memcontrol.c 191.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
B
Balbir Singh 已提交
2 3 4 5 6
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
7 8 9
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
10 11 12 13
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
14 15 16 17
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 24 25
 *
 * Per memcg lru locking
 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
B
Balbir Singh 已提交
26 27
 */

28
#include <linux/page_counter.h>
B
Balbir Singh 已提交
29 30
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/pagewalk.h>
32
#include <linux/sched/mm.h>
33
#include <linux/shmem_fs.h>
34
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
35
#include <linux/pagemap.h>
36
#include <linux/vm_event_item.h>
37
#include <linux/smp.h>
38
#include <linux/page-flags.h>
39
#include <linux/backing-dev.h>
40 41
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
42
#include <linux/limits.h>
43
#include <linux/export.h>
44
#include <linux/mutex.h>
45
#include <linux/rbtree.h>
46
#include <linux/slab.h>
47
#include <linux/swap.h>
48
#include <linux/swapops.h>
49
#include <linux/spinlock.h>
50
#include <linux/eventfd.h>
51
#include <linux/poll.h>
52
#include <linux/sort.h>
53
#include <linux/fs.h>
54
#include <linux/seq_file.h>
55
#include <linux/vmpressure.h>
56
#include <linux/mm_inline.h>
57
#include <linux/swap_cgroup.h>
58
#include <linux/cpu.h>
59
#include <linux/oom.h>
60
#include <linux/lockdep.h>
61
#include <linux/file.h>
62
#include <linux/tracehook.h>
63
#include <linux/psi.h>
64
#include <linux/seq_buf.h>
K
KAMEZAWA Hiroyuki 已提交
65
#include "internal.h"
G
Glauber Costa 已提交
66
#include <net/sock.h>
M
Michal Hocko 已提交
67
#include <net/ip.h>
68
#include "slab.h"
B
Balbir Singh 已提交
69

70
#include <linux/uaccess.h>
71

72 73
#include <trace/events/vmscan.h>

74 75
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
76

77 78
struct mem_cgroup *root_mem_cgroup __read_mostly;

79 80
/* Active memory cgroup to use from an interrupt context */
DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81
EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
82

83
/* Socket memory accounting disabled? */
84
static bool cgroup_memory_nosocket __ro_after_init;
85

86
/* Kernel memory accounting disabled? */
87
bool cgroup_memory_nokmem __ro_after_init;
88

89
/* Whether the swap controller is active */
A
Andrew Morton 已提交
90
#ifdef CONFIG_MEMCG_SWAP
91
bool cgroup_memory_noswap __ro_after_init;
92
#else
93
#define cgroup_memory_noswap		1
94
#endif
95

96 97 98 99
#ifdef CONFIG_CGROUP_WRITEBACK
static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
#endif

100 101 102
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
103
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
104 105
}

106 107 108 109 110
/* memcg and lruvec stats flushing */
static void flush_memcg_stats_dwork(struct work_struct *w);
static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
static DEFINE_SPINLOCK(stats_flush_lock);

111 112
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
113

114 115 116 117 118
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

119
struct mem_cgroup_tree_per_node {
120
	struct rb_root rb_root;
121
	struct rb_node *rb_rightmost;
122 123 124 125 126 127 128 129 130
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
131 132 133 134 135
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
136

137 138 139
/*
 * cgroup_event represents events which userspace want to receive.
 */
140
struct mem_cgroup_event {
141
	/*
142
	 * memcg which the event belongs to.
143
	 */
144
	struct mem_cgroup *memcg;
145 146 147 148 149 150 151 152
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
153 154 155 156 157
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
158
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
159
			      struct eventfd_ctx *eventfd, const char *args);
160 161 162 163 164
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
165
	void (*unregister_event)(struct mem_cgroup *memcg,
166
				 struct eventfd_ctx *eventfd);
167 168 169 170 171 172
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
173
	wait_queue_entry_t wait;
174 175 176
	struct work_struct remove;
};

177 178
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
179

180 181
/* Stuffs for move charges at task migration. */
/*
182
 * Types of charges to be moved.
183
 */
184 185 186
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
187

188 189
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
190
	spinlock_t	  lock; /* for from, to */
191
	struct mm_struct  *mm;
192 193
	struct mem_cgroup *from;
	struct mem_cgroup *to;
194
	unsigned long flags;
195
	unsigned long precharge;
196
	unsigned long moved_charge;
197
	unsigned long moved_swap;
198 199 200
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
201
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
202 203
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
204

205 206 207 208
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
209
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
210
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
211

212
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
213 214 215 216
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
217
	_KMEM,
V
Vladimir Davydov 已提交
218
	_TCP,
G
Glauber Costa 已提交
219 220
};

221 222
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
223
#define MEMFILE_ATTR(val)	((val) & 0xffff)
I
Ingo Molnar 已提交
224
/* Used for OOM notifier */
K
KAMEZAWA Hiroyuki 已提交
225
#define OOM_CONTROL		(0)
226

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(root, iter, NULL))

#define for_each_mem_cgroup(iter)			\
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(NULL, iter, NULL))

242 243 244 245 246 247
static inline bool should_force_charge(void)
{
	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
		(current->flags & PF_EXITING);
}

248 249 250 251 252 253 254 255
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

256
struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
257
{
258
	return container_of(vmpr, struct mem_cgroup, vmpressure);
259 260
}

261
#ifdef CONFIG_MEMCG_KMEM
R
Roman Gushchin 已提交
262 263
extern spinlock_t css_set_lock;

264 265 266 267 268
bool mem_cgroup_kmem_disabled(void)
{
	return cgroup_memory_nokmem;
}

269 270
static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
				      unsigned int nr_pages);
271

R
Roman Gushchin 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
static void obj_cgroup_release(struct percpu_ref *ref)
{
	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
	unsigned int nr_bytes;
	unsigned int nr_pages;
	unsigned long flags;

	/*
	 * At this point all allocated objects are freed, and
	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
	 *
	 * The following sequence can lead to it:
	 * 1) CPU0: objcg == stock->cached_objcg
	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
	 *          PAGE_SIZE bytes are charged
	 * 3) CPU1: a process from another memcg is allocating something,
	 *          the stock if flushed,
	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
	 * 5) CPU0: we do release this object,
	 *          92 bytes are added to stock->nr_bytes
	 * 6) CPU0: stock is flushed,
	 *          92 bytes are added to objcg->nr_charged_bytes
	 *
	 * In the result, nr_charged_bytes == PAGE_SIZE.
	 * This page will be uncharged in obj_cgroup_release().
	 */
	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
	nr_pages = nr_bytes >> PAGE_SHIFT;

	if (nr_pages)
304
		obj_cgroup_uncharge_pages(objcg, nr_pages);
305 306

	spin_lock_irqsave(&css_set_lock, flags);
R
Roman Gushchin 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
	list_del(&objcg->list);
	spin_unlock_irqrestore(&css_set_lock, flags);

	percpu_ref_exit(ref);
	kfree_rcu(objcg, rcu);
}

static struct obj_cgroup *obj_cgroup_alloc(void)
{
	struct obj_cgroup *objcg;
	int ret;

	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
	if (!objcg)
		return NULL;

	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
			      GFP_KERNEL);
	if (ret) {
		kfree(objcg);
		return NULL;
	}
	INIT_LIST_HEAD(&objcg->list);
	return objcg;
}

static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
				  struct mem_cgroup *parent)
{
	struct obj_cgroup *objcg, *iter;

	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);

	spin_lock_irq(&css_set_lock);

342 343 344 345 346 347
	/* 1) Ready to reparent active objcg. */
	list_add(&objcg->list, &memcg->objcg_list);
	/* 2) Reparent active objcg and already reparented objcgs to parent. */
	list_for_each_entry(iter, &memcg->objcg_list, list)
		WRITE_ONCE(iter->memcg, parent);
	/* 3) Move already reparented objcgs to the parent's list */
R
Roman Gushchin 已提交
348 349 350 351 352 353 354
	list_splice(&memcg->objcg_list, &parent->objcg_list);

	spin_unlock_irq(&css_set_lock);

	percpu_ref_kill(&objcg->refcnt);
}

355
/*
356
 * This will be used as a shrinker list's index.
L
Li Zefan 已提交
357 358 359 360 361
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
362
 *
363 364
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
365
 */
366 367
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
368

369 370 371 372 373 374 375 376 377 378 379 380 381
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

382 383 384 385 386 387
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
388
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
389 390
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
391
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
392 393 394
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
395
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
396

397 398
/*
 * A lot of the calls to the cache allocation functions are expected to be
399
 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
400 401 402
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
403
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
404
EXPORT_SYMBOL(memcg_kmem_enabled_key);
405
#endif
406

407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

422
	memcg = page_memcg(page);
423

424
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
425 426 427 428 429
		memcg = root_mem_cgroup;

	return &memcg->css;
}

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
449
	memcg = page_memcg_check(page);
450

451 452 453 454 455 456 457 458
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

459 460
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
461
					 unsigned long new_usage_in_excess)
462 463 464
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
465
	struct mem_cgroup_per_node *mz_node;
466
	bool rightmost = true;
467 468 469 470 471 472 473 474 475

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
476
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
477
					tree_node);
478
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
479
			p = &(*p)->rb_left;
480
			rightmost = false;
481
		} else {
482
			p = &(*p)->rb_right;
483
		}
484
	}
485 486 487 488

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

489 490 491 492 493
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

494 495
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
496 497 498
{
	if (!mz->on_tree)
		return;
499 500 501 502

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

503 504 505 506
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

507 508
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
509
{
510 511 512
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
513
	__mem_cgroup_remove_exceeded(mz, mctz);
514
	spin_unlock_irqrestore(&mctz->lock, flags);
515 516
}

517 518 519
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
520
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
521 522 523 524 525 526 527
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
528

529
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
530
{
531
	unsigned long excess;
532 533
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
534

535
	mctz = soft_limit_tree.rb_tree_per_node[nid];
536 537
	if (!mctz)
		return;
538 539 540 541 542
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
543
		mz = memcg->nodeinfo[nid];
544
		excess = soft_limit_excess(memcg);
545 546 547 548 549
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
550 551 552
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
553 554
			/* if on-tree, remove it */
			if (mz->on_tree)
555
				__mem_cgroup_remove_exceeded(mz, mctz);
556 557 558 559
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
560
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
561
			spin_unlock_irqrestore(&mctz->lock, flags);
562 563 564 565 566 567
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
568 569 570
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
571

572
	for_each_node(nid) {
573
		mz = memcg->nodeinfo[nid];
574
		mctz = soft_limit_tree.rb_tree_per_node[nid];
575 576
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
577 578 579
	}
}

580 581
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
582
{
583
	struct mem_cgroup_per_node *mz;
584 585 586

retry:
	mz = NULL;
587
	if (!mctz->rb_rightmost)
588 589
		goto done;		/* Nothing to reclaim from */

590 591
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
592 593 594 595 596
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
597
	__mem_cgroup_remove_exceeded(mz, mctz);
598
	if (!soft_limit_excess(mz->memcg) ||
S
Shakeel Butt 已提交
599
	    !css_tryget(&mz->memcg->css))
600 601 602 603 604
		goto retry;
done:
	return mz;
}

605 606
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
607
{
608
	struct mem_cgroup_per_node *mz;
609

610
	spin_lock_irq(&mctz->lock);
611
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
612
	spin_unlock_irq(&mctz->lock);
613 614 615
	return mz;
}

616 617 618 619 620 621 622 623 624 625 626
/**
 * __mod_memcg_state - update cgroup memory statistics
 * @memcg: the memory cgroup
 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 * @val: delta to add to the counter, can be negative
 */
void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
{
	if (mem_cgroup_disabled())
		return;

627 628
	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
629 630
}

631
/* idx can be of type enum memcg_stat_item or node_stat_item. */
632 633 634 635 636 637
static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
{
	long x = 0;
	int cpu;

	for_each_possible_cpu(cpu)
638
		x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
639 640 641 642 643 644 645
#ifdef CONFIG_SMP
	if (x < 0)
		x = 0;
#endif
	return x;
}

646 647
void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			      int val)
648 649
{
	struct mem_cgroup_per_node *pn;
650
	struct mem_cgroup *memcg;
651 652

	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
653
	memcg = pn->memcg;
654 655

	/* Update memcg */
656
	__mod_memcg_state(memcg, idx, val);
657

658
	/* Update lruvec */
659
	__this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
660 661
}

662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
/**
 * __mod_lruvec_state - update lruvec memory statistics
 * @lruvec: the lruvec
 * @idx: the stat item
 * @val: delta to add to the counter, can be negative
 *
 * The lruvec is the intersection of the NUMA node and a cgroup. This
 * function updates the all three counters that are affected by a
 * change of state at this level: per-node, per-cgroup, per-lruvec.
 */
void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			int val)
{
	/* Update node */
	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);

	/* Update memcg and lruvec */
	if (!mem_cgroup_disabled())
		__mod_memcg_lruvec_state(lruvec, idx, val);
}

683 684 685 686
void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
			     int val)
{
	struct page *head = compound_head(page); /* rmap on tail pages */
687
	struct mem_cgroup *memcg;
688 689 690
	pg_data_t *pgdat = page_pgdat(page);
	struct lruvec *lruvec;

691 692
	rcu_read_lock();
	memcg = page_memcg(head);
693
	/* Untracked pages have no memcg, no lruvec. Update only the node */
694
	if (!memcg) {
695
		rcu_read_unlock();
696 697 698 699
		__mod_node_page_state(pgdat, idx, val);
		return;
	}

700
	lruvec = mem_cgroup_lruvec(memcg, pgdat);
701
	__mod_lruvec_state(lruvec, idx, val);
702
	rcu_read_unlock();
703
}
704
EXPORT_SYMBOL(__mod_lruvec_page_state);
705

706
void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
707
{
708
	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
709 710 711 712
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;

	rcu_read_lock();
713
	memcg = mem_cgroup_from_obj(p);
714

715 716 717 718 719 720 721
	/*
	 * Untracked pages have no memcg, no lruvec. Update only the
	 * node. If we reparent the slab objects to the root memcg,
	 * when we free the slab object, we need to update the per-memcg
	 * vmstats to keep it correct for the root memcg.
	 */
	if (!memcg) {
722 723
		__mod_node_page_state(pgdat, idx, val);
	} else {
724
		lruvec = mem_cgroup_lruvec(memcg, pgdat);
725 726 727 728 729
		__mod_lruvec_state(lruvec, idx, val);
	}
	rcu_read_unlock();
}

730 731 732 733
/*
 * mod_objcg_mlstate() may be called with irq enabled, so
 * mod_memcg_lruvec_state() should be used.
 */
734 735 736
static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
				     struct pglist_data *pgdat,
				     enum node_stat_item idx, int nr)
737 738 739 740 741 742 743
{
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;

	rcu_read_lock();
	memcg = obj_cgroup_memcg(objcg);
	lruvec = mem_cgroup_lruvec(memcg, pgdat);
744
	mod_memcg_lruvec_state(lruvec, idx, nr);
745 746 747
	rcu_read_unlock();
}

748 749 750 751
/**
 * __count_memcg_events - account VM events in a cgroup
 * @memcg: the memory cgroup
 * @idx: the event item
I
Ingo Molnar 已提交
752
 * @count: the number of events that occurred
753 754 755 756 757 758 759
 */
void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
			  unsigned long count)
{
	if (mem_cgroup_disabled())
		return;

760 761
	__this_cpu_add(memcg->vmstats_percpu->events[idx], count);
	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
762 763
}

764
static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
765
{
766
	return READ_ONCE(memcg->vmstats.events[event]);
767 768
}

769 770
static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
{
771 772 773 774
	long x = 0;
	int cpu;

	for_each_possible_cpu(cpu)
775
		x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
776
	return x;
777 778
}

779
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
780
					 int nr_pages)
781
{
782 783
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
784
		__count_memcg_events(memcg, PGPGIN, 1);
785
	else {
786
		__count_memcg_events(memcg, PGPGOUT, 1);
787 788
		nr_pages = -nr_pages; /* for event */
	}
789

790
	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
791 792
}

793 794
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
795 796 797
{
	unsigned long val, next;

798 799
	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
800
	/* from time_after() in jiffies.h */
801
	if ((long)(next - val) < 0) {
802 803 804 805
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
806 807 808
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
809 810 811
		default:
			break;
		}
812
		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
813
		return true;
814
	}
815
	return false;
816 817 818 819 820 821
}

/*
 * Check events in order.
 *
 */
822
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
823 824
{
	/* threshold event is triggered in finer grain than soft limit */
825 826
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
827
		bool do_softlimit;
828

829 830
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
831
		mem_cgroup_threshold(memcg);
832
		if (unlikely(do_softlimit))
833
			mem_cgroup_update_tree(memcg, page_to_nid(page));
834
	}
835 836
}

837
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
838
{
839 840 841 842 843 844 845 846
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

847
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
848
}
M
Michal Hocko 已提交
849
EXPORT_SYMBOL(mem_cgroup_from_task);
850

851 852
static __always_inline struct mem_cgroup *active_memcg(void)
{
853
	if (!in_task())
854 855 856 857 858
		return this_cpu_read(int_active_memcg);
	else
		return current->active_memcg;
}

859 860 861 862
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
863 864 865 866 867 868
 * Obtain a reference on mm->memcg and returns it if successful. If mm
 * is NULL, then the memcg is chosen as follows:
 * 1) The active memcg, if set.
 * 2) current->mm->memcg, if available
 * 3) root memcg
 * If mem_cgroup is disabled, NULL is returned.
869 870
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
871
{
872 873 874 875
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
876

877 878 879 880 881 882 883 884 885
	/*
	 * Page cache insertions can happen without an
	 * actual mm context, e.g. during disk probing
	 * on boot, loopback IO, acct() writes etc.
	 *
	 * No need to css_get on root memcg as the reference
	 * counting is disabled on the root level in the
	 * cgroup core. See CSS_NO_REF.
	 */
886 887 888 889 890 891 892 893 894 895 896
	if (unlikely(!mm)) {
		memcg = active_memcg();
		if (unlikely(memcg)) {
			/* remote memcg must hold a ref */
			css_get(&memcg->css);
			return memcg;
		}
		mm = current->mm;
		if (unlikely(!mm))
			return root_mem_cgroup;
	}
897

898 899
	rcu_read_lock();
	do {
900 901
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
902
			memcg = root_mem_cgroup;
903
	} while (!css_tryget(&memcg->css));
904
	rcu_read_unlock();
905
	return memcg;
906
}
907 908
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

909 910 911 912 913 914 915
static __always_inline bool memcg_kmem_bypass(void)
{
	/* Allow remote memcg charging from any context. */
	if (unlikely(active_memcg()))
		return false;

	/* Memcg to charge can't be determined. */
916
	if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
917 918 919 920 921
		return true;

	return false;
}

922 923 924 925 926 927 928 929 930 931 932 933 934
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
935 936 937
 * Reclaimers can specify a node in @reclaim to divide up the memcgs
 * in the hierarchy among all concurrent reclaimers operating on the
 * same node.
938
 */
939
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
940
				   struct mem_cgroup *prev,
941
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
942
{
943
	struct mem_cgroup_reclaim_iter *iter;
944
	struct cgroup_subsys_state *css = NULL;
945
	struct mem_cgroup *memcg = NULL;
946
	struct mem_cgroup *pos = NULL;
947

948 949
	if (mem_cgroup_disabled())
		return NULL;
950

951 952
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
953

954
	if (prev && !reclaim)
955
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
956

957
	rcu_read_lock();
M
Michal Hocko 已提交
958

959
	if (reclaim) {
960
		struct mem_cgroup_per_node *mz;
961

962
		mz = root->nodeinfo[reclaim->pgdat->node_id];
963
		iter = &mz->iter;
964 965 966 967

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

968
		while (1) {
969
			pos = READ_ONCE(iter->position);
970 971
			if (!pos || css_tryget(&pos->css))
				break;
972
			/*
973 974 975 976 977 978
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
979
			 */
980 981
			(void)cmpxchg(&iter->position, pos, NULL);
		}
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
999
		}
K
KAMEZAWA Hiroyuki 已提交
1000

1001 1002 1003 1004 1005 1006
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1007

1008 1009
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1010

1011 1012
		if (css_tryget(css))
			break;
1013

1014
		memcg = NULL;
1015
	}
1016 1017 1018

	if (reclaim) {
		/*
1019 1020 1021
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
1022
		 */
1023 1024
		(void)cmpxchg(&iter->position, pos, memcg);

1025 1026 1027 1028 1029 1030 1031
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1032
	}
1033

1034 1035
out_unlock:
	rcu_read_unlock();
1036 1037 1038
	if (prev && prev != root)
		css_put(&prev->css);

1039
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1040
}
K
KAMEZAWA Hiroyuki 已提交
1041

1042 1043 1044 1045 1046 1047 1048
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1049 1050 1051 1052 1053 1054
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1055

1056 1057
static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
					struct mem_cgroup *dead_memcg)
1058 1059
{
	struct mem_cgroup_reclaim_iter *iter;
1060 1061
	struct mem_cgroup_per_node *mz;
	int nid;
1062

1063
	for_each_node(nid) {
1064
		mz = from->nodeinfo[nid];
1065 1066
		iter = &mz->iter;
		cmpxchg(&iter->position, dead_memcg, NULL);
1067 1068 1069
	}
}

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup *last;

	do {
		__invalidate_reclaim_iterators(memcg, dead_memcg);
		last = memcg;
	} while ((memcg = parent_mem_cgroup(memcg)));

	/*
	 * When cgruop1 non-hierarchy mode is used,
	 * parent_mem_cgroup() does not walk all the way up to the
	 * cgroup root (root_mem_cgroup). So we have to handle
	 * dead_memcg from cgroup root separately.
	 */
	if (last != root_mem_cgroup)
		__invalidate_reclaim_iterators(root_mem_cgroup,
						dead_memcg);
}

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

1116
		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
#ifdef CONFIG_DEBUG_VM
void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
{
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return;

	memcg = page_memcg(page);

	if (!memcg)
		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
	else
		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
}
#endif

/**
 * lock_page_lruvec - lock and return lruvec for a given page.
 * @page: the page
 *
1149 1150 1151 1152 1153
 * These functions are safe to use under any of the following conditions:
 * - page locked
 * - PageLRU cleared
 * - lock_page_memcg()
 * - page->_refcount is zero
1154 1155 1156 1157 1158
 */
struct lruvec *lock_page_lruvec(struct page *page)
{
	struct lruvec *lruvec;

1159
	lruvec = mem_cgroup_page_lruvec(page);
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
	spin_lock(&lruvec->lru_lock);

	lruvec_memcg_debug(lruvec, page);

	return lruvec;
}

struct lruvec *lock_page_lruvec_irq(struct page *page)
{
	struct lruvec *lruvec;

1171
	lruvec = mem_cgroup_page_lruvec(page);
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	spin_lock_irq(&lruvec->lru_lock);

	lruvec_memcg_debug(lruvec, page);

	return lruvec;
}

struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
{
	struct lruvec *lruvec;

1183
	lruvec = mem_cgroup_page_lruvec(page);
1184 1185 1186 1187 1188 1189 1190
	spin_lock_irqsave(&lruvec->lru_lock, *flags);

	lruvec_memcg_debug(lruvec, page);

	return lruvec;
}

1191
/**
1192 1193 1194
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1195
 * @zid: zone id of the accounted pages
1196
 * @nr_pages: positive when adding or negative when removing
1197
 *
1198 1199 1200
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1201
 */
1202
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1203
				int zid, int nr_pages)
1204
{
1205
	struct mem_cgroup_per_node *mz;
1206
	unsigned long *lru_size;
1207
	long size;
1208 1209 1210 1211

	if (mem_cgroup_disabled())
		return;

1212
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1213
	lru_size = &mz->lru_zone_size[zid][lru];
1214 1215 1216 1217 1218

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1219 1220 1221
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1222 1223 1224 1225 1226 1227
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1228
}
1229

1230
/**
1231
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1232
 * @memcg: the memory cgroup
1233
 *
1234
 * Returns the maximum amount of memory @mem can be charged with, in
1235
 * pages.
1236
 */
1237
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1238
{
1239 1240 1241
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1242

1243
	count = page_counter_read(&memcg->memory);
1244
	limit = READ_ONCE(memcg->memory.max);
1245 1246 1247
	if (count < limit)
		margin = limit - count;

1248
	if (do_memsw_account()) {
1249
		count = page_counter_read(&memcg->memsw);
1250
		limit = READ_ONCE(memcg->memsw.max);
1251
		if (count < limit)
1252
			margin = min(margin, limit - count);
1253 1254
		else
			margin = 0;
1255 1256 1257
	}

	return margin;
1258 1259
}

1260
/*
Q
Qiang Huang 已提交
1261
 * A routine for checking "mem" is under move_account() or not.
1262
 *
Q
Qiang Huang 已提交
1263 1264 1265
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1266
 */
1267
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1268
{
1269 1270
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1271
	bool ret = false;
1272 1273 1274 1275 1276 1277 1278 1279 1280
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1281

1282 1283
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1284 1285
unlock:
	spin_unlock(&mc.lock);
1286 1287 1288
	return ret;
}

1289
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1290 1291
{
	if (mc.moving_task && current != mc.moving_task) {
1292
		if (mem_cgroup_under_move(memcg)) {
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1305 1306 1307 1308 1309
struct memory_stat {
	const char *name;
	unsigned int idx;
};

1310
static const struct memory_stat memory_stats[] = {
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
	{ "anon",			NR_ANON_MAPPED			},
	{ "file",			NR_FILE_PAGES			},
	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
	{ "pagetables",			NR_PAGETABLE			},
	{ "percpu",			MEMCG_PERCPU_B			},
	{ "sock",			MEMCG_SOCK			},
	{ "shmem",			NR_SHMEM			},
	{ "file_mapped",		NR_FILE_MAPPED			},
	{ "file_dirty",			NR_FILE_DIRTY			},
	{ "file_writeback",		NR_WRITEBACK			},
1321 1322 1323
#ifdef CONFIG_SWAP
	{ "swapcached",			NR_SWAPCACHE			},
#endif
1324
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1325 1326 1327
	{ "anon_thp",			NR_ANON_THPS			},
	{ "file_thp",			NR_FILE_THPS			},
	{ "shmem_thp",			NR_SHMEM_THPS			},
1328
#endif
1329 1330 1331 1332 1333 1334 1335
	{ "inactive_anon",		NR_INACTIVE_ANON		},
	{ "active_anon",		NR_ACTIVE_ANON			},
	{ "inactive_file",		NR_INACTIVE_FILE		},
	{ "active_file",		NR_ACTIVE_FILE			},
	{ "unevictable",		NR_UNEVICTABLE			},
	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1336 1337

	/* The memory events */
1338 1339 1340 1341 1342 1343 1344
	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1345 1346
};

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
/* Translate stat items to the correct unit for memory.stat output */
static int memcg_page_state_unit(int item)
{
	switch (item) {
	case MEMCG_PERCPU_B:
	case NR_SLAB_RECLAIMABLE_B:
	case NR_SLAB_UNRECLAIMABLE_B:
	case WORKINGSET_REFAULT_ANON:
	case WORKINGSET_REFAULT_FILE:
	case WORKINGSET_ACTIVATE_ANON:
	case WORKINGSET_ACTIVATE_FILE:
	case WORKINGSET_RESTORE_ANON:
	case WORKINGSET_RESTORE_FILE:
	case WORKINGSET_NODERECLAIM:
		return 1;
	case NR_KERNEL_STACK_KB:
		return SZ_1K;
	default:
		return PAGE_SIZE;
	}
}

static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
						    int item)
{
	return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
}

1375 1376 1377 1378
static char *memory_stat_format(struct mem_cgroup *memcg)
{
	struct seq_buf s;
	int i;
1379

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
	if (!s.buffer)
		return NULL;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */
1394
	cgroup_rstat_flush(memcg->css.cgroup);
1395

1396 1397
	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
		u64 size;
1398

1399
		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1400
		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1401

1402
		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1403 1404
			size += memcg_page_state_output(memcg,
							NR_SLAB_RECLAIMABLE_B);
1405 1406 1407
			seq_buf_printf(&s, "slab %llu\n", size);
		}
	}
1408 1409 1410

	/* Accumulated memory events */

1411 1412 1413 1414 1415 1416
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
		       memcg_events(memcg, PGFAULT));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
		       memcg_events(memcg, PGMAJFAULT));
	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
		       memcg_events(memcg, PGREFILL));
1417 1418 1419 1420 1421 1422
	seq_buf_printf(&s, "pgscan %lu\n",
		       memcg_events(memcg, PGSCAN_KSWAPD) +
		       memcg_events(memcg, PGSCAN_DIRECT));
	seq_buf_printf(&s, "pgsteal %lu\n",
		       memcg_events(memcg, PGSTEAL_KSWAPD) +
		       memcg_events(memcg, PGSTEAL_DIRECT));
1423 1424 1425 1426 1427 1428 1429 1430
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
		       memcg_events(memcg, PGACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
		       memcg_events(memcg, PGDEACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
		       memcg_events(memcg, PGLAZYFREE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
		       memcg_events(memcg, PGLAZYFREED));
1431 1432

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1433
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1434
		       memcg_events(memcg, THP_FAULT_ALLOC));
1435
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1436 1437 1438 1439 1440 1441 1442 1443
		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

	/* The above should easily fit into one page */
	WARN_ON_ONCE(seq_buf_has_overflowed(&s));

	return s.buffer;
}
1444

1445
#define K(x) ((x) << (PAGE_SHIFT-10))
1446
/**
1447 1448
 * mem_cgroup_print_oom_context: Print OOM information relevant to
 * memory controller.
1449 1450 1451 1452 1453 1454
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
1455
void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1456 1457 1458
{
	rcu_read_lock();

1459 1460 1461 1462 1463
	if (memcg) {
		pr_cont(",oom_memcg=");
		pr_cont_cgroup_path(memcg->css.cgroup);
	} else
		pr_cont(",global_oom");
1464
	if (p) {
1465
		pr_cont(",task_memcg=");
1466 1467
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	}
1468
	rcu_read_unlock();
1469 1470 1471 1472 1473 1474 1475 1476 1477
}

/**
 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
 * memory controller.
 * @memcg: The memory cgroup that went over limit
 */
void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
1478
	char *buf;
1479

1480 1481
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1482
		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1483 1484 1485
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->swap)),
1486
			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1487 1488 1489 1490 1491 1492 1493
	else {
		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->memsw)),
			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->kmem)),
			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1494
	}
1495 1496 1497 1498 1499 1500 1501 1502 1503

	pr_info("Memory cgroup stats for ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(":");
	buf = memory_stat_format(memcg);
	if (!buf)
		return;
	pr_info("%s", buf);
	kfree(buf);
1504 1505
}

D
David Rientjes 已提交
1506 1507 1508
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1509
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1510
{
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
	unsigned long max = READ_ONCE(memcg->memory.max);

	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
		if (mem_cgroup_swappiness(memcg))
			max += min(READ_ONCE(memcg->swap.max),
				   (unsigned long)total_swap_pages);
	} else { /* v1 */
		if (mem_cgroup_swappiness(memcg)) {
			/* Calculate swap excess capacity from memsw limit */
			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;

			max += min(swap, (unsigned long)total_swap_pages);
		}
1524
	}
1525
	return max;
D
David Rientjes 已提交
1526 1527
}

1528 1529 1530 1531 1532
unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
{
	return page_counter_read(&memcg->memory);
}

1533
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1534
				     int order)
1535
{
1536 1537 1538
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1539
		.memcg = memcg,
1540 1541 1542
		.gfp_mask = gfp_mask,
		.order = order,
	};
1543
	bool ret = true;
1544

1545 1546
	if (mutex_lock_killable(&oom_lock))
		return true;
1547 1548 1549 1550

	if (mem_cgroup_margin(memcg) >= (1 << order))
		goto unlock;

1551 1552 1553 1554 1555
	/*
	 * A few threads which were not waiting at mutex_lock_killable() can
	 * fail to bail out. Therefore, check again after holding oom_lock.
	 */
	ret = should_force_charge() || out_of_memory(&oc);
1556 1557

unlock:
1558
	mutex_unlock(&oom_lock);
1559
	return ret;
1560 1561
}

1562
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1563
				   pg_data_t *pgdat,
1564 1565 1566 1567 1568 1569 1570 1571 1572
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1573
		.pgdat = pgdat,
1574 1575
	};

1576
	excess = soft_limit_excess(root_memcg);
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1602
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1603
					pgdat, &nr_scanned);
1604
		*total_scanned += nr_scanned;
1605
		if (!soft_limit_excess(root_memcg))
1606
			break;
1607
	}
1608 1609
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1610 1611
}

1612 1613 1614 1615 1616 1617
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1618 1619
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1620 1621 1622 1623
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1624
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1625
{
1626
	struct mem_cgroup *iter, *failed = NULL;
1627

1628 1629
	spin_lock(&memcg_oom_lock);

1630
	for_each_mem_cgroup_tree(iter, memcg) {
1631
		if (iter->oom_lock) {
1632 1633 1634 1635 1636
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1637 1638
			mem_cgroup_iter_break(memcg, iter);
			break;
1639 1640
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1641
	}
K
KAMEZAWA Hiroyuki 已提交
1642

1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1654
		}
1655 1656
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1657 1658 1659 1660

	spin_unlock(&memcg_oom_lock);

	return !failed;
1661
}
1662

1663
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1664
{
K
KAMEZAWA Hiroyuki 已提交
1665 1666
	struct mem_cgroup *iter;

1667
	spin_lock(&memcg_oom_lock);
1668
	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1669
	for_each_mem_cgroup_tree(iter, memcg)
1670
		iter->oom_lock = false;
1671
	spin_unlock(&memcg_oom_lock);
1672 1673
}

1674
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1675 1676 1677
{
	struct mem_cgroup *iter;

1678
	spin_lock(&memcg_oom_lock);
1679
	for_each_mem_cgroup_tree(iter, memcg)
1680 1681
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1682 1683
}

1684
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1685 1686 1687
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1688
	/*
I
Ingo Molnar 已提交
1689
	 * Be careful about under_oom underflows because a child memcg
1690
	 * could have been added after mem_cgroup_mark_under_oom.
K
KAMEZAWA Hiroyuki 已提交
1691
	 */
1692
	spin_lock(&memcg_oom_lock);
1693
	for_each_mem_cgroup_tree(iter, memcg)
1694 1695 1696
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1697 1698
}

K
KAMEZAWA Hiroyuki 已提交
1699 1700
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1701
struct oom_wait_info {
1702
	struct mem_cgroup *memcg;
1703
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1704 1705
};

1706
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1707 1708
	unsigned mode, int sync, void *arg)
{
1709 1710
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1711 1712 1713
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1714
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1715

1716 1717
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1718 1719 1720 1721
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1722
static void memcg_oom_recover(struct mem_cgroup *memcg)
1723
{
1724 1725 1726 1727 1728 1729 1730 1731 1732
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1733
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1734 1735
}

1736 1737 1738 1739 1740 1741 1742 1743
enum oom_status {
	OOM_SUCCESS,
	OOM_FAILED,
	OOM_ASYNC,
	OOM_SKIPPED
};

static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1744
{
1745 1746 1747
	enum oom_status ret;
	bool locked;

1748 1749 1750
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		return OOM_SKIPPED;

1751 1752
	memcg_memory_event(memcg, MEMCG_OOM);

K
KAMEZAWA Hiroyuki 已提交
1753
	/*
1754 1755 1756 1757
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1758 1759 1760 1761
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1762
	 *
1763 1764 1765 1766 1767 1768 1769
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
K
KAMEZAWA Hiroyuki 已提交
1770
	 */
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
	if (memcg->oom_kill_disable) {
		if (!current->in_user_fault)
			return OOM_SKIPPED;
		css_get(&memcg->css);
		current->memcg_in_oom = memcg;
		current->memcg_oom_gfp_mask = mask;
		current->memcg_oom_order = order;

		return OOM_ASYNC;
	}

1782 1783 1784 1785 1786 1787 1788 1789
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	mem_cgroup_unmark_under_oom(memcg);
1790
	if (mem_cgroup_out_of_memory(memcg, mask, order))
1791 1792 1793 1794 1795 1796
		ret = OOM_SUCCESS;
	else
		ret = OOM_FAILED;

	if (locked)
		mem_cgroup_oom_unlock(memcg);
1797

1798
	return ret;
1799 1800 1801 1802
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1803
 * @handle: actually kill/wait or just clean up the OOM state
1804
 *
1805 1806
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1807
 *
1808
 * Memcg supports userspace OOM handling where failed allocations must
1809 1810 1811 1812
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1813
 * the end of the page fault to complete the OOM handling.
1814 1815
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1816
 * completed, %false otherwise.
1817
 */
1818
bool mem_cgroup_oom_synchronize(bool handle)
1819
{
T
Tejun Heo 已提交
1820
	struct mem_cgroup *memcg = current->memcg_in_oom;
1821
	struct oom_wait_info owait;
1822
	bool locked;
1823 1824 1825

	/* OOM is global, do not handle */
	if (!memcg)
1826
		return false;
1827

1828
	if (!handle)
1829
		goto cleanup;
1830 1831 1832 1833 1834

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
1835
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
1836

1837
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1848 1849
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1850
	} else {
1851
		schedule();
1852 1853 1854 1855 1856
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1857 1858 1859 1860
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
I
Ingo Molnar 已提交
1861
		 * uncharges.  Wake any sleepers explicitly.
1862 1863 1864
		 */
		memcg_oom_recover(memcg);
	}
1865
cleanup:
T
Tejun Heo 已提交
1866
	current->memcg_in_oom = NULL;
1867
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1868
	return true;
1869 1870
}

1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
/**
 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 * @victim: task to be killed by the OOM killer
 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 *
 * Returns a pointer to a memory cgroup, which has to be cleaned up
 * by killing all belonging OOM-killable tasks.
 *
 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 */
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
					    struct mem_cgroup *oom_domain)
{
	struct mem_cgroup *oom_group = NULL;
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return NULL;

	if (!oom_domain)
		oom_domain = root_mem_cgroup;

	rcu_read_lock();

	memcg = mem_cgroup_from_task(victim);
	if (memcg == root_mem_cgroup)
		goto out;

1899 1900 1901 1902 1903 1904 1905 1906
	/*
	 * If the victim task has been asynchronously moved to a different
	 * memory cgroup, we might end up killing tasks outside oom_domain.
	 * In this case it's better to ignore memory.group.oom.
	 */
	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
		goto out;

1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
	/*
	 * Traverse the memory cgroup hierarchy from the victim task's
	 * cgroup up to the OOMing cgroup (or root) to find the
	 * highest-level memory cgroup with oom.group set.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		if (memcg->oom_group)
			oom_group = memcg;

		if (memcg == oom_domain)
			break;
	}

	if (oom_group)
		css_get(&oom_group->css);
out:
	rcu_read_unlock();

	return oom_group;
}

void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
	pr_info("Tasks in ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(" are going to be killed due to memory.oom.group set\n");
}

1935
/**
1936
 * lock_page_memcg - lock a page and memcg binding
1937
 * @page: the page
1938
 *
1939
 * This function protects unlocked LRU pages from being moved to
1940 1941
 * another cgroup.
 *
1942 1943
 * It ensures lifetime of the locked memcg. Caller is responsible
 * for the lifetime of the page.
1944
 */
1945
void lock_page_memcg(struct page *page)
1946
{
1947
	struct page *head = compound_head(page); /* rmap on tail pages */
1948
	struct mem_cgroup *memcg;
1949
	unsigned long flags;
1950

1951 1952 1953 1954
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
1955
         */
1956 1957 1958
	rcu_read_lock();

	if (mem_cgroup_disabled())
1959
		return;
1960
again:
1961
	memcg = page_memcg(head);
1962
	if (unlikely(!memcg))
1963
		return;
1964

1965 1966 1967 1968 1969 1970
#ifdef CONFIG_PROVE_LOCKING
	local_irq_save(flags);
	might_lock(&memcg->move_lock);
	local_irq_restore(flags);
#endif

Q
Qiang Huang 已提交
1971
	if (atomic_read(&memcg->moving_account) <= 0)
1972
		return;
1973

1974
	spin_lock_irqsave(&memcg->move_lock, flags);
1975
	if (memcg != page_memcg(head)) {
1976
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1977 1978
		goto again;
	}
1979 1980

	/*
1981 1982 1983 1984
	 * When charge migration first begins, we can have multiple
	 * critical sections holding the fast-path RCU lock and one
	 * holding the slowpath move_lock. Track the task who has the
	 * move_lock for unlock_page_memcg().
1985 1986 1987
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1988
}
1989
EXPORT_SYMBOL(lock_page_memcg);
1990

1991
static void __unlock_page_memcg(struct mem_cgroup *memcg)
1992
{
1993 1994 1995 1996 1997 1998 1999 2000
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2001

2002
	rcu_read_unlock();
2003
}
2004 2005

/**
2006
 * unlock_page_memcg - unlock a page and memcg binding
2007 2008 2009 2010
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
2011 2012
	struct page *head = compound_head(page);

2013
	__unlock_page_memcg(page_memcg(head));
2014
}
2015
EXPORT_SYMBOL(unlock_page_memcg);
2016

2017
struct obj_stock {
R
Roman Gushchin 已提交
2018 2019
#ifdef CONFIG_MEMCG_KMEM
	struct obj_cgroup *cached_objcg;
2020
	struct pglist_data *cached_pgdat;
R
Roman Gushchin 已提交
2021
	unsigned int nr_bytes;
2022 2023
	int nr_slab_reclaimable_b;
	int nr_slab_unreclaimable_b;
2024 2025
#else
	int dummy[0];
R
Roman Gushchin 已提交
2026
#endif
2027 2028 2029 2030 2031 2032 2033
};

struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
	unsigned int nr_pages;
	struct obj_stock task_obj;
	struct obj_stock irq_obj;
R
Roman Gushchin 已提交
2034

2035
	struct work_struct work;
2036
	unsigned long flags;
2037
#define FLUSHING_CACHED_CHARGE	0
2038 2039
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2040
static DEFINE_MUTEX(percpu_charge_mutex);
2041

R
Roman Gushchin 已提交
2042
#ifdef CONFIG_MEMCG_KMEM
2043
static void drain_obj_stock(struct obj_stock *stock);
R
Roman Gushchin 已提交
2044 2045 2046 2047
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg);

#else
2048
static inline void drain_obj_stock(struct obj_stock *stock)
R
Roman Gushchin 已提交
2049 2050 2051 2052 2053 2054 2055 2056 2057
{
}
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	return false;
}
#endif

2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
/*
 * Most kmem_cache_alloc() calls are from user context. The irq disable/enable
 * sequence used in this case to access content from object stock is slow.
 * To optimize for user context access, there are now two object stocks for
 * task context and interrupt context access respectively.
 *
 * The task context object stock can be accessed by disabling preemption only
 * which is cheap in non-preempt kernel. The interrupt context object stock
 * can only be accessed after disabling interrupt. User context code can
 * access interrupt object stock, but not vice versa.
 */
static inline struct obj_stock *get_obj_stock(unsigned long *pflags)
{
	struct memcg_stock_pcp *stock;

	if (likely(in_task())) {
		*pflags = 0UL;
		preempt_disable();
		stock = this_cpu_ptr(&memcg_stock);
		return &stock->task_obj;
	}

	local_irq_save(*pflags);
	stock = this_cpu_ptr(&memcg_stock);
	return &stock->irq_obj;
}

static inline void put_obj_stock(unsigned long flags)
{
	if (likely(in_task()))
		preempt_enable();
	else
		local_irq_restore(flags);
}

2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2103
 */
2104
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2105 2106
{
	struct memcg_stock_pcp *stock;
2107
	unsigned long flags;
2108
	bool ret = false;
2109

2110
	if (nr_pages > MEMCG_CHARGE_BATCH)
2111
		return ret;
2112

2113 2114 2115
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2116
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2117
		stock->nr_pages -= nr_pages;
2118 2119
		ret = true;
	}
2120 2121 2122

	local_irq_restore(flags);

2123 2124 2125 2126
	return ret;
}

/*
2127
 * Returns stocks cached in percpu and reset cached information.
2128 2129 2130 2131 2132
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2133 2134 2135
	if (!old)
		return;

2136
	if (stock->nr_pages) {
2137
		page_counter_uncharge(&old->memory, stock->nr_pages);
2138
		if (do_memsw_account())
2139
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2140
		stock->nr_pages = 0;
2141
	}
2142 2143

	css_put(&old->css);
2144 2145 2146 2147 2148
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
2149 2150 2151
	struct memcg_stock_pcp *stock;
	unsigned long flags;

2152
	/*
2153 2154 2155
	 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
	 * drain_stock races is that we always operate on local CPU stock
	 * here with IRQ disabled
2156
	 */
2157 2158 2159
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2160 2161 2162
	drain_obj_stock(&stock->irq_obj);
	if (in_task())
		drain_obj_stock(&stock->task_obj);
2163
	drain_stock(stock);
2164
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2165 2166

	local_irq_restore(flags);
2167 2168 2169
}

/*
2170
 * Cache charges(val) to local per_cpu area.
2171
 * This will be consumed by consume_stock() function, later.
2172
 */
2173
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2174
{
2175 2176 2177 2178
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
2179

2180
	stock = this_cpu_ptr(&memcg_stock);
2181
	if (stock->cached != memcg) { /* reset if necessary */
2182
		drain_stock(stock);
2183
		css_get(&memcg->css);
2184
		stock->cached = memcg;
2185
	}
2186
	stock->nr_pages += nr_pages;
2187

2188
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2189 2190
		drain_stock(stock);

2191
	local_irq_restore(flags);
2192 2193 2194
}

/*
2195
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2196
 * of the hierarchy under it.
2197
 */
2198
static void drain_all_stock(struct mem_cgroup *root_memcg)
2199
{
2200
	int cpu, curcpu;
2201

2202 2203 2204
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2205 2206 2207 2208 2209 2210
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
2211
	curcpu = get_cpu();
2212 2213
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2214
		struct mem_cgroup *memcg;
2215
		bool flush = false;
2216

2217
		rcu_read_lock();
2218
		memcg = stock->cached;
2219 2220 2221
		if (memcg && stock->nr_pages &&
		    mem_cgroup_is_descendant(memcg, root_memcg))
			flush = true;
2222
		else if (obj_stock_flush_required(stock, root_memcg))
R
Roman Gushchin 已提交
2223
			flush = true;
2224 2225 2226 2227
		rcu_read_unlock();

		if (flush &&
		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2228 2229 2230 2231 2232
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2233
	}
2234
	put_cpu();
2235
	mutex_unlock(&percpu_charge_mutex);
2236 2237
}

2238 2239 2240
static int memcg_hotplug_cpu_dead(unsigned int cpu)
{
	struct memcg_stock_pcp *stock;
2241

2242 2243
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
2244

2245
	return 0;
2246 2247
}

2248 2249 2250
static unsigned long reclaim_high(struct mem_cgroup *memcg,
				  unsigned int nr_pages,
				  gfp_t gfp_mask)
2251
{
2252 2253
	unsigned long nr_reclaimed = 0;

2254
	do {
2255 2256
		unsigned long pflags;

2257 2258
		if (page_counter_read(&memcg->memory) <=
		    READ_ONCE(memcg->memory.high))
2259
			continue;
2260

2261
		memcg_memory_event(memcg, MEMCG_HIGH);
2262 2263

		psi_memstall_enter(&pflags);
2264 2265
		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
							     gfp_mask, true);
2266
		psi_memstall_leave(&pflags);
2267 2268
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));
2269 2270

	return nr_reclaimed;
2271 2272 2273 2274 2275 2276 2277
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
2278
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2279 2280
}

2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
/*
 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
 * enough to still cause a significant slowdown in most cases, while still
 * allowing diagnostics and tracing to proceed without becoming stuck.
 */
#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)

/*
 * When calculating the delay, we use these either side of the exponentiation to
 * maintain precision and scale to a reasonable number of jiffies (see the table
 * below.
 *
 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
 *   overage ratio to a delay.
2295
 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
 *   to produce a reasonable delay curve.
 *
 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
 * reasonable delay curve compared to precision-adjusted overage, not
 * penalising heavily at first, but still making sure that growth beyond the
 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
 * example, with a high of 100 megabytes:
 *
 *  +-------+------------------------+
 *  | usage | time to allocate in ms |
 *  +-------+------------------------+
 *  | 100M  |                      0 |
 *  | 101M  |                      6 |
 *  | 102M  |                     25 |
 *  | 103M  |                     57 |
 *  | 104M  |                    102 |
 *  | 105M  |                    159 |
 *  | 106M  |                    230 |
 *  | 107M  |                    313 |
 *  | 108M  |                    409 |
 *  | 109M  |                    518 |
 *  | 110M  |                    639 |
 *  | 111M  |                    774 |
 *  | 112M  |                    921 |
 *  | 113M  |                   1081 |
 *  | 114M  |                   1254 |
 *  | 115M  |                   1439 |
 *  | 116M  |                   1638 |
 *  | 117M  |                   1849 |
 *  | 118M  |                   2000 |
 *  | 119M  |                   2000 |
 *  | 120M  |                   2000 |
 *  +-------+------------------------+
 */
 #define MEMCG_DELAY_PRECISION_SHIFT 20
 #define MEMCG_DELAY_SCALING_SHIFT 14

2334
static u64 calculate_overage(unsigned long usage, unsigned long high)
2335
{
2336
	u64 overage;
2337

2338 2339
	if (usage <= high)
		return 0;
2340

2341 2342 2343 2344 2345
	/*
	 * Prevent division by 0 in overage calculation by acting as if
	 * it was a threshold of 1 page
	 */
	high = max(high, 1UL);
2346

2347 2348 2349 2350
	overage = usage - high;
	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
	return div64_u64(overage, high);
}
2351

2352 2353 2354
static u64 mem_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;
2355

2356 2357
	do {
		overage = calculate_overage(page_counter_read(&memcg->memory),
2358
					    READ_ONCE(memcg->memory.high));
2359
		max_overage = max(overage, max_overage);
2360 2361 2362
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

2363 2364 2365
	return max_overage;
}

2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
static u64 swap_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;

	do {
		overage = calculate_overage(page_counter_read(&memcg->swap),
					    READ_ONCE(memcg->swap.high));
		if (overage)
			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
		max_overage = max(overage, max_overage);
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

	return max_overage;
}

2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
/*
 * Get the number of jiffies that we should penalise a mischievous cgroup which
 * is exceeding its memory.high by checking both it and its ancestors.
 */
static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
					  unsigned int nr_pages,
					  u64 max_overage)
{
	unsigned long penalty_jiffies;

2392 2393
	if (!max_overage)
		return 0;
2394 2395 2396 2397 2398 2399 2400 2401 2402

	/*
	 * We use overage compared to memory.high to calculate the number of
	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
	 * fairly lenient on small overages, and increasingly harsh when the
	 * memcg in question makes it clear that it has no intention of stopping
	 * its crazy behaviour, so we exponentially increase the delay based on
	 * overage amount.
	 */
2403 2404 2405
	penalty_jiffies = max_overage * max_overage * HZ;
	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2406 2407 2408 2409 2410 2411 2412 2413 2414

	/*
	 * Factor in the task's own contribution to the overage, such that four
	 * N-sized allocations are throttled approximately the same as one
	 * 4N-sized allocation.
	 *
	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
	 * larger the current charge patch is than that.
	 */
2415
	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
}

/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned long penalty_jiffies;
	unsigned long pflags;
2426
	unsigned long nr_reclaimed;
2427
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2428
	int nr_retries = MAX_RECLAIM_RETRIES;
2429
	struct mem_cgroup *memcg;
2430
	bool in_retry = false;
2431 2432 2433 2434 2435 2436 2437

	if (likely(!nr_pages))
		return;

	memcg = get_mem_cgroup_from_mm(current->mm);
	current->memcg_nr_pages_over_high = 0;

2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
retry_reclaim:
	/*
	 * The allocating task should reclaim at least the batch size, but for
	 * subsequent retries we only want to do what's necessary to prevent oom
	 * or breaching resource isolation.
	 *
	 * This is distinct from memory.max or page allocator behaviour because
	 * memory.high is currently batched, whereas memory.max and the page
	 * allocator run every time an allocation is made.
	 */
	nr_reclaimed = reclaim_high(memcg,
				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
				    GFP_KERNEL);

2452 2453 2454 2455
	/*
	 * memory.high is breached and reclaim is unable to keep up. Throttle
	 * allocators proactively to slow down excessive growth.
	 */
2456 2457
	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
					       mem_find_max_overage(memcg));
2458

2459 2460 2461
	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
						swap_find_max_overage(memcg));

2462 2463 2464 2465 2466 2467 2468
	/*
	 * Clamp the max delay per usermode return so as to still keep the
	 * application moving forwards and also permit diagnostics, albeit
	 * extremely slowly.
	 */
	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);

2469 2470 2471 2472 2473 2474 2475 2476 2477
	/*
	 * Don't sleep if the amount of jiffies this memcg owes us is so low
	 * that it's not even worth doing, in an attempt to be nice to those who
	 * go only a small amount over their memory.high value and maybe haven't
	 * been aggressively reclaimed enough yet.
	 */
	if (penalty_jiffies <= HZ / 100)
		goto out;

2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
	/*
	 * If reclaim is making forward progress but we're still over
	 * memory.high, we want to encourage that rather than doing allocator
	 * throttling.
	 */
	if (nr_reclaimed || nr_retries--) {
		in_retry = true;
		goto retry_reclaim;
	}

2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
	/*
	 * If we exit early, we're guaranteed to die (since
	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
	 * need to account for any ill-begotten jiffies to pay them off later.
	 */
	psi_memstall_enter(&pflags);
	schedule_timeout_killable(penalty_jiffies);
	psi_memstall_leave(&pflags);

out:
	css_put(&memcg->css);
2499 2500
}

2501 2502
static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
			unsigned int nr_pages)
2503
{
2504
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2505
	int nr_retries = MAX_RECLAIM_RETRIES;
2506
	struct mem_cgroup *mem_over_limit;
2507
	struct page_counter *counter;
2508
	enum oom_status oom_status;
2509
	unsigned long nr_reclaimed;
2510 2511
	bool may_swap = true;
	bool drained = false;
2512
	unsigned long pflags;
2513

2514
retry:
2515
	if (consume_stock(memcg, nr_pages))
2516
		return 0;
2517

2518
	if (!do_memsw_account() ||
2519 2520
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2521
			goto done_restock;
2522
		if (do_memsw_account())
2523 2524
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2525
	} else {
2526
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2527
		may_swap = false;
2528
	}
2529

2530 2531 2532 2533
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2534

2535 2536 2537 2538 2539 2540 2541 2542 2543
	/*
	 * Memcg doesn't have a dedicated reserve for atomic
	 * allocations. But like the global atomic pool, we need to
	 * put the burden of reclaim on regular allocation requests
	 * and let these go through as privileged allocations.
	 */
	if (gfp_mask & __GFP_ATOMIC)
		goto force;

2544 2545 2546 2547 2548 2549
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
2550
	if (unlikely(should_force_charge()))
2551
		goto force;
2552

2553 2554 2555 2556 2557 2558 2559 2560 2561
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2562 2563 2564
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2565
	if (!gfpflags_allow_blocking(gfp_mask))
2566
		goto nomem;
2567

2568
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2569

2570
	psi_memstall_enter(&pflags);
2571 2572
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2573
	psi_memstall_leave(&pflags);
2574

2575
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2576
		goto retry;
2577

2578
	if (!drained) {
2579
		drain_all_stock(mem_over_limit);
2580 2581 2582 2583
		drained = true;
		goto retry;
	}

2584 2585
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2586 2587 2588 2589 2590 2591 2592 2593 2594
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2595
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2596 2597 2598 2599 2600 2601 2602 2603
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2604 2605 2606
	if (nr_retries--)
		goto retry;

2607
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2608 2609
		goto nomem;

2610
	if (fatal_signal_pending(current))
2611
		goto force;
2612

2613 2614 2615 2616 2617 2618
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2619
		       get_order(nr_pages * PAGE_SIZE));
2620 2621
	switch (oom_status) {
	case OOM_SUCCESS:
2622
		nr_retries = MAX_RECLAIM_RETRIES;
2623 2624 2625 2626 2627 2628
		goto retry;
	case OOM_FAILED:
		goto force;
	default:
		goto nomem;
	}
2629
nomem:
2630
	if (!(gfp_mask & __GFP_NOFAIL))
2631
		return -ENOMEM;
2632 2633 2634 2635 2636 2637 2638
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2639
	if (do_memsw_account())
2640 2641 2642
		page_counter_charge(&memcg->memsw, nr_pages);

	return 0;
2643 2644 2645 2646

done_restock:
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2647

2648
	/*
2649 2650
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2651
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2652 2653 2654 2655
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2656 2657
	 */
	do {
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
		bool mem_high, swap_high;

		mem_high = page_counter_read(&memcg->memory) >
			READ_ONCE(memcg->memory.high);
		swap_high = page_counter_read(&memcg->swap) >
			READ_ONCE(memcg->swap.high);

		/* Don't bother a random interrupted task */
		if (in_interrupt()) {
			if (mem_high) {
2668 2669 2670
				schedule_work(&memcg->high_work);
				break;
			}
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
			continue;
		}

		if (mem_high || swap_high) {
			/*
			 * The allocating tasks in this cgroup will need to do
			 * reclaim or be throttled to prevent further growth
			 * of the memory or swap footprints.
			 *
			 * Target some best-effort fairness between the tasks,
			 * and distribute reclaim work and delay penalties
			 * based on how much each task is actually allocating.
			 */
V
Vladimir Davydov 已提交
2684
			current->memcg_nr_pages_over_high += batch;
2685 2686 2687
			set_notify_resume(current);
			break;
		}
2688
	} while ((memcg = parent_mem_cgroup(memcg)));
2689 2690

	return 0;
2691
}
2692

2693 2694 2695 2696 2697 2698 2699 2700 2701
static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
			     unsigned int nr_pages)
{
	if (mem_cgroup_is_root(memcg))
		return 0;

	return try_charge_memcg(memcg, gfp_mask, nr_pages);
}

2702
#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2703
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2704
{
2705 2706 2707
	if (mem_cgroup_is_root(memcg))
		return;

2708
	page_counter_uncharge(&memcg->memory, nr_pages);
2709
	if (do_memsw_account())
2710
		page_counter_uncharge(&memcg->memsw, nr_pages);
2711
}
2712
#endif
2713

2714
static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2715
{
2716
	VM_BUG_ON_PAGE(page_memcg(page), page);
2717
	/*
2718
	 * Any of the following ensures page's memcg stability:
2719
	 *
2720 2721 2722 2723
	 * - the page lock
	 * - LRU isolation
	 * - lock_page_memcg()
	 * - exclusive reference
2724
	 */
2725
	page->memcg_data = (unsigned long)memcg;
2726
}
2727

2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
{
	struct mem_cgroup *memcg;

	rcu_read_lock();
retry:
	memcg = obj_cgroup_memcg(objcg);
	if (unlikely(!css_tryget(&memcg->css)))
		goto retry;
	rcu_read_unlock();

	return memcg;
}

2742
#ifdef CONFIG_MEMCG_KMEM
2743 2744 2745 2746 2747 2748 2749
/*
 * The allocated objcg pointers array is not accounted directly.
 * Moreover, it should not come from DMA buffer and is not readily
 * reclaimable. So those GFP bits should be masked off.
 */
#define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)

2750
int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2751
				 gfp_t gfp, bool new_page)
2752 2753
{
	unsigned int objects = objs_per_slab_page(s, page);
2754
	unsigned long memcg_data;
2755 2756
	void *vec;

2757
	gfp &= ~OBJCGS_CLEAR_MASK;
2758 2759 2760 2761 2762
	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
			   page_to_nid(page));
	if (!vec)
		return -ENOMEM;

2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
	if (new_page) {
		/*
		 * If the slab page is brand new and nobody can yet access
		 * it's memcg_data, no synchronization is required and
		 * memcg_data can be simply assigned.
		 */
		page->memcg_data = memcg_data;
	} else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
		/*
		 * If the slab page is already in use, somebody can allocate
		 * and assign obj_cgroups in parallel. In this case the existing
		 * objcg vector should be reused.
		 */
2777
		kfree(vec);
2778 2779
		return 0;
	}
2780

2781
	kmemleak_not_leak(vec);
2782 2783 2784
	return 0;
}

2785 2786 2787
/*
 * Returns a pointer to the memory cgroup to which the kernel object is charged.
 *
2788 2789 2790 2791 2792 2793
 * A passed kernel object can be a slab object or a generic kernel page, so
 * different mechanisms for getting the memory cgroup pointer should be used.
 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
 * can not know for sure how the kernel object is implemented.
 * mem_cgroup_from_obj() can be safely used in such cases.
 *
2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
 * cgroup_mutex, etc.
 */
struct mem_cgroup *mem_cgroup_from_obj(void *p)
{
	struct page *page;

	if (mem_cgroup_disabled())
		return NULL;

	page = virt_to_head_page(p);

	/*
2807 2808 2809
	 * Slab objects are accounted individually, not per-page.
	 * Memcg membership data for each individual object is saved in
	 * the page->obj_cgroups.
2810
	 */
2811
	if (page_objcgs_check(page)) {
2812 2813 2814 2815
		struct obj_cgroup *objcg;
		unsigned int off;

		off = obj_to_index(page->slab_cache, page, p);
2816
		objcg = page_objcgs(page)[off];
2817 2818 2819 2820
		if (objcg)
			return obj_cgroup_memcg(objcg);

		return NULL;
2821
	}
2822

2823 2824 2825 2826 2827 2828 2829 2830
	/*
	 * page_memcg_check() is used here, because page_has_obj_cgroups()
	 * check above could fail because the object cgroups vector wasn't set
	 * at that moment, but it can be set concurrently.
	 * page_memcg_check(page) will guarantee that a proper memory
	 * cgroup pointer or NULL will be returned.
	 */
	return page_memcg_check(page);
2831 2832
}

R
Roman Gushchin 已提交
2833 2834 2835 2836 2837
__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
{
	struct obj_cgroup *objcg = NULL;
	struct mem_cgroup *memcg;

2838 2839 2840
	if (memcg_kmem_bypass())
		return NULL;

R
Roman Gushchin 已提交
2841
	rcu_read_lock();
2842 2843
	if (unlikely(active_memcg()))
		memcg = active_memcg();
R
Roman Gushchin 已提交
2844 2845 2846 2847 2848 2849 2850
	else
		memcg = mem_cgroup_from_task(current);

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		objcg = rcu_dereference(memcg->objcg);
		if (objcg && obj_cgroup_tryget(objcg))
			break;
2851
		objcg = NULL;
R
Roman Gushchin 已提交
2852 2853 2854 2855 2856 2857
	}
	rcu_read_unlock();

	return objcg;
}

2858
static int memcg_alloc_cache_id(void)
2859
{
2860 2861 2862
	int id, size;
	int err;

2863
	id = ida_simple_get(&memcg_cache_ida,
2864 2865 2866
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2867

2868
	if (id < memcg_nr_cache_ids)
2869 2870 2871 2872 2873 2874
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2875
	down_write(&memcg_cache_ids_sem);
2876 2877

	size = 2 * (id + 1);
2878 2879 2880 2881 2882
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2883
	err = memcg_update_all_list_lrus(size);
2884 2885 2886 2887 2888
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2889
	if (err) {
2890
		ida_simple_remove(&memcg_cache_ida, id);
2891 2892 2893 2894 2895 2896 2897
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2898
	ida_simple_remove(&memcg_cache_ida, id);
2899 2900
}

2901 2902 2903 2904 2905
/*
 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
 * @objcg: object cgroup to uncharge
 * @nr_pages: number of pages to uncharge
 */
2906 2907 2908 2909 2910 2911 2912
static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
				      unsigned int nr_pages)
{
	struct mem_cgroup *memcg;

	memcg = get_mem_cgroup_from_objcg(objcg);

2913 2914 2915
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);
	refill_stock(memcg, nr_pages);
2916 2917 2918 2919

	css_put(&memcg->css);
}

2920 2921 2922
/*
 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
 * @objcg: object cgroup to charge
2923
 * @gfp: reclaim mode
2924
 * @nr_pages: number of pages to charge
2925 2926 2927
 *
 * Returns 0 on success, an error code on failure.
 */
2928 2929
static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
				   unsigned int nr_pages)
2930
{
2931
	struct page_counter *counter;
2932
	struct mem_cgroup *memcg;
2933 2934
	int ret;

2935 2936
	memcg = get_mem_cgroup_from_objcg(objcg);

2937
	ret = try_charge_memcg(memcg, gfp, nr_pages);
2938
	if (ret)
2939
		goto out;
2940 2941 2942

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2943 2944 2945 2946 2947 2948 2949 2950

		/*
		 * Enforce __GFP_NOFAIL allocation because callers are not
		 * prepared to see failures and likely do not have any failure
		 * handling code.
		 */
		if (gfp & __GFP_NOFAIL) {
			page_counter_charge(&memcg->kmem, nr_pages);
2951
			goto out;
2952
		}
2953
		cancel_charge(memcg, nr_pages);
2954
		ret = -ENOMEM;
2955
	}
2956 2957
out:
	css_put(&memcg->css);
2958

2959
	return ret;
2960 2961
}

2962
/**
2963
 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2964 2965 2966 2967 2968 2969
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
2970
int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2971
{
2972
	struct obj_cgroup *objcg;
2973
	int ret = 0;
2974

2975 2976 2977
	objcg = get_obj_cgroup_from_current();
	if (objcg) {
		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
2978
		if (!ret) {
2979
			page->memcg_data = (unsigned long)objcg |
2980
				MEMCG_DATA_KMEM;
2981
			return 0;
2982
		}
2983
		obj_cgroup_put(objcg);
2984
	}
2985
	return ret;
2986
}
2987

2988
/**
2989
 * __memcg_kmem_uncharge_page: uncharge a kmem page
2990 2991 2992
 * @page: page to uncharge
 * @order: allocation order
 */
2993
void __memcg_kmem_uncharge_page(struct page *page, int order)
2994
{
2995
	struct obj_cgroup *objcg;
2996
	unsigned int nr_pages = 1 << order;
2997

2998
	if (!PageMemcgKmem(page))
2999 3000
		return;

3001 3002
	objcg = __page_objcg(page);
	obj_cgroup_uncharge_pages(objcg, nr_pages);
3003
	page->memcg_data = 0;
3004
	obj_cgroup_put(objcg);
3005
}
R
Roman Gushchin 已提交
3006

3007 3008 3009 3010
void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
		     enum node_stat_item idx, int nr)
{
	unsigned long flags;
3011
	struct obj_stock *stock = get_obj_stock(&flags);
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
	int *bytes;

	/*
	 * Save vmstat data in stock and skip vmstat array update unless
	 * accumulating over a page of vmstat data or when pgdat or idx
	 * changes.
	 */
	if (stock->cached_objcg != objcg) {
		drain_obj_stock(stock);
		obj_cgroup_get(objcg);
		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
		stock->cached_objcg = objcg;
		stock->cached_pgdat = pgdat;
	} else if (stock->cached_pgdat != pgdat) {
		/* Flush the existing cached vmstat data */
3028 3029
		struct pglist_data *oldpg = stock->cached_pgdat;

3030
		if (stock->nr_slab_reclaimable_b) {
3031
			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3032 3033 3034 3035
					  stock->nr_slab_reclaimable_b);
			stock->nr_slab_reclaimable_b = 0;
		}
		if (stock->nr_slab_unreclaimable_b) {
3036
			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
					  stock->nr_slab_unreclaimable_b);
			stock->nr_slab_unreclaimable_b = 0;
		}
		stock->cached_pgdat = pgdat;
	}

	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
					       : &stock->nr_slab_unreclaimable_b;
	/*
	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
	 * cached locally at least once before pushing it out.
	 */
	if (!*bytes) {
		*bytes = nr;
		nr = 0;
	} else {
		*bytes += nr;
		if (abs(*bytes) > PAGE_SIZE) {
			nr = *bytes;
			*bytes = 0;
		} else {
			nr = 0;
		}
	}
	if (nr)
		mod_objcg_mlstate(objcg, pgdat, idx, nr);

3064
	put_obj_stock(flags);
3065 3066
}

R
Roman Gushchin 已提交
3067 3068 3069
static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
{
	unsigned long flags;
3070
	struct obj_stock *stock = get_obj_stock(&flags);
R
Roman Gushchin 已提交
3071 3072 3073 3074 3075 3076 3077
	bool ret = false;

	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
		stock->nr_bytes -= nr_bytes;
		ret = true;
	}

3078
	put_obj_stock(flags);
R
Roman Gushchin 已提交
3079 3080 3081 3082

	return ret;
}

3083
static void drain_obj_stock(struct obj_stock *stock)
R
Roman Gushchin 已提交
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
{
	struct obj_cgroup *old = stock->cached_objcg;

	if (!old)
		return;

	if (stock->nr_bytes) {
		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);

3094 3095
		if (nr_pages)
			obj_cgroup_uncharge_pages(old, nr_pages);
R
Roman Gushchin 已提交
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110

		/*
		 * The leftover is flushed to the centralized per-memcg value.
		 * On the next attempt to refill obj stock it will be moved
		 * to a per-cpu stock (probably, on an other CPU), see
		 * refill_obj_stock().
		 *
		 * How often it's flushed is a trade-off between the memory
		 * limit enforcement accuracy and potential CPU contention,
		 * so it might be changed in the future.
		 */
		atomic_add(nr_bytes, &old->nr_charged_bytes);
		stock->nr_bytes = 0;
	}

3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
	/*
	 * Flush the vmstat data in current stock
	 */
	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
		if (stock->nr_slab_reclaimable_b) {
			mod_objcg_mlstate(old, stock->cached_pgdat,
					  NR_SLAB_RECLAIMABLE_B,
					  stock->nr_slab_reclaimable_b);
			stock->nr_slab_reclaimable_b = 0;
		}
		if (stock->nr_slab_unreclaimable_b) {
			mod_objcg_mlstate(old, stock->cached_pgdat,
					  NR_SLAB_UNRECLAIMABLE_B,
					  stock->nr_slab_unreclaimable_b);
			stock->nr_slab_unreclaimable_b = 0;
		}
		stock->cached_pgdat = NULL;
	}

R
Roman Gushchin 已提交
3130 3131 3132 3133 3134 3135 3136 3137 3138
	obj_cgroup_put(old);
	stock->cached_objcg = NULL;
}

static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	struct mem_cgroup *memcg;

3139 3140 3141 3142 3143 3144 3145
	if (in_task() && stock->task_obj.cached_objcg) {
		memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg);
		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
			return true;
	}
	if (stock->irq_obj.cached_objcg) {
		memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg);
R
Roman Gushchin 已提交
3146 3147 3148 3149 3150 3151 3152
		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
			return true;
	}

	return false;
}

3153 3154
static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
			     bool allow_uncharge)
R
Roman Gushchin 已提交
3155 3156
{
	unsigned long flags;
3157
	struct obj_stock *stock = get_obj_stock(&flags);
3158
	unsigned int nr_pages = 0;
R
Roman Gushchin 已提交
3159 3160 3161 3162 3163

	if (stock->cached_objcg != objcg) { /* reset if necessary */
		drain_obj_stock(stock);
		obj_cgroup_get(objcg);
		stock->cached_objcg = objcg;
3164 3165 3166
		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
		allow_uncharge = true;	/* Allow uncharge when objcg changes */
R
Roman Gushchin 已提交
3167 3168 3169
	}
	stock->nr_bytes += nr_bytes;

3170 3171 3172 3173
	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
		stock->nr_bytes &= (PAGE_SIZE - 1);
	}
R
Roman Gushchin 已提交
3174

3175
	put_obj_stock(flags);
3176 3177 3178

	if (nr_pages)
		obj_cgroup_uncharge_pages(objcg, nr_pages);
R
Roman Gushchin 已提交
3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
}

int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
{
	unsigned int nr_pages, nr_bytes;
	int ret;

	if (consume_obj_stock(objcg, size))
		return 0;

	/*
3190
	 * In theory, objcg->nr_charged_bytes can have enough
R
Roman Gushchin 已提交
3191
	 * pre-charged bytes to satisfy the allocation. However,
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
	 * flushing objcg->nr_charged_bytes requires two atomic
	 * operations, and objcg->nr_charged_bytes can't be big.
	 * The shared objcg->nr_charged_bytes can also become a
	 * performance bottleneck if all tasks of the same memcg are
	 * trying to update it. So it's better to ignore it and try
	 * grab some new pages. The stock's nr_bytes will be flushed to
	 * objcg->nr_charged_bytes later on when objcg changes.
	 *
	 * The stock's nr_bytes may contain enough pre-charged bytes
	 * to allow one less page from being charged, but we can't rely
	 * on the pre-charged bytes not being changed outside of
	 * consume_obj_stock() or refill_obj_stock(). So ignore those
	 * pre-charged bytes as well when charging pages. To avoid a
	 * page uncharge right after a page charge, we set the
	 * allow_uncharge flag to false when calling refill_obj_stock()
	 * to temporarily allow the pre-charged bytes to exceed the page
	 * size limit. The maximum reachable value of the pre-charged
	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
	 * race.
R
Roman Gushchin 已提交
3211 3212 3213 3214 3215 3216 3217
	 */
	nr_pages = size >> PAGE_SHIFT;
	nr_bytes = size & (PAGE_SIZE - 1);

	if (nr_bytes)
		nr_pages += 1;

3218
	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
R
Roman Gushchin 已提交
3219
	if (!ret && nr_bytes)
3220
		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
R
Roman Gushchin 已提交
3221 3222 3223 3224 3225 3226

	return ret;
}

void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
{
3227
	refill_obj_stock(objcg, size, true);
R
Roman Gushchin 已提交
3228 3229
}

3230
#endif /* CONFIG_MEMCG_KMEM */
3231

3232
/*
3233
 * Because page_memcg(head) is not set on tails, set it now.
3234
 */
3235
void split_page_memcg(struct page *head, unsigned int nr)
3236
{
3237
	struct mem_cgroup *memcg = page_memcg(head);
3238
	int i;
3239

3240
	if (mem_cgroup_disabled() || !memcg)
3241
		return;
3242

3243 3244
	for (i = 1; i < nr; i++)
		head[i].memcg_data = head->memcg_data;
3245 3246 3247 3248 3249

	if (PageMemcgKmem(head))
		obj_cgroup_get_many(__page_objcg(head), nr - 1);
	else
		css_get_many(&memcg->css, nr - 1);
3250 3251
}

A
Andrew Morton 已提交
3252
#ifdef CONFIG_MEMCG_SWAP
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
3264
 * The caller must have charged to @to, IOW, called page_counter_charge() about
3265 3266 3267
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3268
				struct mem_cgroup *from, struct mem_cgroup *to)
3269 3270 3271
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
3272 3273
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3274 3275

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3276 3277
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
3278 3279 3280 3281 3282 3283
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3284
				struct mem_cgroup *from, struct mem_cgroup *to)
3285 3286 3287
{
	return -EINVAL;
}
3288
#endif
K
KAMEZAWA Hiroyuki 已提交
3289

3290
static DEFINE_MUTEX(memcg_max_mutex);
3291

3292 3293
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
3294
{
3295
	bool enlarge = false;
3296
	bool drained = false;
3297
	int ret;
3298 3299
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3300

3301
	do {
3302 3303 3304 3305
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3306

3307
		mutex_lock(&memcg_max_mutex);
3308 3309
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
3310
		 * break our basic invariant rule memory.max <= memsw.max.
3311
		 */
3312
		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3313
					   max <= memcg->memsw.max;
3314
		if (!limits_invariant) {
3315
			mutex_unlock(&memcg_max_mutex);
3316 3317 3318
			ret = -EINVAL;
			break;
		}
3319
		if (max > counter->max)
3320
			enlarge = true;
3321 3322
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
3323 3324 3325 3326

		if (!ret)
			break;

3327 3328 3329 3330 3331 3332
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

3333 3334 3335 3336 3337 3338
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
3339

3340 3341
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3342

3343 3344 3345
	return ret;
}

3346
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3347 3348 3349 3350
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
3351
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3352 3353
	unsigned long reclaimed;
	int loop = 0;
3354
	struct mem_cgroup_tree_per_node *mctz;
3355
	unsigned long excess;
3356 3357 3358 3359 3360
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

3361
	mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3362 3363 3364 3365 3366 3367

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
3368
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3369 3370
		return 0;

3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
3385
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3386 3387 3388
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3389
		spin_lock_irq(&mctz->lock);
3390
		__mem_cgroup_remove_exceeded(mz, mctz);
3391 3392 3393 3394 3395 3396

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3397 3398 3399
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3400
		excess = soft_limit_excess(mz->memcg);
3401 3402 3403 3404 3405 3406 3407 3408 3409
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3410
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3411
		spin_unlock_irq(&mctz->lock);
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3429
/*
3430
 * Reclaims as many pages from the given memcg as possible.
3431 3432 3433 3434 3435
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
3436
	int nr_retries = MAX_RECLAIM_RETRIES;
3437

3438 3439
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3440 3441 3442

	drain_all_stock(memcg);

3443
	/* try to free all pages in this cgroup */
3444
	while (nr_retries && page_counter_read(&memcg->memory)) {
3445
		int progress;
3446

3447 3448 3449
		if (signal_pending(current))
			return -EINTR;

3450 3451
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3452
		if (!progress) {
3453
			nr_retries--;
3454
			/* maybe some writeback is necessary */
3455
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3456
		}
3457 3458

	}
3459 3460

	return 0;
3461 3462
}

3463 3464 3465
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3466
{
3467
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3468

3469 3470
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3471
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3472 3473
}

3474 3475
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3476
{
3477
	return 1;
3478 3479
}

3480 3481
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3482
{
3483
	if (val == 1)
3484
		return 0;
3485

3486 3487 3488
	pr_warn_once("Non-hierarchical mode is deprecated. "
		     "Please report your usecase to linux-mm@kvack.org if you "
		     "depend on this functionality.\n");
3489

3490
	return -EINVAL;
3491 3492
}

3493
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3494
{
3495
	unsigned long val;
3496

3497
	if (mem_cgroup_is_root(memcg)) {
3498 3499
		/* mem_cgroup_threshold() calls here from irqsafe context */
		cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
3500
		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3501
			memcg_page_state(memcg, NR_ANON_MAPPED);
3502 3503
		if (swap)
			val += memcg_page_state(memcg, MEMCG_SWAP);
3504
	} else {
3505
		if (!swap)
3506
			val = page_counter_read(&memcg->memory);
3507
		else
3508
			val = page_counter_read(&memcg->memsw);
3509
	}
3510
	return val;
3511 3512
}

3513 3514 3515 3516 3517 3518 3519
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3520

3521
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3522
			       struct cftype *cft)
B
Balbir Singh 已提交
3523
{
3524
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3525
	struct page_counter *counter;
3526

3527
	switch (MEMFILE_TYPE(cft->private)) {
3528
	case _MEM:
3529 3530
		counter = &memcg->memory;
		break;
3531
	case _MEMSWAP:
3532 3533
		counter = &memcg->memsw;
		break;
3534
	case _KMEM:
3535
		counter = &memcg->kmem;
3536
		break;
V
Vladimir Davydov 已提交
3537
	case _TCP:
3538
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3539
		break;
3540 3541 3542
	default:
		BUG();
	}
3543 3544 3545 3546

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
3547
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3548
		if (counter == &memcg->memsw)
3549
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3550 3551
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
3552
		return (u64)counter->max * PAGE_SIZE;
3553 3554 3555 3556 3557 3558 3559 3560 3561
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3562
}
3563

3564
#ifdef CONFIG_MEMCG_KMEM
3565
static int memcg_online_kmem(struct mem_cgroup *memcg)
3566
{
R
Roman Gushchin 已提交
3567
	struct obj_cgroup *objcg;
3568 3569
	int memcg_id;

3570 3571 3572
	if (cgroup_memory_nokmem)
		return 0;

3573
	BUG_ON(memcg->kmemcg_id >= 0);
3574
	BUG_ON(memcg->kmem_state);
3575

3576
	memcg_id = memcg_alloc_cache_id();
3577 3578
	if (memcg_id < 0)
		return memcg_id;
3579

R
Roman Gushchin 已提交
3580 3581 3582 3583 3584 3585 3586 3587
	objcg = obj_cgroup_alloc();
	if (!objcg) {
		memcg_free_cache_id(memcg_id);
		return -ENOMEM;
	}
	objcg->memcg = memcg;
	rcu_assign_pointer(memcg->objcg, objcg);

3588 3589
	static_branch_enable(&memcg_kmem_enabled_key);

V
Vladimir Davydov 已提交
3590
	memcg->kmemcg_id = memcg_id;
3591
	memcg->kmem_state = KMEM_ONLINE;
3592 3593

	return 0;
3594 3595
}

3596 3597 3598 3599 3600 3601 3602 3603
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
3604

3605 3606 3607 3608 3609 3610
	memcg->kmem_state = KMEM_ALLOCATED;

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

R
Roman Gushchin 已提交
3611
	memcg_reparent_objcgs(memcg, parent);
3612 3613 3614 3615

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

3616 3617 3618 3619 3620 3621 3622 3623
	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
3624
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3625 3626 3627 3628 3629
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
	}
3630 3631
	rcu_read_unlock();

3632
	memcg_drain_all_list_lrus(kmemcg_id, parent);
3633 3634 3635 3636 3637 3638

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
3639 3640 3641
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);
3642
}
3643
#else
3644
static int memcg_online_kmem(struct mem_cgroup *memcg)
3645 3646 3647 3648 3649 3650 3651 3652 3653
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
3654
#endif /* CONFIG_MEMCG_KMEM */
3655

3656 3657
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
3658
{
3659
	int ret;
3660

3661 3662 3663
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
3664
	return ret;
3665
}
3666

3667
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
3668 3669 3670
{
	int ret;

3671
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3672

3673
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
3674 3675 3676
	if (ret)
		goto out;

3677
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3678 3679 3680
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3681 3682 3683
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
3684 3685 3686 3687 3688 3689
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3690
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
3691 3692 3693 3694
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3695
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3696 3697
	}
out:
3698
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3699 3700 3701
	return ret;
}

3702 3703 3704 3705
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3706 3707
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3708
{
3709
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3710
	unsigned long nr_pages;
3711 3712
	int ret;

3713
	buf = strstrip(buf);
3714
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3715 3716
	if (ret)
		return ret;
3717

3718
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3719
	case RES_LIMIT:
3720 3721 3722 3723
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3724 3725
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3726
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3727
			break;
3728
		case _MEMSWAP:
3729
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3730
			break;
3731
		case _KMEM:
3732 3733 3734
			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
				     "Please report your usecase to linux-mm@kvack.org if you "
				     "depend on this functionality.\n");
3735
			ret = memcg_update_kmem_max(memcg, nr_pages);
3736
			break;
V
Vladimir Davydov 已提交
3737
		case _TCP:
3738
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
3739
			break;
3740
		}
3741
		break;
3742 3743 3744
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3745 3746
		break;
	}
3747
	return ret ?: nbytes;
B
Balbir Singh 已提交
3748 3749
}

3750 3751
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3752
{
3753
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3754
	struct page_counter *counter;
3755

3756 3757 3758 3759 3760 3761 3762 3763 3764 3765
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3766
	case _TCP:
3767
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3768
		break;
3769 3770 3771
	default:
		BUG();
	}
3772

3773
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3774
	case RES_MAX_USAGE:
3775
		page_counter_reset_watermark(counter);
3776 3777
		break;
	case RES_FAILCNT:
3778
		counter->failcnt = 0;
3779
		break;
3780 3781
	default:
		BUG();
3782
	}
3783

3784
	return nbytes;
3785 3786
}

3787
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3788 3789
					struct cftype *cft)
{
3790
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3791 3792
}

3793
#ifdef CONFIG_MMU
3794
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3795 3796
					struct cftype *cft, u64 val)
{
3797
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3798

3799
	if (val & ~MOVE_MASK)
3800
		return -EINVAL;
3801

3802
	/*
3803 3804 3805 3806
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3807
	 */
3808
	memcg->move_charge_at_immigrate = val;
3809 3810
	return 0;
}
3811
#else
3812
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3813 3814 3815 3816 3817
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3818

3819
#ifdef CONFIG_NUMA
3820 3821 3822 3823 3824 3825

#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)

static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3826
				int nid, unsigned int lru_mask, bool tree)
3827
{
3828
	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3829 3830 3831 3832 3833 3834 3835 3836
	unsigned long nr = 0;
	enum lru_list lru;

	VM_BUG_ON((unsigned)nid >= nr_node_ids);

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3837 3838 3839 3840
		if (tree)
			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
		else
			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3841 3842 3843 3844 3845
	}
	return nr;
}

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3846 3847
					     unsigned int lru_mask,
					     bool tree)
3848 3849 3850 3851 3852 3853 3854
{
	unsigned long nr = 0;
	enum lru_list lru;

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3855 3856 3857 3858
		if (tree)
			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
		else
			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3859 3860 3861 3862
	}
	return nr;
}

3863
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3864
{
3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3877
	int nid;
3878
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3879

3880 3881
	cgroup_rstat_flush(memcg->css.cgroup);

3882
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3883 3884 3885 3886 3887 3888 3889
		seq_printf(m, "%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   false));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, false));
3890
		seq_putc(m, '\n');
3891 3892
	}

3893
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3894 3895 3896 3897 3898 3899 3900 3901

		seq_printf(m, "hierarchical_%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   true));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, true));
3902
		seq_putc(m, '\n');
3903 3904 3905 3906 3907 3908
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3909
static const unsigned int memcg1_stats[] = {
3910
	NR_FILE_PAGES,
3911
	NR_ANON_MAPPED,
3912 3913 3914
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	NR_ANON_THPS,
#endif
3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
3925
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3926
	"rss_huge",
3927
#endif
3928 3929 3930 3931 3932 3933 3934
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

3935
/* Universal VM events cgroup1 shows, original sort order */
3936
static const unsigned int memcg1_events[] = {
3937 3938 3939 3940 3941 3942
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

3943
static int memcg_stat_show(struct seq_file *m, void *v)
3944
{
3945
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3946
	unsigned long memory, memsw;
3947 3948
	struct mem_cgroup *mi;
	unsigned int i;
3949

3950
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3951

3952 3953
	cgroup_rstat_flush(memcg->css.cgroup);

3954
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3955 3956
		unsigned long nr;

3957
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3958
			continue;
3959 3960
		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
3961
	}
L
Lee Schermerhorn 已提交
3962

3963
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3964
		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3965
			   memcg_events_local(memcg, memcg1_events[i]));
3966 3967

	for (i = 0; i < NR_LRU_LISTS; i++)
3968
		seq_printf(m, "%s %lu\n", lru_list_name(i),
3969
			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3970
			   PAGE_SIZE);
3971

K
KAMEZAWA Hiroyuki 已提交
3972
	/* Hierarchical information */
3973 3974
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3975 3976
		memory = min(memory, READ_ONCE(mi->memory.max));
		memsw = min(memsw, READ_ONCE(mi->memsw.max));
3977
	}
3978 3979
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3980
	if (do_memsw_account())
3981 3982
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3983

3984
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3985 3986
		unsigned long nr;

3987
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3988
			continue;
3989
		nr = memcg_page_state(memcg, memcg1_stats[i]);
3990
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3991
						(u64)nr * PAGE_SIZE);
3992 3993
	}

3994
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3995 3996
		seq_printf(m, "total_%s %llu\n",
			   vm_event_name(memcg1_events[i]),
3997
			   (u64)memcg_events(memcg, memcg1_events[i]));
3998

3999
	for (i = 0; i < NR_LRU_LISTS; i++)
4000
		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4001 4002
			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			   PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
4003

K
KOSAKI Motohiro 已提交
4004 4005
#ifdef CONFIG_DEBUG_VM
	{
4006 4007
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
4008 4009
		unsigned long anon_cost = 0;
		unsigned long file_cost = 0;
K
KOSAKI Motohiro 已提交
4010

4011
		for_each_online_pgdat(pgdat) {
4012
			mz = memcg->nodeinfo[pgdat->node_id];
K
KOSAKI Motohiro 已提交
4013

4014 4015
			anon_cost += mz->lruvec.anon_cost;
			file_cost += mz->lruvec.file_cost;
4016
		}
4017 4018
		seq_printf(m, "anon_cost %lu\n", anon_cost);
		seq_printf(m, "file_cost %lu\n", file_cost);
K
KOSAKI Motohiro 已提交
4019 4020 4021
	}
#endif

4022 4023 4024
	return 0;
}

4025 4026
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
4027
{
4028
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4029

4030
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4031 4032
}

4033 4034
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
4035
{
4036
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4037

4038
	if (val > 200)
K
KOSAKI Motohiro 已提交
4039 4040
		return -EINVAL;

S
Shakeel Butt 已提交
4041
	if (!mem_cgroup_is_root(memcg))
4042 4043 4044
		memcg->swappiness = val;
	else
		vm_swappiness = val;
4045

K
KOSAKI Motohiro 已提交
4046 4047 4048
	return 0;
}

4049 4050 4051
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
4052
	unsigned long usage;
4053 4054 4055 4056
	int i;

	rcu_read_lock();
	if (!swap)
4057
		t = rcu_dereference(memcg->thresholds.primary);
4058
	else
4059
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4060 4061 4062 4063

	if (!t)
		goto unlock;

4064
	usage = mem_cgroup_usage(memcg, swap);
4065 4066

	/*
4067
	 * current_threshold points to threshold just below or equal to usage.
4068 4069 4070
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4071
	i = t->current_threshold;
4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4095
	t->current_threshold = i - 1;
4096 4097 4098 4099 4100 4101
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4102 4103
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
4104
		if (do_memsw_account())
4105 4106 4107 4108
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4109 4110 4111 4112 4113 4114 4115
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

4116 4117 4118 4119 4120 4121 4122
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
4123 4124
}

4125
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4126 4127 4128
{
	struct mem_cgroup_eventfd_list *ev;

4129 4130
	spin_lock(&memcg_oom_lock);

4131
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4132
		eventfd_signal(ev->eventfd, 1);
4133 4134

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4135 4136 4137
	return 0;
}

4138
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4139
{
K
KAMEZAWA Hiroyuki 已提交
4140 4141
	struct mem_cgroup *iter;

4142
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4143
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4144 4145
}

4146
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4147
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4148
{
4149 4150
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4151 4152
	unsigned long threshold;
	unsigned long usage;
4153
	int i, size, ret;
4154

4155
	ret = page_counter_memparse(args, "-1", &threshold);
4156 4157 4158 4159
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4160

4161
	if (type == _MEM) {
4162
		thresholds = &memcg->thresholds;
4163
		usage = mem_cgroup_usage(memcg, false);
4164
	} else if (type == _MEMSWAP) {
4165
		thresholds = &memcg->memsw_thresholds;
4166
		usage = mem_cgroup_usage(memcg, true);
4167
	} else
4168 4169 4170
		BUG();

	/* Check if a threshold crossed before adding a new one */
4171
	if (thresholds->primary)
4172 4173
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4174
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4175 4176

	/* Allocate memory for new array of thresholds */
4177
	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4178
	if (!new) {
4179 4180 4181
		ret = -ENOMEM;
		goto unlock;
	}
4182
	new->size = size;
4183 4184

	/* Copy thresholds (if any) to new array */
4185 4186 4187
	if (thresholds->primary)
		memcpy(new->entries, thresholds->primary->entries,
		       flex_array_size(new, entries, size - 1));
4188

4189
	/* Add new threshold */
4190 4191
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4192 4193

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4194
	sort(new->entries, size, sizeof(*new->entries),
4195 4196 4197
			compare_thresholds, NULL);

	/* Find current threshold */
4198
	new->current_threshold = -1;
4199
	for (i = 0; i < size; i++) {
4200
		if (new->entries[i].threshold <= usage) {
4201
			/*
4202 4203
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4204 4205
			 * it here.
			 */
4206
			++new->current_threshold;
4207 4208
		} else
			break;
4209 4210
	}

4211 4212 4213 4214 4215
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4216

4217
	/* To be sure that nobody uses thresholds */
4218 4219 4220 4221 4222 4223 4224 4225
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4226
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4227 4228
	struct eventfd_ctx *eventfd, const char *args)
{
4229
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4230 4231
}

4232
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4233 4234
	struct eventfd_ctx *eventfd, const char *args)
{
4235
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4236 4237
}

4238
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4239
	struct eventfd_ctx *eventfd, enum res_type type)
4240
{
4241 4242
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4243
	unsigned long usage;
4244
	int i, j, size, entries;
4245 4246

	mutex_lock(&memcg->thresholds_lock);
4247 4248

	if (type == _MEM) {
4249
		thresholds = &memcg->thresholds;
4250
		usage = mem_cgroup_usage(memcg, false);
4251
	} else if (type == _MEMSWAP) {
4252
		thresholds = &memcg->memsw_thresholds;
4253
		usage = mem_cgroup_usage(memcg, true);
4254
	} else
4255 4256
		BUG();

4257 4258 4259
	if (!thresholds->primary)
		goto unlock;

4260 4261 4262 4263
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4264
	size = entries = 0;
4265 4266
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4267
			size++;
4268 4269
		else
			entries++;
4270 4271
	}

4272
	new = thresholds->spare;
4273

4274 4275 4276 4277
	/* If no items related to eventfd have been cleared, nothing to do */
	if (!entries)
		goto unlock;

4278 4279
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4280 4281
		kfree(new);
		new = NULL;
4282
		goto swap_buffers;
4283 4284
	}

4285
	new->size = size;
4286 4287

	/* Copy thresholds and find current threshold */
4288 4289 4290
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4291 4292
			continue;

4293
		new->entries[j] = thresholds->primary->entries[i];
4294
		if (new->entries[j].threshold <= usage) {
4295
			/*
4296
			 * new->current_threshold will not be used
4297 4298 4299
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4300
			++new->current_threshold;
4301 4302 4303 4304
		}
		j++;
	}

4305
swap_buffers:
4306 4307
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4308

4309
	rcu_assign_pointer(thresholds->primary, new);
4310

4311
	/* To be sure that nobody uses thresholds */
4312
	synchronize_rcu();
4313 4314 4315 4316 4317 4318

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
4319
unlock:
4320 4321
	mutex_unlock(&memcg->thresholds_lock);
}
4322

4323
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4324 4325
	struct eventfd_ctx *eventfd)
{
4326
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4327 4328
}

4329
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4330 4331
	struct eventfd_ctx *eventfd)
{
4332
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4333 4334
}

4335
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4336
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4337 4338 4339 4340 4341 4342 4343
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4344
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4345 4346 4347 4348 4349

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4350
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
4351
		eventfd_signal(eventfd, 1);
4352
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4353 4354 4355 4356

	return 0;
}

4357
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4358
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4359 4360 4361
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4362
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4363

4364
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4365 4366 4367 4368 4369 4370
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4371
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4372 4373
}

4374
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4375
{
4376
	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4377

4378
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4379
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
R
Roman Gushchin 已提交
4380 4381
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4382 4383 4384
	return 0;
}

4385
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4386 4387
	struct cftype *cft, u64 val)
{
4388
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4389 4390

	/* cannot set to root cgroup and only 0 and 1 are allowed */
S
Shakeel Butt 已提交
4391
	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4392 4393
		return -EINVAL;

4394
	memcg->oom_kill_disable = val;
4395
	if (!val)
4396
		memcg_oom_recover(memcg);
4397

4398 4399 4400
	return 0;
}

4401 4402
#ifdef CONFIG_CGROUP_WRITEBACK

4403 4404
#include <trace/events/writeback.h>

T
Tejun Heo 已提交
4405 4406 4407 4408 4409 4410 4411 4412 4413 4414
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

4415 4416 4417 4418 4419
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
4420 4421 4422 4423 4424 4425 4426 4427 4428 4429
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

4430 4431 4432
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
4433 4434
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
4435 4436 4437
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
4438 4439 4440
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
4441
 *
4442 4443 4444 4445 4446
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
4447
 */
4448 4449 4450
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
4451 4452 4453 4454
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

4455
	cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
4456

4457 4458 4459 4460
	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
			memcg_page_state(memcg, NR_ACTIVE_FILE);
4461

4462
	*pheadroom = PAGE_COUNTER_MAX;
4463
	while ((parent = parent_mem_cgroup(memcg))) {
4464
		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4465
					    READ_ONCE(memcg->memory.high));
4466 4467
		unsigned long used = page_counter_read(&memcg->memory);

4468
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4469 4470 4471 4472
		memcg = parent;
	}
}

4473 4474 4475 4476
/*
 * Foreign dirty flushing
 *
 * There's an inherent mismatch between memcg and writeback.  The former
I
Ingo Molnar 已提交
4477
 * tracks ownership per-page while the latter per-inode.  This was a
4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491
 * deliberate design decision because honoring per-page ownership in the
 * writeback path is complicated, may lead to higher CPU and IO overheads
 * and deemed unnecessary given that write-sharing an inode across
 * different cgroups isn't a common use-case.
 *
 * Combined with inode majority-writer ownership switching, this works well
 * enough in most cases but there are some pathological cases.  For
 * example, let's say there are two cgroups A and B which keep writing to
 * different but confined parts of the same inode.  B owns the inode and
 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
 * triggering background writeback.  A will be slowed down without a way to
 * make writeback of the dirty pages happen.
 *
I
Ingo Molnar 已提交
4492
 * Conditions like the above can lead to a cgroup getting repeatedly and
4493
 * severely throttled after making some progress after each
I
Ingo Molnar 已提交
4494
 * dirty_expire_interval while the underlying IO device is almost
4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
 * completely idle.
 *
 * Solving this problem completely requires matching the ownership tracking
 * granularities between memcg and writeback in either direction.  However,
 * the more egregious behaviors can be avoided by simply remembering the
 * most recent foreign dirtying events and initiating remote flushes on
 * them when local writeback isn't enough to keep the memory clean enough.
 *
 * The following two functions implement such mechanism.  When a foreign
 * page - a page whose memcg and writeback ownerships don't match - is
 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
 * decides that the memcg needs to sleep due to high dirty ratio, it calls
 * mem_cgroup_flush_foreign() which queues writeback on the recorded
 * foreign bdi_writebacks which haven't expired.  Both the numbers of
 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
 * limited to MEMCG_CGWB_FRN_CNT.
 *
 * The mechanism only remembers IDs and doesn't hold any object references.
 * As being wrong occasionally doesn't matter, updates and accesses to the
 * records are lockless and racy.
 */
void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
					     struct bdi_writeback *wb)
{
4520
	struct mem_cgroup *memcg = page_memcg(page);
4521 4522 4523 4524 4525 4526
	struct memcg_cgwb_frn *frn;
	u64 now = get_jiffies_64();
	u64 oldest_at = now;
	int oldest = -1;
	int i;

4527 4528
	trace_track_foreign_dirty(page, wb);

4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588
	/*
	 * Pick the slot to use.  If there is already a slot for @wb, keep
	 * using it.  If not replace the oldest one which isn't being
	 * written out.
	 */
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		frn = &memcg->cgwb_frn[i];
		if (frn->bdi_id == wb->bdi->id &&
		    frn->memcg_id == wb->memcg_css->id)
			break;
		if (time_before64(frn->at, oldest_at) &&
		    atomic_read(&frn->done.cnt) == 1) {
			oldest = i;
			oldest_at = frn->at;
		}
	}

	if (i < MEMCG_CGWB_FRN_CNT) {
		/*
		 * Re-using an existing one.  Update timestamp lazily to
		 * avoid making the cacheline hot.  We want them to be
		 * reasonably up-to-date and significantly shorter than
		 * dirty_expire_interval as that's what expires the record.
		 * Use the shorter of 1s and dirty_expire_interval / 8.
		 */
		unsigned long update_intv =
			min_t(unsigned long, HZ,
			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);

		if (time_before64(frn->at, now - update_intv))
			frn->at = now;
	} else if (oldest >= 0) {
		/* replace the oldest free one */
		frn = &memcg->cgwb_frn[oldest];
		frn->bdi_id = wb->bdi->id;
		frn->memcg_id = wb->memcg_css->id;
		frn->at = now;
	}
}

/* issue foreign writeback flushes for recorded foreign dirtying events */
void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
	u64 now = jiffies_64;
	int i;

	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];

		/*
		 * If the record is older than dirty_expire_interval,
		 * writeback on it has already started.  No need to kick it
		 * off again.  Also, don't start a new one if there's
		 * already one in flight.
		 */
		if (time_after64(frn->at, now - intv) &&
		    atomic_read(&frn->done.cnt) == 1) {
			frn->at = 0;
4589
			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4590
			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4591 4592 4593 4594 4595 4596
					       WB_REASON_FOREIGN_FLUSH,
					       &frn->done);
		}
	}
}

T
Tejun Heo 已提交
4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

4608 4609 4610 4611
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

4612 4613
#endif	/* CONFIG_CGROUP_WRITEBACK */

4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4627 4628 4629 4630 4631
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4632
static void memcg_event_remove(struct work_struct *work)
4633
{
4634 4635
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4636
	struct mem_cgroup *memcg = event->memcg;
4637 4638 4639

	remove_wait_queue(event->wqh, &event->wait);

4640
	event->unregister_event(memcg, event->eventfd);
4641 4642 4643 4644 4645 4646

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4647
	css_put(&memcg->css);
4648 4649 4650
}

/*
4651
 * Gets called on EPOLLHUP on eventfd when user closes it.
4652 4653 4654
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4655
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4656
			    int sync, void *key)
4657
{
4658 4659
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4660
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
4661
	__poll_t flags = key_to_poll(key);
4662

4663
	if (flags & EPOLLHUP) {
4664 4665 4666 4667 4668 4669 4670 4671 4672
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4673
		spin_lock(&memcg->event_list_lock);
4674 4675 4676 4677 4678 4679 4680 4681
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4682
		spin_unlock(&memcg->event_list_lock);
4683 4684 4685 4686 4687
	}

	return 0;
}

4688
static void memcg_event_ptable_queue_proc(struct file *file,
4689 4690
		wait_queue_head_t *wqh, poll_table *pt)
{
4691 4692
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4693 4694 4695 4696 4697 4698

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4699 4700
 * DO NOT USE IN NEW FILES.
 *
4701 4702 4703 4704 4705
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4706 4707
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4708
{
4709
	struct cgroup_subsys_state *css = of_css(of);
4710
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4711
	struct mem_cgroup_event *event;
4712 4713 4714 4715
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4716
	const char *name;
4717 4718 4719
	char *endp;
	int ret;

4720 4721 4722
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4723 4724
	if (*endp != ' ')
		return -EINVAL;
4725
	buf = endp + 1;
4726

4727
	cfd = simple_strtoul(buf, &endp, 10);
4728 4729
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4730
	buf = endp + 1;
4731 4732 4733 4734 4735

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4736
	event->memcg = memcg;
4737
	INIT_LIST_HEAD(&event->list);
4738 4739 4740
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
4762
	ret = file_permission(cfile.file, MAY_READ);
4763 4764 4765
	if (ret < 0)
		goto out_put_cfile;

4766 4767 4768 4769 4770
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4771 4772
	 *
	 * DO NOT ADD NEW FILES.
4773
	 */
A
Al Viro 已提交
4774
	name = cfile.file->f_path.dentry->d_name.name;
4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4786 4787
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4788 4789 4790 4791 4792
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4793
	/*
4794 4795 4796
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4797
	 */
A
Al Viro 已提交
4798
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4799
					       &memory_cgrp_subsys);
4800
	ret = -EINVAL;
4801
	if (IS_ERR(cfile_css))
4802
		goto out_put_cfile;
4803 4804
	if (cfile_css != css) {
		css_put(cfile_css);
4805
		goto out_put_cfile;
4806
	}
4807

4808
	ret = event->register_event(memcg, event->eventfd, buf);
4809 4810 4811
	if (ret)
		goto out_put_css;

4812
	vfs_poll(efile.file, &event->pt);
4813

4814
	spin_lock_irq(&memcg->event_list_lock);
4815
	list_add(&event->list, &memcg->event_list);
4816
	spin_unlock_irq(&memcg->event_list_lock);
4817 4818 4819 4820

	fdput(cfile);
	fdput(efile);

4821
	return nbytes;
4822 4823

out_put_css:
4824
	css_put(css);
4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4837
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4838
	{
4839
		.name = "usage_in_bytes",
4840
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4841
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4842
	},
4843 4844
	{
		.name = "max_usage_in_bytes",
4845
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4846
		.write = mem_cgroup_reset,
4847
		.read_u64 = mem_cgroup_read_u64,
4848
	},
B
Balbir Singh 已提交
4849
	{
4850
		.name = "limit_in_bytes",
4851
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4852
		.write = mem_cgroup_write,
4853
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4854
	},
4855 4856 4857
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4858
		.write = mem_cgroup_write,
4859
		.read_u64 = mem_cgroup_read_u64,
4860
	},
B
Balbir Singh 已提交
4861 4862
	{
		.name = "failcnt",
4863
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4864
		.write = mem_cgroup_reset,
4865
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4866
	},
4867 4868
	{
		.name = "stat",
4869
		.seq_show = memcg_stat_show,
4870
	},
4871 4872
	{
		.name = "force_empty",
4873
		.write = mem_cgroup_force_empty_write,
4874
	},
4875 4876 4877 4878 4879
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4880
	{
4881
		.name = "cgroup.event_control",		/* XXX: for compat */
4882
		.write = memcg_write_event_control,
4883
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4884
	},
K
KOSAKI Motohiro 已提交
4885 4886 4887 4888 4889
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4890 4891 4892 4893 4894
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4895 4896
	{
		.name = "oom_control",
4897
		.seq_show = mem_cgroup_oom_control_read,
4898
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4899 4900
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4901 4902 4903
	{
		.name = "pressure_level",
	},
4904 4905 4906
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4907
		.seq_show = memcg_numa_stat_show,
4908 4909
	},
#endif
4910 4911 4912
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4913
		.write = mem_cgroup_write,
4914
		.read_u64 = mem_cgroup_read_u64,
4915 4916 4917 4918
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4919
		.read_u64 = mem_cgroup_read_u64,
4920 4921 4922 4923
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4924
		.write = mem_cgroup_reset,
4925
		.read_u64 = mem_cgroup_read_u64,
4926 4927 4928 4929
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4930
		.write = mem_cgroup_reset,
4931
		.read_u64 = mem_cgroup_read_u64,
4932
	},
4933 4934
#if defined(CONFIG_MEMCG_KMEM) && \
	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4935 4936
	{
		.name = "kmem.slabinfo",
4937
		.seq_show = memcg_slab_show,
4938 4939
	},
#endif
V
Vladimir Davydov 已提交
4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4963
	{ },	/* terminate */
4964
};
4965

4966 4967 4968 4969 4970 4971 4972 4973
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
4974
 * However, there usually are many references to the offline CSS after
4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

4992 4993 4994 4995 4996 4997 4998 4999
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

5000 5001
static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
						  unsigned int n)
5002
{
5003
	refcount_add(n, &memcg->id.ref);
5004 5005
}

5006
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5007
{
5008
	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5009
		mem_cgroup_id_remove(memcg);
5010 5011 5012 5013 5014 5015

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

5016 5017 5018 5019 5020
static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

5033
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5034 5035
{
	struct mem_cgroup_per_node *pn;
5036
	int tmp = node;
5037 5038 5039 5040 5041 5042 5043 5044
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5045 5046
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5047
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5048 5049
	if (!pn)
		return 1;
5050

5051 5052 5053
	pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
						   GFP_KERNEL_ACCOUNT);
	if (!pn->lruvec_stats_percpu) {
5054 5055 5056 5057
		kfree(pn);
		return 1;
	}

5058 5059 5060 5061 5062
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

5063
	memcg->nodeinfo[node] = pn;
5064 5065 5066
	return 0;
}

5067
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5068
{
5069 5070
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
5071 5072 5073
	if (!pn)
		return;

5074
	free_percpu(pn->lruvec_stats_percpu);
5075
	kfree(pn);
5076 5077
}

5078
static void __mem_cgroup_free(struct mem_cgroup *memcg)
5079
{
5080
	int node;
5081

5082
	for_each_node(node)
5083
		free_mem_cgroup_per_node_info(memcg, node);
5084
	free_percpu(memcg->vmstats_percpu);
5085
	kfree(memcg);
5086
}
5087

5088 5089 5090 5091 5092 5093
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
	__mem_cgroup_free(memcg);
}

5094
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
5095
{
5096
	struct mem_cgroup *memcg;
5097
	unsigned int size;
5098
	int node;
5099
	int __maybe_unused i;
5100
	long error = -ENOMEM;
B
Balbir Singh 已提交
5101

5102 5103 5104 5105
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
5106
	if (!memcg)
5107
		return ERR_PTR(error);
5108

5109 5110 5111
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
5112 5113
	if (memcg->id.id < 0) {
		error = memcg->id.id;
5114
		goto fail;
5115
	}
5116

5117 5118
	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
						 GFP_KERNEL_ACCOUNT);
5119
	if (!memcg->vmstats_percpu)
5120
		goto fail;
5121

B
Bob Liu 已提交
5122
	for_each_node(node)
5123
		if (alloc_mem_cgroup_per_node_info(memcg, node))
5124
			goto fail;
5125

5126 5127
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
5128

5129
	INIT_WORK(&memcg->high_work, high_work_func);
5130 5131 5132
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5133
	vmpressure_init(&memcg->vmpressure);
5134 5135
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
5136
	memcg->socket_pressure = jiffies;
5137
#ifdef CONFIG_MEMCG_KMEM
V
Vladimir Davydov 已提交
5138
	memcg->kmemcg_id = -1;
R
Roman Gushchin 已提交
5139
	INIT_LIST_HEAD(&memcg->objcg_list);
V
Vladimir Davydov 已提交
5140
#endif
5141 5142
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
5143 5144 5145
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		memcg->cgwb_frn[i].done =
			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5146 5147 5148 5149 5150
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
	memcg->deferred_split_queue.split_queue_len = 0;
5151
#endif
5152
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5153 5154
	return memcg;
fail:
5155
	mem_cgroup_id_remove(memcg);
5156
	__mem_cgroup_free(memcg);
5157
	return ERR_PTR(error);
5158 5159
}

5160 5161
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5162
{
5163
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5164
	struct mem_cgroup *memcg, *old_memcg;
5165
	long error = -ENOMEM;
5166

5167
	old_memcg = set_active_memcg(parent);
5168
	memcg = mem_cgroup_alloc();
5169
	set_active_memcg(old_memcg);
5170 5171
	if (IS_ERR(memcg))
		return ERR_CAST(memcg);
5172

5173
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5174
	memcg->soft_limit = PAGE_COUNTER_MAX;
5175
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5176 5177 5178
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
5179

5180
		page_counter_init(&memcg->memory, &parent->memory);
5181
		page_counter_init(&memcg->swap, &parent->swap);
5182
		page_counter_init(&memcg->kmem, &parent->kmem);
5183
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5184
	} else {
5185 5186 5187 5188
		page_counter_init(&memcg->memory, NULL);
		page_counter_init(&memcg->swap, NULL);
		page_counter_init(&memcg->kmem, NULL);
		page_counter_init(&memcg->tcpmem, NULL);
5189

5190 5191 5192 5193
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

5194
	/* The following stuff does not apply to the root */
5195
	error = memcg_online_kmem(memcg);
5196 5197
	if (error)
		goto fail;
5198

5199
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5200
		static_branch_inc(&memcg_sockets_enabled_key);
5201

5202 5203
	return &memcg->css;
fail:
5204
	mem_cgroup_id_remove(memcg);
5205
	mem_cgroup_free(memcg);
5206
	return ERR_PTR(error);
5207 5208
}

5209
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5210
{
5211 5212
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5213
	/*
5214
	 * A memcg must be visible for expand_shrinker_info()
5215 5216 5217
	 * by the time the maps are allocated. So, we allocate maps
	 * here, when for_each_mem_cgroup() can't skip it.
	 */
5218
	if (alloc_shrinker_info(memcg)) {
5219 5220 5221 5222
		mem_cgroup_id_remove(memcg);
		return -ENOMEM;
	}

5223
	/* Online state pins memcg ID, memcg ID pins CSS */
5224
	refcount_set(&memcg->id.ref, 1);
5225
	css_get(css);
5226 5227 5228 5229

	if (unlikely(mem_cgroup_is_root(memcg)))
		queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
				   2UL*HZ);
5230
	return 0;
B
Balbir Singh 已提交
5231 5232
}

5233
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5234
{
5235
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5236
	struct mem_cgroup_event *event, *tmp;
5237 5238 5239 5240 5241 5242

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
5243
	spin_lock_irq(&memcg->event_list_lock);
5244
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5245 5246 5247
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
5248
	spin_unlock_irq(&memcg->event_list_lock);
5249

R
Roman Gushchin 已提交
5250
	page_counter_set_min(&memcg->memory, 0);
5251
	page_counter_set_low(&memcg->memory, 0);
5252

5253
	memcg_offline_kmem(memcg);
5254
	reparent_shrinker_deferred(memcg);
5255
	wb_memcg_offline(memcg);
5256

5257 5258
	drain_all_stock(memcg);

5259
	mem_cgroup_id_put(memcg);
5260 5261
}

5262 5263 5264 5265 5266 5267 5268
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

5269
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
5270
{
5271
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5272
	int __maybe_unused i;
5273

5274 5275 5276 5277
#ifdef CONFIG_CGROUP_WRITEBACK
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
#endif
5278
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5279
		static_branch_dec(&memcg_sockets_enabled_key);
5280

5281
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
5282
		static_branch_dec(&memcg_sockets_enabled_key);
5283

5284 5285 5286
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
5287
	free_shrinker_info(memcg);
5288
	memcg_free_kmem(memcg);
5289
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
5290 5291
}

5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5309 5310 5311 5312
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
R
Roman Gushchin 已提交
5313
	page_counter_set_min(&memcg->memory, 0);
5314
	page_counter_set_low(&memcg->memory, 0);
5315
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5316
	memcg->soft_limit = PAGE_COUNTER_MAX;
5317
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5318
	memcg_wb_domain_size_changed(memcg);
5319 5320
}

5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335
void mem_cgroup_flush_stats(void)
{
	if (!spin_trylock(&stats_flush_lock))
		return;

	cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
	spin_unlock(&stats_flush_lock);
}

static void flush_memcg_stats_dwork(struct work_struct *w)
{
	mem_cgroup_flush_stats();
	queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 2UL*HZ);
}

5336 5337 5338 5339 5340 5341
static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	struct memcg_vmstats_percpu *statc;
	long delta, v;
5342
	int i, nid;
5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389

	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);

	for (i = 0; i < MEMCG_NR_STAT; i++) {
		/*
		 * Collect the aggregated propagation counts of groups
		 * below us. We're in a per-cpu loop here and this is
		 * a global counter, so the first cycle will get them.
		 */
		delta = memcg->vmstats.state_pending[i];
		if (delta)
			memcg->vmstats.state_pending[i] = 0;

		/* Add CPU changes on this level since the last flush */
		v = READ_ONCE(statc->state[i]);
		if (v != statc->state_prev[i]) {
			delta += v - statc->state_prev[i];
			statc->state_prev[i] = v;
		}

		if (!delta)
			continue;

		/* Aggregate counts on this level and propagate upwards */
		memcg->vmstats.state[i] += delta;
		if (parent)
			parent->vmstats.state_pending[i] += delta;
	}

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
		delta = memcg->vmstats.events_pending[i];
		if (delta)
			memcg->vmstats.events_pending[i] = 0;

		v = READ_ONCE(statc->events[i]);
		if (v != statc->events_prev[i]) {
			delta += v - statc->events_prev[i];
			statc->events_prev[i] = v;
		}

		if (!delta)
			continue;

		memcg->vmstats.events[i] += delta;
		if (parent)
			parent->vmstats.events_pending[i] += delta;
	}
5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419

	for_each_node_state(nid, N_MEMORY) {
		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
		struct mem_cgroup_per_node *ppn = NULL;
		struct lruvec_stats_percpu *lstatc;

		if (parent)
			ppn = parent->nodeinfo[nid];

		lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);

		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
			delta = pn->lruvec_stats.state_pending[i];
			if (delta)
				pn->lruvec_stats.state_pending[i] = 0;

			v = READ_ONCE(lstatc->state[i]);
			if (v != lstatc->state_prev[i]) {
				delta += v - lstatc->state_prev[i];
				lstatc->state_prev[i] = v;
			}

			if (!delta)
				continue;

			pn->lruvec_stats.state[i] += delta;
			if (ppn)
				ppn->lruvec_stats.state_pending[i] += delta;
		}
	}
5420 5421
}

5422
#ifdef CONFIG_MMU
5423
/* Handlers for move charge at task migration. */
5424
static int mem_cgroup_do_precharge(unsigned long count)
5425
{
5426
	int ret;
5427

5428 5429
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5430
	if (!ret) {
5431 5432 5433
		mc.precharge += count;
		return ret;
	}
5434

5435
	/* Try charges one by one with reclaim, but do not retry */
5436
	while (count--) {
5437
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5438 5439
		if (ret)
			return ret;
5440
		mc.precharge++;
5441
		cond_resched();
5442
	}
5443
	return 0;
5444 5445 5446 5447
}

union mc_target {
	struct page	*page;
5448
	swp_entry_t	ent;
5449 5450 5451
};

enum mc_target_type {
5452
	MC_TARGET_NONE = 0,
5453
	MC_TARGET_PAGE,
5454
	MC_TARGET_SWAP,
5455
	MC_TARGET_DEVICE,
5456 5457
};

D
Daisuke Nishimura 已提交
5458 5459
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5460
{
5461
	struct page *page = vm_normal_page(vma, addr, ptent);
5462

D
Daisuke Nishimura 已提交
5463 5464 5465
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
5466
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5467
			return NULL;
5468 5469 5470 5471
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
5472 5473 5474 5475 5476 5477
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5478
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
5479
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5480
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
5481 5482 5483 5484
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

5485
	if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5486
		return NULL;
5487 5488 5489 5490 5491 5492 5493

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
5494
		page = pfn_swap_entry_to_page(ent);
5495 5496 5497 5498 5499 5500 5501 5502 5503
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

5504 5505 5506
	if (non_swap_entry(ent))
		return NULL;

5507 5508 5509 5510
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5511
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5512
	entry->val = ent.val;
D
Daisuke Nishimura 已提交
5513 5514 5515

	return page;
}
5516 5517
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5518
			pte_t ptent, swp_entry_t *entry)
5519 5520 5521 5522
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5523

5524 5525 5526 5527 5528
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	if (!vma->vm_file) /* anonymous vma */
		return NULL;
5529
	if (!(mc.flags & MOVE_FILE))
5530 5531 5532
		return NULL;

	/* page is moved even if it's not RSS of this task(page-faulted). */
5533
	/* shmem/tmpfs may report page out on swap: account for that too. */
5534 5535
	return find_get_incore_page(vma->vm_file->f_mapping,
			linear_page_index(vma, addr));
5536 5537
}

5538 5539 5540
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
5541
 * @compound: charge the page as compound or small page
5542 5543 5544
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
5545
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5546 5547 5548 5549 5550
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
5551
				   bool compound,
5552 5553 5554
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
5555 5556
	struct lruvec *from_vec, *to_vec;
	struct pglist_data *pgdat;
5557
	unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5558 5559 5560 5561
	int ret;

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
5562
	VM_BUG_ON(compound && !PageTransHuge(page));
5563 5564

	/*
5565
	 * Prevent mem_cgroup_migrate() from looking at
5566
	 * page's memory cgroup of its source page while we change it.
5567
	 */
5568
	ret = -EBUSY;
5569 5570 5571 5572
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
5573
	if (page_memcg(page) != from)
5574 5575
		goto out_unlock;

5576
	pgdat = page_pgdat(page);
5577 5578
	from_vec = mem_cgroup_lruvec(from, pgdat);
	to_vec = mem_cgroup_lruvec(to, pgdat);
5579

5580
	lock_page_memcg(page);
5581

5582 5583 5584 5585
	if (PageAnon(page)) {
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5586
			if (PageTransHuge(page)) {
5587 5588 5589 5590
				__mod_lruvec_state(from_vec, NR_ANON_THPS,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_ANON_THPS,
						   nr_pages);
5591
			}
5592 5593
		}
	} else {
5594 5595 5596 5597 5598 5599 5600 5601
		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);

		if (PageSwapBacked(page)) {
			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
		}

5602 5603 5604 5605
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
		}
5606

5607 5608
		if (PageDirty(page)) {
			struct address_space *mapping = page_mapping(page);
5609

5610
			if (mapping_can_writeback(mapping)) {
5611 5612 5613 5614 5615
				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
						   nr_pages);
			}
5616 5617 5618
		}
	}

5619
	if (PageWriteback(page)) {
5620 5621
		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5622 5623 5624
	}

	/*
5625 5626
	 * All state has been migrated, let's switch to the new memcg.
	 *
5627
	 * It is safe to change page's memcg here because the page
5628 5629
	 * is referenced, charged, isolated, and locked: we can't race
	 * with (un)charging, migration, LRU putback, or anything else
5630
	 * that would rely on a stable page's memory cgroup.
5631 5632
	 *
	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5633
	 * to save space. As soon as we switch page's memory cgroup to a
5634 5635
	 * new memcg that isn't locked, the above state can change
	 * concurrently again. Make sure we're truly done with it.
5636
	 */
5637
	smp_mb();
5638

5639 5640 5641
	css_get(&to->css);
	css_put(&from->css);

5642
	page->memcg_data = (unsigned long)to;
5643

5644
	__unlock_page_memcg(from);
5645 5646 5647 5648

	ret = 0;

	local_irq_disable();
5649
	mem_cgroup_charge_statistics(to, nr_pages);
5650
	memcg_check_events(to, page);
5651
	mem_cgroup_charge_statistics(from, -nr_pages);
5652 5653 5654 5655 5656 5657 5658 5659
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5675 5676
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
 *     (so ZONE_DEVICE page and thus not on the lru).
5677 5678 5679
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
5680 5681
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5682 5683 5684 5685
 *
 * Called with pte lock held.
 */

5686
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5687 5688 5689
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
5690
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5691 5692 5693 5694 5695
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
5696
		page = mc_handle_swap_pte(vma, ptent, &ent);
5697
	else if (pte_none(ptent))
5698
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5699 5700

	if (!page && !ent.val)
5701
		return ret;
5702 5703
	if (page) {
		/*
5704
		 * Do only loose check w/o serialization.
5705
		 * mem_cgroup_move_account() checks the page is valid or
5706
		 * not under LRU exclusion.
5707
		 */
5708
		if (page_memcg(page) == mc.from) {
5709
			ret = MC_TARGET_PAGE;
5710
			if (is_device_private_page(page))
5711
				ret = MC_TARGET_DEVICE;
5712 5713 5714 5715 5716 5717
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
5718 5719 5720 5721 5722
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
5723
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5724 5725 5726
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5727 5728 5729 5730
	}
	return ret;
}

5731 5732
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
5733 5734
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
5735 5736 5737 5738 5739 5740 5741 5742
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

5743 5744 5745 5746 5747
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
5748
	page = pmd_page(pmd);
5749
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5750
	if (!(mc.flags & MOVE_ANON))
5751
		return ret;
5752
	if (page_memcg(page) == mc.from) {
5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5769 5770 5771 5772
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
5773
	struct vm_area_struct *vma = walk->vma;
5774 5775 5776
	pte_t *pte;
	spinlock_t *ptl;

5777 5778
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5779 5780
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5781 5782
		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
		 * this might change.
5783
		 */
5784 5785
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5786
		spin_unlock(ptl);
5787
		return 0;
5788
	}
5789

5790 5791
	if (pmd_trans_unstable(pmd))
		return 0;
5792 5793
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5794
		if (get_mctgt_type(vma, addr, *pte, NULL))
5795 5796 5797 5798
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5799 5800 5801
	return 0;
}

5802 5803 5804 5805
static const struct mm_walk_ops precharge_walk_ops = {
	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
};

5806 5807 5808 5809
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

5810
	mmap_read_lock(mm);
5811
	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5812
	mmap_read_unlock(mm);
5813 5814 5815 5816 5817 5818 5819 5820 5821

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5822 5823 5824 5825 5826
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5827 5828
}

5829 5830
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5831
{
5832 5833 5834
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5835
	/* we must uncharge all the leftover precharges from mc.to */
5836
	if (mc.precharge) {
5837
		cancel_charge(mc.to, mc.precharge);
5838 5839 5840 5841 5842 5843 5844
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5845
		cancel_charge(mc.from, mc.moved_charge);
5846
		mc.moved_charge = 0;
5847
	}
5848 5849 5850
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5851
		if (!mem_cgroup_is_root(mc.from))
5852
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5853

5854 5855
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

5856
		/*
5857 5858
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5859
		 */
5860
		if (!mem_cgroup_is_root(mc.to))
5861 5862
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5863 5864
		mc.moved_swap = 0;
	}
5865 5866 5867 5868 5869 5870 5871
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
5872 5873
	struct mm_struct *mm = mc.mm;

5874 5875 5876 5877 5878 5879
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5880
	spin_lock(&mc.lock);
5881 5882
	mc.from = NULL;
	mc.to = NULL;
5883
	mc.mm = NULL;
5884
	spin_unlock(&mc.lock);
5885 5886

	mmput(mm);
5887 5888
}

5889
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5890
{
5891
	struct cgroup_subsys_state *css;
5892
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5893
	struct mem_cgroup *from;
5894
	struct task_struct *leader, *p;
5895
	struct mm_struct *mm;
5896
	unsigned long move_flags;
5897
	int ret = 0;
5898

5899 5900
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5901 5902
		return 0;

5903 5904 5905 5906 5907 5908 5909
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
5910
	cgroup_taskset_for_each_leader(leader, css, tset) {
5911 5912
		WARN_ON_ONCE(p);
		p = leader;
5913
		memcg = mem_cgroup_from_css(css);
5914 5915 5916 5917
	}
	if (!p)
		return 0;

5918
	/*
I
Ingo Molnar 已提交
5919
	 * We are now committed to this value whatever it is. Changes in this
5920 5921 5922 5923 5924 5925 5926
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
5943
		mc.mm = mm;
5944 5945 5946 5947 5948 5949 5950 5951 5952
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
5953 5954
	} else {
		mmput(mm);
5955 5956 5957 5958
	}
	return ret;
}

5959
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5960
{
5961 5962
	if (mc.to)
		mem_cgroup_clear_mc();
5963 5964
}

5965 5966 5967
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5968
{
5969
	int ret = 0;
5970
	struct vm_area_struct *vma = walk->vma;
5971 5972
	pte_t *pte;
	spinlock_t *ptl;
5973 5974 5975
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5976

5977 5978
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5979
		if (mc.precharge < HPAGE_PMD_NR) {
5980
			spin_unlock(ptl);
5981 5982 5983 5984 5985 5986
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
5987
				if (!mem_cgroup_move_account(page, true,
5988
							     mc.from, mc.to)) {
5989 5990 5991 5992 5993 5994
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
5995 5996 5997 5998 5999 6000 6001 6002
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
6003
		}
6004
		spin_unlock(ptl);
6005
		return 0;
6006 6007
	}

6008 6009
	if (pmd_trans_unstable(pmd))
		return 0;
6010 6011 6012 6013
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6014
		bool device = false;
6015
		swp_entry_t ent;
6016 6017 6018 6019

		if (!mc.precharge)
			break;

6020
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6021 6022
		case MC_TARGET_DEVICE:
			device = true;
J
Joe Perches 已提交
6023
			fallthrough;
6024 6025
		case MC_TARGET_PAGE:
			page = target.page;
6026 6027 6028 6029 6030 6031 6032 6033
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
6034
			if (!device && isolate_lru_page(page))
6035
				goto put;
6036 6037
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
6038
				mc.precharge--;
6039 6040
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6041
			}
6042 6043
			if (!device)
				putback_lru_page(page);
6044
put:			/* get_mctgt_type() gets the page */
6045 6046
			put_page(page);
			break;
6047 6048
		case MC_TARGET_SWAP:
			ent = target.ent;
6049
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6050
				mc.precharge--;
6051 6052
				mem_cgroup_id_get_many(mc.to, 1);
				/* we fixup other refcnts and charges later. */
6053 6054
				mc.moved_swap++;
			}
6055
			break;
6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6070
		ret = mem_cgroup_do_precharge(1);
6071 6072 6073 6074 6075 6076 6077
		if (!ret)
			goto retry;
	}

	return ret;
}

6078 6079 6080 6081
static const struct mm_walk_ops charge_walk_ops = {
	.pmd_entry	= mem_cgroup_move_charge_pte_range,
};

6082
static void mem_cgroup_move_charge(void)
6083 6084
{
	lru_add_drain_all();
6085
	/*
6086 6087 6088
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
6089 6090 6091
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
6092
retry:
6093
	if (unlikely(!mmap_read_trylock(mc.mm))) {
6094
		/*
6095
		 * Someone who are holding the mmap_lock might be waiting in
6096 6097 6098 6099 6100 6101 6102 6103 6104
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6105 6106 6107 6108
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
6109 6110
	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
			NULL);
6111

6112
	mmap_read_unlock(mc.mm);
6113
	atomic_dec(&mc.from->moving_account);
6114 6115
}

6116
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
6117
{
6118 6119
	if (mc.to) {
		mem_cgroup_move_charge();
6120
		mem_cgroup_clear_mc();
6121
	}
B
Balbir Singh 已提交
6122
}
6123
#else	/* !CONFIG_MMU */
6124
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6125 6126 6127
{
	return 0;
}
6128
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6129 6130
{
}
6131
static void mem_cgroup_move_task(void)
6132 6133 6134
{
}
#endif
B
Balbir Singh 已提交
6135

6136 6137 6138 6139 6140 6141 6142 6143 6144 6145
static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
{
	if (value == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);

	return 0;
}

6146 6147 6148
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
6149 6150 6151
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6152 6153
}

R
Roman Gushchin 已提交
6154 6155
static int memory_min_show(struct seq_file *m, void *v)
{
6156 6157
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
R
Roman Gushchin 已提交
6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

6177 6178
static int memory_low_show(struct seq_file *m, void *v)
{
6179 6180
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6181 6182 6183 6184 6185 6186 6187 6188 6189 6190
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
6191
	err = page_counter_memparse(buf, "max", &low);
6192 6193 6194
	if (err)
		return err;

6195
	page_counter_set_low(&memcg->memory, low);
6196 6197 6198 6199 6200 6201

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
6202 6203
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6204 6205 6206 6207 6208 6209
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6210
	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6211
	bool drained = false;
6212 6213 6214 6215
	unsigned long high;
	int err;

	buf = strstrip(buf);
6216
	err = page_counter_memparse(buf, "max", &high);
6217 6218 6219
	if (err)
		return err;

6220 6221
	page_counter_set_high(&memcg->memory, high);

6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243
	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);
		unsigned long reclaimed;

		if (nr_pages <= high)
			break;

		if (signal_pending(current))
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
							 GFP_KERNEL, true);

		if (!reclaimed && !nr_retries--)
			break;
	}
6244

6245
	memcg_wb_domain_size_changed(memcg);
6246 6247 6248 6249 6250
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
6251 6252
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6253 6254 6255 6256 6257 6258
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6259
	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6260
	bool drained = false;
6261 6262 6263 6264
	unsigned long max;
	int err;

	buf = strstrip(buf);
6265
	err = page_counter_memparse(buf, "max", &max);
6266 6267 6268
	if (err)
		return err;

6269
	xchg(&memcg->memory.max, max);
6270 6271 6272 6273 6274 6275 6276

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

6277
		if (signal_pending(current))
6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

6293
		memcg_memory_event(memcg, MEMCG_OOM);
6294 6295 6296
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
6297

6298
	memcg_wb_domain_size_changed(memcg);
6299 6300 6301
	return nbytes;
}

6302 6303 6304 6305 6306 6307 6308 6309 6310 6311
static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
{
	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&events[MEMCG_OOM_KILL]));
}

6312 6313
static int memory_events_show(struct seq_file *m, void *v)
{
6314
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6315

6316 6317 6318 6319 6320 6321 6322
	__memory_events_show(m, memcg->memory_events);
	return 0;
}

static int memory_events_local_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6323

6324
	__memory_events_show(m, memcg->memory_events_local);
6325 6326 6327
	return 0;
}

6328 6329
static int memory_stat_show(struct seq_file *m, void *v)
{
6330
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6331
	char *buf;
6332

6333 6334 6335 6336 6337
	buf = memory_stat_format(memcg);
	if (!buf)
		return -ENOMEM;
	seq_puts(m, buf);
	kfree(buf);
6338 6339 6340
	return 0;
}

6341
#ifdef CONFIG_NUMA
6342 6343 6344 6345 6346 6347
static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
						     int item)
{
	return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
}

6348 6349 6350 6351 6352
static int memory_numa_stat_show(struct seq_file *m, void *v)
{
	int i;
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);

6353 6354
	cgroup_rstat_flush(memcg->css.cgroup);

6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366
	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
		int nid;

		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
			continue;

		seq_printf(m, "%s", memory_stats[i].name);
		for_each_node_state(nid, N_MEMORY) {
			u64 size;
			struct lruvec *lruvec;

			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6367 6368
			size = lruvec_page_state_output(lruvec,
							memory_stats[i].idx);
6369 6370 6371 6372 6373 6374 6375 6376 6377
			seq_printf(m, " N%d=%llu", nid, size);
		}
		seq_putc(m, '\n');
	}

	return 0;
}
#endif

6378 6379
static int memory_oom_group_show(struct seq_file *m, void *v)
{
6380
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408

	seq_printf(m, "%d\n", memcg->oom_group);

	return 0;
}

static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
				      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	int ret, oom_group;

	buf = strstrip(buf);
	if (!buf)
		return -EINVAL;

	ret = kstrtoint(buf, 0, &oom_group);
	if (ret)
		return ret;

	if (oom_group != 0 && oom_group != 1)
		return -EINVAL;

	memcg->oom_group = oom_group;

	return nbytes;
}

6409 6410 6411
static struct cftype memory_files[] = {
	{
		.name = "current",
6412
		.flags = CFTYPE_NOT_ON_ROOT,
6413 6414
		.read_u64 = memory_current_read,
	},
R
Roman Gushchin 已提交
6415 6416 6417 6418 6419 6420
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
6442
		.file_offset = offsetof(struct mem_cgroup, events_file),
6443 6444
		.seq_show = memory_events_show,
	},
6445 6446 6447 6448 6449 6450
	{
		.name = "events.local",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, events_local_file),
		.seq_show = memory_events_local_show,
	},
6451 6452 6453 6454
	{
		.name = "stat",
		.seq_show = memory_stat_show,
	},
6455 6456 6457 6458 6459 6460
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.seq_show = memory_numa_stat_show,
	},
#endif
6461 6462 6463 6464 6465 6466
	{
		.name = "oom.group",
		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
		.seq_show = memory_oom_group_show,
		.write = memory_oom_group_write,
	},
6467 6468 6469
	{ }	/* terminate */
};

6470
struct cgroup_subsys memory_cgrp_subsys = {
6471
	.css_alloc = mem_cgroup_css_alloc,
6472
	.css_online = mem_cgroup_css_online,
6473
	.css_offline = mem_cgroup_css_offline,
6474
	.css_released = mem_cgroup_css_released,
6475
	.css_free = mem_cgroup_css_free,
6476
	.css_reset = mem_cgroup_css_reset,
6477
	.css_rstat_flush = mem_cgroup_css_rstat_flush,
6478 6479
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
6480
	.post_attach = mem_cgroup_move_task,
6481 6482
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
6483
	.early_init = 0,
B
Balbir Singh 已提交
6484
};
6485

6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515
/*
 * This function calculates an individual cgroup's effective
 * protection which is derived from its own memory.min/low, its
 * parent's and siblings' settings, as well as the actual memory
 * distribution in the tree.
 *
 * The following rules apply to the effective protection values:
 *
 * 1. At the first level of reclaim, effective protection is equal to
 *    the declared protection in memory.min and memory.low.
 *
 * 2. To enable safe delegation of the protection configuration, at
 *    subsequent levels the effective protection is capped to the
 *    parent's effective protection.
 *
 * 3. To make complex and dynamic subtrees easier to configure, the
 *    user is allowed to overcommit the declared protection at a given
 *    level. If that is the case, the parent's effective protection is
 *    distributed to the children in proportion to how much protection
 *    they have declared and how much of it they are utilizing.
 *
 *    This makes distribution proportional, but also work-conserving:
 *    if one cgroup claims much more protection than it uses memory,
 *    the unused remainder is available to its siblings.
 *
 * 4. Conversely, when the declared protection is undercommitted at a
 *    given level, the distribution of the larger parental protection
 *    budget is NOT proportional. A cgroup's protection from a sibling
 *    is capped to its own memory.min/low setting.
 *
6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527
 * 5. However, to allow protecting recursive subtrees from each other
 *    without having to declare each individual cgroup's fixed share
 *    of the ancestor's claim to protection, any unutilized -
 *    "floating" - protection from up the tree is distributed in
 *    proportion to each cgroup's *usage*. This makes the protection
 *    neutral wrt sibling cgroups and lets them compete freely over
 *    the shared parental protection budget, but it protects the
 *    subtree as a whole from neighboring subtrees.
 *
 * Note that 4. and 5. are not in conflict: 4. is about protecting
 * against immediate siblings whereas 5. is about protecting against
 * neighboring subtrees.
6528 6529
 */
static unsigned long effective_protection(unsigned long usage,
6530
					  unsigned long parent_usage,
6531 6532 6533 6534 6535
					  unsigned long setting,
					  unsigned long parent_effective,
					  unsigned long siblings_protected)
{
	unsigned long protected;
6536
	unsigned long ep;
6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566

	protected = min(usage, setting);
	/*
	 * If all cgroups at this level combined claim and use more
	 * protection then what the parent affords them, distribute
	 * shares in proportion to utilization.
	 *
	 * We are using actual utilization rather than the statically
	 * claimed protection in order to be work-conserving: claimed
	 * but unused protection is available to siblings that would
	 * otherwise get a smaller chunk than what they claimed.
	 */
	if (siblings_protected > parent_effective)
		return protected * parent_effective / siblings_protected;

	/*
	 * Ok, utilized protection of all children is within what the
	 * parent affords them, so we know whatever this child claims
	 * and utilizes is effectively protected.
	 *
	 * If there is unprotected usage beyond this value, reclaim
	 * will apply pressure in proportion to that amount.
	 *
	 * If there is unutilized protection, the cgroup will be fully
	 * shielded from reclaim, but we do return a smaller value for
	 * protection than what the group could enjoy in theory. This
	 * is okay. With the overcommit distribution above, effective
	 * protection is always dependent on how memory is actually
	 * consumed among the siblings anyway.
	 */
6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579
	ep = protected;

	/*
	 * If the children aren't claiming (all of) the protection
	 * afforded to them by the parent, distribute the remainder in
	 * proportion to the (unprotected) memory of each cgroup. That
	 * way, cgroups that aren't explicitly prioritized wrt each
	 * other compete freely over the allowance, but they are
	 * collectively protected from neighboring trees.
	 *
	 * We're using unprotected memory for the weight so that if
	 * some cgroups DO claim explicit protection, we don't protect
	 * the same bytes twice.
6580 6581 6582 6583
	 *
	 * Check both usage and parent_usage against the respective
	 * protected values. One should imply the other, but they
	 * aren't read atomically - make sure the division is sane.
6584 6585 6586
	 */
	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
		return ep;
6587 6588 6589
	if (parent_effective > siblings_protected &&
	    parent_usage > siblings_protected &&
	    usage > protected) {
6590 6591 6592 6593 6594 6595 6596 6597 6598 6599
		unsigned long unclaimed;

		unclaimed = parent_effective - siblings_protected;
		unclaimed *= usage - protected;
		unclaimed /= parent_usage - siblings_protected;

		ep += unclaimed;
	}

	return ep;
6600 6601
}

6602
/**
6603
 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6604
 * @root: the top ancestor of the sub-tree being checked
6605 6606
 * @memcg: the memory cgroup to check
 *
6607 6608
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
6609
 */
6610 6611
void mem_cgroup_calculate_protection(struct mem_cgroup *root,
				     struct mem_cgroup *memcg)
6612
{
6613
	unsigned long usage, parent_usage;
6614 6615
	struct mem_cgroup *parent;

6616
	if (mem_cgroup_disabled())
6617
		return;
6618

6619 6620
	if (!root)
		root = root_mem_cgroup;
6621 6622 6623 6624 6625 6626 6627 6628

	/*
	 * Effective values of the reclaim targets are ignored so they
	 * can be stale. Have a look at mem_cgroup_protection for more
	 * details.
	 * TODO: calculation should be more robust so that we do not need
	 * that special casing.
	 */
6629
	if (memcg == root)
6630
		return;
6631

6632
	usage = page_counter_read(&memcg->memory);
R
Roman Gushchin 已提交
6633
	if (!usage)
6634
		return;
R
Roman Gushchin 已提交
6635 6636

	parent = parent_mem_cgroup(memcg);
6637 6638
	/* No parent means a non-hierarchical mode on v1 memcg */
	if (!parent)
6639
		return;
6640

6641
	if (parent == root) {
6642
		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6643
		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6644
		return;
R
Roman Gushchin 已提交
6645 6646
	}

6647 6648
	parent_usage = page_counter_read(&parent->memory);

6649
	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6650 6651
			READ_ONCE(memcg->memory.min),
			READ_ONCE(parent->memory.emin),
6652
			atomic_long_read(&parent->memory.children_min_usage)));
6653

6654
	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6655 6656
			READ_ONCE(memcg->memory.low),
			READ_ONCE(parent->memory.elow),
6657
			atomic_long_read(&parent->memory.children_low_usage)));
6658 6659
}

6660
static int charge_memcg(struct page *page, struct mem_cgroup *memcg, gfp_t gfp)
6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672
{
	unsigned int nr_pages = thp_nr_pages(page);
	int ret;

	ret = try_charge(memcg, gfp, nr_pages);
	if (ret)
		goto out;

	css_get(&memcg->css);
	commit_charge(page, memcg);

	local_irq_disable();
6673
	mem_cgroup_charge_statistics(memcg, nr_pages);
6674 6675 6676 6677 6678 6679
	memcg_check_events(memcg, page);
	local_irq_enable();
out:
	return ret;
}

6680
/**
6681
 * __mem_cgroup_charge - charge a newly allocated page to a cgroup
6682 6683 6684 6685 6686
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6687 6688
 * pages according to @gfp_mask if necessary. if @mm is NULL, try to
 * charge to the active memcg.
6689
 *
6690 6691
 * Do not use this for pages allocated for swapin.
 *
6692
 * Returns 0 on success. Otherwise, an error code is returned.
6693
 */
6694 6695
int __mem_cgroup_charge(struct page *page, struct mm_struct *mm,
			gfp_t gfp_mask)
6696
{
6697 6698
	struct mem_cgroup *memcg;
	int ret;
6699

6700
	memcg = get_mem_cgroup_from_mm(mm);
6701
	ret = charge_memcg(page, memcg, gfp_mask);
6702
	css_put(&memcg->css);
6703

6704 6705
	return ret;
}
6706

6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724
/**
 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp: reclaim mode
 * @entry: swap entry for which the page is allocated
 *
 * This function charges a page allocated for swapin. Please call this before
 * adding the page to the swapcache.
 *
 * Returns 0 on success. Otherwise, an error code is returned.
 */
int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
				  gfp_t gfp, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;
	int ret;
6725

6726 6727
	if (mem_cgroup_disabled())
		return 0;
6728

6729 6730 6731 6732 6733 6734
	id = lookup_swap_cgroup_id(entry);
	rcu_read_lock();
	memcg = mem_cgroup_from_id(id);
	if (!memcg || !css_tryget_online(&memcg->css))
		memcg = get_mem_cgroup_from_mm(mm);
	rcu_read_unlock();
6735

6736
	ret = charge_memcg(page, memcg, gfp);
6737

6738 6739 6740
	css_put(&memcg->css);
	return ret;
}
6741

6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752
/*
 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
 * @entry: swap entry for which the page is charged
 *
 * Call this function after successfully adding the charged page to swapcache.
 *
 * Note: This function assumes the page for which swap slot is being uncharged
 * is order 0 page.
 */
void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
{
6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764
	/*
	 * Cgroup1's unified memory+swap counter has been charged with the
	 * new swapcache page, finish the transfer by uncharging the swap
	 * slot. The swap slot would also get uncharged when it dies, but
	 * it can stick around indefinitely and we'd count the page twice
	 * the entire time.
	 *
	 * Cgroup2 has separate resource counters for memory and swap,
	 * so this is a non-issue here. Memory and swap charge lifetimes
	 * correspond 1:1 to page and swap slot lifetimes: we charge the
	 * page to memory here, and uncharge swap when the slot is freed.
	 */
6765
	if (!mem_cgroup_disabled() && do_memsw_account()) {
6766 6767 6768 6769 6770
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
6771
		mem_cgroup_uncharge_swap(entry, 1);
6772
	}
6773 6774
}

6775 6776
struct uncharge_gather {
	struct mem_cgroup *memcg;
6777
	unsigned long nr_memory;
6778 6779 6780 6781 6782 6783
	unsigned long pgpgout;
	unsigned long nr_kmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6784
{
6785 6786 6787 6788 6789
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
6790 6791
	unsigned long flags;

6792 6793
	if (ug->nr_memory) {
		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6794
		if (do_memsw_account())
6795
			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6796 6797 6798
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
6799
	}
6800 6801

	local_irq_save(flags);
6802
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6803
	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6804
	memcg_check_events(ug->memcg, ug->dummy_page);
6805
	local_irq_restore(flags);
6806 6807 6808

	/* drop reference from uncharge_page */
	css_put(&ug->memcg->css);
6809 6810 6811 6812
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
6813
	unsigned long nr_pages;
6814 6815
	struct mem_cgroup *memcg;
	struct obj_cgroup *objcg;
6816
	bool use_objcg = PageMemcgKmem(page);
6817

6818 6819 6820 6821
	VM_BUG_ON_PAGE(PageLRU(page), page);

	/*
	 * Nobody should be changing or seriously looking at
6822
	 * page memcg or objcg at this point, we have fully
6823 6824
	 * exclusive access to the page.
	 */
6825
	if (use_objcg) {
6826 6827 6828 6829 6830 6831 6832 6833 6834
		objcg = __page_objcg(page);
		/*
		 * This get matches the put at the end of the function and
		 * kmem pages do not hold memcg references anymore.
		 */
		memcg = get_mem_cgroup_from_objcg(objcg);
	} else {
		memcg = __page_memcg(page);
	}
6835

6836 6837 6838 6839
	if (!memcg)
		return;

	if (ug->memcg != memcg) {
6840 6841 6842 6843
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
6844
		ug->memcg = memcg;
6845
		ug->dummy_page = page;
6846 6847

		/* pairs with css_put in uncharge_batch */
6848
		css_get(&memcg->css);
6849 6850
	}

6851
	nr_pages = compound_nr(page);
6852

6853
	if (use_objcg) {
6854
		ug->nr_memory += nr_pages;
6855
		ug->nr_kmem += nr_pages;
6856 6857 6858 6859 6860 6861 6862

		page->memcg_data = 0;
		obj_cgroup_put(objcg);
	} else {
		/* LRU pages aren't accounted at the root level */
		if (!mem_cgroup_is_root(memcg))
			ug->nr_memory += nr_pages;
6863
		ug->pgpgout++;
6864

6865 6866 6867 6868
		page->memcg_data = 0;
	}

	css_put(&memcg->css);
6869 6870
}

6871
/**
6872
 * __mem_cgroup_uncharge - uncharge a page
6873 6874
 * @page: page to uncharge
 *
6875
 * Uncharge a page previously charged with __mem_cgroup_charge().
6876
 */
6877
void __mem_cgroup_uncharge(struct page *page)
6878
{
6879 6880
	struct uncharge_gather ug;

6881
	/* Don't touch page->lru of any random page, pre-check: */
6882
	if (!page_memcg(page))
6883 6884
		return;

6885 6886 6887
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
6888
}
6889

6890
/**
6891
 * __mem_cgroup_uncharge_list - uncharge a list of page
6892 6893 6894
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
6895
 * __mem_cgroup_charge().
6896
 */
6897
void __mem_cgroup_uncharge_list(struct list_head *page_list)
6898
{
6899 6900 6901 6902 6903 6904 6905 6906
	struct uncharge_gather ug;
	struct page *page;

	uncharge_gather_clear(&ug);
	list_for_each_entry(page, page_list, lru)
		uncharge_page(page, &ug);
	if (ug.memcg)
		uncharge_batch(&ug);
6907 6908 6909
}

/**
6910 6911 6912
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
6913
 *
6914 6915
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
6916 6917 6918
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
6919
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6920
{
6921
	struct mem_cgroup *memcg;
6922
	unsigned int nr_pages;
6923
	unsigned long flags;
6924 6925 6926 6927

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6928 6929
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6930 6931 6932 6933 6934

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
6935
	if (page_memcg(newpage))
6936 6937
		return;

6938
	memcg = page_memcg(oldpage);
6939
	VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
6940
	if (!memcg)
6941 6942
		return;

6943
	/* Force-charge the new page. The old one will be freed soon */
6944
	nr_pages = thp_nr_pages(newpage);
6945

6946 6947 6948 6949 6950
	if (!mem_cgroup_is_root(memcg)) {
		page_counter_charge(&memcg->memory, nr_pages);
		if (do_memsw_account())
			page_counter_charge(&memcg->memsw, nr_pages);
	}
6951

6952
	css_get(&memcg->css);
6953
	commit_charge(newpage, memcg);
6954

6955
	local_irq_save(flags);
6956
	mem_cgroup_charge_statistics(memcg, nr_pages);
6957
	memcg_check_events(memcg, newpage);
6958
	local_irq_restore(flags);
6959 6960
}

6961
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6962 6963
EXPORT_SYMBOL(memcg_sockets_enabled_key);

6964
void mem_cgroup_sk_alloc(struct sock *sk)
6965 6966 6967
{
	struct mem_cgroup *memcg;

6968 6969 6970
	if (!mem_cgroup_sockets_enabled)
		return;

6971 6972 6973 6974
	/* Do not associate the sock with unrelated interrupted task's memcg. */
	if (in_interrupt())
		return;

6975 6976
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
6977 6978
	if (memcg == root_mem_cgroup)
		goto out;
6979
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6980
		goto out;
S
Shakeel Butt 已提交
6981
	if (css_tryget(&memcg->css))
6982
		sk->sk_memcg = memcg;
6983
out:
6984 6985 6986
	rcu_read_unlock();
}

6987
void mem_cgroup_sk_free(struct sock *sk)
6988
{
6989 6990
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
6991 6992 6993 6994 6995 6996
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
6997
 * @gfp_mask: reclaim mode
6998 6999
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7000
 * @memcg's configured limit, %false if it doesn't.
7001
 */
7002 7003
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
			     gfp_t gfp_mask)
7004
{
7005
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7006
		struct page_counter *fail;
7007

7008 7009
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
7010 7011
			return true;
		}
7012
		memcg->tcpmem_pressure = 1;
7013 7014 7015 7016
		if (gfp_mask & __GFP_NOFAIL) {
			page_counter_charge(&memcg->tcpmem, nr_pages);
			return true;
		}
7017
		return false;
7018
	}
7019

7020 7021
	if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
		mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7022
		return true;
7023
	}
7024

7025 7026 7027 7028 7029
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
7030 7031
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
7032 7033 7034
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
7035
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7036
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7037 7038
		return;
	}
7039

7040
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7041

7042
	refill_stock(memcg, nr_pages);
7043 7044
}

7045 7046 7047 7048 7049 7050 7051 7052 7053
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
7054 7055
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
7056 7057 7058 7059
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
7060

7061
/*
7062 7063
 * subsys_initcall() for memory controller.
 *
7064 7065 7066 7067
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
7068 7069 7070
 */
static int __init mem_cgroup_init(void)
{
7071 7072
	int cpu, node;

7073 7074 7075 7076 7077 7078 7079 7080
	/*
	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
	 * used for per-memcg-per-cpu caching of per-node statistics. In order
	 * to work fine, we should make sure that the overfill threshold can't
	 * exceed S32_MAX / PAGE_SIZE.
	 */
	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);

7081 7082
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

7094
		rtpn->rb_root = RB_ROOT;
7095
		rtpn->rb_rightmost = NULL;
7096
		spin_lock_init(&rtpn->lock);
7097 7098 7099
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

7100 7101 7102
	return 0;
}
subsys_initcall(mem_cgroup_init);
7103 7104

#ifdef CONFIG_MEMCG_SWAP
7105 7106
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
7107
	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

7123 7124 7125 7126 7127 7128 7129 7130 7131
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
7132
	struct mem_cgroup *memcg, *swap_memcg;
7133
	unsigned int nr_entries;
7134 7135 7136 7137 7138
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

7139 7140 7141
	if (mem_cgroup_disabled())
		return;

7142
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7143 7144
		return;

7145
	memcg = page_memcg(page);
7146

7147
	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7148 7149 7150
	if (!memcg)
		return;

7151 7152 7153 7154 7155 7156
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
7157
	nr_entries = thp_nr_pages(page);
7158 7159 7160 7161 7162
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
7163
	VM_BUG_ON_PAGE(oldid, page);
7164
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7165

7166
	page->memcg_data = 0;
7167 7168

	if (!mem_cgroup_is_root(memcg))
7169
		page_counter_uncharge(&memcg->memory, nr_entries);
7170

7171
	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7172
		if (!mem_cgroup_is_root(swap_memcg))
7173 7174
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
7175 7176
	}

7177 7178
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
7179
	 * i_pages lock which is taken with interrupts-off. It is
7180
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
7181
	 * only synchronisation we have for updating the per-CPU variables.
7182 7183
	 */
	VM_BUG_ON(!irqs_disabled());
7184
	mem_cgroup_charge_statistics(memcg, -nr_entries);
7185
	memcg_check_events(memcg, page);
7186

7187
	css_put(&memcg->css);
7188 7189
}

7190
/**
7191
 * __mem_cgroup_try_charge_swap - try charging swap space for a page
7192 7193 7194
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
7195
 * Try to charge @page's memcg for the swap space at @entry.
7196 7197 7198
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
7199
int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7200
{
7201
	unsigned int nr_pages = thp_nr_pages(page);
7202
	struct page_counter *counter;
7203
	struct mem_cgroup *memcg;
7204 7205
	unsigned short oldid;

7206
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7207 7208
		return 0;

7209
	memcg = page_memcg(page);
7210

7211
	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7212 7213 7214
	if (!memcg)
		return 0;

7215 7216
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7217
		return 0;
7218
	}
7219

7220 7221
	memcg = mem_cgroup_id_get_online(memcg);

7222
	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7223
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7224 7225
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7226
		mem_cgroup_id_put(memcg);
7227
		return -ENOMEM;
7228
	}
7229

7230 7231 7232 7233
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7234
	VM_BUG_ON_PAGE(oldid, page);
7235
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7236 7237 7238 7239

	return 0;
}

7240
/**
7241
 * __mem_cgroup_uncharge_swap - uncharge swap space
7242
 * @entry: swap entry to uncharge
7243
 * @nr_pages: the amount of swap space to uncharge
7244
 */
7245
void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7246 7247 7248 7249
{
	struct mem_cgroup *memcg;
	unsigned short id;

7250
	id = swap_cgroup_record(entry, 0, nr_pages);
7251
	rcu_read_lock();
7252
	memcg = mem_cgroup_from_id(id);
7253
	if (memcg) {
7254
		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7255
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7256
				page_counter_uncharge(&memcg->swap, nr_pages);
7257
			else
7258
				page_counter_uncharge(&memcg->memsw, nr_pages);
7259
		}
7260
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7261
		mem_cgroup_id_put_many(memcg, nr_pages);
7262 7263 7264 7265
	}
	rcu_read_unlock();
}

7266 7267 7268 7269
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

7270
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7271 7272 7273
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
7274
				      READ_ONCE(memcg->swap.max) -
7275 7276 7277 7278
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

7279 7280 7281 7282 7283 7284 7285 7286
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
7287
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7288 7289
		return false;

7290
	memcg = page_memcg(page);
7291 7292 7293
	if (!memcg)
		return false;

7294 7295 7296 7297 7298
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		unsigned long usage = page_counter_read(&memcg->swap);

		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
		    usage * 2 >= READ_ONCE(memcg->swap.max))
7299
			return true;
7300
	}
7301 7302 7303 7304

	return false;
}

7305
static int __init setup_swap_account(char *s)
7306 7307
{
	if (!strcmp(s, "1"))
7308
		cgroup_memory_noswap = false;
7309
	else if (!strcmp(s, "0"))
7310
		cgroup_memory_noswap = true;
7311 7312
	return 1;
}
7313
__setup("swapaccount=", setup_swap_account);
7314

7315 7316 7317 7318 7319 7320 7321 7322
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345
static int swap_high_show(struct seq_file *m, void *v)
{
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
}

static ssize_t swap_high_write(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &high);
	if (err)
		return err;

	page_counter_set_high(&memcg->swap, high);

	return nbytes;
}

7346 7347
static int swap_max_show(struct seq_file *m, void *v)
{
7348 7349
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

7364
	xchg(&memcg->swap.max, max);
7365 7366 7367 7368

	return nbytes;
}

7369 7370
static int swap_events_show(struct seq_file *m, void *v)
{
7371
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7372

7373 7374
	seq_printf(m, "high %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7375 7376 7377 7378 7379 7380 7381 7382
	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

7383 7384 7385 7386 7387 7388
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
7389 7390 7391 7392 7393 7394
	{
		.name = "swap.high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_high_show,
		.write = swap_high_write,
	},
7395 7396 7397 7398 7399 7400
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
7401 7402 7403 7404 7405 7406
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
7407 7408 7409
	{ }	/* terminate */
};

7410
static struct cftype memsw_files[] = {
7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

7437 7438 7439 7440 7441 7442 7443
/*
 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
 * boot parameter. This may result in premature OOPS inside
 * mem_cgroup_get_nr_swap_pages() function in corner cases.
 */
7444 7445
static int __init mem_cgroup_swap_init(void)
{
7446 7447 7448 7449 7450
	/* No memory control -> no swap control */
	if (mem_cgroup_disabled())
		cgroup_memory_noswap = true;

	if (cgroup_memory_noswap)
7451 7452 7453 7454 7455
		return 0;

	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));

7456 7457
	return 0;
}
7458
core_initcall(mem_cgroup_swap_init);
7459 7460

#endif /* CONFIG_MEMCG_SWAP */