memcontrol.c 148.8 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

28
#include <linux/page_counter.h>
B
Balbir Singh 已提交
29 30
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/swap_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
59
#include "internal.h"
G
Glauber Costa 已提交
60
#include <net/sock.h>
M
Michal Hocko 已提交
61
#include <net/ip.h>
G
Glauber Costa 已提交
62
#include <net/tcp_memcontrol.h>
63
#include "slab.h"
B
Balbir Singh 已提交
64

65 66
#include <asm/uaccess.h>

67 68
#include <trace/events/vmscan.h>

69 70
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
71

72
#define MEM_CGROUP_RECLAIM_RETRIES	5
73
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
74

75
/* Whether the swap controller is active */
A
Andrew Morton 已提交
76
#ifdef CONFIG_MEMCG_SWAP
77 78
int do_swap_account __read_mostly;
#else
79
#define do_swap_account		0
80 81
#endif

82 83 84
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
85
	"rss_huge",
86
	"mapped_file",
87
	"writeback",
88 89 90 91 92 93 94 95 96 97
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

98 99 100 101 102 103 104 105
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

106 107 108 109 110 111 112 113
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
114
	MEM_CGROUP_TARGET_SOFTLIMIT,
115
	MEM_CGROUP_TARGET_NUMAINFO,
116 117
	MEM_CGROUP_NTARGETS,
};
118 119 120
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
121

122
struct mem_cgroup_stat_cpu {
123
	long count[MEM_CGROUP_STAT_NSTATS];
124
	unsigned long events[MEMCG_NR_EVENTS];
125
	unsigned long nr_page_events;
126
	unsigned long targets[MEM_CGROUP_NTARGETS];
127 128
};

129 130
struct reclaim_iter {
	struct mem_cgroup *position;
131 132 133 134
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

135 136 137 138
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
139
	struct lruvec		lruvec;
140
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
141

142
	struct reclaim_iter	iter[DEF_PRIORITY + 1];
143

144
	struct rb_node		tree_node;	/* RB tree node */
145
	unsigned long		usage_in_excess;/* Set to the value by which */
146 147
						/* the soft limit is exceeded*/
	bool			on_tree;
148
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
149
						/* use container_of	   */
150 151 152 153 154 155
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

176 177
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
178
	unsigned long threshold;
179 180
};

K
KAMEZAWA Hiroyuki 已提交
181
/* For threshold */
182
struct mem_cgroup_threshold_ary {
183
	/* An array index points to threshold just below or equal to usage. */
184
	int current_threshold;
185 186 187 188 189
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
190 191 192 193 194 195 196 197 198 199 200 201

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
202 203 204 205 206
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
207

208 209 210
/*
 * cgroup_event represents events which userspace want to receive.
 */
211
struct mem_cgroup_event {
212
	/*
213
	 * memcg which the event belongs to.
214
	 */
215
	struct mem_cgroup *memcg;
216 217 218 219 220 221 222 223
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
224 225 226 227 228
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
229
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
230
			      struct eventfd_ctx *eventfd, const char *args);
231 232 233 234 235
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
236
	void (*unregister_event)(struct mem_cgroup *memcg,
237
				 struct eventfd_ctx *eventfd);
238 239 240 241 242 243 244 245 246 247
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

248 249
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
250

B
Balbir Singh 已提交
251 252 253 254 255 256 257
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
258 259 260
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
261 262 263
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
264 265 266 267 268 269

	/* Accounted resources */
	struct page_counter memory;
	struct page_counter memsw;
	struct page_counter kmem;

270 271 272 273
	/* Normal memory consumption range */
	unsigned long low;
	unsigned long high;

274
	unsigned long soft_limit;
275

276 277 278
	/* vmpressure notifications */
	struct vmpressure vmpressure;

279 280 281
	/* css_online() has been completed */
	int initialized;

282 283 284 285
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
286 287 288

	bool		oom_lock;
	atomic_t	under_oom;
289
	atomic_t	oom_wakeups;
290

291
	int	swappiness;
292 293
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
294

295 296 297 298
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
299
	struct mem_cgroup_thresholds thresholds;
300

301
	/* thresholds for mem+swap usage. RCU-protected */
302
	struct mem_cgroup_thresholds memsw_thresholds;
303

K
KAMEZAWA Hiroyuki 已提交
304 305
	/* For oom notifier event fd */
	struct list_head oom_notify;
306

307 308 309 310
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
311
	unsigned long move_charge_at_immigrate;
312 313 314
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
315
	atomic_t		moving_account;
316
	/* taken only while moving_account > 0 */
317 318 319
	spinlock_t		move_lock;
	struct task_struct	*move_lock_task;
	unsigned long		move_lock_flags;
320
	/*
321
	 * percpu counter.
322
	 */
323
	struct mem_cgroup_stat_cpu __percpu *stat;
324 325 326 327 328 329
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
330

M
Michal Hocko 已提交
331
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
332
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
333
#endif
334
#if defined(CONFIG_MEMCG_KMEM)
335
        /* Index in the kmem_cache->memcg_params.memcg_caches array */
336 337
	int kmemcg_id;
#endif
338 339 340 341 342 343 344

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
345

346 347 348 349
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

350 351
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
352 353
};

354
#ifdef CONFIG_MEMCG_KMEM
355
bool memcg_kmem_is_active(struct mem_cgroup *memcg)
356
{
V
Vladimir Davydov 已提交
357
	return memcg->kmemcg_id >= 0;
358
}
359 360
#endif

361 362
/* Stuffs for move charges at task migration. */
/*
363
 * Types of charges to be moved.
364
 */
365 366 367
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
368

369 370
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
371
	spinlock_t	  lock; /* for from, to */
372 373
	struct mem_cgroup *from;
	struct mem_cgroup *to;
374
	unsigned long flags;
375
	unsigned long precharge;
376
	unsigned long moved_charge;
377
	unsigned long moved_swap;
378 379 380
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
381
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
382 383
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
384

385 386 387 388
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
389
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
390
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
391

392 393
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
394
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
395
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
396
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
397 398 399
	NR_CHARGE_TYPE,
};

400
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
401 402 403 404
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
405
	_KMEM,
G
Glauber Costa 已提交
406 407
};

408 409
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
410
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
411 412
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
413

414 415 416 417 418 419 420
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

421 422
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
423
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
424 425
}

426 427 428 429 430 431 432 433 434 435 436 437 438
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

439 440 441 442 443
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

444 445 446 447 448 449
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
450 451
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
452
	return memcg->css.id;
L
Li Zefan 已提交
453 454 455 456 457 458
}

static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

459
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
460 461 462
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
463
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
464
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
465 466 467

void sock_update_memcg(struct sock *sk)
{
468
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
469
		struct mem_cgroup *memcg;
470
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
471 472 473

		BUG_ON(!sk->sk_prot->proto_cgroup);

474 475 476 477 478 479 480 481 482 483
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
484
			css_get(&sk->sk_cgrp->memcg->css);
485 486 487
			return;
		}

G
Glauber Costa 已提交
488 489
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
490
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
491
		if (!mem_cgroup_is_root(memcg) &&
492 493
		    memcg_proto_active(cg_proto) &&
		    css_tryget_online(&memcg->css)) {
494
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
495 496 497 498 499 500 501 502
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
503
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
504 505 506
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
507
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
508 509
	}
}
G
Glauber Costa 已提交
510 511 512 513 514 515

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

516
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
517 518
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
519

520 521
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
522
	if (!memcg_proto_activated(&memcg->tcp_mem))
523 524 525 526 527 528 529 530 531
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

532
#ifdef CONFIG_MEMCG_KMEM
533
/*
534
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
535 536 537 538 539
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
540
 *
541 542
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
543
 */
544 545
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
546

547 548 549 550 551 552 553 554 555 556 557 558 559
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

560 561 562 563 564 565
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
566
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
567 568
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
569
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
570 571 572
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
573
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
574

575 576 577 578 579 580
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
581
struct static_key memcg_kmem_enabled_key;
582
EXPORT_SYMBOL(memcg_kmem_enabled_key);
583

584 585
static void memcg_free_cache_id(int id);

586 587
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
588
	if (memcg_kmem_is_active(memcg)) {
589
		static_key_slow_dec(&memcg_kmem_enabled_key);
590
		memcg_free_cache_id(memcg->kmemcg_id);
591
	}
592 593 594 595
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
596
	WARN_ON(page_counter_read(&memcg->kmem));
597 598 599 600 601 602 603 604 605 606 607 608 609
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

610
static struct mem_cgroup_per_zone *
611
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
612
{
613 614 615
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

616
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
617 618
}

619
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
620
{
621
	return &memcg->css;
622 623
}

624
static struct mem_cgroup_per_zone *
625
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
626
{
627 628
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
629

630
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
631 632
}

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

648 649
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
650
					 unsigned long new_usage_in_excess)
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

680 681
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
682 683 684 685 686 687 688
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

689 690
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
691
{
692 693 694
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
695
	__mem_cgroup_remove_exceeded(mz, mctz);
696
	spin_unlock_irqrestore(&mctz->lock, flags);
697 698
}

699 700 701 702 703 704 705 706 707 708 709
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
	unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
710 711 712

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
713
	unsigned long excess;
714 715 716
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

717
	mctz = soft_limit_tree_from_page(page);
718 719 720 721 722
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
723
		mz = mem_cgroup_page_zoneinfo(memcg, page);
724
		excess = soft_limit_excess(memcg);
725 726 727 728 729
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
730 731 732
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
733 734
			/* if on-tree, remove it */
			if (mz->on_tree)
735
				__mem_cgroup_remove_exceeded(mz, mctz);
736 737 738 739
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
740
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
741
			spin_unlock_irqrestore(&mctz->lock, flags);
742 743 744 745 746 747 748
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
749 750
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
751

752 753 754 755
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
756
			mem_cgroup_remove_exceeded(mz, mctz);
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
779
	__mem_cgroup_remove_exceeded(mz, mctz);
780
	if (!soft_limit_excess(mz->memcg) ||
781
	    !css_tryget_online(&mz->memcg->css))
782 783 784 785 786 787 788 789 790 791
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

792
	spin_lock_irq(&mctz->lock);
793
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
794
	spin_unlock_irq(&mctz->lock);
795 796 797
	return mz;
}

798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
817
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
818
				 enum mem_cgroup_stat_index idx)
819
{
820
	long val = 0;
821 822
	int cpu;

823 824
	get_online_cpus();
	for_each_online_cpu(cpu)
825
		val += per_cpu(memcg->stat->count[idx], cpu);
826
#ifdef CONFIG_HOTPLUG_CPU
827 828 829
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
830 831
#endif
	put_online_cpus();
832 833 834
	return val;
}

835
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
836 837 838 839 840
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

841
	get_online_cpus();
842
	for_each_online_cpu(cpu)
843
		val += per_cpu(memcg->stat->events[idx], cpu);
844
#ifdef CONFIG_HOTPLUG_CPU
845 846 847
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
848
#endif
849
	put_online_cpus();
850 851 852
	return val;
}

853
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
854
					 struct page *page,
855
					 int nr_pages)
856
{
857 858 859 860
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
861
	if (PageAnon(page))
862
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
863
				nr_pages);
864
	else
865
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
866
				nr_pages);
867

868 869 870 871
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

872 873
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
874
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
875
	else {
876
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
877 878
		nr_pages = -nr_pages; /* for event */
	}
879

880
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
881 882
}

883
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
884 885 886 887 888 889 890
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

891 892 893
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
894
{
895
	unsigned long nr = 0;
896 897
	int zid;

898
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
899

900 901 902 903 904 905 906 907 908 909 910 911
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
912
}
913

914
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
915
			unsigned int lru_mask)
916
{
917
	unsigned long nr = 0;
918
	int nid;
919

920
	for_each_node_state(nid, N_MEMORY)
921 922
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
923 924
}

925 926
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
927 928 929
{
	unsigned long val, next;

930
	val = __this_cpu_read(memcg->stat->nr_page_events);
931
	next = __this_cpu_read(memcg->stat->targets[target]);
932
	/* from time_after() in jiffies.h */
933 934 935 936 937
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
938 939 940
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
941 942 943 944 945 946 947 948
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
949
	}
950
	return false;
951 952 953 954 955 956
}

/*
 * Check events in order.
 *
 */
957
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
958 959
{
	/* threshold event is triggered in finer grain than soft limit */
960 961
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
962
		bool do_softlimit;
963
		bool do_numainfo __maybe_unused;
964

965 966
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
967 968 969 970
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
971
		mem_cgroup_threshold(memcg);
972 973
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
974
#if MAX_NUMNODES > 1
975
		if (unlikely(do_numainfo))
976
			atomic_inc(&memcg->numainfo_events);
977
#endif
978
	}
979 980
}

981
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
982
{
983 984 985 986 987 988 989 990
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

991
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
992 993
}

994
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
995
{
996
	struct mem_cgroup *memcg = NULL;
997

998 999
	rcu_read_lock();
	do {
1000 1001 1002 1003 1004 1005
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1006
			memcg = root_mem_cgroup;
1007 1008 1009 1010 1011
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1012
	} while (!css_tryget_online(&memcg->css));
1013
	rcu_read_unlock();
1014
	return memcg;
1015 1016
}

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1034
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1035
				   struct mem_cgroup *prev,
1036
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1037
{
1038 1039
	struct reclaim_iter *uninitialized_var(iter);
	struct cgroup_subsys_state *css = NULL;
1040
	struct mem_cgroup *memcg = NULL;
1041
	struct mem_cgroup *pos = NULL;
1042

1043 1044
	if (mem_cgroup_disabled())
		return NULL;
1045

1046 1047
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1048

1049
	if (prev && !reclaim)
1050
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1051

1052 1053
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1054
			goto out;
1055
		return root;
1056
	}
K
KAMEZAWA Hiroyuki 已提交
1057

1058
	rcu_read_lock();
M
Michal Hocko 已提交
1059

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

		do {
			pos = ACCESS_ONCE(iter->position);
			/*
			 * A racing update may change the position and
			 * put the last reference, hence css_tryget(),
			 * or retry to see the updated position.
			 */
		} while (pos && !css_tryget(&pos->css));
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1094
		}
K
KAMEZAWA Hiroyuki 已提交
1095

1096 1097 1098 1099 1100 1101
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1102

1103 1104
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1105

1106
		if (css_tryget(css)) {
1107 1108 1109 1110 1111 1112 1113
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				break;
1114

1115
			css_put(css);
1116
		}
1117

1118
		memcg = NULL;
1119
	}
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

	if (reclaim) {
		if (cmpxchg(&iter->position, pos, memcg) == pos) {
			if (memcg)
				css_get(&memcg->css);
			if (pos)
				css_put(&pos->css);
		}

		/*
		 * pairs with css_tryget when dereferencing iter->position
		 * above.
		 */
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1140
	}
1141

1142 1143
out_unlock:
	rcu_read_unlock();
1144
out:
1145 1146 1147
	if (prev && prev != root)
		css_put(&prev->css);

1148
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1149
}
K
KAMEZAWA Hiroyuki 已提交
1150

1151 1152 1153 1154 1155 1156 1157
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1158 1159 1160 1161 1162 1163
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1164

1165 1166 1167 1168 1169 1170
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1171
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1172
	     iter != NULL;				\
1173
	     iter = mem_cgroup_iter(root, iter, NULL))
1174

1175
#define for_each_mem_cgroup(iter)			\
1176
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1177
	     iter != NULL;				\
1178
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1179

1180
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1181
{
1182
	struct mem_cgroup *memcg;
1183 1184

	rcu_read_lock();
1185 1186
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1187 1188 1189 1190
		goto out;

	switch (idx) {
	case PGFAULT:
1191 1192 1193 1194
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1195 1196 1197 1198 1199 1200 1201
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1202
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1203

1204 1205 1206
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1207
 * @memcg: memcg of the wanted lruvec
1208 1209 1210 1211 1212 1213 1214 1215 1216
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1217
	struct lruvec *lruvec;
1218

1219 1220 1221 1222
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1223

1224
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1235 1236 1237
}

/**
1238
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1239
 * @page: the page
1240
 * @zone: zone of the page
1241 1242 1243 1244
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1245
 */
1246
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1247 1248
{
	struct mem_cgroup_per_zone *mz;
1249
	struct mem_cgroup *memcg;
1250
	struct lruvec *lruvec;
1251

1252 1253 1254 1255
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1256

1257
	memcg = page->mem_cgroup;
1258
	/*
1259
	 * Swapcache readahead pages are added to the LRU - and
1260
	 * possibly migrated - before they are charged.
1261
	 */
1262 1263
	if (!memcg)
		memcg = root_mem_cgroup;
1264

1265
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1276
}
1277

1278
/**
1279 1280 1281 1282
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1283
 *
1284 1285
 * This function must be called when a page is added to or removed from an
 * lru list.
1286
 */
1287 1288
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1289 1290
{
	struct mem_cgroup_per_zone *mz;
1291
	unsigned long *lru_size;
1292 1293 1294 1295

	if (mem_cgroup_disabled())
		return;

1296 1297 1298 1299
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1300
}
1301

1302
bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
1303
{
1304
	if (root == memcg)
1305
		return true;
1306
	if (!root->use_hierarchy)
1307
		return false;
1308
	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
1309 1310
}

1311
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1312
{
1313
	struct mem_cgroup *task_memcg;
1314
	struct task_struct *p;
1315
	bool ret;
1316

1317
	p = find_lock_task_mm(task);
1318
	if (p) {
1319
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1320 1321 1322 1323 1324 1325 1326
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1327
		rcu_read_lock();
1328 1329
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1330
		rcu_read_unlock();
1331
	}
1332 1333
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1334 1335 1336
	return ret;
}

1337
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1338
{
1339
	unsigned long inactive_ratio;
1340
	unsigned long inactive;
1341
	unsigned long active;
1342
	unsigned long gb;
1343

1344 1345
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1346

1347 1348 1349 1350 1351 1352
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1353
	return inactive * inactive_ratio < active;
1354 1355
}

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
{
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return true;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	memcg = mz->memcg;

	return !!(memcg->css.flags & CSS_ONLINE);
}

1370
#define mem_cgroup_from_counter(counter, member)	\
1371 1372
	container_of(counter, struct mem_cgroup, member)

1373
/**
1374
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1375
 * @memcg: the memory cgroup
1376
 *
1377
 * Returns the maximum amount of memory @mem can be charged with, in
1378
 * pages.
1379
 */
1380
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1381
{
1382 1383 1384
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1385

1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
	count = page_counter_read(&memcg->memory);
	limit = ACCESS_ONCE(memcg->memory.limit);
	if (count < limit)
		margin = limit - count;

	if (do_swap_account) {
		count = page_counter_read(&memcg->memsw);
		limit = ACCESS_ONCE(memcg->memsw.limit);
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1399 1400
}

1401
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1402 1403
{
	/* root ? */
1404
	if (mem_cgroup_disabled() || !memcg->css.parent)
K
KOSAKI Motohiro 已提交
1405 1406
		return vm_swappiness;

1407
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1408 1409
}

1410
/*
Q
Qiang Huang 已提交
1411
 * A routine for checking "mem" is under move_account() or not.
1412
 *
Q
Qiang Huang 已提交
1413 1414 1415
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1416
 */
1417
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1418
{
1419 1420
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1421
	bool ret = false;
1422 1423 1424 1425 1426 1427 1428 1429 1430
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1431

1432 1433
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1434 1435
unlock:
	spin_unlock(&mc.lock);
1436 1437 1438
	return ret;
}

1439
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1440 1441
{
	if (mc.moving_task && current != mc.moving_task) {
1442
		if (mem_cgroup_under_move(memcg)) {
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1455
#define K(x) ((x) << (PAGE_SHIFT-10))
1456
/**
1457
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1458 1459 1460 1461 1462 1463 1464 1465
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1466
	/* oom_info_lock ensures that parallel ooms do not interleave */
1467
	static DEFINE_MUTEX(oom_info_lock);
1468 1469
	struct mem_cgroup *iter;
	unsigned int i;
1470

1471
	if (!p)
1472 1473
		return;

1474
	mutex_lock(&oom_info_lock);
1475 1476
	rcu_read_lock();

T
Tejun Heo 已提交
1477 1478
	pr_info("Task in ");
	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1479
	pr_cont(" killed as a result of limit of ");
T
Tejun Heo 已提交
1480
	pr_cont_cgroup_path(memcg->css.cgroup);
1481
	pr_cont("\n");
1482 1483 1484

	rcu_read_unlock();

1485 1486 1487 1488 1489 1490 1491 1492 1493
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1494 1495

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1496 1497
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1513
	mutex_unlock(&oom_info_lock);
1514 1515
}

1516 1517 1518 1519
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1520
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1521 1522
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1523 1524
	struct mem_cgroup *iter;

1525
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1526
		num++;
1527 1528 1529
	return num;
}

D
David Rientjes 已提交
1530 1531 1532
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1533
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1534
{
1535
	unsigned long limit;
1536

1537
	limit = memcg->memory.limit;
1538
	if (mem_cgroup_swappiness(memcg)) {
1539
		unsigned long memsw_limit;
1540

1541 1542
		memsw_limit = memcg->memsw.limit;
		limit = min(limit + total_swap_pages, memsw_limit);
1543 1544
	}
	return limit;
D
David Rientjes 已提交
1545 1546
}

1547 1548
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1549 1550 1551 1552 1553 1554 1555
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1556
	/*
1557 1558 1559
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1560
	 */
1561
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1562
		mark_tsk_oom_victim(current);
1563 1564 1565 1566
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1567
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1568
	for_each_mem_cgroup_tree(iter, memcg) {
1569
		struct css_task_iter it;
1570 1571
		struct task_struct *task;

1572 1573
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1586
				css_task_iter_end(&it);
1587 1588 1589 1590 1591 1592 1593 1594
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1607
		}
1608
		css_task_iter_end(&it);
1609 1610 1611 1612 1613 1614 1615 1616 1617
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1618 1619
#if MAX_NUMNODES > 1

1620 1621
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1622
 * @memcg: the target memcg
1623 1624 1625 1626 1627 1628 1629
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1630
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1631 1632
		int nid, bool noswap)
{
1633
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1634 1635 1636
		return true;
	if (noswap || !total_swap_pages)
		return false;
1637
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1638 1639 1640 1641
		return true;
	return false;

}
1642 1643 1644 1645 1646 1647 1648

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1649
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1650 1651
{
	int nid;
1652 1653 1654 1655
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1656
	if (!atomic_read(&memcg->numainfo_events))
1657
		return;
1658
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1659 1660 1661
		return;

	/* make a nodemask where this memcg uses memory from */
1662
	memcg->scan_nodes = node_states[N_MEMORY];
1663

1664
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1665

1666 1667
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1668
	}
1669

1670 1671
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1686
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1687 1688 1689
{
	int node;

1690 1691
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1692

1693
	node = next_node(node, memcg->scan_nodes);
1694
	if (node == MAX_NUMNODES)
1695
		node = first_node(memcg->scan_nodes);
1696 1697 1698 1699 1700 1701 1702 1703 1704
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1705
	memcg->last_scanned_node = node;
1706 1707 1708
	return node;
}
#else
1709
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1710 1711 1712 1713 1714
{
	return 0;
}
#endif

1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1730
	excess = soft_limit_excess(root_memcg);
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1759
		if (!soft_limit_excess(root_memcg))
1760
			break;
1761
	}
1762 1763
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1764 1765
}

1766 1767 1768 1769 1770 1771
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1772 1773
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1774 1775 1776 1777
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1778
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1779
{
1780
	struct mem_cgroup *iter, *failed = NULL;
1781

1782 1783
	spin_lock(&memcg_oom_lock);

1784
	for_each_mem_cgroup_tree(iter, memcg) {
1785
		if (iter->oom_lock) {
1786 1787 1788 1789 1790
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1791 1792
			mem_cgroup_iter_break(memcg, iter);
			break;
1793 1794
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1795
	}
K
KAMEZAWA Hiroyuki 已提交
1796

1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1808
		}
1809 1810
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1811 1812 1813 1814

	spin_unlock(&memcg_oom_lock);

	return !failed;
1815
}
1816

1817
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1818
{
K
KAMEZAWA Hiroyuki 已提交
1819 1820
	struct mem_cgroup *iter;

1821
	spin_lock(&memcg_oom_lock);
1822
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1823
	for_each_mem_cgroup_tree(iter, memcg)
1824
		iter->oom_lock = false;
1825
	spin_unlock(&memcg_oom_lock);
1826 1827
}

1828
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1829 1830 1831
{
	struct mem_cgroup *iter;

1832
	for_each_mem_cgroup_tree(iter, memcg)
1833 1834 1835
		atomic_inc(&iter->under_oom);
}

1836
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1837 1838 1839
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1840 1841 1842 1843 1844
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1845
	for_each_mem_cgroup_tree(iter, memcg)
1846
		atomic_add_unless(&iter->under_oom, -1, 0);
1847 1848
}

K
KAMEZAWA Hiroyuki 已提交
1849 1850
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1851
struct oom_wait_info {
1852
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1853 1854 1855 1856 1857 1858
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1859 1860
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1861 1862 1863
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1864
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1865

1866 1867
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1868 1869 1870 1871
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1872
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1873
{
1874
	atomic_inc(&memcg->oom_wakeups);
1875 1876
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1877 1878
}

1879
static void memcg_oom_recover(struct mem_cgroup *memcg)
1880
{
1881 1882
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1883 1884
}

1885
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1886
{
1887 1888
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
1889
	/*
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1902
	 */
1903 1904 1905 1906
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
1907 1908 1909 1910
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1911
 * @handle: actually kill/wait or just clean up the OOM state
1912
 *
1913 1914
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1915
 *
1916
 * Memcg supports userspace OOM handling where failed allocations must
1917 1918 1919 1920
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1921
 * the end of the page fault to complete the OOM handling.
1922 1923
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1924
 * completed, %false otherwise.
1925
 */
1926
bool mem_cgroup_oom_synchronize(bool handle)
1927
{
1928
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
1929
	struct oom_wait_info owait;
1930
	bool locked;
1931 1932 1933

	/* OOM is global, do not handle */
	if (!memcg)
1934
		return false;
1935

1936
	if (!handle || oom_killer_disabled)
1937
		goto cleanup;
1938 1939 1940 1941 1942 1943

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1944

1945
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
1959
		schedule();
1960 1961 1962 1963 1964
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1965 1966 1967 1968 1969 1970 1971 1972
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1973 1974
cleanup:
	current->memcg_oom.memcg = NULL;
1975
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1976
	return true;
1977 1978
}

1979 1980 1981
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
1982
 *
1983 1984 1985
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
1986
 *
1987
 *   memcg = mem_cgroup_begin_page_stat(page);
1988 1989
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
1990
 *   mem_cgroup_end_page_stat(memcg);
1991
 */
1992
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1993 1994
{
	struct mem_cgroup *memcg;
1995
	unsigned long flags;
1996

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page from being uncharged.
	 * E.g. end-writeback clearing PageWriteback(), which allows
	 * migration to go ahead and uncharge the page before the
	 * account transaction might be complete.
	 */
2009 2010 2011 2012
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;
2013
again:
2014
	memcg = page->mem_cgroup;
2015
	if (unlikely(!memcg))
2016 2017
		return NULL;

Q
Qiang Huang 已提交
2018
	if (atomic_read(&memcg->moving_account) <= 0)
2019
		return memcg;
2020

2021
	spin_lock_irqsave(&memcg->move_lock, flags);
2022
	if (memcg != page->mem_cgroup) {
2023
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2024 2025
		goto again;
	}
2026 2027 2028 2029 2030 2031 2032 2033

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
	 * the task who has the lock for mem_cgroup_end_page_stat().
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2034 2035

	return memcg;
2036 2037
}

2038 2039 2040 2041
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 */
2042
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
2043
{
2044 2045 2046 2047 2048 2049 2050 2051
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2052

2053
	rcu_read_unlock();
2054 2055
}

2056 2057 2058 2059 2060 2061 2062 2063 2064
/**
 * mem_cgroup_update_page_stat - update page state statistics
 * @memcg: memcg to account against
 * @idx: page state item to account
 * @val: number of pages (positive or negative)
 *
 * See mem_cgroup_begin_page_stat() for locking requirements.
 */
void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
S
Sha Zhengju 已提交
2065
				 enum mem_cgroup_stat_index idx, int val)
2066
{
2067
	VM_BUG_ON(!rcu_read_lock_held());
2068

2069 2070
	if (memcg)
		this_cpu_add(memcg->stat->count[idx], val);
2071
}
2072

2073 2074 2075 2076
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2077
#define CHARGE_BATCH	32U
2078 2079
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2080
	unsigned int nr_pages;
2081
	struct work_struct work;
2082
	unsigned long flags;
2083
#define FLUSHING_CACHED_CHARGE	0
2084 2085
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2086
static DEFINE_MUTEX(percpu_charge_mutex);
2087

2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2098
 */
2099
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2100 2101
{
	struct memcg_stock_pcp *stock;
2102
	bool ret = false;
2103

2104
	if (nr_pages > CHARGE_BATCH)
2105
		return ret;
2106

2107
	stock = &get_cpu_var(memcg_stock);
2108
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2109
		stock->nr_pages -= nr_pages;
2110 2111
		ret = true;
	}
2112 2113 2114 2115 2116
	put_cpu_var(memcg_stock);
	return ret;
}

/*
2117
 * Returns stocks cached in percpu and reset cached information.
2118 2119 2120 2121 2122
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2123
	if (stock->nr_pages) {
2124
		page_counter_uncharge(&old->memory, stock->nr_pages);
2125
		if (do_swap_account)
2126
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2127
		css_put_many(&old->css, stock->nr_pages);
2128
		stock->nr_pages = 0;
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
2139
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2140
	drain_stock(stock);
2141
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2142 2143 2144
}

/*
2145
 * Cache charges(val) to local per_cpu area.
2146
 * This will be consumed by consume_stock() function, later.
2147
 */
2148
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2149 2150 2151
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2152
	if (stock->cached != memcg) { /* reset if necessary */
2153
		drain_stock(stock);
2154
		stock->cached = memcg;
2155
	}
2156
	stock->nr_pages += nr_pages;
2157 2158 2159 2160
	put_cpu_var(memcg_stock);
}

/*
2161
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2162
 * of the hierarchy under it.
2163
 */
2164
static void drain_all_stock(struct mem_cgroup *root_memcg)
2165
{
2166
	int cpu, curcpu;
2167

2168 2169 2170
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2171 2172
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2173
	curcpu = get_cpu();
2174 2175
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2176
		struct mem_cgroup *memcg;
2177

2178 2179
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2180
			continue;
2181
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
2182
			continue;
2183 2184 2185 2186 2187 2188
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2189
	}
2190
	put_cpu();
A
Andrew Morton 已提交
2191
	put_online_cpus();
2192
	mutex_unlock(&percpu_charge_mutex);
2193 2194
}

2195 2196 2197 2198
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2199
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2200 2201 2202
{
	int i;

2203
	spin_lock(&memcg->pcp_counter_lock);
2204
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2205
		long x = per_cpu(memcg->stat->count[i], cpu);
2206

2207 2208
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2209
	}
2210
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2211
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2212

2213 2214
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2215
	}
2216
	spin_unlock(&memcg->pcp_counter_lock);
2217 2218
}

2219
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2220 2221 2222 2223 2224
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2225
	struct mem_cgroup *iter;
2226

2227
	if (action == CPU_ONLINE)
2228 2229
		return NOTIFY_OK;

2230
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2231
		return NOTIFY_OK;
2232

2233
	for_each_mem_cgroup(iter)
2234 2235
		mem_cgroup_drain_pcp_counter(iter, cpu);

2236 2237 2238 2239 2240
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2241 2242
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2243
{
2244
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2245
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2246
	struct mem_cgroup *mem_over_limit;
2247
	struct page_counter *counter;
2248
	unsigned long nr_reclaimed;
2249 2250
	bool may_swap = true;
	bool drained = false;
2251
	int ret = 0;
2252

2253 2254
	if (mem_cgroup_is_root(memcg))
		goto done;
2255
retry:
2256 2257
	if (consume_stock(memcg, nr_pages))
		goto done;
2258

2259
	if (!do_swap_account ||
2260 2261
	    !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2262
			goto done_restock;
2263
		if (do_swap_account)
2264 2265
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2266
	} else {
2267
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2268
		may_swap = false;
2269
	}
2270

2271 2272 2273 2274
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2275

2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
		goto bypass;

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2290 2291
	if (!(gfp_mask & __GFP_WAIT))
		goto nomem;
2292

2293 2294
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

2295 2296
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2297

2298
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2299
		goto retry;
2300

2301
	if (!drained) {
2302
		drain_all_stock(mem_over_limit);
2303 2304 2305 2306
		drained = true;
		goto retry;
	}

2307 2308
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2309 2310 2311 2312 2313 2314 2315 2316 2317
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2318
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2319 2320 2321 2322 2323 2324 2325 2326
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2327 2328 2329
	if (nr_retries--)
		goto retry;

2330 2331 2332
	if (gfp_mask & __GFP_NOFAIL)
		goto bypass;

2333 2334 2335
	if (fatal_signal_pending(current))
		goto bypass;

2336 2337
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2338
	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2339
nomem:
2340
	if (!(gfp_mask & __GFP_NOFAIL))
2341
		return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2342
bypass:
2343
	return -EINTR;
2344 2345

done_restock:
2346
	css_get_many(&memcg->css, batch);
2347 2348
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
	/*
	 * If the hierarchy is above the normal consumption range,
	 * make the charging task trim their excess contribution.
	 */
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
2359
done:
2360
	return ret;
2361
}
2362

2363
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2364
{
2365 2366 2367
	if (mem_cgroup_is_root(memcg))
		return;

2368
	page_counter_uncharge(&memcg->memory, nr_pages);
2369
	if (do_swap_account)
2370
		page_counter_uncharge(&memcg->memsw, nr_pages);
2371

2372
	css_put_many(&memcg->css, nr_pages);
2373 2374
}

2375 2376
/*
 * A helper function to get mem_cgroup from ID. must be called under
2377 2378 2379
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
2380 2381 2382 2383 2384 2385
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	/* ID 0 is unused ID */
	if (!id)
		return NULL;
L
Li Zefan 已提交
2386
	return mem_cgroup_from_id(id);
2387 2388
}

2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
/*
 * try_get_mem_cgroup_from_page - look up page's memcg association
 * @page: the page
 *
 * Look up, get a css reference, and return the memcg that owns @page.
 *
 * The page must be locked to prevent racing with swap-in and page
 * cache charges.  If coming from an unlocked page table, the caller
 * must ensure the page is on the LRU or this can race with charging.
 */
2399
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2400
{
2401
	struct mem_cgroup *memcg;
2402
	unsigned short id;
2403 2404
	swp_entry_t ent;

2405
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2406

2407
	memcg = page->mem_cgroup;
2408 2409
	if (memcg) {
		if (!css_tryget_online(&memcg->css))
2410
			memcg = NULL;
2411
	} else if (PageSwapCache(page)) {
2412
		ent.val = page_private(page);
2413
		id = lookup_swap_cgroup_id(ent);
2414
		rcu_read_lock();
2415
		memcg = mem_cgroup_lookup(id);
2416
		if (memcg && !css_tryget_online(&memcg->css))
2417
			memcg = NULL;
2418
		rcu_read_unlock();
2419
	}
2420
	return memcg;
2421 2422
}

2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2454
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2455
			  bool lrucare)
2456
{
2457
	int isolated;
2458

2459
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2460 2461 2462 2463 2464

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2465 2466
	if (lrucare)
		lock_page_lru(page, &isolated);
2467

2468 2469
	/*
	 * Nobody should be changing or seriously looking at
2470
	 * page->mem_cgroup at this point:
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2482
	page->mem_cgroup = memcg;
2483

2484 2485
	if (lrucare)
		unlock_page_lru(page, isolated);
2486
}
2487

2488
#ifdef CONFIG_MEMCG_KMEM
2489 2490
int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
		      unsigned long nr_pages)
2491
{
2492
	struct page_counter *counter;
2493 2494
	int ret = 0;

2495 2496
	ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
	if (ret < 0)
2497 2498
		return ret;

2499
	ret = try_charge(memcg, gfp, nr_pages);
2500 2501
	if (ret == -EINTR)  {
		/*
2502 2503 2504 2505 2506 2507
		 * try_charge() chose to bypass to root due to OOM kill or
		 * fatal signal.  Since our only options are to either fail
		 * the allocation or charge it to this cgroup, do it as a
		 * temporary condition. But we can't fail. From a kmem/slab
		 * perspective, the cache has already been selected, by
		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2508 2509 2510
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
2511 2512 2513
		 * memcg_charge_kmem in a sane state, but was OOM-killed
		 * during try_charge() above. Tasks that were already dying
		 * when the allocation triggers should have been already
2514 2515
		 * directed to the root cgroup in memcontrol.h
		 */
2516
		page_counter_charge(&memcg->memory, nr_pages);
2517
		if (do_swap_account)
2518
			page_counter_charge(&memcg->memsw, nr_pages);
2519
		css_get_many(&memcg->css, nr_pages);
2520 2521
		ret = 0;
	} else if (ret)
2522
		page_counter_uncharge(&memcg->kmem, nr_pages);
2523 2524 2525 2526

	return ret;
}

2527
void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2528
{
2529
	page_counter_uncharge(&memcg->memory, nr_pages);
2530
	if (do_swap_account)
2531
		page_counter_uncharge(&memcg->memsw, nr_pages);
2532

2533
	page_counter_uncharge(&memcg->kmem, nr_pages);
2534

2535
	css_put_many(&memcg->css, nr_pages);
2536 2537
}

2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2548
static int memcg_alloc_cache_id(void)
2549
{
2550 2551 2552
	int id, size;
	int err;

2553
	id = ida_simple_get(&memcg_cache_ida,
2554 2555 2556
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2557

2558
	if (id < memcg_nr_cache_ids)
2559 2560 2561 2562 2563 2564
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2565
	down_write(&memcg_cache_ids_sem);
2566 2567

	size = 2 * (id + 1);
2568 2569 2570 2571 2572
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2573
	err = memcg_update_all_caches(size);
2574 2575
	if (!err)
		err = memcg_update_all_list_lrus(size);
2576 2577 2578 2579 2580
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2581
	if (err) {
2582
		ida_simple_remove(&memcg_cache_ida, id);
2583 2584 2585 2586 2587 2588 2589
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2590
	ida_simple_remove(&memcg_cache_ida, id);
2591 2592
}

2593
struct memcg_kmem_cache_create_work {
2594 2595 2596 2597 2598
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2599
static void memcg_kmem_cache_create_func(struct work_struct *w)
2600
{
2601 2602
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2603 2604
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2605

2606
	memcg_create_kmem_cache(memcg, cachep);
2607

2608
	css_put(&memcg->css);
2609 2610 2611 2612 2613 2614
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2615 2616
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2617
{
2618
	struct memcg_kmem_cache_create_work *cw;
2619

2620
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2621
	if (!cw)
2622
		return;
2623 2624

	css_get(&memcg->css);
2625 2626 2627

	cw->memcg = memcg;
	cw->cachep = cachep;
2628
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2629 2630 2631 2632

	schedule_work(&cw->work);
}

2633 2634
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2635 2636 2637 2638
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2639
	 * in __memcg_schedule_kmem_cache_create will recurse.
2640 2641 2642 2643 2644 2645 2646
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2647
	current->memcg_kmem_skip_account = 1;
2648
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2649
	current->memcg_kmem_skip_account = 0;
2650
}
2651

2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
2665
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2666 2667
{
	struct mem_cgroup *memcg;
2668
	struct kmem_cache *memcg_cachep;
2669

2670
	VM_BUG_ON(!is_root_cache(cachep));
2671

2672
	if (current->memcg_kmem_skip_account)
2673 2674
		return cachep;

2675
	memcg = get_mem_cgroup_from_mm(current->mm);
2676
	if (!memcg_kmem_is_active(memcg))
2677
		goto out;
2678

2679
	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
2680 2681
	if (likely(memcg_cachep))
		return memcg_cachep;
2682 2683 2684 2685 2686 2687 2688 2689 2690

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2691 2692 2693
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2694
	 */
2695
	memcg_schedule_kmem_cache_create(memcg, cachep);
2696
out:
2697
	css_put(&memcg->css);
2698
	return cachep;
2699 2700
}

2701 2702 2703
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
2704
		css_put(&cachep->memcg_params.memcg->css);
2705 2706
}

2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
2728

2729
	memcg = get_mem_cgroup_from_mm(current->mm);
2730

2731
	if (!memcg_kmem_is_active(memcg)) {
2732 2733 2734 2735
		css_put(&memcg->css);
		return true;
	}

2736
	ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
2751
		memcg_uncharge_kmem(memcg, 1 << order);
2752 2753
		return;
	}
2754
	page->mem_cgroup = memcg;
2755 2756 2757 2758
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
2759
	struct mem_cgroup *memcg = page->mem_cgroup;
2760 2761 2762 2763

	if (!memcg)
		return;

2764
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2765

2766
	memcg_uncharge_kmem(memcg, 1 << order);
2767
	page->mem_cgroup = NULL;
2768
}
2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779

struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
{
	struct mem_cgroup *memcg = NULL;
	struct kmem_cache *cachep;
	struct page *page;

	page = virt_to_head_page(ptr);
	if (PageSlab(page)) {
		cachep = page->slab_cache;
		if (!is_root_cache(cachep))
2780
			memcg = cachep->memcg_params.memcg;
2781 2782 2783 2784 2785 2786
	} else
		/* page allocated by alloc_kmem_pages */
		memcg = page->mem_cgroup;

	return memcg;
}
2787 2788
#endif /* CONFIG_MEMCG_KMEM */

2789 2790 2791 2792
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2793 2794 2795
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2796
 */
2797
void mem_cgroup_split_huge_fixup(struct page *head)
2798
{
2799
	int i;
2800

2801 2802
	if (mem_cgroup_disabled())
		return;
2803

2804
	for (i = 1; i < HPAGE_PMD_NR; i++)
2805
		head[i].mem_cgroup = head->mem_cgroup;
2806

2807
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2808
		       HPAGE_PMD_NR);
2809
}
2810
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2811

2812
/**
2813
 * mem_cgroup_move_account - move account of the page
2814
 * @page: the page
2815
 * @nr_pages: number of regular pages (>1 for huge pages)
2816 2817 2818 2819
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2820
 * - page is not on LRU (isolate_page() is useful.)
2821
 * - compound_lock is held when nr_pages > 1
2822
 *
2823 2824
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
2825
 */
2826 2827 2828
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct mem_cgroup *from,
2829
				   struct mem_cgroup *to)
2830
{
2831 2832
	unsigned long flags;
	int ret;
2833

2834
	VM_BUG_ON(from == to);
2835
	VM_BUG_ON_PAGE(PageLRU(page), page);
2836 2837 2838 2839 2840 2841 2842
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2843
	if (nr_pages > 1 && !PageTransHuge(page))
2844 2845
		goto out;

2846
	/*
2847
	 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
2848 2849 2850 2851 2852
	 * of its source page while we change it: page migration takes
	 * both pages off the LRU, but page cache replacement doesn't.
	 */
	if (!trylock_page(page))
		goto out;
2853 2854

	ret = -EINVAL;
2855
	if (page->mem_cgroup != from)
2856
		goto out_unlock;
2857

2858
	spin_lock_irqsave(&from->move_lock, flags);
2859

2860
	if (!PageAnon(page) && page_mapped(page)) {
2861 2862 2863 2864 2865
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}
2866

2867 2868 2869 2870 2871 2872
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}
2873

2874
	/*
2875
	 * It is safe to change page->mem_cgroup here because the page
2876 2877 2878
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */
2879

2880
	/* caller should have done css_get */
2881
	page->mem_cgroup = to;
2882 2883
	spin_unlock_irqrestore(&from->move_lock, flags);

2884
	ret = 0;
2885 2886 2887

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
2888
	memcg_check_events(to, page);
2889
	mem_cgroup_charge_statistics(from, page, -nr_pages);
2890
	memcg_check_events(from, page);
2891 2892 2893
	local_irq_enable();
out_unlock:
	unlock_page(page);
2894
out:
2895 2896 2897
	return ret;
}

A
Andrew Morton 已提交
2898
#ifdef CONFIG_MEMCG_SWAP
2899 2900
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2901
{
2902 2903
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2904
}
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2917
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2918 2919 2920
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2921
				struct mem_cgroup *from, struct mem_cgroup *to)
2922 2923 2924
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2925 2926
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2927 2928 2929

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2930
		mem_cgroup_swap_statistics(to, true);
2931 2932 2933 2934 2935 2936
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2937
				struct mem_cgroup *from, struct mem_cgroup *to)
2938 2939 2940
{
	return -EINVAL;
}
2941
#endif
K
KAMEZAWA Hiroyuki 已提交
2942

2943
static DEFINE_MUTEX(memcg_limit_mutex);
2944

2945
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2946
				   unsigned long limit)
2947
{
2948 2949 2950
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2951
	int retry_count;
2952
	int ret;
2953 2954 2955 2956 2957 2958

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2959 2960
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2961

2962
	oldusage = page_counter_read(&memcg->memory);
2963

2964
	do {
2965 2966 2967 2968
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2969 2970 2971 2972

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2973
			ret = -EINVAL;
2974 2975
			break;
		}
2976 2977 2978 2979
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2980 2981 2982 2983

		if (!ret)
			break;

2984 2985
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2986
		curusage = page_counter_read(&memcg->memory);
2987
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2988
		if (curusage >= oldusage)
2989 2990 2991
			retry_count--;
		else
			oldusage = curusage;
2992 2993
	} while (retry_count);

2994 2995
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2996

2997 2998 2999
	return ret;
}

L
Li Zefan 已提交
3000
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3001
					 unsigned long limit)
3002
{
3003 3004 3005
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
3006
	int retry_count;
3007
	int ret;
3008

3009
	/* see mem_cgroup_resize_res_limit */
3010 3011 3012 3013 3014 3015
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
3016 3017 3018 3019
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3020 3021 3022 3023

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
3024 3025 3026
			ret = -EINVAL;
			break;
		}
3027 3028 3029 3030
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
3031 3032 3033 3034

		if (!ret)
			break;

3035 3036
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

3037
		curusage = page_counter_read(&memcg->memsw);
3038
		/* Usage is reduced ? */
3039
		if (curusage >= oldusage)
3040
			retry_count--;
3041 3042
		else
			oldusage = curusage;
3043 3044
	} while (retry_count);

3045 3046
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3047

3048 3049 3050
	return ret;
}

3051 3052 3053 3054 3055 3056 3057 3058 3059
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3060
	unsigned long excess;
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3085
		spin_lock_irq(&mctz->lock);
3086
		__mem_cgroup_remove_exceeded(mz, mctz);
3087 3088 3089 3090 3091 3092

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3093 3094 3095
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3096
		excess = soft_limit_excess(mz->memcg);
3097 3098 3099 3100 3101 3102 3103 3104 3105
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3106
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3107
		spin_unlock_irq(&mctz->lock);
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3125 3126 3127 3128 3129 3130
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
3131 3132
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3133 3134
	bool ret;

3135
	/*
3136 3137 3138 3139
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
3140
	 */
3141 3142 3143 3144 3145 3146
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3147 3148
}

3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

3159 3160
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3161
	/* try to free all pages in this cgroup */
3162
	while (nr_retries && page_counter_read(&memcg->memory)) {
3163
		int progress;
3164

3165 3166 3167
		if (signal_pending(current))
			return -EINTR;

3168 3169
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3170
		if (!progress) {
3171
			nr_retries--;
3172
			/* maybe some writeback is necessary */
3173
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3174
		}
3175 3176

	}
3177 3178

	return 0;
3179 3180
}

3181 3182 3183
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3184
{
3185
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3186

3187 3188
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3189
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3190 3191
}

3192 3193
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3194
{
3195
	return mem_cgroup_from_css(css)->use_hierarchy;
3196 3197
}

3198 3199
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3200 3201
{
	int retval = 0;
3202
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3203
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3204

3205
	mutex_lock(&memcg_create_mutex);
3206 3207 3208 3209

	if (memcg->use_hierarchy == val)
		goto out;

3210
	/*
3211
	 * If parent's use_hierarchy is set, we can't make any modifications
3212 3213 3214 3215 3216 3217
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3218
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3219
				(val == 1 || val == 0)) {
3220
		if (!memcg_has_children(memcg))
3221
			memcg->use_hierarchy = val;
3222 3223 3224 3225
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3226 3227

out:
3228
	mutex_unlock(&memcg_create_mutex);
3229 3230 3231 3232

	return retval;
}

3233 3234
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
{
	struct mem_cgroup *iter;
	long val = 0;

	/* Per-cpu values can be negative, use a signed accumulator */
	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
}

static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
{
	u64 val;

3252 3253 3254 3255 3256 3257
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
3258
		if (!swap)
3259
			val = page_counter_read(&memcg->memory);
3260
		else
3261
			val = page_counter_read(&memcg->memsw);
3262 3263 3264 3265
	}
	return val << PAGE_SHIFT;
}

3266 3267 3268 3269 3270 3271 3272
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3273

3274
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3275
			       struct cftype *cft)
B
Balbir Singh 已提交
3276
{
3277
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3278
	struct page_counter *counter;
3279

3280
	switch (MEMFILE_TYPE(cft->private)) {
3281
	case _MEM:
3282 3283
		counter = &memcg->memory;
		break;
3284
	case _MEMSWAP:
3285 3286
		counter = &memcg->memsw;
		break;
3287
	case _KMEM:
3288
		counter = &memcg->kmem;
3289
		break;
3290 3291 3292
	default:
		BUG();
	}
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
			return mem_cgroup_usage(memcg, false);
		if (counter == &memcg->memsw)
			return mem_cgroup_usage(memcg, true);
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3312
}
3313 3314

#ifdef CONFIG_MEMCG_KMEM
3315 3316
static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long nr_pages)
3317 3318 3319 3320 3321 3322 3323
{
	int err = 0;
	int memcg_id;

	if (memcg_kmem_is_active(memcg))
		return 0;

3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
3336
	mutex_lock(&memcg_create_mutex);
3337 3338
	if (cgroup_has_tasks(memcg->css.cgroup) ||
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
3339 3340 3341 3342
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
3343

3344
	memcg_id = memcg_alloc_cache_id();
3345 3346 3347 3348 3349 3350
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
V
Vladimir Davydov 已提交
3351 3352
	 * We couldn't have accounted to this cgroup, because it hasn't got
	 * activated yet, so this should succeed.
3353
	 */
3354
	err = page_counter_limit(&memcg->kmem, nr_pages);
3355 3356 3357 3358
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
V
Vladimir Davydov 已提交
3359 3360
	 * A memory cgroup is considered kmem-active as soon as it gets
	 * kmemcg_id. Setting the id after enabling static branching will
3361 3362 3363
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3364
	memcg->kmemcg_id = memcg_id;
3365
out:
3366 3367 3368 3369
	return err;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3370
				   unsigned long limit)
3371 3372 3373
{
	int ret;

3374
	mutex_lock(&memcg_limit_mutex);
3375
	if (!memcg_kmem_is_active(memcg))
3376
		ret = memcg_activate_kmem(memcg, limit);
3377
	else
3378 3379
		ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
3380 3381 3382
	return ret;
}

3383
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3384
{
3385
	int ret = 0;
3386
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3387

3388 3389
	if (!parent)
		return 0;
3390

3391
	mutex_lock(&memcg_limit_mutex);
3392
	/*
3393 3394
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
3395
	 */
3396
	if (memcg_kmem_is_active(parent))
3397 3398
		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
	mutex_unlock(&memcg_limit_mutex);
3399
	return ret;
3400
}
3401 3402
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3403
				   unsigned long limit)
3404 3405 3406
{
	return -EINVAL;
}
3407
#endif /* CONFIG_MEMCG_KMEM */
3408

3409 3410 3411 3412
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3413 3414
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3415
{
3416
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3417
	unsigned long nr_pages;
3418 3419
	int ret;

3420
	buf = strstrip(buf);
3421
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3422 3423
	if (ret)
		return ret;
3424

3425
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3426
	case RES_LIMIT:
3427 3428 3429 3430
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3431 3432 3433
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3434
			break;
3435 3436
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3437
			break;
3438 3439 3440 3441
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
		}
3442
		break;
3443 3444 3445
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3446 3447
		break;
	}
3448
	return ret ?: nbytes;
B
Balbir Singh 已提交
3449 3450
}

3451 3452
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3453
{
3454
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3455
	struct page_counter *counter;
3456

3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
	default:
		BUG();
	}
3470

3471
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3472
	case RES_MAX_USAGE:
3473
		page_counter_reset_watermark(counter);
3474 3475
		break;
	case RES_FAILCNT:
3476
		counter->failcnt = 0;
3477
		break;
3478 3479
	default:
		BUG();
3480
	}
3481

3482
	return nbytes;
3483 3484
}

3485
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3486 3487
					struct cftype *cft)
{
3488
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3489 3490
}

3491
#ifdef CONFIG_MMU
3492
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3493 3494
					struct cftype *cft, u64 val)
{
3495
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3496

3497
	if (val & ~MOVE_MASK)
3498
		return -EINVAL;
3499

3500
	/*
3501 3502 3503 3504
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3505
	 */
3506
	memcg->move_charge_at_immigrate = val;
3507 3508
	return 0;
}
3509
#else
3510
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3511 3512 3513 3514 3515
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3516

3517
#ifdef CONFIG_NUMA
3518
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3519
{
3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3532
	int nid;
3533
	unsigned long nr;
3534
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3535

3536 3537 3538 3539 3540 3541 3542 3543 3544
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3545 3546
	}

3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3562 3563 3564 3565 3566 3567
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3568
static int memcg_stat_show(struct seq_file *m, void *v)
3569
{
3570
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3571
	unsigned long memory, memsw;
3572 3573
	struct mem_cgroup *mi;
	unsigned int i;
3574

3575 3576 3577 3578
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3579 3580
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3581
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3582
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3583
			continue;
3584 3585
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3586
	}
L
Lee Schermerhorn 已提交
3587

3588 3589 3590 3591 3592 3593 3594 3595
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3596
	/* Hierarchical information */
3597 3598 3599 3600
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3601
	}
3602 3603 3604 3605 3606
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
	if (do_swap_account)
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3607

3608 3609 3610
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

3611
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3612
			continue;
3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3633
	}
K
KAMEZAWA Hiroyuki 已提交
3634

K
KOSAKI Motohiro 已提交
3635 3636 3637 3638
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3639
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3640 3641 3642 3643 3644
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3645
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3646
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3647

3648 3649 3650 3651
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3652
			}
3653 3654 3655 3656
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3657 3658 3659
	}
#endif

3660 3661 3662
	return 0;
}

3663 3664
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3665
{
3666
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3667

3668
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3669 3670
}

3671 3672
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3673
{
3674
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3675

3676
	if (val > 100)
K
KOSAKI Motohiro 已提交
3677 3678
		return -EINVAL;

3679
	if (css->parent)
3680 3681 3682
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3683

K
KOSAKI Motohiro 已提交
3684 3685 3686
	return 0;
}

3687 3688 3689
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3690
	unsigned long usage;
3691 3692 3693 3694
	int i;

	rcu_read_lock();
	if (!swap)
3695
		t = rcu_dereference(memcg->thresholds.primary);
3696
	else
3697
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3698 3699 3700 3701

	if (!t)
		goto unlock;

3702
	usage = mem_cgroup_usage(memcg, swap);
3703 3704

	/*
3705
	 * current_threshold points to threshold just below or equal to usage.
3706 3707 3708
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3709
	i = t->current_threshold;
3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3733
	t->current_threshold = i - 1;
3734 3735 3736 3737 3738 3739
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3740 3741 3742 3743 3744 3745 3746
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3747 3748 3749 3750 3751 3752 3753
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3754 3755 3756 3757 3758 3759 3760
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3761 3762
}

3763
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3764 3765 3766
{
	struct mem_cgroup_eventfd_list *ev;

3767 3768
	spin_lock(&memcg_oom_lock);

3769
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3770
		eventfd_signal(ev->eventfd, 1);
3771 3772

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3773 3774 3775
	return 0;
}

3776
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3777
{
K
KAMEZAWA Hiroyuki 已提交
3778 3779
	struct mem_cgroup *iter;

3780
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3781
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3782 3783
}

3784
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3785
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3786
{
3787 3788
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3789 3790
	unsigned long threshold;
	unsigned long usage;
3791
	int i, size, ret;
3792

3793
	ret = page_counter_memparse(args, "-1", &threshold);
3794 3795 3796 3797
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3798

3799
	if (type == _MEM) {
3800
		thresholds = &memcg->thresholds;
3801
		usage = mem_cgroup_usage(memcg, false);
3802
	} else if (type == _MEMSWAP) {
3803
		thresholds = &memcg->memsw_thresholds;
3804
		usage = mem_cgroup_usage(memcg, true);
3805
	} else
3806 3807 3808
		BUG();

	/* Check if a threshold crossed before adding a new one */
3809
	if (thresholds->primary)
3810 3811
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3812
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3813 3814

	/* Allocate memory for new array of thresholds */
3815
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3816
			GFP_KERNEL);
3817
	if (!new) {
3818 3819 3820
		ret = -ENOMEM;
		goto unlock;
	}
3821
	new->size = size;
3822 3823

	/* Copy thresholds (if any) to new array */
3824 3825
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3826
				sizeof(struct mem_cgroup_threshold));
3827 3828
	}

3829
	/* Add new threshold */
3830 3831
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3832 3833

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3834
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3835 3836 3837
			compare_thresholds, NULL);

	/* Find current threshold */
3838
	new->current_threshold = -1;
3839
	for (i = 0; i < size; i++) {
3840
		if (new->entries[i].threshold <= usage) {
3841
			/*
3842 3843
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3844 3845
			 * it here.
			 */
3846
			++new->current_threshold;
3847 3848
		} else
			break;
3849 3850
	}

3851 3852 3853 3854 3855
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3856

3857
	/* To be sure that nobody uses thresholds */
3858 3859 3860 3861 3862 3863 3864 3865
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3866
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3867 3868
	struct eventfd_ctx *eventfd, const char *args)
{
3869
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3870 3871
}

3872
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3873 3874
	struct eventfd_ctx *eventfd, const char *args)
{
3875
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3876 3877
}

3878
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3879
	struct eventfd_ctx *eventfd, enum res_type type)
3880
{
3881 3882
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3883
	unsigned long usage;
3884
	int i, j, size;
3885 3886

	mutex_lock(&memcg->thresholds_lock);
3887 3888

	if (type == _MEM) {
3889
		thresholds = &memcg->thresholds;
3890
		usage = mem_cgroup_usage(memcg, false);
3891
	} else if (type == _MEMSWAP) {
3892
		thresholds = &memcg->memsw_thresholds;
3893
		usage = mem_cgroup_usage(memcg, true);
3894
	} else
3895 3896
		BUG();

3897 3898 3899
	if (!thresholds->primary)
		goto unlock;

3900 3901 3902 3903
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3904 3905 3906
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3907 3908 3909
			size++;
	}

3910
	new = thresholds->spare;
3911

3912 3913
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3914 3915
		kfree(new);
		new = NULL;
3916
		goto swap_buffers;
3917 3918
	}

3919
	new->size = size;
3920 3921

	/* Copy thresholds and find current threshold */
3922 3923 3924
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3925 3926
			continue;

3927
		new->entries[j] = thresholds->primary->entries[i];
3928
		if (new->entries[j].threshold <= usage) {
3929
			/*
3930
			 * new->current_threshold will not be used
3931 3932 3933
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3934
			++new->current_threshold;
3935 3936 3937 3938
		}
		j++;
	}

3939
swap_buffers:
3940 3941
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3942 3943 3944 3945 3946 3947
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

3948
	rcu_assign_pointer(thresholds->primary, new);
3949

3950
	/* To be sure that nobody uses thresholds */
3951
	synchronize_rcu();
3952
unlock:
3953 3954
	mutex_unlock(&memcg->thresholds_lock);
}
3955

3956
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3957 3958
	struct eventfd_ctx *eventfd)
{
3959
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3960 3961
}

3962
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3963 3964
	struct eventfd_ctx *eventfd)
{
3965
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3966 3967
}

3968
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3969
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3970 3971 3972 3973 3974 3975 3976
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3977
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3978 3979 3980 3981 3982

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3983
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
3984
		eventfd_signal(eventfd, 1);
3985
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3986 3987 3988 3989

	return 0;
}

3990
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3991
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3992 3993 3994
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3995
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3996

3997
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3998 3999 4000 4001 4002 4003
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4004
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4005 4006
}

4007
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4008
{
4009
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4010

4011 4012
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
4013 4014 4015
	return 0;
}

4016
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4017 4018
	struct cftype *cft, u64 val)
{
4019
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4020 4021

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4022
	if (!css->parent || !((val == 0) || (val == 1)))
4023 4024
		return -EINVAL;

4025
	memcg->oom_kill_disable = val;
4026
	if (!val)
4027
		memcg_oom_recover(memcg);
4028

4029 4030 4031
	return 0;
}

A
Andrew Morton 已提交
4032
#ifdef CONFIG_MEMCG_KMEM
4033
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4034
{
4035 4036 4037 4038 4039
	int ret;

	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
4040

4041
	return mem_cgroup_sockets_init(memcg, ss);
4042
}
4043

4044
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4045
{
4046
	memcg_destroy_kmem_caches(memcg);
4047
	mem_cgroup_sockets_destroy(memcg);
4048
}
4049
#else
4050
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4051 4052 4053
{
	return 0;
}
G
Glauber Costa 已提交
4054

4055 4056 4057
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}
4058 4059
#endif

4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4073 4074 4075 4076 4077
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4078
static void memcg_event_remove(struct work_struct *work)
4079
{
4080 4081
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4082
	struct mem_cgroup *memcg = event->memcg;
4083 4084 4085

	remove_wait_queue(event->wqh, &event->wait);

4086
	event->unregister_event(memcg, event->eventfd);
4087 4088 4089 4090 4091 4092

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4093
	css_put(&memcg->css);
4094 4095 4096 4097 4098 4099 4100
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4101 4102
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
4103
{
4104 4105
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4106
	struct mem_cgroup *memcg = event->memcg;
4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4119
		spin_lock(&memcg->event_list_lock);
4120 4121 4122 4123 4124 4125 4126 4127
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4128
		spin_unlock(&memcg->event_list_lock);
4129 4130 4131 4132 4133
	}

	return 0;
}

4134
static void memcg_event_ptable_queue_proc(struct file *file,
4135 4136
		wait_queue_head_t *wqh, poll_table *pt)
{
4137 4138
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4139 4140 4141 4142 4143 4144

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4145 4146
 * DO NOT USE IN NEW FILES.
 *
4147 4148 4149 4150 4151
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4152 4153
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4154
{
4155
	struct cgroup_subsys_state *css = of_css(of);
4156
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4157
	struct mem_cgroup_event *event;
4158 4159 4160 4161
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4162
	const char *name;
4163 4164 4165
	char *endp;
	int ret;

4166 4167 4168
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4169 4170
	if (*endp != ' ')
		return -EINVAL;
4171
	buf = endp + 1;
4172

4173
	cfd = simple_strtoul(buf, &endp, 10);
4174 4175
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4176
	buf = endp + 1;
4177 4178 4179 4180 4181

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4182
	event->memcg = memcg;
4183
	INIT_LIST_HEAD(&event->list);
4184 4185 4186
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4212 4213 4214 4215 4216
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4217 4218
	 *
	 * DO NOT ADD NEW FILES.
4219
	 */
A
Al Viro 已提交
4220
	name = cfile.file->f_path.dentry->d_name.name;
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4232 4233
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4234 4235 4236 4237 4238
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4239
	/*
4240 4241 4242
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4243
	 */
A
Al Viro 已提交
4244
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4245
					       &memory_cgrp_subsys);
4246
	ret = -EINVAL;
4247
	if (IS_ERR(cfile_css))
4248
		goto out_put_cfile;
4249 4250
	if (cfile_css != css) {
		css_put(cfile_css);
4251
		goto out_put_cfile;
4252
	}
4253

4254
	ret = event->register_event(memcg, event->eventfd, buf);
4255 4256 4257 4258 4259
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

4260 4261 4262
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4263 4264 4265 4266

	fdput(cfile);
	fdput(efile);

4267
	return nbytes;
4268 4269

out_put_css:
4270
	css_put(css);
4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4283
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4284
	{
4285
		.name = "usage_in_bytes",
4286
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4287
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4288
	},
4289 4290
	{
		.name = "max_usage_in_bytes",
4291
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4292
		.write = mem_cgroup_reset,
4293
		.read_u64 = mem_cgroup_read_u64,
4294
	},
B
Balbir Singh 已提交
4295
	{
4296
		.name = "limit_in_bytes",
4297
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4298
		.write = mem_cgroup_write,
4299
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4300
	},
4301 4302 4303
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4304
		.write = mem_cgroup_write,
4305
		.read_u64 = mem_cgroup_read_u64,
4306
	},
B
Balbir Singh 已提交
4307 4308
	{
		.name = "failcnt",
4309
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4310
		.write = mem_cgroup_reset,
4311
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4312
	},
4313 4314
	{
		.name = "stat",
4315
		.seq_show = memcg_stat_show,
4316
	},
4317 4318
	{
		.name = "force_empty",
4319
		.write = mem_cgroup_force_empty_write,
4320
	},
4321 4322 4323 4324 4325
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4326
	{
4327
		.name = "cgroup.event_control",		/* XXX: for compat */
4328
		.write = memcg_write_event_control,
4329 4330 4331
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
4332 4333 4334 4335 4336
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4337 4338 4339 4340 4341
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4342 4343
	{
		.name = "oom_control",
4344
		.seq_show = mem_cgroup_oom_control_read,
4345
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4346 4347
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4348 4349 4350
	{
		.name = "pressure_level",
	},
4351 4352 4353
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4354
		.seq_show = memcg_numa_stat_show,
4355 4356
	},
#endif
4357 4358 4359 4360
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4361
		.write = mem_cgroup_write,
4362
		.read_u64 = mem_cgroup_read_u64,
4363 4364 4365 4366
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4367
		.read_u64 = mem_cgroup_read_u64,
4368 4369 4370 4371
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4372
		.write = mem_cgroup_reset,
4373
		.read_u64 = mem_cgroup_read_u64,
4374 4375 4376 4377
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4378
		.write = mem_cgroup_reset,
4379
		.read_u64 = mem_cgroup_read_u64,
4380
	},
4381 4382 4383
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4384 4385 4386 4387
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4388 4389
	},
#endif
4390
#endif
4391
	{ },	/* terminate */
4392
};
4393

4394
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4395 4396
{
	struct mem_cgroup_per_node *pn;
4397
	struct mem_cgroup_per_zone *mz;
4398
	int zone, tmp = node;
4399 4400 4401 4402 4403 4404 4405 4406
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4407 4408
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4409
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4410 4411
	if (!pn)
		return 1;
4412 4413 4414

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4415
		lruvec_init(&mz->lruvec);
4416 4417
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4418
		mz->memcg = memcg;
4419
	}
4420
	memcg->nodeinfo[node] = pn;
4421 4422 4423
	return 0;
}

4424
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4425
{
4426
	kfree(memcg->nodeinfo[node]);
4427 4428
}

4429 4430
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4431
	struct mem_cgroup *memcg;
4432
	size_t size;
4433

4434 4435
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4436

4437
	memcg = kzalloc(size, GFP_KERNEL);
4438
	if (!memcg)
4439 4440
		return NULL;

4441 4442
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4443
		goto out_free;
4444 4445
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4446 4447

out_free:
4448
	kfree(memcg);
4449
	return NULL;
4450 4451
}

4452
/*
4453 4454 4455 4456 4457 4458 4459 4460
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
4461
 */
4462 4463

static void __mem_cgroup_free(struct mem_cgroup *memcg)
4464
{
4465
	int node;
4466

4467
	mem_cgroup_remove_from_trees(memcg);
4468 4469 4470 4471 4472 4473

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

4474
	disarm_static_keys(memcg);
4475
	kfree(memcg);
4476
}
4477

4478 4479 4480
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4481
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4482
{
4483
	if (!memcg->memory.parent)
4484
		return NULL;
4485
	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4486
}
G
Glauber Costa 已提交
4487
EXPORT_SYMBOL(parent_mem_cgroup);
4488

L
Li Zefan 已提交
4489
static struct cgroup_subsys_state * __ref
4490
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
4491
{
4492
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4493
	long error = -ENOMEM;
4494
	int node;
B
Balbir Singh 已提交
4495

4496 4497
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4498
		return ERR_PTR(error);
4499

B
Bob Liu 已提交
4500
	for_each_node(node)
4501
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4502
			goto free_out;
4503

4504
	/* root ? */
4505
	if (parent_css == NULL) {
4506
		root_mem_cgroup = memcg;
4507
		page_counter_init(&memcg->memory, NULL);
4508
		memcg->high = PAGE_COUNTER_MAX;
4509
		memcg->soft_limit = PAGE_COUNTER_MAX;
4510 4511
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4512
	}
4513

4514 4515 4516 4517 4518
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4519
	vmpressure_init(&memcg->vmpressure);
4520 4521
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
V
Vladimir Davydov 已提交
4522 4523 4524
#ifdef CONFIG_MEMCG_KMEM
	memcg->kmemcg_id = -1;
#endif
4525 4526 4527 4528 4529 4530 4531 4532 4533

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
4534
mem_cgroup_css_online(struct cgroup_subsys_state *css)
4535
{
4536
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4537
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4538
	int ret;
4539

4540
	if (css->id > MEM_CGROUP_ID_MAX)
4541 4542
		return -ENOSPC;

T
Tejun Heo 已提交
4543
	if (!parent)
4544 4545
		return 0;

4546
	mutex_lock(&memcg_create_mutex);
4547 4548 4549 4550 4551 4552

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
4553
		page_counter_init(&memcg->memory, &parent->memory);
4554
		memcg->high = PAGE_COUNTER_MAX;
4555
		memcg->soft_limit = PAGE_COUNTER_MAX;
4556 4557
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4558

4559
		/*
4560 4561
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
4562
		 */
4563
	} else {
4564
		page_counter_init(&memcg->memory, NULL);
4565
		memcg->high = PAGE_COUNTER_MAX;
4566
		memcg->soft_limit = PAGE_COUNTER_MAX;
4567 4568
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4569 4570 4571 4572 4573
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4574
		if (parent != root_mem_cgroup)
4575
			memory_cgrp_subsys.broken_hierarchy = true;
4576
	}
4577
	mutex_unlock(&memcg_create_mutex);
4578

4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
	if (ret)
		return ret;

	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
4591 4592
}

4593
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4594
{
4595
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4596
	struct mem_cgroup_event *event, *tmp;
4597 4598 4599 4600 4601 4602

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4603 4604
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4605 4606 4607
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4608
	spin_unlock(&memcg->event_list_lock);
4609

4610
	vmpressure_cleanup(&memcg->vmpressure);
4611 4612
}

4613
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4614
{
4615
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4616

4617
	memcg_destroy_kmem(memcg);
4618
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4619 4620
}

4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4638 4639 4640
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4641 4642
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4643
	memcg->soft_limit = PAGE_COUNTER_MAX;
4644 4645
}

4646
#ifdef CONFIG_MMU
4647
/* Handlers for move charge at task migration. */
4648
static int mem_cgroup_do_precharge(unsigned long count)
4649
{
4650
	int ret;
4651 4652

	/* Try a single bulk charge without reclaim first */
4653
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4654
	if (!ret) {
4655 4656 4657
		mc.precharge += count;
		return ret;
	}
4658
	if (ret == -EINTR) {
4659
		cancel_charge(root_mem_cgroup, count);
4660 4661
		return ret;
	}
4662 4663

	/* Try charges one by one with reclaim */
4664
	while (count--) {
4665
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4666 4667 4668
		/*
		 * In case of failure, any residual charges against
		 * mc.to will be dropped by mem_cgroup_clear_mc()
4669 4670
		 * later on.  However, cancel any charges that are
		 * bypassed to root right away or they'll be lost.
4671
		 */
4672
		if (ret == -EINTR)
4673
			cancel_charge(root_mem_cgroup, 1);
4674 4675
		if (ret)
			return ret;
4676
		mc.precharge++;
4677
		cond_resched();
4678
	}
4679
	return 0;
4680 4681 4682
}

/**
4683
 * get_mctgt_type - get target type of moving charge
4684 4685 4686
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4687
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4688 4689 4690 4691 4692 4693
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4694 4695 4696
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4697 4698 4699 4700 4701
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4702
	swp_entry_t	ent;
4703 4704 4705
};

enum mc_target_type {
4706
	MC_TARGET_NONE = 0,
4707
	MC_TARGET_PAGE,
4708
	MC_TARGET_SWAP,
4709 4710
};

D
Daisuke Nishimura 已提交
4711 4712
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4713
{
D
Daisuke Nishimura 已提交
4714
	struct page *page = vm_normal_page(vma, addr, ptent);
4715

D
Daisuke Nishimura 已提交
4716 4717 4718
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4719
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4720
			return NULL;
4721 4722 4723 4724
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4725 4726 4727 4728 4729 4730
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4731
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4732 4733 4734 4735 4736 4737
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4738
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4739
		return NULL;
4740 4741 4742 4743
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4744
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
4745 4746 4747 4748 4749
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
4750 4751 4752 4753 4754 4755 4756
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4757

4758 4759 4760 4761 4762 4763 4764 4765 4766
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4767
	if (!(mc.flags & MOVE_FILE))
4768 4769 4770
		return NULL;

	mapping = vma->vm_file->f_mapping;
4771
	pgoff = linear_page_index(vma, addr);
4772 4773

	/* page is moved even if it's not RSS of this task(page-faulted). */
4774 4775
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4788
#endif
4789 4790 4791
	return page;
}

4792
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4793 4794 4795
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4796
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4797 4798 4799 4800 4801 4802
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4803
	else if (pte_none(ptent))
4804
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4805 4806

	if (!page && !ent.val)
4807
		return ret;
4808 4809
	if (page) {
		/*
4810
		 * Do only loose check w/o serialization.
4811
		 * mem_cgroup_move_account() checks the page is valid or
4812
		 * not under LRU exclusion.
4813
		 */
4814
		if (page->mem_cgroup == mc.from) {
4815 4816 4817 4818 4819 4820 4821
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4822 4823
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4824
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4825 4826 4827
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4828 4829 4830 4831
	}
	return ret;
}

4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4845
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4846
	if (!(mc.flags & MOVE_ANON))
4847
		return ret;
4848
	if (page->mem_cgroup == mc.from) {
4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4865 4866 4867 4868
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4869
	struct vm_area_struct *vma = walk->vma;
4870 4871 4872
	pte_t *pte;
	spinlock_t *ptl;

4873
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4874 4875
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4876
		spin_unlock(ptl);
4877
		return 0;
4878
	}
4879

4880 4881
	if (pmd_trans_unstable(pmd))
		return 0;
4882 4883
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4884
		if (get_mctgt_type(vma, addr, *pte, NULL))
4885 4886 4887 4888
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4889 4890 4891
	return 0;
}

4892 4893 4894 4895
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4896 4897 4898 4899
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4900
	down_read(&mm->mmap_sem);
4901
	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4902
	up_read(&mm->mmap_sem);
4903 4904 4905 4906 4907 4908 4909 4910 4911

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4912 4913 4914 4915 4916
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4917 4918
}

4919 4920
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4921
{
4922 4923 4924
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4925
	/* we must uncharge all the leftover precharges from mc.to */
4926
	if (mc.precharge) {
4927
		cancel_charge(mc.to, mc.precharge);
4928 4929 4930 4931 4932 4933 4934
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4935
		cancel_charge(mc.from, mc.moved_charge);
4936
		mc.moved_charge = 0;
4937
	}
4938 4939 4940
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4941
		if (!mem_cgroup_is_root(mc.from))
4942
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4943

4944
		/*
4945 4946
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4947
		 */
4948
		if (!mem_cgroup_is_root(mc.to))
4949 4950
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4951
		css_put_many(&mc.from->css, mc.moved_swap);
4952

L
Li Zefan 已提交
4953
		/* we've already done css_get(mc.to) */
4954 4955
		mc.moved_swap = 0;
	}
4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4969
	spin_lock(&mc.lock);
4970 4971
	mc.from = NULL;
	mc.to = NULL;
4972
	spin_unlock(&mc.lock);
4973 4974
}

4975
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
4976
				 struct cgroup_taskset *tset)
4977
{
4978
	struct task_struct *p = cgroup_taskset_first(tset);
4979
	int ret = 0;
4980
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4981
	unsigned long move_flags;
4982

4983 4984 4985 4986 4987
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
4988 4989
	move_flags = ACCESS_ONCE(memcg->move_charge_at_immigrate);
	if (move_flags) {
4990 4991 4992
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

4993
		VM_BUG_ON(from == memcg);
4994 4995 4996 4997 4998

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
4999 5000 5001 5002
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5003
			VM_BUG_ON(mc.moved_charge);
5004
			VM_BUG_ON(mc.moved_swap);
5005

5006
			spin_lock(&mc.lock);
5007
			mc.from = from;
5008
			mc.to = memcg;
5009
			mc.flags = move_flags;
5010
			spin_unlock(&mc.lock);
5011
			/* We set mc.moving_task later */
5012 5013 5014 5015

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5016 5017
		}
		mmput(mm);
5018 5019 5020 5021
	}
	return ret;
}

5022
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5023
				     struct cgroup_taskset *tset)
5024
{
5025 5026
	if (mc.to)
		mem_cgroup_clear_mc();
5027 5028
}

5029 5030 5031
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5032
{
5033
	int ret = 0;
5034
	struct vm_area_struct *vma = walk->vma;
5035 5036
	pte_t *pte;
	spinlock_t *ptl;
5037 5038 5039
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5040

5041 5042 5043 5044 5045 5046 5047 5048 5049 5050
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
5051
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5052
		if (mc.precharge < HPAGE_PMD_NR) {
5053
			spin_unlock(ptl);
5054 5055 5056 5057 5058 5059 5060
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5061
							     mc.from, mc.to)) {
5062 5063 5064 5065 5066 5067 5068
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
5069
		spin_unlock(ptl);
5070
		return 0;
5071 5072
	}

5073 5074
	if (pmd_trans_unstable(pmd))
		return 0;
5075 5076 5077 5078
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5079
		swp_entry_t ent;
5080 5081 5082 5083

		if (!mc.precharge)
			break;

5084
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5085 5086 5087 5088
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
5089
			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5090
				mc.precharge--;
5091 5092
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5093 5094
			}
			putback_lru_page(page);
5095
put:			/* get_mctgt_type() gets the page */
5096 5097
			put_page(page);
			break;
5098 5099
		case MC_TARGET_SWAP:
			ent = target.ent;
5100
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5101
				mc.precharge--;
5102 5103 5104
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5105
			break;
5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5120
		ret = mem_cgroup_do_precharge(1);
5121 5122 5123 5124 5125 5126 5127 5128 5129
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
5130 5131 5132 5133
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
		.mm = mm,
	};
5134 5135

	lru_add_drain_all();
5136 5137 5138 5139 5140 5141 5142
	/*
	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
	 * move_lock while we're moving its pages to another memcg.
	 * Then wait for already started RCU-only updates to finish.
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5156 5157 5158 5159 5160
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5161
	up_read(&mm->mmap_sem);
5162
	atomic_dec(&mc.from->moving_account);
5163 5164
}

5165
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5166
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5167
{
5168
	struct task_struct *p = cgroup_taskset_first(tset);
5169
	struct mm_struct *mm = get_task_mm(p);
5170 5171

	if (mm) {
5172 5173
		if (mc.to)
			mem_cgroup_move_charge(mm);
5174 5175
		mmput(mm);
	}
5176 5177
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5178
}
5179
#else	/* !CONFIG_MMU */
5180
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5181
				 struct cgroup_taskset *tset)
5182 5183 5184
{
	return 0;
}
5185
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5186
				     struct cgroup_taskset *tset)
5187 5188
{
}
5189
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5190
				 struct cgroup_taskset *tset)
5191 5192 5193
{
}
#endif
B
Balbir Singh 已提交
5194

5195 5196
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5197 5198
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5199
 */
5200
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5201 5202
{
	/*
5203
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5204 5205 5206
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5207
	if (cgroup_on_dfl(root_css->cgroup))
5208
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
5209 5210
}

5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
	return mem_cgroup_usage(mem_cgroup_from_css(css), false);
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long low = ACCESS_ONCE(memcg->low);

	if (low == PAGE_COUNTER_MAX)
		seq_puts(m, "infinity\n");
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "infinity", &low);
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long high = ACCESS_ONCE(memcg->high);

	if (high == PAGE_COUNTER_MAX)
		seq_puts(m, "infinity\n");
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "infinity", &high);
	if (err)
		return err;

	memcg->high = high;

	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long max = ACCESS_ONCE(memcg->memory.limit);

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "infinity\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "infinity", &max);
	if (err)
		return err;

	err = mem_cgroup_resize_limit(memcg, max);
	if (err)
		return err;

	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

static struct cftype memory_files[] = {
	{
		.name = "current",
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_events_show,
	},
	{ }	/* terminate */
};

5352
struct cgroup_subsys memory_cgrp_subsys = {
5353
	.css_alloc = mem_cgroup_css_alloc,
5354
	.css_online = mem_cgroup_css_online,
5355 5356
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
5357
	.css_reset = mem_cgroup_css_reset,
5358 5359
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5360
	.attach = mem_cgroup_move_task,
5361
	.bind = mem_cgroup_bind,
5362 5363
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5364
	.early_init = 0,
B
Balbir Singh 已提交
5365
};
5366

5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416
/**
 * mem_cgroup_events - count memory events against a cgroup
 * @memcg: the memory cgroup
 * @idx: the event index
 * @nr: the number of events to account for
 */
void mem_cgroup_events(struct mem_cgroup *memcg,
		       enum mem_cgroup_events_index idx,
		       unsigned int nr)
{
	this_cpu_add(memcg->stat->events[idx], nr);
}

/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

	if (page_counter_read(&memcg->memory) > memcg->low)
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

		if (page_counter_read(&memcg->memory) > memcg->low)
			return false;
	}
	return true;
}

5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5452
		if (page->mem_cgroup)
5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512
			goto out;
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (do_swap_account && PageSwapCache(page))
		memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);

	if (ret == -EINTR) {
		memcg = root_mem_cgroup;
		ret = 0;
	}
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5513 5514
	commit_charge(page, memcg, lrucare);

5515 5516 5517 5518 5519
	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

5520 5521 5522 5523
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564

	if (do_swap_account && PageSwapCache(page)) {
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

5565 5566 5567 5568
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5569
	unsigned long nr_pages = nr_anon + nr_file;
5570 5571
	unsigned long flags;

5572
	if (!mem_cgroup_is_root(memcg)) {
5573 5574 5575
		page_counter_uncharge(&memcg->memory, nr_pages);
		if (do_swap_account)
			page_counter_uncharge(&memcg->memsw, nr_pages);
5576 5577
		memcg_oom_recover(memcg);
	}
5578 5579 5580 5581 5582 5583

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5584
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5585 5586
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5587 5588

	if (!mem_cgroup_is_root(memcg))
5589
		css_put_many(&memcg->css, nr_pages);
5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5612
		if (!page->mem_cgroup)
5613 5614 5615 5616
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5617
		 * page->mem_cgroup at this point, we have fully
5618
		 * exclusive access to the page.
5619 5620
		 */

5621
		if (memcg != page->mem_cgroup) {
5622
			if (memcg) {
5623 5624 5625
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5626
			}
5627
			memcg = page->mem_cgroup;
5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5641
		page->mem_cgroup = NULL;
5642 5643 5644 5645 5646

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5647 5648
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5649 5650
}

5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5663
	/* Don't touch page->lru of any random page, pre-check: */
5664
	if (!page->mem_cgroup)
5665 5666
		return;

5667 5668 5669
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5670

5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5682

5683 5684
	if (!list_empty(page_list))
		uncharge_list(page_list);
5685 5686 5687 5688 5689 5690
}

/**
 * mem_cgroup_migrate - migrate a charge to another page
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
5691
 * @lrucare: either or both pages might be on the LRU already
5692 5693 5694 5695 5696 5697 5698 5699
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
			bool lrucare)
{
5700
	struct mem_cgroup *memcg;
5701 5702 5703 5704 5705 5706 5707
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5708 5709
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5710 5711 5712 5713 5714

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5715
	if (newpage->mem_cgroup)
5716 5717
		return;

5718 5719 5720 5721 5722 5723
	/*
	 * Swapcache readahead pages can get migrated before being
	 * charged, and migration from compaction can happen to an
	 * uncharged page when the PFN walker finds a page that
	 * reclaim just put back on the LRU but has not released yet.
	 */
5724
	memcg = oldpage->mem_cgroup;
5725
	if (!memcg)
5726 5727 5728 5729 5730
		return;

	if (lrucare)
		lock_page_lru(oldpage, &isolated);

5731
	oldpage->mem_cgroup = NULL;
5732 5733 5734 5735

	if (lrucare)
		unlock_page_lru(oldpage, isolated);

5736
	commit_charge(newpage, memcg, lrucare);
5737 5738
}

5739
/*
5740 5741 5742 5743 5744 5745
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5746 5747 5748
 */
static int __init mem_cgroup_init(void)
{
5749 5750
	int cpu, node;

5751
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;
		int zone;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			struct mem_cgroup_tree_per_zone *rtpz;

			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5774 5775 5776
	return 0;
}
subsys_initcall(mem_cgroup_init);
5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900

#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

	if (!do_swap_account)
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

	/* XXX: caller holds IRQ-safe mapping->tree_lock */
	VM_BUG_ON(!irqs_disabled());

	mem_cgroup_charge_statistics(memcg, page, -1);
	memcg_check_events(memcg, page);
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

	if (!do_swap_account)
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
	if (memcg) {
		if (!mem_cgroup_is_root(memcg))
			page_counter_uncharge(&memcg->memsw, 1);
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}

/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */