4639 4640 4641 4642 4643 4644 4645 4646
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

4647 4648 4649 4650 4651
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
4652
	page = pmd_page(pmd);
4653
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4654
	if (!(mc.flags & MOVE_ANON))
4655
		return ret;
4656
	if (page->mem_cgroup == mc.from) {
4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4673 4674 4675 4676
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4677
	struct vm_area_struct *vma = walk->vma;
4678 4679 4680
	pte_t *pte;
	spinlock_t *ptl;

4681 4682
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4683 4684 4685 4686 4687
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
		 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
		 * MEMORY_DEVICE_PRIVATE but this might change.
		 */
4688 4689
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4690
		spin_unlock(ptl);
4691
		return 0;
4692
	}
4693

4694 4695
	if (pmd_trans_unstable(pmd))
		return 0;
4696 4697
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4698
		if (get_mctgt_type(vma, addr, *pte, NULL))
4699 4700 4701 4702
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4703 4704 4705
	return 0;
}

4706 4707 4708 4709
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4710 4711 4712 4713
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4714
	down_read(&mm->mmap_sem);
4715 4716
	walk_page_range(0, mm->highest_vm_end,
			&mem_cgroup_count_precharge_walk);
4717
	up_read(&mm->mmap_sem);
4718 4719 4720 4721 4722 4723 4724 4725 4726

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4727 4728 4729 4730 4731
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4732 4733
}

4734 4735
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4736
{
4737 4738 4739
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4740
	/* we must uncharge all the leftover precharges from mc.to */
4741
	if (mc.precharge) {
4742
		cancel_charge(mc.to, mc.precharge);
4743 4744 4745 4746 4747 4748 4749
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4750
		cancel_charge(mc.from, mc.moved_charge);
4751
		mc.moved_charge = 0;
4752
	}
4753 4754 4755
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4756
		if (!mem_cgroup_is_root(mc.from))
4757
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4758

4759 4760
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

4761
		/*
4762 4763
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4764
		 */
4765
		if (!mem_cgroup_is_root(mc.to))
4766 4767
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4768 4769
		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
		css_put_many(&mc.to->css, mc.moved_swap);
4770

4771 4772
		mc.moved_swap = 0;
	}
4773 4774 4775 4776 4777 4778 4779
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
4780 4781
	struct mm_struct *mm = mc.mm;

4782 4783 4784 4785 4786 4787
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4788
	spin_lock(&mc.lock);
4789 4790
	mc.from = NULL;
	mc.to = NULL;
4791
	mc.mm = NULL;
4792
	spin_unlock(&mc.lock);
4793 4794

	mmput(mm);
4795 4796
}

4797
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4798
{
4799
	struct cgroup_subsys_state *css;
4800
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4801
	struct mem_cgroup *from;
4802
	struct task_struct *leader, *p;
4803
	struct mm_struct *mm;
4804
	unsigned long move_flags;
4805
	int ret = 0;
4806

4807 4808
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4809 4810
		return 0;

4811 4812 4813 4814 4815 4816 4817
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
4818
	cgroup_taskset_for_each_leader(leader, css, tset) {
4819 4820
		WARN_ON_ONCE(p);
		p = leader;
4821
		memcg = mem_cgroup_from_css(css);
4822 4823 4824 4825
	}
	if (!p)
		return 0;

4826 4827 4828 4829 4830 4831 4832 4833 4834
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
4851
		mc.mm = mm;
4852 4853 4854 4855 4856 4857 4858 4859 4860
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
4861 4862
	} else {
		mmput(mm);
4863 4864 4865 4866
	}
	return ret;
}

4867
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4868
{
4869 4870
	if (mc.to)
		mem_cgroup_clear_mc();
4871 4872
}

4873 4874 4875
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4876
{
4877
	int ret = 0;
4878
	struct vm_area_struct *vma = walk->vma;
4879 4880
	pte_t *pte;
	spinlock_t *ptl;
4881 4882 4883
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4884

4885 4886
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4887
		if (mc.precharge < HPAGE_PMD_NR) {
4888
			spin_unlock(ptl);
4889 4890 4891 4892 4893 4894
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
4895
				if (!mem_cgroup_move_account(page, true,
4896
							     mc.from, mc.to)) {
4897 4898 4899 4900 4901 4902
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
4903 4904 4905 4906 4907 4908 4909 4910
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
4911
		}
4912
		spin_unlock(ptl);
4913
		return 0;
4914 4915
	}

4916 4917
	if (pmd_trans_unstable(pmd))
		return 0;
4918 4919 4920 4921
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
4922
		bool device = false;
4923
		swp_entry_t ent;
4924 4925 4926 4927

		if (!mc.precharge)
			break;

4928
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4929 4930 4931
		case MC_TARGET_DEVICE:
			device = true;
			/* fall through */
4932 4933
		case MC_TARGET_PAGE:
			page = target.page;
4934 4935 4936 4937 4938 4939 4940 4941
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
4942
			if (!device && isolate_lru_page(page))
4943
				goto put;
4944 4945
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
4946
				mc.precharge--;
4947 4948
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4949
			}
4950 4951
			if (!device)
				putback_lru_page(page);
4952
put:			/* get_mctgt_type() gets the page */
4953 4954
			put_page(page);
			break;
4955 4956
		case MC_TARGET_SWAP:
			ent = target.ent;
4957
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4958
				mc.precharge--;
4959 4960 4961
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4962
			break;
4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4977
		ret = mem_cgroup_do_precharge(1);
4978 4979 4980 4981 4982 4983 4984
		if (!ret)
			goto retry;
	}

	return ret;
}

4985
static void mem_cgroup_move_charge(void)
4986
{
4987 4988
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
4989
		.mm = mc.mm,
4990
	};
4991 4992

	lru_add_drain_all();
4993
	/*
4994 4995 4996
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
4997 4998 4999
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5000
retry:
5001
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5013 5014 5015 5016
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
5017 5018
	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);

5019
	up_read(&mc.mm->mmap_sem);
5020
	atomic_dec(&mc.from->moving_account);
5021 5022
}

5023
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
5024
{
5025 5026
	if (mc.to) {
		mem_cgroup_move_charge();
5027
		mem_cgroup_clear_mc();
5028
	}
B
Balbir Singh 已提交
5029
}
5030
#else	/* !CONFIG_MMU */
5031
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5032 5033 5034
{
	return 0;
}
5035
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5036 5037
{
}
5038
static void mem_cgroup_move_task(void)
5039 5040 5041
{
}
#endif
B
Balbir Singh 已提交
5042

5043 5044
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5045 5046
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5047
 */
5048
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5049 5050
{
	/*
5051
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5052 5053 5054
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5055
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5056 5057 5058
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5059 5060
}

5061 5062 5063
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5064 5065 5066
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5067 5068 5069 5070 5071
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5072
	unsigned long low = READ_ONCE(memcg->memory.low);
5073 5074

	if (low == PAGE_COUNTER_MAX)
5075
		seq_puts(m, "max\n");
5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5090
	err = page_counter_memparse(buf, "max", &low);
5091 5092 5093
	if (err)
		return err;

5094
	page_counter_set_low(&memcg->memory, low);
5095 5096 5097 5098 5099 5100 5101

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5102
	unsigned long high = READ_ONCE(memcg->high);
5103 5104

	if (high == PAGE_COUNTER_MAX)
5105
		seq_puts(m, "max\n");
5106 5107 5108 5109 5110 5111 5112 5113 5114 5115
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5116
	unsigned long nr_pages;
5117 5118 5119 5120
	unsigned long high;
	int err;

	buf = strstrip(buf);
5121
	err = page_counter_memparse(buf, "max", &high);
5122 5123 5124 5125 5126
	if (err)
		return err;

	memcg->high = high;

5127 5128 5129 5130 5131
	nr_pages = page_counter_read(&memcg->memory);
	if (nr_pages > high)
		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
					     GFP_KERNEL, true);

5132
	memcg_wb_domain_size_changed(memcg);
5133 5134 5135 5136 5137 5138
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5139
	unsigned long max = READ_ONCE(memcg->memory.max);
5140 5141

	if (max == PAGE_COUNTER_MAX)
5142
		seq_puts(m, "max\n");
5143 5144 5145 5146 5147 5148 5149 5150 5151 5152
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5153 5154
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
5155 5156 5157 5158
	unsigned long max;
	int err;

	buf = strstrip(buf);
5159
	err = page_counter_memparse(buf, "max", &max);
5160 5161 5162
	if (err)
		return err;

5163
	xchg(&memcg->memory.max, max);
5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

		if (signal_pending(current)) {
			err = -EINTR;
			break;
		}

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

5189
		memcg_memory_event(memcg, MEMCG_OOM);
5190 5191 5192
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
5193

5194
	memcg_wb_domain_size_changed(memcg);
5195 5196 5197 5198 5199 5200 5201
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

5202 5203 5204 5205 5206 5207 5208 5209
	seq_printf(m, "low %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
5210
	seq_printf(m, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
5211 5212 5213 5214

	return 0;
}

5215 5216 5217
static int memory_stat_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5218
	unsigned long stat[MEMCG_NR_STAT];
5219
	unsigned long events[NR_VM_EVENT_ITEMS];
5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232
	int i;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

5233 5234 5235
	tree_stat(memcg, stat);
	tree_events(memcg, events);

5236
	seq_printf(m, "anon %llu\n",
5237
		   (u64)stat[MEMCG_RSS] * PAGE_SIZE);
5238
	seq_printf(m, "file %llu\n",
5239
		   (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
5240
	seq_printf(m, "kernel_stack %llu\n",
5241
		   (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5242
	seq_printf(m, "slab %llu\n",
5243 5244
		   (u64)(stat[NR_SLAB_RECLAIMABLE] +
			 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5245
	seq_printf(m, "sock %llu\n",
5246
		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5247

5248
	seq_printf(m, "shmem %llu\n",
5249
		   (u64)stat[NR_SHMEM] * PAGE_SIZE);
5250
	seq_printf(m, "file_mapped %llu\n",
5251
		   (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
5252
	seq_printf(m, "file_dirty %llu\n",
5253
		   (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
5254
	seq_printf(m, "file_writeback %llu\n",
5255
		   (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266

	for (i = 0; i < NR_LRU_LISTS; i++) {
		struct mem_cgroup *mi;
		unsigned long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
		seq_printf(m, "%s %llu\n",
			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
	}

5267
	seq_printf(m, "slab_reclaimable %llu\n",
5268
		   (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5269
	seq_printf(m, "slab_unreclaimable %llu\n",
5270
		   (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5271

5272 5273
	/* Accumulated memory events */

5274 5275
	seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
	seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
5276

5277 5278 5279 5280 5281 5282 5283 5284 5285 5286
	seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
	seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
		   events[PGSCAN_DIRECT]);
	seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
		   events[PGSTEAL_DIRECT]);
	seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
	seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
	seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
	seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);

5287
	seq_printf(m, "workingset_refault %lu\n",
5288
		   stat[WORKINGSET_REFAULT]);
5289
	seq_printf(m, "workingset_activate %lu\n",
5290
		   stat[WORKINGSET_ACTIVATE]);
5291
	seq_printf(m, "workingset_nodereclaim %lu\n",
5292
		   stat[WORKINGSET_NODERECLAIM]);
5293

5294 5295 5296
	return 0;
}

5297 5298 5299
static struct cftype memory_files[] = {
	{
		.name = "current",
5300
		.flags = CFTYPE_NOT_ON_ROOT,
5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5324
		.file_offset = offsetof(struct mem_cgroup, events_file),
5325 5326
		.seq_show = memory_events_show,
	},
5327 5328 5329 5330 5331
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
5332 5333 5334
	{ }	/* terminate */
};

5335
struct cgroup_subsys memory_cgrp_subsys = {
5336
	.css_alloc = mem_cgroup_css_alloc,
5337
	.css_online = mem_cgroup_css_online,
5338
	.css_offline = mem_cgroup_css_offline,
5339
	.css_released = mem_cgroup_css_released,
5340
	.css_free = mem_cgroup_css_free,
5341
	.css_reset = mem_cgroup_css_reset,
5342 5343
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
5344
	.post_attach = mem_cgroup_move_task,
5345
	.bind = mem_cgroup_bind,
5346 5347
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5348
	.early_init = 0,
B
Balbir Singh 已提交
5349
};
5350

5351
/**
5352
 * mem_cgroup_low - check if memory consumption is in the normal range
5353
 * @root: the top ancestor of the sub-tree being checked
5354 5355
 * @memcg: the memory cgroup to check
 *
5356 5357
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
5358
 *
5359
 * Returns %true if memory consumption of @memcg is in the normal range.
5360
 *
5361
 * @root is exclusive; it is never low when looked at directly
5362
 *
5363 5364
 * To provide a proper hierarchical behavior, effective memory.low value
 * is used.
5365
 *
5366 5367 5368 5369 5370 5371 5372
 * Effective memory.low is always equal or less than the original memory.low.
 * If there is no memory.low overcommittment (which is always true for
 * top-level memory cgroups), these two values are equal.
 * Otherwise, it's a part of parent's effective memory.low,
 * calculated as a cgroup's memory.low usage divided by sum of sibling's
 * memory.low usages, where memory.low usage is the size of actually
 * protected memory.
5373
 *
5374 5375 5376
 *                                             low_usage
 * elow = min( memory.low, parent->elow * ------------------ ),
 *                                        siblings_low_usage
5377
 *
5378 5379 5380
 *             | memory.current, if memory.current < memory.low
 * low_usage = |
	       | 0, otherwise.
5381
 *
5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414
 *
 * Such definition of the effective memory.low provides the expected
 * hierarchical behavior: parent's memory.low value is limiting
 * children, unprotected memory is reclaimed first and cgroups,
 * which are not using their guarantee do not affect actual memory
 * distribution.
 *
 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
 *
 *     A      A/memory.low = 2G, A/memory.current = 6G
 *    //\\
 *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
 *            C/memory.low = 1G  C/memory.current = 2G
 *            D/memory.low = 0   D/memory.current = 2G
 *            E/memory.low = 10G E/memory.current = 0
 *
 * and the memory pressure is applied, the following memory distribution
 * is expected (approximately):
 *
 *     A/memory.current = 2G
 *
 *     B/memory.current = 1.3G
 *     C/memory.current = 0.6G
 *     D/memory.current = 0
 *     E/memory.current = 0
 *
 * These calculations require constant tracking of the actual low usages
 * (see propagate_low_usage()), as well as recursive calculation of
 * effective memory.low values. But as we do call mem_cgroup_low()
 * path for each memory cgroup top-down from the reclaim,
 * it's possible to optimize this part, and save calculated elow
 * for next usage. This part is intentionally racy, but it's ok,
 * as memory.low is a best-effort mechanism.
5415 5416 5417
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
5418 5419 5420 5421
	unsigned long usage, low_usage, siblings_low_usage;
	unsigned long elow, parent_elow;
	struct mem_cgroup *parent;

5422 5423 5424
	if (mem_cgroup_disabled())
		return false;

5425 5426 5427
	if (!root)
		root = root_mem_cgroup;
	if (memcg == root)
5428 5429
		return false;

5430 5431 5432
	elow = memcg->memory.low;
	usage = page_counter_read(&memcg->memory);
	parent = parent_mem_cgroup(memcg);
5433

5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452
	if (parent == root)
		goto exit;

	parent_elow = READ_ONCE(parent->memory.elow);
	elow = min(elow, parent_elow);

	if (!elow || !parent_elow)
		goto exit;

	low_usage = min(usage, memcg->memory.low);
	siblings_low_usage = atomic_long_read(
		&parent->memory.children_low_usage);

	if (!low_usage || !siblings_low_usage)
		goto exit;

	elow = min(elow, parent_elow * low_usage / siblings_low_usage);
exit:
	memcg->memory.elow = elow;
5453
	return usage && usage <= elow;
5454 5455
}

5456 5457 5458 5459 5460 5461
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
5462
 * @compound: charge the page as compound or small page
5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5475 5476
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
5477 5478
{
	struct mem_cgroup *memcg = NULL;
5479
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5493
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5494
		if (compound_head(page)->mem_cgroup)
5495
			goto out;
5496

5497
		if (do_swap_account) {
5498 5499 5500 5501 5502 5503 5504 5505 5506
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
5525
 * @compound: charge the page as compound or small page
5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5538
			      bool lrucare, bool compound)
5539
{
5540
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5555 5556 5557
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
5558
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5559 5560
	memcg_check_events(memcg, page);
	local_irq_enable();
5561

5562
	if (do_memsw_account() && PageSwapCache(page)) {
5563 5564 5565 5566 5567 5568
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
5569
		mem_cgroup_uncharge_swap(entry, nr_pages);
5570 5571 5572 5573 5574 5575 5576
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
5577
 * @compound: charge the page as compound or small page
5578 5579 5580
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
5581 5582
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
5583
{
5584
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610
struct uncharge_gather {
	struct mem_cgroup *memcg;
	unsigned long pgpgout;
	unsigned long nr_anon;
	unsigned long nr_file;
	unsigned long nr_kmem;
	unsigned long nr_huge;
	unsigned long nr_shmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
5611
{
5612 5613 5614 5615 5616 5617
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
5618 5619
	unsigned long flags;

5620 5621
	if (!mem_cgroup_is_root(ug->memcg)) {
		page_counter_uncharge(&ug->memcg->memory, nr_pages);
5622
		if (do_memsw_account())
5623 5624 5625 5626
			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
5627
	}
5628 5629

	local_irq_save(flags);
5630 5631 5632 5633 5634
	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
5635
	__this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
5636
	memcg_check_events(ug->memcg, ug->dummy_page);
5637
	local_irq_restore(flags);
5638

5639 5640 5641 5642 5643 5644 5645
	if (!mem_cgroup_is_root(ug->memcg))
		css_put_many(&ug->memcg->css, nr_pages);
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
	VM_BUG_ON_PAGE(PageLRU(page), page);
5646 5647
	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
			!PageHWPoison(page) , page);
5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687

	if (!page->mem_cgroup)
		return;

	/*
	 * Nobody should be changing or seriously looking at
	 * page->mem_cgroup at this point, we have fully
	 * exclusive access to the page.
	 */

	if (ug->memcg != page->mem_cgroup) {
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
		ug->memcg = page->mem_cgroup;
	}

	if (!PageKmemcg(page)) {
		unsigned int nr_pages = 1;

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			ug->nr_huge += nr_pages;
		}
		if (PageAnon(page))
			ug->nr_anon += nr_pages;
		else {
			ug->nr_file += nr_pages;
			if (PageSwapBacked(page))
				ug->nr_shmem += nr_pages;
		}
		ug->pgpgout++;
	} else {
		ug->nr_kmem += 1 << compound_order(page);
		__ClearPageKmemcg(page);
	}

	ug->dummy_page = page;
	page->mem_cgroup = NULL;
5688 5689 5690 5691
}

static void uncharge_list(struct list_head *page_list)
{
5692
	struct uncharge_gather ug;
5693
	struct list_head *next;
5694 5695

	uncharge_gather_clear(&ug);
5696

5697 5698 5699 5700
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
5701 5702
	next = page_list->next;
	do {
5703 5704
		struct page *page;

5705 5706 5707
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

5708
		uncharge_page(page, &ug);
5709 5710
	} while (next != page_list);

5711 5712
	if (ug.memcg)
		uncharge_batch(&ug);
5713 5714
}

5715 5716 5717 5718 5719 5720 5721 5722 5723
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
5724 5725
	struct uncharge_gather ug;

5726 5727 5728
	if (mem_cgroup_disabled())
		return;

5729
	/* Don't touch page->lru of any random page, pre-check: */
5730
	if (!page->mem_cgroup)
5731 5732
		return;

5733 5734 5735
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
5736
}
5737

5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5749

5750 5751
	if (!list_empty(page_list))
		uncharge_list(page_list);
5752 5753 5754
}

/**
5755 5756 5757
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
5758
 *
5759 5760
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
5761 5762 5763
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
5764
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5765
{
5766
	struct mem_cgroup *memcg;
5767 5768
	unsigned int nr_pages;
	bool compound;
5769
	unsigned long flags;
5770 5771 5772 5773

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5774 5775
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5776 5777 5778 5779 5780

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5781
	if (newpage->mem_cgroup)
5782 5783
		return;

5784
	/* Swapcache readahead pages can get replaced before being charged */
5785
	memcg = oldpage->mem_cgroup;
5786
	if (!memcg)
5787 5788
		return;

5789 5790 5791 5792 5793 5794 5795 5796
	/* Force-charge the new page. The old one will be freed soon */
	compound = PageTransHuge(newpage);
	nr_pages = compound ? hpage_nr_pages(newpage) : 1;

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
5797

5798
	commit_charge(newpage, memcg, false);
5799

5800
	local_irq_save(flags);
5801 5802
	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
	memcg_check_events(memcg, newpage);
5803
	local_irq_restore(flags);
5804 5805
}

5806
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5807 5808
EXPORT_SYMBOL(memcg_sockets_enabled_key);

5809
void mem_cgroup_sk_alloc(struct sock *sk)
5810 5811 5812
{
	struct mem_cgroup *memcg;

5813 5814 5815
	if (!mem_cgroup_sockets_enabled)
		return;

5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829
	/*
	 * Socket cloning can throw us here with sk_memcg already
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		css_get(&sk->sk_memcg->css);
		return;
	}

5830 5831
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
5832 5833
	if (memcg == root_mem_cgroup)
		goto out;
5834
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5835 5836
		goto out;
	if (css_tryget_online(&memcg->css))
5837
		sk->sk_memcg = memcg;
5838
out:
5839 5840 5841
	rcu_read_unlock();
}

5842
void mem_cgroup_sk_free(struct sock *sk)
5843
{
5844 5845
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5858
	gfp_t gfp_mask = GFP_KERNEL;
5859

5860
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5861
		struct page_counter *fail;
5862

5863 5864
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
5865 5866
			return true;
		}
5867 5868
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
5869
		return false;
5870
	}
5871

5872 5873 5874 5875
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

5876
	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
5877

5878 5879 5880 5881
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5882 5883 5884 5885 5886
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
5887 5888
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
5889 5890 5891
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5892
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5893
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5894 5895
		return;
	}
5896

5897
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
5898

5899
	refill_stock(memcg, nr_pages);
5900 5901
}

5902 5903 5904 5905 5906 5907 5908 5909 5910
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
5911 5912
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
5913 5914 5915 5916
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
5917

5918
/*
5919 5920
 * subsys_initcall() for memory controller.
 *
5921 5922 5923 5924
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
5925 5926 5927
 */
static int __init mem_cgroup_init(void)
{
5928 5929
	int cpu, node;

5930 5931 5932
#ifndef CONFIG_SLOB
	/*
	 * Kmem cache creation is mostly done with the slab_mutex held,
5933 5934 5935
	 * so use a workqueue with limited concurrency to avoid stalling
	 * all worker threads in case lots of cgroups are created and
	 * destroyed simultaneously.
5936
	 */
5937 5938
	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
	BUG_ON(!memcg_kmem_cache_wq);
5939 5940
#endif

5941 5942
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

5954
		rtpn->rb_root = RB_ROOT;
5955
		rtpn->rb_rightmost = NULL;
5956
		spin_lock_init(&rtpn->lock);
5957 5958 5959
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5960 5961 5962
	return 0;
}
subsys_initcall(mem_cgroup_init);
5963 5964

#ifdef CONFIG_MEMCG_SWAP
5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
	while (!atomic_inc_not_zero(&memcg->id.ref)) {
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

5983 5984 5985 5986 5987 5988 5989 5990 5991
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
5992
	struct mem_cgroup *memcg, *swap_memcg;
5993
	unsigned int nr_entries;
5994 5995 5996 5997 5998
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

5999
	if (!do_memsw_account())
6000 6001 6002 6003 6004 6005 6006 6007
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

6008 6009 6010 6011 6012 6013
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
6014 6015 6016 6017 6018 6019
	nr_entries = hpage_nr_pages(page);
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
6020
	VM_BUG_ON_PAGE(oldid, page);
6021
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6022 6023 6024 6025

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
6026
		page_counter_uncharge(&memcg->memory, nr_entries);
6027

6028 6029
	if (memcg != swap_memcg) {
		if (!mem_cgroup_is_root(swap_memcg))
6030 6031
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
6032 6033
	}

6034 6035
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
6036
	 * i_pages lock which is taken with interrupts-off. It is
6037
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
6038
	 * only synchronisation we have for updating the per-CPU variables.
6039 6040
	 */
	VM_BUG_ON(!irqs_disabled());
6041 6042
	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
				     -nr_entries);
6043
	memcg_check_events(memcg, page);
6044 6045

	if (!mem_cgroup_is_root(memcg))
6046
		css_put_many(&memcg->css, nr_entries);
6047 6048
}

6049 6050
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
6051 6052 6053
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
6054
 * Try to charge @page's memcg for the swap space at @entry.
6055 6056 6057 6058 6059
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
6060
	unsigned int nr_pages = hpage_nr_pages(page);
6061
	struct page_counter *counter;
6062
	struct mem_cgroup *memcg;
6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

6074 6075
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6076
		return 0;
6077
	}
6078

6079 6080
	memcg = mem_cgroup_id_get_online(memcg);

6081
	if (!mem_cgroup_is_root(memcg) &&
6082
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6083 6084
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6085
		mem_cgroup_id_put(memcg);
6086
		return -ENOMEM;
6087
	}
6088

6089 6090 6091 6092
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6093
	VM_BUG_ON_PAGE(oldid, page);
6094
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6095 6096 6097 6098

	return 0;
}

6099
/**
6100
 * mem_cgroup_uncharge_swap - uncharge swap space
6101
 * @entry: swap entry to uncharge
6102
 * @nr_pages: the amount of swap space to uncharge
6103
 */
6104
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6105 6106 6107 6108
{
	struct mem_cgroup *memcg;
	unsigned short id;

6109
	if (!do_swap_account)
6110 6111
		return;

6112
	id = swap_cgroup_record(entry, 0, nr_pages);
6113
	rcu_read_lock();
6114
	memcg = mem_cgroup_from_id(id);
6115
	if (memcg) {
6116 6117
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6118
				page_counter_uncharge(&memcg->swap, nr_pages);
6119
			else
6120
				page_counter_uncharge(&memcg->memsw, nr_pages);
6121
		}
6122
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6123
		mem_cgroup_id_put_many(memcg, nr_pages);
6124 6125 6126 6127
	}
	rcu_read_unlock();
}

6128 6129 6130 6131 6132 6133 6134 6135
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
6136
				      READ_ONCE(memcg->swap.max) -
6137 6138 6139 6140
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6157
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6158 6159 6160 6161 6162
			return true;

	return false;
}

6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6191
	unsigned long max = READ_ONCE(memcg->swap.max);
6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

6213 6214 6215
	mutex_lock(&memcg_max_mutex);
	err = page_counter_set_max(&memcg->swap, max);
	mutex_unlock(&memcg_max_mutex);
6216 6217 6218 6219 6220 6221
	if (err)
		return err;

	return nbytes;
}

6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233
static int swap_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
6246 6247 6248 6249 6250 6251
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
6252 6253 6254
	{ }	/* terminate */
};

6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
6286 6287
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
6288 6289 6290 6291 6292 6293 6294 6295
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */