memcontrol.c 190.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
B
Balbir Singh 已提交
2 3 4 5 6
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
7 8 9
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
10 11 12 13
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
14 15 16 17
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 24 25
 *
 * Per memcg lru locking
 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
B
Balbir Singh 已提交
26 27
 */

28
#include <linux/page_counter.h>
B
Balbir Singh 已提交
29 30
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/pagewalk.h>
32
#include <linux/sched/mm.h>
33
#include <linux/shmem_fs.h>
34
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
35
#include <linux/pagemap.h>
36
#include <linux/vm_event_item.h>
37
#include <linux/smp.h>
38
#include <linux/page-flags.h>
39
#include <linux/backing-dev.h>
40 41
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
42
#include <linux/limits.h>
43
#include <linux/export.h>
44
#include <linux/mutex.h>
45
#include <linux/rbtree.h>
46
#include <linux/slab.h>
47
#include <linux/swap.h>
48
#include <linux/swapops.h>
49
#include <linux/spinlock.h>
50
#include <linux/eventfd.h>
51
#include <linux/poll.h>
52
#include <linux/sort.h>
53
#include <linux/fs.h>
54
#include <linux/seq_file.h>
55
#include <linux/vmpressure.h>
56
#include <linux/mm_inline.h>
57
#include <linux/swap_cgroup.h>
58
#include <linux/cpu.h>
59
#include <linux/oom.h>
60
#include <linux/lockdep.h>
61
#include <linux/file.h>
62
#include <linux/tracehook.h>
63
#include <linux/psi.h>
64
#include <linux/seq_buf.h>
K
KAMEZAWA Hiroyuki 已提交
65
#include "internal.h"
G
Glauber Costa 已提交
66
#include <net/sock.h>
M
Michal Hocko 已提交
67
#include <net/ip.h>
68
#include "slab.h"
B
Balbir Singh 已提交
69

70
#include <linux/uaccess.h>
71

72 73
#include <trace/events/vmscan.h>

74 75
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
76

77 78
struct mem_cgroup *root_mem_cgroup __read_mostly;

79 80 81
/* Active memory cgroup to use from an interrupt context */
DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);

82 83 84
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

85 86 87
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

88
/* Whether the swap controller is active */
A
Andrew Morton 已提交
89
#ifdef CONFIG_MEMCG_SWAP
90
bool cgroup_memory_noswap __read_mostly;
91
#else
92
#define cgroup_memory_noswap		1
93
#endif
94

95 96 97 98
#ifdef CONFIG_CGROUP_WRITEBACK
static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
#endif

99 100 101
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
102
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
103 104
}

105 106
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
107

108 109 110 111 112
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

113
struct mem_cgroup_tree_per_node {
114
	struct rb_root rb_root;
115
	struct rb_node *rb_rightmost;
116 117 118 119 120 121 122 123 124
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
125 126 127 128 129
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
130

131 132 133
/*
 * cgroup_event represents events which userspace want to receive.
 */
134
struct mem_cgroup_event {
135
	/*
136
	 * memcg which the event belongs to.
137
	 */
138
	struct mem_cgroup *memcg;
139 140 141 142 143 144 145 146
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
147 148 149 150 151
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
152
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
153
			      struct eventfd_ctx *eventfd, const char *args);
154 155 156 157 158
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
159
	void (*unregister_event)(struct mem_cgroup *memcg,
160
				 struct eventfd_ctx *eventfd);
161 162 163 164 165 166
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
167
	wait_queue_entry_t wait;
168 169 170
	struct work_struct remove;
};

171 172
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173

174 175
/* Stuffs for move charges at task migration. */
/*
176
 * Types of charges to be moved.
177
 */
178 179 180
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
181

182 183
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
184
	spinlock_t	  lock; /* for from, to */
185
	struct mm_struct  *mm;
186 187
	struct mem_cgroup *from;
	struct mem_cgroup *to;
188
	unsigned long flags;
189
	unsigned long precharge;
190
	unsigned long moved_charge;
191
	unsigned long moved_swap;
192 193 194
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
195
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196 197
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
198

199 200 201 202
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
203
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
204
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
205

206
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
207 208 209 210
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
211
	_KMEM,
V
Vladimir Davydov 已提交
212
	_TCP,
G
Glauber Costa 已提交
213 214
};

215 216
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
217
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
218 219
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
220

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(root, iter, NULL))

#define for_each_mem_cgroup(iter)			\
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(NULL, iter, NULL))

236 237 238 239 240 241
static inline bool should_force_charge(void)
{
	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
		(current->flags & PF_EXITING);
}

242 243 244 245 246 247 248 249 250 251 252 253 254
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

255
#ifdef CONFIG_MEMCG_KMEM
R
Roman Gushchin 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
extern spinlock_t css_set_lock;

static void obj_cgroup_release(struct percpu_ref *ref)
{
	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
	struct mem_cgroup *memcg;
	unsigned int nr_bytes;
	unsigned int nr_pages;
	unsigned long flags;

	/*
	 * At this point all allocated objects are freed, and
	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
	 *
	 * The following sequence can lead to it:
	 * 1) CPU0: objcg == stock->cached_objcg
	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
	 *          PAGE_SIZE bytes are charged
	 * 3) CPU1: a process from another memcg is allocating something,
	 *          the stock if flushed,
	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
	 * 5) CPU0: we do release this object,
	 *          92 bytes are added to stock->nr_bytes
	 * 6) CPU0: stock is flushed,
	 *          92 bytes are added to objcg->nr_charged_bytes
	 *
	 * In the result, nr_charged_bytes == PAGE_SIZE.
	 * This page will be uncharged in obj_cgroup_release().
	 */
	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
	nr_pages = nr_bytes >> PAGE_SHIFT;

	spin_lock_irqsave(&css_set_lock, flags);
	memcg = obj_cgroup_memcg(objcg);
	if (nr_pages)
		__memcg_kmem_uncharge(memcg, nr_pages);
	list_del(&objcg->list);
	mem_cgroup_put(memcg);
	spin_unlock_irqrestore(&css_set_lock, flags);

	percpu_ref_exit(ref);
	kfree_rcu(objcg, rcu);
}

static struct obj_cgroup *obj_cgroup_alloc(void)
{
	struct obj_cgroup *objcg;
	int ret;

	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
	if (!objcg)
		return NULL;

	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
			      GFP_KERNEL);
	if (ret) {
		kfree(objcg);
		return NULL;
	}
	INIT_LIST_HEAD(&objcg->list);
	return objcg;
}

static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
				  struct mem_cgroup *parent)
{
	struct obj_cgroup *objcg, *iter;

	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);

	spin_lock_irq(&css_set_lock);

	/* Move active objcg to the parent's list */
	xchg(&objcg->memcg, parent);
	css_get(&parent->css);
	list_add(&objcg->list, &parent->objcg_list);

	/* Move already reparented objcgs to the parent's list */
	list_for_each_entry(iter, &memcg->objcg_list, list) {
		css_get(&parent->css);
		xchg(&iter->memcg, parent);
		css_put(&memcg->css);
	}
	list_splice(&memcg->objcg_list, &parent->objcg_list);

	spin_unlock_irq(&css_set_lock);

	percpu_ref_kill(&objcg->refcnt);
}

348
/*
349
 * This will be used as a shrinker list's index.
L
Li Zefan 已提交
350 351 352 353 354
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
355
 *
356 357
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
358
 */
359 360
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
361

362 363 364 365 366 367 368 369 370 371 372 373 374
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

375 376 377 378 379 380
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
381
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
382 383
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
384
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
385 386 387
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
388
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
389

390 391
/*
 * A lot of the calls to the cache allocation functions are expected to be
392
 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
393 394 395
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
396
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
397
EXPORT_SYMBOL(memcg_kmem_enabled_key);
398
#endif
399

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
static int memcg_shrinker_map_size;
static DEFINE_MUTEX(memcg_shrinker_map_mutex);

static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
{
	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
}

static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
					 int size, int old_size)
{
	struct memcg_shrinker_map *new, *old;
	int nid;

	lockdep_assert_held(&memcg_shrinker_map_mutex);

	for_each_node(nid) {
		old = rcu_dereference_protected(
			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
		/* Not yet online memcg */
		if (!old)
			return 0;

423
		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
		if (!new)
			return -ENOMEM;

		/* Set all old bits, clear all new bits */
		memset(new->map, (int)0xff, old_size);
		memset((void *)new->map + old_size, 0, size - old_size);

		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
	}

	return 0;
}

static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *pn;
	struct memcg_shrinker_map *map;
	int nid;

	if (mem_cgroup_is_root(memcg))
		return;

	for_each_node(nid) {
		pn = mem_cgroup_nodeinfo(memcg, nid);
		map = rcu_dereference_protected(pn->shrinker_map, true);
		if (map)
			kvfree(map);
		rcu_assign_pointer(pn->shrinker_map, NULL);
	}
}

static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	struct memcg_shrinker_map *map;
	int nid, size, ret = 0;

	if (mem_cgroup_is_root(memcg))
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	size = memcg_shrinker_map_size;
	for_each_node(nid) {
467
		map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
		if (!map) {
			memcg_free_shrinker_maps(memcg);
			ret = -ENOMEM;
			break;
		}
		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
	}
	mutex_unlock(&memcg_shrinker_map_mutex);

	return ret;
}

int memcg_expand_shrinker_maps(int new_id)
{
	int size, old_size, ret = 0;
	struct mem_cgroup *memcg;

	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
	old_size = memcg_shrinker_map_size;
	if (size <= old_size)
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	if (!root_mem_cgroup)
		goto unlock;

	for_each_mem_cgroup(memcg) {
		if (mem_cgroup_is_root(memcg))
			continue;
		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
498 499
		if (ret) {
			mem_cgroup_iter_break(NULL, memcg);
500
			goto unlock;
501
		}
502 503 504 505 506 507 508
	}
unlock:
	if (!ret)
		memcg_shrinker_map_size = size;
	mutex_unlock(&memcg_shrinker_map_mutex);
	return ret;
}
509 510 511 512 513 514 515 516

void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
{
	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
		struct memcg_shrinker_map *map;

		rcu_read_lock();
		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
517 518
		/* Pairs with smp mb in shrink_slab() */
		smp_mb__before_atomic();
519 520 521 522 523
		set_bit(shrinker_id, map->map);
		rcu_read_unlock();
	}
}

524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

539
	memcg = page_memcg(page);
540

541
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
542 543 544 545 546
		memcg = root_mem_cgroup;

	return &memcg->css;
}

547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
566
	memcg = page_memcg_check(page);
567

568 569 570 571 572 573 574 575
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

576 577
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
578
{
579
	int nid = page_to_nid(page);
580

581
	return memcg->nodeinfo[nid];
582 583
}

584 585
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
586
{
587
	return soft_limit_tree.rb_tree_per_node[nid];
588 589
}

590
static struct mem_cgroup_tree_per_node *
591 592 593 594
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

595
	return soft_limit_tree.rb_tree_per_node[nid];
596 597
}

598 599
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
600
					 unsigned long new_usage_in_excess)
601 602 603
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
604
	struct mem_cgroup_per_node *mz_node;
605
	bool rightmost = true;
606 607 608 609 610 611 612 613 614

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
615
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
616
					tree_node);
617
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
618
			p = &(*p)->rb_left;
619
			rightmost = false;
620
		} else {
621
			p = &(*p)->rb_right;
622
		}
623
	}
624 625 626 627

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

628 629 630 631 632
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

633 634
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
635 636 637
{
	if (!mz->on_tree)
		return;
638 639 640 641

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

642 643 644 645
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

646 647
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
648
{
649 650 651
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
652
	__mem_cgroup_remove_exceeded(mz, mctz);
653
	spin_unlock_irqrestore(&mctz->lock, flags);
654 655
}

656 657 658
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
659
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
660 661 662 663 664 665 666
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
667 668 669

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
670
	unsigned long excess;
671 672
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
673

674
	mctz = soft_limit_tree_from_page(page);
675 676
	if (!mctz)
		return;
677 678 679 680 681
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
682
		mz = mem_cgroup_page_nodeinfo(memcg, page);
683
		excess = soft_limit_excess(memcg);
684 685 686 687 688
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
689 690 691
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
692 693
			/* if on-tree, remove it */
			if (mz->on_tree)
694
				__mem_cgroup_remove_exceeded(mz, mctz);
695 696 697 698
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
699
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
700
			spin_unlock_irqrestore(&mctz->lock, flags);
701 702 703 704 705 706
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
707 708 709
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
710

711
	for_each_node(nid) {
712 713
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
714 715
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
716 717 718
	}
}

719 720
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
721
{
722
	struct mem_cgroup_per_node *mz;
723 724 725

retry:
	mz = NULL;
726
	if (!mctz->rb_rightmost)
727 728
		goto done;		/* Nothing to reclaim from */

729 730
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
731 732 733 734 735
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
736
	__mem_cgroup_remove_exceeded(mz, mctz);
737
	if (!soft_limit_excess(mz->memcg) ||
S
Shakeel Butt 已提交
738
	    !css_tryget(&mz->memcg->css))
739 740 741 742 743
		goto retry;
done:
	return mz;
}

744 745
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
746
{
747
	struct mem_cgroup_per_node *mz;
748

749
	spin_lock_irq(&mctz->lock);
750
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
751
	spin_unlock_irq(&mctz->lock);
752 753 754
	return mz;
}

755 756 757 758 759 760 761 762
/**
 * __mod_memcg_state - update cgroup memory statistics
 * @memcg: the memory cgroup
 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 * @val: delta to add to the counter, can be negative
 */
void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
{
763
	long x, threshold = MEMCG_CHARGE_BATCH;
764 765 766 767

	if (mem_cgroup_disabled())
		return;

768
	if (memcg_stat_item_in_bytes(idx))
769 770
		threshold <<= PAGE_SHIFT;

771
	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
772
	if (unlikely(abs(x) > threshold)) {
773 774
		struct mem_cgroup *mi;

775 776 777 778 779
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
780 781
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmstats[idx]);
782 783 784 785 786
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
}

787 788 789 790 791 792 793 794 795 796 797
static struct mem_cgroup_per_node *
parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
{
	struct mem_cgroup *parent;

	parent = parent_mem_cgroup(pn->memcg);
	if (!parent)
		return NULL;
	return mem_cgroup_nodeinfo(parent, nid);
}

798 799
void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			      int val)
800 801
{
	struct mem_cgroup_per_node *pn;
802
	struct mem_cgroup *memcg;
803
	long x, threshold = MEMCG_CHARGE_BATCH;
804 805

	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
806
	memcg = pn->memcg;
807 808

	/* Update memcg */
809
	__mod_memcg_state(memcg, idx, val);
810

811 812 813
	/* Update lruvec */
	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);

814 815 816
	if (vmstat_item_in_bytes(idx))
		threshold <<= PAGE_SHIFT;

817
	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
818
	if (unlikely(abs(x) > threshold)) {
819
		pg_data_t *pgdat = lruvec_pgdat(lruvec);
820 821 822 823
		struct mem_cgroup_per_node *pi;

		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
			atomic_long_add(x, &pi->lruvec_stat[idx]);
824 825 826 827 828
		x = 0;
	}
	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
}

829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
/**
 * __mod_lruvec_state - update lruvec memory statistics
 * @lruvec: the lruvec
 * @idx: the stat item
 * @val: delta to add to the counter, can be negative
 *
 * The lruvec is the intersection of the NUMA node and a cgroup. This
 * function updates the all three counters that are affected by a
 * change of state at this level: per-node, per-cgroup, per-lruvec.
 */
void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			int val)
{
	/* Update node */
	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);

	/* Update memcg and lruvec */
	if (!mem_cgroup_disabled())
		__mod_memcg_lruvec_state(lruvec, idx, val);
}

850 851 852 853
void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
			     int val)
{
	struct page *head = compound_head(page); /* rmap on tail pages */
854
	struct mem_cgroup *memcg = page_memcg(head);
855 856 857 858
	pg_data_t *pgdat = page_pgdat(page);
	struct lruvec *lruvec;

	/* Untracked pages have no memcg, no lruvec. Update only the node */
859
	if (!memcg) {
860 861 862 863
		__mod_node_page_state(pgdat, idx, val);
		return;
	}

864
	lruvec = mem_cgroup_lruvec(memcg, pgdat);
865 866
	__mod_lruvec_state(lruvec, idx, val);
}
867
EXPORT_SYMBOL(__mod_lruvec_page_state);
868

869
void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
870
{
871
	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
872 873 874 875
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;

	rcu_read_lock();
876
	memcg = mem_cgroup_from_obj(p);
877

878 879 880 881 882 883 884
	/*
	 * Untracked pages have no memcg, no lruvec. Update only the
	 * node. If we reparent the slab objects to the root memcg,
	 * when we free the slab object, we need to update the per-memcg
	 * vmstats to keep it correct for the root memcg.
	 */
	if (!memcg) {
885 886
		__mod_node_page_state(pgdat, idx, val);
	} else {
887
		lruvec = mem_cgroup_lruvec(memcg, pgdat);
888 889 890 891 892
		__mod_lruvec_state(lruvec, idx, val);
	}
	rcu_read_unlock();
}

893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
/**
 * __count_memcg_events - account VM events in a cgroup
 * @memcg: the memory cgroup
 * @idx: the event item
 * @count: the number of events that occured
 */
void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
			  unsigned long count)
{
	unsigned long x;

	if (mem_cgroup_disabled())
		return;

	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
909 910
		struct mem_cgroup *mi;

911 912 913 914 915
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->events[idx], x);
916 917
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmevents[idx]);
918 919 920 921 922
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
}

923
static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
924
{
925
	return atomic_long_read(&memcg->vmevents[event]);
926 927
}

928 929
static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
{
930 931 932 933 934 935
	long x = 0;
	int cpu;

	for_each_possible_cpu(cpu)
		x += per_cpu(memcg->vmstats_local->events[event], cpu);
	return x;
936 937
}

938
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
939
					 struct page *page,
940
					 int nr_pages)
941
{
942 943
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
944
		__count_memcg_events(memcg, PGPGIN, 1);
945
	else {
946
		__count_memcg_events(memcg, PGPGOUT, 1);
947 948
		nr_pages = -nr_pages; /* for event */
	}
949

950
	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
951 952
}

953 954
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
955 956 957
{
	unsigned long val, next;

958 959
	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
960
	/* from time_after() in jiffies.h */
961
	if ((long)(next - val) < 0) {
962 963 964 965
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
966 967 968
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
969 970 971
		default:
			break;
		}
972
		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
973
		return true;
974
	}
975
	return false;
976 977 978 979 980 981
}

/*
 * Check events in order.
 *
 */
982
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
983 984
{
	/* threshold event is triggered in finer grain than soft limit */
985 986
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
987
		bool do_softlimit;
988

989 990
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
991
		mem_cgroup_threshold(memcg);
992 993
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
994
	}
995 996
}

997
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
998
{
999 1000 1001 1002 1003 1004 1005 1006
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1007
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1008
}
M
Michal Hocko 已提交
1009
EXPORT_SYMBOL(mem_cgroup_from_task);
1010

1011 1012 1013 1014 1015 1016 1017 1018 1019
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
 * returned.
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1020
{
1021 1022 1023 1024
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
1025

1026 1027
	rcu_read_lock();
	do {
1028 1029 1030 1031 1032 1033
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1034
			memcg = root_mem_cgroup;
1035 1036 1037 1038 1039
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1040
	} while (!css_tryget(&memcg->css));
1041
	rcu_read_unlock();
1042
	return memcg;
1043
}
1044 1045
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

1046 1047 1048 1049 1050 1051 1052 1053 1054
/**
 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
 * @page: page from which memcg should be extracted.
 *
 * Obtain a reference on page->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned.
 */
struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
{
1055
	struct mem_cgroup *memcg = page_memcg(page);
1056 1057 1058 1059 1060

	if (mem_cgroup_disabled())
		return NULL;

	rcu_read_lock();
S
Shakeel Butt 已提交
1061 1062
	/* Page should not get uncharged and freed memcg under us. */
	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1063 1064 1065 1066 1067 1068
		memcg = root_mem_cgroup;
	rcu_read_unlock();
	return memcg;
}
EXPORT_SYMBOL(get_mem_cgroup_from_page);

1069
static __always_inline struct mem_cgroup *active_memcg(void)
1070
{
1071 1072 1073 1074 1075
	if (in_interrupt())
		return this_cpu_read(int_active_memcg);
	else
		return current->active_memcg;
}
1076

1077 1078 1079
static __always_inline struct mem_cgroup *get_active_memcg(void)
{
	struct mem_cgroup *memcg;
1080

1081 1082 1083
	rcu_read_lock();
	memcg = active_memcg();
	if (memcg) {
S
Shakeel Butt 已提交
1084
		/* current->active_memcg must hold a ref. */
1085
		if (WARN_ON_ONCE(!css_tryget(&memcg->css)))
S
Shakeel Butt 已提交
1086 1087
			memcg = root_mem_cgroup;
		else
1088 1089
			memcg = current->active_memcg;
	}
1090 1091 1092 1093 1094
	rcu_read_unlock();

	return memcg;
}

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
static __always_inline bool memcg_kmem_bypass(void)
{
	/* Allow remote memcg charging from any context. */
	if (unlikely(active_memcg()))
		return false;

	/* Memcg to charge can't be determined. */
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;

	return false;
}

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
/**
 * If active memcg is set, do not fallback to current->mm->memcg.
 */
static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
{
	if (memcg_kmem_bypass())
		return NULL;

	if (unlikely(active_memcg()))
		return get_active_memcg();

1119 1120
	return get_mem_cgroup_from_mm(current->mm);
}
1121

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
1135 1136 1137
 * Reclaimers can specify a node in @reclaim to divide up the memcgs
 * in the hierarchy among all concurrent reclaimers operating on the
 * same node.
1138
 */
1139
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1140
				   struct mem_cgroup *prev,
1141
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1142
{
1143
	struct mem_cgroup_reclaim_iter *iter;
1144
	struct cgroup_subsys_state *css = NULL;
1145
	struct mem_cgroup *memcg = NULL;
1146
	struct mem_cgroup *pos = NULL;
1147

1148 1149
	if (mem_cgroup_disabled())
		return NULL;
1150

1151 1152
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1153

1154
	if (prev && !reclaim)
1155
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1156

1157
	rcu_read_lock();
M
Michal Hocko 已提交
1158

1159
	if (reclaim) {
1160
		struct mem_cgroup_per_node *mz;
1161

1162
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1163
		iter = &mz->iter;
1164 1165 1166 1167

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

1168
		while (1) {
1169
			pos = READ_ONCE(iter->position);
1170 1171
			if (!pos || css_tryget(&pos->css))
				break;
1172
			/*
1173 1174 1175 1176 1177 1178
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
1179
			 */
1180 1181
			(void)cmpxchg(&iter->position, pos, NULL);
		}
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1199
		}
K
KAMEZAWA Hiroyuki 已提交
1200

1201 1202 1203 1204 1205 1206
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1207

1208 1209
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1210

1211 1212
		if (css_tryget(css))
			break;
1213

1214
		memcg = NULL;
1215
	}
1216 1217 1218

	if (reclaim) {
		/*
1219 1220 1221
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
1222
		 */
1223 1224
		(void)cmpxchg(&iter->position, pos, memcg);

1225 1226 1227 1228 1229 1230 1231
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1232
	}
1233

1234 1235
out_unlock:
	rcu_read_unlock();
1236 1237 1238
	if (prev && prev != root)
		css_put(&prev->css);

1239
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1240
}
K
KAMEZAWA Hiroyuki 已提交
1241

1242 1243 1244 1245 1246 1247 1248
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1249 1250 1251 1252 1253 1254
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1255

1256 1257
static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
					struct mem_cgroup *dead_memcg)
1258 1259
{
	struct mem_cgroup_reclaim_iter *iter;
1260 1261
	struct mem_cgroup_per_node *mz;
	int nid;
1262

1263 1264
	for_each_node(nid) {
		mz = mem_cgroup_nodeinfo(from, nid);
1265 1266
		iter = &mz->iter;
		cmpxchg(&iter->position, dead_memcg, NULL);
1267 1268 1269
	}
}

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup *last;

	do {
		__invalidate_reclaim_iterators(memcg, dead_memcg);
		last = memcg;
	} while ((memcg = parent_mem_cgroup(memcg)));

	/*
	 * When cgruop1 non-hierarchy mode is used,
	 * parent_mem_cgroup() does not walk all the way up to the
	 * cgroup root (root_mem_cgroup). So we have to handle
	 * dead_memcg from cgroup root separately.
	 */
	if (last != root_mem_cgroup)
		__invalidate_reclaim_iterators(root_mem_cgroup,
						dead_memcg);
}

1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

1316
		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
#ifdef CONFIG_DEBUG_VM
void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
{
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return;

	memcg = page_memcg(page);

	if (!memcg)
		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
	else
		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
}
#endif

/**
 * lock_page_lruvec - lock and return lruvec for a given page.
 * @page: the page
 *
1349 1350 1351 1352 1353
 * These functions are safe to use under any of the following conditions:
 * - page locked
 * - PageLRU cleared
 * - lock_page_memcg()
 * - page->_refcount is zero
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
 */
struct lruvec *lock_page_lruvec(struct page *page)
{
	struct lruvec *lruvec;
	struct pglist_data *pgdat = page_pgdat(page);

	lruvec = mem_cgroup_page_lruvec(page, pgdat);
	spin_lock(&lruvec->lru_lock);

	lruvec_memcg_debug(lruvec, page);

	return lruvec;
}

struct lruvec *lock_page_lruvec_irq(struct page *page)
{
	struct lruvec *lruvec;
	struct pglist_data *pgdat = page_pgdat(page);

	lruvec = mem_cgroup_page_lruvec(page, pgdat);
	spin_lock_irq(&lruvec->lru_lock);

	lruvec_memcg_debug(lruvec, page);

	return lruvec;
}

struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
{
	struct lruvec *lruvec;
	struct pglist_data *pgdat = page_pgdat(page);

	lruvec = mem_cgroup_page_lruvec(page, pgdat);
	spin_lock_irqsave(&lruvec->lru_lock, *flags);

	lruvec_memcg_debug(lruvec, page);

	return lruvec;
}

1394
/**
1395 1396 1397
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1398
 * @zid: zone id of the accounted pages
1399
 * @nr_pages: positive when adding or negative when removing
1400
 *
1401 1402 1403
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1404
 */
1405
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1406
				int zid, int nr_pages)
1407
{
1408
	struct mem_cgroup_per_node *mz;
1409
	unsigned long *lru_size;
1410
	long size;
1411 1412 1413 1414

	if (mem_cgroup_disabled())
		return;

1415
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1416
	lru_size = &mz->lru_zone_size[zid][lru];
1417 1418 1419 1420 1421

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1422 1423 1424
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1425 1426 1427 1428 1429 1430
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1431
}
1432

1433
/**
1434
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1435
 * @memcg: the memory cgroup
1436
 *
1437
 * Returns the maximum amount of memory @mem can be charged with, in
1438
 * pages.
1439
 */
1440
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1441
{
1442 1443 1444
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1445

1446
	count = page_counter_read(&memcg->memory);
1447
	limit = READ_ONCE(memcg->memory.max);
1448 1449 1450
	if (count < limit)
		margin = limit - count;

1451
	if (do_memsw_account()) {
1452
		count = page_counter_read(&memcg->memsw);
1453
		limit = READ_ONCE(memcg->memsw.max);
1454
		if (count < limit)
1455
			margin = min(margin, limit - count);
1456 1457
		else
			margin = 0;
1458 1459 1460
	}

	return margin;
1461 1462
}

1463
/*
Q
Qiang Huang 已提交
1464
 * A routine for checking "mem" is under move_account() or not.
1465
 *
Q
Qiang Huang 已提交
1466 1467 1468
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1469
 */
1470
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1471
{
1472 1473
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1474
	bool ret = false;
1475 1476 1477 1478 1479 1480 1481 1482 1483
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1484

1485 1486
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1487 1488
unlock:
	spin_unlock(&mc.lock);
1489 1490 1491
	return ret;
}

1492
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1493 1494
{
	if (mc.moving_task && current != mc.moving_task) {
1495
		if (mem_cgroup_under_move(memcg)) {
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1508 1509 1510 1511 1512
struct memory_stat {
	const char *name;
	unsigned int idx;
};

1513
static const struct memory_stat memory_stats[] = {
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
	{ "anon",			NR_ANON_MAPPED			},
	{ "file",			NR_FILE_PAGES			},
	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
	{ "pagetables",			NR_PAGETABLE			},
	{ "percpu",			MEMCG_PERCPU_B			},
	{ "sock",			MEMCG_SOCK			},
	{ "shmem",			NR_SHMEM			},
	{ "file_mapped",		NR_FILE_MAPPED			},
	{ "file_dirty",			NR_FILE_DIRTY			},
	{ "file_writeback",		NR_WRITEBACK			},
1524 1525 1526
#ifdef CONFIG_SWAP
	{ "swapcached",			NR_SWAPCACHE			},
#endif
1527
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1528 1529 1530
	{ "anon_thp",			NR_ANON_THPS			},
	{ "file_thp",			NR_FILE_THPS			},
	{ "shmem_thp",			NR_SHMEM_THPS			},
1531
#endif
1532 1533 1534 1535 1536 1537 1538
	{ "inactive_anon",		NR_INACTIVE_ANON		},
	{ "active_anon",		NR_ACTIVE_ANON			},
	{ "inactive_file",		NR_INACTIVE_FILE		},
	{ "active_file",		NR_ACTIVE_FILE			},
	{ "unevictable",		NR_UNEVICTABLE			},
	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1539 1540

	/* The memory events */
1541 1542 1543 1544 1545 1546 1547
	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1548 1549
};

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
/* Translate stat items to the correct unit for memory.stat output */
static int memcg_page_state_unit(int item)
{
	switch (item) {
	case MEMCG_PERCPU_B:
	case NR_SLAB_RECLAIMABLE_B:
	case NR_SLAB_UNRECLAIMABLE_B:
	case WORKINGSET_REFAULT_ANON:
	case WORKINGSET_REFAULT_FILE:
	case WORKINGSET_ACTIVATE_ANON:
	case WORKINGSET_ACTIVATE_FILE:
	case WORKINGSET_RESTORE_ANON:
	case WORKINGSET_RESTORE_FILE:
	case WORKINGSET_NODERECLAIM:
		return 1;
	case NR_KERNEL_STACK_KB:
		return SZ_1K;
	default:
		return PAGE_SIZE;
	}
}

static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
						    int item)
{
	return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
}

1578 1579 1580 1581
static char *memory_stat_format(struct mem_cgroup *memcg)
{
	struct seq_buf s;
	int i;
1582

1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
	if (!s.buffer)
		return NULL;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

1598 1599
	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
		u64 size;
1600

1601
		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1602
		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1603

1604
		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1605 1606
			size += memcg_page_state_output(memcg,
							NR_SLAB_RECLAIMABLE_B);
1607 1608 1609
			seq_buf_printf(&s, "slab %llu\n", size);
		}
	}
1610 1611 1612

	/* Accumulated memory events */

1613 1614 1615 1616 1617 1618
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
		       memcg_events(memcg, PGFAULT));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
		       memcg_events(memcg, PGMAJFAULT));
	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
		       memcg_events(memcg, PGREFILL));
1619 1620 1621 1622 1623 1624
	seq_buf_printf(&s, "pgscan %lu\n",
		       memcg_events(memcg, PGSCAN_KSWAPD) +
		       memcg_events(memcg, PGSCAN_DIRECT));
	seq_buf_printf(&s, "pgsteal %lu\n",
		       memcg_events(memcg, PGSTEAL_KSWAPD) +
		       memcg_events(memcg, PGSTEAL_DIRECT));
1625 1626 1627 1628 1629 1630 1631 1632
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
		       memcg_events(memcg, PGACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
		       memcg_events(memcg, PGDEACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
		       memcg_events(memcg, PGLAZYFREE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
		       memcg_events(memcg, PGLAZYFREED));
1633 1634

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1635
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1636
		       memcg_events(memcg, THP_FAULT_ALLOC));
1637
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1638 1639 1640 1641 1642 1643 1644 1645
		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

	/* The above should easily fit into one page */
	WARN_ON_ONCE(seq_buf_has_overflowed(&s));

	return s.buffer;
}
1646

1647
#define K(x) ((x) << (PAGE_SHIFT-10))
1648
/**
1649 1650
 * mem_cgroup_print_oom_context: Print OOM information relevant to
 * memory controller.
1651 1652 1653 1654 1655 1656
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
1657
void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1658 1659 1660
{
	rcu_read_lock();

1661 1662 1663 1664 1665
	if (memcg) {
		pr_cont(",oom_memcg=");
		pr_cont_cgroup_path(memcg->css.cgroup);
	} else
		pr_cont(",global_oom");
1666
	if (p) {
1667
		pr_cont(",task_memcg=");
1668 1669
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	}
1670
	rcu_read_unlock();
1671 1672 1673 1674 1675 1676 1677 1678 1679
}

/**
 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
 * memory controller.
 * @memcg: The memory cgroup that went over limit
 */
void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
1680
	char *buf;
1681

1682 1683
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1684
		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1685 1686 1687
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->swap)),
1688
			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1689 1690 1691 1692 1693 1694 1695
	else {
		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->memsw)),
			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->kmem)),
			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1696
	}
1697 1698 1699 1700 1701 1702 1703 1704 1705

	pr_info("Memory cgroup stats for ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(":");
	buf = memory_stat_format(memcg);
	if (!buf)
		return;
	pr_info("%s", buf);
	kfree(buf);
1706 1707
}

D
David Rientjes 已提交
1708 1709 1710
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1711
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1712
{
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
	unsigned long max = READ_ONCE(memcg->memory.max);

	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
		if (mem_cgroup_swappiness(memcg))
			max += min(READ_ONCE(memcg->swap.max),
				   (unsigned long)total_swap_pages);
	} else { /* v1 */
		if (mem_cgroup_swappiness(memcg)) {
			/* Calculate swap excess capacity from memsw limit */
			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;

			max += min(swap, (unsigned long)total_swap_pages);
		}
1726
	}
1727
	return max;
D
David Rientjes 已提交
1728 1729
}

1730 1731 1732 1733 1734
unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
{
	return page_counter_read(&memcg->memory);
}

1735
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1736
				     int order)
1737
{
1738 1739 1740
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1741
		.memcg = memcg,
1742 1743 1744
		.gfp_mask = gfp_mask,
		.order = order,
	};
1745
	bool ret = true;
1746

1747 1748
	if (mutex_lock_killable(&oom_lock))
		return true;
1749 1750 1751 1752

	if (mem_cgroup_margin(memcg) >= (1 << order))
		goto unlock;

1753 1754 1755 1756 1757
	/*
	 * A few threads which were not waiting at mutex_lock_killable() can
	 * fail to bail out. Therefore, check again after holding oom_lock.
	 */
	ret = should_force_charge() || out_of_memory(&oc);
1758 1759

unlock:
1760
	mutex_unlock(&oom_lock);
1761
	return ret;
1762 1763
}

1764
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1765
				   pg_data_t *pgdat,
1766 1767 1768 1769 1770 1771 1772 1773 1774
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1775
		.pgdat = pgdat,
1776 1777
	};

1778
	excess = soft_limit_excess(root_memcg);
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1804
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1805
					pgdat, &nr_scanned);
1806
		*total_scanned += nr_scanned;
1807
		if (!soft_limit_excess(root_memcg))
1808
			break;
1809
	}
1810 1811
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1812 1813
}

1814 1815 1816 1817 1818 1819
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1820 1821
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1822 1823 1824 1825
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1826
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1827
{
1828
	struct mem_cgroup *iter, *failed = NULL;
1829

1830 1831
	spin_lock(&memcg_oom_lock);

1832
	for_each_mem_cgroup_tree(iter, memcg) {
1833
		if (iter->oom_lock) {
1834 1835 1836 1837 1838
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1839 1840
			mem_cgroup_iter_break(memcg, iter);
			break;
1841 1842
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1843
	}
K
KAMEZAWA Hiroyuki 已提交
1844

1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1856
		}
1857 1858
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1859 1860 1861 1862

	spin_unlock(&memcg_oom_lock);

	return !failed;
1863
}
1864

1865
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1866
{
K
KAMEZAWA Hiroyuki 已提交
1867 1868
	struct mem_cgroup *iter;

1869
	spin_lock(&memcg_oom_lock);
1870
	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1871
	for_each_mem_cgroup_tree(iter, memcg)
1872
		iter->oom_lock = false;
1873
	spin_unlock(&memcg_oom_lock);
1874 1875
}

1876
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1877 1878 1879
{
	struct mem_cgroup *iter;

1880
	spin_lock(&memcg_oom_lock);
1881
	for_each_mem_cgroup_tree(iter, memcg)
1882 1883
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1884 1885
}

1886
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1887 1888 1889
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1890
	/*
1891 1892
	 * Be careful about under_oom underflows becase a child memcg
	 * could have been added after mem_cgroup_mark_under_oom.
K
KAMEZAWA Hiroyuki 已提交
1893
	 */
1894
	spin_lock(&memcg_oom_lock);
1895
	for_each_mem_cgroup_tree(iter, memcg)
1896 1897 1898
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1899 1900
}

K
KAMEZAWA Hiroyuki 已提交
1901 1902
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1903
struct oom_wait_info {
1904
	struct mem_cgroup *memcg;
1905
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1906 1907
};

1908
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1909 1910
	unsigned mode, int sync, void *arg)
{
1911 1912
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1913 1914 1915
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1916
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1917

1918 1919
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1920 1921 1922 1923
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1924
static void memcg_oom_recover(struct mem_cgroup *memcg)
1925
{
1926 1927 1928 1929 1930 1931 1932 1933 1934
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1935
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1936 1937
}

1938 1939 1940 1941 1942 1943 1944 1945
enum oom_status {
	OOM_SUCCESS,
	OOM_FAILED,
	OOM_ASYNC,
	OOM_SKIPPED
};

static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1946
{
1947 1948 1949
	enum oom_status ret;
	bool locked;

1950 1951 1952
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		return OOM_SKIPPED;

1953 1954
	memcg_memory_event(memcg, MEMCG_OOM);

K
KAMEZAWA Hiroyuki 已提交
1955
	/*
1956 1957 1958 1959
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1960 1961 1962 1963
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1964
	 *
1965 1966 1967 1968 1969 1970 1971
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
K
KAMEZAWA Hiroyuki 已提交
1972
	 */
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
	if (memcg->oom_kill_disable) {
		if (!current->in_user_fault)
			return OOM_SKIPPED;
		css_get(&memcg->css);
		current->memcg_in_oom = memcg;
		current->memcg_oom_gfp_mask = mask;
		current->memcg_oom_order = order;

		return OOM_ASYNC;
	}

1984 1985 1986 1987 1988 1989 1990 1991
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	mem_cgroup_unmark_under_oom(memcg);
1992
	if (mem_cgroup_out_of_memory(memcg, mask, order))
1993 1994 1995 1996 1997 1998
		ret = OOM_SUCCESS;
	else
		ret = OOM_FAILED;

	if (locked)
		mem_cgroup_oom_unlock(memcg);
1999

2000
	return ret;
2001 2002 2003 2004
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2005
 * @handle: actually kill/wait or just clean up the OOM state
2006
 *
2007 2008
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
2009
 *
2010
 * Memcg supports userspace OOM handling where failed allocations must
2011 2012 2013 2014
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
2015
 * the end of the page fault to complete the OOM handling.
2016 2017
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
2018
 * completed, %false otherwise.
2019
 */
2020
bool mem_cgroup_oom_synchronize(bool handle)
2021
{
T
Tejun Heo 已提交
2022
	struct mem_cgroup *memcg = current->memcg_in_oom;
2023
	struct oom_wait_info owait;
2024
	bool locked;
2025 2026 2027

	/* OOM is global, do not handle */
	if (!memcg)
2028
		return false;
2029

2030
	if (!handle)
2031
		goto cleanup;
2032 2033 2034 2035 2036

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
2037
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
2038

2039
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
2050 2051
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
2052
	} else {
2053
		schedule();
2054 2055 2056 2057 2058
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
2059 2060 2061 2062 2063 2064 2065 2066
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2067
cleanup:
T
Tejun Heo 已提交
2068
	current->memcg_in_oom = NULL;
2069
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2070
	return true;
2071 2072
}

2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
/**
 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 * @victim: task to be killed by the OOM killer
 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 *
 * Returns a pointer to a memory cgroup, which has to be cleaned up
 * by killing all belonging OOM-killable tasks.
 *
 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 */
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
					    struct mem_cgroup *oom_domain)
{
	struct mem_cgroup *oom_group = NULL;
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return NULL;

	if (!oom_domain)
		oom_domain = root_mem_cgroup;

	rcu_read_lock();

	memcg = mem_cgroup_from_task(victim);
	if (memcg == root_mem_cgroup)
		goto out;

2101 2102 2103 2104 2105 2106 2107 2108
	/*
	 * If the victim task has been asynchronously moved to a different
	 * memory cgroup, we might end up killing tasks outside oom_domain.
	 * In this case it's better to ignore memory.group.oom.
	 */
	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
		goto out;

2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
	/*
	 * Traverse the memory cgroup hierarchy from the victim task's
	 * cgroup up to the OOMing cgroup (or root) to find the
	 * highest-level memory cgroup with oom.group set.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		if (memcg->oom_group)
			oom_group = memcg;

		if (memcg == oom_domain)
			break;
	}

	if (oom_group)
		css_get(&oom_group->css);
out:
	rcu_read_unlock();

	return oom_group;
}

void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
	pr_info("Tasks in ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(" are going to be killed due to memory.oom.group set\n");
}

2137
/**
2138
 * lock_page_memcg - lock a page and memcg binding
2139
 * @page: the page
2140
 *
2141
 * This function protects unlocked LRU pages from being moved to
2142 2143 2144 2145 2146
 * another cgroup.
 *
 * It ensures lifetime of the returned memcg. Caller is responsible
 * for the lifetime of the page; __unlock_page_memcg() is available
 * when @page might get freed inside the locked section.
2147
 */
2148
struct mem_cgroup *lock_page_memcg(struct page *page)
2149
{
2150
	struct page *head = compound_head(page); /* rmap on tail pages */
2151
	struct mem_cgroup *memcg;
2152
	unsigned long flags;
2153

2154 2155 2156 2157
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
2158 2159 2160 2161 2162 2163 2164
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page itself from being freed. E.g. writeback
	 * doesn't hold a page reference and relies on PG_writeback to
	 * keep off truncation, migration and so forth.
         */
2165 2166 2167
	rcu_read_lock();

	if (mem_cgroup_disabled())
2168
		return NULL;
2169
again:
2170
	memcg = page_memcg(head);
2171
	if (unlikely(!memcg))
2172
		return NULL;
2173

2174 2175 2176 2177 2178 2179
#ifdef CONFIG_PROVE_LOCKING
	local_irq_save(flags);
	might_lock(&memcg->move_lock);
	local_irq_restore(flags);
#endif

Q
Qiang Huang 已提交
2180
	if (atomic_read(&memcg->moving_account) <= 0)
2181
		return memcg;
2182

2183
	spin_lock_irqsave(&memcg->move_lock, flags);
2184
	if (memcg != page_memcg(head)) {
2185
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2186 2187
		goto again;
	}
2188 2189 2190 2191

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
2192
	 * the task who has the lock for unlock_page_memcg().
2193 2194 2195
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2196

2197
	return memcg;
2198
}
2199
EXPORT_SYMBOL(lock_page_memcg);
2200

2201
/**
2202 2203 2204 2205
 * __unlock_page_memcg - unlock and unpin a memcg
 * @memcg: the memcg
 *
 * Unlock and unpin a memcg returned by lock_page_memcg().
2206
 */
2207
void __unlock_page_memcg(struct mem_cgroup *memcg)
2208
{
2209 2210 2211 2212 2213 2214 2215 2216
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2217

2218
	rcu_read_unlock();
2219
}
2220 2221

/**
2222
 * unlock_page_memcg - unlock a page and memcg binding
2223 2224 2225 2226
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
2227 2228
	struct page *head = compound_head(page);

2229
	__unlock_page_memcg(page_memcg(head));
2230
}
2231
EXPORT_SYMBOL(unlock_page_memcg);
2232

2233 2234
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2235
	unsigned int nr_pages;
R
Roman Gushchin 已提交
2236 2237 2238 2239 2240 2241

#ifdef CONFIG_MEMCG_KMEM
	struct obj_cgroup *cached_objcg;
	unsigned int nr_bytes;
#endif

2242
	struct work_struct work;
2243
	unsigned long flags;
2244
#define FLUSHING_CACHED_CHARGE	0
2245 2246
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2247
static DEFINE_MUTEX(percpu_charge_mutex);
2248

R
Roman Gushchin 已提交
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
#ifdef CONFIG_MEMCG_KMEM
static void drain_obj_stock(struct memcg_stock_pcp *stock);
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg);

#else
static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
{
}
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	return false;
}
#endif

2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2275
 */
2276
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2277 2278
{
	struct memcg_stock_pcp *stock;
2279
	unsigned long flags;
2280
	bool ret = false;
2281

2282
	if (nr_pages > MEMCG_CHARGE_BATCH)
2283
		return ret;
2284

2285 2286 2287
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2288
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2289
		stock->nr_pages -= nr_pages;
2290 2291
		ret = true;
	}
2292 2293 2294

	local_irq_restore(flags);

2295 2296 2297 2298
	return ret;
}

/*
2299
 * Returns stocks cached in percpu and reset cached information.
2300 2301 2302 2303 2304
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2305 2306 2307
	if (!old)
		return;

2308
	if (stock->nr_pages) {
2309
		page_counter_uncharge(&old->memory, stock->nr_pages);
2310
		if (do_memsw_account())
2311
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2312
		stock->nr_pages = 0;
2313
	}
2314 2315

	css_put(&old->css);
2316 2317 2318 2319 2320
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
2321 2322 2323
	struct memcg_stock_pcp *stock;
	unsigned long flags;

2324 2325 2326 2327
	/*
	 * The only protection from memory hotplug vs. drain_stock races is
	 * that we always operate on local CPU stock here with IRQ disabled
	 */
2328 2329 2330
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
R
Roman Gushchin 已提交
2331
	drain_obj_stock(stock);
2332
	drain_stock(stock);
2333
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2334 2335

	local_irq_restore(flags);
2336 2337 2338
}

/*
2339
 * Cache charges(val) to local per_cpu area.
2340
 * This will be consumed by consume_stock() function, later.
2341
 */
2342
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2343
{
2344 2345 2346 2347
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
2348

2349
	stock = this_cpu_ptr(&memcg_stock);
2350
	if (stock->cached != memcg) { /* reset if necessary */
2351
		drain_stock(stock);
2352
		css_get(&memcg->css);
2353
		stock->cached = memcg;
2354
	}
2355
	stock->nr_pages += nr_pages;
2356

2357
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2358 2359
		drain_stock(stock);

2360
	local_irq_restore(flags);
2361 2362 2363
}

/*
2364
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2365
 * of the hierarchy under it.
2366
 */
2367
static void drain_all_stock(struct mem_cgroup *root_memcg)
2368
{
2369
	int cpu, curcpu;
2370

2371 2372 2373
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2374 2375 2376 2377 2378 2379
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
2380
	curcpu = get_cpu();
2381 2382
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2383
		struct mem_cgroup *memcg;
2384
		bool flush = false;
2385

2386
		rcu_read_lock();
2387
		memcg = stock->cached;
2388 2389 2390
		if (memcg && stock->nr_pages &&
		    mem_cgroup_is_descendant(memcg, root_memcg))
			flush = true;
R
Roman Gushchin 已提交
2391 2392
		if (obj_stock_flush_required(stock, root_memcg))
			flush = true;
2393 2394 2395 2396
		rcu_read_unlock();

		if (flush &&
		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2397 2398 2399 2400 2401
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2402
	}
2403
	put_cpu();
2404
	mutex_unlock(&percpu_charge_mutex);
2405 2406
}

2407
static int memcg_hotplug_cpu_dead(unsigned int cpu)
2408 2409
{
	struct memcg_stock_pcp *stock;
2410
	struct mem_cgroup *memcg, *mi;
2411 2412 2413

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
2414 2415 2416 2417 2418 2419 2420 2421

	for_each_mem_cgroup(memcg) {
		int i;

		for (i = 0; i < MEMCG_NR_STAT; i++) {
			int nid;
			long x;

2422
			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2423
			if (x)
2424 2425
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmstats[i]);
2426 2427 2428 2429 2430 2431 2432 2433 2434

			if (i >= NR_VM_NODE_STAT_ITEMS)
				continue;

			for_each_node(nid) {
				struct mem_cgroup_per_node *pn;

				pn = mem_cgroup_nodeinfo(memcg, nid);
				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2435
				if (x)
2436 2437 2438
					do {
						atomic_long_add(x, &pn->lruvec_stat[i]);
					} while ((pn = parent_nodeinfo(pn, nid)));
2439 2440 2441
			}
		}

2442
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2443 2444
			long x;

2445
			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2446
			if (x)
2447 2448
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmevents[i]);
2449 2450 2451
		}
	}

2452
	return 0;
2453 2454
}

2455 2456 2457
static unsigned long reclaim_high(struct mem_cgroup *memcg,
				  unsigned int nr_pages,
				  gfp_t gfp_mask)
2458
{
2459 2460
	unsigned long nr_reclaimed = 0;

2461
	do {
2462 2463
		unsigned long pflags;

2464 2465
		if (page_counter_read(&memcg->memory) <=
		    READ_ONCE(memcg->memory.high))
2466
			continue;
2467

2468
		memcg_memory_event(memcg, MEMCG_HIGH);
2469 2470

		psi_memstall_enter(&pflags);
2471 2472
		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
							     gfp_mask, true);
2473
		psi_memstall_leave(&pflags);
2474 2475
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));
2476 2477

	return nr_reclaimed;
2478 2479 2480 2481 2482 2483 2484
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
2485
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2486 2487
}

2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
/*
 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
 * enough to still cause a significant slowdown in most cases, while still
 * allowing diagnostics and tracing to proceed without becoming stuck.
 */
#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)

/*
 * When calculating the delay, we use these either side of the exponentiation to
 * maintain precision and scale to a reasonable number of jiffies (see the table
 * below.
 *
 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
 *   overage ratio to a delay.
2502
 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
 *   to produce a reasonable delay curve.
 *
 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
 * reasonable delay curve compared to precision-adjusted overage, not
 * penalising heavily at first, but still making sure that growth beyond the
 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
 * example, with a high of 100 megabytes:
 *
 *  +-------+------------------------+
 *  | usage | time to allocate in ms |
 *  +-------+------------------------+
 *  | 100M  |                      0 |
 *  | 101M  |                      6 |
 *  | 102M  |                     25 |
 *  | 103M  |                     57 |
 *  | 104M  |                    102 |
 *  | 105M  |                    159 |
 *  | 106M  |                    230 |
 *  | 107M  |                    313 |
 *  | 108M  |                    409 |
 *  | 109M  |                    518 |
 *  | 110M  |                    639 |
 *  | 111M  |                    774 |
 *  | 112M  |                    921 |
 *  | 113M  |                   1081 |
 *  | 114M  |                   1254 |
 *  | 115M  |                   1439 |
 *  | 116M  |                   1638 |
 *  | 117M  |                   1849 |
 *  | 118M  |                   2000 |
 *  | 119M  |                   2000 |
 *  | 120M  |                   2000 |
 *  +-------+------------------------+
 */
 #define MEMCG_DELAY_PRECISION_SHIFT 20
 #define MEMCG_DELAY_SCALING_SHIFT 14

2541
static u64 calculate_overage(unsigned long usage, unsigned long high)
2542
{
2543
	u64 overage;
2544

2545 2546
	if (usage <= high)
		return 0;
2547

2548 2549 2550 2551 2552
	/*
	 * Prevent division by 0 in overage calculation by acting as if
	 * it was a threshold of 1 page
	 */
	high = max(high, 1UL);
2553

2554 2555 2556 2557
	overage = usage - high;
	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
	return div64_u64(overage, high);
}
2558

2559 2560 2561
static u64 mem_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;
2562

2563 2564
	do {
		overage = calculate_overage(page_counter_read(&memcg->memory),
2565
					    READ_ONCE(memcg->memory.high));
2566
		max_overage = max(overage, max_overage);
2567 2568 2569
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

2570 2571 2572
	return max_overage;
}

2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
static u64 swap_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;

	do {
		overage = calculate_overage(page_counter_read(&memcg->swap),
					    READ_ONCE(memcg->swap.high));
		if (overage)
			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
		max_overage = max(overage, max_overage);
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

	return max_overage;
}

2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
/*
 * Get the number of jiffies that we should penalise a mischievous cgroup which
 * is exceeding its memory.high by checking both it and its ancestors.
 */
static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
					  unsigned int nr_pages,
					  u64 max_overage)
{
	unsigned long penalty_jiffies;

2599 2600
	if (!max_overage)
		return 0;
2601 2602 2603 2604 2605 2606 2607 2608 2609

	/*
	 * We use overage compared to memory.high to calculate the number of
	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
	 * fairly lenient on small overages, and increasingly harsh when the
	 * memcg in question makes it clear that it has no intention of stopping
	 * its crazy behaviour, so we exponentially increase the delay based on
	 * overage amount.
	 */
2610 2611 2612
	penalty_jiffies = max_overage * max_overage * HZ;
	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2613 2614 2615 2616 2617 2618 2619 2620 2621

	/*
	 * Factor in the task's own contribution to the overage, such that four
	 * N-sized allocations are throttled approximately the same as one
	 * 4N-sized allocation.
	 *
	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
	 * larger the current charge patch is than that.
	 */
2622
	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
}

/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned long penalty_jiffies;
	unsigned long pflags;
2633
	unsigned long nr_reclaimed;
2634
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2635
	int nr_retries = MAX_RECLAIM_RETRIES;
2636
	struct mem_cgroup *memcg;
2637
	bool in_retry = false;
2638 2639 2640 2641 2642 2643 2644

	if (likely(!nr_pages))
		return;

	memcg = get_mem_cgroup_from_mm(current->mm);
	current->memcg_nr_pages_over_high = 0;

2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
retry_reclaim:
	/*
	 * The allocating task should reclaim at least the batch size, but for
	 * subsequent retries we only want to do what's necessary to prevent oom
	 * or breaching resource isolation.
	 *
	 * This is distinct from memory.max or page allocator behaviour because
	 * memory.high is currently batched, whereas memory.max and the page
	 * allocator run every time an allocation is made.
	 */
	nr_reclaimed = reclaim_high(memcg,
				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
				    GFP_KERNEL);

2659 2660 2661 2662
	/*
	 * memory.high is breached and reclaim is unable to keep up. Throttle
	 * allocators proactively to slow down excessive growth.
	 */
2663 2664
	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
					       mem_find_max_overage(memcg));
2665

2666 2667 2668
	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
						swap_find_max_overage(memcg));

2669 2670 2671 2672 2673 2674 2675
	/*
	 * Clamp the max delay per usermode return so as to still keep the
	 * application moving forwards and also permit diagnostics, albeit
	 * extremely slowly.
	 */
	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);

2676 2677 2678 2679 2680 2681 2682 2683 2684
	/*
	 * Don't sleep if the amount of jiffies this memcg owes us is so low
	 * that it's not even worth doing, in an attempt to be nice to those who
	 * go only a small amount over their memory.high value and maybe haven't
	 * been aggressively reclaimed enough yet.
	 */
	if (penalty_jiffies <= HZ / 100)
		goto out;

2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
	/*
	 * If reclaim is making forward progress but we're still over
	 * memory.high, we want to encourage that rather than doing allocator
	 * throttling.
	 */
	if (nr_reclaimed || nr_retries--) {
		in_retry = true;
		goto retry_reclaim;
	}

2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
	/*
	 * If we exit early, we're guaranteed to die (since
	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
	 * need to account for any ill-begotten jiffies to pay them off later.
	 */
	psi_memstall_enter(&pflags);
	schedule_timeout_killable(penalty_jiffies);
	psi_memstall_leave(&pflags);

out:
	css_put(&memcg->css);
2706 2707
}

2708 2709
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2710
{
2711
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2712
	int nr_retries = MAX_RECLAIM_RETRIES;
2713
	struct mem_cgroup *mem_over_limit;
2714
	struct page_counter *counter;
2715
	enum oom_status oom_status;
2716
	unsigned long nr_reclaimed;
2717 2718
	bool may_swap = true;
	bool drained = false;
2719
	unsigned long pflags;
2720

2721
	if (mem_cgroup_is_root(memcg))
2722
		return 0;
2723
retry:
2724
	if (consume_stock(memcg, nr_pages))
2725
		return 0;
2726

2727
	if (!do_memsw_account() ||
2728 2729
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2730
			goto done_restock;
2731
		if (do_memsw_account())
2732 2733
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2734
	} else {
2735
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2736
		may_swap = false;
2737
	}
2738

2739 2740 2741 2742
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2743

2744 2745 2746 2747 2748 2749 2750 2751 2752
	/*
	 * Memcg doesn't have a dedicated reserve for atomic
	 * allocations. But like the global atomic pool, we need to
	 * put the burden of reclaim on regular allocation requests
	 * and let these go through as privileged allocations.
	 */
	if (gfp_mask & __GFP_ATOMIC)
		goto force;

2753 2754 2755 2756 2757 2758
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
2759
	if (unlikely(should_force_charge()))
2760
		goto force;
2761

2762 2763 2764 2765 2766 2767 2768 2769 2770
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2771 2772 2773
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2774
	if (!gfpflags_allow_blocking(gfp_mask))
2775
		goto nomem;
2776

2777
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2778

2779
	psi_memstall_enter(&pflags);
2780 2781
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2782
	psi_memstall_leave(&pflags);
2783

2784
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2785
		goto retry;
2786

2787
	if (!drained) {
2788
		drain_all_stock(mem_over_limit);
2789 2790 2791 2792
		drained = true;
		goto retry;
	}

2793 2794
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2795 2796 2797 2798 2799 2800 2801 2802 2803
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2804
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2805 2806 2807 2808 2809 2810 2811 2812
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2813 2814 2815
	if (nr_retries--)
		goto retry;

2816
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2817 2818
		goto nomem;

2819
	if (gfp_mask & __GFP_NOFAIL)
2820
		goto force;
2821

2822
	if (fatal_signal_pending(current))
2823
		goto force;
2824

2825 2826 2827 2828 2829 2830
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2831
		       get_order(nr_pages * PAGE_SIZE));
2832 2833
	switch (oom_status) {
	case OOM_SUCCESS:
2834
		nr_retries = MAX_RECLAIM_RETRIES;
2835 2836 2837 2838 2839 2840
		goto retry;
	case OOM_FAILED:
		goto force;
	default:
		goto nomem;
	}
2841
nomem:
2842
	if (!(gfp_mask & __GFP_NOFAIL))
2843
		return -ENOMEM;
2844 2845 2846 2847 2848 2849 2850
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2851
	if (do_memsw_account())
2852 2853 2854
		page_counter_charge(&memcg->memsw, nr_pages);

	return 0;
2855 2856 2857 2858

done_restock:
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2859

2860
	/*
2861 2862
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2863
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2864 2865 2866 2867
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2868 2869
	 */
	do {
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
		bool mem_high, swap_high;

		mem_high = page_counter_read(&memcg->memory) >
			READ_ONCE(memcg->memory.high);
		swap_high = page_counter_read(&memcg->swap) >
			READ_ONCE(memcg->swap.high);

		/* Don't bother a random interrupted task */
		if (in_interrupt()) {
			if (mem_high) {
2880 2881 2882
				schedule_work(&memcg->high_work);
				break;
			}
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
			continue;
		}

		if (mem_high || swap_high) {
			/*
			 * The allocating tasks in this cgroup will need to do
			 * reclaim or be throttled to prevent further growth
			 * of the memory or swap footprints.
			 *
			 * Target some best-effort fairness between the tasks,
			 * and distribute reclaim work and delay penalties
			 * based on how much each task is actually allocating.
			 */
V
Vladimir Davydov 已提交
2896
			current->memcg_nr_pages_over_high += batch;
2897 2898 2899
			set_notify_resume(current);
			break;
		}
2900
	} while ((memcg = parent_mem_cgroup(memcg)));
2901 2902

	return 0;
2903
}
2904

2905
#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2906
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2907
{
2908 2909 2910
	if (mem_cgroup_is_root(memcg))
		return;

2911
	page_counter_uncharge(&memcg->memory, nr_pages);
2912
	if (do_memsw_account())
2913
		page_counter_uncharge(&memcg->memsw, nr_pages);
2914
}
2915
#endif
2916

2917
static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2918
{
2919
	VM_BUG_ON_PAGE(page_memcg(page), page);
2920
	/*
2921
	 * Any of the following ensures page's memcg stability:
2922
	 *
2923 2924 2925 2926
	 * - the page lock
	 * - LRU isolation
	 * - lock_page_memcg()
	 * - exclusive reference
2927
	 */
2928
	page->memcg_data = (unsigned long)memcg;
2929
}
2930

2931
#ifdef CONFIG_MEMCG_KMEM
2932
int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2933
				 gfp_t gfp, bool new_page)
2934 2935
{
	unsigned int objects = objs_per_slab_page(s, page);
2936
	unsigned long memcg_data;
2937 2938 2939 2940 2941 2942 2943
	void *vec;

	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
			   page_to_nid(page));
	if (!vec)
		return -ENOMEM;

2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
	if (new_page) {
		/*
		 * If the slab page is brand new and nobody can yet access
		 * it's memcg_data, no synchronization is required and
		 * memcg_data can be simply assigned.
		 */
		page->memcg_data = memcg_data;
	} else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
		/*
		 * If the slab page is already in use, somebody can allocate
		 * and assign obj_cgroups in parallel. In this case the existing
		 * objcg vector should be reused.
		 */
2958
		kfree(vec);
2959 2960
		return 0;
	}
2961

2962
	kmemleak_not_leak(vec);
2963 2964 2965
	return 0;
}

2966 2967 2968
/*
 * Returns a pointer to the memory cgroup to which the kernel object is charged.
 *
2969 2970 2971 2972 2973 2974
 * A passed kernel object can be a slab object or a generic kernel page, so
 * different mechanisms for getting the memory cgroup pointer should be used.
 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
 * can not know for sure how the kernel object is implemented.
 * mem_cgroup_from_obj() can be safely used in such cases.
 *
2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
 * cgroup_mutex, etc.
 */
struct mem_cgroup *mem_cgroup_from_obj(void *p)
{
	struct page *page;

	if (mem_cgroup_disabled())
		return NULL;

	page = virt_to_head_page(p);

	/*
2988 2989 2990
	 * Slab objects are accounted individually, not per-page.
	 * Memcg membership data for each individual object is saved in
	 * the page->obj_cgroups.
2991
	 */
2992
	if (page_objcgs_check(page)) {
2993 2994 2995 2996
		struct obj_cgroup *objcg;
		unsigned int off;

		off = obj_to_index(page->slab_cache, page, p);
2997
		objcg = page_objcgs(page)[off];
2998 2999 3000 3001
		if (objcg)
			return obj_cgroup_memcg(objcg);

		return NULL;
3002
	}
3003

3004 3005 3006 3007 3008 3009 3010 3011
	/*
	 * page_memcg_check() is used here, because page_has_obj_cgroups()
	 * check above could fail because the object cgroups vector wasn't set
	 * at that moment, but it can be set concurrently.
	 * page_memcg_check(page) will guarantee that a proper memory
	 * cgroup pointer or NULL will be returned.
	 */
	return page_memcg_check(page);
3012 3013
}

R
Roman Gushchin 已提交
3014 3015 3016 3017 3018
__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
{
	struct obj_cgroup *objcg = NULL;
	struct mem_cgroup *memcg;

3019 3020 3021
	if (memcg_kmem_bypass())
		return NULL;

R
Roman Gushchin 已提交
3022
	rcu_read_lock();
3023 3024
	if (unlikely(active_memcg()))
		memcg = active_memcg();
R
Roman Gushchin 已提交
3025 3026 3027 3028 3029 3030 3031
	else
		memcg = mem_cgroup_from_task(current);

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		objcg = rcu_dereference(memcg->objcg);
		if (objcg && obj_cgroup_tryget(objcg))
			break;
3032
		objcg = NULL;
R
Roman Gushchin 已提交
3033 3034 3035 3036 3037 3038
	}
	rcu_read_unlock();

	return objcg;
}

3039
static int memcg_alloc_cache_id(void)
3040
{
3041 3042 3043
	int id, size;
	int err;

3044
	id = ida_simple_get(&memcg_cache_ida,
3045 3046 3047
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
3048

3049
	if (id < memcg_nr_cache_ids)
3050 3051 3052 3053 3054 3055
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
3056
	down_write(&memcg_cache_ids_sem);
3057 3058

	size = 2 * (id + 1);
3059 3060 3061 3062 3063
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

3064
	err = memcg_update_all_list_lrus(size);
3065 3066 3067 3068 3069
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

3070
	if (err) {
3071
		ida_simple_remove(&memcg_cache_ida, id);
3072 3073 3074 3075 3076 3077 3078
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
3079
	ida_simple_remove(&memcg_cache_ida, id);
3080 3081
}

3082
/**
3083
 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
3084
 * @memcg: memory cgroup to charge
3085
 * @gfp: reclaim mode
3086
 * @nr_pages: number of pages to charge
3087 3088 3089
 *
 * Returns 0 on success, an error code on failure.
 */
3090 3091
int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
			unsigned int nr_pages)
3092
{
3093
	struct page_counter *counter;
3094 3095
	int ret;

3096
	ret = try_charge(memcg, gfp, nr_pages);
3097
	if (ret)
3098
		return ret;
3099 3100 3101

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111

		/*
		 * Enforce __GFP_NOFAIL allocation because callers are not
		 * prepared to see failures and likely do not have any failure
		 * handling code.
		 */
		if (gfp & __GFP_NOFAIL) {
			page_counter_charge(&memcg->kmem, nr_pages);
			return 0;
		}
3112 3113
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
3114
	}
3115
	return 0;
3116 3117
}

3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
/**
 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
 */
void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
{
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

3128
	refill_stock(memcg, nr_pages);
3129 3130
}

3131
/**
3132
 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3133 3134 3135 3136 3137 3138
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
3139
int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3140
{
3141
	struct mem_cgroup *memcg;
3142
	int ret = 0;
3143

3144
	memcg = get_mem_cgroup_from_current();
3145
	if (memcg && !mem_cgroup_is_root(memcg)) {
3146
		ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3147
		if (!ret) {
3148 3149
			page->memcg_data = (unsigned long)memcg |
				MEMCG_DATA_KMEM;
3150
			return 0;
3151
		}
3152
		css_put(&memcg->css);
3153
	}
3154
	return ret;
3155
}
3156

3157
/**
3158
 * __memcg_kmem_uncharge_page: uncharge a kmem page
3159 3160 3161
 * @page: page to uncharge
 * @order: allocation order
 */
3162
void __memcg_kmem_uncharge_page(struct page *page, int order)
3163
{
3164
	struct mem_cgroup *memcg = page_memcg(page);
3165
	unsigned int nr_pages = 1 << order;
3166 3167 3168 3169

	if (!memcg)
		return;

3170
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3171
	__memcg_kmem_uncharge(memcg, nr_pages);
3172
	page->memcg_data = 0;
3173
	css_put(&memcg->css);
3174
}
R
Roman Gushchin 已提交
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285

static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
{
	struct memcg_stock_pcp *stock;
	unsigned long flags;
	bool ret = false;

	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
		stock->nr_bytes -= nr_bytes;
		ret = true;
	}

	local_irq_restore(flags);

	return ret;
}

static void drain_obj_stock(struct memcg_stock_pcp *stock)
{
	struct obj_cgroup *old = stock->cached_objcg;

	if (!old)
		return;

	if (stock->nr_bytes) {
		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);

		if (nr_pages) {
			rcu_read_lock();
			__memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
			rcu_read_unlock();
		}

		/*
		 * The leftover is flushed to the centralized per-memcg value.
		 * On the next attempt to refill obj stock it will be moved
		 * to a per-cpu stock (probably, on an other CPU), see
		 * refill_obj_stock().
		 *
		 * How often it's flushed is a trade-off between the memory
		 * limit enforcement accuracy and potential CPU contention,
		 * so it might be changed in the future.
		 */
		atomic_add(nr_bytes, &old->nr_charged_bytes);
		stock->nr_bytes = 0;
	}

	obj_cgroup_put(old);
	stock->cached_objcg = NULL;
}

static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	struct mem_cgroup *memcg;

	if (stock->cached_objcg) {
		memcg = obj_cgroup_memcg(stock->cached_objcg);
		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
			return true;
	}

	return false;
}

static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
{
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
	if (stock->cached_objcg != objcg) { /* reset if necessary */
		drain_obj_stock(stock);
		obj_cgroup_get(objcg);
		stock->cached_objcg = objcg;
		stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
	}
	stock->nr_bytes += nr_bytes;

	if (stock->nr_bytes > PAGE_SIZE)
		drain_obj_stock(stock);

	local_irq_restore(flags);
}

int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
{
	struct mem_cgroup *memcg;
	unsigned int nr_pages, nr_bytes;
	int ret;

	if (consume_obj_stock(objcg, size))
		return 0;

	/*
	 * In theory, memcg->nr_charged_bytes can have enough
	 * pre-charged bytes to satisfy the allocation. However,
	 * flushing memcg->nr_charged_bytes requires two atomic
	 * operations, and memcg->nr_charged_bytes can't be big,
	 * so it's better to ignore it and try grab some new pages.
	 * memcg->nr_charged_bytes will be flushed in
	 * refill_obj_stock(), called from this function or
	 * independently later.
	 */
	rcu_read_lock();
3286
retry:
R
Roman Gushchin 已提交
3287
	memcg = obj_cgroup_memcg(objcg);
3288 3289
	if (unlikely(!css_tryget(&memcg->css)))
		goto retry;
R
Roman Gushchin 已提交
3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
	rcu_read_unlock();

	nr_pages = size >> PAGE_SHIFT;
	nr_bytes = size & (PAGE_SIZE - 1);

	if (nr_bytes)
		nr_pages += 1;

	ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
	if (!ret && nr_bytes)
		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);

	css_put(&memcg->css);
	return ret;
}

void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
{
	refill_obj_stock(objcg, size);
}

3311
#endif /* CONFIG_MEMCG_KMEM */
3312

3313 3314
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
3315
 * Because page_memcg(head) is not set on compound tails, set it now.
3316
 */
3317
void mem_cgroup_split_huge_fixup(struct page *head)
3318
{
3319
	struct mem_cgroup *memcg = page_memcg(head);
3320
	int i;
3321

3322 3323
	if (mem_cgroup_disabled())
		return;
3324

3325 3326
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		css_get(&memcg->css);
3327
		head[i].memcg_data = (unsigned long)memcg;
3328
	}
3329
}
3330
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3331

A
Andrew Morton 已提交
3332
#ifdef CONFIG_MEMCG_SWAP
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
3344
 * The caller must have charged to @to, IOW, called page_counter_charge() about
3345 3346 3347
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3348
				struct mem_cgroup *from, struct mem_cgroup *to)
3349 3350 3351
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
3352 3353
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3354 3355

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3356 3357
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
3358 3359 3360 3361 3362 3363
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3364
				struct mem_cgroup *from, struct mem_cgroup *to)
3365 3366 3367
{
	return -EINVAL;
}
3368
#endif
K
KAMEZAWA Hiroyuki 已提交
3369

3370
static DEFINE_MUTEX(memcg_max_mutex);
3371

3372 3373
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
3374
{
3375
	bool enlarge = false;
3376
	bool drained = false;
3377
	int ret;
3378 3379
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3380

3381
	do {
3382 3383 3384 3385
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3386

3387
		mutex_lock(&memcg_max_mutex);
3388 3389
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
3390
		 * break our basic invariant rule memory.max <= memsw.max.
3391
		 */
3392
		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3393
					   max <= memcg->memsw.max;
3394
		if (!limits_invariant) {
3395
			mutex_unlock(&memcg_max_mutex);
3396 3397 3398
			ret = -EINVAL;
			break;
		}
3399
		if (max > counter->max)
3400
			enlarge = true;
3401 3402
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
3403 3404 3405 3406

		if (!ret)
			break;

3407 3408 3409 3410 3411 3412
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

3413 3414 3415 3416 3417 3418
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
3419

3420 3421
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3422

3423 3424 3425
	return ret;
}

3426
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3427 3428 3429 3430
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
3431
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3432 3433
	unsigned long reclaimed;
	int loop = 0;
3434
	struct mem_cgroup_tree_per_node *mctz;
3435
	unsigned long excess;
3436 3437 3438 3439 3440
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

3441
	mctz = soft_limit_tree_node(pgdat->node_id);
3442 3443 3444 3445 3446 3447

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
3448
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3449 3450
		return 0;

3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
3465
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3466 3467 3468
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3469
		spin_lock_irq(&mctz->lock);
3470
		__mem_cgroup_remove_exceeded(mz, mctz);
3471 3472 3473 3474 3475 3476

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3477 3478 3479
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3480
		excess = soft_limit_excess(mz->memcg);
3481 3482 3483 3484 3485 3486 3487 3488 3489
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3490
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3491
		spin_unlock_irq(&mctz->lock);
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3509
/*
3510
 * Reclaims as many pages from the given memcg as possible.
3511 3512 3513 3514 3515
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
3516
	int nr_retries = MAX_RECLAIM_RETRIES;
3517

3518 3519
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3520 3521 3522

	drain_all_stock(memcg);

3523
	/* try to free all pages in this cgroup */
3524
	while (nr_retries && page_counter_read(&memcg->memory)) {
3525
		int progress;
3526

3527 3528 3529
		if (signal_pending(current))
			return -EINTR;

3530 3531
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3532
		if (!progress) {
3533
			nr_retries--;
3534
			/* maybe some writeback is necessary */
3535
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3536
		}
3537 3538

	}
3539 3540

	return 0;
3541 3542
}

3543 3544 3545
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3546
{
3547
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3548

3549 3550
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3551
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3552 3553
}

3554 3555
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3556
{
3557
	return 1;
3558 3559
}

3560 3561
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3562
{
3563
	if (val == 1)
3564
		return 0;
3565

3566 3567 3568
	pr_warn_once("Non-hierarchical mode is deprecated. "
		     "Please report your usecase to linux-mm@kvack.org if you "
		     "depend on this functionality.\n");
3569

3570
	return -EINVAL;
3571 3572
}

3573
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3574
{
3575
	unsigned long val;
3576

3577
	if (mem_cgroup_is_root(memcg)) {
3578
		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3579
			memcg_page_state(memcg, NR_ANON_MAPPED);
3580 3581
		if (swap)
			val += memcg_page_state(memcg, MEMCG_SWAP);
3582
	} else {
3583
		if (!swap)
3584
			val = page_counter_read(&memcg->memory);
3585
		else
3586
			val = page_counter_read(&memcg->memsw);
3587
	}
3588
	return val;
3589 3590
}

3591 3592 3593 3594 3595 3596 3597
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3598

3599
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3600
			       struct cftype *cft)
B
Balbir Singh 已提交
3601
{
3602
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3603
	struct page_counter *counter;
3604

3605
	switch (MEMFILE_TYPE(cft->private)) {
3606
	case _MEM:
3607 3608
		counter = &memcg->memory;
		break;
3609
	case _MEMSWAP:
3610 3611
		counter = &memcg->memsw;
		break;
3612
	case _KMEM:
3613
		counter = &memcg->kmem;
3614
		break;
V
Vladimir Davydov 已提交
3615
	case _TCP:
3616
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3617
		break;
3618 3619 3620
	default:
		BUG();
	}
3621 3622 3623 3624

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
3625
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3626
		if (counter == &memcg->memsw)
3627
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3628 3629
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
3630
		return (u64)counter->max * PAGE_SIZE;
3631 3632 3633 3634 3635 3636 3637 3638 3639
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3640
}
3641

3642
static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3643
{
3644
	unsigned long stat[MEMCG_NR_STAT] = {0};
3645 3646 3647 3648
	struct mem_cgroup *mi;
	int node, cpu, i;

	for_each_online_cpu(cpu)
3649
		for (i = 0; i < MEMCG_NR_STAT; i++)
3650
			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3651 3652

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3653
		for (i = 0; i < MEMCG_NR_STAT; i++)
3654 3655 3656 3657 3658 3659
			atomic_long_add(stat[i], &mi->vmstats[i]);

	for_each_node(node) {
		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
		struct mem_cgroup_per_node *pi;

3660
		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3661 3662 3663
			stat[i] = 0;

		for_each_online_cpu(cpu)
3664
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3665 3666
				stat[i] += per_cpu(
					pn->lruvec_stat_cpu->count[i], cpu);
3667 3668

		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3669
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3670 3671 3672 3673
				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
	}
}

3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
{
	unsigned long events[NR_VM_EVENT_ITEMS];
	struct mem_cgroup *mi;
	int cpu, i;

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
		events[i] = 0;

	for_each_online_cpu(cpu)
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3685 3686
			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
					     cpu);
3687 3688 3689 3690 3691 3692

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
			atomic_long_add(events[i], &mi->vmevents[i]);
}

3693
#ifdef CONFIG_MEMCG_KMEM
3694
static int memcg_online_kmem(struct mem_cgroup *memcg)
3695
{
R
Roman Gushchin 已提交
3696
	struct obj_cgroup *objcg;
3697 3698
	int memcg_id;

3699 3700 3701
	if (cgroup_memory_nokmem)
		return 0;

3702
	BUG_ON(memcg->kmemcg_id >= 0);
3703
	BUG_ON(memcg->kmem_state);
3704

3705
	memcg_id = memcg_alloc_cache_id();
3706 3707
	if (memcg_id < 0)
		return memcg_id;
3708

R
Roman Gushchin 已提交
3709 3710 3711 3712 3713 3714 3715 3716
	objcg = obj_cgroup_alloc();
	if (!objcg) {
		memcg_free_cache_id(memcg_id);
		return -ENOMEM;
	}
	objcg->memcg = memcg;
	rcu_assign_pointer(memcg->objcg, objcg);

3717 3718
	static_branch_enable(&memcg_kmem_enabled_key);

V
Vladimir Davydov 已提交
3719
	memcg->kmemcg_id = memcg_id;
3720
	memcg->kmem_state = KMEM_ONLINE;
3721 3722

	return 0;
3723 3724
}

3725 3726 3727 3728 3729 3730 3731 3732
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
3733

3734 3735 3736 3737 3738 3739
	memcg->kmem_state = KMEM_ALLOCATED;

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

R
Roman Gushchin 已提交
3740
	memcg_reparent_objcgs(memcg, parent);
3741 3742 3743 3744

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

3745 3746 3747 3748 3749 3750 3751 3752
	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
3753
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3754 3755 3756 3757 3758
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
	}
3759 3760
	rcu_read_unlock();

3761
	memcg_drain_all_list_lrus(kmemcg_id, parent);
3762 3763 3764 3765 3766 3767

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
3768 3769 3770
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);
3771
}
3772
#else
3773
static int memcg_online_kmem(struct mem_cgroup *memcg)
3774 3775 3776 3777 3778 3779 3780 3781 3782
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
3783
#endif /* CONFIG_MEMCG_KMEM */
3784

3785 3786
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
3787
{
3788
	int ret;
3789

3790 3791 3792
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
3793
	return ret;
3794
}
3795

3796
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
3797 3798 3799
{
	int ret;

3800
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3801

3802
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
3803 3804 3805
	if (ret)
		goto out;

3806
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3807 3808 3809
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3810 3811 3812
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
3813 3814 3815 3816 3817 3818
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3819
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
3820 3821 3822 3823
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3824
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3825 3826
	}
out:
3827
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3828 3829 3830
	return ret;
}

3831 3832 3833 3834
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3835 3836
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3837
{
3838
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3839
	unsigned long nr_pages;
3840 3841
	int ret;

3842
	buf = strstrip(buf);
3843
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3844 3845
	if (ret)
		return ret;
3846

3847
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3848
	case RES_LIMIT:
3849 3850 3851 3852
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3853 3854
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3855
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3856
			break;
3857
		case _MEMSWAP:
3858
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3859
			break;
3860
		case _KMEM:
3861 3862 3863
			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
				     "Please report your usecase to linux-mm@kvack.org if you "
				     "depend on this functionality.\n");
3864
			ret = memcg_update_kmem_max(memcg, nr_pages);
3865
			break;
V
Vladimir Davydov 已提交
3866
		case _TCP:
3867
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
3868
			break;
3869
		}
3870
		break;
3871 3872 3873
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3874 3875
		break;
	}
3876
	return ret ?: nbytes;
B
Balbir Singh 已提交
3877 3878
}

3879 3880
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3881
{
3882
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3883
	struct page_counter *counter;
3884

3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3895
	case _TCP:
3896
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3897
		break;
3898 3899 3900
	default:
		BUG();
	}
3901

3902
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3903
	case RES_MAX_USAGE:
3904
		page_counter_reset_watermark(counter);
3905 3906
		break;
	case RES_FAILCNT:
3907
		counter->failcnt = 0;
3908
		break;
3909 3910
	default:
		BUG();
3911
	}
3912

3913
	return nbytes;
3914 3915
}

3916
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3917 3918
					struct cftype *cft)
{
3919
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3920 3921
}

3922
#ifdef CONFIG_MMU
3923
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3924 3925
					struct cftype *cft, u64 val)
{
3926
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3927

3928
	if (val & ~MOVE_MASK)
3929
		return -EINVAL;
3930

3931
	/*
3932 3933 3934 3935
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3936
	 */
3937
	memcg->move_charge_at_immigrate = val;
3938 3939
	return 0;
}
3940
#else
3941
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3942 3943 3944 3945 3946
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3947

3948
#ifdef CONFIG_NUMA
3949 3950 3951 3952 3953 3954

#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)

static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3955
				int nid, unsigned int lru_mask, bool tree)
3956
{
3957
	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3958 3959 3960 3961 3962 3963 3964 3965
	unsigned long nr = 0;
	enum lru_list lru;

	VM_BUG_ON((unsigned)nid >= nr_node_ids);

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3966 3967 3968 3969
		if (tree)
			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
		else
			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3970 3971 3972 3973 3974
	}
	return nr;
}

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3975 3976
					     unsigned int lru_mask,
					     bool tree)
3977 3978 3979 3980 3981 3982 3983
{
	unsigned long nr = 0;
	enum lru_list lru;

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3984 3985 3986 3987
		if (tree)
			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
		else
			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3988 3989 3990 3991
	}
	return nr;
}

3992
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3993
{
3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
4006
	int nid;
4007
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4008

4009
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4010 4011 4012 4013 4014 4015 4016
		seq_printf(m, "%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   false));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, false));
4017
		seq_putc(m, '\n');
4018 4019
	}

4020
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4021 4022 4023 4024 4025 4026 4027 4028

		seq_printf(m, "hierarchical_%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   true));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, true));
4029
		seq_putc(m, '\n');
4030 4031 4032 4033 4034 4035
	}

	return 0;
}
#endif /* CONFIG_NUMA */

4036
static const unsigned int memcg1_stats[] = {
4037
	NR_FILE_PAGES,
4038
	NR_ANON_MAPPED,
4039 4040 4041
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	NR_ANON_THPS,
#endif
4042 4043 4044 4045 4046 4047 4048 4049 4050 4051
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
4052
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4053
	"rss_huge",
4054
#endif
4055 4056 4057 4058 4059 4060 4061
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

4062
/* Universal VM events cgroup1 shows, original sort order */
4063
static const unsigned int memcg1_events[] = {
4064 4065 4066 4067 4068 4069
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

4070
static int memcg_stat_show(struct seq_file *m, void *v)
4071
{
4072
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4073
	unsigned long memory, memsw;
4074 4075
	struct mem_cgroup *mi;
	unsigned int i;
4076

4077
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4078

4079
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4080 4081
		unsigned long nr;

4082
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4083
			continue;
4084 4085
		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4086
	}
L
Lee Schermerhorn 已提交
4087

4088
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4089
		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4090
			   memcg_events_local(memcg, memcg1_events[i]));
4091 4092

	for (i = 0; i < NR_LRU_LISTS; i++)
4093
		seq_printf(m, "%s %lu\n", lru_list_name(i),
4094
			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4095
			   PAGE_SIZE);
4096

K
KAMEZAWA Hiroyuki 已提交
4097
	/* Hierarchical information */
4098 4099
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4100 4101
		memory = min(memory, READ_ONCE(mi->memory.max));
		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4102
	}
4103 4104
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
4105
	if (do_memsw_account())
4106 4107
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
4108

4109
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4110 4111
		unsigned long nr;

4112
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4113
			continue;
4114
		nr = memcg_page_state(memcg, memcg1_stats[i]);
4115
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4116
						(u64)nr * PAGE_SIZE);
4117 4118
	}

4119
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4120 4121
		seq_printf(m, "total_%s %llu\n",
			   vm_event_name(memcg1_events[i]),
4122
			   (u64)memcg_events(memcg, memcg1_events[i]));
4123

4124
	for (i = 0; i < NR_LRU_LISTS; i++)
4125
		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4126 4127
			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			   PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
4128

K
KOSAKI Motohiro 已提交
4129 4130
#ifdef CONFIG_DEBUG_VM
	{
4131 4132
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
4133 4134
		unsigned long anon_cost = 0;
		unsigned long file_cost = 0;
K
KOSAKI Motohiro 已提交
4135

4136 4137
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
K
KOSAKI Motohiro 已提交
4138

4139 4140
			anon_cost += mz->lruvec.anon_cost;
			file_cost += mz->lruvec.file_cost;
4141
		}
4142 4143
		seq_printf(m, "anon_cost %lu\n", anon_cost);
		seq_printf(m, "file_cost %lu\n", file_cost);
K
KOSAKI Motohiro 已提交
4144 4145 4146
	}
#endif

4147 4148 4149
	return 0;
}

4150 4151
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
4152
{
4153
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4154

4155
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4156 4157
}

4158 4159
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
4160
{
4161
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4162

4163
	if (val > 100)
K
KOSAKI Motohiro 已提交
4164 4165
		return -EINVAL;

4166
	if (css->parent)
4167 4168 4169
		memcg->swappiness = val;
	else
		vm_swappiness = val;
4170

K
KOSAKI Motohiro 已提交
4171 4172 4173
	return 0;
}

4174 4175 4176
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
4177
	unsigned long usage;
4178 4179 4180 4181
	int i;

	rcu_read_lock();
	if (!swap)
4182
		t = rcu_dereference(memcg->thresholds.primary);
4183
	else
4184
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4185 4186 4187 4188

	if (!t)
		goto unlock;

4189
	usage = mem_cgroup_usage(memcg, swap);
4190 4191

	/*
4192
	 * current_threshold points to threshold just below or equal to usage.
4193 4194 4195
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4196
	i = t->current_threshold;
4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4220
	t->current_threshold = i - 1;
4221 4222 4223 4224 4225 4226
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4227 4228
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
4229
		if (do_memsw_account())
4230 4231 4232 4233
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4234 4235 4236 4237 4238 4239 4240
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

4241 4242 4243 4244 4245 4246 4247
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
4248 4249
}

4250
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4251 4252 4253
{
	struct mem_cgroup_eventfd_list *ev;

4254 4255
	spin_lock(&memcg_oom_lock);

4256
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4257
		eventfd_signal(ev->eventfd, 1);
4258 4259

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4260 4261 4262
	return 0;
}

4263
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4264
{
K
KAMEZAWA Hiroyuki 已提交
4265 4266
	struct mem_cgroup *iter;

4267
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4268
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4269 4270
}

4271
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4272
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4273
{
4274 4275
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4276 4277
	unsigned long threshold;
	unsigned long usage;
4278
	int i, size, ret;
4279

4280
	ret = page_counter_memparse(args, "-1", &threshold);
4281 4282 4283 4284
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4285

4286
	if (type == _MEM) {
4287
		thresholds = &memcg->thresholds;
4288
		usage = mem_cgroup_usage(memcg, false);
4289
	} else if (type == _MEMSWAP) {
4290
		thresholds = &memcg->memsw_thresholds;
4291
		usage = mem_cgroup_usage(memcg, true);
4292
	} else
4293 4294 4295
		BUG();

	/* Check if a threshold crossed before adding a new one */
4296
	if (thresholds->primary)
4297 4298
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4299
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4300 4301

	/* Allocate memory for new array of thresholds */
4302
	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4303
	if (!new) {
4304 4305 4306
		ret = -ENOMEM;
		goto unlock;
	}
4307
	new->size = size;
4308 4309

	/* Copy thresholds (if any) to new array */
4310 4311 4312
	if (thresholds->primary)
		memcpy(new->entries, thresholds->primary->entries,
		       flex_array_size(new, entries, size - 1));
4313

4314
	/* Add new threshold */
4315 4316
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4317 4318

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4319
	sort(new->entries, size, sizeof(*new->entries),
4320 4321 4322
			compare_thresholds, NULL);

	/* Find current threshold */
4323
	new->current_threshold = -1;
4324
	for (i = 0; i < size; i++) {
4325
		if (new->entries[i].threshold <= usage) {
4326
			/*
4327 4328
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4329 4330
			 * it here.
			 */
4331
			++new->current_threshold;
4332 4333
		} else
			break;
4334 4335
	}

4336 4337 4338 4339 4340
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4341

4342
	/* To be sure that nobody uses thresholds */
4343 4344 4345 4346 4347 4348 4349 4350
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4351
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4352 4353
	struct eventfd_ctx *eventfd, const char *args)
{
4354
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4355 4356
}

4357
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4358 4359
	struct eventfd_ctx *eventfd, const char *args)
{
4360
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4361 4362
}

4363
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4364
	struct eventfd_ctx *eventfd, enum res_type type)
4365
{
4366 4367
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4368
	unsigned long usage;
4369
	int i, j, size, entries;
4370 4371

	mutex_lock(&memcg->thresholds_lock);
4372 4373

	if (type == _MEM) {
4374
		thresholds = &memcg->thresholds;
4375
		usage = mem_cgroup_usage(memcg, false);
4376
	} else if (type == _MEMSWAP) {
4377
		thresholds = &memcg->memsw_thresholds;
4378
		usage = mem_cgroup_usage(memcg, true);
4379
	} else
4380 4381
		BUG();

4382 4383 4384
	if (!thresholds->primary)
		goto unlock;

4385 4386 4387 4388
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4389
	size = entries = 0;
4390 4391
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4392
			size++;
4393 4394
		else
			entries++;
4395 4396
	}

4397
	new = thresholds->spare;
4398

4399 4400 4401 4402
	/* If no items related to eventfd have been cleared, nothing to do */
	if (!entries)
		goto unlock;

4403 4404
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4405 4406
		kfree(new);
		new = NULL;
4407
		goto swap_buffers;
4408 4409
	}

4410
	new->size = size;
4411 4412

	/* Copy thresholds and find current threshold */
4413 4414 4415
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4416 4417
			continue;

4418
		new->entries[j] = thresholds->primary->entries[i];
4419
		if (new->entries[j].threshold <= usage) {
4420
			/*
4421
			 * new->current_threshold will not be used
4422 4423 4424
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4425
			++new->current_threshold;
4426 4427 4428 4429
		}
		j++;
	}

4430
swap_buffers:
4431 4432
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4433

4434
	rcu_assign_pointer(thresholds->primary, new);
4435

4436
	/* To be sure that nobody uses thresholds */
4437
	synchronize_rcu();
4438 4439 4440 4441 4442 4443

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
4444
unlock:
4445 4446
	mutex_unlock(&memcg->thresholds_lock);
}
4447

4448
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4449 4450
	struct eventfd_ctx *eventfd)
{
4451
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4452 4453
}

4454
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4455 4456
	struct eventfd_ctx *eventfd)
{
4457
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4458 4459
}

4460
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4461
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4462 4463 4464 4465 4466 4467 4468
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4469
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4470 4471 4472 4473 4474

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4475
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
4476
		eventfd_signal(eventfd, 1);
4477
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4478 4479 4480 4481

	return 0;
}

4482
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4483
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4484 4485 4486
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4487
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4488

4489
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4490 4491 4492 4493 4494 4495
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4496
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4497 4498
}

4499
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4500
{
4501
	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4502

4503
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4504
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
R
Roman Gushchin 已提交
4505 4506
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4507 4508 4509
	return 0;
}

4510
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4511 4512
	struct cftype *cft, u64 val)
{
4513
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4514 4515

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4516
	if (!css->parent || !((val == 0) || (val == 1)))
4517 4518
		return -EINVAL;

4519
	memcg->oom_kill_disable = val;
4520
	if (!val)
4521
		memcg_oom_recover(memcg);
4522

4523 4524 4525
	return 0;
}

4526 4527
#ifdef CONFIG_CGROUP_WRITEBACK

4528 4529
#include <trace/events/writeback.h>

T
Tejun Heo 已提交
4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

4540 4541 4542 4543 4544
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
4545 4546 4547 4548 4549 4550 4551 4552 4553 4554
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

4555 4556 4557 4558 4559 4560
/*
 * idx can be of type enum memcg_stat_item or node_stat_item.
 * Keep in sync with memcg_exact_page().
 */
static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
{
4561
	long x = atomic_long_read(&memcg->vmstats[idx]);
4562 4563 4564
	int cpu;

	for_each_online_cpu(cpu)
4565
		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4566 4567 4568 4569 4570
	if (x < 0)
		x = 0;
	return x;
}

4571 4572 4573
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
4574 4575
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
4576 4577 4578
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
4579 4580 4581
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
4582
 *
4583 4584 4585 4586 4587
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
4588
 */
4589 4590 4591
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
4592 4593 4594 4595
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

4596
	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4597

4598
	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4599 4600
	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4601
	*pheadroom = PAGE_COUNTER_MAX;
4602 4603

	while ((parent = parent_mem_cgroup(memcg))) {
4604
		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4605
					    READ_ONCE(memcg->memory.high));
4606 4607
		unsigned long used = page_counter_read(&memcg->memory);

4608
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4609 4610 4611 4612
		memcg = parent;
	}
}

4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
/*
 * Foreign dirty flushing
 *
 * There's an inherent mismatch between memcg and writeback.  The former
 * trackes ownership per-page while the latter per-inode.  This was a
 * deliberate design decision because honoring per-page ownership in the
 * writeback path is complicated, may lead to higher CPU and IO overheads
 * and deemed unnecessary given that write-sharing an inode across
 * different cgroups isn't a common use-case.
 *
 * Combined with inode majority-writer ownership switching, this works well
 * enough in most cases but there are some pathological cases.  For
 * example, let's say there are two cgroups A and B which keep writing to
 * different but confined parts of the same inode.  B owns the inode and
 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
 * triggering background writeback.  A will be slowed down without a way to
 * make writeback of the dirty pages happen.
 *
 * Conditions like the above can lead to a cgroup getting repatedly and
 * severely throttled after making some progress after each
 * dirty_expire_interval while the underyling IO device is almost
 * completely idle.
 *
 * Solving this problem completely requires matching the ownership tracking
 * granularities between memcg and writeback in either direction.  However,
 * the more egregious behaviors can be avoided by simply remembering the
 * most recent foreign dirtying events and initiating remote flushes on
 * them when local writeback isn't enough to keep the memory clean enough.
 *
 * The following two functions implement such mechanism.  When a foreign
 * page - a page whose memcg and writeback ownerships don't match - is
 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
 * decides that the memcg needs to sleep due to high dirty ratio, it calls
 * mem_cgroup_flush_foreign() which queues writeback on the recorded
 * foreign bdi_writebacks which haven't expired.  Both the numbers of
 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
 * limited to MEMCG_CGWB_FRN_CNT.
 *
 * The mechanism only remembers IDs and doesn't hold any object references.
 * As being wrong occasionally doesn't matter, updates and accesses to the
 * records are lockless and racy.
 */
void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
					     struct bdi_writeback *wb)
{
4660
	struct mem_cgroup *memcg = page_memcg(page);
4661 4662 4663 4664 4665 4666
	struct memcg_cgwb_frn *frn;
	u64 now = get_jiffies_64();
	u64 oldest_at = now;
	int oldest = -1;
	int i;

4667 4668
	trace_track_foreign_dirty(page, wb);

4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728
	/*
	 * Pick the slot to use.  If there is already a slot for @wb, keep
	 * using it.  If not replace the oldest one which isn't being
	 * written out.
	 */
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		frn = &memcg->cgwb_frn[i];
		if (frn->bdi_id == wb->bdi->id &&
		    frn->memcg_id == wb->memcg_css->id)
			break;
		if (time_before64(frn->at, oldest_at) &&
		    atomic_read(&frn->done.cnt) == 1) {
			oldest = i;
			oldest_at = frn->at;
		}
	}

	if (i < MEMCG_CGWB_FRN_CNT) {
		/*
		 * Re-using an existing one.  Update timestamp lazily to
		 * avoid making the cacheline hot.  We want them to be
		 * reasonably up-to-date and significantly shorter than
		 * dirty_expire_interval as that's what expires the record.
		 * Use the shorter of 1s and dirty_expire_interval / 8.
		 */
		unsigned long update_intv =
			min_t(unsigned long, HZ,
			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);

		if (time_before64(frn->at, now - update_intv))
			frn->at = now;
	} else if (oldest >= 0) {
		/* replace the oldest free one */
		frn = &memcg->cgwb_frn[oldest];
		frn->bdi_id = wb->bdi->id;
		frn->memcg_id = wb->memcg_css->id;
		frn->at = now;
	}
}

/* issue foreign writeback flushes for recorded foreign dirtying events */
void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
	u64 now = jiffies_64;
	int i;

	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];

		/*
		 * If the record is older than dirty_expire_interval,
		 * writeback on it has already started.  No need to kick it
		 * off again.  Also, don't start a new one if there's
		 * already one in flight.
		 */
		if (time_after64(frn->at, now - intv) &&
		    atomic_read(&frn->done.cnt) == 1) {
			frn->at = 0;
4729
			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4730 4731 4732 4733 4734 4735 4736
			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
					       WB_REASON_FOREIGN_FLUSH,
					       &frn->done);
		}
	}
}

T
Tejun Heo 已提交
4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

4748 4749 4750 4751
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

4752 4753
#endif	/* CONFIG_CGROUP_WRITEBACK */

4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4767 4768 4769 4770 4771
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4772
static void memcg_event_remove(struct work_struct *work)
4773
{
4774 4775
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4776
	struct mem_cgroup *memcg = event->memcg;
4777 4778 4779

	remove_wait_queue(event->wqh, &event->wait);

4780
	event->unregister_event(memcg, event->eventfd);
4781 4782 4783 4784 4785 4786

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4787
	css_put(&memcg->css);
4788 4789 4790
}

/*
4791
 * Gets called on EPOLLHUP on eventfd when user closes it.
4792 4793 4794
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4795
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4796
			    int sync, void *key)
4797
{
4798 4799
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4800
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
4801
	__poll_t flags = key_to_poll(key);
4802

4803
	if (flags & EPOLLHUP) {
4804 4805 4806 4807 4808 4809 4810 4811 4812
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4813
		spin_lock(&memcg->event_list_lock);
4814 4815 4816 4817 4818 4819 4820 4821
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4822
		spin_unlock(&memcg->event_list_lock);
4823 4824 4825 4826 4827
	}

	return 0;
}

4828
static void memcg_event_ptable_queue_proc(struct file *file,
4829 4830
		wait_queue_head_t *wqh, poll_table *pt)
{
4831 4832
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4833 4834 4835 4836 4837 4838

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4839 4840
 * DO NOT USE IN NEW FILES.
 *
4841 4842 4843 4844 4845
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4846 4847
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4848
{
4849
	struct cgroup_subsys_state *css = of_css(of);
4850
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4851
	struct mem_cgroup_event *event;
4852 4853 4854 4855
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4856
	const char *name;
4857 4858 4859
	char *endp;
	int ret;

4860 4861 4862
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4863 4864
	if (*endp != ' ')
		return -EINVAL;
4865
	buf = endp + 1;
4866

4867
	cfd = simple_strtoul(buf, &endp, 10);
4868 4869
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4870
	buf = endp + 1;
4871 4872 4873 4874 4875

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4876
	event->memcg = memcg;
4877
	INIT_LIST_HEAD(&event->list);
4878 4879 4880
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
4902
	ret = file_permission(cfile.file, MAY_READ);
4903 4904 4905
	if (ret < 0)
		goto out_put_cfile;

4906 4907 4908 4909 4910
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4911 4912
	 *
	 * DO NOT ADD NEW FILES.
4913
	 */
A
Al Viro 已提交
4914
	name = cfile.file->f_path.dentry->d_name.name;
4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4926 4927
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4928 4929 4930 4931 4932
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4933
	/*
4934 4935 4936
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4937
	 */
A
Al Viro 已提交
4938
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4939
					       &memory_cgrp_subsys);
4940
	ret = -EINVAL;
4941
	if (IS_ERR(cfile_css))
4942
		goto out_put_cfile;
4943 4944
	if (cfile_css != css) {
		css_put(cfile_css);
4945
		goto out_put_cfile;
4946
	}
4947

4948
	ret = event->register_event(memcg, event->eventfd, buf);
4949 4950 4951
	if (ret)
		goto out_put_css;

4952
	vfs_poll(efile.file, &event->pt);
4953

4954 4955 4956
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4957 4958 4959 4960

	fdput(cfile);
	fdput(efile);

4961
	return nbytes;
4962 4963

out_put_css:
4964
	css_put(css);
4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4977
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4978
	{
4979
		.name = "usage_in_bytes",
4980
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4981
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4982
	},
4983 4984
	{
		.name = "max_usage_in_bytes",
4985
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4986
		.write = mem_cgroup_reset,
4987
		.read_u64 = mem_cgroup_read_u64,
4988
	},
B
Balbir Singh 已提交
4989
	{
4990
		.name = "limit_in_bytes",
4991
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4992
		.write = mem_cgroup_write,
4993
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4994
	},
4995 4996 4997
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4998
		.write = mem_cgroup_write,
4999
		.read_u64 = mem_cgroup_read_u64,
5000
	},
B
Balbir Singh 已提交
5001 5002
	{
		.name = "failcnt",
5003
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5004
		.write = mem_cgroup_reset,
5005
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
5006
	},
5007 5008
	{
		.name = "stat",
5009
		.seq_show = memcg_stat_show,
5010
	},
5011 5012
	{
		.name = "force_empty",
5013
		.write = mem_cgroup_force_empty_write,
5014
	},
5015 5016 5017 5018 5019
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
5020
	{
5021
		.name = "cgroup.event_control",		/* XXX: for compat */
5022
		.write = memcg_write_event_control,
5023
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5024
	},
K
KOSAKI Motohiro 已提交
5025 5026 5027 5028 5029
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5030 5031 5032 5033 5034
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5035 5036
	{
		.name = "oom_control",
5037
		.seq_show = mem_cgroup_oom_control_read,
5038
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5039 5040
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5041 5042 5043
	{
		.name = "pressure_level",
	},
5044 5045 5046
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5047
		.seq_show = memcg_numa_stat_show,
5048 5049
	},
#endif
5050 5051 5052
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5053
		.write = mem_cgroup_write,
5054
		.read_u64 = mem_cgroup_read_u64,
5055 5056 5057 5058
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5059
		.read_u64 = mem_cgroup_read_u64,
5060 5061 5062 5063
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5064
		.write = mem_cgroup_reset,
5065
		.read_u64 = mem_cgroup_read_u64,
5066 5067 5068 5069
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5070
		.write = mem_cgroup_reset,
5071
		.read_u64 = mem_cgroup_read_u64,
5072
	},
5073 5074
#if defined(CONFIG_MEMCG_KMEM) && \
	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5075 5076
	{
		.name = "kmem.slabinfo",
5077
		.seq_show = memcg_slab_show,
5078 5079
	},
#endif
V
Vladimir Davydov 已提交
5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
5103
	{ },	/* terminate */
5104
};
5105

5106 5107 5108 5109 5110 5111 5112 5113
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
5114
 * However, there usually are many references to the offline CSS after
5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

5132 5133 5134 5135 5136 5137 5138 5139
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

5140 5141
static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
						  unsigned int n)
5142
{
5143
	refcount_add(n, &memcg->id.ref);
5144 5145
}

5146
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5147
{
5148
	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5149
		mem_cgroup_id_remove(memcg);
5150 5151 5152 5153 5154 5155

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

5156 5157 5158 5159 5160
static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

5173
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5174 5175
{
	struct mem_cgroup_per_node *pn;
5176
	int tmp = node;
5177 5178 5179 5180 5181 5182 5183 5184
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5185 5186
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5187
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5188 5189
	if (!pn)
		return 1;
5190

5191 5192
	pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
						 GFP_KERNEL_ACCOUNT);
5193 5194 5195 5196 5197
	if (!pn->lruvec_stat_local) {
		kfree(pn);
		return 1;
	}

5198
	pn->lruvec_stat_cpu = alloc_percpu_gfp(struct batched_lruvec_stat,
5199
					       GFP_KERNEL_ACCOUNT);
5200
	if (!pn->lruvec_stat_cpu) {
5201
		free_percpu(pn->lruvec_stat_local);
5202 5203 5204 5205
		kfree(pn);
		return 1;
	}

5206 5207 5208 5209 5210
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

5211
	memcg->nodeinfo[node] = pn;
5212 5213 5214
	return 0;
}

5215
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5216
{
5217 5218
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
5219 5220 5221
	if (!pn)
		return;

5222
	free_percpu(pn->lruvec_stat_cpu);
5223
	free_percpu(pn->lruvec_stat_local);
5224
	kfree(pn);
5225 5226
}

5227
static void __mem_cgroup_free(struct mem_cgroup *memcg)
5228
{
5229
	int node;
5230

5231
	for_each_node(node)
5232
		free_mem_cgroup_per_node_info(memcg, node);
5233
	free_percpu(memcg->vmstats_percpu);
5234
	free_percpu(memcg->vmstats_local);
5235
	kfree(memcg);
5236
}
5237

5238 5239 5240
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
5241 5242 5243 5244
	/*
	 * Flush percpu vmstats and vmevents to guarantee the value correctness
	 * on parent's and all ancestor levels.
	 */
5245
	memcg_flush_percpu_vmstats(memcg);
5246
	memcg_flush_percpu_vmevents(memcg);
5247 5248 5249
	__mem_cgroup_free(memcg);
}

5250
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
5251
{
5252
	struct mem_cgroup *memcg;
5253
	unsigned int size;
5254
	int node;
5255
	int __maybe_unused i;
5256
	long error = -ENOMEM;
B
Balbir Singh 已提交
5257

5258 5259 5260 5261
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
5262
	if (!memcg)
5263
		return ERR_PTR(error);
5264

5265 5266 5267
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
5268 5269
	if (memcg->id.id < 0) {
		error = memcg->id.id;
5270
		goto fail;
5271
	}
5272

5273 5274
	memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
						GFP_KERNEL_ACCOUNT);
5275 5276 5277
	if (!memcg->vmstats_local)
		goto fail;

5278 5279
	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
						 GFP_KERNEL_ACCOUNT);
5280
	if (!memcg->vmstats_percpu)
5281
		goto fail;
5282

B
Bob Liu 已提交
5283
	for_each_node(node)
5284
		if (alloc_mem_cgroup_per_node_info(memcg, node))
5285
			goto fail;
5286

5287 5288
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
5289

5290
	INIT_WORK(&memcg->high_work, high_work_func);
5291 5292 5293
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5294
	vmpressure_init(&memcg->vmpressure);
5295 5296
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
5297
	memcg->socket_pressure = jiffies;
5298
#ifdef CONFIG_MEMCG_KMEM
V
Vladimir Davydov 已提交
5299
	memcg->kmemcg_id = -1;
R
Roman Gushchin 已提交
5300
	INIT_LIST_HEAD(&memcg->objcg_list);
V
Vladimir Davydov 已提交
5301
#endif
5302 5303
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
5304 5305 5306
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		memcg->cgwb_frn[i].done =
			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5307 5308 5309 5310 5311
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
	memcg->deferred_split_queue.split_queue_len = 0;
5312
#endif
5313
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5314 5315
	return memcg;
fail:
5316
	mem_cgroup_id_remove(memcg);
5317
	__mem_cgroup_free(memcg);
5318
	return ERR_PTR(error);
5319 5320
}

5321 5322
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5323
{
5324
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5325
	struct mem_cgroup *memcg, *old_memcg;
5326
	long error = -ENOMEM;
5327

5328
	old_memcg = set_active_memcg(parent);
5329
	memcg = mem_cgroup_alloc();
5330
	set_active_memcg(old_memcg);
5331 5332
	if (IS_ERR(memcg))
		return ERR_CAST(memcg);
5333

5334
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5335
	memcg->soft_limit = PAGE_COUNTER_MAX;
5336
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5337 5338 5339
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
5340

5341
		page_counter_init(&memcg->memory, &parent->memory);
5342
		page_counter_init(&memcg->swap, &parent->swap);
5343
		page_counter_init(&memcg->kmem, &parent->kmem);
5344
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5345
	} else {
5346 5347 5348 5349
		page_counter_init(&memcg->memory, NULL);
		page_counter_init(&memcg->swap, NULL);
		page_counter_init(&memcg->kmem, NULL);
		page_counter_init(&memcg->tcpmem, NULL);
5350

5351 5352 5353 5354
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

5355
	/* The following stuff does not apply to the root */
5356
	error = memcg_online_kmem(memcg);
5357 5358
	if (error)
		goto fail;
5359

5360
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5361
		static_branch_inc(&memcg_sockets_enabled_key);
5362

5363 5364
	return &memcg->css;
fail:
5365
	mem_cgroup_id_remove(memcg);
5366
	mem_cgroup_free(memcg);
5367
	return ERR_PTR(error);
5368 5369
}

5370
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5371
{
5372 5373
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5374 5375 5376 5377 5378 5379 5380 5381 5382 5383
	/*
	 * A memcg must be visible for memcg_expand_shrinker_maps()
	 * by the time the maps are allocated. So, we allocate maps
	 * here, when for_each_mem_cgroup() can't skip it.
	 */
	if (memcg_alloc_shrinker_maps(memcg)) {
		mem_cgroup_id_remove(memcg);
		return -ENOMEM;
	}

5384
	/* Online state pins memcg ID, memcg ID pins CSS */
5385
	refcount_set(&memcg->id.ref, 1);
5386
	css_get(css);
5387
	return 0;
B
Balbir Singh 已提交
5388 5389
}

5390
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5391
{
5392
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5393
	struct mem_cgroup_event *event, *tmp;
5394 5395 5396 5397 5398 5399

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
5400 5401
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5402 5403 5404
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
5405
	spin_unlock(&memcg->event_list_lock);
5406

R
Roman Gushchin 已提交
5407
	page_counter_set_min(&memcg->memory, 0);
5408
	page_counter_set_low(&memcg->memory, 0);
5409

5410
	memcg_offline_kmem(memcg);
5411
	wb_memcg_offline(memcg);
5412

5413 5414
	drain_all_stock(memcg);

5415
	mem_cgroup_id_put(memcg);
5416 5417
}

5418 5419 5420 5421 5422 5423 5424
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

5425
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
5426
{
5427
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5428
	int __maybe_unused i;
5429

5430 5431 5432 5433
#ifdef CONFIG_CGROUP_WRITEBACK
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
#endif
5434
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5435
		static_branch_dec(&memcg_sockets_enabled_key);
5436

5437
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
5438
		static_branch_dec(&memcg_sockets_enabled_key);
5439

5440 5441 5442
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
5443
	memcg_free_shrinker_maps(memcg);
5444
	memcg_free_kmem(memcg);
5445
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
5446 5447
}

5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5465 5466 5467 5468
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
R
Roman Gushchin 已提交
5469
	page_counter_set_min(&memcg->memory, 0);
5470
	page_counter_set_low(&memcg->memory, 0);
5471
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5472
	memcg->soft_limit = PAGE_COUNTER_MAX;
5473
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5474
	memcg_wb_domain_size_changed(memcg);
5475 5476
}

5477
#ifdef CONFIG_MMU
5478
/* Handlers for move charge at task migration. */
5479
static int mem_cgroup_do_precharge(unsigned long count)
5480
{
5481
	int ret;
5482

5483 5484
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5485
	if (!ret) {
5486 5487 5488
		mc.precharge += count;
		return ret;
	}
5489

5490
	/* Try charges one by one with reclaim, but do not retry */
5491
	while (count--) {
5492
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5493 5494
		if (ret)
			return ret;
5495
		mc.precharge++;
5496
		cond_resched();
5497
	}
5498
	return 0;
5499 5500 5501 5502
}

union mc_target {
	struct page	*page;
5503
	swp_entry_t	ent;
5504 5505 5506
};

enum mc_target_type {
5507
	MC_TARGET_NONE = 0,
5508
	MC_TARGET_PAGE,
5509
	MC_TARGET_SWAP,
5510
	MC_TARGET_DEVICE,
5511 5512
};

D
Daisuke Nishimura 已提交
5513 5514
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5515
{
5516
	struct page *page = vm_normal_page(vma, addr, ptent);
5517

D
Daisuke Nishimura 已提交
5518 5519 5520
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
5521
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5522
			return NULL;
5523 5524 5525 5526
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
5527 5528 5529 5530 5531 5532
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5533
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
5534
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5535
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
5536 5537 5538 5539
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

5540
	if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5541
		return NULL;
5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
		page = device_private_entry_to_page(ent);
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

5559 5560 5561
	if (non_swap_entry(ent))
		return NULL;

5562 5563 5564 5565
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5566
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5567
	entry->val = ent.val;
D
Daisuke Nishimura 已提交
5568 5569 5570

	return page;
}
5571 5572
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5573
			pte_t ptent, swp_entry_t *entry)
5574 5575 5576 5577
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5578

5579 5580 5581 5582 5583
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	if (!vma->vm_file) /* anonymous vma */
		return NULL;
5584
	if (!(mc.flags & MOVE_FILE))
5585 5586 5587
		return NULL;

	/* page is moved even if it's not RSS of this task(page-faulted). */
5588
	/* shmem/tmpfs may report page out on swap: account for that too. */
5589 5590
	return find_get_incore_page(vma->vm_file->f_mapping,
			linear_page_index(vma, addr));
5591 5592
}

5593 5594 5595
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
5596
 * @compound: charge the page as compound or small page
5597 5598 5599
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
5600
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5601 5602 5603 5604 5605
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
5606
				   bool compound,
5607 5608 5609
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
5610 5611
	struct lruvec *from_vec, *to_vec;
	struct pglist_data *pgdat;
5612
	unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5613 5614 5615 5616
	int ret;

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
5617
	VM_BUG_ON(compound && !PageTransHuge(page));
5618 5619

	/*
5620
	 * Prevent mem_cgroup_migrate() from looking at
5621
	 * page's memory cgroup of its source page while we change it.
5622
	 */
5623
	ret = -EBUSY;
5624 5625 5626 5627
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
5628
	if (page_memcg(page) != from)
5629 5630
		goto out_unlock;

5631
	pgdat = page_pgdat(page);
5632 5633
	from_vec = mem_cgroup_lruvec(from, pgdat);
	to_vec = mem_cgroup_lruvec(to, pgdat);
5634

5635
	lock_page_memcg(page);
5636

5637 5638 5639 5640
	if (PageAnon(page)) {
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5641
			if (PageTransHuge(page)) {
5642 5643 5644 5645
				__mod_lruvec_state(from_vec, NR_ANON_THPS,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_ANON_THPS,
						   nr_pages);
5646
			}
5647 5648
		}
	} else {
5649 5650 5651 5652 5653 5654 5655 5656
		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);

		if (PageSwapBacked(page)) {
			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
		}

5657 5658 5659 5660
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
		}
5661

5662 5663
		if (PageDirty(page)) {
			struct address_space *mapping = page_mapping(page);
5664

5665
			if (mapping_can_writeback(mapping)) {
5666 5667 5668 5669 5670
				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
						   nr_pages);
			}
5671 5672 5673
		}
	}

5674
	if (PageWriteback(page)) {
5675 5676
		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5677 5678 5679
	}

	/*
5680 5681
	 * All state has been migrated, let's switch to the new memcg.
	 *
5682
	 * It is safe to change page's memcg here because the page
5683 5684
	 * is referenced, charged, isolated, and locked: we can't race
	 * with (un)charging, migration, LRU putback, or anything else
5685
	 * that would rely on a stable page's memory cgroup.
5686 5687
	 *
	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5688
	 * to save space. As soon as we switch page's memory cgroup to a
5689 5690
	 * new memcg that isn't locked, the above state can change
	 * concurrently again. Make sure we're truly done with it.
5691
	 */
5692
	smp_mb();
5693

5694 5695 5696
	css_get(&to->css);
	css_put(&from->css);

5697
	page->memcg_data = (unsigned long)to;
5698

5699
	__unlock_page_memcg(from);
5700 5701 5702 5703

	ret = 0;

	local_irq_disable();
5704
	mem_cgroup_charge_statistics(to, page, nr_pages);
5705
	memcg_check_events(to, page);
5706
	mem_cgroup_charge_statistics(from, page, -nr_pages);
5707 5708 5709 5710 5711 5712 5713 5714
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5730 5731
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
 *     (so ZONE_DEVICE page and thus not on the lru).
5732 5733 5734
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
5735 5736
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5737 5738 5739 5740
 *
 * Called with pte lock held.
 */

5741
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5742 5743 5744
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
5745
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5746 5747 5748 5749 5750
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
5751
		page = mc_handle_swap_pte(vma, ptent, &ent);
5752
	else if (pte_none(ptent))
5753
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5754 5755

	if (!page && !ent.val)
5756
		return ret;
5757 5758
	if (page) {
		/*
5759
		 * Do only loose check w/o serialization.
5760
		 * mem_cgroup_move_account() checks the page is valid or
5761
		 * not under LRU exclusion.
5762
		 */
5763
		if (page_memcg(page) == mc.from) {
5764
			ret = MC_TARGET_PAGE;
5765
			if (is_device_private_page(page))
5766
				ret = MC_TARGET_DEVICE;
5767 5768 5769 5770 5771 5772
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
5773 5774 5775 5776 5777
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
5778
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5779 5780 5781
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5782 5783 5784 5785
	}
	return ret;
}

5786 5787
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
5788 5789
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
5790 5791 5792 5793 5794 5795 5796 5797
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

5798 5799 5800 5801 5802
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
5803
	page = pmd_page(pmd);
5804
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5805
	if (!(mc.flags & MOVE_ANON))
5806
		return ret;
5807
	if (page_memcg(page) == mc.from) {
5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5824 5825 5826 5827
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
5828
	struct vm_area_struct *vma = walk->vma;
5829 5830 5831
	pte_t *pte;
	spinlock_t *ptl;

5832 5833
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5834 5835
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5836 5837
		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
		 * this might change.
5838
		 */
5839 5840
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5841
		spin_unlock(ptl);
5842
		return 0;
5843
	}
5844

5845 5846
	if (pmd_trans_unstable(pmd))
		return 0;
5847 5848
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5849
		if (get_mctgt_type(vma, addr, *pte, NULL))
5850 5851 5852 5853
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5854 5855 5856
	return 0;
}

5857 5858 5859 5860
static const struct mm_walk_ops precharge_walk_ops = {
	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
};

5861 5862 5863 5864
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

5865
	mmap_read_lock(mm);
5866
	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5867
	mmap_read_unlock(mm);
5868 5869 5870 5871 5872 5873 5874 5875 5876

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5877 5878 5879 5880 5881
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5882 5883
}

5884 5885
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5886
{
5887 5888 5889
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5890
	/* we must uncharge all the leftover precharges from mc.to */
5891
	if (mc.precharge) {
5892
		cancel_charge(mc.to, mc.precharge);
5893 5894 5895 5896 5897 5898 5899
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5900
		cancel_charge(mc.from, mc.moved_charge);
5901
		mc.moved_charge = 0;
5902
	}
5903 5904 5905
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5906
		if (!mem_cgroup_is_root(mc.from))
5907
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5908

5909 5910
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

5911
		/*
5912 5913
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5914
		 */
5915
		if (!mem_cgroup_is_root(mc.to))
5916 5917
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5918 5919
		mc.moved_swap = 0;
	}
5920 5921 5922 5923 5924 5925 5926
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
5927 5928
	struct mm_struct *mm = mc.mm;

5929 5930 5931 5932 5933 5934
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5935
	spin_lock(&mc.lock);
5936 5937
	mc.from = NULL;
	mc.to = NULL;
5938
	mc.mm = NULL;
5939
	spin_unlock(&mc.lock);
5940 5941

	mmput(mm);
5942 5943
}

5944
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5945
{
5946
	struct cgroup_subsys_state *css;
5947
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5948
	struct mem_cgroup *from;
5949
	struct task_struct *leader, *p;
5950
	struct mm_struct *mm;
5951
	unsigned long move_flags;
5952
	int ret = 0;
5953

5954 5955
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5956 5957
		return 0;

5958 5959 5960 5961 5962 5963 5964
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
5965
	cgroup_taskset_for_each_leader(leader, css, tset) {
5966 5967
		WARN_ON_ONCE(p);
		p = leader;
5968
		memcg = mem_cgroup_from_css(css);
5969 5970 5971 5972
	}
	if (!p)
		return 0;

5973 5974 5975 5976 5977 5978 5979 5980 5981
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
5998
		mc.mm = mm;
5999 6000 6001 6002 6003 6004 6005 6006 6007
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
6008 6009
	} else {
		mmput(mm);
6010 6011 6012 6013
	}
	return ret;
}

6014
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6015
{
6016 6017
	if (mc.to)
		mem_cgroup_clear_mc();
6018 6019
}

6020 6021 6022
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6023
{
6024
	int ret = 0;
6025
	struct vm_area_struct *vma = walk->vma;
6026 6027
	pte_t *pte;
	spinlock_t *ptl;
6028 6029 6030
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
6031

6032 6033
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
6034
		if (mc.precharge < HPAGE_PMD_NR) {
6035
			spin_unlock(ptl);
6036 6037 6038 6039 6040 6041
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
6042
				if (!mem_cgroup_move_account(page, true,
6043
							     mc.from, mc.to)) {
6044 6045 6046 6047 6048 6049
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
6050 6051 6052 6053 6054 6055 6056 6057
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
6058
		}
6059
		spin_unlock(ptl);
6060
		return 0;
6061 6062
	}

6063 6064
	if (pmd_trans_unstable(pmd))
		return 0;
6065 6066 6067 6068
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6069
		bool device = false;
6070
		swp_entry_t ent;
6071 6072 6073 6074

		if (!mc.precharge)
			break;

6075
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6076 6077
		case MC_TARGET_DEVICE:
			device = true;
J
Joe Perches 已提交
6078
			fallthrough;
6079 6080
		case MC_TARGET_PAGE:
			page = target.page;
6081 6082 6083 6084 6085 6086 6087 6088
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
6089
			if (!device && isolate_lru_page(page))
6090
				goto put;
6091 6092
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
6093
				mc.precharge--;
6094 6095
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6096
			}
6097 6098
			if (!device)
				putback_lru_page(page);
6099
put:			/* get_mctgt_type() gets the page */
6100 6101
			put_page(page);
			break;
6102 6103
		case MC_TARGET_SWAP:
			ent = target.ent;
6104
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6105
				mc.precharge--;
6106 6107
				mem_cgroup_id_get_many(mc.to, 1);
				/* we fixup other refcnts and charges later. */
6108 6109
				mc.moved_swap++;
			}
6110
			break;
6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6125
		ret = mem_cgroup_do_precharge(1);
6126 6127 6128 6129 6130 6131 6132
		if (!ret)
			goto retry;
	}

	return ret;
}

6133 6134 6135 6136
static const struct mm_walk_ops charge_walk_ops = {
	.pmd_entry	= mem_cgroup_move_charge_pte_range,
};

6137
static void mem_cgroup_move_charge(void)
6138 6139
{
	lru_add_drain_all();
6140
	/*
6141 6142 6143
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
6144 6145 6146
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
6147
retry:
6148
	if (unlikely(!mmap_read_trylock(mc.mm))) {
6149
		/*
6150
		 * Someone who are holding the mmap_lock might be waiting in
6151 6152 6153 6154 6155 6156 6157 6158 6159
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6160 6161 6162 6163
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
6164 6165
	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
			NULL);
6166

6167
	mmap_read_unlock(mc.mm);
6168
	atomic_dec(&mc.from->moving_account);
6169 6170
}

6171
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
6172
{
6173 6174
	if (mc.to) {
		mem_cgroup_move_charge();
6175
		mem_cgroup_clear_mc();
6176
	}
B
Balbir Singh 已提交
6177
}
6178
#else	/* !CONFIG_MMU */
6179
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6180 6181 6182
{
	return 0;
}
6183
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6184 6185
{
}
6186
static void mem_cgroup_move_task(void)
6187 6188 6189
{
}
#endif
B
Balbir Singh 已提交
6190

6191 6192 6193 6194 6195 6196 6197 6198 6199 6200
static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
{
	if (value == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);

	return 0;
}

6201 6202 6203
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
6204 6205 6206
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6207 6208
}

R
Roman Gushchin 已提交
6209 6210
static int memory_min_show(struct seq_file *m, void *v)
{
6211 6212
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
R
Roman Gushchin 已提交
6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

6232 6233
static int memory_low_show(struct seq_file *m, void *v)
{
6234 6235
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6236 6237 6238 6239 6240 6241 6242 6243 6244 6245
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
6246
	err = page_counter_memparse(buf, "max", &low);
6247 6248 6249
	if (err)
		return err;

6250
	page_counter_set_low(&memcg->memory, low);
6251 6252 6253 6254 6255 6256

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
6257 6258
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6259 6260 6261 6262 6263 6264
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6265
	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6266
	bool drained = false;
6267 6268 6269 6270
	unsigned long high;
	int err;

	buf = strstrip(buf);
6271
	err = page_counter_memparse(buf, "max", &high);
6272 6273 6274
	if (err)
		return err;

6275 6276
	page_counter_set_high(&memcg->memory, high);

6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298
	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);
		unsigned long reclaimed;

		if (nr_pages <= high)
			break;

		if (signal_pending(current))
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
							 GFP_KERNEL, true);

		if (!reclaimed && !nr_retries--)
			break;
	}
6299

6300
	memcg_wb_domain_size_changed(memcg);
6301 6302 6303 6304 6305
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
6306 6307
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6308 6309 6310 6311 6312 6313
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6314
	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6315
	bool drained = false;
6316 6317 6318 6319
	unsigned long max;
	int err;

	buf = strstrip(buf);
6320
	err = page_counter_memparse(buf, "max", &max);
6321 6322 6323
	if (err)
		return err;

6324
	xchg(&memcg->memory.max, max);
6325 6326 6327 6328 6329 6330 6331

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

6332
		if (signal_pending(current))
6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

6348
		memcg_memory_event(memcg, MEMCG_OOM);
6349 6350 6351
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
6352

6353
	memcg_wb_domain_size_changed(memcg);
6354 6355 6356
	return nbytes;
}

6357 6358 6359 6360 6361 6362 6363 6364 6365 6366
static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
{
	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&events[MEMCG_OOM_KILL]));
}

6367 6368
static int memory_events_show(struct seq_file *m, void *v)
{
6369
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6370

6371 6372 6373 6374 6375 6376 6377
	__memory_events_show(m, memcg->memory_events);
	return 0;
}

static int memory_events_local_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6378

6379
	__memory_events_show(m, memcg->memory_events_local);
6380 6381 6382
	return 0;
}

6383 6384
static int memory_stat_show(struct seq_file *m, void *v)
{
6385
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6386
	char *buf;
6387

6388 6389 6390 6391 6392
	buf = memory_stat_format(memcg);
	if (!buf)
		return -ENOMEM;
	seq_puts(m, buf);
	kfree(buf);
6393 6394 6395
	return 0;
}

6396
#ifdef CONFIG_NUMA
6397 6398 6399 6400 6401 6402
static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
						     int item)
{
	return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
}

6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419
static int memory_numa_stat_show(struct seq_file *m, void *v)
{
	int i;
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);

	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
		int nid;

		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
			continue;

		seq_printf(m, "%s", memory_stats[i].name);
		for_each_node_state(nid, N_MEMORY) {
			u64 size;
			struct lruvec *lruvec;

			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6420 6421
			size = lruvec_page_state_output(lruvec,
							memory_stats[i].idx);
6422 6423 6424 6425 6426 6427 6428 6429 6430
			seq_printf(m, " N%d=%llu", nid, size);
		}
		seq_putc(m, '\n');
	}

	return 0;
}
#endif

6431 6432
static int memory_oom_group_show(struct seq_file *m, void *v)
{
6433
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461

	seq_printf(m, "%d\n", memcg->oom_group);

	return 0;
}

static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
				      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	int ret, oom_group;

	buf = strstrip(buf);
	if (!buf)
		return -EINVAL;

	ret = kstrtoint(buf, 0, &oom_group);
	if (ret)
		return ret;

	if (oom_group != 0 && oom_group != 1)
		return -EINVAL;

	memcg->oom_group = oom_group;

	return nbytes;
}

6462 6463 6464
static struct cftype memory_files[] = {
	{
		.name = "current",
6465
		.flags = CFTYPE_NOT_ON_ROOT,
6466 6467
		.read_u64 = memory_current_read,
	},
R
Roman Gushchin 已提交
6468 6469 6470 6471 6472 6473
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
6495
		.file_offset = offsetof(struct mem_cgroup, events_file),
6496 6497
		.seq_show = memory_events_show,
	},
6498 6499 6500 6501 6502 6503
	{
		.name = "events.local",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, events_local_file),
		.seq_show = memory_events_local_show,
	},
6504 6505 6506 6507
	{
		.name = "stat",
		.seq_show = memory_stat_show,
	},
6508 6509 6510 6511 6512 6513
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.seq_show = memory_numa_stat_show,
	},
#endif
6514 6515 6516 6517 6518 6519
	{
		.name = "oom.group",
		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
		.seq_show = memory_oom_group_show,
		.write = memory_oom_group_write,
	},
6520 6521 6522
	{ }	/* terminate */
};

6523
struct cgroup_subsys memory_cgrp_subsys = {
6524
	.css_alloc = mem_cgroup_css_alloc,
6525
	.css_online = mem_cgroup_css_online,
6526
	.css_offline = mem_cgroup_css_offline,
6527
	.css_released = mem_cgroup_css_released,
6528
	.css_free = mem_cgroup_css_free,
6529
	.css_reset = mem_cgroup_css_reset,
6530 6531
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
6532
	.post_attach = mem_cgroup_move_task,
6533 6534
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
6535
	.early_init = 0,
B
Balbir Singh 已提交
6536
};
6537

6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567
/*
 * This function calculates an individual cgroup's effective
 * protection which is derived from its own memory.min/low, its
 * parent's and siblings' settings, as well as the actual memory
 * distribution in the tree.
 *
 * The following rules apply to the effective protection values:
 *
 * 1. At the first level of reclaim, effective protection is equal to
 *    the declared protection in memory.min and memory.low.
 *
 * 2. To enable safe delegation of the protection configuration, at
 *    subsequent levels the effective protection is capped to the
 *    parent's effective protection.
 *
 * 3. To make complex and dynamic subtrees easier to configure, the
 *    user is allowed to overcommit the declared protection at a given
 *    level. If that is the case, the parent's effective protection is
 *    distributed to the children in proportion to how much protection
 *    they have declared and how much of it they are utilizing.
 *
 *    This makes distribution proportional, but also work-conserving:
 *    if one cgroup claims much more protection than it uses memory,
 *    the unused remainder is available to its siblings.
 *
 * 4. Conversely, when the declared protection is undercommitted at a
 *    given level, the distribution of the larger parental protection
 *    budget is NOT proportional. A cgroup's protection from a sibling
 *    is capped to its own memory.min/low setting.
 *
6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579
 * 5. However, to allow protecting recursive subtrees from each other
 *    without having to declare each individual cgroup's fixed share
 *    of the ancestor's claim to protection, any unutilized -
 *    "floating" - protection from up the tree is distributed in
 *    proportion to each cgroup's *usage*. This makes the protection
 *    neutral wrt sibling cgroups and lets them compete freely over
 *    the shared parental protection budget, but it protects the
 *    subtree as a whole from neighboring subtrees.
 *
 * Note that 4. and 5. are not in conflict: 4. is about protecting
 * against immediate siblings whereas 5. is about protecting against
 * neighboring subtrees.
6580 6581
 */
static unsigned long effective_protection(unsigned long usage,
6582
					  unsigned long parent_usage,
6583 6584 6585 6586 6587
					  unsigned long setting,
					  unsigned long parent_effective,
					  unsigned long siblings_protected)
{
	unsigned long protected;
6588
	unsigned long ep;
6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618

	protected = min(usage, setting);
	/*
	 * If all cgroups at this level combined claim and use more
	 * protection then what the parent affords them, distribute
	 * shares in proportion to utilization.
	 *
	 * We are using actual utilization rather than the statically
	 * claimed protection in order to be work-conserving: claimed
	 * but unused protection is available to siblings that would
	 * otherwise get a smaller chunk than what they claimed.
	 */
	if (siblings_protected > parent_effective)
		return protected * parent_effective / siblings_protected;

	/*
	 * Ok, utilized protection of all children is within what the
	 * parent affords them, so we know whatever this child claims
	 * and utilizes is effectively protected.
	 *
	 * If there is unprotected usage beyond this value, reclaim
	 * will apply pressure in proportion to that amount.
	 *
	 * If there is unutilized protection, the cgroup will be fully
	 * shielded from reclaim, but we do return a smaller value for
	 * protection than what the group could enjoy in theory. This
	 * is okay. With the overcommit distribution above, effective
	 * protection is always dependent on how memory is actually
	 * consumed among the siblings anyway.
	 */
6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631
	ep = protected;

	/*
	 * If the children aren't claiming (all of) the protection
	 * afforded to them by the parent, distribute the remainder in
	 * proportion to the (unprotected) memory of each cgroup. That
	 * way, cgroups that aren't explicitly prioritized wrt each
	 * other compete freely over the allowance, but they are
	 * collectively protected from neighboring trees.
	 *
	 * We're using unprotected memory for the weight so that if
	 * some cgroups DO claim explicit protection, we don't protect
	 * the same bytes twice.
6632 6633 6634 6635
	 *
	 * Check both usage and parent_usage against the respective
	 * protected values. One should imply the other, but they
	 * aren't read atomically - make sure the division is sane.
6636 6637 6638
	 */
	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
		return ep;
6639 6640 6641
	if (parent_effective > siblings_protected &&
	    parent_usage > siblings_protected &&
	    usage > protected) {
6642 6643 6644 6645 6646 6647 6648 6649 6650 6651
		unsigned long unclaimed;

		unclaimed = parent_effective - siblings_protected;
		unclaimed *= usage - protected;
		unclaimed /= parent_usage - siblings_protected;

		ep += unclaimed;
	}

	return ep;
6652 6653
}

6654
/**
R
Roman Gushchin 已提交
6655
 * mem_cgroup_protected - check if memory consumption is in the normal range
6656
 * @root: the top ancestor of the sub-tree being checked
6657 6658
 * @memcg: the memory cgroup to check
 *
6659 6660
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
6661
 */
6662 6663
void mem_cgroup_calculate_protection(struct mem_cgroup *root,
				     struct mem_cgroup *memcg)
6664
{
6665
	unsigned long usage, parent_usage;
6666 6667
	struct mem_cgroup *parent;

6668
	if (mem_cgroup_disabled())
6669
		return;
6670

6671 6672
	if (!root)
		root = root_mem_cgroup;
6673 6674 6675 6676 6677 6678 6679 6680

	/*
	 * Effective values of the reclaim targets are ignored so they
	 * can be stale. Have a look at mem_cgroup_protection for more
	 * details.
	 * TODO: calculation should be more robust so that we do not need
	 * that special casing.
	 */
6681
	if (memcg == root)
6682
		return;
6683

6684
	usage = page_counter_read(&memcg->memory);
R
Roman Gushchin 已提交
6685
	if (!usage)
6686
		return;
R
Roman Gushchin 已提交
6687 6688

	parent = parent_mem_cgroup(memcg);
6689 6690
	/* No parent means a non-hierarchical mode on v1 memcg */
	if (!parent)
6691
		return;
6692

6693
	if (parent == root) {
6694
		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6695
		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6696
		return;
R
Roman Gushchin 已提交
6697 6698
	}

6699 6700
	parent_usage = page_counter_read(&parent->memory);

6701
	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6702 6703
			READ_ONCE(memcg->memory.min),
			READ_ONCE(parent->memory.emin),
6704
			atomic_long_read(&parent->memory.children_min_usage)));
6705

6706
	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6707 6708
			READ_ONCE(memcg->memory.low),
			READ_ONCE(parent->memory.elow),
6709
			atomic_long_read(&parent->memory.children_low_usage)));
6710 6711
}

6712
/**
6713
 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6714 6715 6716 6717 6718 6719 6720
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
6721
 * Returns 0 on success. Otherwise, an error code is returned.
6722
 */
6723
int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6724
{
6725
	unsigned int nr_pages = thp_nr_pages(page);
6726 6727 6728 6729 6730 6731 6732
	struct mem_cgroup *memcg = NULL;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
6733 6734 6735
		swp_entry_t ent = { .val = page_private(page), };
		unsigned short id;

6736 6737 6738
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
6739 6740 6741
		 * already charged pages, too.  page and memcg binding is
		 * protected by the page lock, which serializes swap cache
		 * removal, which in turn serializes uncharging.
6742
		 */
6743
		VM_BUG_ON_PAGE(!PageLocked(page), page);
6744
		if (page_memcg(compound_head(page)))
6745
			goto out;
6746

6747 6748 6749 6750 6751 6752
		id = lookup_swap_cgroup_id(ent);
		rcu_read_lock();
		memcg = mem_cgroup_from_id(id);
		if (memcg && !css_tryget_online(&memcg->css))
			memcg = NULL;
		rcu_read_unlock();
6753 6754 6755 6756 6757 6758
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);
6759 6760
	if (ret)
		goto out_put;
6761

6762
	css_get(&memcg->css);
6763
	commit_charge(page, memcg);
6764 6765

	local_irq_disable();
6766
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6767 6768
	memcg_check_events(memcg, page);
	local_irq_enable();
6769

6770
	if (PageSwapCache(page)) {
6771 6772 6773 6774 6775 6776
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
6777
		mem_cgroup_uncharge_swap(entry, nr_pages);
6778 6779
	}

6780 6781 6782 6783
out_put:
	css_put(&memcg->css);
out:
	return ret;
6784 6785
}

6786 6787
struct uncharge_gather {
	struct mem_cgroup *memcg;
6788
	unsigned long nr_pages;
6789 6790 6791 6792 6793 6794
	unsigned long pgpgout;
	unsigned long nr_kmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6795
{
6796 6797 6798 6799 6800
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
6801 6802
	unsigned long flags;

6803
	if (!mem_cgroup_is_root(ug->memcg)) {
6804
		page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6805
		if (do_memsw_account())
6806
			page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6807 6808 6809
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
6810
	}
6811 6812

	local_irq_save(flags);
6813
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6814
	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6815
	memcg_check_events(ug->memcg, ug->dummy_page);
6816
	local_irq_restore(flags);
6817 6818 6819

	/* drop reference from uncharge_page */
	css_put(&ug->memcg->css);
6820 6821 6822 6823
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
6824 6825
	unsigned long nr_pages;

6826 6827
	VM_BUG_ON_PAGE(PageLRU(page), page);

6828
	if (!page_memcg(page))
6829 6830 6831 6832
		return;

	/*
	 * Nobody should be changing or seriously looking at
6833
	 * page_memcg(page) at this point, we have fully
6834 6835 6836
	 * exclusive access to the page.
	 */

6837
	if (ug->memcg != page_memcg(page)) {
6838 6839 6840 6841
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
6842
		ug->memcg = page_memcg(page);
6843 6844 6845

		/* pairs with css_put in uncharge_batch */
		css_get(&ug->memcg->css);
6846 6847
	}

6848 6849
	nr_pages = compound_nr(page);
	ug->nr_pages += nr_pages;
6850

6851
	if (PageMemcgKmem(page))
6852
		ug->nr_kmem += nr_pages;
6853 6854
	else
		ug->pgpgout++;
6855 6856

	ug->dummy_page = page;
6857
	page->memcg_data = 0;
6858
	css_put(&ug->memcg->css);
6859 6860 6861 6862
}

static void uncharge_list(struct list_head *page_list)
{
6863
	struct uncharge_gather ug;
6864
	struct list_head *next;
6865 6866

	uncharge_gather_clear(&ug);
6867

6868 6869 6870 6871
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
6872 6873
	next = page_list->next;
	do {
6874 6875
		struct page *page;

6876 6877 6878
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

6879
		uncharge_page(page, &ug);
6880 6881
	} while (next != page_list);

6882 6883
	if (ug.memcg)
		uncharge_batch(&ug);
6884 6885
}

6886 6887 6888 6889
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
6890
 * Uncharge a page previously charged with mem_cgroup_charge().
6891 6892 6893
 */
void mem_cgroup_uncharge(struct page *page)
{
6894 6895
	struct uncharge_gather ug;

6896 6897 6898
	if (mem_cgroup_disabled())
		return;

6899
	/* Don't touch page->lru of any random page, pre-check: */
6900
	if (!page_memcg(page))
6901 6902
		return;

6903 6904 6905
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
6906
}
6907

6908 6909 6910 6911 6912
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
6913
 * mem_cgroup_charge().
6914 6915 6916 6917 6918
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
6919

6920 6921
	if (!list_empty(page_list))
		uncharge_list(page_list);
6922 6923 6924
}

/**
6925 6926 6927
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
6928
 *
6929 6930
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
6931 6932 6933
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
6934
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6935
{
6936
	struct mem_cgroup *memcg;
6937
	unsigned int nr_pages;
6938
	unsigned long flags;
6939 6940 6941 6942

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6943 6944
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6945 6946 6947 6948 6949

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
6950
	if (page_memcg(newpage))
6951 6952
		return;

6953
	memcg = page_memcg(oldpage);
6954
	VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
6955
	if (!memcg)
6956 6957
		return;

6958
	/* Force-charge the new page. The old one will be freed soon */
6959
	nr_pages = thp_nr_pages(newpage);
6960 6961 6962 6963

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
6964

6965
	css_get(&memcg->css);
6966
	commit_charge(newpage, memcg);
6967

6968
	local_irq_save(flags);
6969
	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6970
	memcg_check_events(memcg, newpage);
6971
	local_irq_restore(flags);
6972 6973
}

6974
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6975 6976
EXPORT_SYMBOL(memcg_sockets_enabled_key);

6977
void mem_cgroup_sk_alloc(struct sock *sk)
6978 6979 6980
{
	struct mem_cgroup *memcg;

6981 6982 6983
	if (!mem_cgroup_sockets_enabled)
		return;

6984 6985 6986 6987
	/* Do not associate the sock with unrelated interrupted task's memcg. */
	if (in_interrupt())
		return;

6988 6989
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
6990 6991
	if (memcg == root_mem_cgroup)
		goto out;
6992
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6993
		goto out;
S
Shakeel Butt 已提交
6994
	if (css_tryget(&memcg->css))
6995
		sk->sk_memcg = memcg;
6996
out:
6997 6998 6999
	rcu_read_unlock();
}

7000
void mem_cgroup_sk_free(struct sock *sk)
7001
{
7002 7003
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
7016
	gfp_t gfp_mask = GFP_KERNEL;
7017

7018
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7019
		struct page_counter *fail;
7020

7021 7022
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
7023 7024
			return true;
		}
7025 7026
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
7027
		return false;
7028
	}
7029

7030 7031 7032 7033
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

7034
	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7035

7036 7037 7038 7039
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7040 7041 7042 7043 7044
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
7045 7046
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
7047 7048 7049
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
7050
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7051
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7052 7053
		return;
	}
7054

7055
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7056

7057
	refill_stock(memcg, nr_pages);
7058 7059
}

7060 7061 7062 7063 7064 7065 7066 7067 7068
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
7069 7070
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
7071 7072 7073 7074
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
7075

7076
/*
7077 7078
 * subsys_initcall() for memory controller.
 *
7079 7080 7081 7082
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
7083 7084 7085
 */
static int __init mem_cgroup_init(void)
{
7086 7087
	int cpu, node;

7088 7089 7090 7091 7092 7093 7094 7095
	/*
	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
	 * used for per-memcg-per-cpu caching of per-node statistics. In order
	 * to work fine, we should make sure that the overfill threshold can't
	 * exceed S32_MAX / PAGE_SIZE.
	 */
	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);

7096 7097
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

7109
		rtpn->rb_root = RB_ROOT;
7110
		rtpn->rb_rightmost = NULL;
7111
		spin_lock_init(&rtpn->lock);
7112 7113 7114
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

7115 7116 7117
	return 0;
}
subsys_initcall(mem_cgroup_init);
7118 7119

#ifdef CONFIG_MEMCG_SWAP
7120 7121
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
7122
	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

7138 7139 7140 7141 7142 7143 7144 7145 7146
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
7147
	struct mem_cgroup *memcg, *swap_memcg;
7148
	unsigned int nr_entries;
7149 7150 7151 7152 7153
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

7154 7155 7156
	if (mem_cgroup_disabled())
		return;

7157
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7158 7159
		return;

7160
	memcg = page_memcg(page);
7161

7162
	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7163 7164 7165
	if (!memcg)
		return;

7166 7167 7168 7169 7170 7171
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
7172
	nr_entries = thp_nr_pages(page);
7173 7174 7175 7176 7177
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
7178
	VM_BUG_ON_PAGE(oldid, page);
7179
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7180

7181
	page->memcg_data = 0;
7182 7183

	if (!mem_cgroup_is_root(memcg))
7184
		page_counter_uncharge(&memcg->memory, nr_entries);
7185

7186
	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7187
		if (!mem_cgroup_is_root(swap_memcg))
7188 7189
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
7190 7191
	}

7192 7193
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
7194
	 * i_pages lock which is taken with interrupts-off. It is
7195
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
7196
	 * only synchronisation we have for updating the per-CPU variables.
7197 7198
	 */
	VM_BUG_ON(!irqs_disabled());
7199
	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7200
	memcg_check_events(memcg, page);
7201

7202
	css_put(&memcg->css);
7203 7204
}

7205 7206
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
7207 7208 7209
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
7210
 * Try to charge @page's memcg for the swap space at @entry.
7211 7212 7213 7214 7215
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
7216
	unsigned int nr_pages = thp_nr_pages(page);
7217
	struct page_counter *counter;
7218
	struct mem_cgroup *memcg;
7219 7220
	unsigned short oldid;

7221 7222 7223
	if (mem_cgroup_disabled())
		return 0;

7224
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7225 7226
		return 0;

7227
	memcg = page_memcg(page);
7228

7229
	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7230 7231 7232
	if (!memcg)
		return 0;

7233 7234
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7235
		return 0;
7236
	}
7237

7238 7239
	memcg = mem_cgroup_id_get_online(memcg);

7240
	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7241
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7242 7243
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7244
		mem_cgroup_id_put(memcg);
7245
		return -ENOMEM;
7246
	}
7247

7248 7249 7250 7251
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7252
	VM_BUG_ON_PAGE(oldid, page);
7253
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7254 7255 7256 7257

	return 0;
}

7258
/**
7259
 * mem_cgroup_uncharge_swap - uncharge swap space
7260
 * @entry: swap entry to uncharge
7261
 * @nr_pages: the amount of swap space to uncharge
7262
 */
7263
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7264 7265 7266 7267
{
	struct mem_cgroup *memcg;
	unsigned short id;

7268
	id = swap_cgroup_record(entry, 0, nr_pages);
7269
	rcu_read_lock();
7270
	memcg = mem_cgroup_from_id(id);
7271
	if (memcg) {
7272
		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7273
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7274
				page_counter_uncharge(&memcg->swap, nr_pages);
7275
			else
7276
				page_counter_uncharge(&memcg->memsw, nr_pages);
7277
		}
7278
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7279
		mem_cgroup_id_put_many(memcg, nr_pages);
7280 7281 7282 7283
	}
	rcu_read_unlock();
}

7284 7285 7286 7287
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

7288
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7289 7290 7291
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
7292
				      READ_ONCE(memcg->swap.max) -
7293 7294 7295 7296
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

7297 7298 7299 7300 7301 7302 7303 7304
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
7305
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7306 7307
		return false;

7308
	memcg = page_memcg(page);
7309 7310 7311
	if (!memcg)
		return false;

7312 7313 7314 7315 7316
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		unsigned long usage = page_counter_read(&memcg->swap);

		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
		    usage * 2 >= READ_ONCE(memcg->swap.max))
7317
			return true;
7318
	}
7319 7320 7321 7322

	return false;
}

7323
static int __init setup_swap_account(char *s)
7324 7325
{
	if (!strcmp(s, "1"))
7326
		cgroup_memory_noswap = false;
7327
	else if (!strcmp(s, "0"))
7328
		cgroup_memory_noswap = true;
7329 7330
	return 1;
}
7331
__setup("swapaccount=", setup_swap_account);
7332

7333 7334 7335 7336 7337 7338 7339 7340
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363
static int swap_high_show(struct seq_file *m, void *v)
{
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
}

static ssize_t swap_high_write(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &high);
	if (err)
		return err;

	page_counter_set_high(&memcg->swap, high);

	return nbytes;
}

7364 7365
static int swap_max_show(struct seq_file *m, void *v)
{
7366 7367
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

7382
	xchg(&memcg->swap.max, max);
7383 7384 7385 7386

	return nbytes;
}

7387 7388
static int swap_events_show(struct seq_file *m, void *v)
{
7389
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7390

7391 7392
	seq_printf(m, "high %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7393 7394 7395 7396 7397 7398 7399 7400
	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

7401 7402 7403 7404 7405 7406
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
7407 7408 7409 7410 7411 7412
	{
		.name = "swap.high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_high_show,
		.write = swap_high_write,
	},
7413 7414 7415 7416 7417 7418
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
7419 7420 7421 7422 7423 7424
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
7425 7426 7427
	{ }	/* terminate */
};

7428
static struct cftype memsw_files[] = {
7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

7455 7456 7457 7458 7459 7460 7461
/*
 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
 * boot parameter. This may result in premature OOPS inside
 * mem_cgroup_get_nr_swap_pages() function in corner cases.
 */
7462 7463
static int __init mem_cgroup_swap_init(void)
{
7464 7465 7466 7467 7468
	/* No memory control -> no swap control */
	if (mem_cgroup_disabled())
		cgroup_memory_noswap = true;

	if (cgroup_memory_noswap)
7469 7470 7471 7472 7473
		return 0;

	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));

7474 7475
	return 0;
}
7476
core_initcall(mem_cgroup_swap_init);
7477 7478

#endif /* CONFIG_MEMCG_SWAP */