memcontrol.c 153.7 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include <linux/pagemap.h>
40
#include <linux/smp.h>
41
#include <linux/page-flags.h>
42
#include <linux/backing-dev.h>
43 44
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
45
#include <linux/limits.h>
46
#include <linux/export.h>
47
#include <linux/mutex.h>
48
#include <linux/rbtree.h>
49
#include <linux/slab.h>
50
#include <linux/swap.h>
51
#include <linux/swapops.h>
52
#include <linux/spinlock.h>
53
#include <linux/eventfd.h>
54
#include <linux/poll.h>
55
#include <linux/sort.h>
56
#include <linux/fs.h>
57
#include <linux/seq_file.h>
58
#include <linux/vmpressure.h>
59
#include <linux/mm_inline.h>
60
#include <linux/swap_cgroup.h>
61
#include <linux/cpu.h>
62
#include <linux/oom.h>
63
#include <linux/lockdep.h>
64
#include <linux/file.h>
65
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
66
#include "internal.h"
G
Glauber Costa 已提交
67
#include <net/sock.h>
M
Michal Hocko 已提交
68
#include <net/ip.h>
69
#include "slab.h"
B
Balbir Singh 已提交
70

71 72
#include <asm/uaccess.h>

73 74
#include <trace/events/vmscan.h>

75 76
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
77

78 79
struct mem_cgroup *root_mem_cgroup __read_mostly;

80
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
81

82 83 84
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

85 86 87
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

88
/* Whether the swap controller is active */
A
Andrew Morton 已提交
89
#ifdef CONFIG_MEMCG_SWAP
90 91
int do_swap_account __read_mostly;
#else
92
#define do_swap_account		0
93 94
#endif

95 96 97 98 99 100
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

101 102 103
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
104
	"rss_huge",
105
	"mapped_file",
106
	"dirty",
107
	"writeback",
108 109 110 111 112 113 114 115 116 117
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

118 119 120 121 122 123 124 125
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

126 127 128
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
129

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
150 151 152 153 154
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
155

156 157 158
/*
 * cgroup_event represents events which userspace want to receive.
 */
159
struct mem_cgroup_event {
160
	/*
161
	 * memcg which the event belongs to.
162
	 */
163
	struct mem_cgroup *memcg;
164 165 166 167 168 169 170 171
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
172 173 174 175 176
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
177
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
178
			      struct eventfd_ctx *eventfd, const char *args);
179 180 181 182 183
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
184
	void (*unregister_event)(struct mem_cgroup *memcg,
185
				 struct eventfd_ctx *eventfd);
186 187 188 189 190 191 192 193 194 195
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

196 197
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198

199 200
/* Stuffs for move charges at task migration. */
/*
201
 * Types of charges to be moved.
202
 */
203 204 205
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
206

207 208
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
209
	spinlock_t	  lock; /* for from, to */
210
	struct mm_struct  *mm;
211 212
	struct mem_cgroup *from;
	struct mem_cgroup *to;
213
	unsigned long flags;
214
	unsigned long precharge;
215
	unsigned long moved_charge;
216
	unsigned long moved_swap;
217 218 219
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
220
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
221 222
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
223

224 225 226 227
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
228
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
229
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
230

231 232
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
233
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
234
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
235
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
236 237 238
	NR_CHARGE_TYPE,
};

239
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
240 241 242 243
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
244
	_KMEM,
V
Vladimir Davydov 已提交
245
	_TCP,
G
Glauber Costa 已提交
246 247
};

248 249
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
250
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
251 252
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
253

254 255 256 257 258 259 260 261 262 263 264 265 266
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

267 268 269 270 271
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

272
#ifndef CONFIG_SLOB
273
/*
274
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
275 276 277 278 279
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
280
 *
281 282
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
283
 */
284 285
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
286

287 288 289 290 291 292 293 294 295 296 297 298 299
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

300 301 302 303 304 305
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
306
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
307 308
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
309
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
310 311 312
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
313
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
314

315 316 317 318 319 320
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
321
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
322
EXPORT_SYMBOL(memcg_kmem_enabled_key);
323

324
#endif /* !CONFIG_SLOB */
325

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

343
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
344 345 346 347 348
		memcg = root_mem_cgroup;

	return &memcg->css;
}

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

377
static struct mem_cgroup_per_zone *
378
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
379
{
380 381
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
382

383
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
384 385
}

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

401 402
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
403
					 unsigned long new_usage_in_excess)
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

433 434
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
435 436 437 438 439 440 441
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

442 443
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
444
{
445 446 447
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
448
	__mem_cgroup_remove_exceeded(mz, mctz);
449
	spin_unlock_irqrestore(&mctz->lock, flags);
450 451
}

452 453 454
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
455
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
456 457 458 459 460 461 462
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
463 464 465

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
466
	unsigned long excess;
467 468 469
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

470
	mctz = soft_limit_tree_from_page(page);
471 472 473 474 475
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
476
		mz = mem_cgroup_page_zoneinfo(memcg, page);
477
		excess = soft_limit_excess(memcg);
478 479 480 481 482
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
483 484 485
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
486 487
			/* if on-tree, remove it */
			if (mz->on_tree)
488
				__mem_cgroup_remove_exceeded(mz, mctz);
489 490 491 492
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
493
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
494
			spin_unlock_irqrestore(&mctz->lock, flags);
495 496 497 498 499 500 501
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
502 503
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
504

505 506 507 508
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
509
			mem_cgroup_remove_exceeded(mz, mctz);
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
532
	__mem_cgroup_remove_exceeded(mz, mctz);
533
	if (!soft_limit_excess(mz->memcg) ||
534
	    !css_tryget_online(&mz->memcg->css))
535 536 537 538 539 540 541 542 543 544
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

545
	spin_lock_irq(&mctz->lock);
546
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
547
	spin_unlock_irq(&mctz->lock);
548 549 550
	return mz;
}

551
/*
552 553
 * Return page count for single (non recursive) @memcg.
 *
554 555 556 557 558
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
559
 * a periodic synchronization of counter in memcg's counter.
560 561 562 563 564 565 566 567 568
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
569
 * common workload, threshold and synchronization as vmstat[] should be
570 571
 * implemented.
 */
572 573
static unsigned long
mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
574
{
575
	long val = 0;
576 577
	int cpu;

578
	/* Per-cpu values can be negative, use a signed accumulator */
579
	for_each_possible_cpu(cpu)
580
		val += per_cpu(memcg->stat->count[idx], cpu);
581 582 583 584 585 586
	/*
	 * Summing races with updates, so val may be negative.  Avoid exposing
	 * transient negative values.
	 */
	if (val < 0)
		val = 0;
587 588 589
	return val;
}

590
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
591 592 593 594 595
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

596
	for_each_possible_cpu(cpu)
597
		val += per_cpu(memcg->stat->events[idx], cpu);
598 599 600
	return val;
}

601
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
602
					 struct page *page,
603
					 bool compound, int nr_pages)
604
{
605 606 607 608
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
609
	if (PageAnon(page))
610
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
611
				nr_pages);
612
	else
613
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
614
				nr_pages);
615

616 617
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
618 619
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);
620
	}
621

622 623
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
624
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
625
	else {
626
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
627 628
		nr_pages = -nr_pages; /* for event */
	}
629

630
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
631 632
}

633 634
unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
					   int nid, unsigned int lru_mask)
635
{
636
	unsigned long nr = 0;
637 638
	int zid;

639
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
640

641 642 643 644 645 646 647 648 649 650 651 652
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
653
}
654

655
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
656
			unsigned int lru_mask)
657
{
658
	unsigned long nr = 0;
659
	int nid;
660

661
	for_each_node_state(nid, N_MEMORY)
662 663
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
664 665
}

666 667
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
668 669 670
{
	unsigned long val, next;

671
	val = __this_cpu_read(memcg->stat->nr_page_events);
672
	next = __this_cpu_read(memcg->stat->targets[target]);
673
	/* from time_after() in jiffies.h */
674 675 676 677 678
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
679 680 681
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
682 683 684 685 686 687 688 689
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
690
	}
691
	return false;
692 693 694 695 696 697
}

/*
 * Check events in order.
 *
 */
698
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
699 700
{
	/* threshold event is triggered in finer grain than soft limit */
701 702
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
703
		bool do_softlimit;
704
		bool do_numainfo __maybe_unused;
705

706 707
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
708 709 710 711
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
712
		mem_cgroup_threshold(memcg);
713 714
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
715
#if MAX_NUMNODES > 1
716
		if (unlikely(do_numainfo))
717
			atomic_inc(&memcg->numainfo_events);
718
#endif
719
	}
720 721
}

722
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
723
{
724 725 726 727 728 729 730 731
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

732
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
733
}
M
Michal Hocko 已提交
734
EXPORT_SYMBOL(mem_cgroup_from_task);
735

736
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
737
{
738
	struct mem_cgroup *memcg = NULL;
739

740 741
	rcu_read_lock();
	do {
742 743 744 745 746 747
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
748
			memcg = root_mem_cgroup;
749 750 751 752 753
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
754
	} while (!css_tryget_online(&memcg->css));
755
	rcu_read_unlock();
756
	return memcg;
757 758
}

759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
776
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
777
				   struct mem_cgroup *prev,
778
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
779
{
M
Michal Hocko 已提交
780
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
781
	struct cgroup_subsys_state *css = NULL;
782
	struct mem_cgroup *memcg = NULL;
783
	struct mem_cgroup *pos = NULL;
784

785 786
	if (mem_cgroup_disabled())
		return NULL;
787

788 789
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
790

791
	if (prev && !reclaim)
792
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
793

794 795
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
796
			goto out;
797
		return root;
798
	}
K
KAMEZAWA Hiroyuki 已提交
799

800
	rcu_read_lock();
M
Michal Hocko 已提交
801

802 803 804 805 806 807 808 809 810
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

811
		while (1) {
812
			pos = READ_ONCE(iter->position);
813 814
			if (!pos || css_tryget(&pos->css))
				break;
815
			/*
816 817 818 819 820 821
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
822
			 */
823 824
			(void)cmpxchg(&iter->position, pos, NULL);
		}
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
842
		}
K
KAMEZAWA Hiroyuki 已提交
843

844 845 846 847 848 849
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
850

851 852
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
853

854 855
		if (css_tryget(css))
			break;
856

857
		memcg = NULL;
858
	}
859 860 861

	if (reclaim) {
		/*
862 863 864
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
865
		 */
866 867
		(void)cmpxchg(&iter->position, pos, memcg);

868 869 870 871 872 873 874
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
875
	}
876

877 878
out_unlock:
	rcu_read_unlock();
879
out:
880 881 882
	if (prev && prev != root)
		css_put(&prev->css);

883
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
884
}
K
KAMEZAWA Hiroyuki 已提交
885

886 887 888 889 890 891 892
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
893 894 895 896 897 898
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
899

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
	int i;

	while ((memcg = parent_mem_cgroup(memcg))) {
		for_each_node(nid) {
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
				for (i = 0; i <= DEF_PRIORITY; i++) {
					iter = &mz->iter[i];
					cmpxchg(&iter->position,
						dead_memcg, NULL);
				}
			}
		}
	}
}

922 923 924 925 926 927
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
928
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
929
	     iter != NULL;				\
930
	     iter = mem_cgroup_iter(root, iter, NULL))
931

932
#define for_each_mem_cgroup(iter)			\
933
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
934
	     iter != NULL;				\
935
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
936

937
/**
938
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
939
 * @page: the page
940
 * @zone: zone of the page
941 942 943 944
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
945
 */
M
Mel Gorman 已提交
946
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
947 948
{
	struct mem_cgroup_per_zone *mz;
949
	struct mem_cgroup *memcg;
950
	struct lruvec *lruvec;
951

952
	if (mem_cgroup_disabled()) {
M
Mel Gorman 已提交
953
		lruvec = &pgdat->lruvec;
954 955
		goto out;
	}
956

957
	memcg = page->mem_cgroup;
958
	/*
959
	 * Swapcache readahead pages are added to the LRU - and
960
	 * possibly migrated - before they are charged.
961
	 */
962 963
	if (!memcg)
		memcg = root_mem_cgroup;
964

965
	mz = mem_cgroup_page_zoneinfo(memcg, page);
966 967 968 969 970 971 972
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
973 974
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
975
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
976
}
977

978
/**
979 980 981
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
M
Mel Gorman 已提交
982
 * @zid: Zone ID of the zone pages have been added to
983
 * @nr_pages: positive when adding or negative when removing
984
 *
985 986 987
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
988
 */
989
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
M
Mel Gorman 已提交
990
				enum zone_type zid, int nr_pages)
991 992
{
	struct mem_cgroup_per_zone *mz;
993
	unsigned long *lru_size;
994 995
	long size;
	bool empty;
996

M
Mel Gorman 已提交
997
	__update_lru_size(lruvec, lru, zid, nr_pages);
998

999 1000 1001
	if (mem_cgroup_disabled())
		return;

1002 1003
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
	empty = list_empty(lruvec->lists + lru);

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
	if (WARN_ONCE(size < 0 || empty != !size,
		"%s(%p, %d, %d): lru_size %ld but %sempty\n",
		__func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1019
}
1020

1021
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1022
{
1023
	struct mem_cgroup *task_memcg;
1024
	struct task_struct *p;
1025
	bool ret;
1026

1027
	p = find_lock_task_mm(task);
1028
	if (p) {
1029
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1030 1031 1032 1033 1034 1035 1036
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1037
		rcu_read_lock();
1038 1039
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1040
		rcu_read_unlock();
1041
	}
1042 1043
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1044 1045 1046
	return ret;
}

1047
/**
1048
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1049
 * @memcg: the memory cgroup
1050
 *
1051
 * Returns the maximum amount of memory @mem can be charged with, in
1052
 * pages.
1053
 */
1054
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1055
{
1056 1057 1058
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1059

1060
	count = page_counter_read(&memcg->memory);
1061
	limit = READ_ONCE(memcg->memory.limit);
1062 1063 1064
	if (count < limit)
		margin = limit - count;

1065
	if (do_memsw_account()) {
1066
		count = page_counter_read(&memcg->memsw);
1067
		limit = READ_ONCE(memcg->memsw.limit);
1068 1069
		if (count <= limit)
			margin = min(margin, limit - count);
1070 1071
		else
			margin = 0;
1072 1073 1074
	}

	return margin;
1075 1076
}

1077
/*
Q
Qiang Huang 已提交
1078
 * A routine for checking "mem" is under move_account() or not.
1079
 *
Q
Qiang Huang 已提交
1080 1081 1082
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1083
 */
1084
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1085
{
1086 1087
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1088
	bool ret = false;
1089 1090 1091 1092 1093 1094 1095 1096 1097
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1098

1099 1100
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1101 1102
unlock:
	spin_unlock(&mc.lock);
1103 1104 1105
	return ret;
}

1106
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1107 1108
{
	if (mc.moving_task && current != mc.moving_task) {
1109
		if (mem_cgroup_under_move(memcg)) {
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1122
#define K(x) ((x) << (PAGE_SHIFT-10))
1123
/**
1124
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1125 1126 1127 1128 1129 1130 1131 1132
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
1133 1134
	struct mem_cgroup *iter;
	unsigned int i;
1135 1136 1137

	rcu_read_lock();

1138 1139 1140 1141 1142 1143 1144 1145
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1146
	pr_cont_cgroup_path(memcg->css.cgroup);
1147
	pr_cont("\n");
1148 1149 1150

	rcu_read_unlock();

1151 1152 1153 1154 1155 1156 1157 1158 1159
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1160 1161

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1162 1163
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1164 1165 1166
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1167
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1168
				continue;
1169
			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1170 1171 1172 1173 1174 1175 1176 1177 1178
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1179 1180
}

1181 1182 1183 1184
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1185
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1186 1187
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1188 1189
	struct mem_cgroup *iter;

1190
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1191
		num++;
1192 1193 1194
	return num;
}

D
David Rientjes 已提交
1195 1196 1197
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1198
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1199
{
1200
	unsigned long limit;
1201

1202
	limit = memcg->memory.limit;
1203
	if (mem_cgroup_swappiness(memcg)) {
1204
		unsigned long memsw_limit;
1205
		unsigned long swap_limit;
1206

1207
		memsw_limit = memcg->memsw.limit;
1208 1209 1210
		swap_limit = memcg->swap.limit;
		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
		limit = min(limit + swap_limit, memsw_limit);
1211 1212
	}
	return limit;
D
David Rientjes 已提交
1213 1214
}

1215
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1216
				     int order)
1217
{
1218 1219 1220
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1221
		.memcg = memcg,
1222 1223 1224
		.gfp_mask = gfp_mask,
		.order = order,
	};
1225 1226 1227 1228 1229 1230
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1231 1232
	mutex_lock(&oom_lock);

1233
	/*
1234 1235 1236
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1237
	 */
1238
	if (task_will_free_mem(current)) {
1239
		mark_oom_victim(current);
1240
		wake_oom_reaper(current);
1241
		goto unlock;
1242 1243
	}

1244
	check_panic_on_oom(&oc, CONSTRAINT_MEMCG);
1245
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1246
	for_each_mem_cgroup_tree(iter, memcg) {
1247
		struct css_task_iter it;
1248 1249
		struct task_struct *task;

1250 1251
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1252
			switch (oom_scan_process_thread(&oc, task)) {
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1263
				css_task_iter_end(&it);
1264 1265 1266
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
1267 1268
				/* Set a dummy value to return "true". */
				chosen = (void *) 1;
1269
				goto unlock;
1270 1271 1272 1273
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1286
		}
1287
		css_task_iter_end(&it);
1288 1289
	}

1290 1291
	if (chosen) {
		points = chosen_points * 1000 / totalpages;
1292
		oom_kill_process(&oc, chosen, points, totalpages,
1293
				 "Memory cgroup out of memory");
1294 1295 1296
	}
unlock:
	mutex_unlock(&oom_lock);
1297
	return chosen;
1298 1299
}

1300 1301
#if MAX_NUMNODES > 1

1302 1303
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1304
 * @memcg: the target memcg
1305 1306 1307 1308 1309 1310 1311
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1312
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1313 1314
		int nid, bool noswap)
{
1315
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1316 1317 1318
		return true;
	if (noswap || !total_swap_pages)
		return false;
1319
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1320 1321 1322 1323
		return true;
	return false;

}
1324 1325 1326 1327 1328 1329 1330

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1331
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1332 1333
{
	int nid;
1334 1335 1336 1337
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1338
	if (!atomic_read(&memcg->numainfo_events))
1339
		return;
1340
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1341 1342 1343
		return;

	/* make a nodemask where this memcg uses memory from */
1344
	memcg->scan_nodes = node_states[N_MEMORY];
1345

1346
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1347

1348 1349
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1350
	}
1351

1352 1353
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1368
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1369 1370 1371
{
	int node;

1372 1373
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1374

1375
	node = next_node_in(node, memcg->scan_nodes);
1376
	/*
1377 1378 1379
	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
	 * last time it really checked all the LRUs due to rate limiting.
	 * Fallback to the current node in that case for simplicity.
1380 1381 1382 1383
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1384
	memcg->last_scanned_node = node;
1385 1386 1387
	return node;
}
#else
1388
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1389 1390 1391 1392 1393
{
	return 0;
}
#endif

1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1409
	excess = soft_limit_excess(root_memcg);
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1435 1436
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
					zone, &nr_scanned);
1437
		*total_scanned += nr_scanned;
1438
		if (!soft_limit_excess(root_memcg))
1439
			break;
1440
	}
1441 1442
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1443 1444
}

1445 1446 1447 1448 1449 1450
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1451 1452
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1453 1454 1455 1456
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1457
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1458
{
1459
	struct mem_cgroup *iter, *failed = NULL;
1460

1461 1462
	spin_lock(&memcg_oom_lock);

1463
	for_each_mem_cgroup_tree(iter, memcg) {
1464
		if (iter->oom_lock) {
1465 1466 1467 1468 1469
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1470 1471
			mem_cgroup_iter_break(memcg, iter);
			break;
1472 1473
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1474
	}
K
KAMEZAWA Hiroyuki 已提交
1475

1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1487
		}
1488 1489
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1490 1491 1492 1493

	spin_unlock(&memcg_oom_lock);

	return !failed;
1494
}
1495

1496
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1497
{
K
KAMEZAWA Hiroyuki 已提交
1498 1499
	struct mem_cgroup *iter;

1500
	spin_lock(&memcg_oom_lock);
1501
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1502
	for_each_mem_cgroup_tree(iter, memcg)
1503
		iter->oom_lock = false;
1504
	spin_unlock(&memcg_oom_lock);
1505 1506
}

1507
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1508 1509 1510
{
	struct mem_cgroup *iter;

1511
	spin_lock(&memcg_oom_lock);
1512
	for_each_mem_cgroup_tree(iter, memcg)
1513 1514
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1515 1516
}

1517
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1518 1519 1520
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1521 1522
	/*
	 * When a new child is created while the hierarchy is under oom,
1523
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1524
	 */
1525
	spin_lock(&memcg_oom_lock);
1526
	for_each_mem_cgroup_tree(iter, memcg)
1527 1528 1529
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1530 1531
}

K
KAMEZAWA Hiroyuki 已提交
1532 1533
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1534
struct oom_wait_info {
1535
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1536 1537 1538 1539 1540 1541
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1542 1543
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1544 1545 1546
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1547
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1548

1549 1550
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1551 1552 1553 1554
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1555
static void memcg_oom_recover(struct mem_cgroup *memcg)
1556
{
1557 1558 1559 1560 1561 1562 1563 1564 1565
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1566
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1567 1568
}

1569
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1570
{
1571
	if (!current->memcg_may_oom)
1572
		return;
K
KAMEZAWA Hiroyuki 已提交
1573
	/*
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1586
	 */
1587
	css_get(&memcg->css);
T
Tejun Heo 已提交
1588 1589 1590
	current->memcg_in_oom = memcg;
	current->memcg_oom_gfp_mask = mask;
	current->memcg_oom_order = order;
1591 1592 1593 1594
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1595
 * @handle: actually kill/wait or just clean up the OOM state
1596
 *
1597 1598
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1599
 *
1600
 * Memcg supports userspace OOM handling where failed allocations must
1601 1602 1603 1604
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1605
 * the end of the page fault to complete the OOM handling.
1606 1607
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1608
 * completed, %false otherwise.
1609
 */
1610
bool mem_cgroup_oom_synchronize(bool handle)
1611
{
T
Tejun Heo 已提交
1612
	struct mem_cgroup *memcg = current->memcg_in_oom;
1613
	struct oom_wait_info owait;
1614
	bool locked;
1615 1616 1617

	/* OOM is global, do not handle */
	if (!memcg)
1618
		return false;
1619

1620
	if (!handle || oom_killer_disabled)
1621
		goto cleanup;
1622 1623 1624 1625 1626 1627

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1628

1629
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1640 1641
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1642
	} else {
1643
		schedule();
1644 1645 1646 1647 1648
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1649 1650 1651 1652 1653 1654 1655 1656
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1657
cleanup:
T
Tejun Heo 已提交
1658
	current->memcg_in_oom = NULL;
1659
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1660
	return true;
1661 1662
}

1663
/**
1664 1665
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1666
 *
1667 1668
 * This function protects unlocked LRU pages from being moved to
 * another cgroup and stabilizes their page->mem_cgroup binding.
1669
 */
J
Johannes Weiner 已提交
1670
void lock_page_memcg(struct page *page)
1671 1672
{
	struct mem_cgroup *memcg;
1673
	unsigned long flags;
1674

1675 1676 1677 1678 1679
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 */
1680 1681 1682
	rcu_read_lock();

	if (mem_cgroup_disabled())
J
Johannes Weiner 已提交
1683
		return;
1684
again:
1685
	memcg = page->mem_cgroup;
1686
	if (unlikely(!memcg))
J
Johannes Weiner 已提交
1687
		return;
1688

Q
Qiang Huang 已提交
1689
	if (atomic_read(&memcg->moving_account) <= 0)
J
Johannes Weiner 已提交
1690
		return;
1691

1692
	spin_lock_irqsave(&memcg->move_lock, flags);
1693
	if (memcg != page->mem_cgroup) {
1694
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1695 1696
		goto again;
	}
1697 1698 1699 1700

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
1701
	 * the task who has the lock for unlock_page_memcg().
1702 1703 1704
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1705

J
Johannes Weiner 已提交
1706
	return;
1707
}
1708
EXPORT_SYMBOL(lock_page_memcg);
1709

1710
/**
1711
 * unlock_page_memcg - unlock a page->mem_cgroup binding
J
Johannes Weiner 已提交
1712
 * @page: the page
1713
 */
J
Johannes Weiner 已提交
1714
void unlock_page_memcg(struct page *page)
1715
{
J
Johannes Weiner 已提交
1716 1717
	struct mem_cgroup *memcg = page->mem_cgroup;

1718 1719 1720 1721 1722 1723 1724 1725
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1726

1727
	rcu_read_unlock();
1728
}
1729
EXPORT_SYMBOL(unlock_page_memcg);
1730

1731 1732 1733 1734
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1735
#define CHARGE_BATCH	32U
1736 1737
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1738
	unsigned int nr_pages;
1739
	struct work_struct work;
1740
	unsigned long flags;
1741
#define FLUSHING_CACHED_CHARGE	0
1742 1743
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1744
static DEFINE_MUTEX(percpu_charge_mutex);
1745

1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1756
 */
1757
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1758 1759
{
	struct memcg_stock_pcp *stock;
1760
	bool ret = false;
1761

1762
	if (nr_pages > CHARGE_BATCH)
1763
		return ret;
1764

1765
	stock = &get_cpu_var(memcg_stock);
1766
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1767
		stock->nr_pages -= nr_pages;
1768 1769
		ret = true;
	}
1770 1771 1772 1773 1774
	put_cpu_var(memcg_stock);
	return ret;
}

/*
1775
 * Returns stocks cached in percpu and reset cached information.
1776 1777 1778 1779 1780
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1781
	if (stock->nr_pages) {
1782
		page_counter_uncharge(&old->memory, stock->nr_pages);
1783
		if (do_memsw_account())
1784
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1785
		css_put_many(&old->css, stock->nr_pages);
1786
		stock->nr_pages = 0;
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
1797
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1798
	drain_stock(stock);
1799
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1800 1801 1802
}

/*
1803
 * Cache charges(val) to local per_cpu area.
1804
 * This will be consumed by consume_stock() function, later.
1805
 */
1806
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1807 1808 1809
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

1810
	if (stock->cached != memcg) { /* reset if necessary */
1811
		drain_stock(stock);
1812
		stock->cached = memcg;
1813
	}
1814
	stock->nr_pages += nr_pages;
1815 1816 1817 1818
	put_cpu_var(memcg_stock);
}

/*
1819
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1820
 * of the hierarchy under it.
1821
 */
1822
static void drain_all_stock(struct mem_cgroup *root_memcg)
1823
{
1824
	int cpu, curcpu;
1825

1826 1827 1828
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1829 1830
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1831
	curcpu = get_cpu();
1832 1833
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1834
		struct mem_cgroup *memcg;
1835

1836 1837
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
1838
			continue;
1839
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1840
			continue;
1841 1842 1843 1844 1845 1846
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1847
	}
1848
	put_cpu();
A
Andrew Morton 已提交
1849
	put_online_cpus();
1850
	mutex_unlock(&percpu_charge_mutex);
1851 1852
}

1853
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1854 1855 1856 1857 1858 1859
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

1860
	if (action == CPU_ONLINE)
1861 1862
		return NOTIFY_OK;

1863
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1864
		return NOTIFY_OK;
1865

1866 1867 1868 1869 1870
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
}

1891 1892 1893 1894 1895 1896 1897
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1898
	struct mem_cgroup *memcg;
1899 1900 1901 1902

	if (likely(!nr_pages))
		return;

1903 1904
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1905 1906 1907 1908
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

1909 1910
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
1911
{
1912
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1913
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1914
	struct mem_cgroup *mem_over_limit;
1915
	struct page_counter *counter;
1916
	unsigned long nr_reclaimed;
1917 1918
	bool may_swap = true;
	bool drained = false;
1919

1920
	if (mem_cgroup_is_root(memcg))
1921
		return 0;
1922
retry:
1923
	if (consume_stock(memcg, nr_pages))
1924
		return 0;
1925

1926
	if (!do_memsw_account() ||
1927 1928
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1929
			goto done_restock;
1930
		if (do_memsw_account())
1931 1932
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1933
	} else {
1934
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1935
		may_swap = false;
1936
	}
1937

1938 1939 1940 1941
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
1942

1943 1944 1945 1946 1947 1948 1949 1950 1951
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
1952
		goto force;
1953 1954 1955 1956

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

1957
	if (!gfpflags_allow_blocking(gfp_mask))
1958
		goto nomem;
1959

1960 1961
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

1962 1963
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
1964

1965
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1966
		goto retry;
1967

1968
	if (!drained) {
1969
		drain_all_stock(mem_over_limit);
1970 1971 1972 1973
		drained = true;
		goto retry;
	}

1974 1975
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
1976 1977 1978 1979 1980 1981 1982 1983 1984
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
1985
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1986 1987 1988 1989 1990 1991 1992 1993
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

1994 1995 1996
	if (nr_retries--)
		goto retry;

1997
	if (gfp_mask & __GFP_NOFAIL)
1998
		goto force;
1999

2000
	if (fatal_signal_pending(current))
2001
		goto force;
2002

2003 2004
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2005 2006
	mem_cgroup_oom(mem_over_limit, gfp_mask,
		       get_order(nr_pages * PAGE_SIZE));
2007
nomem:
2008
	if (!(gfp_mask & __GFP_NOFAIL))
2009
		return -ENOMEM;
2010 2011 2012 2013 2014 2015 2016
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2017
	if (do_memsw_account())
2018 2019 2020 2021
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2022 2023

done_restock:
2024
	css_get_many(&memcg->css, batch);
2025 2026
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2027

2028
	/*
2029 2030
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2031
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2032 2033 2034 2035
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2036 2037
	 */
	do {
2038
		if (page_counter_read(&memcg->memory) > memcg->high) {
2039 2040 2041 2042 2043
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2044
			current->memcg_nr_pages_over_high += batch;
2045 2046 2047
			set_notify_resume(current);
			break;
		}
2048
	} while ((memcg = parent_mem_cgroup(memcg)));
2049 2050

	return 0;
2051
}
2052

2053
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2054
{
2055 2056 2057
	if (mem_cgroup_is_root(memcg))
		return;

2058
	page_counter_uncharge(&memcg->memory, nr_pages);
2059
	if (do_memsw_account())
2060
		page_counter_uncharge(&memcg->memsw, nr_pages);
2061

2062
	css_put_many(&memcg->css, nr_pages);
2063 2064
}

2065 2066 2067 2068
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

2069
	spin_lock_irq(zone_lru_lock(zone));
2070 2071 2072
	if (PageLRU(page)) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2073
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2088
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2089 2090 2091 2092
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
2093
	spin_unlock_irq(zone_lru_lock(zone));
2094 2095
}

2096
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2097
			  bool lrucare)
2098
{
2099
	int isolated;
2100

2101
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2102 2103 2104 2105 2106

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2107 2108
	if (lrucare)
		lock_page_lru(page, &isolated);
2109

2110 2111
	/*
	 * Nobody should be changing or seriously looking at
2112
	 * page->mem_cgroup at this point:
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2124
	page->mem_cgroup = memcg;
2125

2126 2127
	if (lrucare)
		unlock_page_lru(page, isolated);
2128
}
2129

2130
#ifndef CONFIG_SLOB
2131
static int memcg_alloc_cache_id(void)
2132
{
2133 2134 2135
	int id, size;
	int err;

2136
	id = ida_simple_get(&memcg_cache_ida,
2137 2138 2139
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2140

2141
	if (id < memcg_nr_cache_ids)
2142 2143 2144 2145 2146 2147
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2148
	down_write(&memcg_cache_ids_sem);
2149 2150

	size = 2 * (id + 1);
2151 2152 2153 2154 2155
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2156
	err = memcg_update_all_caches(size);
2157 2158
	if (!err)
		err = memcg_update_all_list_lrus(size);
2159 2160 2161 2162 2163
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2164
	if (err) {
2165
		ida_simple_remove(&memcg_cache_ida, id);
2166 2167 2168 2169 2170 2171 2172
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2173
	ida_simple_remove(&memcg_cache_ida, id);
2174 2175
}

2176
struct memcg_kmem_cache_create_work {
2177 2178 2179 2180 2181
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2182
static void memcg_kmem_cache_create_func(struct work_struct *w)
2183
{
2184 2185
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2186 2187
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2188

2189
	memcg_create_kmem_cache(memcg, cachep);
2190

2191
	css_put(&memcg->css);
2192 2193 2194 2195 2196 2197
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2198 2199
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2200
{
2201
	struct memcg_kmem_cache_create_work *cw;
2202

2203
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2204
	if (!cw)
2205
		return;
2206 2207

	css_get(&memcg->css);
2208 2209 2210

	cw->memcg = memcg;
	cw->cachep = cachep;
2211
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2212 2213 2214 2215

	schedule_work(&cw->work);
}

2216 2217
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2218 2219 2220 2221
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2222
	 * in __memcg_schedule_kmem_cache_create will recurse.
2223 2224 2225 2226 2227 2228 2229
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2230
	current->memcg_kmem_skip_account = 1;
2231
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2232
	current->memcg_kmem_skip_account = 0;
2233
}
2234

2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
static inline bool memcg_kmem_bypass(void)
{
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;
	return false;
}

/**
 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
 * @cachep: the original global kmem cache
 *
2246 2247 2248
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
2249 2250 2251
 * If the cache does not exist yet, if we are the first user of it, we
 * create it asynchronously in a workqueue and let the current allocation
 * go through with the original cache.
2252
 *
2253 2254 2255 2256
 * This function takes a reference to the cache it returns to assure it
 * won't get destroyed while we are working with it. Once the caller is
 * done with it, memcg_kmem_put_cache() must be called to release the
 * reference.
2257
 */
2258
struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2259 2260
{
	struct mem_cgroup *memcg;
2261
	struct kmem_cache *memcg_cachep;
2262
	int kmemcg_id;
2263

2264
	VM_BUG_ON(!is_root_cache(cachep));
2265

2266
	if (memcg_kmem_bypass())
V
Vladimir Davydov 已提交
2267 2268
		return cachep;

2269
	if (current->memcg_kmem_skip_account)
2270 2271
		return cachep;

2272
	memcg = get_mem_cgroup_from_mm(current->mm);
2273
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2274
	if (kmemcg_id < 0)
2275
		goto out;
2276

2277
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2278 2279
	if (likely(memcg_cachep))
		return memcg_cachep;
2280 2281 2282 2283 2284 2285 2286 2287 2288

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2289 2290 2291
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2292
	 */
2293
	memcg_schedule_kmem_cache_create(memcg, cachep);
2294
out:
2295
	css_put(&memcg->css);
2296
	return cachep;
2297 2298
}

2299 2300 2301 2302 2303
/**
 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
 * @cachep: the cache returned by memcg_kmem_get_cache
 */
void memcg_kmem_put_cache(struct kmem_cache *cachep)
2304 2305
{
	if (!is_root_cache(cachep))
2306
		css_put(&cachep->memcg_params.memcg->css);
2307 2308
}

2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
/**
 * memcg_kmem_charge: charge a kmem page
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 * @memcg: memory cgroup to charge
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			    struct mem_cgroup *memcg)
2320
{
2321 2322
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2323 2324
	int ret;

2325
	ret = try_charge(memcg, gfp, nr_pages);
2326
	if (ret)
2327
		return ret;
2328 2329 2330 2331 2332

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2333 2334
	}

2335
	page->mem_cgroup = memcg;
2336

2337
	return 0;
2338 2339
}

2340 2341 2342 2343 2344 2345 2346 2347 2348
/**
 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2349
{
2350
	struct mem_cgroup *memcg;
2351
	int ret = 0;
2352

2353 2354 2355
	if (memcg_kmem_bypass())
		return 0;

2356
	memcg = get_mem_cgroup_from_mm(current->mm);
2357
	if (!mem_cgroup_is_root(memcg))
2358
		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2359
	css_put(&memcg->css);
2360
	return ret;
2361
}
2362 2363 2364 2365 2366 2367
/**
 * memcg_kmem_uncharge: uncharge a kmem page
 * @page: page to uncharge
 * @order: allocation order
 */
void memcg_kmem_uncharge(struct page *page, int order)
2368
{
2369
	struct mem_cgroup *memcg = page->mem_cgroup;
2370
	unsigned int nr_pages = 1 << order;
2371 2372 2373 2374

	if (!memcg)
		return;

2375
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2376

2377 2378 2379
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

2380
	page_counter_uncharge(&memcg->memory, nr_pages);
2381
	if (do_memsw_account())
2382
		page_counter_uncharge(&memcg->memsw, nr_pages);
2383

2384
	page->mem_cgroup = NULL;
2385
	css_put_many(&memcg->css, nr_pages);
2386
}
2387
#endif /* !CONFIG_SLOB */
2388

2389 2390 2391 2392
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2393
 * zone_lru_lock and migration entries setup in all page mappings.
2394
 */
2395
void mem_cgroup_split_huge_fixup(struct page *head)
2396
{
2397
	int i;
2398

2399 2400
	if (mem_cgroup_disabled())
		return;
2401

2402
	for (i = 1; i < HPAGE_PMD_NR; i++)
2403
		head[i].mem_cgroup = head->mem_cgroup;
2404

2405
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2406
		       HPAGE_PMD_NR);
2407
}
2408
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2409

A
Andrew Morton 已提交
2410
#ifdef CONFIG_MEMCG_SWAP
2411 2412
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2413
{
2414 2415
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2416
}
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2429
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2430 2431 2432
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2433
				struct mem_cgroup *from, struct mem_cgroup *to)
2434 2435 2436
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2437 2438
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2439 2440 2441

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2442
		mem_cgroup_swap_statistics(to, true);
2443 2444 2445 2446 2447 2448
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2449
				struct mem_cgroup *from, struct mem_cgroup *to)
2450 2451 2452
{
	return -EINVAL;
}
2453
#endif
K
KAMEZAWA Hiroyuki 已提交
2454

2455
static DEFINE_MUTEX(memcg_limit_mutex);
2456

2457
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2458
				   unsigned long limit)
2459
{
2460 2461 2462
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2463
	int retry_count;
2464
	int ret;
2465 2466 2467 2468 2469 2470

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2471 2472
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2473

2474
	oldusage = page_counter_read(&memcg->memory);
2475

2476
	do {
2477 2478 2479 2480
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2481 2482 2483 2484

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2485
			ret = -EINVAL;
2486 2487
			break;
		}
2488 2489 2490 2491
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2492 2493 2494 2495

		if (!ret)
			break;

2496 2497
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2498
		curusage = page_counter_read(&memcg->memory);
2499
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2500
		if (curusage >= oldusage)
2501 2502 2503
			retry_count--;
		else
			oldusage = curusage;
2504 2505
	} while (retry_count);

2506 2507
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2508

2509 2510 2511
	return ret;
}

L
Li Zefan 已提交
2512
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2513
					 unsigned long limit)
2514
{
2515 2516 2517
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2518
	int retry_count;
2519
	int ret;
2520

2521
	/* see mem_cgroup_resize_res_limit */
2522 2523 2524 2525 2526 2527
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2528 2529 2530 2531
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2532 2533 2534 2535

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2536 2537 2538
			ret = -EINVAL;
			break;
		}
2539 2540 2541 2542
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2543 2544 2545 2546

		if (!ret)
			break;

2547 2548
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2549
		curusage = page_counter_read(&memcg->memsw);
2550
		/* Usage is reduced ? */
2551
		if (curusage >= oldusage)
2552
			retry_count--;
2553 2554
		else
			oldusage = curusage;
2555 2556
	} while (retry_count);

2557 2558
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2559

2560 2561 2562
	return ret;
}

2563 2564 2565 2566 2567 2568 2569 2570 2571
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2572
	unsigned long excess;
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2597
		spin_lock_irq(&mctz->lock);
2598
		__mem_cgroup_remove_exceeded(mz, mctz);
2599 2600 2601 2602 2603 2604

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2605 2606 2607
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2608
		excess = soft_limit_excess(mz->memcg);
2609 2610 2611 2612 2613 2614 2615 2616 2617
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2618
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2619
		spin_unlock_irq(&mctz->lock);
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2637 2638 2639 2640 2641 2642
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2643 2644
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2645 2646 2647 2648 2649 2650
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2651 2652
}

2653
/*
2654
 * Reclaims as many pages from the given memcg as possible.
2655 2656 2657 2658 2659 2660 2661
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2662 2663
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2664
	/* try to free all pages in this cgroup */
2665
	while (nr_retries && page_counter_read(&memcg->memory)) {
2666
		int progress;
2667

2668 2669 2670
		if (signal_pending(current))
			return -EINTR;

2671 2672
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2673
		if (!progress) {
2674
			nr_retries--;
2675
			/* maybe some writeback is necessary */
2676
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2677
		}
2678 2679

	}
2680 2681

	return 0;
2682 2683
}

2684 2685 2686
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2687
{
2688
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2689

2690 2691
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2692
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2693 2694
}

2695 2696
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2697
{
2698
	return mem_cgroup_from_css(css)->use_hierarchy;
2699 2700
}

2701 2702
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2703 2704
{
	int retval = 0;
2705
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2706
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2707

2708
	if (memcg->use_hierarchy == val)
2709
		return 0;
2710

2711
	/*
2712
	 * If parent's use_hierarchy is set, we can't make any modifications
2713 2714 2715 2716 2717 2718
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2719
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2720
				(val == 1 || val == 0)) {
2721
		if (!memcg_has_children(memcg))
2722
			memcg->use_hierarchy = val;
2723 2724 2725 2726
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2727

2728 2729 2730
	return retval;
}

2731
static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2732 2733
{
	struct mem_cgroup *iter;
2734
	int i;
2735

2736
	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2737

2738 2739 2740 2741
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_STAT; i++)
			stat[i] += mem_cgroup_read_stat(iter, i);
	}
2742 2743
}

2744
static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2745 2746
{
	struct mem_cgroup *iter;
2747
	int i;
2748

2749
	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2750

2751 2752 2753 2754
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_EVENTS; i++)
			events[i] += mem_cgroup_read_events(iter, i);
	}
2755 2756
}

2757
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2758
{
2759
	unsigned long val = 0;
2760

2761
	if (mem_cgroup_is_root(memcg)) {
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
		struct mem_cgroup *iter;

		for_each_mem_cgroup_tree(iter, memcg) {
			val += mem_cgroup_read_stat(iter,
					MEM_CGROUP_STAT_CACHE);
			val += mem_cgroup_read_stat(iter,
					MEM_CGROUP_STAT_RSS);
			if (swap)
				val += mem_cgroup_read_stat(iter,
						MEM_CGROUP_STAT_SWAP);
		}
2773
	} else {
2774
		if (!swap)
2775
			val = page_counter_read(&memcg->memory);
2776
		else
2777
			val = page_counter_read(&memcg->memsw);
2778
	}
2779
	return val;
2780 2781
}

2782 2783 2784 2785 2786 2787 2788
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2789

2790
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2791
			       struct cftype *cft)
B
Balbir Singh 已提交
2792
{
2793
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2794
	struct page_counter *counter;
2795

2796
	switch (MEMFILE_TYPE(cft->private)) {
2797
	case _MEM:
2798 2799
		counter = &memcg->memory;
		break;
2800
	case _MEMSWAP:
2801 2802
		counter = &memcg->memsw;
		break;
2803
	case _KMEM:
2804
		counter = &memcg->kmem;
2805
		break;
V
Vladimir Davydov 已提交
2806
	case _TCP:
2807
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
2808
		break;
2809 2810 2811
	default:
		BUG();
	}
2812 2813 2814 2815

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
2816
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2817
		if (counter == &memcg->memsw)
2818
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2831
}
2832

2833
#ifndef CONFIG_SLOB
2834
static int memcg_online_kmem(struct mem_cgroup *memcg)
2835 2836 2837
{
	int memcg_id;

2838 2839 2840
	if (cgroup_memory_nokmem)
		return 0;

2841
	BUG_ON(memcg->kmemcg_id >= 0);
2842
	BUG_ON(memcg->kmem_state);
2843

2844
	memcg_id = memcg_alloc_cache_id();
2845 2846
	if (memcg_id < 0)
		return memcg_id;
2847

2848
	static_branch_inc(&memcg_kmem_enabled_key);
2849
	/*
2850
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
2851
	 * kmemcg_id. Setting the id after enabling static branching will
2852 2853 2854
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2855
	memcg->kmemcg_id = memcg_id;
2856
	memcg->kmem_state = KMEM_ONLINE;
2857 2858

	return 0;
2859 2860
}

2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	memcg_deactivate_kmem_caches(memcg);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
2894
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2895 2896 2897 2898 2899 2900 2901
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
2902 2903
	rcu_read_unlock();

2904 2905 2906 2907 2908 2909 2910
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
2911 2912 2913 2914
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

2915 2916 2917 2918 2919 2920
	if (memcg->kmem_state == KMEM_ALLOCATED) {
		memcg_destroy_kmem_caches(memcg);
		static_branch_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
}
2921
#else
2922
static int memcg_online_kmem(struct mem_cgroup *memcg)
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
#endif /* !CONFIG_SLOB */

2934
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2935
				   unsigned long limit)
2936
{
2937
	int ret;
2938 2939 2940 2941 2942

	mutex_lock(&memcg_limit_mutex);
	ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
	return ret;
2943
}
2944

V
Vladimir Davydov 已提交
2945 2946 2947 2948 2949 2950
static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
{
	int ret;

	mutex_lock(&memcg_limit_mutex);

2951
	ret = page_counter_limit(&memcg->tcpmem, limit);
V
Vladimir Davydov 已提交
2952 2953 2954
	if (ret)
		goto out;

2955
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
		 * function is the last one to run. See sock_update_memcg() for
		 * details, and note that we don't mark any socket as belonging
		 * to this memcg until that flag is up.
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
		 * We never race with the readers in sock_update_memcg(),
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
2973
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
2974 2975 2976 2977 2978 2979
	}
out:
	mutex_unlock(&memcg_limit_mutex);
	return ret;
}

2980 2981 2982 2983
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2984 2985
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
2986
{
2987
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2988
	unsigned long nr_pages;
2989 2990
	int ret;

2991
	buf = strstrip(buf);
2992
	ret = page_counter_memparse(buf, "-1", &nr_pages);
2993 2994
	if (ret)
		return ret;
2995

2996
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2997
	case RES_LIMIT:
2998 2999 3000 3001
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3002 3003 3004
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3005
			break;
3006 3007
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3008
			break;
3009 3010 3011
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
V
Vladimir Davydov 已提交
3012 3013 3014
		case _TCP:
			ret = memcg_update_tcp_limit(memcg, nr_pages);
			break;
3015
		}
3016
		break;
3017 3018 3019
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3020 3021
		break;
	}
3022
	return ret ?: nbytes;
B
Balbir Singh 已提交
3023 3024
}

3025 3026
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3027
{
3028
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3029
	struct page_counter *counter;
3030

3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3041
	case _TCP:
3042
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3043
		break;
3044 3045 3046
	default:
		BUG();
	}
3047

3048
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3049
	case RES_MAX_USAGE:
3050
		page_counter_reset_watermark(counter);
3051 3052
		break;
	case RES_FAILCNT:
3053
		counter->failcnt = 0;
3054
		break;
3055 3056
	default:
		BUG();
3057
	}
3058

3059
	return nbytes;
3060 3061
}

3062
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3063 3064
					struct cftype *cft)
{
3065
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3066 3067
}

3068
#ifdef CONFIG_MMU
3069
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3070 3071
					struct cftype *cft, u64 val)
{
3072
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3073

3074
	if (val & ~MOVE_MASK)
3075
		return -EINVAL;
3076

3077
	/*
3078 3079 3080 3081
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3082
	 */
3083
	memcg->move_charge_at_immigrate = val;
3084 3085
	return 0;
}
3086
#else
3087
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3088 3089 3090 3091 3092
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3093

3094
#ifdef CONFIG_NUMA
3095
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3096
{
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3109
	int nid;
3110
	unsigned long nr;
3111
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3112

3113 3114 3115 3116 3117 3118 3119 3120 3121
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3122 3123
	}

3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3139 3140 3141 3142 3143 3144
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3145
static int memcg_stat_show(struct seq_file *m, void *v)
3146
{
3147
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3148
	unsigned long memory, memsw;
3149 3150
	struct mem_cgroup *mi;
	unsigned int i;
3151

3152 3153 3154 3155
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3156 3157
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3158
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3159
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3160
			continue;
3161
		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3162
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3163
	}
L
Lee Schermerhorn 已提交
3164

3165 3166 3167 3168 3169 3170 3171 3172
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3173
	/* Hierarchical information */
3174 3175 3176 3177
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3178
	}
3179 3180
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3181
	if (do_memsw_account())
3182 3183
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3184

3185
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3186
		unsigned long long val = 0;
3187

3188
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3189
			continue;
3190 3191
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3192
		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3210
	}
K
KAMEZAWA Hiroyuki 已提交
3211

K
KOSAKI Motohiro 已提交
3212 3213 3214 3215
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3216
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3217 3218 3219 3220 3221
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3222
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3223
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3224

3225 3226 3227 3228
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3229
			}
3230 3231 3232 3233
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3234 3235 3236
	}
#endif

3237 3238 3239
	return 0;
}

3240 3241
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3242
{
3243
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3244

3245
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3246 3247
}

3248 3249
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3250
{
3251
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3252

3253
	if (val > 100)
K
KOSAKI Motohiro 已提交
3254 3255
		return -EINVAL;

3256
	if (css->parent)
3257 3258 3259
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3260

K
KOSAKI Motohiro 已提交
3261 3262 3263
	return 0;
}

3264 3265 3266
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3267
	unsigned long usage;
3268 3269 3270 3271
	int i;

	rcu_read_lock();
	if (!swap)
3272
		t = rcu_dereference(memcg->thresholds.primary);
3273
	else
3274
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3275 3276 3277 3278

	if (!t)
		goto unlock;

3279
	usage = mem_cgroup_usage(memcg, swap);
3280 3281

	/*
3282
	 * current_threshold points to threshold just below or equal to usage.
3283 3284 3285
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3286
	i = t->current_threshold;
3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3310
	t->current_threshold = i - 1;
3311 3312 3313 3314 3315 3316
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3317 3318
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3319
		if (do_memsw_account())
3320 3321 3322 3323
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3324 3325 3326 3327 3328 3329 3330
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3331 3332 3333 3334 3335 3336 3337
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3338 3339
}

3340
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3341 3342 3343
{
	struct mem_cgroup_eventfd_list *ev;

3344 3345
	spin_lock(&memcg_oom_lock);

3346
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3347
		eventfd_signal(ev->eventfd, 1);
3348 3349

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3350 3351 3352
	return 0;
}

3353
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3354
{
K
KAMEZAWA Hiroyuki 已提交
3355 3356
	struct mem_cgroup *iter;

3357
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3358
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3359 3360
}

3361
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3362
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3363
{
3364 3365
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3366 3367
	unsigned long threshold;
	unsigned long usage;
3368
	int i, size, ret;
3369

3370
	ret = page_counter_memparse(args, "-1", &threshold);
3371 3372 3373 3374
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3375

3376
	if (type == _MEM) {
3377
		thresholds = &memcg->thresholds;
3378
		usage = mem_cgroup_usage(memcg, false);
3379
	} else if (type == _MEMSWAP) {
3380
		thresholds = &memcg->memsw_thresholds;
3381
		usage = mem_cgroup_usage(memcg, true);
3382
	} else
3383 3384 3385
		BUG();

	/* Check if a threshold crossed before adding a new one */
3386
	if (thresholds->primary)
3387 3388
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3389
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3390 3391

	/* Allocate memory for new array of thresholds */
3392
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3393
			GFP_KERNEL);
3394
	if (!new) {
3395 3396 3397
		ret = -ENOMEM;
		goto unlock;
	}
3398
	new->size = size;
3399 3400

	/* Copy thresholds (if any) to new array */
3401 3402
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3403
				sizeof(struct mem_cgroup_threshold));
3404 3405
	}

3406
	/* Add new threshold */
3407 3408
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3409 3410

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3411
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3412 3413 3414
			compare_thresholds, NULL);

	/* Find current threshold */
3415
	new->current_threshold = -1;
3416
	for (i = 0; i < size; i++) {
3417
		if (new->entries[i].threshold <= usage) {
3418
			/*
3419 3420
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3421 3422
			 * it here.
			 */
3423
			++new->current_threshold;
3424 3425
		} else
			break;
3426 3427
	}

3428 3429 3430 3431 3432
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3433

3434
	/* To be sure that nobody uses thresholds */
3435 3436 3437 3438 3439 3440 3441 3442
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3443
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3444 3445
	struct eventfd_ctx *eventfd, const char *args)
{
3446
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3447 3448
}

3449
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3450 3451
	struct eventfd_ctx *eventfd, const char *args)
{
3452
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3453 3454
}

3455
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3456
	struct eventfd_ctx *eventfd, enum res_type type)
3457
{
3458 3459
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3460
	unsigned long usage;
3461
	int i, j, size;
3462 3463

	mutex_lock(&memcg->thresholds_lock);
3464 3465

	if (type == _MEM) {
3466
		thresholds = &memcg->thresholds;
3467
		usage = mem_cgroup_usage(memcg, false);
3468
	} else if (type == _MEMSWAP) {
3469
		thresholds = &memcg->memsw_thresholds;
3470
		usage = mem_cgroup_usage(memcg, true);
3471
	} else
3472 3473
		BUG();

3474 3475 3476
	if (!thresholds->primary)
		goto unlock;

3477 3478 3479 3480
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3481 3482 3483
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3484 3485 3486
			size++;
	}

3487
	new = thresholds->spare;
3488

3489 3490
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3491 3492
		kfree(new);
		new = NULL;
3493
		goto swap_buffers;
3494 3495
	}

3496
	new->size = size;
3497 3498

	/* Copy thresholds and find current threshold */
3499 3500 3501
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3502 3503
			continue;

3504
		new->entries[j] = thresholds->primary->entries[i];
3505
		if (new->entries[j].threshold <= usage) {
3506
			/*
3507
			 * new->current_threshold will not be used
3508 3509 3510
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3511
			++new->current_threshold;
3512 3513 3514 3515
		}
		j++;
	}

3516
swap_buffers:
3517 3518
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3519

3520
	rcu_assign_pointer(thresholds->primary, new);
3521

3522
	/* To be sure that nobody uses thresholds */
3523
	synchronize_rcu();
3524 3525 3526 3527 3528 3529

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
3530
unlock:
3531 3532
	mutex_unlock(&memcg->thresholds_lock);
}
3533

3534
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3535 3536
	struct eventfd_ctx *eventfd)
{
3537
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3538 3539
}

3540
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3541 3542
	struct eventfd_ctx *eventfd)
{
3543
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3544 3545
}

3546
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3547
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3548 3549 3550 3551 3552 3553 3554
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3555
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3556 3557 3558 3559 3560

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3561
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3562
		eventfd_signal(eventfd, 1);
3563
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3564 3565 3566 3567

	return 0;
}

3568
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3569
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3570 3571 3572
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3573
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3574

3575
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3576 3577 3578 3579 3580 3581
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3582
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3583 3584
}

3585
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3586
{
3587
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3588

3589
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3590
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3591 3592 3593
	return 0;
}

3594
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3595 3596
	struct cftype *cft, u64 val)
{
3597
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3598 3599

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3600
	if (!css->parent || !((val == 0) || (val == 1)))
3601 3602
		return -EINVAL;

3603
	memcg->oom_kill_disable = val;
3604
	if (!val)
3605
		memcg_oom_recover(memcg);
3606

3607 3608 3609
	return 0;
}

3610 3611 3612 3613 3614 3615 3616
#ifdef CONFIG_CGROUP_WRITEBACK

struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
{
	return &memcg->cgwb_list;
}

T
Tejun Heo 已提交
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3627 3628 3629 3630 3631
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3632 3633 3634 3635 3636 3637 3638 3639 3640 3641
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3642 3643 3644
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3645 3646
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3647 3648 3649
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3650 3651 3652
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3653
 *
3654 3655 3656 3657 3658
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3659
 */
3660 3661 3662
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3663 3664 3665 3666 3667 3668 3669 3670
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);

	/* this should eventually include NR_UNSTABLE_NFS */
	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3671 3672 3673
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3674 3675 3676 3677 3678

	while ((parent = parent_mem_cgroup(memcg))) {
		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
		unsigned long used = page_counter_read(&memcg->memory);

3679
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3680 3681 3682 3683
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3695 3696 3697 3698
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3699 3700
#endif	/* CONFIG_CGROUP_WRITEBACK */

3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3714 3715 3716 3717 3718
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3719
static void memcg_event_remove(struct work_struct *work)
3720
{
3721 3722
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3723
	struct mem_cgroup *memcg = event->memcg;
3724 3725 3726

	remove_wait_queue(event->wqh, &event->wait);

3727
	event->unregister_event(memcg, event->eventfd);
3728 3729 3730 3731 3732 3733

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3734
	css_put(&memcg->css);
3735 3736 3737 3738 3739 3740 3741
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3742 3743
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
3744
{
3745 3746
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3747
	struct mem_cgroup *memcg = event->memcg;
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3760
		spin_lock(&memcg->event_list_lock);
3761 3762 3763 3764 3765 3766 3767 3768
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3769
		spin_unlock(&memcg->event_list_lock);
3770 3771 3772 3773 3774
	}

	return 0;
}

3775
static void memcg_event_ptable_queue_proc(struct file *file,
3776 3777
		wait_queue_head_t *wqh, poll_table *pt)
{
3778 3779
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3780 3781 3782 3783 3784 3785

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3786 3787
 * DO NOT USE IN NEW FILES.
 *
3788 3789 3790 3791 3792
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3793 3794
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3795
{
3796
	struct cgroup_subsys_state *css = of_css(of);
3797
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3798
	struct mem_cgroup_event *event;
3799 3800 3801 3802
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3803
	const char *name;
3804 3805 3806
	char *endp;
	int ret;

3807 3808 3809
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3810 3811
	if (*endp != ' ')
		return -EINVAL;
3812
	buf = endp + 1;
3813

3814
	cfd = simple_strtoul(buf, &endp, 10);
3815 3816
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3817
	buf = endp + 1;
3818 3819 3820 3821 3822

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3823
	event->memcg = memcg;
3824
	INIT_LIST_HEAD(&event->list);
3825 3826 3827
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3853 3854 3855 3856 3857
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3858 3859
	 *
	 * DO NOT ADD NEW FILES.
3860
	 */
A
Al Viro 已提交
3861
	name = cfile.file->f_path.dentry->d_name.name;
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3873 3874
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3875 3876 3877 3878 3879
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3880
	/*
3881 3882 3883
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
3884
	 */
A
Al Viro 已提交
3885
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3886
					       &memory_cgrp_subsys);
3887
	ret = -EINVAL;
3888
	if (IS_ERR(cfile_css))
3889
		goto out_put_cfile;
3890 3891
	if (cfile_css != css) {
		css_put(cfile_css);
3892
		goto out_put_cfile;
3893
	}
3894

3895
	ret = event->register_event(memcg, event->eventfd, buf);
3896 3897 3898 3899 3900
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

3901 3902 3903
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
3904 3905 3906 3907

	fdput(cfile);
	fdput(efile);

3908
	return nbytes;
3909 3910

out_put_css:
3911
	css_put(css);
3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

3924
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
3925
	{
3926
		.name = "usage_in_bytes",
3927
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3928
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3929
	},
3930 3931
	{
		.name = "max_usage_in_bytes",
3932
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3933
		.write = mem_cgroup_reset,
3934
		.read_u64 = mem_cgroup_read_u64,
3935
	},
B
Balbir Singh 已提交
3936
	{
3937
		.name = "limit_in_bytes",
3938
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3939
		.write = mem_cgroup_write,
3940
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3941
	},
3942 3943 3944
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3945
		.write = mem_cgroup_write,
3946
		.read_u64 = mem_cgroup_read_u64,
3947
	},
B
Balbir Singh 已提交
3948 3949
	{
		.name = "failcnt",
3950
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3951
		.write = mem_cgroup_reset,
3952
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3953
	},
3954 3955
	{
		.name = "stat",
3956
		.seq_show = memcg_stat_show,
3957
	},
3958 3959
	{
		.name = "force_empty",
3960
		.write = mem_cgroup_force_empty_write,
3961
	},
3962 3963 3964 3965 3966
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
3967
	{
3968
		.name = "cgroup.event_control",		/* XXX: for compat */
3969
		.write = memcg_write_event_control,
3970
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3971
	},
K
KOSAKI Motohiro 已提交
3972 3973 3974 3975 3976
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3977 3978 3979 3980 3981
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
3982 3983
	{
		.name = "oom_control",
3984
		.seq_show = mem_cgroup_oom_control_read,
3985
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
3986 3987
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
3988 3989 3990
	{
		.name = "pressure_level",
	},
3991 3992 3993
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
3994
		.seq_show = memcg_numa_stat_show,
3995 3996
	},
#endif
3997 3998 3999
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4000
		.write = mem_cgroup_write,
4001
		.read_u64 = mem_cgroup_read_u64,
4002 4003 4004 4005
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4006
		.read_u64 = mem_cgroup_read_u64,
4007 4008 4009 4010
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4011
		.write = mem_cgroup_reset,
4012
		.read_u64 = mem_cgroup_read_u64,
4013 4014 4015 4016
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4017
		.write = mem_cgroup_reset,
4018
		.read_u64 = mem_cgroup_read_u64,
4019
	},
4020 4021 4022
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4023 4024 4025 4026
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4027 4028
	},
#endif
V
Vladimir Davydov 已提交
4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4052
	{ },	/* terminate */
4053
};
4054

4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
 * However, there usually are many references to the oflline CSS after
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

static void mem_cgroup_id_get(struct mem_cgroup *memcg)
{
	atomic_inc(&memcg->id.ref);
}

static void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	if (atomic_dec_and_test(&memcg->id.ref)) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

4109
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4110 4111
{
	struct mem_cgroup_per_node *pn;
4112
	struct mem_cgroup_per_zone *mz;
4113
	int zone, tmp = node;
4114 4115 4116 4117 4118 4119 4120 4121
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4122 4123
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4124
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4125 4126
	if (!pn)
		return 1;
4127 4128 4129

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4130
		lruvec_init(&mz->lruvec);
4131 4132
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4133
		mz->memcg = memcg;
4134
	}
4135
	memcg->nodeinfo[node] = pn;
4136 4137 4138
	return 0;
}

4139
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4140
{
4141
	kfree(memcg->nodeinfo[node]);
4142 4143
}

4144
static void mem_cgroup_free(struct mem_cgroup *memcg)
4145
{
4146
	int node;
4147

4148
	memcg_wb_domain_exit(memcg);
4149 4150 4151
	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);
	free_percpu(memcg->stat);
4152
	kfree(memcg);
4153
}
4154

4155
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4156
{
4157
	struct mem_cgroup *memcg;
4158
	size_t size;
4159
	int node;
B
Balbir Singh 已提交
4160

4161 4162 4163 4164
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4165
	if (!memcg)
4166 4167
		return NULL;

4168 4169 4170 4171 4172 4173
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
	if (memcg->id.id < 0)
		goto fail;

4174 4175 4176
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
		goto fail;
4177

B
Bob Liu 已提交
4178
	for_each_node(node)
4179
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4180
			goto fail;
4181

4182 4183
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4184

4185
	INIT_WORK(&memcg->high_work, high_work_func);
4186 4187 4188 4189
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4190
	vmpressure_init(&memcg->vmpressure);
4191 4192
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4193
	memcg->socket_pressure = jiffies;
4194
#ifndef CONFIG_SLOB
V
Vladimir Davydov 已提交
4195 4196
	memcg->kmemcg_id = -1;
#endif
4197 4198 4199
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4200
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4201 4202
	return memcg;
fail:
4203 4204
	if (memcg->id.id > 0)
		idr_remove(&mem_cgroup_idr, memcg->id.id);
4205 4206
	mem_cgroup_free(memcg);
	return NULL;
4207 4208
}

4209 4210
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4211
{
4212 4213 4214
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
4215

4216 4217 4218
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
4219

4220 4221 4222 4223 4224 4225 4226 4227
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
4228
		page_counter_init(&memcg->memory, &parent->memory);
4229
		page_counter_init(&memcg->swap, &parent->swap);
4230 4231
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4232
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4233
	} else {
4234
		page_counter_init(&memcg->memory, NULL);
4235
		page_counter_init(&memcg->swap, NULL);
4236 4237
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4238
		page_counter_init(&memcg->tcpmem, NULL);
4239 4240 4241 4242 4243
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4244
		if (parent != root_mem_cgroup)
4245
			memory_cgrp_subsys.broken_hierarchy = true;
4246
	}
4247

4248 4249 4250 4251 4252 4253
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

4254
	error = memcg_online_kmem(memcg);
4255 4256
	if (error)
		goto fail;
4257

4258
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4259
		static_branch_inc(&memcg_sockets_enabled_key);
4260

4261 4262 4263
	return &memcg->css;
fail:
	mem_cgroup_free(memcg);
4264
	return ERR_PTR(-ENOMEM);
4265 4266
}

4267
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4268
{
4269 4270 4271
	/* Online state pins memcg ID, memcg ID pins CSS */
	mem_cgroup_id_get(mem_cgroup_from_css(css));
	css_get(css);
4272
	return 0;
B
Balbir Singh 已提交
4273 4274
}

4275
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4276
{
4277
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4278
	struct mem_cgroup_event *event, *tmp;
4279 4280 4281 4282 4283 4284

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4285 4286
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4287 4288 4289
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4290
	spin_unlock(&memcg->event_list_lock);
4291

4292
	memcg_offline_kmem(memcg);
4293
	wb_memcg_offline(memcg);
4294 4295

	mem_cgroup_id_put(memcg);
4296 4297
}

4298 4299 4300 4301 4302 4303 4304
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4305
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4306
{
4307
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4308

4309
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4310
		static_branch_dec(&memcg_sockets_enabled_key);
4311

4312
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
4313
		static_branch_dec(&memcg_sockets_enabled_key);
4314

4315 4316 4317
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
4318
	memcg_free_kmem(memcg);
4319
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4320 4321
}

4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4339 4340 4341 4342 4343
	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4344 4345
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4346
	memcg->soft_limit = PAGE_COUNTER_MAX;
4347
	memcg_wb_domain_size_changed(memcg);
4348 4349
}

4350
#ifdef CONFIG_MMU
4351
/* Handlers for move charge at task migration. */
4352
static int mem_cgroup_do_precharge(unsigned long count)
4353
{
4354
	int ret;
4355

4356 4357
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4358
	if (!ret) {
4359 4360 4361
		mc.precharge += count;
		return ret;
	}
4362 4363

	/* Try charges one by one with reclaim */
4364
	while (count--) {
4365
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4366 4367
		if (ret)
			return ret;
4368
		mc.precharge++;
4369
		cond_resched();
4370
	}
4371
	return 0;
4372 4373 4374 4375
}

union mc_target {
	struct page	*page;
4376
	swp_entry_t	ent;
4377 4378 4379
};

enum mc_target_type {
4380
	MC_TARGET_NONE = 0,
4381
	MC_TARGET_PAGE,
4382
	MC_TARGET_SWAP,
4383 4384
};

D
Daisuke Nishimura 已提交
4385 4386
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4387
{
D
Daisuke Nishimura 已提交
4388
	struct page *page = vm_normal_page(vma, addr, ptent);
4389

D
Daisuke Nishimura 已提交
4390 4391 4392
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4393
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4394
			return NULL;
4395 4396 4397 4398
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4399 4400 4401 4402 4403 4404
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4405
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4406
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4407
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
4408 4409 4410 4411
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4412
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4413
		return NULL;
4414 4415 4416 4417
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4418
	page = find_get_page(swap_address_space(ent), ent.val);
4419
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4420 4421 4422 4423
		entry->val = ent.val;

	return page;
}
4424 4425
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4426
			pte_t ptent, swp_entry_t *entry)
4427 4428 4429 4430
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4431

4432 4433 4434 4435 4436 4437 4438 4439 4440
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4441
	if (!(mc.flags & MOVE_FILE))
4442 4443 4444
		return NULL;

	mapping = vma->vm_file->f_mapping;
4445
	pgoff = linear_page_index(vma, addr);
4446 4447

	/* page is moved even if it's not RSS of this task(page-faulted). */
4448 4449
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4450 4451 4452 4453
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
4454
			if (do_memsw_account())
4455 4456 4457 4458 4459 4460 4461
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4462
#endif
4463 4464 4465
	return page;
}

4466 4467 4468
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
4469
 * @compound: charge the page as compound or small page
4470 4471 4472
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
4473
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4474 4475 4476 4477 4478
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
4479
				   bool compound,
4480 4481 4482 4483
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
4484
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4485
	int ret;
4486
	bool anon;
4487 4488 4489

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
4490
	VM_BUG_ON(compound && !PageTransHuge(page));
4491 4492

	/*
4493
	 * Prevent mem_cgroup_migrate() from looking at
4494
	 * page->mem_cgroup of its source page while we change it.
4495
	 */
4496
	ret = -EBUSY;
4497 4498 4499 4500 4501 4502 4503
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4504 4505
	anon = PageAnon(page);

4506 4507
	spin_lock_irqsave(&from->move_lock, flags);

4508
	if (!anon && page_mapped(page)) {
4509 4510 4511 4512 4513 4514
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
		}
	}

4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
4551
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4552
	memcg_check_events(to, page);
4553
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4554 4555 4556 4557 4558 4559 4560 4561
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
 *
 * Called with pte lock held.
 */

4581
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4582 4583 4584
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4585
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4586 4587 4588 4589 4590
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
4591
		page = mc_handle_swap_pte(vma, ptent, &ent);
4592
	else if (pte_none(ptent))
4593
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4594 4595

	if (!page && !ent.val)
4596
		return ret;
4597 4598
	if (page) {
		/*
4599
		 * Do only loose check w/o serialization.
4600
		 * mem_cgroup_move_account() checks the page is valid or
4601
		 * not under LRU exclusion.
4602
		 */
4603
		if (page->mem_cgroup == mc.from) {
4604 4605 4606 4607 4608 4609 4610
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4611 4612
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4613
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4614 4615 4616
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4617 4618 4619 4620
	}
	return ret;
}

4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4634
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4635
	if (!(mc.flags & MOVE_ANON))
4636
		return ret;
4637
	if (page->mem_cgroup == mc.from) {
4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4654 4655 4656 4657
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4658
	struct vm_area_struct *vma = walk->vma;
4659 4660 4661
	pte_t *pte;
	spinlock_t *ptl;

4662 4663
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4664 4665
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4666
		spin_unlock(ptl);
4667
		return 0;
4668
	}
4669

4670 4671
	if (pmd_trans_unstable(pmd))
		return 0;
4672 4673
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4674
		if (get_mctgt_type(vma, addr, *pte, NULL))
4675 4676 4677 4678
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4679 4680 4681
	return 0;
}

4682 4683 4684 4685
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4686 4687 4688 4689
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4690
	down_read(&mm->mmap_sem);
4691
	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4692
	up_read(&mm->mmap_sem);
4693 4694 4695 4696 4697 4698 4699 4700 4701

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4702 4703 4704 4705 4706
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4707 4708
}

4709 4710
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4711
{
4712 4713 4714
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4715
	/* we must uncharge all the leftover precharges from mc.to */
4716
	if (mc.precharge) {
4717
		cancel_charge(mc.to, mc.precharge);
4718 4719 4720 4721 4722 4723 4724
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4725
		cancel_charge(mc.from, mc.moved_charge);
4726
		mc.moved_charge = 0;
4727
	}
4728 4729 4730
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4731
		if (!mem_cgroup_is_root(mc.from))
4732
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4733

4734
		/*
4735 4736
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4737
		 */
4738
		if (!mem_cgroup_is_root(mc.to))
4739 4740
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4741
		css_put_many(&mc.from->css, mc.moved_swap);
4742

L
Li Zefan 已提交
4743
		/* we've already done css_get(mc.to) */
4744 4745
		mc.moved_swap = 0;
	}
4746 4747 4748 4749 4750 4751 4752
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
4753 4754
	struct mm_struct *mm = mc.mm;

4755 4756 4757 4758 4759 4760
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4761
	spin_lock(&mc.lock);
4762 4763
	mc.from = NULL;
	mc.to = NULL;
4764
	mc.mm = NULL;
4765
	spin_unlock(&mc.lock);
4766 4767

	mmput(mm);
4768 4769
}

4770
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4771
{
4772
	struct cgroup_subsys_state *css;
4773
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4774
	struct mem_cgroup *from;
4775
	struct task_struct *leader, *p;
4776
	struct mm_struct *mm;
4777
	unsigned long move_flags;
4778
	int ret = 0;
4779

4780 4781
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4782 4783
		return 0;

4784 4785 4786 4787 4788 4789 4790
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
4791
	cgroup_taskset_for_each_leader(leader, css, tset) {
4792 4793
		WARN_ON_ONCE(p);
		p = leader;
4794
		memcg = mem_cgroup_from_css(css);
4795 4796 4797 4798
	}
	if (!p)
		return 0;

4799 4800 4801 4802 4803 4804 4805 4806 4807
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
4824
		mc.mm = mm;
4825 4826 4827 4828 4829 4830 4831 4832 4833
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
4834 4835
	} else {
		mmput(mm);
4836 4837 4838 4839
	}
	return ret;
}

4840
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4841
{
4842 4843
	if (mc.to)
		mem_cgroup_clear_mc();
4844 4845
}

4846 4847 4848
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4849
{
4850
	int ret = 0;
4851
	struct vm_area_struct *vma = walk->vma;
4852 4853
	pte_t *pte;
	spinlock_t *ptl;
4854 4855 4856
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4857

4858 4859
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4860
		if (mc.precharge < HPAGE_PMD_NR) {
4861
			spin_unlock(ptl);
4862 4863 4864 4865 4866 4867
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
4868
				if (!mem_cgroup_move_account(page, true,
4869
							     mc.from, mc.to)) {
4870 4871 4872 4873 4874 4875 4876
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
4877
		spin_unlock(ptl);
4878
		return 0;
4879 4880
	}

4881 4882
	if (pmd_trans_unstable(pmd))
		return 0;
4883 4884 4885 4886
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
4887
		swp_entry_t ent;
4888 4889 4890 4891

		if (!mc.precharge)
			break;

4892
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4893 4894
		case MC_TARGET_PAGE:
			page = target.page;
4895 4896 4897 4898 4899 4900 4901 4902
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
4903 4904
			if (isolate_lru_page(page))
				goto put;
4905 4906
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
4907
				mc.precharge--;
4908 4909
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4910 4911
			}
			putback_lru_page(page);
4912
put:			/* get_mctgt_type() gets the page */
4913 4914
			put_page(page);
			break;
4915 4916
		case MC_TARGET_SWAP:
			ent = target.ent;
4917
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4918
				mc.precharge--;
4919 4920 4921
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4922
			break;
4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4937
		ret = mem_cgroup_do_precharge(1);
4938 4939 4940 4941 4942 4943 4944
		if (!ret)
			goto retry;
	}

	return ret;
}

4945
static void mem_cgroup_move_charge(void)
4946
{
4947 4948
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
4949
		.mm = mc.mm,
4950
	};
4951 4952

	lru_add_drain_all();
4953
	/*
4954 4955 4956
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
4957 4958 4959
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
4960
retry:
4961
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
4973 4974 4975 4976 4977
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4978
	up_read(&mc.mm->mmap_sem);
4979
	atomic_dec(&mc.from->moving_account);
4980 4981
}

4982
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
4983
{
4984 4985
	if (mc.to) {
		mem_cgroup_move_charge();
4986
		mem_cgroup_clear_mc();
4987
	}
B
Balbir Singh 已提交
4988
}
4989
#else	/* !CONFIG_MMU */
4990
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4991 4992 4993
{
	return 0;
}
4994
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4995 4996
{
}
4997
static void mem_cgroup_move_task(void)
4998 4999 5000
{
}
#endif
B
Balbir Singh 已提交
5001

5002 5003
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5004 5005
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5006
 */
5007
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5008 5009
{
	/*
5010
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5011 5012 5013
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5014
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5015 5016 5017
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5018 5019
}

5020 5021 5022
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5023 5024 5025
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5026 5027 5028 5029 5030
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5031
	unsigned long low = READ_ONCE(memcg->low);
5032 5033

	if (low == PAGE_COUNTER_MAX)
5034
		seq_puts(m, "max\n");
5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5049
	err = page_counter_memparse(buf, "max", &low);
5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5061
	unsigned long high = READ_ONCE(memcg->high);
5062 5063

	if (high == PAGE_COUNTER_MAX)
5064
		seq_puts(m, "max\n");
5065 5066 5067 5068 5069 5070 5071 5072 5073 5074
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5075
	unsigned long nr_pages;
5076 5077 5078 5079
	unsigned long high;
	int err;

	buf = strstrip(buf);
5080
	err = page_counter_memparse(buf, "max", &high);
5081 5082 5083 5084 5085
	if (err)
		return err;

	memcg->high = high;

5086 5087 5088 5089 5090
	nr_pages = page_counter_read(&memcg->memory);
	if (nr_pages > high)
		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
					     GFP_KERNEL, true);

5091
	memcg_wb_domain_size_changed(memcg);
5092 5093 5094 5095 5096 5097
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5098
	unsigned long max = READ_ONCE(memcg->memory.limit);
5099 5100

	if (max == PAGE_COUNTER_MAX)
5101
		seq_puts(m, "max\n");
5102 5103 5104 5105 5106 5107 5108 5109 5110 5111
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5112 5113
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
5114 5115 5116 5117
	unsigned long max;
	int err;

	buf = strstrip(buf);
5118
	err = page_counter_memparse(buf, "max", &max);
5119 5120 5121
	if (err)
		return err;

5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151
	xchg(&memcg->memory.limit, max);

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

		if (signal_pending(current)) {
			err = -EINTR;
			break;
		}

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

		mem_cgroup_events(memcg, MEMCG_OOM, 1);
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
5152

5153
	memcg_wb_domain_size_changed(memcg);
5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

5169 5170 5171
static int memory_stat_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5172 5173
	unsigned long stat[MEMCG_NR_STAT];
	unsigned long events[MEMCG_NR_EVENTS];
5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186
	int i;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

5187 5188 5189
	tree_stat(memcg, stat);
	tree_events(memcg, events);

5190
	seq_printf(m, "anon %llu\n",
5191
		   (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5192
	seq_printf(m, "file %llu\n",
5193
		   (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5194 5195
	seq_printf(m, "kernel_stack %llu\n",
		   (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5196 5197 5198
	seq_printf(m, "slab %llu\n",
		   (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
			 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5199
	seq_printf(m, "sock %llu\n",
5200
		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5201 5202

	seq_printf(m, "file_mapped %llu\n",
5203
		   (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5204
	seq_printf(m, "file_dirty %llu\n",
5205
		   (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5206
	seq_printf(m, "file_writeback %llu\n",
5207
		   (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218

	for (i = 0; i < NR_LRU_LISTS; i++) {
		struct mem_cgroup *mi;
		unsigned long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
		seq_printf(m, "%s %llu\n",
			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
	}

5219 5220 5221 5222 5223
	seq_printf(m, "slab_reclaimable %llu\n",
		   (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
	seq_printf(m, "slab_unreclaimable %llu\n",
		   (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);

5224 5225 5226
	/* Accumulated memory events */

	seq_printf(m, "pgfault %lu\n",
5227
		   events[MEM_CGROUP_EVENTS_PGFAULT]);
5228
	seq_printf(m, "pgmajfault %lu\n",
5229
		   events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5230 5231 5232 5233

	return 0;
}

5234 5235 5236
static struct cftype memory_files[] = {
	{
		.name = "current",
5237
		.flags = CFTYPE_NOT_ON_ROOT,
5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5261
		.file_offset = offsetof(struct mem_cgroup, events_file),
5262 5263
		.seq_show = memory_events_show,
	},
5264 5265 5266 5267 5268
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
5269 5270 5271
	{ }	/* terminate */
};

5272
struct cgroup_subsys memory_cgrp_subsys = {
5273
	.css_alloc = mem_cgroup_css_alloc,
5274
	.css_online = mem_cgroup_css_online,
5275
	.css_offline = mem_cgroup_css_offline,
5276
	.css_released = mem_cgroup_css_released,
5277
	.css_free = mem_cgroup_css_free,
5278
	.css_reset = mem_cgroup_css_reset,
5279 5280
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
5281
	.post_attach = mem_cgroup_move_task,
5282
	.bind = mem_cgroup_bind,
5283 5284
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5285
	.early_init = 0,
B
Balbir Singh 已提交
5286
};
5287

5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309
/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5310
	if (page_counter_read(&memcg->memory) >= memcg->low)
5311 5312 5313 5314 5315 5316 5317 5318
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5319
		if (page_counter_read(&memcg->memory) >= memcg->low)
5320 5321 5322 5323 5324
			return false;
	}
	return true;
}

5325 5326 5327 5328 5329 5330
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
5331
 * @compound: charge the page as compound or small page
5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5344 5345
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
5346 5347
{
	struct mem_cgroup *memcg = NULL;
5348
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5362
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5363
		if (page->mem_cgroup)
5364
			goto out;
5365

5366
		if (do_swap_account) {
5367 5368 5369 5370 5371 5372 5373 5374 5375
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
5394
 * @compound: charge the page as compound or small page
5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5407
			      bool lrucare, bool compound)
5408
{
5409
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5424 5425 5426
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
5427
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5428 5429
	memcg_check_events(memcg, page);
	local_irq_enable();
5430

5431
	if (do_memsw_account() && PageSwapCache(page)) {
5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
5446
 * @compound: charge the page as compound or small page
5447 5448 5449
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
5450 5451
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
5452
{
5453
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

5468 5469
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
5470 5471
			   unsigned long nr_huge, unsigned long nr_kmem,
			   struct page *dummy_page)
5472
{
5473
	unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5474 5475
	unsigned long flags;

5476
	if (!mem_cgroup_is_root(memcg)) {
5477
		page_counter_uncharge(&memcg->memory, nr_pages);
5478
		if (do_memsw_account())
5479
			page_counter_uncharge(&memcg->memsw, nr_pages);
5480 5481
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
			page_counter_uncharge(&memcg->kmem, nr_kmem);
5482 5483
		memcg_oom_recover(memcg);
	}
5484 5485 5486 5487 5488 5489

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5490
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5491 5492
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5493 5494

	if (!mem_cgroup_is_root(memcg))
5495
		css_put_many(&memcg->css, nr_pages);
5496 5497 5498 5499 5500 5501 5502 5503
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
5504
	unsigned long nr_kmem = 0;
5505 5506 5507 5508
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

5509 5510 5511 5512
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
5513 5514 5515 5516 5517 5518 5519 5520
	next = page_list->next;
	do {
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5521
		if (!page->mem_cgroup)
5522 5523 5524 5525
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5526
		 * page->mem_cgroup at this point, we have fully
5527
		 * exclusive access to the page.
5528 5529
		 */

5530
		if (memcg != page->mem_cgroup) {
5531
			if (memcg) {
5532
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5533 5534 5535
					       nr_huge, nr_kmem, page);
				pgpgout = nr_anon = nr_file =
					nr_huge = nr_kmem = 0;
5536
			}
5537
			memcg = page->mem_cgroup;
5538 5539
		}

5540 5541
		if (!PageKmemcg(page)) {
			unsigned int nr_pages = 1;
5542

5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553
			if (PageTransHuge(page)) {
				nr_pages <<= compound_order(page);
				nr_huge += nr_pages;
			}
			if (PageAnon(page))
				nr_anon += nr_pages;
			else
				nr_file += nr_pages;
			pgpgout++;
		} else
			nr_kmem += 1 << compound_order(page);
5554

5555
		page->mem_cgroup = NULL;
5556 5557 5558
	} while (next != page_list);

	if (memcg)
5559
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5560
			       nr_huge, nr_kmem, page);
5561 5562
}

5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5575
	/* Don't touch page->lru of any random page, pre-check: */
5576
	if (!page->mem_cgroup)
5577 5578
		return;

5579 5580 5581
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5582

5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5594

5595 5596
	if (!list_empty(page_list))
		uncharge_list(page_list);
5597 5598 5599
}

/**
5600 5601 5602
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
5603
 *
5604 5605
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
5606 5607 5608
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
5609
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5610
{
5611
	struct mem_cgroup *memcg;
5612 5613
	unsigned int nr_pages;
	bool compound;
5614
	unsigned long flags;
5615 5616 5617 5618

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5619 5620
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5621 5622 5623 5624 5625

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5626
	if (newpage->mem_cgroup)
5627 5628
		return;

5629
	/* Swapcache readahead pages can get replaced before being charged */
5630
	memcg = oldpage->mem_cgroup;
5631
	if (!memcg)
5632 5633
		return;

5634 5635 5636 5637 5638 5639 5640 5641
	/* Force-charge the new page. The old one will be freed soon */
	compound = PageTransHuge(newpage);
	nr_pages = compound ? hpage_nr_pages(newpage) : 1;

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
5642

5643
	commit_charge(newpage, memcg, false);
5644

5645
	local_irq_save(flags);
5646 5647
	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
	memcg_check_events(memcg, newpage);
5648
	local_irq_restore(flags);
5649 5650
}

5651
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673
EXPORT_SYMBOL(memcg_sockets_enabled_key);

void sock_update_memcg(struct sock *sk)
{
	struct mem_cgroup *memcg;

	/* Socket cloning can throw us here with sk_cgrp already
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
		css_get(&sk->sk_memcg->css);
		return;
	}

	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
5674 5675
	if (memcg == root_mem_cgroup)
		goto out;
5676
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5677 5678
		goto out;
	if (css_tryget_online(&memcg->css))
5679
		sk->sk_memcg = memcg;
5680
out:
5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700
	rcu_read_unlock();
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
	WARN_ON(!sk->sk_memcg);
	css_put(&sk->sk_memcg->css);
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5701
	gfp_t gfp_mask = GFP_KERNEL;
5702

5703
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5704
		struct page_counter *fail;
5705

5706 5707
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
5708 5709
			return true;
		}
5710 5711
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
5712
		return false;
5713
	}
5714

5715 5716 5717 5718
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

5719 5720
	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);

5721 5722 5723 5724
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5725 5726 5727 5728 5729 5730 5731 5732 5733 5734
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
 * @memcg - memcg to uncharge
 * @nr_pages - number of pages to uncharge
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5735
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5736
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5737 5738
		return;
	}
5739

5740 5741
	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);

5742 5743
	page_counter_uncharge(&memcg->memory, nr_pages);
	css_put_many(&memcg->css, nr_pages);
5744 5745
}

5746 5747 5748 5749 5750 5751 5752 5753 5754
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
5755 5756
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
5757 5758 5759 5760
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
5761

5762
/*
5763 5764 5765 5766 5767 5768
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5769 5770 5771
 */
static int __init mem_cgroup_init(void)
{
5772 5773
	int cpu, node;

5774
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;
		int zone;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			struct mem_cgroup_tree_per_zone *rtpz;

			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5797 5798 5799
	return 0;
}
subsys_initcall(mem_cgroup_init);
5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816

#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

5817
	if (!do_memsw_account())
5818 5819 5820 5821 5822 5823 5824 5825
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

5826
	mem_cgroup_id_get(memcg);
5827 5828 5829 5830 5831 5832 5833 5834 5835
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

5836 5837 5838 5839 5840 5841 5842
	/*
	 * Interrupts should be disabled here because the caller holds the
	 * mapping->tree_lock lock which is taken with interrupts-off. It is
	 * important here to have the interrupts disabled because it is the
	 * only synchronisation we have for udpating the per-CPU variables.
	 */
	VM_BUG_ON(!irqs_disabled());
5843
	mem_cgroup_charge_statistics(memcg, page, false, -1);
5844
	memcg_check_events(memcg, page);
5845 5846 5847

	if (!mem_cgroup_is_root(memcg))
		css_put(&memcg->css);
5848 5849
}

5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877
/*
 * mem_cgroup_try_charge_swap - try charging a swap entry
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
 * Try to charge @entry to the memcg that @page belongs to.
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	struct page_counter *counter;
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

	if (!mem_cgroup_is_root(memcg) &&
	    !page_counter_try_charge(&memcg->swap, 1, &counter))
		return -ENOMEM;

5878
	mem_cgroup_id_get(memcg);
5879 5880 5881 5882 5883 5884 5885
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	return 0;
}

5886 5887 5888 5889
/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
5890
 * Drop the swap charge associated with @entry.
5891 5892 5893 5894 5895 5896
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

5897
	if (!do_swap_account)
5898 5899 5900 5901
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
5902
	memcg = mem_cgroup_from_id(id);
5903
	if (memcg) {
5904 5905 5906 5907 5908 5909
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
				page_counter_uncharge(&memcg->swap, 1);
			else
				page_counter_uncharge(&memcg->memsw, 1);
		}
5910
		mem_cgroup_swap_statistics(memcg, false);
5911
		mem_cgroup_id_put(memcg);
5912 5913 5914 5915
	}
	rcu_read_unlock();
}

5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
				      READ_ONCE(memcg->swap.limit) -
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
			return true;

	return false;
}

5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long max = READ_ONCE(memcg->swap.limit);

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

	mutex_lock(&memcg_limit_mutex);
	err = page_counter_limit(&memcg->swap, max);
	mutex_unlock(&memcg_limit_mutex);
	if (err)
		return err;

	return nbytes;
}

static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
	{ }	/* terminate */
};

6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
6056 6057
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
6058 6059 6060 6061 6062 6063 6064 6065
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */