memcontrol.c 185.9 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/page_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
59
#include "internal.h"
G
Glauber Costa 已提交
60
#include <net/sock.h>
M
Michal Hocko 已提交
61
#include <net/ip.h>
G
Glauber Costa 已提交
62
#include <net/tcp_memcontrol.h>
63
#include "slab.h"
B
Balbir Singh 已提交
64

65 66
#include <asm/uaccess.h>

67 68
#include <trace/events/vmscan.h>

69 70
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
71

72
#define MEM_CGROUP_RECLAIM_RETRIES	5
73
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
74

A
Andrew Morton 已提交
75
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
76
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77
int do_swap_account __read_mostly;
78 79

/* for remember boot option*/
A
Andrew Morton 已提交
80
#ifdef CONFIG_MEMCG_SWAP_ENABLED
81 82
static int really_do_swap_account __initdata = 1;
#else
83
static int really_do_swap_account __initdata;
84 85
#endif

86
#else
87
#define do_swap_account		0
88 89 90
#endif


91 92 93
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
94
	"rss_huge",
95
	"mapped_file",
96
	"writeback",
97 98 99
	"swap",
};

100 101 102
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
103 104
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
105 106
	MEM_CGROUP_EVENTS_NSTATS,
};
107 108 109 110 111 112 113 114

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

115 116 117 118 119 120 121 122
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

123 124 125 126 127 128 129 130
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
131
	MEM_CGROUP_TARGET_SOFTLIMIT,
132
	MEM_CGROUP_TARGET_NUMAINFO,
133 134
	MEM_CGROUP_NTARGETS,
};
135 136 137
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
138

139
struct mem_cgroup_stat_cpu {
140
	long count[MEM_CGROUP_STAT_NSTATS];
141
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142
	unsigned long nr_page_events;
143
	unsigned long targets[MEM_CGROUP_NTARGETS];
144 145
};

146
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
147 148 149 150
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
151
	struct mem_cgroup *last_visited;
152
	int last_dead_count;
M
Michal Hocko 已提交
153

154 155 156 157
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

158 159 160 161
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
162
	struct lruvec		lruvec;
163
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
164

165 166
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

167 168 169 170
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
171
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
172
						/* use container_of	   */
173 174 175 176 177 178
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

199 200 201 202 203
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
204
/* For threshold */
205
struct mem_cgroup_threshold_ary {
206
	/* An array index points to threshold just below or equal to usage. */
207
	int current_threshold;
208 209 210 211 212
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
213 214 215 216 217 218 219 220 221 222 223 224

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
225 226 227 228 229
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
230

231 232 233
/*
 * cgroup_event represents events which userspace want to receive.
 */
234
struct mem_cgroup_event {
235
	/*
236
	 * memcg which the event belongs to.
237
	 */
238
	struct mem_cgroup *memcg;
239 240 241 242 243 244 245 246
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
247 248 249 250 251
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
252
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
253
			      struct eventfd_ctx *eventfd, const char *args);
254 255 256 257 258
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
259
	void (*unregister_event)(struct mem_cgroup *memcg,
260
				 struct eventfd_ctx *eventfd);
261 262 263 264 265 266 267 268 269 270
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

271 272
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
273

B
Balbir Singh 已提交
274 275 276 277 278 279 280
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
281 282 283
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
284 285 286 287 288 289 290
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
291

292 293 294
	/* vmpressure notifications */
	struct vmpressure vmpressure;

295 296 297 298
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
299

300 301 302 303
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
304 305 306 307
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
308
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
309 310 311

	bool		oom_lock;
	atomic_t	under_oom;
312
	atomic_t	oom_wakeups;
313

314
	int	swappiness;
315 316
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
317

318 319 320
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

321 322 323 324
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
325
	struct mem_cgroup_thresholds thresholds;
326

327
	/* thresholds for mem+swap usage. RCU-protected */
328
	struct mem_cgroup_thresholds memsw_thresholds;
329

K
KAMEZAWA Hiroyuki 已提交
330 331
	/* For oom notifier event fd */
	struct list_head oom_notify;
332

333 334 335 336
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
337
	unsigned long move_charge_at_immigrate;
338 339 340 341
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
342 343
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
344
	/*
345
	 * percpu counter.
346
	 */
347
	struct mem_cgroup_stat_cpu __percpu *stat;
348 349 350 351 352 353
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
354

M
Michal Hocko 已提交
355
	atomic_t	dead_count;
M
Michal Hocko 已提交
356
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
357
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
358
#endif
359
#if defined(CONFIG_MEMCG_KMEM)
360 361
	/* analogous to slab_common's slab_caches list, but per-memcg;
	 * protected by memcg_slab_mutex */
362 363 364 365
	struct list_head memcg_slab_caches;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
366 367 368 369 370 371 372

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
373

374 375 376 377
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

378 379
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
380 381
};

382 383
/* internal only representation about the status of kmem accounting. */
enum {
384
	KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
385
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
386 387 388 389 390 391 392
};

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
393 394 395 396 397 398 399 400

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
401 402 403 404 405
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
406 407 408 409 410 411 412 413 414
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
415 416
#endif

417 418
/* Stuffs for move charges at task migration. */
/*
419 420
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
421 422
 */
enum move_type {
423
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
424
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
425 426 427
	NR_MOVE_TYPE,
};

428 429
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
430
	spinlock_t	  lock; /* for from, to */
431 432
	struct mem_cgroup *from;
	struct mem_cgroup *to;
433
	unsigned long immigrate_flags;
434
	unsigned long precharge;
435
	unsigned long moved_charge;
436
	unsigned long moved_swap;
437 438 439
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
440
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
441 442
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
443

D
Daisuke Nishimura 已提交
444 445
static bool move_anon(void)
{
446
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
447 448
}

449 450
static bool move_file(void)
{
451
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
452 453
}

454 455 456 457
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
458
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
459
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
460

461 462
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
463
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
464
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
465
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
466 467 468
	NR_CHARGE_TYPE,
};

469
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
470 471 472 473
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
474
	_KMEM,
G
Glauber Costa 已提交
475 476
};

477 478
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
479
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
480 481
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
482

483 484 485 486 487 488 489 490
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

491 492 493 494 495 496 497
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

498 499
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
500
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
501 502
}

503 504 505 506 507 508 509 510 511 512 513 514 515
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

516 517 518 519 520
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

521 522 523 524 525 526
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
527 528
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
529
	return memcg->css.id;
L
Li Zefan 已提交
530 531 532 533 534 535
}

static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

536
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
537 538 539
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
540
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
541
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
542 543 544

void sock_update_memcg(struct sock *sk)
{
545
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
546
		struct mem_cgroup *memcg;
547
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
548 549 550

		BUG_ON(!sk->sk_prot->proto_cgroup);

551 552 553 554 555 556 557 558 559 560
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
561
			css_get(&sk->sk_cgrp->memcg->css);
562 563 564
			return;
		}

G
Glauber Costa 已提交
565 566
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
567
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
568
		if (!mem_cgroup_is_root(memcg) &&
569 570
		    memcg_proto_active(cg_proto) &&
		    css_tryget_online(&memcg->css)) {
571
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
572 573 574 575 576 577 578 579
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
580
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
581 582 583
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
584
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
585 586
	}
}
G
Glauber Costa 已提交
587 588 589 590 591 592

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

593
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
594 595
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
596

597 598
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
599
	if (!memcg_proto_activated(&memcg->tcp_mem))
600 601 602 603 604 605 606 607 608
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

609
#ifdef CONFIG_MEMCG_KMEM
610 611
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
L
Li Zefan 已提交
612 613 614 615 616
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
617 618 619 620 621 622
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
623 624
int memcg_limited_groups_array_size;

625 626 627 628 629 630
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
631
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
632 633
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
634
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
635 636 637
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
638
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
639

640 641 642 643 644 645
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
646
struct static_key memcg_kmem_enabled_key;
647
EXPORT_SYMBOL(memcg_kmem_enabled_key);
648 649 650

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
651
	if (memcg_kmem_is_active(memcg)) {
652
		static_key_slow_dec(&memcg_kmem_enabled_key);
653 654
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
655 656 657 658 659
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
660 661 662 663 664 665 666 667 668 669 670 671 672
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

673
static void drain_all_stock_async(struct mem_cgroup *memcg);
674

675
static struct mem_cgroup_per_zone *
676
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
677
{
678 679 680
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

681
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
682 683
}

684
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
685
{
686
	return &memcg->css;
687 688
}

689
static struct mem_cgroup_per_zone *
690
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
691
{
692 693
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
694

695
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
696 697
}

698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

713 714 715
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
					 unsigned long long new_usage_in_excess)
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

745 746
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
747 748 749 750 751 752 753
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

754 755
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
756 757
{
	spin_lock(&mctz->lock);
758
	__mem_cgroup_remove_exceeded(mz, mctz);
759 760 761 762 763 764 765 766 767 768
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
	unsigned long long excess;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

769
	mctz = soft_limit_tree_from_page(page);
770 771 772 773 774
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
775
		mz = mem_cgroup_page_zoneinfo(memcg, page);
776 777 778 779 780 781 782 783 784
		excess = res_counter_soft_limit_excess(&memcg->res);
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
785
				__mem_cgroup_remove_exceeded(mz, mctz);
786 787 788 789
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
790
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
791 792 793 794 795 796 797 798
			spin_unlock(&mctz->lock);
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
799 800
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
801

802 803 804 805
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
806
			mem_cgroup_remove_exceeded(mz, mctz);
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
829
	__mem_cgroup_remove_exceeded(mz, mctz);
830
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
831
	    !css_tryget_online(&mz->memcg->css))
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
867
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
868
				 enum mem_cgroup_stat_index idx)
869
{
870
	long val = 0;
871 872
	int cpu;

873 874
	get_online_cpus();
	for_each_online_cpu(cpu)
875
		val += per_cpu(memcg->stat->count[idx], cpu);
876
#ifdef CONFIG_HOTPLUG_CPU
877 878 879
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
880 881
#endif
	put_online_cpus();
882 883 884
	return val;
}

885
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
886 887 888
					 bool charge)
{
	int val = (charge) ? 1 : -1;
889
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
890 891
}

892
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
893 894 895 896 897
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

898
	get_online_cpus();
899
	for_each_online_cpu(cpu)
900
		val += per_cpu(memcg->stat->events[idx], cpu);
901
#ifdef CONFIG_HOTPLUG_CPU
902 903 904
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
905
#endif
906
	put_online_cpus();
907 908 909
	return val;
}

910
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
911
					 struct page *page,
912
					 bool anon, int nr_pages)
913
{
914 915 916 917 918 919
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
920
				nr_pages);
921
	else
922
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
923
				nr_pages);
924

925 926 927 928
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

929 930
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
931
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
932
	else {
933
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
934 935
		nr_pages = -nr_pages; /* for event */
	}
936

937
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
938 939
}

940
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
941 942 943 944 945 946 947
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

948 949 950
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
951
{
952
	unsigned long nr = 0;
953 954
	int zid;

955
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
956

957 958 959 960 961 962 963 964 965 966 967 968
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
969
}
970

971
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
972
			unsigned int lru_mask)
973
{
974
	unsigned long nr = 0;
975
	int nid;
976

977
	for_each_node_state(nid, N_MEMORY)
978 979
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
980 981
}

982 983
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
984 985 986
{
	unsigned long val, next;

987
	val = __this_cpu_read(memcg->stat->nr_page_events);
988
	next = __this_cpu_read(memcg->stat->targets[target]);
989
	/* from time_after() in jiffies.h */
990 991 992 993 994
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
995 996 997
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
998 999 1000 1001 1002 1003 1004 1005
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
1006
	}
1007
	return false;
1008 1009 1010 1011 1012 1013
}

/*
 * Check events in order.
 *
 */
1014
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1015
{
1016
	preempt_disable();
1017
	/* threshold event is triggered in finer grain than soft limit */
1018 1019
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1020
		bool do_softlimit;
1021
		bool do_numainfo __maybe_unused;
1022

1023 1024
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
1025 1026 1027 1028 1029 1030
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1031
		mem_cgroup_threshold(memcg);
1032 1033
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
1034
#if MAX_NUMNODES > 1
1035
		if (unlikely(do_numainfo))
1036
			atomic_inc(&memcg->numainfo_events);
1037
#endif
1038 1039
	} else
		preempt_enable();
1040 1041
}

1042
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1043
{
1044 1045 1046 1047 1048 1049 1050 1051
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1052
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1053 1054
}

1055
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1056
{
1057
	struct mem_cgroup *memcg = NULL;
1058

1059 1060
	rcu_read_lock();
	do {
1061 1062 1063 1064 1065 1066
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1067
			memcg = root_mem_cgroup;
1068 1069 1070 1071 1072
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1073
	} while (!css_tryget_online(&memcg->css));
1074
	rcu_read_unlock();
1075
	return memcg;
1076 1077
}

1078 1079 1080 1081 1082 1083 1084
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1085
		struct mem_cgroup *last_visited)
1086
{
1087
	struct cgroup_subsys_state *prev_css, *next_css;
1088

1089
	prev_css = last_visited ? &last_visited->css : NULL;
1090
skip_node:
1091
	next_css = css_next_descendant_pre(prev_css, &root->css);
1092 1093 1094 1095 1096 1097 1098

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
1099 1100 1101 1102 1103 1104 1105 1106
	 *
	 * We do not take a reference on the root of the tree walk
	 * because we might race with the root removal when it would
	 * be the only node in the iterated hierarchy and mem_cgroup_iter
	 * would end up in an endless loop because it expects that at
	 * least one valid node will be returned. Root cannot disappear
	 * because caller of the iterator should hold it already so
	 * skipping css reference should be safe.
1107
	 */
1108
	if (next_css) {
1109
		if ((next_css == &root->css) ||
1110 1111
		    ((next_css->flags & CSS_ONLINE) &&
		     css_tryget_online(next_css)))
1112
			return mem_cgroup_from_css(next_css);
1113 1114 1115

		prev_css = next_css;
		goto skip_node;
1116 1117 1118 1119 1120
	}

	return NULL;
}

1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
1149 1150 1151 1152 1153 1154 1155 1156

		/*
		 * We cannot take a reference to root because we might race
		 * with root removal and returning NULL would end up in
		 * an endless loop on the iterator user level when root
		 * would be returned all the time.
		 */
		if (position && position != root &&
1157
		    !css_tryget_online(&position->css))
1158 1159 1160 1161 1162 1163 1164 1165
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
1166
				   struct mem_cgroup *root,
1167 1168
				   int sequence)
{
1169 1170
	/* root reference counting symmetric to mem_cgroup_iter_load */
	if (last_visited && last_visited != root)
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1200
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1201
				   struct mem_cgroup *prev,
1202
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1203
{
1204
	struct mem_cgroup *memcg = NULL;
1205
	struct mem_cgroup *last_visited = NULL;
1206

1207 1208
	if (mem_cgroup_disabled())
		return NULL;
1209

1210 1211
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1212

1213
	if (prev && !reclaim)
1214
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1215

1216 1217
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1218
			goto out_css_put;
1219
		return root;
1220
	}
K
KAMEZAWA Hiroyuki 已提交
1221

1222
	rcu_read_lock();
1223
	while (!memcg) {
1224
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1225
		int uninitialized_var(seq);
1226

1227 1228 1229
		if (reclaim) {
			struct mem_cgroup_per_zone *mz;

1230
			mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1231
			iter = &mz->reclaim_iter[reclaim->priority];
1232
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1233
				iter->last_visited = NULL;
1234 1235
				goto out_unlock;
			}
M
Michal Hocko 已提交
1236

1237
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1238
		}
K
KAMEZAWA Hiroyuki 已提交
1239

1240
		memcg = __mem_cgroup_iter_next(root, last_visited);
K
KAMEZAWA Hiroyuki 已提交
1241

1242
		if (reclaim) {
1243 1244
			mem_cgroup_iter_update(iter, last_visited, memcg, root,
					seq);
1245

M
Michal Hocko 已提交
1246
			if (!memcg)
1247 1248 1249 1250
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1251

1252
		if (prev && !memcg)
1253
			goto out_unlock;
1254
	}
1255 1256
out_unlock:
	rcu_read_unlock();
1257 1258 1259 1260
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1261
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1262
}
K
KAMEZAWA Hiroyuki 已提交
1263

1264 1265 1266 1267 1268 1269 1270
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1271 1272 1273 1274 1275 1276
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1277

1278 1279 1280 1281 1282 1283
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1284
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1285
	     iter != NULL;				\
1286
	     iter = mem_cgroup_iter(root, iter, NULL))
1287

1288
#define for_each_mem_cgroup(iter)			\
1289
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1290
	     iter != NULL;				\
1291
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1292

1293
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1294
{
1295
	struct mem_cgroup *memcg;
1296 1297

	rcu_read_lock();
1298 1299
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1300 1301 1302 1303
		goto out;

	switch (idx) {
	case PGFAULT:
1304 1305 1306 1307
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1308 1309 1310 1311 1312 1313 1314
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1315
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1316

1317 1318 1319
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1320
 * @memcg: memcg of the wanted lruvec
1321 1322 1323 1324 1325 1326 1327 1328 1329
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1330
	struct lruvec *lruvec;
1331

1332 1333 1334 1335
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1336

1337
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1348 1349
}

K
KAMEZAWA Hiroyuki 已提交
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1363

1364
/**
1365
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1366
 * @page: the page
1367
 * @zone: zone of the page
1368
 */
1369
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1370 1371
{
	struct mem_cgroup_per_zone *mz;
1372 1373
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1374
	struct lruvec *lruvec;
1375

1376 1377 1378 1379
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1380

K
KAMEZAWA Hiroyuki 已提交
1381
	pc = lookup_page_cgroup(page);
1382
	memcg = pc->mem_cgroup;
1383 1384

	/*
1385
	 * Surreptitiously switch any uncharged offlist page to root:
1386 1387 1388 1389 1390 1391 1392
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1393
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1394 1395
		pc->mem_cgroup = memcg = root_mem_cgroup;

1396
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1407
}
1408

1409
/**
1410 1411 1412 1413
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1414
 *
1415 1416
 * This function must be called when a page is added to or removed from an
 * lru list.
1417
 */
1418 1419
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1420 1421
{
	struct mem_cgroup_per_zone *mz;
1422
	unsigned long *lru_size;
1423 1424 1425 1426

	if (mem_cgroup_disabled())
		return;

1427 1428 1429 1430
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1431
}
1432

1433
/*
1434
 * Checks whether given mem is same or in the root_mem_cgroup's
1435 1436
 * hierarchy subtree
 */
1437 1438
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1439
{
1440 1441
	if (root_memcg == memcg)
		return true;
1442
	if (!root_memcg->use_hierarchy || !memcg)
1443
		return false;
1444
	return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1445 1446 1447 1448 1449 1450 1451
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1452
	rcu_read_lock();
1453
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1454 1455
	rcu_read_unlock();
	return ret;
1456 1457
}

1458 1459
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1460
{
1461
	struct mem_cgroup *curr = NULL;
1462
	struct task_struct *p;
1463
	bool ret;
1464

1465
	p = find_lock_task_mm(task);
1466
	if (p) {
1467
		curr = get_mem_cgroup_from_mm(p->mm);
1468 1469 1470 1471 1472 1473 1474
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1475
		rcu_read_lock();
1476 1477 1478
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1479
		rcu_read_unlock();
1480
	}
1481
	/*
1482
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1483
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1484 1485
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1486
	 */
1487
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1488
	css_put(&curr->css);
1489 1490 1491
	return ret;
}

1492
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1493
{
1494
	unsigned long inactive_ratio;
1495
	unsigned long inactive;
1496
	unsigned long active;
1497
	unsigned long gb;
1498

1499 1500
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1501

1502 1503 1504 1505 1506 1507
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1508
	return inactive * inactive_ratio < active;
1509 1510
}

1511 1512 1513
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1514
/**
1515
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1516
 * @memcg: the memory cgroup
1517
 *
1518
 * Returns the maximum amount of memory @mem can be charged with, in
1519
 * pages.
1520
 */
1521
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1522
{
1523 1524
	unsigned long long margin;

1525
	margin = res_counter_margin(&memcg->res);
1526
	if (do_swap_account)
1527
		margin = min(margin, res_counter_margin(&memcg->memsw));
1528
	return margin >> PAGE_SHIFT;
1529 1530
}

1531
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1532 1533
{
	/* root ? */
1534
	if (mem_cgroup_disabled() || !memcg->css.parent)
K
KOSAKI Motohiro 已提交
1535 1536
		return vm_swappiness;

1537
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1538 1539
}

1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1554 1555 1556 1557

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1558
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1559
{
1560
	atomic_inc(&memcg_moving);
1561
	atomic_inc(&memcg->moving_account);
1562 1563 1564
	synchronize_rcu();
}

1565
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1566
{
1567 1568 1569 1570
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1571 1572
	if (memcg) {
		atomic_dec(&memcg_moving);
1573
		atomic_dec(&memcg->moving_account);
1574
	}
1575
}
1576

1577
/*
Q
Qiang Huang 已提交
1578
 * A routine for checking "mem" is under move_account() or not.
1579
 *
Q
Qiang Huang 已提交
1580 1581 1582
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1583
 */
1584
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1585
{
1586 1587
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1588
	bool ret = false;
1589 1590 1591 1592 1593 1594 1595 1596 1597
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1598

1599 1600
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1601 1602
unlock:
	spin_unlock(&mc.lock);
1603 1604 1605
	return ret;
}

1606
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1607 1608
{
	if (mc.moving_task && current != mc.moving_task) {
1609
		if (mem_cgroup_under_move(memcg)) {
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1639
#define K(x) ((x) << (PAGE_SHIFT-10))
1640
/**
1641
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1642 1643 1644 1645 1646 1647 1648 1649
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1650
	/* oom_info_lock ensures that parallel ooms do not interleave */
1651
	static DEFINE_MUTEX(oom_info_lock);
1652 1653
	struct mem_cgroup *iter;
	unsigned int i;
1654

1655
	if (!p)
1656 1657
		return;

1658
	mutex_lock(&oom_info_lock);
1659 1660
	rcu_read_lock();

T
Tejun Heo 已提交
1661 1662 1663 1664 1665
	pr_info("Task in ");
	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	pr_info(" killed as a result of limit of ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_info("\n");
1666 1667 1668

	rcu_read_unlock();

1669
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1670 1671 1672
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1673
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1674 1675 1676
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1677
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1678 1679 1680
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1681 1682

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1683 1684
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1700
	mutex_unlock(&oom_info_lock);
1701 1702
}

1703 1704 1705 1706
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1707
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1708 1709
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1710 1711
	struct mem_cgroup *iter;

1712
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1713
		num++;
1714 1715 1716
	return num;
}

D
David Rientjes 已提交
1717 1718 1719
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1720
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1721 1722 1723
{
	u64 limit;

1724 1725
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1726
	/*
1727
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1728
	 */
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1743 1744
}

1745 1746
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1747 1748 1749 1750 1751 1752 1753
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1754
	/*
1755 1756 1757
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1758
	 */
1759
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1760 1761 1762 1763 1764
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1765 1766
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
1767
		struct css_task_iter it;
1768 1769
		struct task_struct *task;

1770 1771
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1784
				css_task_iter_end(&it);
1785 1786 1787 1788 1789 1790 1791 1792
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1805
		}
1806
		css_task_iter_end(&it);
1807 1808 1809 1810 1811 1812 1813 1814 1815
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1852 1853
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1854
 * @memcg: the target memcg
1855 1856 1857 1858 1859 1860 1861
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1862
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1863 1864
		int nid, bool noswap)
{
1865
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1866 1867 1868
		return true;
	if (noswap || !total_swap_pages)
		return false;
1869
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1870 1871 1872 1873
		return true;
	return false;

}
1874
#if MAX_NUMNODES > 1
1875 1876 1877 1878 1879 1880 1881

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1882
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1883 1884
{
	int nid;
1885 1886 1887 1888
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1889
	if (!atomic_read(&memcg->numainfo_events))
1890
		return;
1891
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1892 1893 1894
		return;

	/* make a nodemask where this memcg uses memory from */
1895
	memcg->scan_nodes = node_states[N_MEMORY];
1896

1897
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1898

1899 1900
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1901
	}
1902

1903 1904
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1919
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1920 1921 1922
{
	int node;

1923 1924
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1925

1926
	node = next_node(node, memcg->scan_nodes);
1927
	if (node == MAX_NUMNODES)
1928
		node = first_node(memcg->scan_nodes);
1929 1930 1931 1932 1933 1934 1935 1936 1937
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1938
	memcg->last_scanned_node = node;
1939 1940 1941
	return node;
}

1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, memcg->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_MEMORY) {
		if (node_isset(nid, memcg->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
			return true;
	}
	return false;
}

1977
#else
1978
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1979 1980 1981
{
	return 0;
}
1982

1983 1984 1985 1986
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
}
1987 1988
#endif

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		if (!mem_cgroup_reclaimable(victim, false))
			continue;
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
			break;
2037
	}
2038 2039
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
2040 2041
}

2042 2043 2044 2045 2046 2047
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

2048 2049
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
2050 2051 2052 2053
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
2054
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2055
{
2056
	struct mem_cgroup *iter, *failed = NULL;
2057

2058 2059
	spin_lock(&memcg_oom_lock);

2060
	for_each_mem_cgroup_tree(iter, memcg) {
2061
		if (iter->oom_lock) {
2062 2063 2064 2065 2066
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
2067 2068
			mem_cgroup_iter_break(memcg, iter);
			break;
2069 2070
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
2071
	}
K
KAMEZAWA Hiroyuki 已提交
2072

2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
2084
		}
2085 2086
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2087 2088 2089 2090

	spin_unlock(&memcg_oom_lock);

	return !failed;
2091
}
2092

2093
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2094
{
K
KAMEZAWA Hiroyuki 已提交
2095 2096
	struct mem_cgroup *iter;

2097
	spin_lock(&memcg_oom_lock);
2098
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2099
	for_each_mem_cgroup_tree(iter, memcg)
2100
		iter->oom_lock = false;
2101
	spin_unlock(&memcg_oom_lock);
2102 2103
}

2104
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2105 2106 2107
{
	struct mem_cgroup *iter;

2108
	for_each_mem_cgroup_tree(iter, memcg)
2109 2110 2111
		atomic_inc(&iter->under_oom);
}

2112
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2113 2114 2115
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2116 2117 2118 2119 2120
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2121
	for_each_mem_cgroup_tree(iter, memcg)
2122
		atomic_add_unless(&iter->under_oom, -1, 0);
2123 2124
}

K
KAMEZAWA Hiroyuki 已提交
2125 2126
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2127
struct oom_wait_info {
2128
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2129 2130 2131 2132 2133 2134
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2135 2136
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2137 2138 2139
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2140
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2141 2142

	/*
2143
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2144 2145
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2146 2147
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2148 2149 2150 2151
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2152
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2153
{
2154
	atomic_inc(&memcg->oom_wakeups);
2155 2156
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2157 2158
}

2159
static void memcg_oom_recover(struct mem_cgroup *memcg)
2160
{
2161 2162
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2163 2164
}

2165
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2166
{
2167 2168
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
2169
	/*
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
2182
	 */
2183 2184 2185 2186
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
2187 2188 2189 2190
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2191
 * @handle: actually kill/wait or just clean up the OOM state
2192
 *
2193 2194
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
2195
 *
2196
 * Memcg supports userspace OOM handling where failed allocations must
2197 2198 2199 2200
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
2201
 * the end of the page fault to complete the OOM handling.
2202 2203
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
2204
 * completed, %false otherwise.
2205
 */
2206
bool mem_cgroup_oom_synchronize(bool handle)
2207
{
2208
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
2209
	struct oom_wait_info owait;
2210
	bool locked;
2211 2212 2213

	/* OOM is global, do not handle */
	if (!memcg)
2214
		return false;
2215

2216 2217
	if (!handle)
		goto cleanup;
2218 2219 2220 2221 2222 2223

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
2224

2225
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
2239
		schedule();
2240 2241 2242 2243 2244
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
2245 2246 2247 2248 2249 2250 2251 2252
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2253 2254
cleanup:
	current->memcg_oom.memcg = NULL;
2255
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2256
	return true;
2257 2258
}

2259
/*
2260
 * Used to update mapped file or writeback or other statistics.
2261 2262 2263
 *
 * Notes: Race condition
 *
2264
 * We usually use lock_page_cgroup() for accessing page_cgroup member but
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2278 2279
 * small, we check memcg->moving_account and detect there are possibility
 * of race or not. If there is, we take a lock.
2280
 */
2281

2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2295
	 * need to take move_lock_mem_cgroup(). Because we already hold
2296
	 * rcu_read_lock(), any calls to move_account will be delayed until
Q
Qiang Huang 已提交
2297
	 * rcu_read_unlock().
2298
	 */
Q
Qiang Huang 已提交
2299 2300
	VM_BUG_ON(!rcu_read_lock_held());
	if (atomic_read(&memcg->moving_account) <= 0)
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2318
	 * should take move_lock_mem_cgroup().
2319 2320 2321 2322
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2323
void mem_cgroup_update_page_stat(struct page *page,
S
Sha Zhengju 已提交
2324
				 enum mem_cgroup_stat_index idx, int val)
2325
{
2326
	struct mem_cgroup *memcg;
2327
	struct page_cgroup *pc = lookup_page_cgroup(page);
2328
	unsigned long uninitialized_var(flags);
2329

2330
	if (mem_cgroup_disabled())
2331
		return;
2332

2333
	VM_BUG_ON(!rcu_read_lock_held());
2334 2335
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2336
		return;
2337

2338
	this_cpu_add(memcg->stat->count[idx], val);
2339
}
2340

2341 2342 2343 2344
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2345
#define CHARGE_BATCH	32U
2346 2347
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2348
	unsigned int nr_pages;
2349
	struct work_struct work;
2350
	unsigned long flags;
2351
#define FLUSHING_CACHED_CHARGE	0
2352 2353
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2354
static DEFINE_MUTEX(percpu_charge_mutex);
2355

2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2366
 */
2367
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2368 2369 2370 2371
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2372 2373 2374
	if (nr_pages > CHARGE_BATCH)
		return false;

2375
	stock = &get_cpu_var(memcg_stock);
2376 2377
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2391 2392 2393 2394
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2395
		if (do_swap_account)
2396 2397
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
2408
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2409
	drain_stock(stock);
2410
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2411 2412
}

2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2424 2425
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2426
 * This will be consumed by consume_stock() function, later.
2427
 */
2428
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2429 2430 2431
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2432
	if (stock->cached != memcg) { /* reset if necessary */
2433
		drain_stock(stock);
2434
		stock->cached = memcg;
2435
	}
2436
	stock->nr_pages += nr_pages;
2437 2438 2439 2440
	put_cpu_var(memcg_stock);
}

/*
2441
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2442 2443
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2444
 */
2445
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2446
{
2447
	int cpu, curcpu;
2448

2449 2450
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2451
	curcpu = get_cpu();
2452 2453
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2454
		struct mem_cgroup *memcg;
2455

2456 2457
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2458
			continue;
2459
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2460
			continue;
2461 2462 2463 2464 2465 2466
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2467
	}
2468
	put_cpu();
2469 2470 2471 2472 2473 2474

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2475
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2476 2477 2478
			flush_work(&stock->work);
	}
out:
A
Andrew Morton 已提交
2479
	put_online_cpus();
2480 2481 2482 2483 2484 2485 2486 2487
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2488
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2489
{
2490 2491 2492 2493 2494
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2495
	drain_all_stock(root_memcg, false);
2496
	mutex_unlock(&percpu_charge_mutex);
2497 2498 2499
}

/* This is a synchronous drain interface. */
2500
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2501 2502
{
	/* called when force_empty is called */
2503
	mutex_lock(&percpu_charge_mutex);
2504
	drain_all_stock(root_memcg, true);
2505
	mutex_unlock(&percpu_charge_mutex);
2506 2507
}

2508 2509 2510 2511
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2512
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2513 2514 2515
{
	int i;

2516
	spin_lock(&memcg->pcp_counter_lock);
2517
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2518
		long x = per_cpu(memcg->stat->count[i], cpu);
2519

2520 2521
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2522
	}
2523
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2524
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2525

2526 2527
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2528
	}
2529
	spin_unlock(&memcg->pcp_counter_lock);
2530 2531
}

2532
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2533 2534 2535 2536 2537
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2538
	struct mem_cgroup *iter;
2539

2540
	if (action == CPU_ONLINE)
2541 2542
		return NOTIFY_OK;

2543
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2544
		return NOTIFY_OK;
2545

2546
	for_each_mem_cgroup(iter)
2547 2548
		mem_cgroup_drain_pcp_counter(iter, cpu);

2549 2550 2551 2552 2553
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2554 2555 2556 2557 2558
/**
 * mem_cgroup_try_charge - try charging a memcg
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 * @oom: trigger OOM if reclaim fails
2559
 *
2560 2561
 * Returns 0 if @memcg was charged successfully, -EINTR if the charge
 * was bypassed to root_mem_cgroup, and -ENOMEM if the charge failed.
2562
 */
2563 2564 2565 2566
static int mem_cgroup_try_charge(struct mem_cgroup *memcg,
				 gfp_t gfp_mask,
				 unsigned int nr_pages,
				 bool oom)
2567
{
2568
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2569
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2570 2571 2572 2573 2574
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long nr_reclaimed;
	unsigned long flags = 0;
	unsigned long long size;
2575

2576 2577
	if (mem_cgroup_is_root(memcg))
		goto done;
K
KAMEZAWA Hiroyuki 已提交
2578
	/*
2579 2580 2581 2582
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
K
KAMEZAWA Hiroyuki 已提交
2583
	 */
2584
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2585 2586
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
K
KAMEZAWA Hiroyuki 已提交
2587
		goto bypass;
2588

2589
	if (unlikely(task_in_memcg_oom(current)))
2590
		goto nomem;
2591

2592 2593
	if (gfp_mask & __GFP_NOFAIL)
		oom = false;
2594
retry:
2595 2596
	if (consume_stock(memcg, nr_pages))
		goto done;
2597

2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
	size = batch * PAGE_SIZE;
	if (!res_counter_charge(&memcg->res, size, &fail_res)) {
		if (!do_swap_account)
			goto done_restock;
		if (!res_counter_charge(&memcg->memsw, size, &fail_res))
			goto done_restock;
		res_counter_uncharge(&memcg->res, size);
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2609

2610 2611 2612 2613
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2614

2615 2616
	if (!(gfp_mask & __GFP_WAIT))
		goto nomem;
2617

2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;

	nr_reclaimed = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);

	if (mem_cgroup_margin(mem_over_limit) >= batch)
		goto retry;
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
	if (nr_reclaimed && batch <= (1 << PAGE_ALLOC_COSTLY_ORDER))
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

	if (fatal_signal_pending(current))
		goto bypass;

	if (!oom)
		goto nomem;

	if (nr_oom_retries--)
		goto retry;

	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(batch));
2653
nomem:
2654
	if (!(gfp_mask & __GFP_NOFAIL))
2655
		return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2656
bypass:
2657
	return -EINTR;
2658 2659 2660 2661 2662 2663

done_restock:
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
done:
	return 0;
2664
}
2665

2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
/**
 * mem_cgroup_try_charge_mm - try charging a mm
 * @mm: mm_struct to charge
 * @nr_pages: number of pages to charge
 * @oom: trigger OOM if reclaim fails
 *
 * Returns the charged mem_cgroup associated with the given mm_struct or
 * NULL the charge failed.
 */
static struct mem_cgroup *mem_cgroup_try_charge_mm(struct mm_struct *mm,
				 gfp_t gfp_mask,
				 unsigned int nr_pages,
				 bool oom)

{
	struct mem_cgroup *memcg;
	int ret;

	memcg = get_mem_cgroup_from_mm(mm);
	ret = mem_cgroup_try_charge(memcg, gfp_mask, nr_pages, oom);
	css_put(&memcg->css);
	if (ret == -EINTR)
		memcg = root_mem_cgroup;
	else if (ret)
		memcg = NULL;

	return memcg;
}

2695 2696 2697 2698 2699
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2700
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2701
				       unsigned int nr_pages)
2702
{
2703
	if (!mem_cgroup_is_root(memcg)) {
2704 2705
		unsigned long bytes = nr_pages * PAGE_SIZE;

2706
		res_counter_uncharge(&memcg->res, bytes);
2707
		if (do_swap_account)
2708
			res_counter_uncharge(&memcg->memsw, bytes);
2709
	}
2710 2711
}

2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2730 2731
/*
 * A helper function to get mem_cgroup from ID. must be called under
2732 2733 2734
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
2735 2736 2737 2738 2739 2740
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	/* ID 0 is unused ID */
	if (!id)
		return NULL;
L
Li Zefan 已提交
2741
	return mem_cgroup_from_id(id);
2742 2743
}

2744
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2745
{
2746
	struct mem_cgroup *memcg = NULL;
2747
	struct page_cgroup *pc;
2748
	unsigned short id;
2749 2750
	swp_entry_t ent;

2751
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2752 2753

	pc = lookup_page_cgroup(page);
2754
	lock_page_cgroup(pc);
2755
	if (PageCgroupUsed(pc)) {
2756
		memcg = pc->mem_cgroup;
2757
		if (memcg && !css_tryget_online(&memcg->css))
2758
			memcg = NULL;
2759
	} else if (PageSwapCache(page)) {
2760
		ent.val = page_private(page);
2761
		id = lookup_swap_cgroup_id(ent);
2762
		rcu_read_lock();
2763
		memcg = mem_cgroup_lookup(id);
2764
		if (memcg && !css_tryget_online(&memcg->css))
2765
			memcg = NULL;
2766
		rcu_read_unlock();
2767
	}
2768
	unlock_page_cgroup(pc);
2769
	return memcg;
2770 2771
}

2772
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2773
				       struct page *page,
2774
				       unsigned int nr_pages,
2775 2776
				       enum charge_type ctype,
				       bool lrucare)
2777
{
2778
	struct page_cgroup *pc = lookup_page_cgroup(page);
2779
	struct zone *uninitialized_var(zone);
2780
	struct lruvec *lruvec;
2781
	bool was_on_lru = false;
2782
	bool anon;
2783

2784
	lock_page_cgroup(pc);
2785
	VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2786 2787 2788 2789
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2790 2791 2792 2793 2794 2795 2796 2797 2798

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2799
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2800
			ClearPageLRU(page);
2801
			del_page_from_lru_list(page, lruvec, page_lru(page));
2802 2803 2804 2805
			was_on_lru = true;
		}
	}

2806
	pc->mem_cgroup = memcg;
2807 2808 2809 2810 2811 2812
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
A
Andrew Morton 已提交
2813
	 */
K
KAMEZAWA Hiroyuki 已提交
2814
	smp_wmb();
2815
	SetPageCgroupUsed(pc);
2816

2817 2818
	if (lrucare) {
		if (was_on_lru) {
2819
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2820
			VM_BUG_ON_PAGE(PageLRU(page), page);
2821
			SetPageLRU(page);
2822
			add_page_to_lru_list(page, lruvec, page_lru(page));
2823 2824 2825 2826
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2827
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2828 2829 2830 2831
		anon = true;
	else
		anon = false;

2832
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2833
	unlock_page_cgroup(pc);
2834

2835
	/*
2836 2837 2838
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
2839
	 */
2840
	memcg_check_events(memcg, page);
2841
}
2842

2843 2844
static DEFINE_MUTEX(set_limit_mutex);

2845
#ifdef CONFIG_MEMCG_KMEM
2846 2847 2848 2849 2850 2851
/*
 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
 */
static DEFINE_MUTEX(memcg_slab_mutex);

2852 2853
static DEFINE_MUTEX(activate_kmem_mutex);

2854 2855 2856
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2857
		memcg_kmem_is_active(memcg);
2858 2859
}

G
Glauber Costa 已提交
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
2870
	return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
G
Glauber Costa 已提交
2871 2872
}

2873
#ifdef CONFIG_SLABINFO
2874
static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2875
{
2876
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2877 2878 2879 2880 2881 2882 2883
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

2884
	mutex_lock(&memcg_slab_mutex);
2885 2886
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
2887
	mutex_unlock(&memcg_slab_mutex);
2888 2889 2890 2891 2892

	return 0;
}
#endif

2893
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2894 2895 2896 2897 2898 2899 2900 2901
{
	struct res_counter *fail_res;
	int ret = 0;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

2902 2903
	ret = mem_cgroup_try_charge(memcg, gfp, size >> PAGE_SHIFT,
				    oom_gfp_allowed(gfp));
2904 2905
	if (ret == -EINTR)  {
		/*
2906
		 * mem_cgroup_try_charge() chosed to bypass to root due to
2907 2908 2909 2910 2911 2912 2913 2914 2915
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
2916
		 * mem_cgroup_try_charge() above. Tasks that were already
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

2931
static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2932 2933 2934 2935
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
2936 2937 2938 2939 2940

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

2941 2942 2943 2944 2945 2946 2947 2948
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
2949
	if (memcg_kmem_test_and_clear_dead(memcg))
2950
		css_put(&memcg->css);
2951 2952
}

2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

2993
	VM_BUG_ON(!is_root_cache(s));
2994 2995 2996

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
2997
		struct memcg_cache_params *new_params;
2998 2999 3000
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
3001
		size += offsetof(struct memcg_cache_params, memcg_caches);
3002

3003 3004
		new_params = kzalloc(size, GFP_KERNEL);
		if (!new_params)
3005 3006
			return -ENOMEM;

3007
		new_params->is_root_cache = true;
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
3021
			new_params->memcg_caches[i] =
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
3034 3035 3036
		rcu_assign_pointer(s->memcg_params, new_params);
		if (cur_params)
			kfree_rcu(cur_params, rcu_head);
3037 3038 3039 3040
	}
	return 0;
}

3041 3042
int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
			     struct kmem_cache *root_cache)
3043
{
3044
	size_t size;
3045 3046 3047 3048

	if (!memcg_kmem_enabled())
		return 0;

3049 3050
	if (!memcg) {
		size = offsetof(struct memcg_cache_params, memcg_caches);
3051
		size += memcg_limited_groups_array_size * sizeof(void *);
3052 3053
	} else
		size = sizeof(struct memcg_cache_params);
3054

3055 3056 3057 3058
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

G
Glauber Costa 已提交
3059
	if (memcg) {
3060
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3061
		s->memcg_params->root_cache = root_cache;
3062
		css_get(&memcg->css);
3063 3064 3065
	} else
		s->memcg_params->is_root_cache = true;

3066 3067 3068
	return 0;
}

3069 3070
void memcg_free_cache_params(struct kmem_cache *s)
{
3071 3072 3073 3074
	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		css_put(&s->memcg_params->memcg->css);
3075 3076 3077
	kfree(s->memcg_params);
}

3078 3079
static void memcg_register_cache(struct mem_cgroup *memcg,
				 struct kmem_cache *root_cache)
3080
{
3081 3082
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by
						     memcg_slab_mutex */
3083
	struct kmem_cache *cachep;
3084 3085
	int id;

3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
	lockdep_assert_held(&memcg_slab_mutex);

	id = memcg_cache_id(memcg);

	/*
	 * Since per-memcg caches are created asynchronously on first
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
	 * create the same cache, but only one of them may succeed.
	 */
	if (cache_from_memcg_idx(root_cache, id))
3096 3097
		return;

3098
	cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
3099
	cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
3100
	/*
3101 3102 3103
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
3104
	 */
3105 3106
	if (!cachep)
		return;
3107

3108
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3109

3110
	/*
3111 3112 3113
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
3114
	 */
3115 3116
	smp_wmb();

3117 3118
	BUG_ON(root_cache->memcg_params->memcg_caches[id]);
	root_cache->memcg_params->memcg_caches[id] = cachep;
3119
}
3120

3121
static void memcg_unregister_cache(struct kmem_cache *cachep)
3122
{
3123
	struct kmem_cache *root_cache;
3124 3125 3126
	struct mem_cgroup *memcg;
	int id;

3127
	lockdep_assert_held(&memcg_slab_mutex);
3128

3129
	BUG_ON(is_root_cache(cachep));
3130

3131 3132
	root_cache = cachep->memcg_params->root_cache;
	memcg = cachep->memcg_params->memcg;
3133
	id = memcg_cache_id(memcg);
3134

3135 3136
	BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
	root_cache->memcg_params->memcg_caches[id] = NULL;
3137

3138 3139 3140
	list_del(&cachep->memcg_params->list);

	kmem_cache_destroy(cachep);
3141 3142
}

3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

3174
int __memcg_cleanup_cache_params(struct kmem_cache *s)
3175 3176
{
	struct kmem_cache *c;
3177
	int i, failed = 0;
3178

3179
	mutex_lock(&memcg_slab_mutex);
3180 3181
	for_each_memcg_cache_index(i) {
		c = cache_from_memcg_idx(s, i);
3182 3183 3184
		if (!c)
			continue;

3185
		memcg_unregister_cache(c);
3186 3187 3188

		if (cache_from_memcg_idx(s, i))
			failed++;
3189
	}
3190
	mutex_unlock(&memcg_slab_mutex);
3191
	return failed;
3192 3193
}

3194
static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
3195 3196
{
	struct kmem_cache *cachep;
3197
	struct memcg_cache_params *params, *tmp;
G
Glauber Costa 已提交
3198 3199 3200 3201

	if (!memcg_kmem_is_active(memcg))
		return;

3202 3203
	mutex_lock(&memcg_slab_mutex);
	list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
G
Glauber Costa 已提交
3204
		cachep = memcg_params_to_cache(params);
3205 3206
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3207
			memcg_unregister_cache(cachep);
G
Glauber Costa 已提交
3208
	}
3209
	mutex_unlock(&memcg_slab_mutex);
G
Glauber Costa 已提交
3210 3211
}

3212
struct memcg_register_cache_work {
3213 3214 3215 3216 3217
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

3218
static void memcg_register_cache_func(struct work_struct *w)
3219
{
3220 3221
	struct memcg_register_cache_work *cw =
		container_of(w, struct memcg_register_cache_work, work);
3222 3223
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
3224

3225
	mutex_lock(&memcg_slab_mutex);
3226
	memcg_register_cache(memcg, cachep);
3227 3228
	mutex_unlock(&memcg_slab_mutex);

3229
	css_put(&memcg->css);
3230 3231 3232 3233 3234 3235
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3236 3237
static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
					    struct kmem_cache *cachep)
3238
{
3239
	struct memcg_register_cache_work *cw;
3240

3241
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
3242 3243
	if (cw == NULL) {
		css_put(&memcg->css);
3244 3245 3246 3247 3248 3249
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

3250
	INIT_WORK(&cw->work, memcg_register_cache_func);
3251 3252 3253
	schedule_work(&cw->work);
}

3254 3255
static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
					  struct kmem_cache *cachep)
3256 3257 3258 3259
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
3260
	 * in __memcg_schedule_register_cache will recurse.
3261 3262 3263 3264 3265 3266 3267 3268
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
3269
	__memcg_schedule_register_cache(memcg, cachep);
3270 3271
	memcg_resume_kmem_account();
}
3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289

int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
{
	int res;

	res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp,
				PAGE_SIZE << order);
	if (!res)
		atomic_add(1 << order, &cachep->memcg_params->nr_pages);
	return res;
}

void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
{
	memcg_uncharge_kmem(cachep->memcg_params->memcg, PAGE_SIZE << order);
	atomic_sub(1 << order, &cachep->memcg_params->nr_pages);
}

3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
3307
	struct kmem_cache *memcg_cachep;
3308 3309 3310 3311

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3312 3313 3314
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3315 3316 3317 3318
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3319
		goto out;
3320

3321 3322 3323
	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
	if (likely(memcg_cachep)) {
		cachep = memcg_cachep;
3324
		goto out;
3325 3326
	}

3327
	/* The corresponding put will be done in the workqueue. */
3328
	if (!css_tryget_online(&memcg->css))
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
3340 3341 3342
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
3343
	 */
3344
	memcg_schedule_register_cache(memcg, cachep);
3345 3346 3347 3348
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3349 3350
}

3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3372 3373 3374 3375

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
V
Vladimir Davydov 已提交
3376 3377 3378 3379 3380 3381
	 * check here, since direct calls to the page allocator that are
	 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
	 * outside memcg core. We are mostly concerned with cache allocations,
	 * and by having this test at memcg_kmem_get_cache, we are already able
	 * to relay the allocation to the root cache and bypass the memcg cache
	 * altogether.
3382 3383 3384 3385 3386 3387
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
A
Andrew Morton 已提交
3388 3389 3390
	 *	memcg_stop_kmem_account();
	 *	kmalloc(<large_number>)
	 *	memcg_resume_kmem_account();
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3401
	memcg = get_mem_cgroup_from_mm(current->mm);
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

3464
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3465 3466
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3467
#else
3468
static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
3469 3470
{
}
3471 3472
#endif /* CONFIG_MEMCG_KMEM */

3473 3474
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3475
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3476 3477
/*
 * Because tail pages are not marked as "used", set it. We're under
3478 3479 3480
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3481
 */
3482
void mem_cgroup_split_huge_fixup(struct page *head)
3483 3484
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3485
	struct page_cgroup *pc;
3486
	struct mem_cgroup *memcg;
3487
	int i;
3488

3489 3490
	if (mem_cgroup_disabled())
		return;
3491 3492

	memcg = head_pc->mem_cgroup;
3493 3494
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3495
		pc->mem_cgroup = memcg;
3496 3497 3498
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3499 3500
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3501
}
3502
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3503

3504
/**
3505
 * mem_cgroup_move_account - move account of the page
3506
 * @page: the page
3507
 * @nr_pages: number of regular pages (>1 for huge pages)
3508 3509 3510 3511 3512
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3513
 * - page is not on LRU (isolate_page() is useful.)
3514
 * - compound_lock is held when nr_pages > 1
3515
 *
3516 3517
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3518
 */
3519 3520 3521 3522
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3523
				   struct mem_cgroup *to)
3524
{
3525 3526
	unsigned long flags;
	int ret;
3527
	bool anon = PageAnon(page);
3528

3529
	VM_BUG_ON(from == to);
3530
	VM_BUG_ON_PAGE(PageLRU(page), page);
3531 3532 3533 3534 3535 3536 3537
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3538
	if (nr_pages > 1 && !PageTransHuge(page))
3539 3540 3541 3542 3543 3544 3545 3546
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3547
	move_lock_mem_cgroup(from, &flags);
3548

3549 3550 3551 3552 3553 3554
	if (!anon && page_mapped(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}
3555

3556 3557 3558 3559 3560 3561
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}
3562

3563
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3564

3565
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3566
	pc->mem_cgroup = to;
3567
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3568
	move_unlock_mem_cgroup(from, &flags);
3569 3570
	ret = 0;
unlock:
3571
	unlock_page_cgroup(pc);
3572 3573 3574
	/*
	 * check events
	 */
3575 3576
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3577
out:
3578 3579 3580
	return ret;
}

3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3601
 */
3602 3603
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3604
				  struct mem_cgroup *child)
3605 3606
{
	struct mem_cgroup *parent;
3607
	unsigned int nr_pages;
3608
	unsigned long uninitialized_var(flags);
3609 3610
	int ret;

3611
	VM_BUG_ON(mem_cgroup_is_root(child));
3612

3613 3614 3615 3616 3617
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3618

3619
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3620

3621 3622 3623 3624 3625 3626
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3627

3628
	if (nr_pages > 1) {
3629
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3630
		flags = compound_lock_irqsave(page);
3631
	}
3632

3633
	ret = mem_cgroup_move_account(page, nr_pages,
3634
				pc, child, parent);
3635 3636
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3637

3638
	if (nr_pages > 1)
3639
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3640
	putback_lru_page(page);
3641
put:
3642
	put_page(page);
3643
out:
3644 3645 3646
	return ret;
}

3647
int mem_cgroup_charge_anon(struct page *page,
3648
			      struct mm_struct *mm, gfp_t gfp_mask)
3649
{
3650
	unsigned int nr_pages = 1;
3651
	struct mem_cgroup *memcg;
3652
	bool oom = true;
A
Andrea Arcangeli 已提交
3653

3654 3655 3656 3657 3658 3659 3660
	if (mem_cgroup_disabled())
		return 0;

	VM_BUG_ON_PAGE(page_mapped(page), page);
	VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
	VM_BUG_ON(!mm);

A
Andrea Arcangeli 已提交
3661
	if (PageTransHuge(page)) {
3662
		nr_pages <<= compound_order(page);
3663
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3664 3665 3666 3667 3668
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3669
	}
3670

3671 3672 3673
	memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, nr_pages, oom);
	if (!memcg)
		return -ENOMEM;
3674 3675
	__mem_cgroup_commit_charge(memcg, page, nr_pages,
				   MEM_CGROUP_CHARGE_TYPE_ANON, false);
3676 3677 3678
	return 0;
}

3679 3680 3681
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3682
 * struct page_cgroup is acquired. This refcnt will be consumed by
3683 3684
 * "commit()" or removed by "cancel()"
 */
3685 3686 3687 3688
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3689
{
3690
	struct mem_cgroup *memcg = NULL;
3691
	struct page_cgroup *pc;
3692
	int ret;
3693

3694 3695 3696 3697 3698 3699 3700 3701 3702
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
3703 3704 3705
		goto out;
	if (do_swap_account)
		memcg = try_get_mem_cgroup_from_page(page);
3706
	if (!memcg)
3707 3708
		memcg = get_mem_cgroup_from_mm(mm);
	ret = mem_cgroup_try_charge(memcg, mask, 1, true);
3709
	css_put(&memcg->css);
3710
	if (ret == -EINTR)
3711 3712 3713 3714 3715 3716
		memcg = root_mem_cgroup;
	else if (ret)
		return ret;
out:
	*memcgp = memcg;
	return 0;
3717 3718
}

3719 3720 3721
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
3722 3723
	if (mem_cgroup_disabled()) {
		*memcgp = NULL;
3724
		return 0;
3725
	}
3726 3727 3728 3729 3730 3731 3732
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
3733
		struct mem_cgroup *memcg;
3734

3735 3736 3737 3738 3739
		memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
		if (!memcg)
			return -ENOMEM;
		*memcgp = memcg;
		return 0;
3740
	}
3741 3742 3743
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

3744 3745 3746 3747 3748 3749 3750 3751 3752
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
3753
static void
3754
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
3755
					enum charge_type ctype)
3756
{
3757
	if (mem_cgroup_disabled())
3758
		return;
3759
	if (!memcg)
3760
		return;
3761

3762
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3763 3764 3765
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
3766 3767 3768
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
3769
	 */
3770
	if (do_swap_account && PageSwapCache(page)) {
3771
		swp_entry_t ent = {.val = page_private(page)};
3772
		mem_cgroup_uncharge_swap(ent);
3773
	}
3774 3775
}

3776 3777
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
3778
{
3779
	__mem_cgroup_commit_charge_swapin(page, memcg,
3780
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
3781 3782
}

3783
int mem_cgroup_charge_file(struct page *page, struct mm_struct *mm,
3784
				gfp_t gfp_mask)
3785
{
3786
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3787
	struct mem_cgroup *memcg;
3788 3789
	int ret;

3790
	if (mem_cgroup_disabled())
3791 3792 3793 3794
		return 0;
	if (PageCompound(page))
		return 0;

3795
	if (PageSwapCache(page)) { /* shmem */
3796 3797
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
3798 3799 3800 3801
		if (ret)
			return ret;
		__mem_cgroup_commit_charge_swapin(page, memcg, type);
		return 0;
3802
	}
3803

3804 3805 3806
	memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
	if (!memcg)
		return -ENOMEM;
3807 3808
	__mem_cgroup_commit_charge(memcg, page, 1, type, false);
	return 0;
3809 3810
}

3811
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3812 3813
				   unsigned int nr_pages,
				   const enum charge_type ctype)
3814 3815 3816
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
3817

3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
3829
		batch->memcg = memcg;
3830 3831
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
3832
	 * In those cases, all pages freed continuously can be expected to be in
3833 3834 3835 3836 3837 3838 3839 3840
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

3841
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
3842 3843
		goto direct_uncharge;

3844 3845 3846 3847 3848
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
3849
	if (batch->memcg != memcg)
3850 3851
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
3852
	batch->nr_pages++;
3853
	if (uncharge_memsw)
3854
		batch->memsw_nr_pages++;
3855 3856
	return;
direct_uncharge:
3857
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3858
	if (uncharge_memsw)
3859 3860 3861
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
3862
}
3863

3864
/*
3865
 * uncharge if !page_mapped(page)
3866
 */
3867
static struct mem_cgroup *
3868 3869
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
3870
{
3871
	struct mem_cgroup *memcg = NULL;
3872 3873
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
3874
	bool anon;
3875

3876
	if (mem_cgroup_disabled())
3877
		return NULL;
3878

A
Andrea Arcangeli 已提交
3879
	if (PageTransHuge(page)) {
3880
		nr_pages <<= compound_order(page);
3881
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
A
Andrea Arcangeli 已提交
3882
	}
3883
	/*
3884
	 * Check if our page_cgroup is valid
3885
	 */
3886
	pc = lookup_page_cgroup(page);
3887
	if (unlikely(!PageCgroupUsed(pc)))
3888
		return NULL;
3889

3890
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3891

3892
	memcg = pc->mem_cgroup;
3893

K
KAMEZAWA Hiroyuki 已提交
3894 3895 3896
	if (!PageCgroupUsed(pc))
		goto unlock_out;

3897 3898
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
3899
	switch (ctype) {
3900
	case MEM_CGROUP_CHARGE_TYPE_ANON:
3901 3902 3903 3904 3905
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
3906 3907
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
3908
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3909
		/* See mem_cgroup_prepare_migration() */
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3931
	}
K
KAMEZAWA Hiroyuki 已提交
3932

3933
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3934

3935
	ClearPageCgroupUsed(pc);
3936 3937 3938 3939 3940 3941
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3942

3943
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3944
	/*
3945
	 * even after unlock, we have memcg->res.usage here and this memcg
L
Li Zefan 已提交
3946
	 * will never be freed, so it's safe to call css_get().
K
KAMEZAWA Hiroyuki 已提交
3947
	 */
3948
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
3949
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3950
		mem_cgroup_swap_statistics(memcg, true);
L
Li Zefan 已提交
3951
		css_get(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
3952
	}
3953 3954 3955 3956 3957 3958
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
3959
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3960

3961
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
3962 3963 3964

unlock_out:
	unlock_page_cgroup(pc);
3965
	return NULL;
3966 3967
}

3968 3969
void mem_cgroup_uncharge_page(struct page *page)
{
3970 3971 3972
	/* early check. */
	if (page_mapped(page))
		return;
3973
	VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
	/*
	 * If the page is in swap cache, uncharge should be deferred
	 * to the swap path, which also properly accounts swap usage
	 * and handles memcg lifetime.
	 *
	 * Note that this check is not stable and reclaim may add the
	 * page to swap cache at any time after this.  However, if the
	 * page is not in swap cache by the time page->mapcount hits
	 * 0, there won't be any page table references to the swap
	 * slot, and reclaim will free it and not actually write the
	 * page to disk.
	 */
3986 3987
	if (PageSwapCache(page))
		return;
3988
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
3989 3990 3991 3992
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
3993 3994
	VM_BUG_ON_PAGE(page_mapped(page), page);
	VM_BUG_ON_PAGE(page->mapping, page);
3995
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
3996 3997
}

3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4012 4013
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4034 4035 4036 4037 4038 4039
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4040
	memcg_oom_recover(batch->memcg);
4041 4042 4043 4044
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4045
#ifdef CONFIG_SWAP
4046
/*
4047
 * called after __delete_from_swap_cache() and drop "page" account.
4048 4049
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4050 4051
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4052 4053
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4054 4055 4056 4057 4058
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4059
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4060

K
KAMEZAWA Hiroyuki 已提交
4061 4062
	/*
	 * record memcg information,  if swapout && memcg != NULL,
L
Li Zefan 已提交
4063
	 * css_get() was called in uncharge().
K
KAMEZAWA Hiroyuki 已提交
4064 4065
	 */
	if (do_swap_account && swapout && memcg)
L
Li Zefan 已提交
4066
		swap_cgroup_record(ent, mem_cgroup_id(memcg));
4067
}
4068
#endif
4069

A
Andrew Morton 已提交
4070
#ifdef CONFIG_MEMCG_SWAP
4071 4072 4073 4074 4075
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4076
{
4077
	struct mem_cgroup *memcg;
4078
	unsigned short id;
4079 4080 4081 4082

	if (!do_swap_account)
		return;

4083 4084 4085
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4086
	if (memcg) {
4087
		/*
4088 4089
		 * We uncharge this because swap is freed.  This memcg can
		 * be obsolete one. We avoid calling css_tryget_online().
4090
		 */
4091
		if (!mem_cgroup_is_root(memcg))
4092
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4093
		mem_cgroup_swap_statistics(memcg, false);
L
Li Zefan 已提交
4094
		css_put(&memcg->css);
4095
	}
4096
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4097
}
4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4114
				struct mem_cgroup *from, struct mem_cgroup *to)
4115 4116 4117
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
4118 4119
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
4120 4121 4122

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4123
		mem_cgroup_swap_statistics(to, true);
4124
		/*
4125 4126 4127
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
4128 4129 4130 4131 4132 4133
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
4134
		 */
L
Li Zefan 已提交
4135
		css_get(&to->css);
4136 4137 4138 4139 4140 4141
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4142
				struct mem_cgroup *from, struct mem_cgroup *to)
4143 4144 4145
{
	return -EINVAL;
}
4146
#endif
K
KAMEZAWA Hiroyuki 已提交
4147

4148
/*
4149 4150
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4151
 */
4152 4153
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4154
{
4155
	struct mem_cgroup *memcg = NULL;
4156
	unsigned int nr_pages = 1;
4157
	struct page_cgroup *pc;
4158
	enum charge_type ctype;
4159

4160
	*memcgp = NULL;
4161

4162
	if (mem_cgroup_disabled())
4163
		return;
4164

4165 4166 4167
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4168 4169 4170
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4171 4172
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4204
	}
4205
	unlock_page_cgroup(pc);
4206 4207 4208 4209
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4210
	if (!memcg)
4211
		return;
4212

4213
	*memcgp = memcg;
4214 4215 4216 4217 4218 4219 4220
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4221
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4222
	else
4223
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4224 4225 4226 4227 4228
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4229
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4230
}
4231

4232
/* remove redundant charge if migration failed*/
4233
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4234
	struct page *oldpage, struct page *newpage, bool migration_ok)
4235
{
4236
	struct page *used, *unused;
4237
	struct page_cgroup *pc;
4238
	bool anon;
4239

4240
	if (!memcg)
4241
		return;
4242

4243
	if (!migration_ok) {
4244 4245
		used = oldpage;
		unused = newpage;
4246
	} else {
4247
		used = newpage;
4248 4249
		unused = oldpage;
	}
4250
	anon = PageAnon(used);
4251 4252 4253 4254
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4255
	css_put(&memcg->css);
4256
	/*
4257 4258 4259
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4260
	 */
4261 4262 4263 4264 4265
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4266
	/*
4267 4268 4269 4270 4271 4272
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4273
	 */
4274
	if (anon)
4275
		mem_cgroup_uncharge_page(used);
4276
}
4277

4278 4279 4280 4281 4282 4283 4284 4285
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4286
	struct mem_cgroup *memcg = NULL;
4287 4288 4289 4290 4291 4292 4293 4294 4295
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4296 4297
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4298
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4299 4300
		ClearPageCgroupUsed(pc);
	}
4301 4302
	unlock_page_cgroup(pc);

4303 4304 4305 4306 4307 4308
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4309 4310 4311 4312 4313
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4314
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4315 4316
}

4317 4318 4319 4320 4321 4322
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4323 4324 4325 4326 4327
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4347 4348
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4349 4350 4351 4352
	}
}
#endif

4353
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4354
				unsigned long long val)
4355
{
4356
	int retry_count;
4357
	u64 memswlimit, memlimit;
4358
	int ret = 0;
4359 4360
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4361
	int enlarge;
4362 4363 4364 4365 4366 4367 4368 4369 4370

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4371

4372
	enlarge = 0;
4373
	while (retry_count) {
4374 4375 4376 4377
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4378 4379 4380
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4381
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4382 4383 4384 4385 4386 4387
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4388 4389
			break;
		}
4390 4391 4392 4393 4394

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4395
		ret = res_counter_set_limit(&memcg->res, val);
4396 4397 4398 4399 4400 4401
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4402 4403 4404 4405 4406
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4407 4408
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4409 4410
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
A
Andrew Morton 已提交
4411
		if (curusage >= oldusage)
4412 4413 4414
			retry_count--;
		else
			oldusage = curusage;
4415
	}
4416 4417
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4418

4419 4420 4421
	return ret;
}

L
Li Zefan 已提交
4422 4423
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4424
{
4425
	int retry_count;
4426
	u64 memlimit, memswlimit, oldusage, curusage;
4427 4428
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4429
	int enlarge = 0;
4430

4431
	/* see mem_cgroup_resize_res_limit */
A
Andrew Morton 已提交
4432
	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4433
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4434 4435 4436 4437 4438 4439 4440 4441
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4442
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4443 4444 4445 4446 4447 4448 4449 4450
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4451 4452 4453
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4454
		ret = res_counter_set_limit(&memcg->memsw, val);
4455 4456 4457 4458 4459 4460
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4461 4462 4463 4464 4465
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4466 4467 4468
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4469
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4470
		/* Usage is reduced ? */
4471
		if (curusage >= oldusage)
4472
			retry_count--;
4473 4474
		else
			oldusage = curusage;
4475
	}
4476 4477
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4478 4479 4480
	return ret;
}

4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
	unsigned long long excess;
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz)
					css_put(&next_mz->memcg->css);
				else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
4543
		__mem_cgroup_remove_exceeded(mz, mctz);
4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
4554
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572
		spin_unlock(&mctz->lock);
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

4573 4574 4575 4576 4577 4578 4579
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4580
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4581 4582
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4583
 */
4584
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4585
				int node, int zid, enum lru_list lru)
4586
{
4587
	struct lruvec *lruvec;
4588
	unsigned long flags;
4589
	struct list_head *list;
4590 4591
	struct page *busy;
	struct zone *zone;
4592

K
KAMEZAWA Hiroyuki 已提交
4593
	zone = &NODE_DATA(node)->node_zones[zid];
4594 4595
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4596

4597
	busy = NULL;
4598
	do {
4599
		struct page_cgroup *pc;
4600 4601
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4602
		spin_lock_irqsave(&zone->lru_lock, flags);
4603
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4604
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4605
			break;
4606
		}
4607 4608 4609
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4610
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4611
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4612 4613
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4614
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4615

4616
		pc = lookup_page_cgroup(page);
4617

4618
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4619
			/* found lock contention or "pc" is obsolete. */
4620
			busy = page;
4621 4622
		} else
			busy = NULL;
4623
		cond_resched();
4624
	} while (!list_empty(list));
4625 4626 4627
}

/*
4628 4629
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4630
 * This enables deleting this mem_cgroup.
4631 4632
 *
 * Caller is responsible for holding css reference on the memcg.
4633
 */
4634
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4635
{
4636
	int node, zid;
4637
	u64 usage;
4638

4639
	do {
4640 4641
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4642 4643
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4644
		for_each_node_state(node, N_MEMORY) {
4645
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4646 4647
				enum lru_list lru;
				for_each_lru(lru) {
4648
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4649
							node, zid, lru);
4650
				}
4651
			}
4652
		}
4653 4654
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4655
		cond_resched();
4656

4657
		/*
4658 4659 4660 4661 4662
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4663 4664 4665 4666 4667 4668
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4669 4670 4671
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4672 4673
}

4674 4675 4676 4677 4678 4679
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
4680 4681
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
4682 4683
	bool ret;

4684
	/*
4685 4686 4687 4688
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
4689
	 */
4690 4691 4692 4693 4694 4695
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
4696 4697
}

4698 4699 4700 4701 4702 4703 4704 4705 4706 4707
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

4708 4709
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4710
	/* try to free all pages in this cgroup */
4711
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4712
		int progress;
4713

4714 4715 4716
		if (signal_pending(current))
			return -EINTR;

4717
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4718
						false);
4719
		if (!progress) {
4720
			nr_retries--;
4721
			/* maybe some writeback is necessary */
4722
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4723
		}
4724 4725

	}
4726 4727

	return 0;
4728 4729
}

4730 4731 4732
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
4733
{
4734
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4735

4736 4737
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
4738
	return mem_cgroup_force_empty(memcg) ?: nbytes;
4739 4740
}

4741 4742
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
4743
{
4744
	return mem_cgroup_from_css(css)->use_hierarchy;
4745 4746
}

4747 4748
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
4749 4750
{
	int retval = 0;
4751
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4752
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
4753

4754
	mutex_lock(&memcg_create_mutex);
4755 4756 4757 4758

	if (memcg->use_hierarchy == val)
		goto out;

4759
	/*
4760
	 * If parent's use_hierarchy is set, we can't make any modifications
4761 4762 4763 4764 4765 4766
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
4767
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4768
				(val == 1 || val == 0)) {
4769
		if (!memcg_has_children(memcg))
4770
			memcg->use_hierarchy = val;
4771 4772 4773 4774
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
4775 4776

out:
4777
	mutex_unlock(&memcg_create_mutex);
4778 4779 4780 4781

	return retval;
}

4782

4783
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4784
					       enum mem_cgroup_stat_index idx)
4785
{
K
KAMEZAWA Hiroyuki 已提交
4786
	struct mem_cgroup *iter;
4787
	long val = 0;
4788

4789
	/* Per-cpu values can be negative, use a signed accumulator */
4790
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4791 4792 4793 4794 4795
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
4796 4797
}

4798
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4799
{
K
KAMEZAWA Hiroyuki 已提交
4800
	u64 val;
4801

4802
	if (!mem_cgroup_is_root(memcg)) {
4803
		if (!swap)
4804
			return res_counter_read_u64(&memcg->res, RES_USAGE);
4805
		else
4806
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4807 4808
	}

4809 4810 4811 4812
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
4813 4814
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4815

K
KAMEZAWA Hiroyuki 已提交
4816
	if (swap)
4817
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4818 4819 4820 4821

	return val << PAGE_SHIFT;
}

4822 4823
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
B
Balbir Singh 已提交
4824
{
4825
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4826
	u64 val;
4827
	int name;
G
Glauber Costa 已提交
4828
	enum res_type type;
4829 4830 4831

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
4832

4833 4834
	switch (type) {
	case _MEM:
4835
		if (name == RES_USAGE)
4836
			val = mem_cgroup_usage(memcg, false);
4837
		else
4838
			val = res_counter_read_u64(&memcg->res, name);
4839 4840
		break;
	case _MEMSWAP:
4841
		if (name == RES_USAGE)
4842
			val = mem_cgroup_usage(memcg, true);
4843
		else
4844
			val = res_counter_read_u64(&memcg->memsw, name);
4845
		break;
4846 4847 4848
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
4849 4850 4851
	default:
		BUG();
	}
4852

4853
	return val;
B
Balbir Singh 已提交
4854
}
4855 4856

#ifdef CONFIG_MEMCG_KMEM
4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872
/* should be called with activate_kmem_mutex held */
static int __memcg_activate_kmem(struct mem_cgroup *memcg,
				 unsigned long long limit)
{
	int err = 0;
	int memcg_id;

	if (memcg_kmem_is_active(memcg))
		return 0;

	/*
	 * We are going to allocate memory for data shared by all memory
	 * cgroups so let's stop accounting here.
	 */
	memcg_stop_kmem_account();

4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
4885
	mutex_lock(&memcg_create_mutex);
4886 4887
	if (cgroup_has_tasks(memcg->css.cgroup) ||
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
4888 4889 4890 4891
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
4892

4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903
	memcg_id = ida_simple_get(&kmem_limited_groups,
				  0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
	 * Make sure we have enough space for this cgroup in each root cache's
	 * memcg_params.
	 */
4904
	mutex_lock(&memcg_slab_mutex);
4905
	err = memcg_update_all_caches(memcg_id + 1);
4906
	mutex_unlock(&memcg_slab_mutex);
4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926
	if (err)
		goto out_rmid;

	memcg->kmemcg_id = memcg_id;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);

	/*
	 * We couldn't have accounted to this cgroup, because it hasn't got the
	 * active bit set yet, so this should succeed.
	 */
	err = res_counter_set_limit(&memcg->kmem, limit);
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
	 * Setting the active bit after enabling static branching will
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
	memcg_kmem_set_active(memcg);
4927
out:
4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955
	memcg_resume_kmem_account();
	return err;

out_rmid:
	ida_simple_remove(&kmem_limited_groups, memcg_id);
	goto out;
}

static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long long limit)
{
	int ret;

	mutex_lock(&activate_kmem_mutex);
	ret = __memcg_activate_kmem(memcg, limit);
	mutex_unlock(&activate_kmem_mutex);
	return ret;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
				   unsigned long long val)
{
	int ret;

	if (!memcg_kmem_is_active(memcg))
		ret = memcg_activate_kmem(memcg, val);
	else
		ret = res_counter_set_limit(&memcg->kmem, val);
4956 4957 4958
	return ret;
}

4959
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4960
{
4961
	int ret = 0;
4962
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4963

4964 4965
	if (!parent)
		return 0;
4966

4967
	mutex_lock(&activate_kmem_mutex);
4968
	/*
4969 4970
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
4971
	 */
4972 4973 4974
	if (memcg_kmem_is_active(parent))
		ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
	mutex_unlock(&activate_kmem_mutex);
4975
	return ret;
4976
}
4977 4978 4979 4980 4981 4982
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
				   unsigned long long val)
{
	return -EINVAL;
}
4983
#endif /* CONFIG_MEMCG_KMEM */
4984

4985 4986 4987 4988
/*
 * The user of this function is...
 * RES_LIMIT.
 */
4989 4990
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
4991
{
4992
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
G
Glauber Costa 已提交
4993 4994
	enum res_type type;
	int name;
4995 4996 4997
	unsigned long long val;
	int ret;

4998 4999 5000
	buf = strstrip(buf);
	type = MEMFILE_TYPE(of_cft(of)->private);
	name = MEMFILE_ATTR(of_cft(of)->private);
5001

5002
	switch (name) {
5003
	case RES_LIMIT:
5004 5005 5006 5007
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5008
		/* This function does all necessary parse...reuse it */
5009
		ret = res_counter_memparse_write_strategy(buf, &val);
5010 5011 5012
		if (ret)
			break;
		if (type == _MEM)
5013
			ret = mem_cgroup_resize_limit(memcg, val);
5014
		else if (type == _MEMSWAP)
5015
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5016
		else if (type == _KMEM)
5017
			ret = memcg_update_kmem_limit(memcg, val);
5018 5019
		else
			return -EINVAL;
5020
		break;
5021
	case RES_SOFT_LIMIT:
5022
		ret = res_counter_memparse_write_strategy(buf, &val);
5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5035 5036 5037 5038
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
5039
	return ret ?: nbytes;
B
Balbir Singh 已提交
5040 5041
}

5042 5043 5044 5045 5046 5047 5048 5049 5050 5051
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
5052 5053
	while (memcg->css.parent) {
		memcg = mem_cgroup_from_css(memcg->css.parent);
5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5066 5067
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
5068
{
5069
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
G
Glauber Costa 已提交
5070 5071
	int name;
	enum res_type type;
5072

5073 5074
	type = MEMFILE_TYPE(of_cft(of)->private);
	name = MEMFILE_ATTR(of_cft(of)->private);
5075

5076
	switch (name) {
5077
	case RES_MAX_USAGE:
5078
		if (type == _MEM)
5079
			res_counter_reset_max(&memcg->res);
5080
		else if (type == _MEMSWAP)
5081
			res_counter_reset_max(&memcg->memsw);
5082 5083 5084 5085
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5086 5087
		break;
	case RES_FAILCNT:
5088
		if (type == _MEM)
5089
			res_counter_reset_failcnt(&memcg->res);
5090
		else if (type == _MEMSWAP)
5091
			res_counter_reset_failcnt(&memcg->memsw);
5092 5093 5094 5095
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5096 5097
		break;
	}
5098

5099
	return nbytes;
5100 5101
}

5102
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5103 5104
					struct cftype *cft)
{
5105
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5106 5107
}

5108
#ifdef CONFIG_MMU
5109
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5110 5111
					struct cftype *cft, u64 val)
{
5112
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5113 5114 5115

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5116

5117
	/*
5118 5119 5120 5121
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5122
	 */
5123
	memcg->move_charge_at_immigrate = val;
5124 5125
	return 0;
}
5126
#else
5127
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5128 5129 5130 5131 5132
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5133

5134
#ifdef CONFIG_NUMA
5135
static int memcg_numa_stat_show(struct seq_file *m, void *v)
5136
{
5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
5149
	int nid;
5150
	unsigned long nr;
5151
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5152

5153 5154 5155 5156 5157 5158 5159 5160 5161
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
5162 5163
	}

5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
5179 5180 5181 5182 5183 5184
	}

	return 0;
}
#endif /* CONFIG_NUMA */

5185 5186 5187 5188 5189
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5190
static int memcg_stat_show(struct seq_file *m, void *v)
5191
{
5192
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5193 5194
	struct mem_cgroup *mi;
	unsigned int i;
5195

5196
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5197
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5198
			continue;
5199 5200
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5201
	}
L
Lee Schermerhorn 已提交
5202

5203 5204 5205 5206 5207 5208 5209 5210
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5211
	/* Hierarchical information */
5212 5213
	{
		unsigned long long limit, memsw_limit;
5214
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5215
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5216
		if (do_swap_account)
5217 5218
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5219
	}
K
KOSAKI Motohiro 已提交
5220

5221 5222 5223
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5224
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5225
			continue;
5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5246
	}
K
KAMEZAWA Hiroyuki 已提交
5247

K
KOSAKI Motohiro 已提交
5248 5249 5250 5251
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5252
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5253 5254 5255 5256 5257
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5258
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
5259
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5260

5261 5262 5263 5264
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5265
			}
5266 5267 5268 5269
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5270 5271 5272
	}
#endif

5273 5274 5275
	return 0;
}

5276 5277
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
5278
{
5279
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
5280

5281
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5282 5283
}

5284 5285
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
5286
{
5287
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
5288

5289
	if (val > 100)
K
KOSAKI Motohiro 已提交
5290 5291
		return -EINVAL;

5292
	if (css->parent)
5293 5294 5295
		memcg->swappiness = val;
	else
		vm_swappiness = val;
5296

K
KOSAKI Motohiro 已提交
5297 5298 5299
	return 0;
}

5300 5301 5302 5303 5304 5305 5306 5307
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5308
		t = rcu_dereference(memcg->thresholds.primary);
5309
	else
5310
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5311 5312 5313 5314 5315 5316 5317

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5318
	 * current_threshold points to threshold just below or equal to usage.
5319 5320 5321
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5322
	i = t->current_threshold;
5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5346
	t->current_threshold = i - 1;
5347 5348 5349 5350 5351 5352
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5353 5354 5355 5356 5357 5358 5359
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5360 5361 5362 5363 5364 5365 5366
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

5367 5368 5369 5370 5371 5372 5373
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
5374 5375
}

5376
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5377 5378 5379
{
	struct mem_cgroup_eventfd_list *ev;

5380 5381
	spin_lock(&memcg_oom_lock);

5382
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5383
		eventfd_signal(ev->eventfd, 1);
5384 5385

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5386 5387 5388
	return 0;
}

5389
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5390
{
K
KAMEZAWA Hiroyuki 已提交
5391 5392
	struct mem_cgroup *iter;

5393
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5394
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5395 5396
}

5397
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5398
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
5399
{
5400 5401
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
5402
	u64 threshold, usage;
5403
	int i, size, ret;
5404 5405 5406 5407 5408 5409

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5410

5411
	if (type == _MEM)
5412
		thresholds = &memcg->thresholds;
5413
	else if (type == _MEMSWAP)
5414
		thresholds = &memcg->memsw_thresholds;
5415 5416 5417 5418 5419 5420
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5421
	if (thresholds->primary)
5422 5423
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5424
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5425 5426

	/* Allocate memory for new array of thresholds */
5427
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5428
			GFP_KERNEL);
5429
	if (!new) {
5430 5431 5432
		ret = -ENOMEM;
		goto unlock;
	}
5433
	new->size = size;
5434 5435

	/* Copy thresholds (if any) to new array */
5436 5437
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5438
				sizeof(struct mem_cgroup_threshold));
5439 5440
	}

5441
	/* Add new threshold */
5442 5443
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5444 5445

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5446
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5447 5448 5449
			compare_thresholds, NULL);

	/* Find current threshold */
5450
	new->current_threshold = -1;
5451
	for (i = 0; i < size; i++) {
5452
		if (new->entries[i].threshold <= usage) {
5453
			/*
5454 5455
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5456 5457
			 * it here.
			 */
5458
			++new->current_threshold;
5459 5460
		} else
			break;
5461 5462
	}

5463 5464 5465 5466 5467
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5468

5469
	/* To be sure that nobody uses thresholds */
5470 5471 5472 5473 5474 5475 5476 5477
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5478
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5479 5480
	struct eventfd_ctx *eventfd, const char *args)
{
5481
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
5482 5483
}

5484
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5485 5486
	struct eventfd_ctx *eventfd, const char *args)
{
5487
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
5488 5489
}

5490
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5491
	struct eventfd_ctx *eventfd, enum res_type type)
5492
{
5493 5494
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
5495
	u64 usage;
5496
	int i, j, size;
5497 5498 5499

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5500
		thresholds = &memcg->thresholds;
5501
	else if (type == _MEMSWAP)
5502
		thresholds = &memcg->memsw_thresholds;
5503 5504 5505
	else
		BUG();

5506 5507 5508
	if (!thresholds->primary)
		goto unlock;

5509 5510 5511 5512 5513 5514
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5515 5516 5517
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5518 5519 5520
			size++;
	}

5521
	new = thresholds->spare;
5522

5523 5524
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5525 5526
		kfree(new);
		new = NULL;
5527
		goto swap_buffers;
5528 5529
	}

5530
	new->size = size;
5531 5532

	/* Copy thresholds and find current threshold */
5533 5534 5535
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5536 5537
			continue;

5538
		new->entries[j] = thresholds->primary->entries[i];
5539
		if (new->entries[j].threshold <= usage) {
5540
			/*
5541
			 * new->current_threshold will not be used
5542 5543 5544
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5545
			++new->current_threshold;
5546 5547 5548 5549
		}
		j++;
	}

5550
swap_buffers:
5551 5552
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5553 5554 5555 5556 5557 5558
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5559
	rcu_assign_pointer(thresholds->primary, new);
5560

5561
	/* To be sure that nobody uses thresholds */
5562
	synchronize_rcu();
5563
unlock:
5564 5565
	mutex_unlock(&memcg->thresholds_lock);
}
5566

5567
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5568 5569
	struct eventfd_ctx *eventfd)
{
5570
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
5571 5572
}

5573
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5574 5575
	struct eventfd_ctx *eventfd)
{
5576
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
5577 5578
}

5579
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5580
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
5581 5582 5583 5584 5585 5586 5587
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5588
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5589 5590 5591 5592 5593

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5594
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5595
		eventfd_signal(eventfd, 1);
5596
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5597 5598 5599 5600

	return 0;
}

5601
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
5602
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
5603 5604 5605
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

5606
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5607

5608
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5609 5610 5611 5612 5613 5614
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5615
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5616 5617
}

5618
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
5619
{
5620
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5621

5622 5623
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
5624 5625 5626
	return 0;
}

5627
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5628 5629
	struct cftype *cft, u64 val)
{
5630
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5631 5632

	/* cannot set to root cgroup and only 0 and 1 are allowed */
5633
	if (!css->parent || !((val == 0) || (val == 1)))
5634 5635
		return -EINVAL;

5636
	memcg->oom_kill_disable = val;
5637
	if (!val)
5638
		memcg_oom_recover(memcg);
5639

5640 5641 5642
	return 0;
}

A
Andrew Morton 已提交
5643
#ifdef CONFIG_MEMCG_KMEM
5644
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5645
{
5646 5647
	int ret;

5648
	memcg->kmemcg_id = -1;
5649 5650 5651
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5652

5653
	return mem_cgroup_sockets_init(memcg, ss);
5654
}
5655

5656
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5657
{
5658
	mem_cgroup_sockets_destroy(memcg);
5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
5679 5680 5681 5682
	 * css_offline() when the referencemight have dropped down to 0 and
	 * shouldn't be incremented anymore (css_tryget_online() would
	 * fail) we do not have other options because of the kmem
	 * allocations lifetime.
5683 5684
	 */
	css_get(&memcg->css);
5685 5686 5687 5688 5689 5690 5691

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
5692
		css_put(&memcg->css);
G
Glauber Costa 已提交
5693
}
5694
#else
5695
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5696 5697 5698
{
	return 0;
}
G
Glauber Costa 已提交
5699

5700 5701 5702 5703 5704
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5705 5706
{
}
5707 5708
#endif

5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

5722 5723 5724 5725 5726
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
5727
static void memcg_event_remove(struct work_struct *work)
5728
{
5729 5730
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
5731
	struct mem_cgroup *memcg = event->memcg;
5732 5733 5734

	remove_wait_queue(event->wqh, &event->wait);

5735
	event->unregister_event(memcg, event->eventfd);
5736 5737 5738 5739 5740 5741

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
5742
	css_put(&memcg->css);
5743 5744 5745 5746 5747 5748 5749
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
5750 5751
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
5752
{
5753 5754
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
5755
	struct mem_cgroup *memcg = event->memcg;
5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
5768
		spin_lock(&memcg->event_list_lock);
5769 5770 5771 5772 5773 5774 5775 5776
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
5777
		spin_unlock(&memcg->event_list_lock);
5778 5779 5780 5781 5782
	}

	return 0;
}

5783
static void memcg_event_ptable_queue_proc(struct file *file,
5784 5785
		wait_queue_head_t *wqh, poll_table *pt)
{
5786 5787
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
5788 5789 5790 5791 5792 5793

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
5794 5795
 * DO NOT USE IN NEW FILES.
 *
5796 5797 5798 5799 5800
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
5801 5802
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
5803
{
5804
	struct cgroup_subsys_state *css = of_css(of);
5805
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5806
	struct mem_cgroup_event *event;
5807 5808 5809 5810
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
5811
	const char *name;
5812 5813 5814
	char *endp;
	int ret;

5815 5816 5817
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
5818 5819
	if (*endp != ' ')
		return -EINVAL;
5820
	buf = endp + 1;
5821

5822
	cfd = simple_strtoul(buf, &endp, 10);
5823 5824
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
5825
	buf = endp + 1;
5826 5827 5828 5829 5830

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5831
	event->memcg = memcg;
5832
	INIT_LIST_HEAD(&event->list);
5833 5834 5835
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

5861 5862 5863 5864 5865
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
5866 5867
	 *
	 * DO NOT ADD NEW FILES.
5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880
	 */
	name = cfile.file->f_dentry->d_name.name;

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
5881 5882
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
5883 5884 5885 5886 5887
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

5888
	/*
5889 5890 5891
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
5892
	 */
5893 5894
	cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
					       &memory_cgrp_subsys);
5895
	ret = -EINVAL;
5896
	if (IS_ERR(cfile_css))
5897
		goto out_put_cfile;
5898 5899
	if (cfile_css != css) {
		css_put(cfile_css);
5900
		goto out_put_cfile;
5901
	}
5902

5903
	ret = event->register_event(memcg, event->eventfd, buf);
5904 5905 5906 5907 5908
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

5909 5910 5911
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
5912 5913 5914 5915

	fdput(cfile);
	fdput(efile);

5916
	return nbytes;
5917 5918

out_put_css:
5919
	css_put(css);
5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

B
Balbir Singh 已提交
5932 5933
static struct cftype mem_cgroup_files[] = {
	{
5934
		.name = "usage_in_bytes",
5935
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5936
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
5937
	},
5938 5939
	{
		.name = "max_usage_in_bytes",
5940
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5941
		.write = mem_cgroup_reset,
5942
		.read_u64 = mem_cgroup_read_u64,
5943
	},
B
Balbir Singh 已提交
5944
	{
5945
		.name = "limit_in_bytes",
5946
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5947
		.write = mem_cgroup_write,
5948
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
5949
	},
5950 5951 5952
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5953
		.write = mem_cgroup_write,
5954
		.read_u64 = mem_cgroup_read_u64,
5955
	},
B
Balbir Singh 已提交
5956 5957
	{
		.name = "failcnt",
5958
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5959
		.write = mem_cgroup_reset,
5960
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
5961
	},
5962 5963
	{
		.name = "stat",
5964
		.seq_show = memcg_stat_show,
5965
	},
5966 5967
	{
		.name = "force_empty",
5968
		.write = mem_cgroup_force_empty_write,
5969
	},
5970 5971 5972 5973 5974
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
5975
	{
5976
		.name = "cgroup.event_control",		/* XXX: for compat */
5977
		.write = memcg_write_event_control,
5978 5979 5980
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
5981 5982 5983 5984 5985
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5986 5987 5988 5989 5990
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5991 5992
	{
		.name = "oom_control",
5993
		.seq_show = mem_cgroup_oom_control_read,
5994
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5995 5996
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5997 5998 5999
	{
		.name = "pressure_level",
	},
6000 6001 6002
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
6003
		.seq_show = memcg_numa_stat_show,
6004 6005
	},
#endif
6006 6007 6008 6009
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6010
		.write = mem_cgroup_write,
6011
		.read_u64 = mem_cgroup_read_u64,
6012 6013 6014 6015
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6016
		.read_u64 = mem_cgroup_read_u64,
6017 6018 6019 6020
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6021
		.write = mem_cgroup_reset,
6022
		.read_u64 = mem_cgroup_read_u64,
6023 6024 6025 6026
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6027
		.write = mem_cgroup_reset,
6028
		.read_u64 = mem_cgroup_read_u64,
6029
	},
6030 6031 6032
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
6033
		.seq_show = mem_cgroup_slabinfo_read,
6034 6035
	},
#endif
6036
#endif
6037
	{ },	/* terminate */
6038
};
6039

6040 6041 6042 6043 6044
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6045
		.read_u64 = mem_cgroup_read_u64,
6046 6047 6048 6049
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6050
		.write = mem_cgroup_reset,
6051
		.read_u64 = mem_cgroup_read_u64,
6052 6053 6054 6055
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6056
		.write = mem_cgroup_write,
6057
		.read_u64 = mem_cgroup_read_u64,
6058 6059 6060 6061
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6062
		.write = mem_cgroup_reset,
6063
		.read_u64 = mem_cgroup_read_u64,
6064 6065 6066 6067
	},
	{ },	/* terminate */
};
#endif
6068
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6069 6070
{
	struct mem_cgroup_per_node *pn;
6071
	struct mem_cgroup_per_zone *mz;
6072
	int zone, tmp = node;
6073 6074 6075 6076 6077 6078 6079 6080
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
6081 6082
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
6083
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6084 6085
	if (!pn)
		return 1;
6086 6087 6088

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
6089
		lruvec_init(&mz->lruvec);
6090 6091
		mz->usage_in_excess = 0;
		mz->on_tree = false;
6092
		mz->memcg = memcg;
6093
	}
6094
	memcg->nodeinfo[node] = pn;
6095 6096 6097
	return 0;
}

6098
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6099
{
6100
	kfree(memcg->nodeinfo[node]);
6101 6102
}

6103 6104
static struct mem_cgroup *mem_cgroup_alloc(void)
{
6105
	struct mem_cgroup *memcg;
6106
	size_t size;
6107

6108 6109
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
6110

6111
	memcg = kzalloc(size, GFP_KERNEL);
6112
	if (!memcg)
6113 6114
		return NULL;

6115 6116
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
6117
		goto out_free;
6118 6119
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
6120 6121

out_free:
6122
	kfree(memcg);
6123
	return NULL;
6124 6125
}

6126
/*
6127 6128 6129 6130 6131 6132 6133 6134
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
6135
 */
6136 6137

static void __mem_cgroup_free(struct mem_cgroup *memcg)
6138
{
6139
	int node;
6140

6141
	mem_cgroup_remove_from_trees(memcg);
6142 6143 6144 6145 6146 6147

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
6159
	disarm_static_keys(memcg);
6160
	kfree(memcg);
6161
}
6162

6163 6164 6165
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6166
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6167
{
6168
	if (!memcg->res.parent)
6169
		return NULL;
6170
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6171
}
G
Glauber Costa 已提交
6172
EXPORT_SYMBOL(parent_mem_cgroup);
6173

6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196
static void __init mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node(node) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		BUG_ON(!rtpn);

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
6197
static struct cgroup_subsys_state * __ref
6198
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
6199
{
6200
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6201
	long error = -ENOMEM;
6202
	int node;
B
Balbir Singh 已提交
6203

6204 6205
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6206
		return ERR_PTR(error);
6207

B
Bob Liu 已提交
6208
	for_each_node(node)
6209
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6210
			goto free_out;
6211

6212
	/* root ? */
6213
	if (parent_css == NULL) {
6214
		root_mem_cgroup = memcg;
6215 6216 6217
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6218
	}
6219

6220 6221 6222 6223 6224
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
6225
	vmpressure_init(&memcg->vmpressure);
6226 6227
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
6228 6229 6230 6231 6232 6233 6234 6235 6236

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
6237
mem_cgroup_css_online(struct cgroup_subsys_state *css)
6238
{
6239
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
6240
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
6241

6242
	if (css->id > MEM_CGROUP_ID_MAX)
6243 6244
		return -ENOSPC;

T
Tejun Heo 已提交
6245
	if (!parent)
6246 6247
		return 0;

6248
	mutex_lock(&memcg_create_mutex);
6249 6250 6251 6252 6253 6254

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6255 6256
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6257
		res_counter_init(&memcg->kmem, &parent->kmem);
6258

6259
		/*
6260 6261
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
6262
		 */
6263
	} else {
6264 6265
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6266
		res_counter_init(&memcg->kmem, NULL);
6267 6268 6269 6270 6271
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6272
		if (parent != root_mem_cgroup)
6273
			memory_cgrp_subsys.broken_hierarchy = true;
6274
	}
6275
	mutex_unlock(&memcg_create_mutex);
6276

6277
	return memcg_init_kmem(memcg, &memory_cgrp_subsys);
B
Balbir Singh 已提交
6278 6279
}

M
Michal Hocko 已提交
6280 6281 6282 6283 6284 6285 6286 6287
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
6288
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
6289 6290 6291 6292 6293 6294

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
6295
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
6296 6297
}

6298
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6299
{
6300
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6301
	struct mem_cgroup_event *event, *tmp;
6302
	struct cgroup_subsys_state *iter;
6303 6304 6305 6306 6307 6308

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
6309 6310
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
6311 6312 6313
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
6314
	spin_unlock(&memcg->event_list_lock);
6315

6316 6317
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
6318
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6319 6320 6321 6322 6323 6324 6325 6326

	/*
	 * This requires that offlining is serialized.  Right now that is
	 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
	 */
	css_for_each_descendant_post(iter, css)
		mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));

6327
	memcg_unregister_all_caches(memcg);
6328
	vmpressure_cleanup(&memcg->vmpressure);
6329 6330
}

6331
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
6332
{
6333
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6334 6335 6336
	/*
	 * XXX: css_offline() would be where we should reparent all
	 * memory to prepare the cgroup for destruction.  However,
6337
	 * memcg does not do css_tryget_online() and res_counter charging
6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350
	 * under the same RCU lock region, which means that charging
	 * could race with offlining.  Offlining only happens to
	 * cgroups with no tasks in them but charges can show up
	 * without any tasks from the swapin path when the target
	 * memcg is looked up from the swapout record and not from the
	 * current task as it usually is.  A race like this can leak
	 * charges and put pages with stale cgroup pointers into
	 * circulation:
	 *
	 * #0                        #1
	 *                           lookup_swap_cgroup_id()
	 *                           rcu_read_lock()
	 *                           mem_cgroup_lookup()
6351
	 *                           css_tryget_online()
6352
	 *                           rcu_read_unlock()
6353
	 * disable css_tryget_online()
6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369
	 * call_rcu()
	 *   offline_css()
	 *     reparent_charges()
	 *                           res_counter_charge()
	 *                           css_put()
	 *                             css_free()
	 *                           pc->mem_cgroup = dead memcg
	 *                           add page to lru
	 *
	 * The bulk of the charges are still moved in offline_css() to
	 * avoid pinning a lot of pages in case a long-term reference
	 * like a swapout record is deferring the css_free() to long
	 * after offlining.  But this makes sure we catch any charges
	 * made after offlining:
	 */
	mem_cgroup_reparent_charges(memcg);
6370

6371
	memcg_destroy_kmem(memcg);
6372
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
6373 6374
}

6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	mem_cgroup_resize_limit(memcg, ULLONG_MAX);
	mem_cgroup_resize_memsw_limit(memcg, ULLONG_MAX);
	memcg_update_kmem_limit(memcg, ULLONG_MAX);
	res_counter_set_soft_limit(&memcg->res, ULLONG_MAX);
}

6398
#ifdef CONFIG_MMU
6399
/* Handlers for move charge at task migration. */
6400 6401
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6402
{
6403 6404
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6405
	struct mem_cgroup *memcg = mc.to;
6406

6407
	if (mem_cgroup_is_root(memcg)) {
6408 6409 6410 6411 6412 6413 6414 6415
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6416
		 * "memcg" cannot be under rmdir() because we've already checked
6417 6418 6419 6420
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6421
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6422
			goto one_by_one;
6423
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6424
						PAGE_SIZE * count, &dummy)) {
6425
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6442
		ret = mem_cgroup_try_charge(memcg, GFP_KERNEL, 1, false);
6443
		if (ret)
6444
			/* mem_cgroup_clear_mc() will do uncharge later */
6445
			return ret;
6446 6447
		mc.precharge++;
	}
6448 6449 6450 6451
	return ret;
}

/**
6452
 * get_mctgt_type - get target type of moving charge
6453 6454 6455
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6456
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6457 6458 6459 6460 6461 6462
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6463 6464 6465
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6466 6467 6468 6469 6470
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6471
	swp_entry_t	ent;
6472 6473 6474
};

enum mc_target_type {
6475
	MC_TARGET_NONE = 0,
6476
	MC_TARGET_PAGE,
6477
	MC_TARGET_SWAP,
6478 6479
};

D
Daisuke Nishimura 已提交
6480 6481
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6482
{
D
Daisuke Nishimura 已提交
6483
	struct page *page = vm_normal_page(vma, addr, ptent);
6484

D
Daisuke Nishimura 已提交
6485 6486 6487 6488
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6489
		if (!move_anon())
D
Daisuke Nishimura 已提交
6490
			return NULL;
6491 6492
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6493 6494 6495 6496 6497 6498 6499
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6500
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6501 6502 6503 6504 6505 6506 6507 6508
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6509 6510 6511 6512
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6513
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6514 6515 6516 6517 6518
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6519 6520 6521 6522 6523 6524 6525
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6526

6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6546 6547
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
6560
#endif
6561 6562 6563
	return page;
}

6564
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6565 6566 6567 6568
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6569
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6570 6571 6572 6573 6574 6575
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6576 6577
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6578 6579

	if (!page && !ent.val)
6580
		return ret;
6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6596 6597
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
6598
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6599 6600 6601
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6602 6603 6604 6605
	}
	return ret;
}

6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
6620
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6641 6642 6643 6644 6645 6646 6647 6648
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6649
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6650 6651
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
6652
		spin_unlock(ptl);
6653
		return 0;
6654
	}
6655

6656 6657
	if (pmd_trans_unstable(pmd))
		return 0;
6658 6659
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6660
		if (get_mctgt_type(vma, addr, *pte, NULL))
6661 6662 6663 6664
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6665 6666 6667
	return 0;
}

6668 6669 6670 6671 6672
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6673
	down_read(&mm->mmap_sem);
6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6685
	up_read(&mm->mmap_sem);
6686 6687 6688 6689 6690 6691 6692 6693 6694

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6695 6696 6697 6698 6699
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6700 6701
}

6702 6703
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6704
{
6705 6706
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
6707
	int i;
6708

6709
	/* we must uncharge all the leftover precharges from mc.to */
6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6721
	}
6722 6723 6724 6725 6726 6727
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
6728 6729 6730

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
6731 6732 6733 6734 6735 6736 6737 6738 6739

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
L
Li Zefan 已提交
6740
		/* we've already done css_get(mc.to) */
6741 6742
		mc.moved_swap = 0;
	}
6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6758
	spin_lock(&mc.lock);
6759 6760
	mc.from = NULL;
	mc.to = NULL;
6761
	spin_unlock(&mc.lock);
6762
	mem_cgroup_end_move(from);
6763 6764
}

6765
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6766
				 struct cgroup_taskset *tset)
6767
{
6768
	struct task_struct *p = cgroup_taskset_first(tset);
6769
	int ret = 0;
6770
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6771
	unsigned long move_charge_at_immigrate;
6772

6773 6774 6775 6776 6777 6778 6779
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6780 6781 6782
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6783
		VM_BUG_ON(from == memcg);
6784 6785 6786 6787 6788

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6789 6790 6791 6792
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6793
			VM_BUG_ON(mc.moved_charge);
6794
			VM_BUG_ON(mc.moved_swap);
6795
			mem_cgroup_start_move(from);
6796
			spin_lock(&mc.lock);
6797
			mc.from = from;
6798
			mc.to = memcg;
6799
			mc.immigrate_flags = move_charge_at_immigrate;
6800
			spin_unlock(&mc.lock);
6801
			/* We set mc.moving_task later */
6802 6803 6804 6805

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6806 6807
		}
		mmput(mm);
6808 6809 6810 6811
	}
	return ret;
}

6812
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6813
				     struct cgroup_taskset *tset)
6814
{
6815
	mem_cgroup_clear_mc();
6816 6817
}

6818 6819 6820
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6821
{
6822 6823 6824 6825
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6826 6827 6828 6829
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6830

6831 6832 6833 6834 6835 6836 6837 6838 6839 6840
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
6841
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6842
		if (mc.precharge < HPAGE_PMD_NR) {
6843
			spin_unlock(ptl);
6844 6845 6846 6847 6848 6849 6850 6851
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6852
							pc, mc.from, mc.to)) {
6853 6854 6855 6856 6857 6858 6859
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
6860
		spin_unlock(ptl);
6861
		return 0;
6862 6863
	}

6864 6865
	if (pmd_trans_unstable(pmd))
		return 0;
6866 6867 6868 6869
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6870
		swp_entry_t ent;
6871 6872 6873 6874

		if (!mc.precharge)
			break;

6875
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6876 6877 6878 6879 6880
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6881
			if (!mem_cgroup_move_account(page, 1, pc,
6882
						     mc.from, mc.to)) {
6883
				mc.precharge--;
6884 6885
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6886 6887
			}
			putback_lru_page(page);
6888
put:			/* get_mctgt_type() gets the page */
6889 6890
			put_page(page);
			break;
6891 6892
		case MC_TARGET_SWAP:
			ent = target.ent;
6893
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6894
				mc.precharge--;
6895 6896 6897
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6898
			break;
6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6913
		ret = mem_cgroup_do_precharge(1);
6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6957
	up_read(&mm->mmap_sem);
6958 6959
}

6960
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6961
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6962
{
6963
	struct task_struct *p = cgroup_taskset_first(tset);
6964
	struct mm_struct *mm = get_task_mm(p);
6965 6966

	if (mm) {
6967 6968
		if (mc.to)
			mem_cgroup_move_charge(mm);
6969 6970
		mmput(mm);
	}
6971 6972
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6973
}
6974
#else	/* !CONFIG_MMU */
6975
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6976
				 struct cgroup_taskset *tset)
6977 6978 6979
{
	return 0;
}
6980
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6981
				     struct cgroup_taskset *tset)
6982 6983
{
}
6984
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6985
				 struct cgroup_taskset *tset)
6986 6987 6988
{
}
#endif
B
Balbir Singh 已提交
6989

6990 6991
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6992 6993
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
6994
 */
6995
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6996 6997
{
	/*
6998
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
6999 7000 7001
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
7002
	if (cgroup_on_dfl(root_css->cgroup))
7003
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
7004 7005
}

7006
struct cgroup_subsys memory_cgrp_subsys = {
7007
	.css_alloc = mem_cgroup_css_alloc,
7008
	.css_online = mem_cgroup_css_online,
7009 7010
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
7011
	.css_reset = mem_cgroup_css_reset,
7012 7013
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
7014
	.attach = mem_cgroup_move_task,
7015
	.bind = mem_cgroup_bind,
7016
	.legacy_cftypes = mem_cgroup_files,
7017
	.early_init = 0,
B
Balbir Singh 已提交
7018
};
7019

A
Andrew Morton 已提交
7020
#ifdef CONFIG_MEMCG_SWAP
7021 7022
static int __init enable_swap_account(char *s)
{
7023
	if (!strcmp(s, "1"))
7024
		really_do_swap_account = 1;
7025
	else if (!strcmp(s, "0"))
7026 7027 7028
		really_do_swap_account = 0;
	return 1;
}
7029
__setup("swapaccount=", enable_swap_account);
7030

7031 7032
static void __init memsw_file_init(void)
{
7033 7034
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
					  memsw_cgroup_files));
7035 7036 7037 7038 7039 7040 7041 7042
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
7043
}
7044

7045
#else
7046
static void __init enable_swap_cgroup(void)
7047 7048
{
}
7049
#endif
7050 7051

/*
7052 7053 7054 7055 7056 7057
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
7058 7059 7060 7061
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7062
	enable_swap_cgroup();
7063
	mem_cgroup_soft_limit_tree_init();
7064
	memcg_stock_init();
7065 7066 7067
	return 0;
}
subsys_initcall(mem_cgroup_init);