memcontrol.c 147.5 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include <linux/pagemap.h>
40
#include <linux/smp.h>
41
#include <linux/page-flags.h>
42
#include <linux/backing-dev.h>
43 44
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
45
#include <linux/limits.h>
46
#include <linux/export.h>
47
#include <linux/mutex.h>
48
#include <linux/rbtree.h>
49
#include <linux/slab.h>
50
#include <linux/swap.h>
51
#include <linux/swapops.h>
52
#include <linux/spinlock.h>
53
#include <linux/eventfd.h>
54
#include <linux/poll.h>
55
#include <linux/sort.h>
56
#include <linux/fs.h>
57
#include <linux/seq_file.h>
58
#include <linux/vmpressure.h>
59
#include <linux/mm_inline.h>
60
#include <linux/swap_cgroup.h>
61
#include <linux/cpu.h>
62
#include <linux/oom.h>
63
#include <linux/lockdep.h>
64
#include <linux/file.h>
65
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
66
#include "internal.h"
G
Glauber Costa 已提交
67
#include <net/sock.h>
M
Michal Hocko 已提交
68
#include <net/ip.h>
G
Glauber Costa 已提交
69
#include <net/tcp_memcontrol.h>
70
#include "slab.h"
B
Balbir Singh 已提交
71

72 73
#include <asm/uaccess.h>

74 75
#include <trace/events/vmscan.h>

76 77
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
78

79 80
struct mem_cgroup *root_mem_cgroup __read_mostly;

81
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
82

83 84 85
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

86 87 88
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

89
/* Whether the swap controller is active */
A
Andrew Morton 已提交
90
#ifdef CONFIG_MEMCG_SWAP
91 92
int do_swap_account __read_mostly;
#else
93
#define do_swap_account		0
94 95
#endif

96 97 98 99 100 101
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

102 103 104
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
105
	"rss_huge",
106
	"mapped_file",
107
	"dirty",
108
	"writeback",
109 110 111 112 113 114 115 116 117 118
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

119 120 121 122 123 124 125 126
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

127 128 129
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
130

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
151 152 153 154 155
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
156

157 158 159
/*
 * cgroup_event represents events which userspace want to receive.
 */
160
struct mem_cgroup_event {
161
	/*
162
	 * memcg which the event belongs to.
163
	 */
164
	struct mem_cgroup *memcg;
165 166 167 168 169 170 171 172
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
173 174 175 176 177
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
178
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
179
			      struct eventfd_ctx *eventfd, const char *args);
180 181 182 183 184
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
185
	void (*unregister_event)(struct mem_cgroup *memcg,
186
				 struct eventfd_ctx *eventfd);
187 188 189 190 191 192 193 194 195 196
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

197 198
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
199

200 201
/* Stuffs for move charges at task migration. */
/*
202
 * Types of charges to be moved.
203
 */
204 205 206
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
207

208 209
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
210
	spinlock_t	  lock; /* for from, to */
211 212
	struct mem_cgroup *from;
	struct mem_cgroup *to;
213
	unsigned long flags;
214
	unsigned long precharge;
215
	unsigned long moved_charge;
216
	unsigned long moved_swap;
217 218 219
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
220
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
221 222
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
223

224 225 226 227
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
228
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
229
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
230

231 232
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
233
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
234
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
235
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
236 237 238
	NR_CHARGE_TYPE,
};

239
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
240 241 242 243
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
244
	_KMEM,
G
Glauber Costa 已提交
245 246
};

247 248
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
249
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
250 251
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
252

253 254 255 256 257 258 259
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

260 261 262 263 264 265 266 267 268 269 270 271 272
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

273 274 275 276 277
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

278 279 280 281 282 283
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
284 285
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
286
	return memcg->css.id;
L
Li Zefan 已提交
287 288
}

289 290 291 292 293 294
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
 */
L
Li Zefan 已提交
295 296 297 298
static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

299
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
300 301 302
	return mem_cgroup_from_css(css);
}

303
#ifndef CONFIG_SLOB
304
/*
305
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
306 307 308 309 310
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
311
 *
312 313
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
314
 */
315 316
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
317

318 319 320 321 322 323 324 325 326 327 328 329 330
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

331 332 333 334 335 336
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
337
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
338 339
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
340
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
341 342 343
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
344
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
345

346 347 348 349 350 351
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
352
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
353
EXPORT_SYMBOL(memcg_kmem_enabled_key);
354

355
#endif /* !CONFIG_SLOB */
356

357
static struct mem_cgroup_per_zone *
358
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
359
{
360 361 362
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

363
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
364 365
}

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 *
 * XXX: The above description of behavior on the default hierarchy isn't
 * strictly true yet as replace_page_cache_page() can modify the
 * association before @page is released even on the default hierarchy;
 * however, the current and planned usages don't mix the the two functions
 * and replace_page_cache_page() will soon be updated to make the invariant
 * actually true.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

390
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
391 392 393 394 395
		memcg = root_mem_cgroup;

	return &memcg->css;
}

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

424
static struct mem_cgroup_per_zone *
425
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
426
{
427 428
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
429

430
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
431 432
}

433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

448 449
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
450
					 unsigned long new_usage_in_excess)
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

480 481
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
482 483 484 485 486 487 488
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

489 490
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
491
{
492 493 494
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
495
	__mem_cgroup_remove_exceeded(mz, mctz);
496
	spin_unlock_irqrestore(&mctz->lock, flags);
497 498
}

499 500 501
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
502
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
503 504 505 506 507 508 509
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
510 511 512

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
513
	unsigned long excess;
514 515 516
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

517
	mctz = soft_limit_tree_from_page(page);
518 519 520 521 522
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
523
		mz = mem_cgroup_page_zoneinfo(memcg, page);
524
		excess = soft_limit_excess(memcg);
525 526 527 528 529
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
530 531 532
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
533 534
			/* if on-tree, remove it */
			if (mz->on_tree)
535
				__mem_cgroup_remove_exceeded(mz, mctz);
536 537 538 539
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
540
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
541
			spin_unlock_irqrestore(&mctz->lock, flags);
542 543 544 545 546 547 548
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
549 550
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
551

552 553 554 555
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
556
			mem_cgroup_remove_exceeded(mz, mctz);
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
579
	__mem_cgroup_remove_exceeded(mz, mctz);
580
	if (!soft_limit_excess(mz->memcg) ||
581
	    !css_tryget_online(&mz->memcg->css))
582 583 584 585 586 587 588 589 590 591
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

592
	spin_lock_irq(&mctz->lock);
593
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
594
	spin_unlock_irq(&mctz->lock);
595 596 597
	return mz;
}

598
/*
599 600
 * Return page count for single (non recursive) @memcg.
 *
601 602 603 604 605
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
606
 * a periodic synchronization of counter in memcg's counter.
607 608 609 610 611 612 613 614 615
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
616
 * common workload, threshold and synchronization as vmstat[] should be
617 618
 * implemented.
 */
619 620
static unsigned long
mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
621
{
622
	long val = 0;
623 624
	int cpu;

625
	/* Per-cpu values can be negative, use a signed accumulator */
626
	for_each_possible_cpu(cpu)
627
		val += per_cpu(memcg->stat->count[idx], cpu);
628 629 630 631 632 633
	/*
	 * Summing races with updates, so val may be negative.  Avoid exposing
	 * transient negative values.
	 */
	if (val < 0)
		val = 0;
634 635 636
	return val;
}

637
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
638 639 640 641 642
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

643
	for_each_possible_cpu(cpu)
644
		val += per_cpu(memcg->stat->events[idx], cpu);
645 646 647
	return val;
}

648
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
649
					 struct page *page,
650
					 bool compound, int nr_pages)
651
{
652 653 654 655
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
656
	if (PageAnon(page))
657
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
658
				nr_pages);
659
	else
660
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
661
				nr_pages);
662

663 664
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
665 666
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);
667
	}
668

669 670
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
671
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
672
	else {
673
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
674 675
		nr_pages = -nr_pages; /* for event */
	}
676

677
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
678 679
}

680 681 682
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
683
{
684
	unsigned long nr = 0;
685 686
	int zid;

687
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
688

689 690 691 692 693 694 695 696 697 698 699 700
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
701
}
702

703
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
704
			unsigned int lru_mask)
705
{
706
	unsigned long nr = 0;
707
	int nid;
708

709
	for_each_node_state(nid, N_MEMORY)
710 711
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
712 713
}

714 715
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
716 717 718
{
	unsigned long val, next;

719
	val = __this_cpu_read(memcg->stat->nr_page_events);
720
	next = __this_cpu_read(memcg->stat->targets[target]);
721
	/* from time_after() in jiffies.h */
722 723 724 725 726
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
727 728 729
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
730 731 732 733 734 735 736 737
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
738
	}
739
	return false;
740 741 742 743 744 745
}

/*
 * Check events in order.
 *
 */
746
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
747 748
{
	/* threshold event is triggered in finer grain than soft limit */
749 750
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
751
		bool do_softlimit;
752
		bool do_numainfo __maybe_unused;
753

754 755
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
756 757 758 759
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
760
		mem_cgroup_threshold(memcg);
761 762
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
763
#if MAX_NUMNODES > 1
764
		if (unlikely(do_numainfo))
765
			atomic_inc(&memcg->numainfo_events);
766
#endif
767
	}
768 769
}

770
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
771
{
772 773 774 775 776 777 778 779
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

780
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
781
}
M
Michal Hocko 已提交
782
EXPORT_SYMBOL(mem_cgroup_from_task);
783

784
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
785
{
786
	struct mem_cgroup *memcg = NULL;
787

788 789
	rcu_read_lock();
	do {
790 791 792 793 794 795
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
796
			memcg = root_mem_cgroup;
797 798 799 800 801
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
802
	} while (!css_tryget_online(&memcg->css));
803
	rcu_read_unlock();
804
	return memcg;
805 806
}

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
824
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
825
				   struct mem_cgroup *prev,
826
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
827
{
M
Michal Hocko 已提交
828
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
829
	struct cgroup_subsys_state *css = NULL;
830
	struct mem_cgroup *memcg = NULL;
831
	struct mem_cgroup *pos = NULL;
832

833 834
	if (mem_cgroup_disabled())
		return NULL;
835

836 837
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
838

839
	if (prev && !reclaim)
840
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
841

842 843
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
844
			goto out;
845
		return root;
846
	}
K
KAMEZAWA Hiroyuki 已提交
847

848
	rcu_read_lock();
M
Michal Hocko 已提交
849

850 851 852 853 854 855 856 857 858
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

859
		while (1) {
860
			pos = READ_ONCE(iter->position);
861 862
			if (!pos || css_tryget(&pos->css))
				break;
863
			/*
864 865 866 867 868 869
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
870
			 */
871 872
			(void)cmpxchg(&iter->position, pos, NULL);
		}
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
890
		}
K
KAMEZAWA Hiroyuki 已提交
891

892 893 894 895 896 897
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
898

899 900
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
901

902
		if (css_tryget(css)) {
903 904 905 906 907 908 909
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				break;
910

911
			css_put(css);
912
		}
913

914
		memcg = NULL;
915
	}
916 917 918

	if (reclaim) {
		/*
919 920 921
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
922
		 */
923 924
		(void)cmpxchg(&iter->position, pos, memcg);

925 926 927 928 929 930 931
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
932
	}
933

934 935
out_unlock:
	rcu_read_unlock();
936
out:
937 938 939
	if (prev && prev != root)
		css_put(&prev->css);

940
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
941
}
K
KAMEZAWA Hiroyuki 已提交
942

943 944 945 946 947 948 949
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
950 951 952 953 954 955
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
956

957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
	int i;

	while ((memcg = parent_mem_cgroup(memcg))) {
		for_each_node(nid) {
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
				for (i = 0; i <= DEF_PRIORITY; i++) {
					iter = &mz->iter[i];
					cmpxchg(&iter->position,
						dead_memcg, NULL);
				}
			}
		}
	}
}

979 980 981 982 983 984
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
985
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
986
	     iter != NULL;				\
987
	     iter = mem_cgroup_iter(root, iter, NULL))
988

989
#define for_each_mem_cgroup(iter)			\
990
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
991
	     iter != NULL;				\
992
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
993

994 995 996
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
997
 * @memcg: memcg of the wanted lruvec
998 999 1000 1001 1002 1003 1004 1005 1006
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1007
	struct lruvec *lruvec;
1008

1009 1010 1011 1012
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1013

1014
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1025 1026 1027
}

/**
1028
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1029
 * @page: the page
1030
 * @zone: zone of the page
1031 1032 1033 1034
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1035
 */
1036
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1037 1038
{
	struct mem_cgroup_per_zone *mz;
1039
	struct mem_cgroup *memcg;
1040
	struct lruvec *lruvec;
1041

1042 1043 1044 1045
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1046

1047
	memcg = page->mem_cgroup;
1048
	/*
1049
	 * Swapcache readahead pages are added to the LRU - and
1050
	 * possibly migrated - before they are charged.
1051
	 */
1052 1053
	if (!memcg)
		memcg = root_mem_cgroup;
1054

1055
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1066
}
1067

1068
/**
1069 1070 1071 1072
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1073
 *
1074 1075
 * This function must be called when a page is added to or removed from an
 * lru list.
1076
 */
1077 1078
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1079 1080
{
	struct mem_cgroup_per_zone *mz;
1081
	unsigned long *lru_size;
1082 1083 1084 1085

	if (mem_cgroup_disabled())
		return;

1086 1087 1088 1089
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1090
}
1091

1092
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1093
{
1094
	struct mem_cgroup *task_memcg;
1095
	struct task_struct *p;
1096
	bool ret;
1097

1098
	p = find_lock_task_mm(task);
1099
	if (p) {
1100
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1101 1102 1103 1104 1105 1106 1107
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1108
		rcu_read_lock();
1109 1110
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1111
		rcu_read_unlock();
1112
	}
1113 1114
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1115 1116 1117
	return ret;
}

1118
/**
1119
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1120
 * @memcg: the memory cgroup
1121
 *
1122
 * Returns the maximum amount of memory @mem can be charged with, in
1123
 * pages.
1124
 */
1125
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1126
{
1127 1128 1129
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1130

1131
	count = page_counter_read(&memcg->memory);
1132
	limit = READ_ONCE(memcg->memory.limit);
1133 1134 1135
	if (count < limit)
		margin = limit - count;

1136
	if (do_memsw_account()) {
1137
		count = page_counter_read(&memcg->memsw);
1138
		limit = READ_ONCE(memcg->memsw.limit);
1139 1140 1141 1142 1143
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1144 1145
}

1146
/*
Q
Qiang Huang 已提交
1147
 * A routine for checking "mem" is under move_account() or not.
1148
 *
Q
Qiang Huang 已提交
1149 1150 1151
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1152
 */
1153
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1154
{
1155 1156
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1157
	bool ret = false;
1158 1159 1160 1161 1162 1163 1164 1165 1166
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1167

1168 1169
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1170 1171
unlock:
	spin_unlock(&mc.lock);
1172 1173 1174
	return ret;
}

1175
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1176 1177
{
	if (mc.moving_task && current != mc.moving_task) {
1178
		if (mem_cgroup_under_move(memcg)) {
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1191
#define K(x) ((x) << (PAGE_SHIFT-10))
1192
/**
1193
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1194 1195 1196 1197 1198 1199 1200 1201
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1202
	/* oom_info_lock ensures that parallel ooms do not interleave */
1203
	static DEFINE_MUTEX(oom_info_lock);
1204 1205
	struct mem_cgroup *iter;
	unsigned int i;
1206

1207
	mutex_lock(&oom_info_lock);
1208 1209
	rcu_read_lock();

1210 1211 1212 1213 1214 1215 1216 1217
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1218
	pr_cont_cgroup_path(memcg->css.cgroup);
1219
	pr_cont("\n");
1220 1221 1222

	rcu_read_unlock();

1223 1224 1225 1226 1227 1228 1229 1230 1231
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1232 1233

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1234 1235
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1236 1237 1238
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1239
			if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1240
				continue;
1241
			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1242 1243 1244 1245 1246 1247 1248 1249 1250
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1251
	mutex_unlock(&oom_info_lock);
1252 1253
}

1254 1255 1256 1257
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1258
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1259 1260
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1261 1262
	struct mem_cgroup *iter;

1263
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1264
		num++;
1265 1266 1267
	return num;
}

D
David Rientjes 已提交
1268 1269 1270
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1271
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1272
{
1273
	unsigned long limit;
1274

1275
	limit = memcg->memory.limit;
1276
	if (mem_cgroup_swappiness(memcg)) {
1277
		unsigned long memsw_limit;
1278

1279 1280
		memsw_limit = memcg->memsw.limit;
		limit = min(limit + total_swap_pages, memsw_limit);
1281 1282
	}
	return limit;
D
David Rientjes 已提交
1283 1284
}

1285 1286
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1287
{
1288 1289 1290 1291 1292 1293
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
		.gfp_mask = gfp_mask,
		.order = order,
	};
1294 1295 1296 1297 1298 1299
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1300 1301
	mutex_lock(&oom_lock);

1302
	/*
1303 1304 1305
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1306
	 */
1307
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1308
		mark_oom_victim(current);
1309
		goto unlock;
1310 1311
	}

1312
	check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1313
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1314
	for_each_mem_cgroup_tree(iter, memcg) {
1315
		struct css_task_iter it;
1316 1317
		struct task_struct *task;

1318 1319
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1320
			switch (oom_scan_process_thread(&oc, task, totalpages)) {
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1331
				css_task_iter_end(&it);
1332 1333 1334
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
1335
				goto unlock;
1336 1337 1338 1339
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1352
		}
1353
		css_task_iter_end(&it);
1354 1355
	}

1356 1357
	if (chosen) {
		points = chosen_points * 1000 / totalpages;
1358 1359
		oom_kill_process(&oc, chosen, points, totalpages, memcg,
				 "Memory cgroup out of memory");
1360 1361 1362
	}
unlock:
	mutex_unlock(&oom_lock);
1363 1364
}

1365 1366
#if MAX_NUMNODES > 1

1367 1368
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1369
 * @memcg: the target memcg
1370 1371 1372 1373 1374 1375 1376
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1377
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1378 1379
		int nid, bool noswap)
{
1380
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1381 1382 1383
		return true;
	if (noswap || !total_swap_pages)
		return false;
1384
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1385 1386 1387 1388
		return true;
	return false;

}
1389 1390 1391 1392 1393 1394 1395

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1396
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1397 1398
{
	int nid;
1399 1400 1401 1402
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1403
	if (!atomic_read(&memcg->numainfo_events))
1404
		return;
1405
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1406 1407 1408
		return;

	/* make a nodemask where this memcg uses memory from */
1409
	memcg->scan_nodes = node_states[N_MEMORY];
1410

1411
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1412

1413 1414
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1415
	}
1416

1417 1418
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1433
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1434 1435 1436
{
	int node;

1437 1438
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1439

1440
	node = next_node(node, memcg->scan_nodes);
1441
	if (node == MAX_NUMNODES)
1442
		node = first_node(memcg->scan_nodes);
1443 1444 1445 1446 1447 1448 1449 1450 1451
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1452
	memcg->last_scanned_node = node;
1453 1454 1455
	return node;
}
#else
1456
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1457 1458 1459 1460 1461
{
	return 0;
}
#endif

1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1477
	excess = soft_limit_excess(root_memcg);
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1506
		if (!soft_limit_excess(root_memcg))
1507
			break;
1508
	}
1509 1510
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1511 1512
}

1513 1514 1515 1516 1517 1518
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1519 1520
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1521 1522 1523 1524
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1525
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1526
{
1527
	struct mem_cgroup *iter, *failed = NULL;
1528

1529 1530
	spin_lock(&memcg_oom_lock);

1531
	for_each_mem_cgroup_tree(iter, memcg) {
1532
		if (iter->oom_lock) {
1533 1534 1535 1536 1537
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1538 1539
			mem_cgroup_iter_break(memcg, iter);
			break;
1540 1541
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1542
	}
K
KAMEZAWA Hiroyuki 已提交
1543

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1555
		}
1556 1557
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1558 1559 1560 1561

	spin_unlock(&memcg_oom_lock);

	return !failed;
1562
}
1563

1564
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1565
{
K
KAMEZAWA Hiroyuki 已提交
1566 1567
	struct mem_cgroup *iter;

1568
	spin_lock(&memcg_oom_lock);
1569
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1570
	for_each_mem_cgroup_tree(iter, memcg)
1571
		iter->oom_lock = false;
1572
	spin_unlock(&memcg_oom_lock);
1573 1574
}

1575
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1576 1577 1578
{
	struct mem_cgroup *iter;

1579
	spin_lock(&memcg_oom_lock);
1580
	for_each_mem_cgroup_tree(iter, memcg)
1581 1582
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1583 1584
}

1585
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1586 1587 1588
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1589 1590
	/*
	 * When a new child is created while the hierarchy is under oom,
1591
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1592
	 */
1593
	spin_lock(&memcg_oom_lock);
1594
	for_each_mem_cgroup_tree(iter, memcg)
1595 1596 1597
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1598 1599
}

K
KAMEZAWA Hiroyuki 已提交
1600 1601
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1602
struct oom_wait_info {
1603
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1604 1605 1606 1607 1608 1609
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1610 1611
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1612 1613 1614
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1615
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1616

1617 1618
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1619 1620 1621 1622
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1623
static void memcg_oom_recover(struct mem_cgroup *memcg)
1624
{
1625 1626 1627 1628 1629 1630 1631 1632 1633
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1634
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1635 1636
}

1637
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1638
{
T
Tejun Heo 已提交
1639
	if (!current->memcg_may_oom)
1640
		return;
K
KAMEZAWA Hiroyuki 已提交
1641
	/*
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1654
	 */
1655
	css_get(&memcg->css);
T
Tejun Heo 已提交
1656 1657 1658
	current->memcg_in_oom = memcg;
	current->memcg_oom_gfp_mask = mask;
	current->memcg_oom_order = order;
1659 1660 1661 1662
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1663
 * @handle: actually kill/wait or just clean up the OOM state
1664
 *
1665 1666
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1667
 *
1668
 * Memcg supports userspace OOM handling where failed allocations must
1669 1670 1671 1672
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1673
 * the end of the page fault to complete the OOM handling.
1674 1675
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1676
 * completed, %false otherwise.
1677
 */
1678
bool mem_cgroup_oom_synchronize(bool handle)
1679
{
T
Tejun Heo 已提交
1680
	struct mem_cgroup *memcg = current->memcg_in_oom;
1681
	struct oom_wait_info owait;
1682
	bool locked;
1683 1684 1685

	/* OOM is global, do not handle */
	if (!memcg)
1686
		return false;
1687

1688
	if (!handle || oom_killer_disabled)
1689
		goto cleanup;
1690 1691 1692 1693 1694 1695

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1696

1697
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1708 1709
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1710
	} else {
1711
		schedule();
1712 1713 1714 1715 1716
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1717 1718 1719 1720 1721 1722 1723 1724
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1725
cleanup:
T
Tejun Heo 已提交
1726
	current->memcg_in_oom = NULL;
1727
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1728
	return true;
1729 1730
}

1731 1732 1733
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
1734
 *
1735 1736 1737
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
1738
 *
1739
 *   memcg = mem_cgroup_begin_page_stat(page);
1740 1741
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
1742
 *   mem_cgroup_end_page_stat(memcg);
1743
 */
1744
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1745 1746
{
	struct mem_cgroup *memcg;
1747
	unsigned long flags;
1748

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page from being uncharged.
	 * E.g. end-writeback clearing PageWriteback(), which allows
	 * migration to go ahead and uncharge the page before the
	 * account transaction might be complete.
	 */
1761 1762 1763 1764
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;
1765
again:
1766
	memcg = page->mem_cgroup;
1767
	if (unlikely(!memcg))
1768 1769
		return NULL;

Q
Qiang Huang 已提交
1770
	if (atomic_read(&memcg->moving_account) <= 0)
1771
		return memcg;
1772

1773
	spin_lock_irqsave(&memcg->move_lock, flags);
1774
	if (memcg != page->mem_cgroup) {
1775
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1776 1777
		goto again;
	}
1778 1779 1780 1781 1782 1783 1784 1785

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
	 * the task who has the lock for mem_cgroup_end_page_stat().
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1786 1787

	return memcg;
1788
}
1789
EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1790

1791 1792 1793 1794
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 */
1795
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1796
{
1797 1798 1799 1800 1801 1802 1803 1804
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1805

1806
	rcu_read_unlock();
1807
}
1808
EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1809

1810 1811 1812 1813
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1814
#define CHARGE_BATCH	32U
1815 1816
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1817
	unsigned int nr_pages;
1818
	struct work_struct work;
1819
	unsigned long flags;
1820
#define FLUSHING_CACHED_CHARGE	0
1821 1822
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1823
static DEFINE_MUTEX(percpu_charge_mutex);
1824

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1835
 */
1836
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1837 1838
{
	struct memcg_stock_pcp *stock;
1839
	bool ret = false;
1840

1841
	if (nr_pages > CHARGE_BATCH)
1842
		return ret;
1843

1844
	stock = &get_cpu_var(memcg_stock);
1845
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1846
		stock->nr_pages -= nr_pages;
1847 1848
		ret = true;
	}
1849 1850 1851 1852 1853
	put_cpu_var(memcg_stock);
	return ret;
}

/*
1854
 * Returns stocks cached in percpu and reset cached information.
1855 1856 1857 1858 1859
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1860
	if (stock->nr_pages) {
1861
		page_counter_uncharge(&old->memory, stock->nr_pages);
1862
		if (do_memsw_account())
1863
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1864
		css_put_many(&old->css, stock->nr_pages);
1865
		stock->nr_pages = 0;
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
1876
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1877
	drain_stock(stock);
1878
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1879 1880 1881
}

/*
1882
 * Cache charges(val) to local per_cpu area.
1883
 * This will be consumed by consume_stock() function, later.
1884
 */
1885
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1886 1887 1888
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

1889
	if (stock->cached != memcg) { /* reset if necessary */
1890
		drain_stock(stock);
1891
		stock->cached = memcg;
1892
	}
1893
	stock->nr_pages += nr_pages;
1894 1895 1896 1897
	put_cpu_var(memcg_stock);
}

/*
1898
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1899
 * of the hierarchy under it.
1900
 */
1901
static void drain_all_stock(struct mem_cgroup *root_memcg)
1902
{
1903
	int cpu, curcpu;
1904

1905 1906 1907
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1908 1909
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1910
	curcpu = get_cpu();
1911 1912
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1913
		struct mem_cgroup *memcg;
1914

1915 1916
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
1917
			continue;
1918
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1919
			continue;
1920 1921 1922 1923 1924 1925
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1926
	}
1927
	put_cpu();
A
Andrew Morton 已提交
1928
	put_online_cpus();
1929
	mutex_unlock(&percpu_charge_mutex);
1930 1931
}

1932
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1933 1934 1935 1936 1937 1938
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

1939
	if (action == CPU_ONLINE)
1940 1941
		return NOTIFY_OK;

1942
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1943
		return NOTIFY_OK;
1944

1945 1946 1947 1948 1949
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
}

1970 1971 1972 1973 1974 1975 1976
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1977
	struct mem_cgroup *memcg;
1978 1979 1980 1981

	if (likely(!nr_pages))
		return;

1982 1983
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1984 1985 1986 1987
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

1988 1989
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
1990
{
1991
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1992
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1993
	struct mem_cgroup *mem_over_limit;
1994
	struct page_counter *counter;
1995
	unsigned long nr_reclaimed;
1996 1997
	bool may_swap = true;
	bool drained = false;
1998

1999
	if (mem_cgroup_is_root(memcg))
2000
		return 0;
2001
retry:
2002
	if (consume_stock(memcg, nr_pages))
2003
		return 0;
2004

2005
	if (!do_memsw_account() ||
2006 2007
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2008
			goto done_restock;
2009
		if (do_memsw_account())
2010 2011
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2012
	} else {
2013
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2014
		may_swap = false;
2015
	}
2016

2017 2018 2019 2020
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2021

2022 2023 2024 2025 2026 2027 2028 2029 2030
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
2031
		goto force;
2032 2033 2034 2035

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2036
	if (!gfpflags_allow_blocking(gfp_mask))
2037
		goto nomem;
2038

2039 2040
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

2041 2042
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2043

2044
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2045
		goto retry;
2046

2047
	if (!drained) {
2048
		drain_all_stock(mem_over_limit);
2049 2050 2051 2052
		drained = true;
		goto retry;
	}

2053 2054
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2055 2056 2057 2058 2059 2060 2061 2062 2063
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2064
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2065 2066 2067 2068 2069 2070 2071 2072
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2073 2074 2075
	if (nr_retries--)
		goto retry;

2076
	if (gfp_mask & __GFP_NOFAIL)
2077
		goto force;
2078

2079
	if (fatal_signal_pending(current))
2080
		goto force;
2081

2082 2083
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2084 2085
	mem_cgroup_oom(mem_over_limit, gfp_mask,
		       get_order(nr_pages * PAGE_SIZE));
2086
nomem:
2087
	if (!(gfp_mask & __GFP_NOFAIL))
2088
		return -ENOMEM;
2089 2090 2091 2092 2093 2094 2095
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2096
	if (do_memsw_account())
2097 2098 2099 2100
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2101 2102

done_restock:
2103
	css_get_many(&memcg->css, batch);
2104 2105
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2106

2107
	/*
2108 2109
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2110
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2111 2112 2113 2114
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2115 2116
	 */
	do {
2117
		if (page_counter_read(&memcg->memory) > memcg->high) {
2118 2119 2120 2121 2122
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2123
			current->memcg_nr_pages_over_high += batch;
2124 2125 2126
			set_notify_resume(current);
			break;
		}
2127
	} while ((memcg = parent_mem_cgroup(memcg)));
2128 2129

	return 0;
2130
}
2131

2132
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2133
{
2134 2135 2136
	if (mem_cgroup_is_root(memcg))
		return;

2137
	page_counter_uncharge(&memcg->memory, nr_pages);
2138
	if (do_memsw_account())
2139
		page_counter_uncharge(&memcg->memsw, nr_pages);
2140

2141
	css_put_many(&memcg->css, nr_pages);
2142 2143
}

2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2175
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2176
			  bool lrucare)
2177
{
2178
	int isolated;
2179

2180
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2181 2182 2183 2184 2185

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2186 2187
	if (lrucare)
		lock_page_lru(page, &isolated);
2188

2189 2190
	/*
	 * Nobody should be changing or seriously looking at
2191
	 * page->mem_cgroup at this point:
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2203
	page->mem_cgroup = memcg;
2204

2205 2206
	if (lrucare)
		unlock_page_lru(page, isolated);
2207
}
2208

2209
#ifndef CONFIG_SLOB
2210
static int memcg_alloc_cache_id(void)
2211
{
2212 2213 2214
	int id, size;
	int err;

2215
	id = ida_simple_get(&memcg_cache_ida,
2216 2217 2218
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2219

2220
	if (id < memcg_nr_cache_ids)
2221 2222 2223 2224 2225 2226
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2227
	down_write(&memcg_cache_ids_sem);
2228 2229

	size = 2 * (id + 1);
2230 2231 2232 2233 2234
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2235
	err = memcg_update_all_caches(size);
2236 2237
	if (!err)
		err = memcg_update_all_list_lrus(size);
2238 2239 2240 2241 2242
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2243
	if (err) {
2244
		ida_simple_remove(&memcg_cache_ida, id);
2245 2246 2247 2248 2249 2250 2251
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2252
	ida_simple_remove(&memcg_cache_ida, id);
2253 2254
}

2255
struct memcg_kmem_cache_create_work {
2256 2257 2258 2259 2260
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2261
static void memcg_kmem_cache_create_func(struct work_struct *w)
2262
{
2263 2264
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2265 2266
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2267

2268
	memcg_create_kmem_cache(memcg, cachep);
2269

2270
	css_put(&memcg->css);
2271 2272 2273 2274 2275 2276
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2277 2278
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2279
{
2280
	struct memcg_kmem_cache_create_work *cw;
2281

2282
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2283
	if (!cw)
2284
		return;
2285 2286

	css_get(&memcg->css);
2287 2288 2289

	cw->memcg = memcg;
	cw->cachep = cachep;
2290
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2291 2292 2293 2294

	schedule_work(&cw->work);
}

2295 2296
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2297 2298 2299 2300
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2301
	 * in __memcg_schedule_kmem_cache_create will recurse.
2302 2303 2304 2305 2306 2307 2308
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2309
	current->memcg_kmem_skip_account = 1;
2310
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2311
	current->memcg_kmem_skip_account = 0;
2312
}
2313

2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
V
Vladimir Davydov 已提交
2327
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2328 2329
{
	struct mem_cgroup *memcg;
2330
	struct kmem_cache *memcg_cachep;
2331
	int kmemcg_id;
2332

2333
	VM_BUG_ON(!is_root_cache(cachep));
2334

V
Vladimir Davydov 已提交
2335 2336 2337 2338 2339 2340
	if (cachep->flags & SLAB_ACCOUNT)
		gfp |= __GFP_ACCOUNT;

	if (!(gfp & __GFP_ACCOUNT))
		return cachep;

2341
	if (current->memcg_kmem_skip_account)
2342 2343
		return cachep;

2344
	memcg = get_mem_cgroup_from_mm(current->mm);
2345
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2346
	if (kmemcg_id < 0)
2347
		goto out;
2348

2349
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2350 2351
	if (likely(memcg_cachep))
		return memcg_cachep;
2352 2353 2354 2355 2356 2357 2358 2359 2360

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2361 2362 2363
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2364
	 */
2365
	memcg_schedule_kmem_cache_create(memcg, cachep);
2366
out:
2367
	css_put(&memcg->css);
2368
	return cachep;
2369 2370
}

2371 2372 2373
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
2374
		css_put(&cachep->memcg_params.memcg->css);
2375 2376
}

2377 2378
int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			      struct mem_cgroup *memcg)
2379
{
2380 2381
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2382 2383
	int ret;

2384
	if (!memcg_kmem_online(memcg))
2385
		return 0;
2386

2387
	ret = try_charge(memcg, gfp, nr_pages);
2388
	if (ret)
2389
		return ret;
2390 2391 2392 2393 2394

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2395 2396
	}

2397
	page->mem_cgroup = memcg;
2398

2399
	return 0;
2400 2401
}

2402
int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2403
{
2404 2405
	struct mem_cgroup *memcg;
	int ret;
2406

2407 2408
	memcg = get_mem_cgroup_from_mm(current->mm);
	ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2409
	css_put(&memcg->css);
2410
	return ret;
2411 2412
}

2413
void __memcg_kmem_uncharge(struct page *page, int order)
2414
{
2415
	struct mem_cgroup *memcg = page->mem_cgroup;
2416
	unsigned int nr_pages = 1 << order;
2417 2418 2419 2420

	if (!memcg)
		return;

2421
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2422

2423 2424 2425
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

2426
	page_counter_uncharge(&memcg->memory, nr_pages);
2427
	if (do_memsw_account())
2428
		page_counter_uncharge(&memcg->memsw, nr_pages);
2429

2430
	page->mem_cgroup = NULL;
2431
	css_put_many(&memcg->css, nr_pages);
2432
}
2433
#endif /* !CONFIG_SLOB */
2434

2435 2436 2437 2438
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2439
 * zone->lru_lock and migration entries setup in all page mappings.
2440
 */
2441
void mem_cgroup_split_huge_fixup(struct page *head)
2442
{
2443
	int i;
2444

2445 2446
	if (mem_cgroup_disabled())
		return;
2447

2448
	for (i = 1; i < HPAGE_PMD_NR; i++)
2449
		head[i].mem_cgroup = head->mem_cgroup;
2450

2451
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2452
		       HPAGE_PMD_NR);
2453
}
2454
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2455

A
Andrew Morton 已提交
2456
#ifdef CONFIG_MEMCG_SWAP
2457 2458
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2459
{
2460 2461
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2462
}
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2475
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2476 2477 2478
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2479
				struct mem_cgroup *from, struct mem_cgroup *to)
2480 2481 2482
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2483 2484
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2485 2486 2487

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2488
		mem_cgroup_swap_statistics(to, true);
2489 2490 2491 2492 2493 2494
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2495
				struct mem_cgroup *from, struct mem_cgroup *to)
2496 2497 2498
{
	return -EINVAL;
}
2499
#endif
K
KAMEZAWA Hiroyuki 已提交
2500

2501
static DEFINE_MUTEX(memcg_limit_mutex);
2502

2503
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2504
				   unsigned long limit)
2505
{
2506 2507 2508
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2509
	int retry_count;
2510
	int ret;
2511 2512 2513 2514 2515 2516

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2517 2518
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2519

2520
	oldusage = page_counter_read(&memcg->memory);
2521

2522
	do {
2523 2524 2525 2526
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2527 2528 2529 2530

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2531
			ret = -EINVAL;
2532 2533
			break;
		}
2534 2535 2536 2537
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2538 2539 2540 2541

		if (!ret)
			break;

2542 2543
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2544
		curusage = page_counter_read(&memcg->memory);
2545
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2546
		if (curusage >= oldusage)
2547 2548 2549
			retry_count--;
		else
			oldusage = curusage;
2550 2551
	} while (retry_count);

2552 2553
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2554

2555 2556 2557
	return ret;
}

L
Li Zefan 已提交
2558
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2559
					 unsigned long limit)
2560
{
2561 2562 2563
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2564
	int retry_count;
2565
	int ret;
2566

2567
	/* see mem_cgroup_resize_res_limit */
2568 2569 2570 2571 2572 2573
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2574 2575 2576 2577
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2578 2579 2580 2581

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2582 2583 2584
			ret = -EINVAL;
			break;
		}
2585 2586 2587 2588
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2589 2590 2591 2592

		if (!ret)
			break;

2593 2594
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2595
		curusage = page_counter_read(&memcg->memsw);
2596
		/* Usage is reduced ? */
2597
		if (curusage >= oldusage)
2598
			retry_count--;
2599 2600
		else
			oldusage = curusage;
2601 2602
	} while (retry_count);

2603 2604
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2605

2606 2607 2608
	return ret;
}

2609 2610 2611 2612 2613 2614 2615 2616 2617
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2618
	unsigned long excess;
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2643
		spin_lock_irq(&mctz->lock);
2644
		__mem_cgroup_remove_exceeded(mz, mctz);
2645 2646 2647 2648 2649 2650

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2651 2652 2653
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2654
		excess = soft_limit_excess(mz->memcg);
2655 2656 2657 2658 2659 2660 2661 2662 2663
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2664
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2665
		spin_unlock_irq(&mctz->lock);
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2683 2684 2685 2686 2687 2688
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2689 2690
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2691 2692
	bool ret;

2693
	/*
2694 2695 2696 2697
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
2698
	 */
2699 2700 2701 2702 2703 2704
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2705 2706
}

2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2717 2718
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2719
	/* try to free all pages in this cgroup */
2720
	while (nr_retries && page_counter_read(&memcg->memory)) {
2721
		int progress;
2722

2723 2724 2725
		if (signal_pending(current))
			return -EINTR;

2726 2727
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2728
		if (!progress) {
2729
			nr_retries--;
2730
			/* maybe some writeback is necessary */
2731
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2732
		}
2733 2734

	}
2735 2736

	return 0;
2737 2738
}

2739 2740 2741
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2742
{
2743
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2744

2745 2746
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2747
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2748 2749
}

2750 2751
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2752
{
2753
	return mem_cgroup_from_css(css)->use_hierarchy;
2754 2755
}

2756 2757
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2758 2759
{
	int retval = 0;
2760
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2761
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2762

2763
	mutex_lock(&memcg_create_mutex);
2764 2765 2766 2767

	if (memcg->use_hierarchy == val)
		goto out;

2768
	/*
2769
	 * If parent's use_hierarchy is set, we can't make any modifications
2770 2771 2772 2773 2774 2775
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2776
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2777
				(val == 1 || val == 0)) {
2778
		if (!memcg_has_children(memcg))
2779
			memcg->use_hierarchy = val;
2780 2781 2782 2783
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2784 2785

out:
2786
	mutex_unlock(&memcg_create_mutex);
2787 2788 2789 2790

	return retval;
}

2791 2792
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
2793 2794
{
	struct mem_cgroup *iter;
2795
	unsigned long val = 0;
2796 2797 2798 2799 2800 2801 2802

	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	return val;
}

2803
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2804
{
2805
	unsigned long val;
2806

2807 2808 2809 2810 2811 2812
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
2813
		if (!swap)
2814
			val = page_counter_read(&memcg->memory);
2815
		else
2816
			val = page_counter_read(&memcg->memsw);
2817
	}
2818
	return val;
2819 2820
}

2821 2822 2823 2824 2825 2826 2827
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2828

2829
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2830
			       struct cftype *cft)
B
Balbir Singh 已提交
2831
{
2832
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2833
	struct page_counter *counter;
2834

2835
	switch (MEMFILE_TYPE(cft->private)) {
2836
	case _MEM:
2837 2838
		counter = &memcg->memory;
		break;
2839
	case _MEMSWAP:
2840 2841
		counter = &memcg->memsw;
		break;
2842
	case _KMEM:
2843
		counter = &memcg->kmem;
2844
		break;
2845 2846 2847
	default:
		BUG();
	}
2848 2849 2850 2851

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
2852
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2853
		if (counter == &memcg->memsw)
2854
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2867
}
2868

2869
#ifndef CONFIG_SLOB
2870
static int memcg_online_kmem(struct mem_cgroup *memcg)
2871 2872 2873 2874
{
	int err = 0;
	int memcg_id;

2875
	BUG_ON(memcg->kmemcg_id >= 0);
2876
	BUG_ON(memcg->kmem_state);
2877

2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
2890
	mutex_lock(&memcg_create_mutex);
2891
	if (cgroup_is_populated(memcg->css.cgroup) ||
2892
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
2893 2894 2895 2896
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
2897

2898
	memcg_id = memcg_alloc_cache_id();
2899 2900 2901 2902 2903
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

2904
	static_branch_inc(&memcg_kmem_enabled_key);
2905
	/*
2906
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
2907
	 * kmemcg_id. Setting the id after enabling static branching will
2908 2909 2910
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2911
	memcg->kmemcg_id = memcg_id;
2912
	memcg->kmem_state = KMEM_ONLINE;
2913
out:
2914 2915 2916
	return err;
}

2917
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2918
{
2919
	int ret = 0;
2920
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
2921

2922 2923
	if (!parent)
		return 0;
2924

2925
	mutex_lock(&memcg_limit_mutex);
2926
	/*
2927 2928 2929
	 * If the parent cgroup is not kmem-online now, it cannot be
	 * onlined after this point, because it has at least one child
	 * already.
2930
	 */
2931 2932
	if (memcg_kmem_online(parent) ||
	    (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nokmem))
2933
		ret = memcg_online_kmem(memcg);
2934
	mutex_unlock(&memcg_limit_mutex);
2935
	return ret;
2936
}
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990

static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	memcg_deactivate_kmem_caches(memcg);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
	if (memcg->kmem_state == KMEM_ALLOCATED) {
		memcg_destroy_kmem_caches(memcg);
		static_branch_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
}
2991
#else
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
#endif /* !CONFIG_SLOB */

3004
#ifdef CONFIG_MEMCG_LEGACY_KMEM
3005
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3006
				   unsigned long limit)
3007
{
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
	int ret;

	mutex_lock(&memcg_limit_mutex);
	/* Top-level cgroup doesn't propagate from root */
	if (!memcg_kmem_online(memcg)) {
		ret = memcg_online_kmem(memcg);
		if (ret)
			goto out;
	}
	ret = page_counter_limit(&memcg->kmem, limit);
out:
	mutex_unlock(&memcg_limit_mutex);
	return ret;
3021
}
3022 3023 3024
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
				   unsigned long limit)
3025
{
3026
	return -EINVAL;
3027
}
3028
#endif /* CONFIG_MEMCG_LEGACY_KMEM */
3029

3030

3031 3032 3033 3034
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3035 3036
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3037
{
3038
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3039
	unsigned long nr_pages;
3040 3041
	int ret;

3042
	buf = strstrip(buf);
3043
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3044 3045
	if (ret)
		return ret;
3046

3047
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3048
	case RES_LIMIT:
3049 3050 3051 3052
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3053 3054 3055
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3056
			break;
3057 3058
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3059
			break;
3060 3061 3062 3063
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
		}
3064
		break;
3065 3066 3067
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3068 3069
		break;
	}
3070
	return ret ?: nbytes;
B
Balbir Singh 已提交
3071 3072
}

3073 3074
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3075
{
3076
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3077
	struct page_counter *counter;
3078

3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
	default:
		BUG();
	}
3092

3093
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3094
	case RES_MAX_USAGE:
3095
		page_counter_reset_watermark(counter);
3096 3097
		break;
	case RES_FAILCNT:
3098
		counter->failcnt = 0;
3099
		break;
3100 3101
	default:
		BUG();
3102
	}
3103

3104
	return nbytes;
3105 3106
}

3107
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3108 3109
					struct cftype *cft)
{
3110
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3111 3112
}

3113
#ifdef CONFIG_MMU
3114
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3115 3116
					struct cftype *cft, u64 val)
{
3117
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3118

3119
	if (val & ~MOVE_MASK)
3120
		return -EINVAL;
3121

3122
	/*
3123 3124 3125 3126
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3127
	 */
3128
	memcg->move_charge_at_immigrate = val;
3129 3130
	return 0;
}
3131
#else
3132
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3133 3134 3135 3136 3137
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3138

3139
#ifdef CONFIG_NUMA
3140
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3141
{
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3154
	int nid;
3155
	unsigned long nr;
3156
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3157

3158 3159 3160 3161 3162 3163 3164 3165 3166
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3167 3168
	}

3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3184 3185 3186 3187 3188 3189
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3190
static int memcg_stat_show(struct seq_file *m, void *v)
3191
{
3192
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3193
	unsigned long memory, memsw;
3194 3195
	struct mem_cgroup *mi;
	unsigned int i;
3196

3197 3198 3199 3200
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3201 3202
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3203
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3204
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3205
			continue;
3206
		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3207
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3208
	}
L
Lee Schermerhorn 已提交
3209

3210 3211 3212 3213 3214 3215 3216 3217
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3218
	/* Hierarchical information */
3219 3220 3221 3222
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3223
	}
3224 3225
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3226
	if (do_memsw_account())
3227 3228
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3229

3230
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3231
		unsigned long long val = 0;
3232

3233
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3234
			continue;
3235 3236
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3237
		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3255
	}
K
KAMEZAWA Hiroyuki 已提交
3256

K
KOSAKI Motohiro 已提交
3257 3258 3259 3260
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3261
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3262 3263 3264 3265 3266
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3267
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3268
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3269

3270 3271 3272 3273
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3274
			}
3275 3276 3277 3278
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3279 3280 3281
	}
#endif

3282 3283 3284
	return 0;
}

3285 3286
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3287
{
3288
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3289

3290
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3291 3292
}

3293 3294
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3295
{
3296
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3297

3298
	if (val > 100)
K
KOSAKI Motohiro 已提交
3299 3300
		return -EINVAL;

3301
	if (css->parent)
3302 3303 3304
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3305

K
KOSAKI Motohiro 已提交
3306 3307 3308
	return 0;
}

3309 3310 3311
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3312
	unsigned long usage;
3313 3314 3315 3316
	int i;

	rcu_read_lock();
	if (!swap)
3317
		t = rcu_dereference(memcg->thresholds.primary);
3318
	else
3319
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3320 3321 3322 3323

	if (!t)
		goto unlock;

3324
	usage = mem_cgroup_usage(memcg, swap);
3325 3326

	/*
3327
	 * current_threshold points to threshold just below or equal to usage.
3328 3329 3330
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3331
	i = t->current_threshold;
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3355
	t->current_threshold = i - 1;
3356 3357 3358 3359 3360 3361
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3362 3363
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3364
		if (do_memsw_account())
3365 3366 3367 3368
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3369 3370 3371 3372 3373 3374 3375
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3376 3377 3378 3379 3380 3381 3382
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3383 3384
}

3385
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3386 3387 3388
{
	struct mem_cgroup_eventfd_list *ev;

3389 3390
	spin_lock(&memcg_oom_lock);

3391
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3392
		eventfd_signal(ev->eventfd, 1);
3393 3394

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3395 3396 3397
	return 0;
}

3398
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3399
{
K
KAMEZAWA Hiroyuki 已提交
3400 3401
	struct mem_cgroup *iter;

3402
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3403
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3404 3405
}

3406
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3407
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3408
{
3409 3410
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3411 3412
	unsigned long threshold;
	unsigned long usage;
3413
	int i, size, ret;
3414

3415
	ret = page_counter_memparse(args, "-1", &threshold);
3416 3417 3418 3419
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3420

3421
	if (type == _MEM) {
3422
		thresholds = &memcg->thresholds;
3423
		usage = mem_cgroup_usage(memcg, false);
3424
	} else if (type == _MEMSWAP) {
3425
		thresholds = &memcg->memsw_thresholds;
3426
		usage = mem_cgroup_usage(memcg, true);
3427
	} else
3428 3429 3430
		BUG();

	/* Check if a threshold crossed before adding a new one */
3431
	if (thresholds->primary)
3432 3433
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3434
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3435 3436

	/* Allocate memory for new array of thresholds */
3437
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3438
			GFP_KERNEL);
3439
	if (!new) {
3440 3441 3442
		ret = -ENOMEM;
		goto unlock;
	}
3443
	new->size = size;
3444 3445

	/* Copy thresholds (if any) to new array */
3446 3447
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3448
				sizeof(struct mem_cgroup_threshold));
3449 3450
	}

3451
	/* Add new threshold */
3452 3453
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3454 3455

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3456
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3457 3458 3459
			compare_thresholds, NULL);

	/* Find current threshold */
3460
	new->current_threshold = -1;
3461
	for (i = 0; i < size; i++) {
3462
		if (new->entries[i].threshold <= usage) {
3463
			/*
3464 3465
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3466 3467
			 * it here.
			 */
3468
			++new->current_threshold;
3469 3470
		} else
			break;
3471 3472
	}

3473 3474 3475 3476 3477
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3478

3479
	/* To be sure that nobody uses thresholds */
3480 3481 3482 3483 3484 3485 3486 3487
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3488
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3489 3490
	struct eventfd_ctx *eventfd, const char *args)
{
3491
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3492 3493
}

3494
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3495 3496
	struct eventfd_ctx *eventfd, const char *args)
{
3497
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3498 3499
}

3500
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3501
	struct eventfd_ctx *eventfd, enum res_type type)
3502
{
3503 3504
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3505
	unsigned long usage;
3506
	int i, j, size;
3507 3508

	mutex_lock(&memcg->thresholds_lock);
3509 3510

	if (type == _MEM) {
3511
		thresholds = &memcg->thresholds;
3512
		usage = mem_cgroup_usage(memcg, false);
3513
	} else if (type == _MEMSWAP) {
3514
		thresholds = &memcg->memsw_thresholds;
3515
		usage = mem_cgroup_usage(memcg, true);
3516
	} else
3517 3518
		BUG();

3519 3520 3521
	if (!thresholds->primary)
		goto unlock;

3522 3523 3524 3525
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3526 3527 3528
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3529 3530 3531
			size++;
	}

3532
	new = thresholds->spare;
3533

3534 3535
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3536 3537
		kfree(new);
		new = NULL;
3538
		goto swap_buffers;
3539 3540
	}

3541
	new->size = size;
3542 3543

	/* Copy thresholds and find current threshold */
3544 3545 3546
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3547 3548
			continue;

3549
		new->entries[j] = thresholds->primary->entries[i];
3550
		if (new->entries[j].threshold <= usage) {
3551
			/*
3552
			 * new->current_threshold will not be used
3553 3554 3555
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3556
			++new->current_threshold;
3557 3558 3559 3560
		}
		j++;
	}

3561
swap_buffers:
3562 3563
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3564

3565
	rcu_assign_pointer(thresholds->primary, new);
3566

3567
	/* To be sure that nobody uses thresholds */
3568
	synchronize_rcu();
3569 3570 3571 3572 3573 3574

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
3575
unlock:
3576 3577
	mutex_unlock(&memcg->thresholds_lock);
}
3578

3579
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3580 3581
	struct eventfd_ctx *eventfd)
{
3582
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3583 3584
}

3585
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3586 3587
	struct eventfd_ctx *eventfd)
{
3588
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3589 3590
}

3591
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3592
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3593 3594 3595 3596 3597 3598 3599
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3600
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3601 3602 3603 3604 3605

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3606
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3607
		eventfd_signal(eventfd, 1);
3608
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3609 3610 3611 3612

	return 0;
}

3613
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3614
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3615 3616 3617
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3618
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3619

3620
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3621 3622 3623 3624 3625 3626
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3627
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3628 3629
}

3630
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3631
{
3632
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3633

3634
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3635
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3636 3637 3638
	return 0;
}

3639
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3640 3641
	struct cftype *cft, u64 val)
{
3642
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3643 3644

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3645
	if (!css->parent || !((val == 0) || (val == 1)))
3646 3647
		return -EINVAL;

3648
	memcg->oom_kill_disable = val;
3649
	if (!val)
3650
		memcg_oom_recover(memcg);
3651

3652 3653 3654
	return 0;
}

3655 3656 3657 3658 3659 3660 3661
#ifdef CONFIG_CGROUP_WRITEBACK

struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
{
	return &memcg->cgwb_list;
}

T
Tejun Heo 已提交
3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3672 3673 3674 3675 3676
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3677 3678 3679 3680 3681 3682 3683 3684 3685 3686
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3687 3688 3689
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3690 3691
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3692 3693 3694
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3695 3696 3697
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3698
 *
3699 3700 3701 3702 3703
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3704
 */
3705 3706 3707
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3708 3709 3710 3711 3712 3713 3714 3715
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);

	/* this should eventually include NR_UNSTABLE_NFS */
	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3716 3717 3718
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3719 3720 3721 3722 3723

	while ((parent = parent_mem_cgroup(memcg))) {
		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
		unsigned long used = page_counter_read(&memcg->memory);

3724
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3725 3726 3727 3728
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3740 3741 3742 3743
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3744 3745
#endif	/* CONFIG_CGROUP_WRITEBACK */

3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3759 3760 3761 3762 3763
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3764
static void memcg_event_remove(struct work_struct *work)
3765
{
3766 3767
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3768
	struct mem_cgroup *memcg = event->memcg;
3769 3770 3771

	remove_wait_queue(event->wqh, &event->wait);

3772
	event->unregister_event(memcg, event->eventfd);
3773 3774 3775 3776 3777 3778

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3779
	css_put(&memcg->css);
3780 3781 3782 3783 3784 3785 3786
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3787 3788
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
3789
{
3790 3791
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3792
	struct mem_cgroup *memcg = event->memcg;
3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3805
		spin_lock(&memcg->event_list_lock);
3806 3807 3808 3809 3810 3811 3812 3813
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3814
		spin_unlock(&memcg->event_list_lock);
3815 3816 3817 3818 3819
	}

	return 0;
}

3820
static void memcg_event_ptable_queue_proc(struct file *file,
3821 3822
		wait_queue_head_t *wqh, poll_table *pt)
{
3823 3824
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3825 3826 3827 3828 3829 3830

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3831 3832
 * DO NOT USE IN NEW FILES.
 *
3833 3834 3835 3836 3837
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3838 3839
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3840
{
3841
	struct cgroup_subsys_state *css = of_css(of);
3842
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3843
	struct mem_cgroup_event *event;
3844 3845 3846 3847
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3848
	const char *name;
3849 3850 3851
	char *endp;
	int ret;

3852 3853 3854
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3855 3856
	if (*endp != ' ')
		return -EINVAL;
3857
	buf = endp + 1;
3858

3859
	cfd = simple_strtoul(buf, &endp, 10);
3860 3861
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3862
	buf = endp + 1;
3863 3864 3865 3866 3867

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3868
	event->memcg = memcg;
3869
	INIT_LIST_HEAD(&event->list);
3870 3871 3872
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3898 3899 3900 3901 3902
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3903 3904
	 *
	 * DO NOT ADD NEW FILES.
3905
	 */
A
Al Viro 已提交
3906
	name = cfile.file->f_path.dentry->d_name.name;
3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3918 3919
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3920 3921 3922 3923 3924
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3925
	/*
3926 3927 3928
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
3929
	 */
A
Al Viro 已提交
3930
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3931
					       &memory_cgrp_subsys);
3932
	ret = -EINVAL;
3933
	if (IS_ERR(cfile_css))
3934
		goto out_put_cfile;
3935 3936
	if (cfile_css != css) {
		css_put(cfile_css);
3937
		goto out_put_cfile;
3938
	}
3939

3940
	ret = event->register_event(memcg, event->eventfd, buf);
3941 3942 3943 3944 3945
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

3946 3947 3948
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
3949 3950 3951 3952

	fdput(cfile);
	fdput(efile);

3953
	return nbytes;
3954 3955

out_put_css:
3956
	css_put(css);
3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

3969
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
3970
	{
3971
		.name = "usage_in_bytes",
3972
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3973
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3974
	},
3975 3976
	{
		.name = "max_usage_in_bytes",
3977
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3978
		.write = mem_cgroup_reset,
3979
		.read_u64 = mem_cgroup_read_u64,
3980
	},
B
Balbir Singh 已提交
3981
	{
3982
		.name = "limit_in_bytes",
3983
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3984
		.write = mem_cgroup_write,
3985
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3986
	},
3987 3988 3989
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3990
		.write = mem_cgroup_write,
3991
		.read_u64 = mem_cgroup_read_u64,
3992
	},
B
Balbir Singh 已提交
3993 3994
	{
		.name = "failcnt",
3995
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3996
		.write = mem_cgroup_reset,
3997
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3998
	},
3999 4000
	{
		.name = "stat",
4001
		.seq_show = memcg_stat_show,
4002
	},
4003 4004
	{
		.name = "force_empty",
4005
		.write = mem_cgroup_force_empty_write,
4006
	},
4007 4008 4009 4010 4011
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4012
	{
4013
		.name = "cgroup.event_control",		/* XXX: for compat */
4014
		.write = memcg_write_event_control,
4015
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4016
	},
K
KOSAKI Motohiro 已提交
4017 4018 4019 4020 4021
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4022 4023 4024 4025 4026
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4027 4028
	{
		.name = "oom_control",
4029
		.seq_show = mem_cgroup_oom_control_read,
4030
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4031 4032
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4033 4034 4035
	{
		.name = "pressure_level",
	},
4036 4037 4038
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4039
		.seq_show = memcg_numa_stat_show,
4040 4041
	},
#endif
4042
#ifdef CONFIG_MEMCG_LEGACY_KMEM
4043 4044 4045
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4046
		.write = mem_cgroup_write,
4047
		.read_u64 = mem_cgroup_read_u64,
4048 4049 4050 4051
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4052
		.read_u64 = mem_cgroup_read_u64,
4053 4054 4055 4056
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4057
		.write = mem_cgroup_reset,
4058
		.read_u64 = mem_cgroup_read_u64,
4059 4060 4061 4062
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4063
		.write = mem_cgroup_reset,
4064
		.read_u64 = mem_cgroup_read_u64,
4065
	},
4066 4067 4068
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4069 4070 4071 4072
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4073 4074
	},
#endif
4075
#endif
4076
	{ },	/* terminate */
4077
};
4078

4079
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4080 4081
{
	struct mem_cgroup_per_node *pn;
4082
	struct mem_cgroup_per_zone *mz;
4083
	int zone, tmp = node;
4084 4085 4086 4087 4088 4089 4090 4091
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4092 4093
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4094
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4095 4096
	if (!pn)
		return 1;
4097 4098 4099

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4100
		lruvec_init(&mz->lruvec);
4101 4102
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4103
		mz->memcg = memcg;
4104
	}
4105
	memcg->nodeinfo[node] = pn;
4106 4107 4108
	return 0;
}

4109
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4110
{
4111
	kfree(memcg->nodeinfo[node]);
4112 4113
}

4114 4115
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4116
	struct mem_cgroup *memcg;
4117
	size_t size;
4118

4119 4120
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4121

4122
	memcg = kzalloc(size, GFP_KERNEL);
4123
	if (!memcg)
4124 4125
		return NULL;

4126 4127
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4128
		goto out_free;
T
Tejun Heo 已提交
4129 4130 4131 4132

	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto out_free_stat;

4133
	return memcg;
4134

T
Tejun Heo 已提交
4135 4136
out_free_stat:
	free_percpu(memcg->stat);
4137
out_free:
4138
	kfree(memcg);
4139
	return NULL;
4140 4141
}

4142
/*
4143 4144 4145 4146 4147 4148 4149 4150
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
4151
 */
4152 4153

static void __mem_cgroup_free(struct mem_cgroup *memcg)
4154
{
4155
	int node;
4156

4157 4158
	cancel_work_sync(&memcg->high_work);

4159
	mem_cgroup_remove_from_trees(memcg);
4160 4161 4162 4163 4164

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);
T
Tejun Heo 已提交
4165
	memcg_wb_domain_exit(memcg);
4166
	kfree(memcg);
4167
}
4168

L
Li Zefan 已提交
4169
static struct cgroup_subsys_state * __ref
4170
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
4171
{
4172
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4173
	long error = -ENOMEM;
4174
	int node;
B
Balbir Singh 已提交
4175

4176 4177
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4178
		return ERR_PTR(error);
4179

B
Bob Liu 已提交
4180
	for_each_node(node)
4181
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4182
			goto free_out;
4183

4184
	/* root ? */
4185
	if (parent_css == NULL) {
4186
		root_mem_cgroup = memcg;
4187
		page_counter_init(&memcg->memory, NULL);
4188
		memcg->high = PAGE_COUNTER_MAX;
4189
		memcg->soft_limit = PAGE_COUNTER_MAX;
4190 4191
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4192
	}
4193

4194
	INIT_WORK(&memcg->high_work, high_work_func);
4195 4196 4197 4198 4199
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4200
	vmpressure_init(&memcg->vmpressure);
4201 4202
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4203
#ifndef CONFIG_SLOB
V
Vladimir Davydov 已提交
4204 4205
	memcg->kmemcg_id = -1;
#endif
4206 4207
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
4208 4209 4210
#endif
#ifdef CONFIG_INET
	memcg->socket_pressure = jiffies;
4211
#endif
4212 4213 4214 4215 4216 4217 4218 4219
	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
4220
mem_cgroup_css_online(struct cgroup_subsys_state *css)
4221
{
4222
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4223
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4224
	int ret;
4225

4226
	if (css->id > MEM_CGROUP_ID_MAX)
4227 4228
		return -ENOSPC;

T
Tejun Heo 已提交
4229
	if (!parent)
4230 4231
		return 0;

4232
	mutex_lock(&memcg_create_mutex);
4233 4234 4235 4236 4237 4238

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
4239
		page_counter_init(&memcg->memory, &parent->memory);
4240
		memcg->high = PAGE_COUNTER_MAX;
4241
		memcg->soft_limit = PAGE_COUNTER_MAX;
4242 4243
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4244

4245
		/*
4246 4247
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
4248
		 */
4249
	} else {
4250
		page_counter_init(&memcg->memory, NULL);
4251
		memcg->high = PAGE_COUNTER_MAX;
4252
		memcg->soft_limit = PAGE_COUNTER_MAX;
4253 4254
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4255 4256 4257 4258 4259
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4260
		if (parent != root_mem_cgroup)
4261
			memory_cgrp_subsys.broken_hierarchy = true;
4262
	}
4263
	mutex_unlock(&memcg_create_mutex);
4264

4265
	ret = memcg_propagate_kmem(memcg);
4266 4267
	if (ret)
		return ret;
4268

4269 4270
#ifdef CONFIG_INET
#ifdef CONFIG_MEMCG_LEGACY_KMEM
4271 4272 4273 4274
	ret = tcp_init_cgroup(memcg);
	if (ret)
		return ret;
#endif
4275

4276
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4277
		static_branch_inc(&memcg_sockets_enabled_key);
4278 4279
#endif

4280 4281 4282 4283 4284 4285 4286 4287
	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
4288 4289
}

4290
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4291
{
4292
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4293
	struct mem_cgroup_event *event, *tmp;
4294 4295 4296 4297 4298 4299

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4300 4301
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4302 4303 4304
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4305
	spin_unlock(&memcg->event_list_lock);
4306

4307
	vmpressure_cleanup(&memcg->vmpressure);
4308

4309
	memcg_offline_kmem(memcg);
4310 4311

	wb_memcg_offline(memcg);
4312 4313
}

4314 4315 4316 4317 4318 4319 4320
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4321
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4322
{
4323
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4324

4325 4326
#ifdef CONFIG_INET
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4327
		static_branch_dec(&memcg_sockets_enabled_key);
4328
#endif
4329 4330

	memcg_free_kmem(memcg);
4331

4332
#if defined(CONFIG_MEMCG_LEGACY_KMEM) && defined(CONFIG_INET)
4333 4334 4335
	tcp_destroy_cgroup(memcg);
#endif

4336
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4337 4338
}

4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4356 4357 4358
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4359 4360
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4361
	memcg->soft_limit = PAGE_COUNTER_MAX;
4362
	memcg_wb_domain_size_changed(memcg);
4363 4364
}

4365
#ifdef CONFIG_MMU
4366
/* Handlers for move charge at task migration. */
4367
static int mem_cgroup_do_precharge(unsigned long count)
4368
{
4369
	int ret;
4370

4371 4372
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4373
	if (!ret) {
4374 4375 4376
		mc.precharge += count;
		return ret;
	}
4377 4378

	/* Try charges one by one with reclaim */
4379
	while (count--) {
4380
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4381 4382
		if (ret)
			return ret;
4383
		mc.precharge++;
4384
		cond_resched();
4385
	}
4386
	return 0;
4387 4388 4389
}

/**
4390
 * get_mctgt_type - get target type of moving charge
4391 4392 4393
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4394
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4395 4396 4397 4398 4399 4400
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4401 4402 4403
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4404 4405 4406 4407 4408
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4409
	swp_entry_t	ent;
4410 4411 4412
};

enum mc_target_type {
4413
	MC_TARGET_NONE = 0,
4414
	MC_TARGET_PAGE,
4415
	MC_TARGET_SWAP,
4416 4417
};

D
Daisuke Nishimura 已提交
4418 4419
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4420
{
D
Daisuke Nishimura 已提交
4421
	struct page *page = vm_normal_page(vma, addr, ptent);
4422

D
Daisuke Nishimura 已提交
4423 4424 4425
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4426
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4427
			return NULL;
4428 4429 4430 4431
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4432 4433 4434 4435 4436 4437
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4438
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4439 4440 4441 4442 4443 4444
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4445
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4446
		return NULL;
4447 4448 4449 4450
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4451
	page = find_get_page(swap_address_space(ent), ent.val);
4452
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4453 4454 4455 4456
		entry->val = ent.val;

	return page;
}
4457 4458 4459 4460 4461 4462 4463
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4464

4465 4466 4467 4468 4469 4470 4471 4472 4473
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4474
	if (!(mc.flags & MOVE_FILE))
4475 4476 4477
		return NULL;

	mapping = vma->vm_file->f_mapping;
4478
	pgoff = linear_page_index(vma, addr);
4479 4480

	/* page is moved even if it's not RSS of this task(page-faulted). */
4481 4482
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4483 4484 4485 4486
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
4487
			if (do_memsw_account())
4488 4489 4490 4491 4492 4493 4494
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4495
#endif
4496 4497 4498
	return page;
}

4499 4500 4501 4502 4503 4504 4505
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
 * @nr_pages: number of regular pages (>1 for huge pages)
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
4506
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4507 4508 4509 4510 4511
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
4512
				   bool compound,
4513 4514 4515 4516
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
4517
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4518
	int ret;
4519
	bool anon;
4520 4521 4522

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
4523
	VM_BUG_ON(compound && !PageTransHuge(page));
4524 4525

	/*
4526 4527
	 * Prevent mem_cgroup_replace_page() from looking at
	 * page->mem_cgroup of its source page while we change it.
4528
	 */
4529
	ret = -EBUSY;
4530 4531 4532 4533 4534 4535 4536
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4537 4538
	anon = PageAnon(page);

4539 4540
	spin_lock_irqsave(&from->move_lock, flags);

4541
	if (!anon && page_mapped(page)) {
4542 4543 4544 4545 4546 4547
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
		}
	}

4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
4584
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4585
	memcg_check_events(to, page);
4586
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4587 4588 4589 4590 4591 4592 4593 4594
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4595
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4596 4597 4598
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4599
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4600 4601 4602 4603 4604 4605
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4606
	else if (pte_none(ptent))
4607
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4608 4609

	if (!page && !ent.val)
4610
		return ret;
4611 4612
	if (page) {
		/*
4613
		 * Do only loose check w/o serialization.
4614
		 * mem_cgroup_move_account() checks the page is valid or
4615
		 * not under LRU exclusion.
4616
		 */
4617
		if (page->mem_cgroup == mc.from) {
4618 4619 4620 4621 4622 4623 4624
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4625 4626
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4627
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4628 4629 4630
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4631 4632 4633 4634
	}
	return ret;
}

4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4648
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4649
	if (!(mc.flags & MOVE_ANON))
4650
		return ret;
4651
	if (page->mem_cgroup == mc.from) {
4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4668 4669 4670 4671
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4672
	struct vm_area_struct *vma = walk->vma;
4673 4674 4675
	pte_t *pte;
	spinlock_t *ptl;

4676
	if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
4677 4678
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4679
		spin_unlock(ptl);
4680
		return 0;
4681
	}
4682

4683 4684
	if (pmd_trans_unstable(pmd))
		return 0;
4685 4686
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4687
		if (get_mctgt_type(vma, addr, *pte, NULL))
4688 4689 4690 4691
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4692 4693 4694
	return 0;
}

4695 4696 4697 4698
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4699 4700 4701 4702
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4703
	down_read(&mm->mmap_sem);
4704
	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4705
	up_read(&mm->mmap_sem);
4706 4707 4708 4709 4710 4711 4712 4713 4714

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4715 4716 4717 4718 4719
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4720 4721
}

4722 4723
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4724
{
4725 4726 4727
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4728
	/* we must uncharge all the leftover precharges from mc.to */
4729
	if (mc.precharge) {
4730
		cancel_charge(mc.to, mc.precharge);
4731 4732 4733 4734 4735 4736 4737
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4738
		cancel_charge(mc.from, mc.moved_charge);
4739
		mc.moved_charge = 0;
4740
	}
4741 4742 4743
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4744
		if (!mem_cgroup_is_root(mc.from))
4745
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4746

4747
		/*
4748 4749
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4750
		 */
4751
		if (!mem_cgroup_is_root(mc.to))
4752 4753
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4754
		css_put_many(&mc.from->css, mc.moved_swap);
4755

L
Li Zefan 已提交
4756
		/* we've already done css_get(mc.to) */
4757 4758
		mc.moved_swap = 0;
	}
4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4772
	spin_lock(&mc.lock);
4773 4774
	mc.from = NULL;
	mc.to = NULL;
4775
	spin_unlock(&mc.lock);
4776 4777
}

4778
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4779
{
4780
	struct cgroup_subsys_state *css;
4781
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4782
	struct mem_cgroup *from;
4783
	struct task_struct *leader, *p;
4784
	struct mm_struct *mm;
4785
	unsigned long move_flags;
4786
	int ret = 0;
4787

4788 4789
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4790 4791
		return 0;

4792 4793 4794 4795 4796 4797 4798
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
4799
	cgroup_taskset_for_each_leader(leader, css, tset) {
4800 4801
		WARN_ON_ONCE(p);
		p = leader;
4802
		memcg = mem_cgroup_from_css(css);
4803 4804 4805 4806
	}
	if (!p)
		return 0;

4807 4808 4809 4810 4811 4812 4813 4814 4815
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
4841
	}
4842
	mmput(mm);
4843 4844 4845
	return ret;
}

4846
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4847
{
4848 4849
	if (mc.to)
		mem_cgroup_clear_mc();
4850 4851
}

4852 4853 4854
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4855
{
4856
	int ret = 0;
4857
	struct vm_area_struct *vma = walk->vma;
4858 4859
	pte_t *pte;
	spinlock_t *ptl;
4860 4861 4862
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4863

4864
	if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
4865
		if (mc.precharge < HPAGE_PMD_NR) {
4866
			spin_unlock(ptl);
4867 4868 4869 4870 4871 4872
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
4873
				if (!mem_cgroup_move_account(page, true,
4874
							     mc.from, mc.to)) {
4875 4876 4877 4878 4879 4880 4881
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
4882
		spin_unlock(ptl);
4883
		return 0;
4884 4885
	}

4886 4887
	if (pmd_trans_unstable(pmd))
		return 0;
4888 4889 4890 4891
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
4892
		swp_entry_t ent;
4893 4894 4895 4896

		if (!mc.precharge)
			break;

4897
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4898 4899
		case MC_TARGET_PAGE:
			page = target.page;
4900 4901 4902 4903 4904 4905 4906 4907
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
4908 4909
			if (isolate_lru_page(page))
				goto put;
4910 4911
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
4912
				mc.precharge--;
4913 4914
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4915 4916
			}
			putback_lru_page(page);
4917
put:			/* get_mctgt_type() gets the page */
4918 4919
			put_page(page);
			break;
4920 4921
		case MC_TARGET_SWAP:
			ent = target.ent;
4922
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4923
				mc.precharge--;
4924 4925 4926
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4927
			break;
4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4942
		ret = mem_cgroup_do_precharge(1);
4943 4944 4945 4946 4947 4948 4949 4950 4951
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
4952 4953 4954 4955
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
		.mm = mm,
	};
4956 4957

	lru_add_drain_all();
4958 4959 4960 4961 4962 4963 4964
	/*
	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
	 * move_lock while we're moving its pages to another memcg.
	 * Then wait for already started RCU-only updates to finish.
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
4978 4979 4980 4981 4982
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4983
	up_read(&mm->mmap_sem);
4984
	atomic_dec(&mc.from->moving_account);
4985 4986
}

4987
static void mem_cgroup_move_task(struct cgroup_taskset *tset)
B
Balbir Singh 已提交
4988
{
4989 4990
	struct cgroup_subsys_state *css;
	struct task_struct *p = cgroup_taskset_first(tset, &css);
4991
	struct mm_struct *mm = get_task_mm(p);
4992 4993

	if (mm) {
4994 4995
		if (mc.to)
			mem_cgroup_move_charge(mm);
4996 4997
		mmput(mm);
	}
4998 4999
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5000
}
5001
#else	/* !CONFIG_MMU */
5002
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5003 5004 5005
{
	return 0;
}
5006
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5007 5008
{
}
5009
static void mem_cgroup_move_task(struct cgroup_taskset *tset)
5010 5011 5012
{
}
#endif
B
Balbir Singh 已提交
5013

5014 5015
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5016 5017
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5018
 */
5019
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5020 5021
{
	/*
5022
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5023 5024 5025
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5026
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5027 5028 5029
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5030 5031
}

5032 5033 5034
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5035 5036 5037
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5038 5039 5040 5041 5042
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5043
	unsigned long low = READ_ONCE(memcg->low);
5044 5045

	if (low == PAGE_COUNTER_MAX)
5046
		seq_puts(m, "max\n");
5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5061
	err = page_counter_memparse(buf, "max", &low);
5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5073
	unsigned long high = READ_ONCE(memcg->high);
5074 5075

	if (high == PAGE_COUNTER_MAX)
5076
		seq_puts(m, "max\n");
5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
5091
	err = page_counter_memparse(buf, "max", &high);
5092 5093 5094 5095 5096
	if (err)
		return err;

	memcg->high = high;

5097
	memcg_wb_domain_size_changed(memcg);
5098 5099 5100 5101 5102 5103
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5104
	unsigned long max = READ_ONCE(memcg->memory.limit);
5105 5106

	if (max == PAGE_COUNTER_MAX)
5107
		seq_puts(m, "max\n");
5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
5122
	err = page_counter_memparse(buf, "max", &max);
5123 5124 5125 5126 5127 5128 5129
	if (err)
		return err;

	err = mem_cgroup_resize_limit(memcg, max);
	if (err)
		return err;

5130
	memcg_wb_domain_size_changed(memcg);
5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

static struct cftype memory_files[] = {
	{
		.name = "current",
5149
		.flags = CFTYPE_NOT_ON_ROOT,
5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5173
		.file_offset = offsetof(struct mem_cgroup, events_file),
5174 5175 5176 5177 5178
		.seq_show = memory_events_show,
	},
	{ }	/* terminate */
};

5179
struct cgroup_subsys memory_cgrp_subsys = {
5180
	.css_alloc = mem_cgroup_css_alloc,
5181
	.css_online = mem_cgroup_css_online,
5182
	.css_offline = mem_cgroup_css_offline,
5183
	.css_released = mem_cgroup_css_released,
5184
	.css_free = mem_cgroup_css_free,
5185
	.css_reset = mem_cgroup_css_reset,
5186 5187
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5188
	.attach = mem_cgroup_move_task,
5189
	.bind = mem_cgroup_bind,
5190 5191
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5192
	.early_init = 0,
B
Balbir Singh 已提交
5193
};
5194

5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216
/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5217
	if (page_counter_read(&memcg->memory) >= memcg->low)
5218 5219 5220 5221 5222 5223 5224 5225
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5226
		if (page_counter_read(&memcg->memory) >= memcg->low)
5227 5228 5229 5230 5231
			return false;
	}
	return true;
}

5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5250 5251
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
5252 5253
{
	struct mem_cgroup *memcg = NULL;
5254
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5268
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5269
		if (page->mem_cgroup)
5270
			goto out;
5271

5272
		if (do_memsw_account()) {
5273 5274 5275 5276 5277 5278 5279 5280 5281
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5312
			      bool lrucare, bool compound)
5313
{
5314
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5329 5330 5331
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
5332
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5333 5334
	memcg_check_events(memcg, page);
	local_irq_enable();
5335

5336
	if (do_memsw_account() && PageSwapCache(page)) {
5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
5354 5355
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
5356
{
5357
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

5372 5373 5374 5375
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5376
	unsigned long nr_pages = nr_anon + nr_file;
5377 5378
	unsigned long flags;

5379
	if (!mem_cgroup_is_root(memcg)) {
5380
		page_counter_uncharge(&memcg->memory, nr_pages);
5381
		if (do_memsw_account())
5382
			page_counter_uncharge(&memcg->memsw, nr_pages);
5383 5384
		memcg_oom_recover(memcg);
	}
5385 5386 5387 5388 5389 5390

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5391
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5392 5393
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5394 5395

	if (!mem_cgroup_is_root(memcg))
5396
		css_put_many(&memcg->css, nr_pages);
5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5419
		if (!page->mem_cgroup)
5420 5421 5422 5423
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5424
		 * page->mem_cgroup at this point, we have fully
5425
		 * exclusive access to the page.
5426 5427
		 */

5428
		if (memcg != page->mem_cgroup) {
5429
			if (memcg) {
5430 5431 5432
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5433
			}
5434
			memcg = page->mem_cgroup;
5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5448
		page->mem_cgroup = NULL;
5449 5450 5451 5452 5453

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5454 5455
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5456 5457
}

5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5470
	/* Don't touch page->lru of any random page, pre-check: */
5471
	if (!page->mem_cgroup)
5472 5473
		return;

5474 5475 5476
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5477

5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5489

5490 5491
	if (!list_empty(page_list))
		uncharge_list(page_list);
5492 5493 5494
}

/**
5495
 * mem_cgroup_replace_page - migrate a charge to another page
5496 5497 5498 5499 5500 5501
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
5502
 * Either or both pages might be on the LRU already.
5503
 */
5504
void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
5505
{
5506
	struct mem_cgroup *memcg;
5507 5508 5509 5510 5511
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5512 5513
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5514 5515 5516 5517 5518

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5519
	if (newpage->mem_cgroup)
5520 5521
		return;

5522
	/* Swapcache readahead pages can get replaced before being charged */
5523
	memcg = oldpage->mem_cgroup;
5524
	if (!memcg)
5525 5526
		return;

5527
	lock_page_lru(oldpage, &isolated);
5528
	oldpage->mem_cgroup = NULL;
5529
	unlock_page_lru(oldpage, isolated);
5530

5531
	commit_charge(newpage, memcg, true);
5532 5533
}

5534
#ifdef CONFIG_INET
5535

5536
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558
EXPORT_SYMBOL(memcg_sockets_enabled_key);

void sock_update_memcg(struct sock *sk)
{
	struct mem_cgroup *memcg;

	/* Socket cloning can throw us here with sk_cgrp already
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
		css_get(&sk->sk_memcg->css);
		return;
	}

	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
5559 5560
	if (memcg == root_mem_cgroup)
		goto out;
5561
#ifdef CONFIG_MEMCG_LEGACY_KMEM
5562 5563 5564 5565
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcp_mem.active)
		goto out;
#endif
	if (css_tryget_online(&memcg->css))
5566
		sk->sk_memcg = memcg;
5567
out:
5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587
	rcu_read_unlock();
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
	WARN_ON(!sk->sk_memcg);
	css_put(&sk->sk_memcg->css);
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5588
	gfp_t gfp_mask = GFP_KERNEL;
5589

5590
#ifdef CONFIG_MEMCG_LEGACY_KMEM
5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
		struct page_counter *counter;

		if (page_counter_try_charge(&memcg->tcp_mem.memory_allocated,
					    nr_pages, &counter)) {
			memcg->tcp_mem.memory_pressure = 0;
			return true;
		}
		page_counter_charge(&memcg->tcp_mem.memory_allocated, nr_pages);
		memcg->tcp_mem.memory_pressure = 1;
		return false;
5602
	}
5603 5604 5605 5606 5607 5608 5609 5610 5611
#endif
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5612 5613 5614 5615 5616 5617 5618 5619 5620 5621
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
 * @memcg - memcg to uncharge
 * @nr_pages - number of pages to uncharge
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5622
#ifdef CONFIG_MEMCG_LEGACY_KMEM
5623 5624 5625 5626 5627 5628 5629 5630
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
		page_counter_uncharge(&memcg->tcp_mem.memory_allocated,
				      nr_pages);
		return;
	}
#endif
	page_counter_uncharge(&memcg->memory, nr_pages);
	css_put_many(&memcg->css, nr_pages);
5631 5632
}

5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643
#endif /* CONFIG_INET */

static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
5644 5645
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
5646 5647 5648 5649
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
5650

5651
/*
5652 5653 5654 5655 5656 5657
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5658 5659 5660
 */
static int __init mem_cgroup_init(void)
{
5661 5662
	int cpu, node;

5663
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;
		int zone;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			struct mem_cgroup_tree_per_zone *rtpz;

			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5686 5687 5688
	return 0;
}
subsys_initcall(mem_cgroup_init);
5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705

#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

5706
	if (!do_memsw_account())
5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

5724 5725 5726 5727 5728 5729 5730
	/*
	 * Interrupts should be disabled here because the caller holds the
	 * mapping->tree_lock lock which is taken with interrupts-off. It is
	 * important here to have the interrupts disabled because it is the
	 * only synchronisation we have for udpating the per-CPU variables.
	 */
	VM_BUG_ON(!irqs_disabled());
5731
	mem_cgroup_charge_statistics(memcg, page, false, -1);
5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745
	memcg_check_events(memcg, page);
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

5746
	if (!do_memsw_account())
5747 5748 5749 5750
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
5751
	memcg = mem_cgroup_from_id(id);
5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816
	if (memcg) {
		if (!mem_cgroup_is_root(memcg))
			page_counter_uncharge(&memcg->memsw, 1);
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}

/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */