memcontrol.c 187.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
B
Balbir Singh 已提交
2 3 4 5 6
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
7 8 9
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
10 11 12 13
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
14 15 16 17
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
B
Balbir Singh 已提交
23 24
 */

25
#include <linux/page_counter.h>
B
Balbir Singh 已提交
26 27
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
28
#include <linux/pagewalk.h>
29
#include <linux/sched/mm.h>
30
#include <linux/shmem_fs.h>
31
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
32
#include <linux/pagemap.h>
33
#include <linux/vm_event_item.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/swap_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
59
#include <linux/tracehook.h>
60
#include <linux/psi.h>
61
#include <linux/seq_buf.h>
K
KAMEZAWA Hiroyuki 已提交
62
#include "internal.h"
G
Glauber Costa 已提交
63
#include <net/sock.h>
M
Michal Hocko 已提交
64
#include <net/ip.h>
65
#include "slab.h"
B
Balbir Singh 已提交
66

67
#include <linux/uaccess.h>
68

69 70
#include <trace/events/vmscan.h>

71 72
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
73

74 75
struct mem_cgroup *root_mem_cgroup __read_mostly;

76
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
77

78 79 80
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

81 82 83
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

84
/* Whether the swap controller is active */
A
Andrew Morton 已提交
85
#ifdef CONFIG_MEMCG_SWAP
86 87
int do_swap_account __read_mostly;
#else
88
#define do_swap_account		0
89 90
#endif

91 92 93 94
#ifdef CONFIG_CGROUP_WRITEBACK
static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
#endif

95 96 97 98 99 100
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

101
static const char *const mem_cgroup_lru_names[] = {
102 103 104 105 106 107 108
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

109 110 111
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
112

113 114 115 116 117
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

118
struct mem_cgroup_tree_per_node {
119
	struct rb_root rb_root;
120
	struct rb_node *rb_rightmost;
121 122 123 124 125 126 127 128 129
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
130 131 132 133 134
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
135

136 137 138
/*
 * cgroup_event represents events which userspace want to receive.
 */
139
struct mem_cgroup_event {
140
	/*
141
	 * memcg which the event belongs to.
142
	 */
143
	struct mem_cgroup *memcg;
144 145 146 147 148 149 150 151
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
152 153 154 155 156
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
157
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
158
			      struct eventfd_ctx *eventfd, const char *args);
159 160 161 162 163
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
164
	void (*unregister_event)(struct mem_cgroup *memcg,
165
				 struct eventfd_ctx *eventfd);
166 167 168 169 170 171
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
172
	wait_queue_entry_t wait;
173 174 175
	struct work_struct remove;
};

176 177
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
178

179 180
/* Stuffs for move charges at task migration. */
/*
181
 * Types of charges to be moved.
182
 */
183 184 185
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
186

187 188
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
189
	spinlock_t	  lock; /* for from, to */
190
	struct mm_struct  *mm;
191 192
	struct mem_cgroup *from;
	struct mem_cgroup *to;
193
	unsigned long flags;
194
	unsigned long precharge;
195
	unsigned long moved_charge;
196
	unsigned long moved_swap;
197 198 199
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
200
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
201 202
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
203

204 205 206 207
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
208
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
209
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
210

211 212
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
213
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
214
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
215
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
216 217 218
	NR_CHARGE_TYPE,
};

219
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
220 221 222 223
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
224
	_KMEM,
V
Vladimir Davydov 已提交
225
	_TCP,
G
Glauber Costa 已提交
226 227
};

228 229
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
230
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
231 232
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
233

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(root, iter, NULL))

#define for_each_mem_cgroup(iter)			\
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(NULL, iter, NULL))

249 250 251 252 253 254
static inline bool should_force_charge(void)
{
	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
		(current->flags & PF_EXITING);
}

255 256 257 258 259 260 261 262 263 264 265 266 267
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

268
#ifdef CONFIG_MEMCG_KMEM
269
/*
270
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
271 272 273 274 275
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
276
 *
277 278
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
279
 */
280 281
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
282

283 284 285 286 287 288 289 290 291 292 293 294 295
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

296 297 298 299 300 301
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
302
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
303 304
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
305
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
306 307 308
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
309
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
310

311 312 313 314 315 316
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
317
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
318
EXPORT_SYMBOL(memcg_kmem_enabled_key);
319

320
struct workqueue_struct *memcg_kmem_cache_wq;
321
#endif
322

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
static int memcg_shrinker_map_size;
static DEFINE_MUTEX(memcg_shrinker_map_mutex);

static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
{
	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
}

static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
					 int size, int old_size)
{
	struct memcg_shrinker_map *new, *old;
	int nid;

	lockdep_assert_held(&memcg_shrinker_map_mutex);

	for_each_node(nid) {
		old = rcu_dereference_protected(
			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
		/* Not yet online memcg */
		if (!old)
			return 0;

		new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
		if (!new)
			return -ENOMEM;

		/* Set all old bits, clear all new bits */
		memset(new->map, (int)0xff, old_size);
		memset((void *)new->map + old_size, 0, size - old_size);

		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
	}

	return 0;
}

static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *pn;
	struct memcg_shrinker_map *map;
	int nid;

	if (mem_cgroup_is_root(memcg))
		return;

	for_each_node(nid) {
		pn = mem_cgroup_nodeinfo(memcg, nid);
		map = rcu_dereference_protected(pn->shrinker_map, true);
		if (map)
			kvfree(map);
		rcu_assign_pointer(pn->shrinker_map, NULL);
	}
}

static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	struct memcg_shrinker_map *map;
	int nid, size, ret = 0;

	if (mem_cgroup_is_root(memcg))
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	size = memcg_shrinker_map_size;
	for_each_node(nid) {
		map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
		if (!map) {
			memcg_free_shrinker_maps(memcg);
			ret = -ENOMEM;
			break;
		}
		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
	}
	mutex_unlock(&memcg_shrinker_map_mutex);

	return ret;
}

int memcg_expand_shrinker_maps(int new_id)
{
	int size, old_size, ret = 0;
	struct mem_cgroup *memcg;

	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
	old_size = memcg_shrinker_map_size;
	if (size <= old_size)
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	if (!root_mem_cgroup)
		goto unlock;

	for_each_mem_cgroup(memcg) {
		if (mem_cgroup_is_root(memcg))
			continue;
		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
		if (ret)
			goto unlock;
	}
unlock:
	if (!ret)
		memcg_shrinker_map_size = size;
	mutex_unlock(&memcg_shrinker_map_mutex);
	return ret;
}
430 431 432 433 434 435 436 437

void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
{
	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
		struct memcg_shrinker_map *map;

		rcu_read_lock();
		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
438 439
		/* Pairs with smp mb in shrink_slab() */
		smp_mb__before_atomic();
440 441 442 443 444
		set_bit(shrinker_id, map->map);
		rcu_read_unlock();
	}
}

445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

462
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
463 464 465 466 467
		memcg = root_mem_cgroup;

	return &memcg->css;
}

468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
487 488 489 490
	if (PageHead(page) && PageSlab(page))
		memcg = memcg_from_slab_page(page);
	else
		memcg = READ_ONCE(page->mem_cgroup);
491 492 493 494 495 496 497 498
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

499 500
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
501
{
502
	int nid = page_to_nid(page);
503

504
	return memcg->nodeinfo[nid];
505 506
}

507 508
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
509
{
510
	return soft_limit_tree.rb_tree_per_node[nid];
511 512
}

513
static struct mem_cgroup_tree_per_node *
514 515 516 517
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

518
	return soft_limit_tree.rb_tree_per_node[nid];
519 520
}

521 522
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
523
					 unsigned long new_usage_in_excess)
524 525 526
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
527
	struct mem_cgroup_per_node *mz_node;
528
	bool rightmost = true;
529 530 531 532 533 534 535 536 537

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
538
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
539
					tree_node);
540
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
541
			p = &(*p)->rb_left;
542 543 544
			rightmost = false;
		}

545 546 547 548 549 550 551
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
552 553 554 555

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

556 557 558 559 560
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

561 562
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
563 564 565
{
	if (!mz->on_tree)
		return;
566 567 568 569

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

570 571 572 573
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

574 575
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
576
{
577 578 579
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
580
	__mem_cgroup_remove_exceeded(mz, mctz);
581
	spin_unlock_irqrestore(&mctz->lock, flags);
582 583
}

584 585 586
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
587
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
588 589 590 591 592 593 594
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
595 596 597

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
598
	unsigned long excess;
599 600
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
601

602
	mctz = soft_limit_tree_from_page(page);
603 604
	if (!mctz)
		return;
605 606 607 608 609
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
610
		mz = mem_cgroup_page_nodeinfo(memcg, page);
611
		excess = soft_limit_excess(memcg);
612 613 614 615 616
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
617 618 619
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
620 621
			/* if on-tree, remove it */
			if (mz->on_tree)
622
				__mem_cgroup_remove_exceeded(mz, mctz);
623 624 625 626
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
627
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
628
			spin_unlock_irqrestore(&mctz->lock, flags);
629 630 631 632 633 634
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
635 636 637
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
638

639
	for_each_node(nid) {
640 641
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
642 643
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
644 645 646
	}
}

647 648
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
649
{
650
	struct mem_cgroup_per_node *mz;
651 652 653

retry:
	mz = NULL;
654
	if (!mctz->rb_rightmost)
655 656
		goto done;		/* Nothing to reclaim from */

657 658
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
659 660 661 662 663
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
664
	__mem_cgroup_remove_exceeded(mz, mctz);
665
	if (!soft_limit_excess(mz->memcg) ||
666
	    !css_tryget_online(&mz->memcg->css))
667 668 669 670 671
		goto retry;
done:
	return mz;
}

672 673
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
674
{
675
	struct mem_cgroup_per_node *mz;
676

677
	spin_lock_irq(&mctz->lock);
678
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
679
	spin_unlock_irq(&mctz->lock);
680 681 682
	return mz;
}

683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
/**
 * __mod_memcg_state - update cgroup memory statistics
 * @memcg: the memory cgroup
 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 * @val: delta to add to the counter, can be negative
 */
void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
{
	long x;

	if (mem_cgroup_disabled())
		return;

	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
698 699
		struct mem_cgroup *mi;

700 701 702 703 704
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
705 706
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmstats[idx]);
707 708 709 710 711
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
}

712 713 714 715 716 717 718 719 720 721 722
static struct mem_cgroup_per_node *
parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
{
	struct mem_cgroup *parent;

	parent = parent_mem_cgroup(pn->memcg);
	if (!parent)
		return NULL;
	return mem_cgroup_nodeinfo(parent, nid);
}

723 724 725 726 727 728 729 730 731 732 733 734 735
/**
 * __mod_lruvec_state - update lruvec memory statistics
 * @lruvec: the lruvec
 * @idx: the stat item
 * @val: delta to add to the counter, can be negative
 *
 * The lruvec is the intersection of the NUMA node and a cgroup. This
 * function updates the all three counters that are affected by a
 * change of state at this level: per-node, per-cgroup, per-lruvec.
 */
void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			int val)
{
736
	pg_data_t *pgdat = lruvec_pgdat(lruvec);
737
	struct mem_cgroup_per_node *pn;
738
	struct mem_cgroup *memcg;
739 740 741
	long x;

	/* Update node */
742
	__mod_node_page_state(pgdat, idx, val);
743 744 745 746 747

	if (mem_cgroup_disabled())
		return;

	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
748
	memcg = pn->memcg;
749 750

	/* Update memcg */
751
	__mod_memcg_state(memcg, idx, val);
752

753 754 755
	/* Update lruvec */
	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);

756 757
	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
758 759 760 761
		struct mem_cgroup_per_node *pi;

		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
			atomic_long_add(x, &pi->lruvec_stat[idx]);
762 763 764 765 766
		x = 0;
	}
	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
}

767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
{
	struct page *page = virt_to_head_page(p);
	pg_data_t *pgdat = page_pgdat(page);
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;

	rcu_read_lock();
	memcg = memcg_from_slab_page(page);

	/* Untracked pages have no memcg, no lruvec. Update only the node */
	if (!memcg || memcg == root_mem_cgroup) {
		__mod_node_page_state(pgdat, idx, val);
	} else {
		lruvec = mem_cgroup_lruvec(pgdat, memcg);
		__mod_lruvec_state(lruvec, idx, val);
	}
	rcu_read_unlock();
}

787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
/**
 * __count_memcg_events - account VM events in a cgroup
 * @memcg: the memory cgroup
 * @idx: the event item
 * @count: the number of events that occured
 */
void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
			  unsigned long count)
{
	unsigned long x;

	if (mem_cgroup_disabled())
		return;

	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
803 804
		struct mem_cgroup *mi;

805 806 807 808 809
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->events[idx], x);
810 811
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmevents[idx]);
812 813 814 815 816
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
}

817
static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
818
{
819
	return atomic_long_read(&memcg->vmevents[event]);
820 821
}

822 823
static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
{
824 825 826 827 828 829
	long x = 0;
	int cpu;

	for_each_possible_cpu(cpu)
		x += per_cpu(memcg->vmstats_local->events[event], cpu);
	return x;
830 831
}

832
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
833
					 struct page *page,
834
					 bool compound, int nr_pages)
835
{
836 837 838 839
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
840
	if (PageAnon(page))
841
		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
842
	else {
843
		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
844
		if (PageSwapBacked(page))
845
			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
846
	}
847

848 849
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
850
		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
851
	}
852

853 854
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
855
		__count_memcg_events(memcg, PGPGIN, 1);
856
	else {
857
		__count_memcg_events(memcg, PGPGOUT, 1);
858 859
		nr_pages = -nr_pages; /* for event */
	}
860

861
	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
862 863
}

864 865
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
866 867 868
{
	unsigned long val, next;

869 870
	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
871
	/* from time_after() in jiffies.h */
872
	if ((long)(next - val) < 0) {
873 874 875 876
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
877 878 879
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
880 881 882 883 884 885
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
886
		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
887
		return true;
888
	}
889
	return false;
890 891 892 893 894 895
}

/*
 * Check events in order.
 *
 */
896
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
897 898
{
	/* threshold event is triggered in finer grain than soft limit */
899 900
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
901
		bool do_softlimit;
902
		bool do_numainfo __maybe_unused;
903

904 905
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
906 907 908 909
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
910
		mem_cgroup_threshold(memcg);
911 912
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
913
#if MAX_NUMNODES > 1
914
		if (unlikely(do_numainfo))
915
			atomic_inc(&memcg->numainfo_events);
916
#endif
917
	}
918 919
}

920
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
921
{
922 923 924 925 926 927 928 929
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

930
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
931
}
M
Michal Hocko 已提交
932
EXPORT_SYMBOL(mem_cgroup_from_task);
933

934 935 936 937 938 939 940 941 942
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
 * returned.
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
943
{
944 945 946 947
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
948

949 950
	rcu_read_lock();
	do {
951 952 953 954 955 956
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
957
			memcg = root_mem_cgroup;
958 959 960 961 962
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
963
	} while (!css_tryget_online(&memcg->css));
964
	rcu_read_unlock();
965
	return memcg;
966
}
967 968
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
/**
 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
 * @page: page from which memcg should be extracted.
 *
 * Obtain a reference on page->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned.
 */
struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
{
	struct mem_cgroup *memcg = page->mem_cgroup;

	if (mem_cgroup_disabled())
		return NULL;

	rcu_read_lock();
	if (!memcg || !css_tryget_online(&memcg->css))
		memcg = root_mem_cgroup;
	rcu_read_unlock();
	return memcg;
}
EXPORT_SYMBOL(get_mem_cgroup_from_page);

991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
/**
 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
 */
static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
{
	if (unlikely(current->active_memcg)) {
		struct mem_cgroup *memcg = root_mem_cgroup;

		rcu_read_lock();
		if (css_tryget_online(&current->active_memcg->css))
			memcg = current->active_memcg;
		rcu_read_unlock();
		return memcg;
	}
	return get_mem_cgroup_from_mm(current->mm);
}
1007

1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
1021
 * Reclaimers can specify a node and a priority level in @reclaim to
1022
 * divide up the memcgs in the hierarchy among all concurrent
1023
 * reclaimers operating on the same node and priority.
1024
 */
1025
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1026
				   struct mem_cgroup *prev,
1027
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1028
{
M
Michal Hocko 已提交
1029
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1030
	struct cgroup_subsys_state *css = NULL;
1031
	struct mem_cgroup *memcg = NULL;
1032
	struct mem_cgroup *pos = NULL;
1033

1034 1035
	if (mem_cgroup_disabled())
		return NULL;
1036

1037 1038
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1039

1040
	if (prev && !reclaim)
1041
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1042

1043 1044
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1045
			goto out;
1046
		return root;
1047
	}
K
KAMEZAWA Hiroyuki 已提交
1048

1049
	rcu_read_lock();
M
Michal Hocko 已提交
1050

1051
	if (reclaim) {
1052
		struct mem_cgroup_per_node *mz;
1053

1054
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1055 1056 1057 1058 1059
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

1060
		while (1) {
1061
			pos = READ_ONCE(iter->position);
1062 1063
			if (!pos || css_tryget(&pos->css))
				break;
1064
			/*
1065 1066 1067 1068 1069 1070
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
1071
			 */
1072 1073
			(void)cmpxchg(&iter->position, pos, NULL);
		}
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1091
		}
K
KAMEZAWA Hiroyuki 已提交
1092

1093 1094 1095 1096 1097 1098
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1099

1100 1101
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1102

1103 1104
		if (css_tryget(css))
			break;
1105

1106
		memcg = NULL;
1107
	}
1108 1109 1110

	if (reclaim) {
		/*
1111 1112 1113
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
1114
		 */
1115 1116
		(void)cmpxchg(&iter->position, pos, memcg);

1117 1118 1119 1120 1121 1122 1123
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1124
	}
1125

1126 1127
out_unlock:
	rcu_read_unlock();
1128
out:
1129 1130 1131
	if (prev && prev != root)
		css_put(&prev->css);

1132
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1133
}
K
KAMEZAWA Hiroyuki 已提交
1134

1135 1136 1137 1138 1139 1140 1141
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1142 1143 1144 1145 1146 1147
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1148

1149 1150
static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
					struct mem_cgroup *dead_memcg)
1151 1152
{
	struct mem_cgroup_reclaim_iter *iter;
1153 1154
	struct mem_cgroup_per_node *mz;
	int nid;
1155 1156
	int i;

1157 1158 1159 1160 1161 1162
	for_each_node(nid) {
		mz = mem_cgroup_nodeinfo(from, nid);
		for (i = 0; i <= DEF_PRIORITY; i++) {
			iter = &mz->iter[i];
			cmpxchg(&iter->position,
				dead_memcg, NULL);
1163 1164 1165 1166
		}
	}
}

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup *last;

	do {
		__invalidate_reclaim_iterators(memcg, dead_memcg);
		last = memcg;
	} while ((memcg = parent_mem_cgroup(memcg)));

	/*
	 * When cgruop1 non-hierarchy mode is used,
	 * parent_mem_cgroup() does not walk all the way up to the
	 * cgroup root (root_mem_cgroup). So we have to handle
	 * dead_memcg from cgroup root separately.
	 */
	if (last != root_mem_cgroup)
		__invalidate_reclaim_iterators(root_mem_cgroup,
						dead_memcg);
}

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

1213
		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

1225
/**
1226
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1227
 * @page: the page
1228
 * @pgdat: pgdat of the page
1229 1230 1231 1232
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1233
 */
M
Mel Gorman 已提交
1234
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
1235
{
1236
	struct mem_cgroup_per_node *mz;
1237
	struct mem_cgroup *memcg;
1238
	struct lruvec *lruvec;
1239

1240
	if (mem_cgroup_disabled()) {
M
Mel Gorman 已提交
1241
		lruvec = &pgdat->lruvec;
1242 1243
		goto out;
	}
1244

1245
	memcg = page->mem_cgroup;
1246
	/*
1247
	 * Swapcache readahead pages are added to the LRU - and
1248
	 * possibly migrated - before they are charged.
1249
	 */
1250 1251
	if (!memcg)
		memcg = root_mem_cgroup;
1252

1253
	mz = mem_cgroup_page_nodeinfo(memcg, page);
1254 1255 1256 1257 1258 1259 1260
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
1261 1262
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
1263
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1264
}
1265

1266
/**
1267 1268 1269
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1270
 * @zid: zone id of the accounted pages
1271
 * @nr_pages: positive when adding or negative when removing
1272
 *
1273 1274 1275
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1276
 */
1277
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1278
				int zid, int nr_pages)
1279
{
1280
	struct mem_cgroup_per_node *mz;
1281
	unsigned long *lru_size;
1282
	long size;
1283 1284 1285 1286

	if (mem_cgroup_disabled())
		return;

1287
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1288
	lru_size = &mz->lru_zone_size[zid][lru];
1289 1290 1291 1292 1293

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1294 1295 1296
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1297 1298 1299 1300 1301 1302
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1303
}
1304

1305
/**
1306
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1307
 * @memcg: the memory cgroup
1308
 *
1309
 * Returns the maximum amount of memory @mem can be charged with, in
1310
 * pages.
1311
 */
1312
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1313
{
1314 1315 1316
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1317

1318
	count = page_counter_read(&memcg->memory);
1319
	limit = READ_ONCE(memcg->memory.max);
1320 1321 1322
	if (count < limit)
		margin = limit - count;

1323
	if (do_memsw_account()) {
1324
		count = page_counter_read(&memcg->memsw);
1325
		limit = READ_ONCE(memcg->memsw.max);
1326 1327
		if (count <= limit)
			margin = min(margin, limit - count);
1328 1329
		else
			margin = 0;
1330 1331 1332
	}

	return margin;
1333 1334
}

1335
/*
Q
Qiang Huang 已提交
1336
 * A routine for checking "mem" is under move_account() or not.
1337
 *
Q
Qiang Huang 已提交
1338 1339 1340
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1341
 */
1342
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1343
{
1344 1345
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1346
	bool ret = false;
1347 1348 1349 1350 1351 1352 1353 1354 1355
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1356

1357 1358
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1359 1360
unlock:
	spin_unlock(&mc.lock);
1361 1362 1363
	return ret;
}

1364
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1365 1366
{
	if (mc.moving_task && current != mc.moving_task) {
1367
		if (mem_cgroup_under_move(memcg)) {
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1380 1381 1382 1383
static char *memory_stat_format(struct mem_cgroup *memcg)
{
	struct seq_buf s;
	int i;
1384

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
	if (!s.buffer)
		return NULL;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

	seq_buf_printf(&s, "anon %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_RSS) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_CACHE) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "kernel_stack %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
		       1024);
	seq_buf_printf(&s, "slab %llu\n",
		       (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
			     memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "sock %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_SOCK) *
		       PAGE_SIZE);

	seq_buf_printf(&s, "shmem %llu\n",
		       (u64)memcg_page_state(memcg, NR_SHMEM) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_mapped %llu\n",
		       (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_dirty %llu\n",
		       (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_writeback %llu\n",
		       (u64)memcg_page_state(memcg, NR_WRITEBACK) *
		       PAGE_SIZE);

	/*
	 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
	 * with the NR_ANON_THP vm counter, but right now it's a pain in the
	 * arse because it requires migrating the work out of rmap to a place
	 * where the page->mem_cgroup is set up and stable.
	 */
	seq_buf_printf(&s, "anon_thp %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
		       PAGE_SIZE);

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i],
			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			       PAGE_SIZE);

	seq_buf_printf(&s, "slab_reclaimable %llu\n",
		       (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "slab_unreclaimable %llu\n",
		       (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
		       PAGE_SIZE);

	/* Accumulated memory events */

	seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
	seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));

	seq_buf_printf(&s, "workingset_refault %lu\n",
		       memcg_page_state(memcg, WORKINGSET_REFAULT));
	seq_buf_printf(&s, "workingset_activate %lu\n",
		       memcg_page_state(memcg, WORKINGSET_ACTIVATE));
	seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
		       memcg_page_state(memcg, WORKINGSET_NODERECLAIM));

	seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
	seq_buf_printf(&s, "pgscan %lu\n",
		       memcg_events(memcg, PGSCAN_KSWAPD) +
		       memcg_events(memcg, PGSCAN_DIRECT));
	seq_buf_printf(&s, "pgsteal %lu\n",
		       memcg_events(memcg, PGSTEAL_KSWAPD) +
		       memcg_events(memcg, PGSTEAL_DIRECT));
	seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
	seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
	seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
	seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	seq_buf_printf(&s, "thp_fault_alloc %lu\n",
		       memcg_events(memcg, THP_FAULT_ALLOC));
	seq_buf_printf(&s, "thp_collapse_alloc %lu\n",
		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

	/* The above should easily fit into one page */
	WARN_ON_ONCE(seq_buf_has_overflowed(&s));

	return s.buffer;
}
1488

1489
#define K(x) ((x) << (PAGE_SHIFT-10))
1490
/**
1491 1492
 * mem_cgroup_print_oom_context: Print OOM information relevant to
 * memory controller.
1493 1494 1495 1496 1497 1498
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
1499
void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1500 1501 1502
{
	rcu_read_lock();

1503 1504 1505 1506 1507
	if (memcg) {
		pr_cont(",oom_memcg=");
		pr_cont_cgroup_path(memcg->css.cgroup);
	} else
		pr_cont(",global_oom");
1508
	if (p) {
1509
		pr_cont(",task_memcg=");
1510 1511
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	}
1512
	rcu_read_unlock();
1513 1514 1515 1516 1517 1518 1519 1520 1521
}

/**
 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
 * memory controller.
 * @memcg: The memory cgroup that went over limit
 */
void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
1522
	char *buf;
1523

1524 1525
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1526
		K((u64)memcg->memory.max), memcg->memory.failcnt);
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->swap)),
			K((u64)memcg->swap.max), memcg->swap.failcnt);
	else {
		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->memsw)),
			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->kmem)),
			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1538
	}
1539 1540 1541 1542 1543 1544 1545 1546 1547

	pr_info("Memory cgroup stats for ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(":");
	buf = memory_stat_format(memcg);
	if (!buf)
		return;
	pr_info("%s", buf);
	kfree(buf);
1548 1549
}

D
David Rientjes 已提交
1550 1551 1552
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1553
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1554
{
1555
	unsigned long max;
1556

1557
	max = memcg->memory.max;
1558
	if (mem_cgroup_swappiness(memcg)) {
1559 1560
		unsigned long memsw_max;
		unsigned long swap_max;
1561

1562 1563 1564 1565
		memsw_max = memcg->memsw.max;
		swap_max = memcg->swap.max;
		swap_max = min(swap_max, (unsigned long)total_swap_pages);
		max = min(max + swap_max, memsw_max);
1566
	}
1567
	return max;
D
David Rientjes 已提交
1568 1569
}

1570
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1571
				     int order)
1572
{
1573 1574 1575
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1576
		.memcg = memcg,
1577 1578 1579
		.gfp_mask = gfp_mask,
		.order = order,
	};
1580
	bool ret;
1581

1582 1583 1584 1585 1586 1587 1588
	if (mutex_lock_killable(&oom_lock))
		return true;
	/*
	 * A few threads which were not waiting at mutex_lock_killable() can
	 * fail to bail out. Therefore, check again after holding oom_lock.
	 */
	ret = should_force_charge() || out_of_memory(&oc);
1589
	mutex_unlock(&oom_lock);
1590
	return ret;
1591 1592
}

1593 1594
#if MAX_NUMNODES > 1

1595 1596
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1597
 * @memcg: the target memcg
1598 1599 1600 1601 1602 1603 1604
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1605
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1606 1607
		int nid, bool noswap)
{
1608 1609
	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);

1610 1611
	if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
	    lruvec_page_state(lruvec, NR_ACTIVE_FILE))
1612 1613 1614
		return true;
	if (noswap || !total_swap_pages)
		return false;
1615 1616
	if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
	    lruvec_page_state(lruvec, NR_ACTIVE_ANON))
1617 1618 1619 1620
		return true;
	return false;

}
1621 1622 1623 1624 1625 1626 1627

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1628
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1629 1630
{
	int nid;
1631 1632 1633 1634
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1635
	if (!atomic_read(&memcg->numainfo_events))
1636
		return;
1637
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1638 1639 1640
		return;

	/* make a nodemask where this memcg uses memory from */
1641
	memcg->scan_nodes = node_states[N_MEMORY];
1642

1643
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1644

1645 1646
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1647
	}
1648

1649 1650
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1665
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1666 1667 1668
{
	int node;

1669 1670
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1671

1672
	node = next_node_in(node, memcg->scan_nodes);
1673
	/*
1674 1675 1676
	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
	 * last time it really checked all the LRUs due to rate limiting.
	 * Fallback to the current node in that case for simplicity.
1677 1678 1679 1680
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1681
	memcg->last_scanned_node = node;
1682 1683 1684
	return node;
}
#else
1685
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1686 1687 1688 1689 1690
{
	return 0;
}
#endif

1691
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1692
				   pg_data_t *pgdat,
1693 1694 1695 1696 1697 1698 1699 1700 1701
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1702
		.pgdat = pgdat,
1703 1704 1705
		.priority = 0,
	};

1706
	excess = soft_limit_excess(root_memcg);
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1732
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1733
					pgdat, &nr_scanned);
1734
		*total_scanned += nr_scanned;
1735
		if (!soft_limit_excess(root_memcg))
1736
			break;
1737
	}
1738 1739
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1740 1741
}

1742 1743 1744 1745 1746 1747
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1748 1749
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1750 1751 1752 1753
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1754
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1755
{
1756
	struct mem_cgroup *iter, *failed = NULL;
1757

1758 1759
	spin_lock(&memcg_oom_lock);

1760
	for_each_mem_cgroup_tree(iter, memcg) {
1761
		if (iter->oom_lock) {
1762 1763 1764 1765 1766
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1767 1768
			mem_cgroup_iter_break(memcg, iter);
			break;
1769 1770
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1771
	}
K
KAMEZAWA Hiroyuki 已提交
1772

1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1784
		}
1785 1786
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1787 1788 1789 1790

	spin_unlock(&memcg_oom_lock);

	return !failed;
1791
}
1792

1793
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1794
{
K
KAMEZAWA Hiroyuki 已提交
1795 1796
	struct mem_cgroup *iter;

1797
	spin_lock(&memcg_oom_lock);
1798
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1799
	for_each_mem_cgroup_tree(iter, memcg)
1800
		iter->oom_lock = false;
1801
	spin_unlock(&memcg_oom_lock);
1802 1803
}

1804
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1805 1806 1807
{
	struct mem_cgroup *iter;

1808
	spin_lock(&memcg_oom_lock);
1809
	for_each_mem_cgroup_tree(iter, memcg)
1810 1811
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1812 1813
}

1814
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1815 1816 1817
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1818 1819
	/*
	 * When a new child is created while the hierarchy is under oom,
1820
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1821
	 */
1822
	spin_lock(&memcg_oom_lock);
1823
	for_each_mem_cgroup_tree(iter, memcg)
1824 1825 1826
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1827 1828
}

K
KAMEZAWA Hiroyuki 已提交
1829 1830
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1831
struct oom_wait_info {
1832
	struct mem_cgroup *memcg;
1833
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1834 1835
};

1836
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1837 1838
	unsigned mode, int sync, void *arg)
{
1839 1840
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1841 1842 1843
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1844
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1845

1846 1847
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1848 1849 1850 1851
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1852
static void memcg_oom_recover(struct mem_cgroup *memcg)
1853
{
1854 1855 1856 1857 1858 1859 1860 1861 1862
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1863
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1864 1865
}

1866 1867 1868 1869 1870 1871 1872 1873
enum oom_status {
	OOM_SUCCESS,
	OOM_FAILED,
	OOM_ASYNC,
	OOM_SKIPPED
};

static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1874
{
1875 1876 1877
	enum oom_status ret;
	bool locked;

1878 1879 1880
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		return OOM_SKIPPED;

1881 1882
	memcg_memory_event(memcg, MEMCG_OOM);

K
KAMEZAWA Hiroyuki 已提交
1883
	/*
1884 1885 1886 1887
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1888 1889 1890 1891
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1892
	 *
1893 1894 1895 1896 1897 1898 1899
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
K
KAMEZAWA Hiroyuki 已提交
1900
	 */
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
	if (memcg->oom_kill_disable) {
		if (!current->in_user_fault)
			return OOM_SKIPPED;
		css_get(&memcg->css);
		current->memcg_in_oom = memcg;
		current->memcg_oom_gfp_mask = mask;
		current->memcg_oom_order = order;

		return OOM_ASYNC;
	}

1912 1913 1914 1915 1916 1917 1918 1919
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	mem_cgroup_unmark_under_oom(memcg);
1920
	if (mem_cgroup_out_of_memory(memcg, mask, order))
1921 1922 1923 1924 1925 1926
		ret = OOM_SUCCESS;
	else
		ret = OOM_FAILED;

	if (locked)
		mem_cgroup_oom_unlock(memcg);
1927

1928
	return ret;
1929 1930 1931 1932
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1933
 * @handle: actually kill/wait or just clean up the OOM state
1934
 *
1935 1936
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1937
 *
1938
 * Memcg supports userspace OOM handling where failed allocations must
1939 1940 1941 1942
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1943
 * the end of the page fault to complete the OOM handling.
1944 1945
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1946
 * completed, %false otherwise.
1947
 */
1948
bool mem_cgroup_oom_synchronize(bool handle)
1949
{
T
Tejun Heo 已提交
1950
	struct mem_cgroup *memcg = current->memcg_in_oom;
1951
	struct oom_wait_info owait;
1952
	bool locked;
1953 1954 1955

	/* OOM is global, do not handle */
	if (!memcg)
1956
		return false;
1957

1958
	if (!handle)
1959
		goto cleanup;
1960 1961 1962 1963 1964

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
1965
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
1966

1967
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1978 1979
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1980
	} else {
1981
		schedule();
1982 1983 1984 1985 1986
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1987 1988 1989 1990 1991 1992 1993 1994
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1995
cleanup:
T
Tejun Heo 已提交
1996
	current->memcg_in_oom = NULL;
1997
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1998
	return true;
1999 2000
}

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
/**
 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 * @victim: task to be killed by the OOM killer
 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 *
 * Returns a pointer to a memory cgroup, which has to be cleaned up
 * by killing all belonging OOM-killable tasks.
 *
 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 */
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
					    struct mem_cgroup *oom_domain)
{
	struct mem_cgroup *oom_group = NULL;
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return NULL;

	if (!oom_domain)
		oom_domain = root_mem_cgroup;

	rcu_read_lock();

	memcg = mem_cgroup_from_task(victim);
	if (memcg == root_mem_cgroup)
		goto out;

	/*
	 * Traverse the memory cgroup hierarchy from the victim task's
	 * cgroup up to the OOMing cgroup (or root) to find the
	 * highest-level memory cgroup with oom.group set.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		if (memcg->oom_group)
			oom_group = memcg;

		if (memcg == oom_domain)
			break;
	}

	if (oom_group)
		css_get(&oom_group->css);
out:
	rcu_read_unlock();

	return oom_group;
}

void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
	pr_info("Tasks in ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(" are going to be killed due to memory.oom.group set\n");
}

2057
/**
2058 2059
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
2060
 *
2061
 * This function protects unlocked LRU pages from being moved to
2062 2063 2064 2065 2066
 * another cgroup.
 *
 * It ensures lifetime of the returned memcg. Caller is responsible
 * for the lifetime of the page; __unlock_page_memcg() is available
 * when @page might get freed inside the locked section.
2067
 */
2068
struct mem_cgroup *lock_page_memcg(struct page *page)
2069 2070
{
	struct mem_cgroup *memcg;
2071
	unsigned long flags;
2072

2073 2074 2075 2076
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
2077 2078 2079 2080 2081 2082 2083
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page itself from being freed. E.g. writeback
	 * doesn't hold a page reference and relies on PG_writeback to
	 * keep off truncation, migration and so forth.
         */
2084 2085 2086
	rcu_read_lock();

	if (mem_cgroup_disabled())
2087
		return NULL;
2088
again:
2089
	memcg = page->mem_cgroup;
2090
	if (unlikely(!memcg))
2091
		return NULL;
2092

Q
Qiang Huang 已提交
2093
	if (atomic_read(&memcg->moving_account) <= 0)
2094
		return memcg;
2095

2096
	spin_lock_irqsave(&memcg->move_lock, flags);
2097
	if (memcg != page->mem_cgroup) {
2098
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2099 2100
		goto again;
	}
2101 2102 2103 2104

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
2105
	 * the task who has the lock for unlock_page_memcg().
2106 2107 2108
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2109

2110
	return memcg;
2111
}
2112
EXPORT_SYMBOL(lock_page_memcg);
2113

2114
/**
2115 2116 2117 2118
 * __unlock_page_memcg - unlock and unpin a memcg
 * @memcg: the memcg
 *
 * Unlock and unpin a memcg returned by lock_page_memcg().
2119
 */
2120
void __unlock_page_memcg(struct mem_cgroup *memcg)
2121
{
2122 2123 2124 2125 2126 2127 2128 2129
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2130

2131
	rcu_read_unlock();
2132
}
2133 2134 2135 2136 2137 2138 2139 2140 2141

/**
 * unlock_page_memcg - unlock a page->mem_cgroup binding
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
	__unlock_page_memcg(page->mem_cgroup);
}
2142
EXPORT_SYMBOL(unlock_page_memcg);
2143

2144 2145
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2146
	unsigned int nr_pages;
2147
	struct work_struct work;
2148
	unsigned long flags;
2149
#define FLUSHING_CACHED_CHARGE	0
2150 2151
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2152
static DEFINE_MUTEX(percpu_charge_mutex);
2153

2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2164
 */
2165
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2166 2167
{
	struct memcg_stock_pcp *stock;
2168
	unsigned long flags;
2169
	bool ret = false;
2170

2171
	if (nr_pages > MEMCG_CHARGE_BATCH)
2172
		return ret;
2173

2174 2175 2176
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2177
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2178
		stock->nr_pages -= nr_pages;
2179 2180
		ret = true;
	}
2181 2182 2183

	local_irq_restore(flags);

2184 2185 2186 2187
	return ret;
}

/*
2188
 * Returns stocks cached in percpu and reset cached information.
2189 2190 2191 2192 2193
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2194
	if (stock->nr_pages) {
2195
		page_counter_uncharge(&old->memory, stock->nr_pages);
2196
		if (do_memsw_account())
2197
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2198
		css_put_many(&old->css, stock->nr_pages);
2199
		stock->nr_pages = 0;
2200 2201 2202 2203 2204 2205
	}
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
2206 2207 2208
	struct memcg_stock_pcp *stock;
	unsigned long flags;

2209 2210 2211 2212
	/*
	 * The only protection from memory hotplug vs. drain_stock races is
	 * that we always operate on local CPU stock here with IRQ disabled
	 */
2213 2214 2215
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2216
	drain_stock(stock);
2217
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2218 2219

	local_irq_restore(flags);
2220 2221 2222
}

/*
2223
 * Cache charges(val) to local per_cpu area.
2224
 * This will be consumed by consume_stock() function, later.
2225
 */
2226
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2227
{
2228 2229 2230 2231
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
2232

2233
	stock = this_cpu_ptr(&memcg_stock);
2234
	if (stock->cached != memcg) { /* reset if necessary */
2235
		drain_stock(stock);
2236
		stock->cached = memcg;
2237
	}
2238
	stock->nr_pages += nr_pages;
2239

2240
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2241 2242
		drain_stock(stock);

2243
	local_irq_restore(flags);
2244 2245 2246
}

/*
2247
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2248
 * of the hierarchy under it.
2249
 */
2250
static void drain_all_stock(struct mem_cgroup *root_memcg)
2251
{
2252
	int cpu, curcpu;
2253

2254 2255 2256
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2257 2258 2259 2260 2261 2262
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
2263
	curcpu = get_cpu();
2264 2265
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2266
		struct mem_cgroup *memcg;
2267
		bool flush = false;
2268

2269
		rcu_read_lock();
2270
		memcg = stock->cached;
2271 2272 2273 2274 2275 2276 2277
		if (memcg && stock->nr_pages &&
		    mem_cgroup_is_descendant(memcg, root_memcg))
			flush = true;
		rcu_read_unlock();

		if (flush &&
		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2278 2279 2280 2281 2282
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2283
	}
2284
	put_cpu();
2285
	mutex_unlock(&percpu_charge_mutex);
2286 2287
}

2288
static int memcg_hotplug_cpu_dead(unsigned int cpu)
2289 2290
{
	struct memcg_stock_pcp *stock;
2291
	struct mem_cgroup *memcg, *mi;
2292 2293 2294

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
2295 2296 2297 2298 2299 2300 2301 2302

	for_each_mem_cgroup(memcg) {
		int i;

		for (i = 0; i < MEMCG_NR_STAT; i++) {
			int nid;
			long x;

2303
			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2304
			if (x)
2305 2306
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmstats[i]);
2307 2308 2309 2310 2311 2312 2313 2314 2315

			if (i >= NR_VM_NODE_STAT_ITEMS)
				continue;

			for_each_node(nid) {
				struct mem_cgroup_per_node *pn;

				pn = mem_cgroup_nodeinfo(memcg, nid);
				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2316
				if (x)
2317 2318 2319
					do {
						atomic_long_add(x, &pn->lruvec_stat[i]);
					} while ((pn = parent_nodeinfo(pn, nid)));
2320 2321 2322
			}
		}

2323
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2324 2325
			long x;

2326
			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2327
			if (x)
2328 2329
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmevents[i]);
2330 2331 2332
		}
	}

2333
	return 0;
2334 2335
}

2336 2337 2338 2339 2340 2341 2342
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
2343
		memcg_memory_event(memcg, MEMCG_HIGH);
2344 2345 2346 2347 2348 2349 2350 2351 2352
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
2353
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2354 2355
}

2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
/*
 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
 * enough to still cause a significant slowdown in most cases, while still
 * allowing diagnostics and tracing to proceed without becoming stuck.
 */
#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)

/*
 * When calculating the delay, we use these either side of the exponentiation to
 * maintain precision and scale to a reasonable number of jiffies (see the table
 * below.
 *
 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
 *   overage ratio to a delay.
 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
 *   to produce a reasonable delay curve.
 *
 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
 * reasonable delay curve compared to precision-adjusted overage, not
 * penalising heavily at first, but still making sure that growth beyond the
 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
 * example, with a high of 100 megabytes:
 *
 *  +-------+------------------------+
 *  | usage | time to allocate in ms |
 *  +-------+------------------------+
 *  | 100M  |                      0 |
 *  | 101M  |                      6 |
 *  | 102M  |                     25 |
 *  | 103M  |                     57 |
 *  | 104M  |                    102 |
 *  | 105M  |                    159 |
 *  | 106M  |                    230 |
 *  | 107M  |                    313 |
 *  | 108M  |                    409 |
 *  | 109M  |                    518 |
 *  | 110M  |                    639 |
 *  | 111M  |                    774 |
 *  | 112M  |                    921 |
 *  | 113M  |                   1081 |
 *  | 114M  |                   1254 |
 *  | 115M  |                   1439 |
 *  | 116M  |                   1638 |
 *  | 117M  |                   1849 |
 *  | 118M  |                   2000 |
 *  | 119M  |                   2000 |
 *  | 120M  |                   2000 |
 *  +-------+------------------------+
 */
 #define MEMCG_DELAY_PRECISION_SHIFT 20
 #define MEMCG_DELAY_SCALING_SHIFT 14

2409 2410 2411 2412 2413 2414
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
2415 2416 2417
	unsigned long usage, high, clamped_high;
	unsigned long pflags;
	unsigned long penalty_jiffies, overage;
2418
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2419
	struct mem_cgroup *memcg;
2420 2421 2422 2423

	if (likely(!nr_pages))
		return;

2424 2425
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
2426
	current->memcg_nr_pages_over_high = 0;
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494

	/*
	 * memory.high is breached and reclaim is unable to keep up. Throttle
	 * allocators proactively to slow down excessive growth.
	 *
	 * We use overage compared to memory.high to calculate the number of
	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
	 * fairly lenient on small overages, and increasingly harsh when the
	 * memcg in question makes it clear that it has no intention of stopping
	 * its crazy behaviour, so we exponentially increase the delay based on
	 * overage amount.
	 */

	usage = page_counter_read(&memcg->memory);
	high = READ_ONCE(memcg->high);

	if (usage <= high)
		goto out;

	/*
	 * Prevent division by 0 in overage calculation by acting as if it was a
	 * threshold of 1 page
	 */
	clamped_high = max(high, 1UL);

	overage = div_u64((u64)(usage - high) << MEMCG_DELAY_PRECISION_SHIFT,
			  clamped_high);

	penalty_jiffies = ((u64)overage * overage * HZ)
		>> (MEMCG_DELAY_PRECISION_SHIFT + MEMCG_DELAY_SCALING_SHIFT);

	/*
	 * Factor in the task's own contribution to the overage, such that four
	 * N-sized allocations are throttled approximately the same as one
	 * 4N-sized allocation.
	 *
	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
	 * larger the current charge patch is than that.
	 */
	penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;

	/*
	 * Clamp the max delay per usermode return so as to still keep the
	 * application moving forwards and also permit diagnostics, albeit
	 * extremely slowly.
	 */
	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);

	/*
	 * Don't sleep if the amount of jiffies this memcg owes us is so low
	 * that it's not even worth doing, in an attempt to be nice to those who
	 * go only a small amount over their memory.high value and maybe haven't
	 * been aggressively reclaimed enough yet.
	 */
	if (penalty_jiffies <= HZ / 100)
		goto out;

	/*
	 * If we exit early, we're guaranteed to die (since
	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
	 * need to account for any ill-begotten jiffies to pay them off later.
	 */
	psi_memstall_enter(&pflags);
	schedule_timeout_killable(penalty_jiffies);
	psi_memstall_leave(&pflags);

out:
	css_put(&memcg->css);
2495 2496
}

2497 2498
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2499
{
2500
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2501
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2502
	struct mem_cgroup *mem_over_limit;
2503
	struct page_counter *counter;
2504
	unsigned long nr_reclaimed;
2505 2506
	bool may_swap = true;
	bool drained = false;
2507
	enum oom_status oom_status;
2508

2509
	if (mem_cgroup_is_root(memcg))
2510
		return 0;
2511
retry:
2512
	if (consume_stock(memcg, nr_pages))
2513
		return 0;
2514

2515
	if (!do_memsw_account() ||
2516 2517
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2518
			goto done_restock;
2519
		if (do_memsw_account())
2520 2521
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2522
	} else {
2523
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2524
		may_swap = false;
2525
	}
2526

2527 2528 2529 2530
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2531

2532 2533 2534 2535 2536 2537
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
2538
	if (unlikely(should_force_charge()))
2539
		goto force;
2540

2541 2542 2543 2544 2545 2546 2547 2548 2549
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2550 2551 2552
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2553
	if (!gfpflags_allow_blocking(gfp_mask))
2554
		goto nomem;
2555

2556
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2557

2558 2559
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2560

2561
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2562
		goto retry;
2563

2564
	if (!drained) {
2565
		drain_all_stock(mem_over_limit);
2566 2567 2568 2569
		drained = true;
		goto retry;
	}

2570 2571
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2572 2573 2574 2575 2576 2577 2578 2579 2580
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2581
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2582 2583 2584 2585 2586 2587 2588 2589
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2590 2591 2592
	if (nr_retries--)
		goto retry;

2593
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2594 2595
		goto nomem;

2596
	if (gfp_mask & __GFP_NOFAIL)
2597
		goto force;
2598

2599
	if (fatal_signal_pending(current))
2600
		goto force;
2601

2602 2603 2604 2605 2606 2607
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2608
		       get_order(nr_pages * PAGE_SIZE));
2609 2610 2611 2612 2613 2614 2615 2616 2617
	switch (oom_status) {
	case OOM_SUCCESS:
		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
		goto retry;
	case OOM_FAILED:
		goto force;
	default:
		goto nomem;
	}
2618
nomem:
2619
	if (!(gfp_mask & __GFP_NOFAIL))
2620
		return -ENOMEM;
2621 2622 2623 2624 2625 2626 2627
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2628
	if (do_memsw_account())
2629 2630 2631 2632
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2633 2634

done_restock:
2635
	css_get_many(&memcg->css, batch);
2636 2637
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2638

2639
	/*
2640 2641
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2642
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2643 2644 2645 2646
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2647 2648
	 */
	do {
2649
		if (page_counter_read(&memcg->memory) > memcg->high) {
2650 2651 2652 2653 2654
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2655
			current->memcg_nr_pages_over_high += batch;
2656 2657 2658
			set_notify_resume(current);
			break;
		}
2659
	} while ((memcg = parent_mem_cgroup(memcg)));
2660 2661

	return 0;
2662
}
2663

2664
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2665
{
2666 2667 2668
	if (mem_cgroup_is_root(memcg))
		return;

2669
	page_counter_uncharge(&memcg->memory, nr_pages);
2670
	if (do_memsw_account())
2671
		page_counter_uncharge(&memcg->memsw, nr_pages);
2672

2673
	css_put_many(&memcg->css, nr_pages);
2674 2675
}

2676 2677
static void lock_page_lru(struct page *page, int *isolated)
{
2678
	pg_data_t *pgdat = page_pgdat(page);
2679

2680
	spin_lock_irq(&pgdat->lru_lock);
2681 2682 2683
	if (PageLRU(page)) {
		struct lruvec *lruvec;

2684
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2685 2686 2687 2688 2689 2690 2691 2692 2693
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
2694
	pg_data_t *pgdat = page_pgdat(page);
2695 2696 2697 2698

	if (isolated) {
		struct lruvec *lruvec;

2699
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2700 2701 2702 2703
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
2704
	spin_unlock_irq(&pgdat->lru_lock);
2705 2706
}

2707
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2708
			  bool lrucare)
2709
{
2710
	int isolated;
2711

2712
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2713 2714 2715 2716 2717

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2718 2719
	if (lrucare)
		lock_page_lru(page, &isolated);
2720

2721 2722
	/*
	 * Nobody should be changing or seriously looking at
2723
	 * page->mem_cgroup at this point:
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2735
	page->mem_cgroup = memcg;
2736

2737 2738
	if (lrucare)
		unlock_page_lru(page, isolated);
2739
}
2740

2741
#ifdef CONFIG_MEMCG_KMEM
2742
static int memcg_alloc_cache_id(void)
2743
{
2744 2745 2746
	int id, size;
	int err;

2747
	id = ida_simple_get(&memcg_cache_ida,
2748 2749 2750
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2751

2752
	if (id < memcg_nr_cache_ids)
2753 2754 2755 2756 2757 2758
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2759
	down_write(&memcg_cache_ids_sem);
2760 2761

	size = 2 * (id + 1);
2762 2763 2764 2765 2766
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2767
	err = memcg_update_all_caches(size);
2768 2769
	if (!err)
		err = memcg_update_all_list_lrus(size);
2770 2771 2772 2773 2774
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2775
	if (err) {
2776
		ida_simple_remove(&memcg_cache_ida, id);
2777 2778 2779 2780 2781 2782 2783
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2784
	ida_simple_remove(&memcg_cache_ida, id);
2785 2786
}

2787
struct memcg_kmem_cache_create_work {
2788 2789 2790 2791 2792
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2793
static void memcg_kmem_cache_create_func(struct work_struct *w)
2794
{
2795 2796
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2797 2798
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2799

2800
	memcg_create_kmem_cache(memcg, cachep);
2801

2802
	css_put(&memcg->css);
2803 2804 2805 2806 2807 2808
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2809
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2810
					       struct kmem_cache *cachep)
2811
{
2812
	struct memcg_kmem_cache_create_work *cw;
2813

2814 2815 2816
	if (!css_tryget_online(&memcg->css))
		return;

2817
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2818
	if (!cw)
2819
		return;
2820

2821 2822
	cw->memcg = memcg;
	cw->cachep = cachep;
2823
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2824

2825
	queue_work(memcg_kmem_cache_wq, &cw->work);
2826 2827
}

2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
static inline bool memcg_kmem_bypass(void)
{
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;
	return false;
}

/**
 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
 * @cachep: the original global kmem cache
 *
2839 2840 2841
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
2842 2843 2844
 * If the cache does not exist yet, if we are the first user of it, we
 * create it asynchronously in a workqueue and let the current allocation
 * go through with the original cache.
2845
 *
2846 2847 2848 2849
 * This function takes a reference to the cache it returns to assure it
 * won't get destroyed while we are working with it. Once the caller is
 * done with it, memcg_kmem_put_cache() must be called to release the
 * reference.
2850
 */
2851
struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2852 2853
{
	struct mem_cgroup *memcg;
2854
	struct kmem_cache *memcg_cachep;
2855
	struct memcg_cache_array *arr;
2856
	int kmemcg_id;
2857

2858
	VM_BUG_ON(!is_root_cache(cachep));
2859

2860
	if (memcg_kmem_bypass())
V
Vladimir Davydov 已提交
2861 2862
		return cachep;

2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
	rcu_read_lock();

	if (unlikely(current->active_memcg))
		memcg = current->active_memcg;
	else
		memcg = mem_cgroup_from_task(current);

	if (!memcg || memcg == root_mem_cgroup)
		goto out_unlock;

2873
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2874
	if (kmemcg_id < 0)
2875
		goto out_unlock;
2876

2877 2878 2879 2880 2881 2882 2883 2884
	arr = rcu_dereference(cachep->memcg_params.memcg_caches);

	/*
	 * Make sure we will access the up-to-date value. The code updating
	 * memcg_caches issues a write barrier to match the data dependency
	 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
	 */
	memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2885 2886 2887 2888 2889 2890 2891 2892 2893

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2894 2895 2896
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2897 2898 2899 2900 2901 2902 2903
	 *
	 * If the memcg is dying or memcg_cache is about to be released,
	 * don't bother creating new kmem_caches. Because memcg_cachep
	 * is ZEROed as the fist step of kmem offlining, we don't need
	 * percpu_ref_tryget_live() here. css_tryget_online() check in
	 * memcg_schedule_kmem_cache_create() will prevent us from
	 * creation of a new kmem_cache.
2904
	 */
2905 2906 2907 2908 2909 2910
	if (unlikely(!memcg_cachep))
		memcg_schedule_kmem_cache_create(memcg, cachep);
	else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
		cachep = memcg_cachep;
out_unlock:
	rcu_read_unlock();
2911
	return cachep;
2912 2913
}

2914 2915 2916 2917 2918
/**
 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
 * @cachep: the cache returned by memcg_kmem_get_cache
 */
void memcg_kmem_put_cache(struct kmem_cache *cachep)
2919 2920
{
	if (!is_root_cache(cachep))
2921
		percpu_ref_put(&cachep->memcg_params.refcnt);
2922 2923
}

2924
/**
2925
 * __memcg_kmem_charge_memcg: charge a kmem page
2926 2927 2928 2929 2930 2931 2932
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 * @memcg: memory cgroup to charge
 *
 * Returns 0 on success, an error code on failure.
 */
2933
int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2934
			    struct mem_cgroup *memcg)
2935
{
2936 2937
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2938 2939
	int ret;

2940
	ret = try_charge(memcg, gfp, nr_pages);
2941
	if (ret)
2942
		return ret;
2943 2944 2945 2946 2947

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2948
	}
2949
	return 0;
2950 2951
}

2952
/**
2953
 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2954 2955 2956 2957 2958 2959
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
2960
int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2961
{
2962
	struct mem_cgroup *memcg;
2963
	int ret = 0;
2964

2965
	if (memcg_kmem_bypass())
2966 2967
		return 0;

2968
	memcg = get_mem_cgroup_from_current();
2969
	if (!mem_cgroup_is_root(memcg)) {
2970
		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2971 2972
		if (!ret) {
			page->mem_cgroup = memcg;
2973
			__SetPageKmemcg(page);
2974
		}
2975
	}
2976
	css_put(&memcg->css);
2977
	return ret;
2978
}
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994

/**
 * __memcg_kmem_uncharge_memcg: uncharge a kmem page
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
 */
void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
				 unsigned int nr_pages)
{
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

	page_counter_uncharge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_uncharge(&memcg->memsw, nr_pages);
}
2995
/**
2996
 * __memcg_kmem_uncharge: uncharge a kmem page
2997 2998 2999
 * @page: page to uncharge
 * @order: allocation order
 */
3000
void __memcg_kmem_uncharge(struct page *page, int order)
3001
{
3002
	struct mem_cgroup *memcg = page->mem_cgroup;
3003
	unsigned int nr_pages = 1 << order;
3004 3005 3006 3007

	if (!memcg)
		return;

3008
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3009
	__memcg_kmem_uncharge_memcg(memcg, nr_pages);
3010
	page->mem_cgroup = NULL;
3011 3012 3013 3014 3015

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);

3016
	css_put_many(&memcg->css, nr_pages);
3017
}
3018
#endif /* CONFIG_MEMCG_KMEM */
3019

3020 3021 3022 3023
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
3024
 * pgdat->lru_lock and migration entries setup in all page mappings.
3025
 */
3026
void mem_cgroup_split_huge_fixup(struct page *head)
3027
{
3028
	int i;
3029

3030 3031
	if (mem_cgroup_disabled())
		return;
3032

3033
	for (i = 1; i < HPAGE_PMD_NR; i++)
3034
		head[i].mem_cgroup = head->mem_cgroup;
3035

3036
	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
3037
}
3038
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3039

A
Andrew Morton 已提交
3040
#ifdef CONFIG_MEMCG_SWAP
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
3052
 * The caller must have charged to @to, IOW, called page_counter_charge() about
3053 3054 3055
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3056
				struct mem_cgroup *from, struct mem_cgroup *to)
3057 3058 3059
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
3060 3061
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3062 3063

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3064 3065
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
3066 3067 3068 3069 3070 3071
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3072
				struct mem_cgroup *from, struct mem_cgroup *to)
3073 3074 3075
{
	return -EINVAL;
}
3076
#endif
K
KAMEZAWA Hiroyuki 已提交
3077

3078
static DEFINE_MUTEX(memcg_max_mutex);
3079

3080 3081
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
3082
{
3083
	bool enlarge = false;
3084
	bool drained = false;
3085
	int ret;
3086 3087
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3088

3089
	do {
3090 3091 3092 3093
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3094

3095
		mutex_lock(&memcg_max_mutex);
3096 3097
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
3098
		 * break our basic invariant rule memory.max <= memsw.max.
3099
		 */
3100 3101
		limits_invariant = memsw ? max >= memcg->memory.max :
					   max <= memcg->memsw.max;
3102
		if (!limits_invariant) {
3103
			mutex_unlock(&memcg_max_mutex);
3104 3105 3106
			ret = -EINVAL;
			break;
		}
3107
		if (max > counter->max)
3108
			enlarge = true;
3109 3110
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
3111 3112 3113 3114

		if (!ret)
			break;

3115 3116 3117 3118 3119 3120
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

3121 3122 3123 3124 3125 3126
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
3127

3128 3129
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3130

3131 3132 3133
	return ret;
}

3134
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3135 3136 3137 3138
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
3139
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3140 3141
	unsigned long reclaimed;
	int loop = 0;
3142
	struct mem_cgroup_tree_per_node *mctz;
3143
	unsigned long excess;
3144 3145 3146 3147 3148
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

3149
	mctz = soft_limit_tree_node(pgdat->node_id);
3150 3151 3152 3153 3154 3155

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
3156
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3157 3158
		return 0;

3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
3173
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3174 3175 3176
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3177
		spin_lock_irq(&mctz->lock);
3178
		__mem_cgroup_remove_exceeded(mz, mctz);
3179 3180 3181 3182 3183 3184

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3185 3186 3187
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3188
		excess = soft_limit_excess(mz->memcg);
3189 3190 3191 3192 3193 3194 3195 3196 3197
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3198
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3199
		spin_unlock_irq(&mctz->lock);
3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3217 3218 3219 3220 3221 3222
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
3223 3224
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3225 3226 3227 3228 3229 3230
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3231 3232
}

3233
/*
3234
 * Reclaims as many pages from the given memcg as possible.
3235 3236 3237 3238 3239 3240 3241
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

3242 3243
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3244 3245 3246

	drain_all_stock(memcg);

3247
	/* try to free all pages in this cgroup */
3248
	while (nr_retries && page_counter_read(&memcg->memory)) {
3249
		int progress;
3250

3251 3252 3253
		if (signal_pending(current))
			return -EINTR;

3254 3255
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3256
		if (!progress) {
3257
			nr_retries--;
3258
			/* maybe some writeback is necessary */
3259
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3260
		}
3261 3262

	}
3263 3264

	return 0;
3265 3266
}

3267 3268 3269
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3270
{
3271
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3272

3273 3274
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3275
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3276 3277
}

3278 3279
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3280
{
3281
	return mem_cgroup_from_css(css)->use_hierarchy;
3282 3283
}

3284 3285
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3286 3287
{
	int retval = 0;
3288
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3289
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3290

3291
	if (memcg->use_hierarchy == val)
3292
		return 0;
3293

3294
	/*
3295
	 * If parent's use_hierarchy is set, we can't make any modifications
3296 3297 3298 3299 3300 3301
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3302
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3303
				(val == 1 || val == 0)) {
3304
		if (!memcg_has_children(memcg))
3305
			memcg->use_hierarchy = val;
3306 3307 3308 3309
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3310

3311 3312 3313
	return retval;
}

3314
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3315
{
3316
	unsigned long val;
3317

3318
	if (mem_cgroup_is_root(memcg)) {
3319 3320 3321 3322
		val = memcg_page_state(memcg, MEMCG_CACHE) +
			memcg_page_state(memcg, MEMCG_RSS);
		if (swap)
			val += memcg_page_state(memcg, MEMCG_SWAP);
3323
	} else {
3324
		if (!swap)
3325
			val = page_counter_read(&memcg->memory);
3326
		else
3327
			val = page_counter_read(&memcg->memsw);
3328
	}
3329
	return val;
3330 3331
}

3332 3333 3334 3335 3336 3337 3338
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3339

3340
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3341
			       struct cftype *cft)
B
Balbir Singh 已提交
3342
{
3343
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3344
	struct page_counter *counter;
3345

3346
	switch (MEMFILE_TYPE(cft->private)) {
3347
	case _MEM:
3348 3349
		counter = &memcg->memory;
		break;
3350
	case _MEMSWAP:
3351 3352
		counter = &memcg->memsw;
		break;
3353
	case _KMEM:
3354
		counter = &memcg->kmem;
3355
		break;
V
Vladimir Davydov 已提交
3356
	case _TCP:
3357
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3358
		break;
3359 3360 3361
	default:
		BUG();
	}
3362 3363 3364 3365

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
3366
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3367
		if (counter == &memcg->memsw)
3368
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3369 3370
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
3371
		return (u64)counter->max * PAGE_SIZE;
3372 3373 3374 3375 3376 3377 3378 3379 3380
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3381
}
3382

3383
static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg, bool slab_only)
3384 3385 3386 3387
{
	unsigned long stat[MEMCG_NR_STAT];
	struct mem_cgroup *mi;
	int node, cpu, i;
3388
	int min_idx, max_idx;
3389

3390 3391 3392 3393 3394 3395 3396 3397 3398
	if (slab_only) {
		min_idx = NR_SLAB_RECLAIMABLE;
		max_idx = NR_SLAB_UNRECLAIMABLE;
	} else {
		min_idx = 0;
		max_idx = MEMCG_NR_STAT;
	}

	for (i = min_idx; i < max_idx; i++)
3399 3400 3401
		stat[i] = 0;

	for_each_online_cpu(cpu)
3402
		for (i = min_idx; i < max_idx; i++)
3403
			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3404 3405

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3406
		for (i = min_idx; i < max_idx; i++)
3407 3408
			atomic_long_add(stat[i], &mi->vmstats[i]);

3409 3410 3411
	if (!slab_only)
		max_idx = NR_VM_NODE_STAT_ITEMS;

3412 3413 3414 3415
	for_each_node(node) {
		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
		struct mem_cgroup_per_node *pi;

3416
		for (i = min_idx; i < max_idx; i++)
3417 3418 3419
			stat[i] = 0;

		for_each_online_cpu(cpu)
3420
			for (i = min_idx; i < max_idx; i++)
3421 3422
				stat[i] += per_cpu(
					pn->lruvec_stat_cpu->count[i], cpu);
3423 3424

		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3425
			for (i = min_idx; i < max_idx; i++)
3426 3427 3428 3429
				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
	}
}

3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
{
	unsigned long events[NR_VM_EVENT_ITEMS];
	struct mem_cgroup *mi;
	int cpu, i;

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
		events[i] = 0;

	for_each_online_cpu(cpu)
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3441 3442
			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
					     cpu);
3443 3444 3445 3446 3447 3448

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
			atomic_long_add(events[i], &mi->vmevents[i]);
}

3449
#ifdef CONFIG_MEMCG_KMEM
3450
static int memcg_online_kmem(struct mem_cgroup *memcg)
3451 3452 3453
{
	int memcg_id;

3454 3455 3456
	if (cgroup_memory_nokmem)
		return 0;

3457
	BUG_ON(memcg->kmemcg_id >= 0);
3458
	BUG_ON(memcg->kmem_state);
3459

3460
	memcg_id = memcg_alloc_cache_id();
3461 3462
	if (memcg_id < 0)
		return memcg_id;
3463

3464
	static_branch_inc(&memcg_kmem_enabled_key);
3465
	/*
3466
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
3467
	 * kmemcg_id. Setting the id after enabling static branching will
3468 3469 3470
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3471
	memcg->kmemcg_id = memcg_id;
3472
	memcg->kmem_state = KMEM_ONLINE;
3473
	INIT_LIST_HEAD(&memcg->kmem_caches);
3474 3475

	return 0;
3476 3477
}

3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

3498 3499 3500 3501 3502 3503
	/*
	 * Deactivate and reparent kmem_caches. Then flush percpu
	 * slab statistics to have precise values at the parent and
	 * all ancestor levels. It's required to keep slab stats
	 * accurate after the reparenting of kmem_caches.
	 */
3504
	memcg_deactivate_kmem_caches(memcg, parent);
3505
	memcg_flush_percpu_vmstats(memcg, true);
3506 3507 3508 3509

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

3510 3511 3512 3513 3514 3515 3516 3517
	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
3518
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3519 3520 3521 3522 3523 3524 3525
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
3526 3527
	rcu_read_unlock();

3528
	memcg_drain_all_list_lrus(kmemcg_id, parent);
3529 3530 3531 3532 3533 3534

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
3535 3536 3537 3538
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

3539
	if (memcg->kmem_state == KMEM_ALLOCATED) {
3540
		WARN_ON(!list_empty(&memcg->kmem_caches));
3541 3542 3543
		static_branch_dec(&memcg_kmem_enabled_key);
	}
}
3544
#else
3545
static int memcg_online_kmem(struct mem_cgroup *memcg)
3546 3547 3548 3549 3550 3551 3552 3553 3554
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
3555
#endif /* CONFIG_MEMCG_KMEM */
3556

3557 3558
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
3559
{
3560
	int ret;
3561

3562 3563 3564
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
3565
	return ret;
3566
}
3567

3568
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
3569 3570 3571
{
	int ret;

3572
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3573

3574
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
3575 3576 3577
	if (ret)
		goto out;

3578
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3579 3580 3581
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3582 3583 3584
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
3585 3586 3587 3588 3589 3590
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3591
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
3592 3593 3594 3595
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3596
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3597 3598
	}
out:
3599
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3600 3601 3602
	return ret;
}

3603 3604 3605 3606
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3607 3608
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3609
{
3610
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3611
	unsigned long nr_pages;
3612 3613
	int ret;

3614
	buf = strstrip(buf);
3615
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3616 3617
	if (ret)
		return ret;
3618

3619
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3620
	case RES_LIMIT:
3621 3622 3623 3624
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3625 3626
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3627
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3628
			break;
3629
		case _MEMSWAP:
3630
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3631
			break;
3632
		case _KMEM:
3633 3634 3635
			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
				     "Please report your usecase to linux-mm@kvack.org if you "
				     "depend on this functionality.\n");
3636
			ret = memcg_update_kmem_max(memcg, nr_pages);
3637
			break;
V
Vladimir Davydov 已提交
3638
		case _TCP:
3639
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
3640
			break;
3641
		}
3642
		break;
3643 3644 3645
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3646 3647
		break;
	}
3648
	return ret ?: nbytes;
B
Balbir Singh 已提交
3649 3650
}

3651 3652
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3653
{
3654
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3655
	struct page_counter *counter;
3656

3657 3658 3659 3660 3661 3662 3663 3664 3665 3666
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3667
	case _TCP:
3668
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3669
		break;
3670 3671 3672
	default:
		BUG();
	}
3673

3674
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3675
	case RES_MAX_USAGE:
3676
		page_counter_reset_watermark(counter);
3677 3678
		break;
	case RES_FAILCNT:
3679
		counter->failcnt = 0;
3680
		break;
3681 3682
	default:
		BUG();
3683
	}
3684

3685
	return nbytes;
3686 3687
}

3688
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3689 3690
					struct cftype *cft)
{
3691
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3692 3693
}

3694
#ifdef CONFIG_MMU
3695
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3696 3697
					struct cftype *cft, u64 val)
{
3698
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3699

3700
	if (val & ~MOVE_MASK)
3701
		return -EINVAL;
3702

3703
	/*
3704 3705 3706 3707
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3708
	 */
3709
	memcg->move_charge_at_immigrate = val;
3710 3711
	return 0;
}
3712
#else
3713
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3714 3715 3716 3717 3718
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3719

3720
#ifdef CONFIG_NUMA
3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737

#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)

static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
					   int nid, unsigned int lru_mask)
{
	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
	unsigned long nr = 0;
	enum lru_list lru;

	VM_BUG_ON((unsigned)nid >= nr_node_ids);

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3738
		nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
	}
	return nr;
}

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
					     unsigned int lru_mask)
{
	unsigned long nr = 0;
	enum lru_list lru;

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3752
		nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3753 3754 3755 3756
	}
	return nr;
}

3757
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3758
{
3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3771
	int nid;
3772
	unsigned long nr;
3773
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3774

3775 3776 3777 3778 3779 3780 3781 3782 3783
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3784 3785
	}

3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3801 3802 3803 3804 3805 3806
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828
static const unsigned int memcg1_stats[] = {
	MEMCG_CACHE,
	MEMCG_RSS,
	MEMCG_RSS_HUGE,
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
	"rss_huge",
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

3829
/* Universal VM events cgroup1 shows, original sort order */
3830
static const unsigned int memcg1_events[] = {
3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

static const char *const memcg1_event_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

3844
static int memcg_stat_show(struct seq_file *m, void *v)
3845
{
3846
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3847
	unsigned long memory, memsw;
3848 3849
	struct mem_cgroup *mi;
	unsigned int i;
3850

3851
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3852 3853
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3854 3855
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3856
			continue;
3857
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3858
			   memcg_page_state_local(memcg, memcg1_stats[i]) *
3859
			   PAGE_SIZE);
3860
	}
L
Lee Schermerhorn 已提交
3861

3862 3863
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3864
			   memcg_events_local(memcg, memcg1_events[i]));
3865 3866 3867

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3868
			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3869
			   PAGE_SIZE);
3870

K
KAMEZAWA Hiroyuki 已提交
3871
	/* Hierarchical information */
3872 3873
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3874 3875
		memory = min(memory, mi->memory.max);
		memsw = min(memsw, mi->memsw.max);
3876
	}
3877 3878
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3879
	if (do_memsw_account())
3880 3881
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3882

3883
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3884
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3885
			continue;
3886
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3887 3888
			   (u64)memcg_page_state(memcg, memcg1_stats[i]) *
			   PAGE_SIZE);
3889 3890
	}

3891 3892
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3893
			   (u64)memcg_events(memcg, memcg1_events[i]));
3894

3895 3896
	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3897 3898
			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			   PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
3899

K
KOSAKI Motohiro 已提交
3900 3901
#ifdef CONFIG_DEBUG_VM
	{
3902 3903
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
3904
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3905 3906 3907
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

3908 3909 3910
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
			rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3911

3912 3913 3914 3915 3916
			recent_rotated[0] += rstat->recent_rotated[0];
			recent_rotated[1] += rstat->recent_rotated[1];
			recent_scanned[0] += rstat->recent_scanned[0];
			recent_scanned[1] += rstat->recent_scanned[1];
		}
3917 3918 3919 3920
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3921 3922 3923
	}
#endif

3924 3925 3926
	return 0;
}

3927 3928
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3929
{
3930
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3931

3932
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3933 3934
}

3935 3936
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3937
{
3938
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3939

3940
	if (val > 100)
K
KOSAKI Motohiro 已提交
3941 3942
		return -EINVAL;

3943
	if (css->parent)
3944 3945 3946
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3947

K
KOSAKI Motohiro 已提交
3948 3949 3950
	return 0;
}

3951 3952 3953
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3954
	unsigned long usage;
3955 3956 3957 3958
	int i;

	rcu_read_lock();
	if (!swap)
3959
		t = rcu_dereference(memcg->thresholds.primary);
3960
	else
3961
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3962 3963 3964 3965

	if (!t)
		goto unlock;

3966
	usage = mem_cgroup_usage(memcg, swap);
3967 3968

	/*
3969
	 * current_threshold points to threshold just below or equal to usage.
3970 3971 3972
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3973
	i = t->current_threshold;
3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3997
	t->current_threshold = i - 1;
3998 3999 4000 4001 4002 4003
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4004 4005
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
4006
		if (do_memsw_account())
4007 4008 4009 4010
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4011 4012 4013 4014 4015 4016 4017
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

4018 4019 4020 4021 4022 4023 4024
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
4025 4026
}

4027
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4028 4029 4030
{
	struct mem_cgroup_eventfd_list *ev;

4031 4032
	spin_lock(&memcg_oom_lock);

4033
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4034
		eventfd_signal(ev->eventfd, 1);
4035 4036

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4037 4038 4039
	return 0;
}

4040
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4041
{
K
KAMEZAWA Hiroyuki 已提交
4042 4043
	struct mem_cgroup *iter;

4044
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4045
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4046 4047
}

4048
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4049
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4050
{
4051 4052
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4053 4054
	unsigned long threshold;
	unsigned long usage;
4055
	int i, size, ret;
4056

4057
	ret = page_counter_memparse(args, "-1", &threshold);
4058 4059 4060 4061
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4062

4063
	if (type == _MEM) {
4064
		thresholds = &memcg->thresholds;
4065
		usage = mem_cgroup_usage(memcg, false);
4066
	} else if (type == _MEMSWAP) {
4067
		thresholds = &memcg->memsw_thresholds;
4068
		usage = mem_cgroup_usage(memcg, true);
4069
	} else
4070 4071 4072
		BUG();

	/* Check if a threshold crossed before adding a new one */
4073
	if (thresholds->primary)
4074 4075
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4076
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4077 4078

	/* Allocate memory for new array of thresholds */
4079
	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4080
	if (!new) {
4081 4082 4083
		ret = -ENOMEM;
		goto unlock;
	}
4084
	new->size = size;
4085 4086

	/* Copy thresholds (if any) to new array */
4087 4088
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4089
				sizeof(struct mem_cgroup_threshold));
4090 4091
	}

4092
	/* Add new threshold */
4093 4094
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4095 4096

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4097
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4098 4099 4100
			compare_thresholds, NULL);

	/* Find current threshold */
4101
	new->current_threshold = -1;
4102
	for (i = 0; i < size; i++) {
4103
		if (new->entries[i].threshold <= usage) {
4104
			/*
4105 4106
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4107 4108
			 * it here.
			 */
4109
			++new->current_threshold;
4110 4111
		} else
			break;
4112 4113
	}

4114 4115 4116 4117 4118
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4119

4120
	/* To be sure that nobody uses thresholds */
4121 4122 4123 4124 4125 4126 4127 4128
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4129
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4130 4131
	struct eventfd_ctx *eventfd, const char *args)
{
4132
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4133 4134
}

4135
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4136 4137
	struct eventfd_ctx *eventfd, const char *args)
{
4138
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4139 4140
}

4141
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4142
	struct eventfd_ctx *eventfd, enum res_type type)
4143
{
4144 4145
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4146
	unsigned long usage;
4147
	int i, j, size;
4148 4149

	mutex_lock(&memcg->thresholds_lock);
4150 4151

	if (type == _MEM) {
4152
		thresholds = &memcg->thresholds;
4153
		usage = mem_cgroup_usage(memcg, false);
4154
	} else if (type == _MEMSWAP) {
4155
		thresholds = &memcg->memsw_thresholds;
4156
		usage = mem_cgroup_usage(memcg, true);
4157
	} else
4158 4159
		BUG();

4160 4161 4162
	if (!thresholds->primary)
		goto unlock;

4163 4164 4165 4166
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4167 4168 4169
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4170 4171 4172
			size++;
	}

4173
	new = thresholds->spare;
4174

4175 4176
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4177 4178
		kfree(new);
		new = NULL;
4179
		goto swap_buffers;
4180 4181
	}

4182
	new->size = size;
4183 4184

	/* Copy thresholds and find current threshold */
4185 4186 4187
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4188 4189
			continue;

4190
		new->entries[j] = thresholds->primary->entries[i];
4191
		if (new->entries[j].threshold <= usage) {
4192
			/*
4193
			 * new->current_threshold will not be used
4194 4195 4196
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4197
			++new->current_threshold;
4198 4199 4200 4201
		}
		j++;
	}

4202
swap_buffers:
4203 4204
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4205

4206
	rcu_assign_pointer(thresholds->primary, new);
4207

4208
	/* To be sure that nobody uses thresholds */
4209
	synchronize_rcu();
4210 4211 4212 4213 4214 4215

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
4216
unlock:
4217 4218
	mutex_unlock(&memcg->thresholds_lock);
}
4219

4220
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4221 4222
	struct eventfd_ctx *eventfd)
{
4223
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4224 4225
}

4226
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4227 4228
	struct eventfd_ctx *eventfd)
{
4229
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4230 4231
}

4232
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4233
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4234 4235 4236 4237 4238 4239 4240
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4241
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4242 4243 4244 4245 4246

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4247
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
4248
		eventfd_signal(eventfd, 1);
4249
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4250 4251 4252 4253

	return 0;
}

4254
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4255
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4256 4257 4258
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4259
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4260

4261
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4262 4263 4264 4265 4266 4267
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4268
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4269 4270
}

4271
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4272
{
4273
	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4274

4275
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4276
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
R
Roman Gushchin 已提交
4277 4278
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4279 4280 4281
	return 0;
}

4282
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4283 4284
	struct cftype *cft, u64 val)
{
4285
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4286 4287

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4288
	if (!css->parent || !((val == 0) || (val == 1)))
4289 4290
		return -EINVAL;

4291
	memcg->oom_kill_disable = val;
4292
	if (!val)
4293
		memcg_oom_recover(memcg);
4294

4295 4296 4297
	return 0;
}

4298 4299
#ifdef CONFIG_CGROUP_WRITEBACK

4300 4301
#include <trace/events/writeback.h>

T
Tejun Heo 已提交
4302 4303 4304 4305 4306 4307 4308 4309 4310 4311
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

4312 4313 4314 4315 4316
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
4317 4318 4319 4320 4321 4322 4323 4324 4325 4326
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

4327 4328 4329 4330 4331 4332
/*
 * idx can be of type enum memcg_stat_item or node_stat_item.
 * Keep in sync with memcg_exact_page().
 */
static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
{
4333
	long x = atomic_long_read(&memcg->vmstats[idx]);
4334 4335 4336
	int cpu;

	for_each_online_cpu(cpu)
4337
		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4338 4339 4340 4341 4342
	if (x < 0)
		x = 0;
	return x;
}

4343 4344 4345
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
4346 4347
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
4348 4349 4350
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
4351 4352 4353
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
4354
 *
4355 4356 4357 4358 4359
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
4360
 */
4361 4362 4363
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
4364 4365 4366 4367
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

4368
	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4369 4370

	/* this should eventually include NR_UNSTABLE_NFS */
4371
	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4372 4373
	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4374
	*pheadroom = PAGE_COUNTER_MAX;
4375 4376

	while ((parent = parent_mem_cgroup(memcg))) {
4377
		unsigned long ceiling = min(memcg->memory.max, memcg->high);
4378 4379
		unsigned long used = page_counter_read(&memcg->memory);

4380
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4381 4382 4383 4384
		memcg = parent;
	}
}

4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438
/*
 * Foreign dirty flushing
 *
 * There's an inherent mismatch between memcg and writeback.  The former
 * trackes ownership per-page while the latter per-inode.  This was a
 * deliberate design decision because honoring per-page ownership in the
 * writeback path is complicated, may lead to higher CPU and IO overheads
 * and deemed unnecessary given that write-sharing an inode across
 * different cgroups isn't a common use-case.
 *
 * Combined with inode majority-writer ownership switching, this works well
 * enough in most cases but there are some pathological cases.  For
 * example, let's say there are two cgroups A and B which keep writing to
 * different but confined parts of the same inode.  B owns the inode and
 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
 * triggering background writeback.  A will be slowed down without a way to
 * make writeback of the dirty pages happen.
 *
 * Conditions like the above can lead to a cgroup getting repatedly and
 * severely throttled after making some progress after each
 * dirty_expire_interval while the underyling IO device is almost
 * completely idle.
 *
 * Solving this problem completely requires matching the ownership tracking
 * granularities between memcg and writeback in either direction.  However,
 * the more egregious behaviors can be avoided by simply remembering the
 * most recent foreign dirtying events and initiating remote flushes on
 * them when local writeback isn't enough to keep the memory clean enough.
 *
 * The following two functions implement such mechanism.  When a foreign
 * page - a page whose memcg and writeback ownerships don't match - is
 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
 * decides that the memcg needs to sleep due to high dirty ratio, it calls
 * mem_cgroup_flush_foreign() which queues writeback on the recorded
 * foreign bdi_writebacks which haven't expired.  Both the numbers of
 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
 * limited to MEMCG_CGWB_FRN_CNT.
 *
 * The mechanism only remembers IDs and doesn't hold any object references.
 * As being wrong occasionally doesn't matter, updates and accesses to the
 * records are lockless and racy.
 */
void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
					     struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = page->mem_cgroup;
	struct memcg_cgwb_frn *frn;
	u64 now = get_jiffies_64();
	u64 oldest_at = now;
	int oldest = -1;
	int i;

4439 4440
	trace_track_foreign_dirty(page, wb);

4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500
	/*
	 * Pick the slot to use.  If there is already a slot for @wb, keep
	 * using it.  If not replace the oldest one which isn't being
	 * written out.
	 */
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		frn = &memcg->cgwb_frn[i];
		if (frn->bdi_id == wb->bdi->id &&
		    frn->memcg_id == wb->memcg_css->id)
			break;
		if (time_before64(frn->at, oldest_at) &&
		    atomic_read(&frn->done.cnt) == 1) {
			oldest = i;
			oldest_at = frn->at;
		}
	}

	if (i < MEMCG_CGWB_FRN_CNT) {
		/*
		 * Re-using an existing one.  Update timestamp lazily to
		 * avoid making the cacheline hot.  We want them to be
		 * reasonably up-to-date and significantly shorter than
		 * dirty_expire_interval as that's what expires the record.
		 * Use the shorter of 1s and dirty_expire_interval / 8.
		 */
		unsigned long update_intv =
			min_t(unsigned long, HZ,
			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);

		if (time_before64(frn->at, now - update_intv))
			frn->at = now;
	} else if (oldest >= 0) {
		/* replace the oldest free one */
		frn = &memcg->cgwb_frn[oldest];
		frn->bdi_id = wb->bdi->id;
		frn->memcg_id = wb->memcg_css->id;
		frn->at = now;
	}
}

/* issue foreign writeback flushes for recorded foreign dirtying events */
void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
	u64 now = jiffies_64;
	int i;

	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];

		/*
		 * If the record is older than dirty_expire_interval,
		 * writeback on it has already started.  No need to kick it
		 * off again.  Also, don't start a new one if there's
		 * already one in flight.
		 */
		if (time_after64(frn->at, now - intv) &&
		    atomic_read(&frn->done.cnt) == 1) {
			frn->at = 0;
4501
			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4502 4503 4504 4505 4506 4507 4508
			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
					       WB_REASON_FOREIGN_FLUSH,
					       &frn->done);
		}
	}
}

T
Tejun Heo 已提交
4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

4520 4521 4522 4523
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

4524 4525
#endif	/* CONFIG_CGROUP_WRITEBACK */

4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4539 4540 4541 4542 4543
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4544
static void memcg_event_remove(struct work_struct *work)
4545
{
4546 4547
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4548
	struct mem_cgroup *memcg = event->memcg;
4549 4550 4551

	remove_wait_queue(event->wqh, &event->wait);

4552
	event->unregister_event(memcg, event->eventfd);
4553 4554 4555 4556 4557 4558

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4559
	css_put(&memcg->css);
4560 4561 4562
}

/*
4563
 * Gets called on EPOLLHUP on eventfd when user closes it.
4564 4565 4566
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4567
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4568
			    int sync, void *key)
4569
{
4570 4571
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4572
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
4573
	__poll_t flags = key_to_poll(key);
4574

4575
	if (flags & EPOLLHUP) {
4576 4577 4578 4579 4580 4581 4582 4583 4584
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4585
		spin_lock(&memcg->event_list_lock);
4586 4587 4588 4589 4590 4591 4592 4593
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4594
		spin_unlock(&memcg->event_list_lock);
4595 4596 4597 4598 4599
	}

	return 0;
}

4600
static void memcg_event_ptable_queue_proc(struct file *file,
4601 4602
		wait_queue_head_t *wqh, poll_table *pt)
{
4603 4604
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4605 4606 4607 4608 4609 4610

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4611 4612
 * DO NOT USE IN NEW FILES.
 *
4613 4614 4615 4616 4617
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4618 4619
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4620
{
4621
	struct cgroup_subsys_state *css = of_css(of);
4622
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4623
	struct mem_cgroup_event *event;
4624 4625 4626 4627
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4628
	const char *name;
4629 4630 4631
	char *endp;
	int ret;

4632 4633 4634
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4635 4636
	if (*endp != ' ')
		return -EINVAL;
4637
	buf = endp + 1;
4638

4639
	cfd = simple_strtoul(buf, &endp, 10);
4640 4641
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4642
	buf = endp + 1;
4643 4644 4645 4646 4647

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4648
	event->memcg = memcg;
4649
	INIT_LIST_HEAD(&event->list);
4650 4651 4652
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4678 4679 4680 4681 4682
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4683 4684
	 *
	 * DO NOT ADD NEW FILES.
4685
	 */
A
Al Viro 已提交
4686
	name = cfile.file->f_path.dentry->d_name.name;
4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4698 4699
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4700 4701 4702 4703 4704
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4705
	/*
4706 4707 4708
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4709
	 */
A
Al Viro 已提交
4710
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4711
					       &memory_cgrp_subsys);
4712
	ret = -EINVAL;
4713
	if (IS_ERR(cfile_css))
4714
		goto out_put_cfile;
4715 4716
	if (cfile_css != css) {
		css_put(cfile_css);
4717
		goto out_put_cfile;
4718
	}
4719

4720
	ret = event->register_event(memcg, event->eventfd, buf);
4721 4722 4723
	if (ret)
		goto out_put_css;

4724
	vfs_poll(efile.file, &event->pt);
4725

4726 4727 4728
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4729 4730 4731 4732

	fdput(cfile);
	fdput(efile);

4733
	return nbytes;
4734 4735

out_put_css:
4736
	css_put(css);
4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4749
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4750
	{
4751
		.name = "usage_in_bytes",
4752
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4753
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4754
	},
4755 4756
	{
		.name = "max_usage_in_bytes",
4757
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4758
		.write = mem_cgroup_reset,
4759
		.read_u64 = mem_cgroup_read_u64,
4760
	},
B
Balbir Singh 已提交
4761
	{
4762
		.name = "limit_in_bytes",
4763
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4764
		.write = mem_cgroup_write,
4765
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4766
	},
4767 4768 4769
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4770
		.write = mem_cgroup_write,
4771
		.read_u64 = mem_cgroup_read_u64,
4772
	},
B
Balbir Singh 已提交
4773 4774
	{
		.name = "failcnt",
4775
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4776
		.write = mem_cgroup_reset,
4777
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4778
	},
4779 4780
	{
		.name = "stat",
4781
		.seq_show = memcg_stat_show,
4782
	},
4783 4784
	{
		.name = "force_empty",
4785
		.write = mem_cgroup_force_empty_write,
4786
	},
4787 4788 4789 4790 4791
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4792
	{
4793
		.name = "cgroup.event_control",		/* XXX: for compat */
4794
		.write = memcg_write_event_control,
4795
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4796
	},
K
KOSAKI Motohiro 已提交
4797 4798 4799 4800 4801
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4802 4803 4804 4805 4806
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4807 4808
	{
		.name = "oom_control",
4809
		.seq_show = mem_cgroup_oom_control_read,
4810
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4811 4812
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4813 4814 4815
	{
		.name = "pressure_level",
	},
4816 4817 4818
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4819
		.seq_show = memcg_numa_stat_show,
4820 4821
	},
#endif
4822 4823 4824
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4825
		.write = mem_cgroup_write,
4826
		.read_u64 = mem_cgroup_read_u64,
4827 4828 4829 4830
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4831
		.read_u64 = mem_cgroup_read_u64,
4832 4833 4834 4835
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4836
		.write = mem_cgroup_reset,
4837
		.read_u64 = mem_cgroup_read_u64,
4838 4839 4840 4841
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4842
		.write = mem_cgroup_reset,
4843
		.read_u64 = mem_cgroup_read_u64,
4844
	},
Y
Yang Shi 已提交
4845
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4846 4847
	{
		.name = "kmem.slabinfo",
4848 4849 4850
		.seq_start = memcg_slab_start,
		.seq_next = memcg_slab_next,
		.seq_stop = memcg_slab_stop,
4851
		.seq_show = memcg_slab_show,
4852 4853
	},
#endif
V
Vladimir Davydov 已提交
4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4877
	{ },	/* terminate */
4878
};
4879

4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
 * However, there usually are many references to the oflline CSS after
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

4906 4907 4908 4909 4910 4911 4912 4913
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

4914
static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4915
{
4916
	refcount_add(n, &memcg->id.ref);
4917 4918
}

4919
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4920
{
4921
	if (refcount_sub_and_test(n, &memcg->id.ref)) {
4922
		mem_cgroup_id_remove(memcg);
4923 4924 4925 4926 4927 4928

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

4929 4930 4931 4932 4933
static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

4946
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4947 4948
{
	struct mem_cgroup_per_node *pn;
4949
	int tmp = node;
4950 4951 4952 4953 4954 4955 4956 4957
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4958 4959
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4960
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4961 4962
	if (!pn)
		return 1;
4963

4964 4965 4966 4967 4968 4969
	pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat_local) {
		kfree(pn);
		return 1;
	}

4970 4971
	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat_cpu) {
4972
		free_percpu(pn->lruvec_stat_local);
4973 4974 4975 4976
		kfree(pn);
		return 1;
	}

4977 4978 4979 4980 4981
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

4982
	memcg->nodeinfo[node] = pn;
4983 4984 4985
	return 0;
}

4986
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4987
{
4988 4989
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
4990 4991 4992
	if (!pn)
		return;

4993
	free_percpu(pn->lruvec_stat_cpu);
4994
	free_percpu(pn->lruvec_stat_local);
4995
	kfree(pn);
4996 4997
}

4998
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4999
{
5000
	int node;
5001

5002
	/*
5003
	 * Flush percpu vmstats and vmevents to guarantee the value correctness
5004 5005
	 * on parent's and all ancestor levels.
	 */
5006
	memcg_flush_percpu_vmstats(memcg, false);
5007
	memcg_flush_percpu_vmevents(memcg);
5008
	for_each_node(node)
5009
		free_mem_cgroup_per_node_info(memcg, node);
5010
	free_percpu(memcg->vmstats_percpu);
5011
	free_percpu(memcg->vmstats_local);
5012
	kfree(memcg);
5013
}
5014

5015 5016 5017 5018 5019 5020
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
	__mem_cgroup_free(memcg);
}

5021
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
5022
{
5023
	struct mem_cgroup *memcg;
5024
	unsigned int size;
5025
	int node;
5026
	int __maybe_unused i;
B
Balbir Singh 已提交
5027

5028 5029 5030 5031
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
5032
	if (!memcg)
5033 5034
		return NULL;

5035 5036 5037 5038 5039 5040
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
	if (memcg->id.id < 0)
		goto fail;

5041 5042 5043 5044
	memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
	if (!memcg->vmstats_local)
		goto fail;

5045 5046
	memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
	if (!memcg->vmstats_percpu)
5047
		goto fail;
5048

B
Bob Liu 已提交
5049
	for_each_node(node)
5050
		if (alloc_mem_cgroup_per_node_info(memcg, node))
5051
			goto fail;
5052

5053 5054
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
5055

5056
	INIT_WORK(&memcg->high_work, high_work_func);
5057 5058 5059 5060
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5061
	vmpressure_init(&memcg->vmpressure);
5062 5063
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
5064
	memcg->socket_pressure = jiffies;
5065
#ifdef CONFIG_MEMCG_KMEM
V
Vladimir Davydov 已提交
5066 5067
	memcg->kmemcg_id = -1;
#endif
5068 5069
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
5070 5071 5072
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		memcg->cgwb_frn[i].done =
			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5073 5074 5075 5076 5077
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
	memcg->deferred_split_queue.split_queue_len = 0;
5078
#endif
5079
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5080 5081
	return memcg;
fail:
5082
	mem_cgroup_id_remove(memcg);
5083
	__mem_cgroup_free(memcg);
5084
	return NULL;
5085 5086
}

5087 5088
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5089
{
5090 5091 5092
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
5093

5094 5095 5096
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
5097

5098 5099 5100 5101 5102 5103 5104 5105
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
5106
		page_counter_init(&memcg->memory, &parent->memory);
5107
		page_counter_init(&memcg->swap, &parent->swap);
5108 5109
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
5110
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5111
	} else {
5112
		page_counter_init(&memcg->memory, NULL);
5113
		page_counter_init(&memcg->swap, NULL);
5114 5115
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
5116
		page_counter_init(&memcg->tcpmem, NULL);
5117 5118 5119 5120 5121
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
5122
		if (parent != root_mem_cgroup)
5123
			memory_cgrp_subsys.broken_hierarchy = true;
5124
	}
5125

5126 5127
	/* The following stuff does not apply to the root */
	if (!parent) {
5128 5129 5130
#ifdef CONFIG_MEMCG_KMEM
		INIT_LIST_HEAD(&memcg->kmem_caches);
#endif
5131 5132 5133 5134
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

5135
	error = memcg_online_kmem(memcg);
5136 5137
	if (error)
		goto fail;
5138

5139
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5140
		static_branch_inc(&memcg_sockets_enabled_key);
5141

5142 5143
	return &memcg->css;
fail:
5144
	mem_cgroup_id_remove(memcg);
5145
	mem_cgroup_free(memcg);
5146
	return ERR_PTR(-ENOMEM);
5147 5148
}

5149
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5150
{
5151 5152
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5153 5154 5155 5156 5157 5158 5159 5160 5161 5162
	/*
	 * A memcg must be visible for memcg_expand_shrinker_maps()
	 * by the time the maps are allocated. So, we allocate maps
	 * here, when for_each_mem_cgroup() can't skip it.
	 */
	if (memcg_alloc_shrinker_maps(memcg)) {
		mem_cgroup_id_remove(memcg);
		return -ENOMEM;
	}

5163
	/* Online state pins memcg ID, memcg ID pins CSS */
5164
	refcount_set(&memcg->id.ref, 1);
5165
	css_get(css);
5166
	return 0;
B
Balbir Singh 已提交
5167 5168
}

5169
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5170
{
5171
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5172
	struct mem_cgroup_event *event, *tmp;
5173 5174 5175 5176 5177 5178

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
5179 5180
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5181 5182 5183
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
5184
	spin_unlock(&memcg->event_list_lock);
5185

R
Roman Gushchin 已提交
5186
	page_counter_set_min(&memcg->memory, 0);
5187
	page_counter_set_low(&memcg->memory, 0);
5188

5189
	memcg_offline_kmem(memcg);
5190
	wb_memcg_offline(memcg);
5191

5192 5193
	drain_all_stock(memcg);

5194
	mem_cgroup_id_put(memcg);
5195 5196
}

5197 5198 5199 5200 5201 5202 5203
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

5204
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
5205
{
5206
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5207
	int __maybe_unused i;
5208

5209 5210 5211 5212
#ifdef CONFIG_CGROUP_WRITEBACK
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
#endif
5213
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5214
		static_branch_dec(&memcg_sockets_enabled_key);
5215

5216
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
5217
		static_branch_dec(&memcg_sockets_enabled_key);
5218

5219 5220 5221
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
5222
	memcg_free_shrinker_maps(memcg);
5223
	memcg_free_kmem(memcg);
5224
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
5225 5226
}

5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5244 5245 5246 5247 5248
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
R
Roman Gushchin 已提交
5249
	page_counter_set_min(&memcg->memory, 0);
5250
	page_counter_set_low(&memcg->memory, 0);
5251
	memcg->high = PAGE_COUNTER_MAX;
5252
	memcg->soft_limit = PAGE_COUNTER_MAX;
5253
	memcg_wb_domain_size_changed(memcg);
5254 5255
}

5256
#ifdef CONFIG_MMU
5257
/* Handlers for move charge at task migration. */
5258
static int mem_cgroup_do_precharge(unsigned long count)
5259
{
5260
	int ret;
5261

5262 5263
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5264
	if (!ret) {
5265 5266 5267
		mc.precharge += count;
		return ret;
	}
5268

5269
	/* Try charges one by one with reclaim, but do not retry */
5270
	while (count--) {
5271
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5272 5273
		if (ret)
			return ret;
5274
		mc.precharge++;
5275
		cond_resched();
5276
	}
5277
	return 0;
5278 5279 5280 5281
}

union mc_target {
	struct page	*page;
5282
	swp_entry_t	ent;
5283 5284 5285
};

enum mc_target_type {
5286
	MC_TARGET_NONE = 0,
5287
	MC_TARGET_PAGE,
5288
	MC_TARGET_SWAP,
5289
	MC_TARGET_DEVICE,
5290 5291
};

D
Daisuke Nishimura 已提交
5292 5293
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5294
{
5295
	struct page *page = vm_normal_page(vma, addr, ptent);
5296

D
Daisuke Nishimura 已提交
5297 5298 5299
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
5300
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5301
			return NULL;
5302 5303 5304 5305
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
5306 5307 5308 5309 5310 5311
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5312
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
5313
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5314
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
5315 5316 5317 5318
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

5319
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
5320
		return NULL;
5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
		page = device_private_entry_to_page(ent);
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

5338 5339 5340 5341
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5342
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5343
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
5344 5345 5346 5347
		entry->val = ent.val;

	return page;
}
5348 5349
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5350
			pte_t ptent, swp_entry_t *entry)
5351 5352 5353 5354
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5355

5356 5357 5358 5359 5360 5361 5362 5363 5364
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
5365
	if (!(mc.flags & MOVE_FILE))
5366 5367 5368
		return NULL;

	mapping = vma->vm_file->f_mapping;
5369
	pgoff = linear_page_index(vma, addr);
5370 5371

	/* page is moved even if it's not RSS of this task(page-faulted). */
5372 5373
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
5374 5375
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
5376
		if (xa_is_value(page)) {
5377
			swp_entry_t swp = radix_to_swp_entry(page);
5378
			if (do_memsw_account())
5379
				*entry = swp;
5380 5381
			page = find_get_page(swap_address_space(swp),
					     swp_offset(swp));
5382 5383 5384 5385 5386
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
5387
#endif
5388 5389 5390
	return page;
}

5391 5392 5393
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
5394
 * @compound: charge the page as compound or small page
5395 5396 5397
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
5398
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5399 5400 5401 5402 5403
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
5404
				   bool compound,
5405 5406 5407 5408
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
5409
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5410
	int ret;
5411
	bool anon;
5412 5413 5414

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
5415
	VM_BUG_ON(compound && !PageTransHuge(page));
5416 5417

	/*
5418
	 * Prevent mem_cgroup_migrate() from looking at
5419
	 * page->mem_cgroup of its source page while we change it.
5420
	 */
5421
	ret = -EBUSY;
5422 5423 5424 5425 5426 5427 5428
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

5429 5430
	anon = PageAnon(page);

5431 5432
	spin_lock_irqsave(&from->move_lock, flags);

5433
	if (!anon && page_mapped(page)) {
5434 5435
		__mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
		__mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
5436 5437
	}

5438 5439
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
5440
	 * mod_memcg_page_state will serialize updates to PageDirty.
5441 5442 5443 5444 5445 5446
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
5447 5448
			__mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
			__mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
5449 5450 5451
		}
	}

5452
	if (PageWriteback(page)) {
5453 5454
		__mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
		__mod_memcg_state(to, NR_WRITEBACK, nr_pages);
5455 5456
	}

5457 5458 5459 5460 5461 5462 5463 5464
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	if (compound && !list_empty(page_deferred_list(page))) {
		spin_lock(&from->deferred_split_queue.split_queue_lock);
		list_del_init(page_deferred_list(page));
		from->deferred_split_queue.split_queue_len--;
		spin_unlock(&from->deferred_split_queue.split_queue_lock);
	}
#endif
5465 5466 5467 5468 5469 5470 5471 5472
	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	if (compound && list_empty(page_deferred_list(page))) {
		spin_lock(&to->deferred_split_queue.split_queue_lock);
		list_add_tail(page_deferred_list(page),
			      &to->deferred_split_queue.split_queue);
		to->deferred_split_queue.split_queue_len++;
		spin_unlock(&to->deferred_split_queue.split_queue_lock);
	}
#endif

5484 5485 5486 5487 5488
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
5489
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5490
	memcg_check_events(to, page);
5491
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5492 5493 5494 5495 5496 5497 5498 5499
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5515 5516
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
 *     (so ZONE_DEVICE page and thus not on the lru).
5517 5518 5519
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
5520 5521
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5522 5523 5524 5525
 *
 * Called with pte lock held.
 */

5526
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5527 5528 5529
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
5530
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5531 5532 5533 5534 5535
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
5536
		page = mc_handle_swap_pte(vma, ptent, &ent);
5537
	else if (pte_none(ptent))
5538
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5539 5540

	if (!page && !ent.val)
5541
		return ret;
5542 5543
	if (page) {
		/*
5544
		 * Do only loose check w/o serialization.
5545
		 * mem_cgroup_move_account() checks the page is valid or
5546
		 * not under LRU exclusion.
5547
		 */
5548
		if (page->mem_cgroup == mc.from) {
5549
			ret = MC_TARGET_PAGE;
5550
			if (is_device_private_page(page))
5551
				ret = MC_TARGET_DEVICE;
5552 5553 5554 5555 5556 5557
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
5558 5559 5560 5561 5562
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
5563
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5564 5565 5566
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5567 5568 5569 5570
	}
	return ret;
}

5571 5572
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
5573 5574
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
5575 5576 5577 5578 5579 5580 5581 5582
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

5583 5584 5585 5586 5587
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
5588
	page = pmd_page(pmd);
5589
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5590
	if (!(mc.flags & MOVE_ANON))
5591
		return ret;
5592
	if (page->mem_cgroup == mc.from) {
5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5609 5610 5611 5612
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
5613
	struct vm_area_struct *vma = walk->vma;
5614 5615 5616
	pte_t *pte;
	spinlock_t *ptl;

5617 5618
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5619 5620
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5621 5622
		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
		 * this might change.
5623
		 */
5624 5625
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5626
		spin_unlock(ptl);
5627
		return 0;
5628
	}
5629

5630 5631
	if (pmd_trans_unstable(pmd))
		return 0;
5632 5633
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5634
		if (get_mctgt_type(vma, addr, *pte, NULL))
5635 5636 5637 5638
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5639 5640 5641
	return 0;
}

5642 5643 5644 5645
static const struct mm_walk_ops precharge_walk_ops = {
	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
};

5646 5647 5648 5649
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

5650
	down_read(&mm->mmap_sem);
5651
	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5652
	up_read(&mm->mmap_sem);
5653 5654 5655 5656 5657 5658 5659 5660 5661

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5662 5663 5664 5665 5666
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5667 5668
}

5669 5670
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5671
{
5672 5673 5674
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5675
	/* we must uncharge all the leftover precharges from mc.to */
5676
	if (mc.precharge) {
5677
		cancel_charge(mc.to, mc.precharge);
5678 5679 5680 5681 5682 5683 5684
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5685
		cancel_charge(mc.from, mc.moved_charge);
5686
		mc.moved_charge = 0;
5687
	}
5688 5689 5690
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5691
		if (!mem_cgroup_is_root(mc.from))
5692
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5693

5694 5695
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

5696
		/*
5697 5698
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5699
		 */
5700
		if (!mem_cgroup_is_root(mc.to))
5701 5702
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5703 5704
		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
		css_put_many(&mc.to->css, mc.moved_swap);
5705

5706 5707
		mc.moved_swap = 0;
	}
5708 5709 5710 5711 5712 5713 5714
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
5715 5716
	struct mm_struct *mm = mc.mm;

5717 5718 5719 5720 5721 5722
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5723
	spin_lock(&mc.lock);
5724 5725
	mc.from = NULL;
	mc.to = NULL;
5726
	mc.mm = NULL;
5727
	spin_unlock(&mc.lock);
5728 5729

	mmput(mm);
5730 5731
}

5732
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5733
{
5734
	struct cgroup_subsys_state *css;
5735
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5736
	struct mem_cgroup *from;
5737
	struct task_struct *leader, *p;
5738
	struct mm_struct *mm;
5739
	unsigned long move_flags;
5740
	int ret = 0;
5741

5742 5743
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5744 5745
		return 0;

5746 5747 5748 5749 5750 5751 5752
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
5753
	cgroup_taskset_for_each_leader(leader, css, tset) {
5754 5755
		WARN_ON_ONCE(p);
		p = leader;
5756
		memcg = mem_cgroup_from_css(css);
5757 5758 5759 5760
	}
	if (!p)
		return 0;

5761 5762 5763 5764 5765 5766 5767 5768 5769
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
5786
		mc.mm = mm;
5787 5788 5789 5790 5791 5792 5793 5794 5795
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
5796 5797
	} else {
		mmput(mm);
5798 5799 5800 5801
	}
	return ret;
}

5802
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5803
{
5804 5805
	if (mc.to)
		mem_cgroup_clear_mc();
5806 5807
}

5808 5809 5810
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5811
{
5812
	int ret = 0;
5813
	struct vm_area_struct *vma = walk->vma;
5814 5815
	pte_t *pte;
	spinlock_t *ptl;
5816 5817 5818
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5819

5820 5821
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5822
		if (mc.precharge < HPAGE_PMD_NR) {
5823
			spin_unlock(ptl);
5824 5825 5826 5827 5828 5829
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
5830
				if (!mem_cgroup_move_account(page, true,
5831
							     mc.from, mc.to)) {
5832 5833 5834 5835 5836 5837
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
5838 5839 5840 5841 5842 5843 5844 5845
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
5846
		}
5847
		spin_unlock(ptl);
5848
		return 0;
5849 5850
	}

5851 5852
	if (pmd_trans_unstable(pmd))
		return 0;
5853 5854 5855 5856
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5857
		bool device = false;
5858
		swp_entry_t ent;
5859 5860 5861 5862

		if (!mc.precharge)
			break;

5863
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5864 5865 5866
		case MC_TARGET_DEVICE:
			device = true;
			/* fall through */
5867 5868
		case MC_TARGET_PAGE:
			page = target.page;
5869 5870 5871 5872 5873 5874 5875 5876
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
5877
			if (!device && isolate_lru_page(page))
5878
				goto put;
5879 5880
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
5881
				mc.precharge--;
5882 5883
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5884
			}
5885 5886
			if (!device)
				putback_lru_page(page);
5887
put:			/* get_mctgt_type() gets the page */
5888 5889
			put_page(page);
			break;
5890 5891
		case MC_TARGET_SWAP:
			ent = target.ent;
5892
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5893
				mc.precharge--;
5894 5895 5896
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5897
			break;
5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5912
		ret = mem_cgroup_do_precharge(1);
5913 5914 5915 5916 5917 5918 5919
		if (!ret)
			goto retry;
	}

	return ret;
}

5920 5921 5922 5923
static const struct mm_walk_ops charge_walk_ops = {
	.pmd_entry	= mem_cgroup_move_charge_pte_range,
};

5924
static void mem_cgroup_move_charge(void)
5925 5926
{
	lru_add_drain_all();
5927
	/*
5928 5929 5930
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
5931 5932 5933
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5934
retry:
5935
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5947 5948 5949 5950
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
5951 5952
	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
			NULL);
5953

5954
	up_read(&mc.mm->mmap_sem);
5955
	atomic_dec(&mc.from->moving_account);
5956 5957
}

5958
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
5959
{
5960 5961
	if (mc.to) {
		mem_cgroup_move_charge();
5962
		mem_cgroup_clear_mc();
5963
	}
B
Balbir Singh 已提交
5964
}
5965
#else	/* !CONFIG_MMU */
5966
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5967 5968 5969
{
	return 0;
}
5970
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5971 5972
{
}
5973
static void mem_cgroup_move_task(void)
5974 5975 5976
{
}
#endif
B
Balbir Singh 已提交
5977

5978 5979
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5980 5981
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5982
 */
5983
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5984 5985
{
	/*
5986
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5987 5988 5989
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5990
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5991 5992 5993
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5994 5995
}

5996 5997 5998 5999 6000 6001 6002 6003 6004 6005
static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
{
	if (value == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);

	return 0;
}

6006 6007 6008
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
6009 6010 6011
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6012 6013
}

R
Roman Gushchin 已提交
6014 6015
static int memory_min_show(struct seq_file *m, void *v)
{
6016 6017
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
R
Roman Gushchin 已提交
6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

6037 6038
static int memory_low_show(struct seq_file *m, void *v)
{
6039 6040
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6041 6042 6043 6044 6045 6046 6047 6048 6049 6050
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
6051
	err = page_counter_memparse(buf, "max", &low);
6052 6053 6054
	if (err)
		return err;

6055
	page_counter_set_low(&memcg->memory, low);
6056 6057 6058 6059 6060 6061

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
6062
	return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
6063 6064 6065 6066 6067 6068
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6069
	unsigned long nr_pages;
6070 6071 6072 6073
	unsigned long high;
	int err;

	buf = strstrip(buf);
6074
	err = page_counter_memparse(buf, "max", &high);
6075 6076 6077 6078 6079
	if (err)
		return err;

	memcg->high = high;

6080 6081 6082 6083 6084
	nr_pages = page_counter_read(&memcg->memory);
	if (nr_pages > high)
		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
					     GFP_KERNEL, true);

6085
	memcg_wb_domain_size_changed(memcg);
6086 6087 6088 6089 6090
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
6091 6092
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6093 6094 6095 6096 6097 6098
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6099 6100
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
6101 6102 6103 6104
	unsigned long max;
	int err;

	buf = strstrip(buf);
6105
	err = page_counter_memparse(buf, "max", &max);
6106 6107 6108
	if (err)
		return err;

6109
	xchg(&memcg->memory.max, max);
6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

		if (signal_pending(current)) {
			err = -EINTR;
			break;
		}

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

6135
		memcg_memory_event(memcg, MEMCG_OOM);
6136 6137 6138
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
6139

6140
	memcg_wb_domain_size_changed(memcg);
6141 6142 6143
	return nbytes;
}

6144 6145 6146 6147 6148 6149 6150 6151 6152 6153
static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
{
	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&events[MEMCG_OOM_KILL]));
}

6154 6155
static int memory_events_show(struct seq_file *m, void *v)
{
6156
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6157

6158 6159 6160 6161 6162 6163 6164
	__memory_events_show(m, memcg->memory_events);
	return 0;
}

static int memory_events_local_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6165

6166
	__memory_events_show(m, memcg->memory_events_local);
6167 6168 6169
	return 0;
}

6170 6171
static int memory_stat_show(struct seq_file *m, void *v)
{
6172
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6173
	char *buf;
6174

6175 6176 6177 6178 6179
	buf = memory_stat_format(memcg);
	if (!buf)
		return -ENOMEM;
	seq_puts(m, buf);
	kfree(buf);
6180 6181 6182
	return 0;
}

6183 6184
static int memory_oom_group_show(struct seq_file *m, void *v)
{
6185
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213

	seq_printf(m, "%d\n", memcg->oom_group);

	return 0;
}

static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
				      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	int ret, oom_group;

	buf = strstrip(buf);
	if (!buf)
		return -EINVAL;

	ret = kstrtoint(buf, 0, &oom_group);
	if (ret)
		return ret;

	if (oom_group != 0 && oom_group != 1)
		return -EINVAL;

	memcg->oom_group = oom_group;

	return nbytes;
}

6214 6215 6216
static struct cftype memory_files[] = {
	{
		.name = "current",
6217
		.flags = CFTYPE_NOT_ON_ROOT,
6218 6219
		.read_u64 = memory_current_read,
	},
R
Roman Gushchin 已提交
6220 6221 6222 6223 6224 6225
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
6247
		.file_offset = offsetof(struct mem_cgroup, events_file),
6248 6249
		.seq_show = memory_events_show,
	},
6250 6251 6252 6253 6254 6255
	{
		.name = "events.local",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, events_local_file),
		.seq_show = memory_events_local_show,
	},
6256 6257 6258 6259 6260
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
6261 6262 6263 6264 6265 6266
	{
		.name = "oom.group",
		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
		.seq_show = memory_oom_group_show,
		.write = memory_oom_group_write,
	},
6267 6268 6269
	{ }	/* terminate */
};

6270
struct cgroup_subsys memory_cgrp_subsys = {
6271
	.css_alloc = mem_cgroup_css_alloc,
6272
	.css_online = mem_cgroup_css_online,
6273
	.css_offline = mem_cgroup_css_offline,
6274
	.css_released = mem_cgroup_css_released,
6275
	.css_free = mem_cgroup_css_free,
6276
	.css_reset = mem_cgroup_css_reset,
6277 6278
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
6279
	.post_attach = mem_cgroup_move_task,
6280
	.bind = mem_cgroup_bind,
6281 6282
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
6283
	.early_init = 0,
B
Balbir Singh 已提交
6284
};
6285

6286
/**
R
Roman Gushchin 已提交
6287
 * mem_cgroup_protected - check if memory consumption is in the normal range
6288
 * @root: the top ancestor of the sub-tree being checked
6289 6290
 * @memcg: the memory cgroup to check
 *
6291 6292
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
6293
 *
R
Roman Gushchin 已提交
6294 6295 6296 6297 6298
 * Returns one of the following:
 *   MEMCG_PROT_NONE: cgroup memory is not protected
 *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
 *     an unprotected supply of reclaimable memory from other cgroups.
 *   MEMCG_PROT_MIN: cgroup memory is protected
6299
 *
R
Roman Gushchin 已提交
6300
 * @root is exclusive; it is never protected when looked at directly
6301
 *
R
Roman Gushchin 已提交
6302 6303 6304
 * To provide a proper hierarchical behavior, effective memory.min/low values
 * are used. Below is the description of how effective memory.low is calculated.
 * Effective memory.min values is calculated in the same way.
6305
 *
6306 6307 6308 6309 6310 6311 6312
 * Effective memory.low is always equal or less than the original memory.low.
 * If there is no memory.low overcommittment (which is always true for
 * top-level memory cgroups), these two values are equal.
 * Otherwise, it's a part of parent's effective memory.low,
 * calculated as a cgroup's memory.low usage divided by sum of sibling's
 * memory.low usages, where memory.low usage is the size of actually
 * protected memory.
6313
 *
6314 6315 6316
 *                                             low_usage
 * elow = min( memory.low, parent->elow * ------------------ ),
 *                                        siblings_low_usage
6317
 *
6318 6319
 *             | memory.current, if memory.current < memory.low
 * low_usage = |
6320
 *	       | 0, otherwise.
6321
 *
6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348
 *
 * Such definition of the effective memory.low provides the expected
 * hierarchical behavior: parent's memory.low value is limiting
 * children, unprotected memory is reclaimed first and cgroups,
 * which are not using their guarantee do not affect actual memory
 * distribution.
 *
 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
 *
 *     A      A/memory.low = 2G, A/memory.current = 6G
 *    //\\
 *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
 *            C/memory.low = 1G  C/memory.current = 2G
 *            D/memory.low = 0   D/memory.current = 2G
 *            E/memory.low = 10G E/memory.current = 0
 *
 * and the memory pressure is applied, the following memory distribution
 * is expected (approximately):
 *
 *     A/memory.current = 2G
 *
 *     B/memory.current = 1.3G
 *     C/memory.current = 0.6G
 *     D/memory.current = 0
 *     E/memory.current = 0
 *
 * These calculations require constant tracking of the actual low usages
R
Roman Gushchin 已提交
6349 6350
 * (see propagate_protected_usage()), as well as recursive calculation of
 * effective memory.low values. But as we do call mem_cgroup_protected()
6351 6352 6353 6354
 * path for each memory cgroup top-down from the reclaim,
 * it's possible to optimize this part, and save calculated elow
 * for next usage. This part is intentionally racy, but it's ok,
 * as memory.low is a best-effort mechanism.
6355
 */
R
Roman Gushchin 已提交
6356 6357
enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
						struct mem_cgroup *memcg)
6358
{
6359
	struct mem_cgroup *parent;
R
Roman Gushchin 已提交
6360 6361 6362
	unsigned long emin, parent_emin;
	unsigned long elow, parent_elow;
	unsigned long usage;
6363

6364
	if (mem_cgroup_disabled())
R
Roman Gushchin 已提交
6365
		return MEMCG_PROT_NONE;
6366

6367 6368 6369
	if (!root)
		root = root_mem_cgroup;
	if (memcg == root)
R
Roman Gushchin 已提交
6370
		return MEMCG_PROT_NONE;
6371

6372
	usage = page_counter_read(&memcg->memory);
R
Roman Gushchin 已提交
6373 6374 6375 6376 6377
	if (!usage)
		return MEMCG_PROT_NONE;

	emin = memcg->memory.min;
	elow = memcg->memory.low;
6378

R
Roman Gushchin 已提交
6379
	parent = parent_mem_cgroup(memcg);
6380 6381 6382 6383
	/* No parent means a non-hierarchical mode on v1 memcg */
	if (!parent)
		return MEMCG_PROT_NONE;

6384 6385 6386
	if (parent == root)
		goto exit;

R
Roman Gushchin 已提交
6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400
	parent_emin = READ_ONCE(parent->memory.emin);
	emin = min(emin, parent_emin);
	if (emin && parent_emin) {
		unsigned long min_usage, siblings_min_usage;

		min_usage = min(usage, memcg->memory.min);
		siblings_min_usage = atomic_long_read(
			&parent->memory.children_min_usage);

		if (min_usage && siblings_min_usage)
			emin = min(emin, parent_emin * min_usage /
				   siblings_min_usage);
	}

6401 6402
	parent_elow = READ_ONCE(parent->memory.elow);
	elow = min(elow, parent_elow);
R
Roman Gushchin 已提交
6403 6404
	if (elow && parent_elow) {
		unsigned long low_usage, siblings_low_usage;
6405

R
Roman Gushchin 已提交
6406 6407 6408
		low_usage = min(usage, memcg->memory.low);
		siblings_low_usage = atomic_long_read(
			&parent->memory.children_low_usage);
6409

R
Roman Gushchin 已提交
6410 6411 6412 6413
		if (low_usage && siblings_low_usage)
			elow = min(elow, parent_elow * low_usage /
				   siblings_low_usage);
	}
6414 6415

exit:
R
Roman Gushchin 已提交
6416
	memcg->memory.emin = emin;
6417
	memcg->memory.elow = elow;
R
Roman Gushchin 已提交
6418 6419 6420 6421 6422 6423 6424

	if (usage <= emin)
		return MEMCG_PROT_MIN;
	else if (usage <= elow)
		return MEMCG_PROT_LOW;
	else
		return MEMCG_PROT_NONE;
6425 6426
}

6427 6428 6429 6430 6431 6432
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
6433
 * @compound: charge the page as compound or small page
6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6446 6447
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
6448 6449
{
	struct mem_cgroup *memcg = NULL;
6450
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
6464
		VM_BUG_ON_PAGE(!PageLocked(page), page);
6465
		if (compound_head(page)->mem_cgroup)
6466
			goto out;
6467

6468
		if (do_swap_account) {
6469 6470 6471 6472 6473 6474 6475 6476 6477
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503
int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
{
	struct mem_cgroup *memcg;
	int ret;

	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
	memcg = *memcgp;
	mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
	return ret;
}

6504 6505 6506 6507 6508
/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
6509
 * @compound: charge the page as compound or small page
6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6522
			      bool lrucare, bool compound)
6523
{
6524
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

6539 6540 6541
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
6542
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6543 6544
	memcg_check_events(memcg, page);
	local_irq_enable();
6545

6546
	if (do_memsw_account() && PageSwapCache(page)) {
6547 6548 6549 6550 6551 6552
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
6553
		mem_cgroup_uncharge_swap(entry, nr_pages);
6554 6555 6556 6557 6558 6559 6560
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
6561
 * @compound: charge the page as compound or small page
6562 6563 6564
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
6565 6566
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
6567
{
6568
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594
struct uncharge_gather {
	struct mem_cgroup *memcg;
	unsigned long pgpgout;
	unsigned long nr_anon;
	unsigned long nr_file;
	unsigned long nr_kmem;
	unsigned long nr_huge;
	unsigned long nr_shmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6595
{
6596 6597 6598 6599 6600 6601
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6602 6603
	unsigned long flags;

6604 6605
	if (!mem_cgroup_is_root(ug->memcg)) {
		page_counter_uncharge(&ug->memcg->memory, nr_pages);
6606
		if (do_memsw_account())
6607 6608 6609 6610
			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
6611
	}
6612 6613

	local_irq_save(flags);
6614 6615 6616 6617 6618
	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6619
	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6620
	memcg_check_events(ug->memcg, ug->dummy_page);
6621
	local_irq_restore(flags);
6622

6623 6624 6625 6626 6627 6628 6629
	if (!mem_cgroup_is_root(ug->memcg))
		css_put_many(&ug->memcg->css, nr_pages);
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
	VM_BUG_ON_PAGE(PageLRU(page), page);
6630 6631
	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
			!PageHWPoison(page) , page);
6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653

	if (!page->mem_cgroup)
		return;

	/*
	 * Nobody should be changing or seriously looking at
	 * page->mem_cgroup at this point, we have fully
	 * exclusive access to the page.
	 */

	if (ug->memcg != page->mem_cgroup) {
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
		ug->memcg = page->mem_cgroup;
	}

	if (!PageKmemcg(page)) {
		unsigned int nr_pages = 1;

		if (PageTransHuge(page)) {
6654
			nr_pages = compound_nr(page);
6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665
			ug->nr_huge += nr_pages;
		}
		if (PageAnon(page))
			ug->nr_anon += nr_pages;
		else {
			ug->nr_file += nr_pages;
			if (PageSwapBacked(page))
				ug->nr_shmem += nr_pages;
		}
		ug->pgpgout++;
	} else {
6666
		ug->nr_kmem += compound_nr(page);
6667 6668 6669 6670 6671
		__ClearPageKmemcg(page);
	}

	ug->dummy_page = page;
	page->mem_cgroup = NULL;
6672 6673 6674 6675
}

static void uncharge_list(struct list_head *page_list)
{
6676
	struct uncharge_gather ug;
6677
	struct list_head *next;
6678 6679

	uncharge_gather_clear(&ug);
6680

6681 6682 6683 6684
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
6685 6686
	next = page_list->next;
	do {
6687 6688
		struct page *page;

6689 6690 6691
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

6692
		uncharge_page(page, &ug);
6693 6694
	} while (next != page_list);

6695 6696
	if (ug.memcg)
		uncharge_batch(&ug);
6697 6698
}

6699 6700 6701 6702 6703 6704 6705 6706 6707
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
6708 6709
	struct uncharge_gather ug;

6710 6711 6712
	if (mem_cgroup_disabled())
		return;

6713
	/* Don't touch page->lru of any random page, pre-check: */
6714
	if (!page->mem_cgroup)
6715 6716
		return;

6717 6718 6719
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
6720
}
6721

6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
6733

6734 6735
	if (!list_empty(page_list))
		uncharge_list(page_list);
6736 6737 6738
}

/**
6739 6740 6741
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
6742
 *
6743 6744
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
6745 6746 6747
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
6748
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6749
{
6750
	struct mem_cgroup *memcg;
6751 6752
	unsigned int nr_pages;
	bool compound;
6753
	unsigned long flags;
6754 6755 6756 6757

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6758 6759
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6760 6761 6762 6763 6764

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
6765
	if (newpage->mem_cgroup)
6766 6767
		return;

6768
	/* Swapcache readahead pages can get replaced before being charged */
6769
	memcg = oldpage->mem_cgroup;
6770
	if (!memcg)
6771 6772
		return;

6773 6774 6775 6776 6777 6778 6779 6780
	/* Force-charge the new page. The old one will be freed soon */
	compound = PageTransHuge(newpage);
	nr_pages = compound ? hpage_nr_pages(newpage) : 1;

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
6781

6782
	commit_charge(newpage, memcg, false);
6783

6784
	local_irq_save(flags);
6785 6786
	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
	memcg_check_events(memcg, newpage);
6787
	local_irq_restore(flags);
6788 6789
}

6790
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6791 6792
EXPORT_SYMBOL(memcg_sockets_enabled_key);

6793
void mem_cgroup_sk_alloc(struct sock *sk)
6794 6795 6796
{
	struct mem_cgroup *memcg;

6797 6798 6799
	if (!mem_cgroup_sockets_enabled)
		return;

6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813
	/*
	 * Socket cloning can throw us here with sk_memcg already
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		css_get(&sk->sk_memcg->css);
		return;
	}

6814 6815
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
6816 6817
	if (memcg == root_mem_cgroup)
		goto out;
6818
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6819 6820
		goto out;
	if (css_tryget_online(&memcg->css))
6821
		sk->sk_memcg = memcg;
6822
out:
6823 6824 6825
	rcu_read_unlock();
}

6826
void mem_cgroup_sk_free(struct sock *sk)
6827
{
6828 6829
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6842
	gfp_t gfp_mask = GFP_KERNEL;
6843

6844
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6845
		struct page_counter *fail;
6846

6847 6848
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
6849 6850
			return true;
		}
6851 6852
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
6853
		return false;
6854
	}
6855

6856 6857 6858 6859
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

6860
	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6861

6862 6863 6864 6865
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6866 6867 6868 6869 6870
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
6871 6872
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
6873 6874 6875
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6876
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6877
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6878 6879
		return;
	}
6880

6881
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6882

6883
	refill_stock(memcg, nr_pages);
6884 6885
}

6886 6887 6888 6889 6890 6891 6892 6893 6894
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
6895 6896
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
6897 6898 6899 6900
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
6901

6902
/*
6903 6904
 * subsys_initcall() for memory controller.
 *
6905 6906 6907 6908
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
6909 6910 6911
 */
static int __init mem_cgroup_init(void)
{
6912 6913
	int cpu, node;

6914
#ifdef CONFIG_MEMCG_KMEM
6915 6916
	/*
	 * Kmem cache creation is mostly done with the slab_mutex held,
6917 6918 6919
	 * so use a workqueue with limited concurrency to avoid stalling
	 * all worker threads in case lots of cgroups are created and
	 * destroyed simultaneously.
6920
	 */
6921 6922
	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
	BUG_ON(!memcg_kmem_cache_wq);
6923 6924
#endif

6925 6926
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

6938
		rtpn->rb_root = RB_ROOT;
6939
		rtpn->rb_rightmost = NULL;
6940
		spin_lock_init(&rtpn->lock);
6941 6942 6943
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

6944 6945 6946
	return 0;
}
subsys_initcall(mem_cgroup_init);
6947 6948

#ifdef CONFIG_MEMCG_SWAP
6949 6950
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
6951
	while (!refcount_inc_not_zero(&memcg->id.ref)) {
6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

6967 6968 6969 6970 6971 6972 6973 6974 6975
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
6976
	struct mem_cgroup *memcg, *swap_memcg;
6977
	unsigned int nr_entries;
6978 6979 6980 6981 6982
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

6983
	if (!do_memsw_account())
6984 6985 6986 6987 6988 6989 6990 6991
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

6992 6993 6994 6995 6996 6997
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
6998 6999 7000 7001 7002 7003
	nr_entries = hpage_nr_pages(page);
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
7004
	VM_BUG_ON_PAGE(oldid, page);
7005
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7006 7007 7008 7009

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
7010
		page_counter_uncharge(&memcg->memory, nr_entries);
7011

7012 7013
	if (memcg != swap_memcg) {
		if (!mem_cgroup_is_root(swap_memcg))
7014 7015
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
7016 7017
	}

7018 7019
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
7020
	 * i_pages lock which is taken with interrupts-off. It is
7021
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
7022
	 * only synchronisation we have for updating the per-CPU variables.
7023 7024
	 */
	VM_BUG_ON(!irqs_disabled());
7025 7026
	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
				     -nr_entries);
7027
	memcg_check_events(memcg, page);
7028 7029

	if (!mem_cgroup_is_root(memcg))
7030
		css_put_many(&memcg->css, nr_entries);
7031 7032
}

7033 7034
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
7035 7036 7037
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
7038
 * Try to charge @page's memcg for the swap space at @entry.
7039 7040 7041 7042 7043
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
7044
	unsigned int nr_pages = hpage_nr_pages(page);
7045
	struct page_counter *counter;
7046
	struct mem_cgroup *memcg;
7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

7058 7059
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7060
		return 0;
7061
	}
7062

7063 7064
	memcg = mem_cgroup_id_get_online(memcg);

7065
	if (!mem_cgroup_is_root(memcg) &&
7066
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7067 7068
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7069
		mem_cgroup_id_put(memcg);
7070
		return -ENOMEM;
7071
	}
7072

7073 7074 7075 7076
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7077
	VM_BUG_ON_PAGE(oldid, page);
7078
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7079 7080 7081 7082

	return 0;
}

7083
/**
7084
 * mem_cgroup_uncharge_swap - uncharge swap space
7085
 * @entry: swap entry to uncharge
7086
 * @nr_pages: the amount of swap space to uncharge
7087
 */
7088
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7089 7090 7091 7092
{
	struct mem_cgroup *memcg;
	unsigned short id;

7093
	if (!do_swap_account)
7094 7095
		return;

7096
	id = swap_cgroup_record(entry, 0, nr_pages);
7097
	rcu_read_lock();
7098
	memcg = mem_cgroup_from_id(id);
7099
	if (memcg) {
7100 7101
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7102
				page_counter_uncharge(&memcg->swap, nr_pages);
7103
			else
7104
				page_counter_uncharge(&memcg->memsw, nr_pages);
7105
		}
7106
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7107
		mem_cgroup_id_put_many(memcg, nr_pages);
7108 7109 7110 7111
	}
	rcu_read_unlock();
}

7112 7113 7114 7115 7116 7117 7118 7119
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
7120
				      READ_ONCE(memcg->swap.max) -
7121 7122 7123 7124
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7141
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
7142 7143 7144 7145 7146
			return true;

	return false;
}

7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

7164 7165 7166 7167 7168 7169 7170 7171 7172 7173
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
7174 7175
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

7190
	xchg(&memcg->swap.max, max);
7191 7192 7193 7194

	return nbytes;
}

7195 7196
static int swap_events_show(struct seq_file *m, void *v)
{
7197
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7198 7199 7200 7201 7202 7203 7204 7205 7206

	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
7219 7220 7221 7222 7223 7224
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
7225 7226 7227
	{ }	/* terminate */
};

7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
7259 7260
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
7261 7262 7263 7264 7265 7266 7267 7268
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */