memcontrol.c 191.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
B
Balbir Singh 已提交
2 3 4 5 6
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
7 8 9
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
10 11 12 13
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
14 15 16 17
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 24 25
 *
 * Per memcg lru locking
 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
B
Balbir Singh 已提交
26 27
 */

28
#include <linux/page_counter.h>
B
Balbir Singh 已提交
29 30
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/pagewalk.h>
32
#include <linux/sched/mm.h>
33
#include <linux/shmem_fs.h>
34
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
35
#include <linux/pagemap.h>
36
#include <linux/vm_event_item.h>
37
#include <linux/smp.h>
38
#include <linux/page-flags.h>
39
#include <linux/backing-dev.h>
40 41
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
42
#include <linux/limits.h>
43
#include <linux/export.h>
44
#include <linux/mutex.h>
45
#include <linux/rbtree.h>
46
#include <linux/slab.h>
47
#include <linux/swap.h>
48
#include <linux/swapops.h>
49
#include <linux/spinlock.h>
50
#include <linux/eventfd.h>
51
#include <linux/poll.h>
52
#include <linux/sort.h>
53
#include <linux/fs.h>
54
#include <linux/seq_file.h>
55
#include <linux/vmpressure.h>
56
#include <linux/mm_inline.h>
57
#include <linux/swap_cgroup.h>
58
#include <linux/cpu.h>
59
#include <linux/oom.h>
60
#include <linux/lockdep.h>
61
#include <linux/file.h>
62
#include <linux/tracehook.h>
63
#include <linux/psi.h>
64
#include <linux/seq_buf.h>
K
KAMEZAWA Hiroyuki 已提交
65
#include "internal.h"
G
Glauber Costa 已提交
66
#include <net/sock.h>
M
Michal Hocko 已提交
67
#include <net/ip.h>
68
#include "slab.h"
B
Balbir Singh 已提交
69

70
#include <linux/uaccess.h>
71

72 73
#include <trace/events/vmscan.h>

74 75
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
76

77 78
struct mem_cgroup *root_mem_cgroup __read_mostly;

79 80
/* Active memory cgroup to use from an interrupt context */
DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81
EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
82

83
/* Socket memory accounting disabled? */
84
static bool cgroup_memory_nosocket __ro_after_init;
85

86
/* Kernel memory accounting disabled? */
87
bool cgroup_memory_nokmem __ro_after_init;
88

89
/* Whether the swap controller is active */
A
Andrew Morton 已提交
90
#ifdef CONFIG_MEMCG_SWAP
91
bool cgroup_memory_noswap __ro_after_init;
92
#else
93
#define cgroup_memory_noswap		1
94
#endif
95

96 97 98 99
#ifdef CONFIG_CGROUP_WRITEBACK
static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
#endif

100 101 102
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
103
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
104 105
}

106 107 108 109 110
/* memcg and lruvec stats flushing */
static void flush_memcg_stats_dwork(struct work_struct *w);
static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
static DEFINE_SPINLOCK(stats_flush_lock);

111 112
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
113

114 115 116 117 118
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

119
struct mem_cgroup_tree_per_node {
120
	struct rb_root rb_root;
121
	struct rb_node *rb_rightmost;
122 123 124 125 126 127 128 129 130
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
131 132 133 134 135
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
136

137 138 139
/*
 * cgroup_event represents events which userspace want to receive.
 */
140
struct mem_cgroup_event {
141
	/*
142
	 * memcg which the event belongs to.
143
	 */
144
	struct mem_cgroup *memcg;
145 146 147 148 149 150 151 152
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
153 154 155 156 157
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
158
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
159
			      struct eventfd_ctx *eventfd, const char *args);
160 161 162 163 164
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
165
	void (*unregister_event)(struct mem_cgroup *memcg,
166
				 struct eventfd_ctx *eventfd);
167 168 169 170 171 172
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
173
	wait_queue_entry_t wait;
174 175 176
	struct work_struct remove;
};

177 178
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
179

180 181
/* Stuffs for move charges at task migration. */
/*
182
 * Types of charges to be moved.
183
 */
184 185 186
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
187

188 189
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
190
	spinlock_t	  lock; /* for from, to */
191
	struct mm_struct  *mm;
192 193
	struct mem_cgroup *from;
	struct mem_cgroup *to;
194
	unsigned long flags;
195
	unsigned long precharge;
196
	unsigned long moved_charge;
197
	unsigned long moved_swap;
198 199 200
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
201
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
202 203
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
204

205 206 207 208
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
209
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
210
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
211

212
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
213 214 215 216
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
217
	_KMEM,
V
Vladimir Davydov 已提交
218
	_TCP,
G
Glauber Costa 已提交
219 220
};

221 222
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
223
#define MEMFILE_ATTR(val)	((val) & 0xffff)
I
Ingo Molnar 已提交
224
/* Used for OOM notifier */
K
KAMEZAWA Hiroyuki 已提交
225
#define OOM_CONTROL		(0)
226

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(root, iter, NULL))

#define for_each_mem_cgroup(iter)			\
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(NULL, iter, NULL))

242 243 244 245 246 247
static inline bool should_force_charge(void)
{
	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
		(current->flags & PF_EXITING);
}

248 249 250 251 252 253 254 255
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

256
struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
257
{
258
	return container_of(vmpr, struct mem_cgroup, vmpressure);
259 260
}

261
#ifdef CONFIG_MEMCG_KMEM
R
Roman Gushchin 已提交
262 263
extern spinlock_t css_set_lock;

264 265 266 267 268
bool mem_cgroup_kmem_disabled(void)
{
	return cgroup_memory_nokmem;
}

269 270
static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
				      unsigned int nr_pages);
271

R
Roman Gushchin 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
static void obj_cgroup_release(struct percpu_ref *ref)
{
	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
	unsigned int nr_bytes;
	unsigned int nr_pages;
	unsigned long flags;

	/*
	 * At this point all allocated objects are freed, and
	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
	 *
	 * The following sequence can lead to it:
	 * 1) CPU0: objcg == stock->cached_objcg
	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
	 *          PAGE_SIZE bytes are charged
	 * 3) CPU1: a process from another memcg is allocating something,
	 *          the stock if flushed,
	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
	 * 5) CPU0: we do release this object,
	 *          92 bytes are added to stock->nr_bytes
	 * 6) CPU0: stock is flushed,
	 *          92 bytes are added to objcg->nr_charged_bytes
	 *
	 * In the result, nr_charged_bytes == PAGE_SIZE.
	 * This page will be uncharged in obj_cgroup_release().
	 */
	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
	nr_pages = nr_bytes >> PAGE_SHIFT;

	if (nr_pages)
304
		obj_cgroup_uncharge_pages(objcg, nr_pages);
305 306

	spin_lock_irqsave(&css_set_lock, flags);
R
Roman Gushchin 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
	list_del(&objcg->list);
	spin_unlock_irqrestore(&css_set_lock, flags);

	percpu_ref_exit(ref);
	kfree_rcu(objcg, rcu);
}

static struct obj_cgroup *obj_cgroup_alloc(void)
{
	struct obj_cgroup *objcg;
	int ret;

	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
	if (!objcg)
		return NULL;

	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
			      GFP_KERNEL);
	if (ret) {
		kfree(objcg);
		return NULL;
	}
	INIT_LIST_HEAD(&objcg->list);
	return objcg;
}

static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
				  struct mem_cgroup *parent)
{
	struct obj_cgroup *objcg, *iter;

	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);

	spin_lock_irq(&css_set_lock);

342 343 344 345 346 347
	/* 1) Ready to reparent active objcg. */
	list_add(&objcg->list, &memcg->objcg_list);
	/* 2) Reparent active objcg and already reparented objcgs to parent. */
	list_for_each_entry(iter, &memcg->objcg_list, list)
		WRITE_ONCE(iter->memcg, parent);
	/* 3) Move already reparented objcgs to the parent's list */
R
Roman Gushchin 已提交
348 349 350 351 352 353 354
	list_splice(&memcg->objcg_list, &parent->objcg_list);

	spin_unlock_irq(&css_set_lock);

	percpu_ref_kill(&objcg->refcnt);
}

355
/*
356
 * This will be used as a shrinker list's index.
L
Li Zefan 已提交
357 358 359 360 361
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
362
 *
363 364
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
365
 */
366 367
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
368

369 370 371 372 373 374 375 376 377 378 379 380 381
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

382 383 384 385 386 387
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
388
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
389 390
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
391
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
392 393 394
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
395
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
396

397 398
/*
 * A lot of the calls to the cache allocation functions are expected to be
399
 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
400 401 402
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
403
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
404
EXPORT_SYMBOL(memcg_kmem_enabled_key);
405
#endif
406

407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

422
	memcg = page_memcg(page);
423

424
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
425 426 427 428 429
		memcg = root_mem_cgroup;

	return &memcg->css;
}

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
449
	memcg = page_memcg_check(page);
450

451 452 453 454 455 456 457 458
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

459 460
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
461
					 unsigned long new_usage_in_excess)
462 463 464
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
465
	struct mem_cgroup_per_node *mz_node;
466
	bool rightmost = true;
467 468 469 470 471 472 473 474 475

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
476
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
477
					tree_node);
478
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
479
			p = &(*p)->rb_left;
480
			rightmost = false;
481
		} else {
482
			p = &(*p)->rb_right;
483
		}
484
	}
485 486 487 488

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

489 490 491 492 493
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

494 495
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
496 497 498
{
	if (!mz->on_tree)
		return;
499 500 501 502

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

503 504 505 506
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

507 508
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
509
{
510 511 512
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
513
	__mem_cgroup_remove_exceeded(mz, mctz);
514
	spin_unlock_irqrestore(&mctz->lock, flags);
515 516
}

517 518 519
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
520
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
521 522 523 524 525 526 527
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
528

529
static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
530
{
531
	unsigned long excess;
532 533
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
534

535
	mctz = soft_limit_tree.rb_tree_per_node[nid];
536 537
	if (!mctz)
		return;
538 539 540 541 542
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
543
		mz = memcg->nodeinfo[nid];
544
		excess = soft_limit_excess(memcg);
545 546 547 548 549
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
550 551 552
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
553 554
			/* if on-tree, remove it */
			if (mz->on_tree)
555
				__mem_cgroup_remove_exceeded(mz, mctz);
556 557 558 559
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
560
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
561
			spin_unlock_irqrestore(&mctz->lock, flags);
562 563 564 565 566 567
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
568 569 570
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
571

572
	for_each_node(nid) {
573
		mz = memcg->nodeinfo[nid];
574
		mctz = soft_limit_tree.rb_tree_per_node[nid];
575 576
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
577 578 579
	}
}

580 581
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
582
{
583
	struct mem_cgroup_per_node *mz;
584 585 586

retry:
	mz = NULL;
587
	if (!mctz->rb_rightmost)
588 589
		goto done;		/* Nothing to reclaim from */

590 591
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
592 593 594 595 596
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
597
	__mem_cgroup_remove_exceeded(mz, mctz);
598
	if (!soft_limit_excess(mz->memcg) ||
S
Shakeel Butt 已提交
599
	    !css_tryget(&mz->memcg->css))
600 601 602 603 604
		goto retry;
done:
	return mz;
}

605 606
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
607
{
608
	struct mem_cgroup_per_node *mz;
609

610
	spin_lock_irq(&mctz->lock);
611
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
612
	spin_unlock_irq(&mctz->lock);
613 614 615
	return mz;
}

616 617 618 619 620 621 622 623 624 625 626
/**
 * __mod_memcg_state - update cgroup memory statistics
 * @memcg: the memory cgroup
 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 * @val: delta to add to the counter, can be negative
 */
void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
{
	if (mem_cgroup_disabled())
		return;

627 628
	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
629 630
}

631
/* idx can be of type enum memcg_stat_item or node_stat_item. */
632 633 634 635 636 637
static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
{
	long x = 0;
	int cpu;

	for_each_possible_cpu(cpu)
638
		x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
639 640 641 642 643 644 645
#ifdef CONFIG_SMP
	if (x < 0)
		x = 0;
#endif
	return x;
}

646 647
void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			      int val)
648 649
{
	struct mem_cgroup_per_node *pn;
650
	struct mem_cgroup *memcg;
651 652

	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
653
	memcg = pn->memcg;
654 655

	/* Update memcg */
656
	__mod_memcg_state(memcg, idx, val);
657

658
	/* Update lruvec */
659
	__this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
660 661
}

662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
/**
 * __mod_lruvec_state - update lruvec memory statistics
 * @lruvec: the lruvec
 * @idx: the stat item
 * @val: delta to add to the counter, can be negative
 *
 * The lruvec is the intersection of the NUMA node and a cgroup. This
 * function updates the all three counters that are affected by a
 * change of state at this level: per-node, per-cgroup, per-lruvec.
 */
void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			int val)
{
	/* Update node */
	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);

	/* Update memcg and lruvec */
	if (!mem_cgroup_disabled())
		__mod_memcg_lruvec_state(lruvec, idx, val);
}

683 684 685 686
void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
			     int val)
{
	struct page *head = compound_head(page); /* rmap on tail pages */
687
	struct mem_cgroup *memcg;
688 689 690
	pg_data_t *pgdat = page_pgdat(page);
	struct lruvec *lruvec;

691 692
	rcu_read_lock();
	memcg = page_memcg(head);
693
	/* Untracked pages have no memcg, no lruvec. Update only the node */
694
	if (!memcg) {
695
		rcu_read_unlock();
696 697 698 699
		__mod_node_page_state(pgdat, idx, val);
		return;
	}

700
	lruvec = mem_cgroup_lruvec(memcg, pgdat);
701
	__mod_lruvec_state(lruvec, idx, val);
702
	rcu_read_unlock();
703
}
704
EXPORT_SYMBOL(__mod_lruvec_page_state);
705

706
void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
707
{
708
	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
709 710 711 712
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;

	rcu_read_lock();
713
	memcg = mem_cgroup_from_obj(p);
714

715 716 717 718 719 720 721
	/*
	 * Untracked pages have no memcg, no lruvec. Update only the
	 * node. If we reparent the slab objects to the root memcg,
	 * when we free the slab object, we need to update the per-memcg
	 * vmstats to keep it correct for the root memcg.
	 */
	if (!memcg) {
722 723
		__mod_node_page_state(pgdat, idx, val);
	} else {
724
		lruvec = mem_cgroup_lruvec(memcg, pgdat);
725 726 727 728 729
		__mod_lruvec_state(lruvec, idx, val);
	}
	rcu_read_unlock();
}

730 731 732 733
/*
 * mod_objcg_mlstate() may be called with irq enabled, so
 * mod_memcg_lruvec_state() should be used.
 */
734 735 736
static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
				     struct pglist_data *pgdat,
				     enum node_stat_item idx, int nr)
737 738 739 740 741 742 743
{
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;

	rcu_read_lock();
	memcg = obj_cgroup_memcg(objcg);
	lruvec = mem_cgroup_lruvec(memcg, pgdat);
744
	mod_memcg_lruvec_state(lruvec, idx, nr);
745 746 747
	rcu_read_unlock();
}

748 749 750 751
/**
 * __count_memcg_events - account VM events in a cgroup
 * @memcg: the memory cgroup
 * @idx: the event item
I
Ingo Molnar 已提交
752
 * @count: the number of events that occurred
753 754 755 756 757 758 759
 */
void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
			  unsigned long count)
{
	if (mem_cgroup_disabled())
		return;

760 761
	__this_cpu_add(memcg->vmstats_percpu->events[idx], count);
	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
762 763
}

764
static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
765
{
766
	return READ_ONCE(memcg->vmstats.events[event]);
767 768
}

769 770
static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
{
771 772 773 774
	long x = 0;
	int cpu;

	for_each_possible_cpu(cpu)
775
		x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
776
	return x;
777 778
}

779
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
780
					 int nr_pages)
781
{
782 783
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
784
		__count_memcg_events(memcg, PGPGIN, 1);
785
	else {
786
		__count_memcg_events(memcg, PGPGOUT, 1);
787 788
		nr_pages = -nr_pages; /* for event */
	}
789

790
	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
791 792
}

793 794
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
795 796 797
{
	unsigned long val, next;

798 799
	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
800
	/* from time_after() in jiffies.h */
801
	if ((long)(next - val) < 0) {
802 803 804 805
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
806 807 808
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
809 810 811
		default:
			break;
		}
812
		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
813
		return true;
814
	}
815
	return false;
816 817 818 819 820 821
}

/*
 * Check events in order.
 *
 */
822
static void memcg_check_events(struct mem_cgroup *memcg, int nid)
823 824
{
	/* threshold event is triggered in finer grain than soft limit */
825 826
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
827
		bool do_softlimit;
828

829 830
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
831
		mem_cgroup_threshold(memcg);
832
		if (unlikely(do_softlimit))
833
			mem_cgroup_update_tree(memcg, nid);
834
	}
835 836
}

837
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
838
{
839 840 841 842 843 844 845 846
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

847
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
848
}
M
Michal Hocko 已提交
849
EXPORT_SYMBOL(mem_cgroup_from_task);
850

851 852
static __always_inline struct mem_cgroup *active_memcg(void)
{
853
	if (!in_task())
854 855 856 857 858
		return this_cpu_read(int_active_memcg);
	else
		return current->active_memcg;
}

859 860 861 862
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
863 864 865 866 867 868
 * Obtain a reference on mm->memcg and returns it if successful. If mm
 * is NULL, then the memcg is chosen as follows:
 * 1) The active memcg, if set.
 * 2) current->mm->memcg, if available
 * 3) root memcg
 * If mem_cgroup is disabled, NULL is returned.
869 870
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
871
{
872 873 874 875
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
876

877 878 879 880 881 882 883 884 885
	/*
	 * Page cache insertions can happen without an
	 * actual mm context, e.g. during disk probing
	 * on boot, loopback IO, acct() writes etc.
	 *
	 * No need to css_get on root memcg as the reference
	 * counting is disabled on the root level in the
	 * cgroup core. See CSS_NO_REF.
	 */
886 887 888 889 890 891 892 893 894 895 896
	if (unlikely(!mm)) {
		memcg = active_memcg();
		if (unlikely(memcg)) {
			/* remote memcg must hold a ref */
			css_get(&memcg->css);
			return memcg;
		}
		mm = current->mm;
		if (unlikely(!mm))
			return root_mem_cgroup;
	}
897

898 899
	rcu_read_lock();
	do {
900 901
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
902
			memcg = root_mem_cgroup;
903
	} while (!css_tryget(&memcg->css));
904
	rcu_read_unlock();
905
	return memcg;
906
}
907 908
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

909 910 911 912 913 914 915
static __always_inline bool memcg_kmem_bypass(void)
{
	/* Allow remote memcg charging from any context. */
	if (unlikely(active_memcg()))
		return false;

	/* Memcg to charge can't be determined. */
916
	if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
917 918 919 920 921
		return true;

	return false;
}

922 923 924 925 926 927 928 929 930 931 932 933 934
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
935 936 937
 * Reclaimers can specify a node in @reclaim to divide up the memcgs
 * in the hierarchy among all concurrent reclaimers operating on the
 * same node.
938
 */
939
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
940
				   struct mem_cgroup *prev,
941
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
942
{
943
	struct mem_cgroup_reclaim_iter *iter;
944
	struct cgroup_subsys_state *css = NULL;
945
	struct mem_cgroup *memcg = NULL;
946
	struct mem_cgroup *pos = NULL;
947

948 949
	if (mem_cgroup_disabled())
		return NULL;
950

951 952
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
953

954
	if (prev && !reclaim)
955
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
956

957
	rcu_read_lock();
M
Michal Hocko 已提交
958

959
	if (reclaim) {
960
		struct mem_cgroup_per_node *mz;
961

962
		mz = root->nodeinfo[reclaim->pgdat->node_id];
963
		iter = &mz->iter;
964 965 966 967

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

968
		while (1) {
969
			pos = READ_ONCE(iter->position);
970 971
			if (!pos || css_tryget(&pos->css))
				break;
972
			/*
973 974 975 976 977 978
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
979
			 */
980 981
			(void)cmpxchg(&iter->position, pos, NULL);
		}
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
999
		}
K
KAMEZAWA Hiroyuki 已提交
1000

1001 1002 1003 1004 1005 1006
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1007

1008 1009
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1010

1011 1012
		if (css_tryget(css))
			break;
1013

1014
		memcg = NULL;
1015
	}
1016 1017 1018

	if (reclaim) {
		/*
1019 1020 1021
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
1022
		 */
1023 1024
		(void)cmpxchg(&iter->position, pos, memcg);

1025 1026 1027 1028 1029 1030 1031
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1032
	}
1033

1034 1035
out_unlock:
	rcu_read_unlock();
1036 1037 1038
	if (prev && prev != root)
		css_put(&prev->css);

1039
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1040
}
K
KAMEZAWA Hiroyuki 已提交
1041

1042 1043 1044 1045 1046 1047 1048
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1049 1050 1051 1052 1053 1054
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1055

1056 1057
static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
					struct mem_cgroup *dead_memcg)
1058 1059
{
	struct mem_cgroup_reclaim_iter *iter;
1060 1061
	struct mem_cgroup_per_node *mz;
	int nid;
1062

1063
	for_each_node(nid) {
1064
		mz = from->nodeinfo[nid];
1065 1066
		iter = &mz->iter;
		cmpxchg(&iter->position, dead_memcg, NULL);
1067 1068 1069
	}
}

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup *last;

	do {
		__invalidate_reclaim_iterators(memcg, dead_memcg);
		last = memcg;
	} while ((memcg = parent_mem_cgroup(memcg)));

	/*
	 * When cgruop1 non-hierarchy mode is used,
	 * parent_mem_cgroup() does not walk all the way up to the
	 * cgroup root (root_mem_cgroup). So we have to handle
	 * dead_memcg from cgroup root separately.
	 */
	if (last != root_mem_cgroup)
		__invalidate_reclaim_iterators(root_mem_cgroup,
						dead_memcg);
}

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

1116
		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
#ifdef CONFIG_DEBUG_VM
void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
{
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return;

	memcg = page_memcg(page);

	if (!memcg)
		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
	else
		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
}
#endif

/**
 * lock_page_lruvec - lock and return lruvec for a given page.
 * @page: the page
 *
1149 1150 1151 1152 1153
 * These functions are safe to use under any of the following conditions:
 * - page locked
 * - PageLRU cleared
 * - lock_page_memcg()
 * - page->_refcount is zero
1154 1155 1156 1157 1158
 */
struct lruvec *lock_page_lruvec(struct page *page)
{
	struct lruvec *lruvec;

1159
	lruvec = mem_cgroup_page_lruvec(page);
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
	spin_lock(&lruvec->lru_lock);

	lruvec_memcg_debug(lruvec, page);

	return lruvec;
}

struct lruvec *lock_page_lruvec_irq(struct page *page)
{
	struct lruvec *lruvec;

1171
	lruvec = mem_cgroup_page_lruvec(page);
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	spin_lock_irq(&lruvec->lru_lock);

	lruvec_memcg_debug(lruvec, page);

	return lruvec;
}

struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
{
	struct lruvec *lruvec;

1183
	lruvec = mem_cgroup_page_lruvec(page);
1184 1185 1186 1187 1188 1189 1190
	spin_lock_irqsave(&lruvec->lru_lock, *flags);

	lruvec_memcg_debug(lruvec, page);

	return lruvec;
}

1191
/**
1192 1193 1194
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1195
 * @zid: zone id of the accounted pages
1196
 * @nr_pages: positive when adding or negative when removing
1197
 *
1198 1199 1200
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1201
 */
1202
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1203
				int zid, int nr_pages)
1204
{
1205
	struct mem_cgroup_per_node *mz;
1206
	unsigned long *lru_size;
1207
	long size;
1208 1209 1210 1211

	if (mem_cgroup_disabled())
		return;

1212
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1213
	lru_size = &mz->lru_zone_size[zid][lru];
1214 1215 1216 1217 1218

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1219 1220 1221
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1222 1223 1224 1225 1226 1227
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1228
}
1229

1230
/**
1231
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1232
 * @memcg: the memory cgroup
1233
 *
1234
 * Returns the maximum amount of memory @mem can be charged with, in
1235
 * pages.
1236
 */
1237
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1238
{
1239 1240 1241
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1242

1243
	count = page_counter_read(&memcg->memory);
1244
	limit = READ_ONCE(memcg->memory.max);
1245 1246 1247
	if (count < limit)
		margin = limit - count;

1248
	if (do_memsw_account()) {
1249
		count = page_counter_read(&memcg->memsw);
1250
		limit = READ_ONCE(memcg->memsw.max);
1251
		if (count < limit)
1252
			margin = min(margin, limit - count);
1253 1254
		else
			margin = 0;
1255 1256 1257
	}

	return margin;
1258 1259
}

1260
/*
Q
Qiang Huang 已提交
1261
 * A routine for checking "mem" is under move_account() or not.
1262
 *
Q
Qiang Huang 已提交
1263 1264 1265
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1266
 */
1267
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1268
{
1269 1270
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1271
	bool ret = false;
1272 1273 1274 1275 1276 1277 1278 1279 1280
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1281

1282 1283
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1284 1285
unlock:
	spin_unlock(&mc.lock);
1286 1287 1288
	return ret;
}

1289
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1290 1291
{
	if (mc.moving_task && current != mc.moving_task) {
1292
		if (mem_cgroup_under_move(memcg)) {
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1305 1306 1307 1308 1309
struct memory_stat {
	const char *name;
	unsigned int idx;
};

1310
static const struct memory_stat memory_stats[] = {
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
	{ "anon",			NR_ANON_MAPPED			},
	{ "file",			NR_FILE_PAGES			},
	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
	{ "pagetables",			NR_PAGETABLE			},
	{ "percpu",			MEMCG_PERCPU_B			},
	{ "sock",			MEMCG_SOCK			},
	{ "shmem",			NR_SHMEM			},
	{ "file_mapped",		NR_FILE_MAPPED			},
	{ "file_dirty",			NR_FILE_DIRTY			},
	{ "file_writeback",		NR_WRITEBACK			},
1321 1322 1323
#ifdef CONFIG_SWAP
	{ "swapcached",			NR_SWAPCACHE			},
#endif
1324
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1325 1326 1327
	{ "anon_thp",			NR_ANON_THPS			},
	{ "file_thp",			NR_FILE_THPS			},
	{ "shmem_thp",			NR_SHMEM_THPS			},
1328
#endif
1329 1330 1331 1332 1333 1334 1335
	{ "inactive_anon",		NR_INACTIVE_ANON		},
	{ "active_anon",		NR_ACTIVE_ANON			},
	{ "inactive_file",		NR_INACTIVE_FILE		},
	{ "active_file",		NR_ACTIVE_FILE			},
	{ "unevictable",		NR_UNEVICTABLE			},
	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1336 1337

	/* The memory events */
1338 1339 1340 1341 1342 1343 1344
	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1345 1346
};

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
/* Translate stat items to the correct unit for memory.stat output */
static int memcg_page_state_unit(int item)
{
	switch (item) {
	case MEMCG_PERCPU_B:
	case NR_SLAB_RECLAIMABLE_B:
	case NR_SLAB_UNRECLAIMABLE_B:
	case WORKINGSET_REFAULT_ANON:
	case WORKINGSET_REFAULT_FILE:
	case WORKINGSET_ACTIVATE_ANON:
	case WORKINGSET_ACTIVATE_FILE:
	case WORKINGSET_RESTORE_ANON:
	case WORKINGSET_RESTORE_FILE:
	case WORKINGSET_NODERECLAIM:
		return 1;
	case NR_KERNEL_STACK_KB:
		return SZ_1K;
	default:
		return PAGE_SIZE;
	}
}

static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
						    int item)
{
	return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
}

1375 1376 1377 1378
static char *memory_stat_format(struct mem_cgroup *memcg)
{
	struct seq_buf s;
	int i;
1379

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
	if (!s.buffer)
		return NULL;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */
1394
	cgroup_rstat_flush(memcg->css.cgroup);
1395

1396 1397
	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
		u64 size;
1398

1399
		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1400
		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1401

1402
		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1403 1404
			size += memcg_page_state_output(memcg,
							NR_SLAB_RECLAIMABLE_B);
1405 1406 1407
			seq_buf_printf(&s, "slab %llu\n", size);
		}
	}
1408 1409 1410

	/* Accumulated memory events */

1411 1412 1413 1414 1415 1416
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
		       memcg_events(memcg, PGFAULT));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
		       memcg_events(memcg, PGMAJFAULT));
	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
		       memcg_events(memcg, PGREFILL));
1417 1418 1419 1420 1421 1422
	seq_buf_printf(&s, "pgscan %lu\n",
		       memcg_events(memcg, PGSCAN_KSWAPD) +
		       memcg_events(memcg, PGSCAN_DIRECT));
	seq_buf_printf(&s, "pgsteal %lu\n",
		       memcg_events(memcg, PGSTEAL_KSWAPD) +
		       memcg_events(memcg, PGSTEAL_DIRECT));
1423 1424 1425 1426 1427 1428 1429 1430
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
		       memcg_events(memcg, PGACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
		       memcg_events(memcg, PGDEACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
		       memcg_events(memcg, PGLAZYFREE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
		       memcg_events(memcg, PGLAZYFREED));
1431 1432

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1433
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1434
		       memcg_events(memcg, THP_FAULT_ALLOC));
1435
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1436 1437 1438 1439 1440 1441 1442 1443
		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

	/* The above should easily fit into one page */
	WARN_ON_ONCE(seq_buf_has_overflowed(&s));

	return s.buffer;
}
1444

1445
#define K(x) ((x) << (PAGE_SHIFT-10))
1446
/**
1447 1448
 * mem_cgroup_print_oom_context: Print OOM information relevant to
 * memory controller.
1449 1450 1451 1452 1453 1454
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
1455
void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1456 1457 1458
{
	rcu_read_lock();

1459 1460 1461 1462 1463
	if (memcg) {
		pr_cont(",oom_memcg=");
		pr_cont_cgroup_path(memcg->css.cgroup);
	} else
		pr_cont(",global_oom");
1464
	if (p) {
1465
		pr_cont(",task_memcg=");
1466 1467
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	}
1468
	rcu_read_unlock();
1469 1470 1471 1472 1473 1474 1475 1476 1477
}

/**
 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
 * memory controller.
 * @memcg: The memory cgroup that went over limit
 */
void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
1478
	char *buf;
1479

1480 1481
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1482
		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1483 1484 1485
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->swap)),
1486
			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1487 1488 1489 1490 1491 1492 1493
	else {
		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->memsw)),
			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->kmem)),
			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1494
	}
1495 1496 1497 1498 1499 1500 1501 1502 1503

	pr_info("Memory cgroup stats for ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(":");
	buf = memory_stat_format(memcg);
	if (!buf)
		return;
	pr_info("%s", buf);
	kfree(buf);
1504 1505
}

D
David Rientjes 已提交
1506 1507 1508
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1509
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1510
{
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
	unsigned long max = READ_ONCE(memcg->memory.max);

	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
		if (mem_cgroup_swappiness(memcg))
			max += min(READ_ONCE(memcg->swap.max),
				   (unsigned long)total_swap_pages);
	} else { /* v1 */
		if (mem_cgroup_swappiness(memcg)) {
			/* Calculate swap excess capacity from memsw limit */
			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;

			max += min(swap, (unsigned long)total_swap_pages);
		}
1524
	}
1525
	return max;
D
David Rientjes 已提交
1526 1527
}

1528 1529 1530 1531 1532
unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
{
	return page_counter_read(&memcg->memory);
}

1533
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1534
				     int order)
1535
{
1536 1537 1538
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1539
		.memcg = memcg,
1540 1541 1542
		.gfp_mask = gfp_mask,
		.order = order,
	};
1543
	bool ret = true;
1544

1545 1546
	if (mutex_lock_killable(&oom_lock))
		return true;
1547 1548 1549 1550

	if (mem_cgroup_margin(memcg) >= (1 << order))
		goto unlock;

1551 1552 1553 1554 1555
	/*
	 * A few threads which were not waiting at mutex_lock_killable() can
	 * fail to bail out. Therefore, check again after holding oom_lock.
	 */
	ret = should_force_charge() || out_of_memory(&oc);
1556 1557

unlock:
1558
	mutex_unlock(&oom_lock);
1559
	return ret;
1560 1561
}

1562
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1563
				   pg_data_t *pgdat,
1564 1565 1566 1567 1568 1569 1570 1571 1572
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1573
		.pgdat = pgdat,
1574 1575
	};

1576
	excess = soft_limit_excess(root_memcg);
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1602
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1603
					pgdat, &nr_scanned);
1604
		*total_scanned += nr_scanned;
1605
		if (!soft_limit_excess(root_memcg))
1606
			break;
1607
	}
1608 1609
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1610 1611
}

1612 1613 1614 1615 1616 1617
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1618 1619
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1620 1621 1622 1623
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1624
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1625
{
1626
	struct mem_cgroup *iter, *failed = NULL;
1627

1628 1629
	spin_lock(&memcg_oom_lock);

1630
	for_each_mem_cgroup_tree(iter, memcg) {
1631
		if (iter->oom_lock) {
1632 1633 1634 1635 1636
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1637 1638
			mem_cgroup_iter_break(memcg, iter);
			break;
1639 1640
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1641
	}
K
KAMEZAWA Hiroyuki 已提交
1642

1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1654
		}
1655 1656
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1657 1658 1659 1660

	spin_unlock(&memcg_oom_lock);

	return !failed;
1661
}
1662

1663
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1664
{
K
KAMEZAWA Hiroyuki 已提交
1665 1666
	struct mem_cgroup *iter;

1667
	spin_lock(&memcg_oom_lock);
1668
	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1669
	for_each_mem_cgroup_tree(iter, memcg)
1670
		iter->oom_lock = false;
1671
	spin_unlock(&memcg_oom_lock);
1672 1673
}

1674
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1675 1676 1677
{
	struct mem_cgroup *iter;

1678
	spin_lock(&memcg_oom_lock);
1679
	for_each_mem_cgroup_tree(iter, memcg)
1680 1681
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1682 1683
}

1684
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1685 1686 1687
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1688
	/*
I
Ingo Molnar 已提交
1689
	 * Be careful about under_oom underflows because a child memcg
1690
	 * could have been added after mem_cgroup_mark_under_oom.
K
KAMEZAWA Hiroyuki 已提交
1691
	 */
1692
	spin_lock(&memcg_oom_lock);
1693
	for_each_mem_cgroup_tree(iter, memcg)
1694 1695 1696
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1697 1698
}

K
KAMEZAWA Hiroyuki 已提交
1699 1700
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1701
struct oom_wait_info {
1702
	struct mem_cgroup *memcg;
1703
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1704 1705
};

1706
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1707 1708
	unsigned mode, int sync, void *arg)
{
1709 1710
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1711 1712 1713
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1714
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1715

1716 1717
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1718 1719 1720 1721
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1722
static void memcg_oom_recover(struct mem_cgroup *memcg)
1723
{
1724 1725 1726 1727 1728 1729 1730 1731 1732
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1733
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1734 1735
}

1736 1737 1738 1739 1740 1741 1742 1743
enum oom_status {
	OOM_SUCCESS,
	OOM_FAILED,
	OOM_ASYNC,
	OOM_SKIPPED
};

static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1744
{
1745 1746 1747
	enum oom_status ret;
	bool locked;

1748 1749 1750
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		return OOM_SKIPPED;

1751 1752
	memcg_memory_event(memcg, MEMCG_OOM);

K
KAMEZAWA Hiroyuki 已提交
1753
	/*
1754 1755 1756 1757
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1758 1759 1760 1761
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1762
	 *
1763 1764 1765 1766 1767 1768 1769
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
K
KAMEZAWA Hiroyuki 已提交
1770
	 */
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
	if (memcg->oom_kill_disable) {
		if (!current->in_user_fault)
			return OOM_SKIPPED;
		css_get(&memcg->css);
		current->memcg_in_oom = memcg;
		current->memcg_oom_gfp_mask = mask;
		current->memcg_oom_order = order;

		return OOM_ASYNC;
	}

1782 1783 1784 1785 1786 1787 1788 1789
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	mem_cgroup_unmark_under_oom(memcg);
1790
	if (mem_cgroup_out_of_memory(memcg, mask, order))
1791 1792 1793 1794 1795 1796
		ret = OOM_SUCCESS;
	else
		ret = OOM_FAILED;

	if (locked)
		mem_cgroup_oom_unlock(memcg);
1797

1798
	return ret;
1799 1800 1801 1802
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1803
 * @handle: actually kill/wait or just clean up the OOM state
1804
 *
1805 1806
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1807
 *
1808
 * Memcg supports userspace OOM handling where failed allocations must
1809 1810 1811 1812
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1813
 * the end of the page fault to complete the OOM handling.
1814 1815
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1816
 * completed, %false otherwise.
1817
 */
1818
bool mem_cgroup_oom_synchronize(bool handle)
1819
{
T
Tejun Heo 已提交
1820
	struct mem_cgroup *memcg = current->memcg_in_oom;
1821
	struct oom_wait_info owait;
1822
	bool locked;
1823 1824 1825

	/* OOM is global, do not handle */
	if (!memcg)
1826
		return false;
1827

1828
	if (!handle)
1829
		goto cleanup;
1830 1831 1832 1833 1834

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
1835
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
1836

1837
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1848 1849
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1850
	} else {
1851
		schedule();
1852 1853 1854 1855 1856
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1857 1858 1859 1860
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
I
Ingo Molnar 已提交
1861
		 * uncharges.  Wake any sleepers explicitly.
1862 1863 1864
		 */
		memcg_oom_recover(memcg);
	}
1865
cleanup:
T
Tejun Heo 已提交
1866
	current->memcg_in_oom = NULL;
1867
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1868
	return true;
1869 1870
}

1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
/**
 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 * @victim: task to be killed by the OOM killer
 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 *
 * Returns a pointer to a memory cgroup, which has to be cleaned up
 * by killing all belonging OOM-killable tasks.
 *
 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 */
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
					    struct mem_cgroup *oom_domain)
{
	struct mem_cgroup *oom_group = NULL;
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return NULL;

	if (!oom_domain)
		oom_domain = root_mem_cgroup;

	rcu_read_lock();

	memcg = mem_cgroup_from_task(victim);
	if (memcg == root_mem_cgroup)
		goto out;

1899 1900 1901 1902 1903 1904 1905 1906
	/*
	 * If the victim task has been asynchronously moved to a different
	 * memory cgroup, we might end up killing tasks outside oom_domain.
	 * In this case it's better to ignore memory.group.oom.
	 */
	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
		goto out;

1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
	/*
	 * Traverse the memory cgroup hierarchy from the victim task's
	 * cgroup up to the OOMing cgroup (or root) to find the
	 * highest-level memory cgroup with oom.group set.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		if (memcg->oom_group)
			oom_group = memcg;

		if (memcg == oom_domain)
			break;
	}

	if (oom_group)
		css_get(&oom_group->css);
out:
	rcu_read_unlock();

	return oom_group;
}

void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
	pr_info("Tasks in ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(" are going to be killed due to memory.oom.group set\n");
}

1935
/**
1936 1937
 * folio_memcg_lock - Bind a folio to its memcg.
 * @folio: The folio.
1938
 *
1939
 * This function prevents unlocked LRU folios from being moved to
1940 1941
 * another cgroup.
 *
1942 1943
 * It ensures lifetime of the bound memcg.  The caller is responsible
 * for the lifetime of the folio.
1944
 */
1945
void folio_memcg_lock(struct folio *folio)
1946 1947
{
	struct mem_cgroup *memcg;
1948
	unsigned long flags;
1949

1950 1951 1952 1953
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
1954
         */
1955 1956 1957
	rcu_read_lock();

	if (mem_cgroup_disabled())
1958
		return;
1959
again:
1960
	memcg = folio_memcg(folio);
1961
	if (unlikely(!memcg))
1962
		return;
1963

1964 1965 1966 1967 1968 1969
#ifdef CONFIG_PROVE_LOCKING
	local_irq_save(flags);
	might_lock(&memcg->move_lock);
	local_irq_restore(flags);
#endif

Q
Qiang Huang 已提交
1970
	if (atomic_read(&memcg->moving_account) <= 0)
1971
		return;
1972

1973
	spin_lock_irqsave(&memcg->move_lock, flags);
1974
	if (memcg != folio_memcg(folio)) {
1975
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1976 1977
		goto again;
	}
1978 1979

	/*
1980 1981 1982 1983
	 * When charge migration first begins, we can have multiple
	 * critical sections holding the fast-path RCU lock and one
	 * holding the slowpath move_lock. Track the task who has the
	 * move_lock for unlock_page_memcg().
1984 1985 1986
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1987
}
1988 1989 1990 1991 1992 1993
EXPORT_SYMBOL(folio_memcg_lock);

void lock_page_memcg(struct page *page)
{
	folio_memcg_lock(page_folio(page));
}
1994
EXPORT_SYMBOL(lock_page_memcg);
1995

1996
static void __folio_memcg_unlock(struct mem_cgroup *memcg)
1997
{
1998 1999 2000 2001 2002 2003 2004 2005
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2006

2007
	rcu_read_unlock();
2008
}
2009 2010

/**
2011 2012 2013 2014 2015 2016
 * folio_memcg_unlock - Release the binding between a folio and its memcg.
 * @folio: The folio.
 *
 * This releases the binding created by folio_memcg_lock().  This does
 * not change the accounting of this folio to its memcg, but it does
 * permit others to change it.
2017
 */
2018
void folio_memcg_unlock(struct folio *folio)
2019
{
2020 2021 2022
	__folio_memcg_unlock(folio_memcg(folio));
}
EXPORT_SYMBOL(folio_memcg_unlock);
2023

2024 2025 2026
void unlock_page_memcg(struct page *page)
{
	folio_memcg_unlock(page_folio(page));
2027
}
2028
EXPORT_SYMBOL(unlock_page_memcg);
2029

2030
struct obj_stock {
R
Roman Gushchin 已提交
2031 2032
#ifdef CONFIG_MEMCG_KMEM
	struct obj_cgroup *cached_objcg;
2033
	struct pglist_data *cached_pgdat;
R
Roman Gushchin 已提交
2034
	unsigned int nr_bytes;
2035 2036
	int nr_slab_reclaimable_b;
	int nr_slab_unreclaimable_b;
2037 2038
#else
	int dummy[0];
R
Roman Gushchin 已提交
2039
#endif
2040 2041 2042 2043 2044 2045 2046
};

struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
	unsigned int nr_pages;
	struct obj_stock task_obj;
	struct obj_stock irq_obj;
R
Roman Gushchin 已提交
2047

2048
	struct work_struct work;
2049
	unsigned long flags;
2050
#define FLUSHING_CACHED_CHARGE	0
2051 2052
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2053
static DEFINE_MUTEX(percpu_charge_mutex);
2054

R
Roman Gushchin 已提交
2055
#ifdef CONFIG_MEMCG_KMEM
2056
static void drain_obj_stock(struct obj_stock *stock);
R
Roman Gushchin 已提交
2057 2058 2059 2060
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg);

#else
2061
static inline void drain_obj_stock(struct obj_stock *stock)
R
Roman Gushchin 已提交
2062 2063 2064 2065 2066 2067 2068 2069 2070
{
}
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	return false;
}
#endif

2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
/*
 * Most kmem_cache_alloc() calls are from user context. The irq disable/enable
 * sequence used in this case to access content from object stock is slow.
 * To optimize for user context access, there are now two object stocks for
 * task context and interrupt context access respectively.
 *
 * The task context object stock can be accessed by disabling preemption only
 * which is cheap in non-preempt kernel. The interrupt context object stock
 * can only be accessed after disabling interrupt. User context code can
 * access interrupt object stock, but not vice versa.
 */
static inline struct obj_stock *get_obj_stock(unsigned long *pflags)
{
	struct memcg_stock_pcp *stock;

	if (likely(in_task())) {
		*pflags = 0UL;
		preempt_disable();
		stock = this_cpu_ptr(&memcg_stock);
		return &stock->task_obj;
	}

	local_irq_save(*pflags);
	stock = this_cpu_ptr(&memcg_stock);
	return &stock->irq_obj;
}

static inline void put_obj_stock(unsigned long flags)
{
	if (likely(in_task()))
		preempt_enable();
	else
		local_irq_restore(flags);
}

2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2116
 */
2117
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2118 2119
{
	struct memcg_stock_pcp *stock;
2120
	unsigned long flags;
2121
	bool ret = false;
2122

2123
	if (nr_pages > MEMCG_CHARGE_BATCH)
2124
		return ret;
2125

2126 2127 2128
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2129
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2130
		stock->nr_pages -= nr_pages;
2131 2132
		ret = true;
	}
2133 2134 2135

	local_irq_restore(flags);

2136 2137 2138 2139
	return ret;
}

/*
2140
 * Returns stocks cached in percpu and reset cached information.
2141 2142 2143 2144 2145
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2146 2147 2148
	if (!old)
		return;

2149
	if (stock->nr_pages) {
2150
		page_counter_uncharge(&old->memory, stock->nr_pages);
2151
		if (do_memsw_account())
2152
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2153
		stock->nr_pages = 0;
2154
	}
2155 2156

	css_put(&old->css);
2157 2158 2159 2160 2161
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
2162 2163 2164
	struct memcg_stock_pcp *stock;
	unsigned long flags;

2165
	/*
2166 2167 2168
	 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
	 * drain_stock races is that we always operate on local CPU stock
	 * here with IRQ disabled
2169
	 */
2170 2171 2172
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2173 2174 2175
	drain_obj_stock(&stock->irq_obj);
	if (in_task())
		drain_obj_stock(&stock->task_obj);
2176
	drain_stock(stock);
2177
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2178 2179

	local_irq_restore(flags);
2180 2181 2182
}

/*
2183
 * Cache charges(val) to local per_cpu area.
2184
 * This will be consumed by consume_stock() function, later.
2185
 */
2186
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2187
{
2188 2189 2190 2191
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
2192

2193
	stock = this_cpu_ptr(&memcg_stock);
2194
	if (stock->cached != memcg) { /* reset if necessary */
2195
		drain_stock(stock);
2196
		css_get(&memcg->css);
2197
		stock->cached = memcg;
2198
	}
2199
	stock->nr_pages += nr_pages;
2200

2201
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2202 2203
		drain_stock(stock);

2204
	local_irq_restore(flags);
2205 2206 2207
}

/*
2208
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2209
 * of the hierarchy under it.
2210
 */
2211
static void drain_all_stock(struct mem_cgroup *root_memcg)
2212
{
2213
	int cpu, curcpu;
2214

2215 2216 2217
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2218 2219 2220 2221 2222 2223
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
2224
	curcpu = get_cpu();
2225 2226
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2227
		struct mem_cgroup *memcg;
2228
		bool flush = false;
2229

2230
		rcu_read_lock();
2231
		memcg = stock->cached;
2232 2233 2234
		if (memcg && stock->nr_pages &&
		    mem_cgroup_is_descendant(memcg, root_memcg))
			flush = true;
2235
		else if (obj_stock_flush_required(stock, root_memcg))
R
Roman Gushchin 已提交
2236
			flush = true;
2237 2238 2239 2240
		rcu_read_unlock();

		if (flush &&
		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2241 2242 2243 2244 2245
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2246
	}
2247
	put_cpu();
2248
	mutex_unlock(&percpu_charge_mutex);
2249 2250
}

2251 2252 2253
static int memcg_hotplug_cpu_dead(unsigned int cpu)
{
	struct memcg_stock_pcp *stock;
2254

2255 2256
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
2257

2258
	return 0;
2259 2260
}

2261 2262 2263
static unsigned long reclaim_high(struct mem_cgroup *memcg,
				  unsigned int nr_pages,
				  gfp_t gfp_mask)
2264
{
2265 2266
	unsigned long nr_reclaimed = 0;

2267
	do {
2268 2269
		unsigned long pflags;

2270 2271
		if (page_counter_read(&memcg->memory) <=
		    READ_ONCE(memcg->memory.high))
2272
			continue;
2273

2274
		memcg_memory_event(memcg, MEMCG_HIGH);
2275 2276

		psi_memstall_enter(&pflags);
2277 2278
		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
							     gfp_mask, true);
2279
		psi_memstall_leave(&pflags);
2280 2281
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));
2282 2283

	return nr_reclaimed;
2284 2285 2286 2287 2288 2289 2290
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
2291
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2292 2293
}

2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
/*
 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
 * enough to still cause a significant slowdown in most cases, while still
 * allowing diagnostics and tracing to proceed without becoming stuck.
 */
#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)

/*
 * When calculating the delay, we use these either side of the exponentiation to
 * maintain precision and scale to a reasonable number of jiffies (see the table
 * below.
 *
 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
 *   overage ratio to a delay.
2308
 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
 *   to produce a reasonable delay curve.
 *
 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
 * reasonable delay curve compared to precision-adjusted overage, not
 * penalising heavily at first, but still making sure that growth beyond the
 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
 * example, with a high of 100 megabytes:
 *
 *  +-------+------------------------+
 *  | usage | time to allocate in ms |
 *  +-------+------------------------+
 *  | 100M  |                      0 |
 *  | 101M  |                      6 |
 *  | 102M  |                     25 |
 *  | 103M  |                     57 |
 *  | 104M  |                    102 |
 *  | 105M  |                    159 |
 *  | 106M  |                    230 |
 *  | 107M  |                    313 |
 *  | 108M  |                    409 |
 *  | 109M  |                    518 |
 *  | 110M  |                    639 |
 *  | 111M  |                    774 |
 *  | 112M  |                    921 |
 *  | 113M  |                   1081 |
 *  | 114M  |                   1254 |
 *  | 115M  |                   1439 |
 *  | 116M  |                   1638 |
 *  | 117M  |                   1849 |
 *  | 118M  |                   2000 |
 *  | 119M  |                   2000 |
 *  | 120M  |                   2000 |
 *  +-------+------------------------+
 */
 #define MEMCG_DELAY_PRECISION_SHIFT 20
 #define MEMCG_DELAY_SCALING_SHIFT 14

2347
static u64 calculate_overage(unsigned long usage, unsigned long high)
2348
{
2349
	u64 overage;
2350

2351 2352
	if (usage <= high)
		return 0;
2353

2354 2355 2356 2357 2358
	/*
	 * Prevent division by 0 in overage calculation by acting as if
	 * it was a threshold of 1 page
	 */
	high = max(high, 1UL);
2359

2360 2361 2362 2363
	overage = usage - high;
	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
	return div64_u64(overage, high);
}
2364

2365 2366 2367
static u64 mem_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;
2368

2369 2370
	do {
		overage = calculate_overage(page_counter_read(&memcg->memory),
2371
					    READ_ONCE(memcg->memory.high));
2372
		max_overage = max(overage, max_overage);
2373 2374 2375
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

2376 2377 2378
	return max_overage;
}

2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
static u64 swap_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;

	do {
		overage = calculate_overage(page_counter_read(&memcg->swap),
					    READ_ONCE(memcg->swap.high));
		if (overage)
			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
		max_overage = max(overage, max_overage);
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

	return max_overage;
}

2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
/*
 * Get the number of jiffies that we should penalise a mischievous cgroup which
 * is exceeding its memory.high by checking both it and its ancestors.
 */
static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
					  unsigned int nr_pages,
					  u64 max_overage)
{
	unsigned long penalty_jiffies;

2405 2406
	if (!max_overage)
		return 0;
2407 2408 2409 2410 2411 2412 2413 2414 2415

	/*
	 * We use overage compared to memory.high to calculate the number of
	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
	 * fairly lenient on small overages, and increasingly harsh when the
	 * memcg in question makes it clear that it has no intention of stopping
	 * its crazy behaviour, so we exponentially increase the delay based on
	 * overage amount.
	 */
2416 2417 2418
	penalty_jiffies = max_overage * max_overage * HZ;
	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2419 2420 2421 2422 2423 2424 2425 2426 2427

	/*
	 * Factor in the task's own contribution to the overage, such that four
	 * N-sized allocations are throttled approximately the same as one
	 * 4N-sized allocation.
	 *
	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
	 * larger the current charge patch is than that.
	 */
2428
	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
}

/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned long penalty_jiffies;
	unsigned long pflags;
2439
	unsigned long nr_reclaimed;
2440
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2441
	int nr_retries = MAX_RECLAIM_RETRIES;
2442
	struct mem_cgroup *memcg;
2443
	bool in_retry = false;
2444 2445 2446 2447 2448 2449 2450

	if (likely(!nr_pages))
		return;

	memcg = get_mem_cgroup_from_mm(current->mm);
	current->memcg_nr_pages_over_high = 0;

2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
retry_reclaim:
	/*
	 * The allocating task should reclaim at least the batch size, but for
	 * subsequent retries we only want to do what's necessary to prevent oom
	 * or breaching resource isolation.
	 *
	 * This is distinct from memory.max or page allocator behaviour because
	 * memory.high is currently batched, whereas memory.max and the page
	 * allocator run every time an allocation is made.
	 */
	nr_reclaimed = reclaim_high(memcg,
				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
				    GFP_KERNEL);

2465 2466 2467 2468
	/*
	 * memory.high is breached and reclaim is unable to keep up. Throttle
	 * allocators proactively to slow down excessive growth.
	 */
2469 2470
	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
					       mem_find_max_overage(memcg));
2471

2472 2473 2474
	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
						swap_find_max_overage(memcg));

2475 2476 2477 2478 2479 2480 2481
	/*
	 * Clamp the max delay per usermode return so as to still keep the
	 * application moving forwards and also permit diagnostics, albeit
	 * extremely slowly.
	 */
	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);

2482 2483 2484 2485 2486 2487 2488 2489 2490
	/*
	 * Don't sleep if the amount of jiffies this memcg owes us is so low
	 * that it's not even worth doing, in an attempt to be nice to those who
	 * go only a small amount over their memory.high value and maybe haven't
	 * been aggressively reclaimed enough yet.
	 */
	if (penalty_jiffies <= HZ / 100)
		goto out;

2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
	/*
	 * If reclaim is making forward progress but we're still over
	 * memory.high, we want to encourage that rather than doing allocator
	 * throttling.
	 */
	if (nr_reclaimed || nr_retries--) {
		in_retry = true;
		goto retry_reclaim;
	}

2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
	/*
	 * If we exit early, we're guaranteed to die (since
	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
	 * need to account for any ill-begotten jiffies to pay them off later.
	 */
	psi_memstall_enter(&pflags);
	schedule_timeout_killable(penalty_jiffies);
	psi_memstall_leave(&pflags);

out:
	css_put(&memcg->css);
2512 2513
}

2514 2515
static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
			unsigned int nr_pages)
2516
{
2517
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2518
	int nr_retries = MAX_RECLAIM_RETRIES;
2519
	struct mem_cgroup *mem_over_limit;
2520
	struct page_counter *counter;
2521
	enum oom_status oom_status;
2522
	unsigned long nr_reclaimed;
2523 2524
	bool may_swap = true;
	bool drained = false;
2525
	unsigned long pflags;
2526

2527
retry:
2528
	if (consume_stock(memcg, nr_pages))
2529
		return 0;
2530

2531
	if (!do_memsw_account() ||
2532 2533
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2534
			goto done_restock;
2535
		if (do_memsw_account())
2536 2537
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2538
	} else {
2539
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2540
		may_swap = false;
2541
	}
2542

2543 2544 2545 2546
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2547

2548 2549 2550 2551 2552 2553 2554 2555 2556
	/*
	 * Memcg doesn't have a dedicated reserve for atomic
	 * allocations. But like the global atomic pool, we need to
	 * put the burden of reclaim on regular allocation requests
	 * and let these go through as privileged allocations.
	 */
	if (gfp_mask & __GFP_ATOMIC)
		goto force;

2557 2558 2559 2560 2561 2562
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
2563
	if (unlikely(should_force_charge()))
2564
		goto force;
2565

2566 2567 2568 2569 2570 2571 2572 2573 2574
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2575 2576 2577
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2578
	if (!gfpflags_allow_blocking(gfp_mask))
2579
		goto nomem;
2580

2581
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2582

2583
	psi_memstall_enter(&pflags);
2584 2585
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2586
	psi_memstall_leave(&pflags);
2587

2588
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2589
		goto retry;
2590

2591
	if (!drained) {
2592
		drain_all_stock(mem_over_limit);
2593 2594 2595 2596
		drained = true;
		goto retry;
	}

2597 2598
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2599 2600 2601 2602 2603 2604 2605 2606 2607
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2608
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2609 2610 2611 2612 2613 2614 2615 2616
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2617 2618 2619
	if (nr_retries--)
		goto retry;

2620
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2621 2622
		goto nomem;

2623
	if (fatal_signal_pending(current))
2624
		goto force;
2625

2626 2627 2628 2629 2630 2631
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2632
		       get_order(nr_pages * PAGE_SIZE));
2633 2634
	switch (oom_status) {
	case OOM_SUCCESS:
2635
		nr_retries = MAX_RECLAIM_RETRIES;
2636 2637 2638 2639 2640 2641
		goto retry;
	case OOM_FAILED:
		goto force;
	default:
		goto nomem;
	}
2642
nomem:
2643
	if (!(gfp_mask & __GFP_NOFAIL))
2644
		return -ENOMEM;
2645 2646 2647 2648 2649 2650 2651
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2652
	if (do_memsw_account())
2653 2654 2655
		page_counter_charge(&memcg->memsw, nr_pages);

	return 0;
2656 2657 2658 2659

done_restock:
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2660

2661
	/*
2662 2663
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2664
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2665 2666 2667 2668
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2669 2670
	 */
	do {
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
		bool mem_high, swap_high;

		mem_high = page_counter_read(&memcg->memory) >
			READ_ONCE(memcg->memory.high);
		swap_high = page_counter_read(&memcg->swap) >
			READ_ONCE(memcg->swap.high);

		/* Don't bother a random interrupted task */
		if (in_interrupt()) {
			if (mem_high) {
2681 2682 2683
				schedule_work(&memcg->high_work);
				break;
			}
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
			continue;
		}

		if (mem_high || swap_high) {
			/*
			 * The allocating tasks in this cgroup will need to do
			 * reclaim or be throttled to prevent further growth
			 * of the memory or swap footprints.
			 *
			 * Target some best-effort fairness between the tasks,
			 * and distribute reclaim work and delay penalties
			 * based on how much each task is actually allocating.
			 */
V
Vladimir Davydov 已提交
2697
			current->memcg_nr_pages_over_high += batch;
2698 2699 2700
			set_notify_resume(current);
			break;
		}
2701
	} while ((memcg = parent_mem_cgroup(memcg)));
2702 2703

	return 0;
2704
}
2705

2706 2707 2708 2709 2710 2711 2712 2713 2714
static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
			     unsigned int nr_pages)
{
	if (mem_cgroup_is_root(memcg))
		return 0;

	return try_charge_memcg(memcg, gfp_mask, nr_pages);
}

2715
#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2716
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2717
{
2718 2719 2720
	if (mem_cgroup_is_root(memcg))
		return;

2721
	page_counter_uncharge(&memcg->memory, nr_pages);
2722
	if (do_memsw_account())
2723
		page_counter_uncharge(&memcg->memsw, nr_pages);
2724
}
2725
#endif
2726

2727
static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2728
{
2729
	VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2730
	/*
2731
	 * Any of the following ensures page's memcg stability:
2732
	 *
2733 2734 2735 2736
	 * - the page lock
	 * - LRU isolation
	 * - lock_page_memcg()
	 * - exclusive reference
2737
	 */
2738
	folio->memcg_data = (unsigned long)memcg;
2739
}
2740

2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
{
	struct mem_cgroup *memcg;

	rcu_read_lock();
retry:
	memcg = obj_cgroup_memcg(objcg);
	if (unlikely(!css_tryget(&memcg->css)))
		goto retry;
	rcu_read_unlock();

	return memcg;
}

2755
#ifdef CONFIG_MEMCG_KMEM
2756 2757 2758 2759 2760 2761 2762
/*
 * The allocated objcg pointers array is not accounted directly.
 * Moreover, it should not come from DMA buffer and is not readily
 * reclaimable. So those GFP bits should be masked off.
 */
#define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)

2763
int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2764
				 gfp_t gfp, bool new_page)
2765 2766
{
	unsigned int objects = objs_per_slab_page(s, page);
2767
	unsigned long memcg_data;
2768 2769
	void *vec;

2770
	gfp &= ~OBJCGS_CLEAR_MASK;
2771 2772 2773 2774 2775
	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
			   page_to_nid(page));
	if (!vec)
		return -ENOMEM;

2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
	if (new_page) {
		/*
		 * If the slab page is brand new and nobody can yet access
		 * it's memcg_data, no synchronization is required and
		 * memcg_data can be simply assigned.
		 */
		page->memcg_data = memcg_data;
	} else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
		/*
		 * If the slab page is already in use, somebody can allocate
		 * and assign obj_cgroups in parallel. In this case the existing
		 * objcg vector should be reused.
		 */
2790
		kfree(vec);
2791 2792
		return 0;
	}
2793

2794
	kmemleak_not_leak(vec);
2795 2796 2797
	return 0;
}

2798 2799 2800
/*
 * Returns a pointer to the memory cgroup to which the kernel object is charged.
 *
2801 2802 2803 2804 2805 2806
 * A passed kernel object can be a slab object or a generic kernel page, so
 * different mechanisms for getting the memory cgroup pointer should be used.
 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
 * can not know for sure how the kernel object is implemented.
 * mem_cgroup_from_obj() can be safely used in such cases.
 *
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
 * cgroup_mutex, etc.
 */
struct mem_cgroup *mem_cgroup_from_obj(void *p)
{
	struct page *page;

	if (mem_cgroup_disabled())
		return NULL;

	page = virt_to_head_page(p);

	/*
2820 2821 2822
	 * Slab objects are accounted individually, not per-page.
	 * Memcg membership data for each individual object is saved in
	 * the page->obj_cgroups.
2823
	 */
2824
	if (page_objcgs_check(page)) {
2825 2826 2827 2828
		struct obj_cgroup *objcg;
		unsigned int off;

		off = obj_to_index(page->slab_cache, page, p);
2829
		objcg = page_objcgs(page)[off];
2830 2831 2832 2833
		if (objcg)
			return obj_cgroup_memcg(objcg);

		return NULL;
2834
	}
2835

2836 2837 2838 2839 2840 2841 2842 2843
	/*
	 * page_memcg_check() is used here, because page_has_obj_cgroups()
	 * check above could fail because the object cgroups vector wasn't set
	 * at that moment, but it can be set concurrently.
	 * page_memcg_check(page) will guarantee that a proper memory
	 * cgroup pointer or NULL will be returned.
	 */
	return page_memcg_check(page);
2844 2845
}

R
Roman Gushchin 已提交
2846 2847 2848 2849 2850
__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
{
	struct obj_cgroup *objcg = NULL;
	struct mem_cgroup *memcg;

2851 2852 2853
	if (memcg_kmem_bypass())
		return NULL;

R
Roman Gushchin 已提交
2854
	rcu_read_lock();
2855 2856
	if (unlikely(active_memcg()))
		memcg = active_memcg();
R
Roman Gushchin 已提交
2857 2858 2859 2860 2861 2862 2863
	else
		memcg = mem_cgroup_from_task(current);

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		objcg = rcu_dereference(memcg->objcg);
		if (objcg && obj_cgroup_tryget(objcg))
			break;
2864
		objcg = NULL;
R
Roman Gushchin 已提交
2865 2866 2867 2868 2869 2870
	}
	rcu_read_unlock();

	return objcg;
}

2871
static int memcg_alloc_cache_id(void)
2872
{
2873 2874 2875
	int id, size;
	int err;

2876
	id = ida_simple_get(&memcg_cache_ida,
2877 2878 2879
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2880

2881
	if (id < memcg_nr_cache_ids)
2882 2883 2884 2885 2886 2887
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2888
	down_write(&memcg_cache_ids_sem);
2889 2890

	size = 2 * (id + 1);
2891 2892 2893 2894 2895
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2896
	err = memcg_update_all_list_lrus(size);
2897 2898 2899 2900 2901
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2902
	if (err) {
2903
		ida_simple_remove(&memcg_cache_ida, id);
2904 2905 2906 2907 2908 2909 2910
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2911
	ida_simple_remove(&memcg_cache_ida, id);
2912 2913
}

2914 2915 2916 2917 2918
/*
 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
 * @objcg: object cgroup to uncharge
 * @nr_pages: number of pages to uncharge
 */
2919 2920 2921 2922 2923 2924 2925
static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
				      unsigned int nr_pages)
{
	struct mem_cgroup *memcg;

	memcg = get_mem_cgroup_from_objcg(objcg);

2926 2927 2928
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);
	refill_stock(memcg, nr_pages);
2929 2930 2931 2932

	css_put(&memcg->css);
}

2933 2934 2935
/*
 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
 * @objcg: object cgroup to charge
2936
 * @gfp: reclaim mode
2937
 * @nr_pages: number of pages to charge
2938 2939 2940
 *
 * Returns 0 on success, an error code on failure.
 */
2941 2942
static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
				   unsigned int nr_pages)
2943
{
2944
	struct page_counter *counter;
2945
	struct mem_cgroup *memcg;
2946 2947
	int ret;

2948 2949
	memcg = get_mem_cgroup_from_objcg(objcg);

2950
	ret = try_charge_memcg(memcg, gfp, nr_pages);
2951
	if (ret)
2952
		goto out;
2953 2954 2955

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2956 2957 2958 2959 2960 2961 2962 2963

		/*
		 * Enforce __GFP_NOFAIL allocation because callers are not
		 * prepared to see failures and likely do not have any failure
		 * handling code.
		 */
		if (gfp & __GFP_NOFAIL) {
			page_counter_charge(&memcg->kmem, nr_pages);
2964
			goto out;
2965
		}
2966
		cancel_charge(memcg, nr_pages);
2967
		ret = -ENOMEM;
2968
	}
2969 2970
out:
	css_put(&memcg->css);
2971

2972
	return ret;
2973 2974
}

2975
/**
2976
 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2977 2978 2979 2980 2981 2982
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
2983
int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2984
{
2985
	struct obj_cgroup *objcg;
2986
	int ret = 0;
2987

2988 2989 2990
	objcg = get_obj_cgroup_from_current();
	if (objcg) {
		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
2991
		if (!ret) {
2992
			page->memcg_data = (unsigned long)objcg |
2993
				MEMCG_DATA_KMEM;
2994
			return 0;
2995
		}
2996
		obj_cgroup_put(objcg);
2997
	}
2998
	return ret;
2999
}
3000

3001
/**
3002
 * __memcg_kmem_uncharge_page: uncharge a kmem page
3003 3004 3005
 * @page: page to uncharge
 * @order: allocation order
 */
3006
void __memcg_kmem_uncharge_page(struct page *page, int order)
3007
{
3008
	struct folio *folio = page_folio(page);
3009
	struct obj_cgroup *objcg;
3010
	unsigned int nr_pages = 1 << order;
3011

3012
	if (!folio_memcg_kmem(folio))
3013 3014
		return;

3015
	objcg = __folio_objcg(folio);
3016
	obj_cgroup_uncharge_pages(objcg, nr_pages);
3017
	folio->memcg_data = 0;
3018
	obj_cgroup_put(objcg);
3019
}
R
Roman Gushchin 已提交
3020

3021 3022 3023 3024
void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
		     enum node_stat_item idx, int nr)
{
	unsigned long flags;
3025
	struct obj_stock *stock = get_obj_stock(&flags);
3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
	int *bytes;

	/*
	 * Save vmstat data in stock and skip vmstat array update unless
	 * accumulating over a page of vmstat data or when pgdat or idx
	 * changes.
	 */
	if (stock->cached_objcg != objcg) {
		drain_obj_stock(stock);
		obj_cgroup_get(objcg);
		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
		stock->cached_objcg = objcg;
		stock->cached_pgdat = pgdat;
	} else if (stock->cached_pgdat != pgdat) {
		/* Flush the existing cached vmstat data */
3042 3043
		struct pglist_data *oldpg = stock->cached_pgdat;

3044
		if (stock->nr_slab_reclaimable_b) {
3045
			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3046 3047 3048 3049
					  stock->nr_slab_reclaimable_b);
			stock->nr_slab_reclaimable_b = 0;
		}
		if (stock->nr_slab_unreclaimable_b) {
3050
			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
					  stock->nr_slab_unreclaimable_b);
			stock->nr_slab_unreclaimable_b = 0;
		}
		stock->cached_pgdat = pgdat;
	}

	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
					       : &stock->nr_slab_unreclaimable_b;
	/*
	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
	 * cached locally at least once before pushing it out.
	 */
	if (!*bytes) {
		*bytes = nr;
		nr = 0;
	} else {
		*bytes += nr;
		if (abs(*bytes) > PAGE_SIZE) {
			nr = *bytes;
			*bytes = 0;
		} else {
			nr = 0;
		}
	}
	if (nr)
		mod_objcg_mlstate(objcg, pgdat, idx, nr);

3078
	put_obj_stock(flags);
3079 3080
}

R
Roman Gushchin 已提交
3081 3082 3083
static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
{
	unsigned long flags;
3084
	struct obj_stock *stock = get_obj_stock(&flags);
R
Roman Gushchin 已提交
3085 3086 3087 3088 3089 3090 3091
	bool ret = false;

	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
		stock->nr_bytes -= nr_bytes;
		ret = true;
	}

3092
	put_obj_stock(flags);
R
Roman Gushchin 已提交
3093 3094 3095 3096

	return ret;
}

3097
static void drain_obj_stock(struct obj_stock *stock)
R
Roman Gushchin 已提交
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
{
	struct obj_cgroup *old = stock->cached_objcg;

	if (!old)
		return;

	if (stock->nr_bytes) {
		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);

3108 3109
		if (nr_pages)
			obj_cgroup_uncharge_pages(old, nr_pages);
R
Roman Gushchin 已提交
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124

		/*
		 * The leftover is flushed to the centralized per-memcg value.
		 * On the next attempt to refill obj stock it will be moved
		 * to a per-cpu stock (probably, on an other CPU), see
		 * refill_obj_stock().
		 *
		 * How often it's flushed is a trade-off between the memory
		 * limit enforcement accuracy and potential CPU contention,
		 * so it might be changed in the future.
		 */
		atomic_add(nr_bytes, &old->nr_charged_bytes);
		stock->nr_bytes = 0;
	}

3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
	/*
	 * Flush the vmstat data in current stock
	 */
	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
		if (stock->nr_slab_reclaimable_b) {
			mod_objcg_mlstate(old, stock->cached_pgdat,
					  NR_SLAB_RECLAIMABLE_B,
					  stock->nr_slab_reclaimable_b);
			stock->nr_slab_reclaimable_b = 0;
		}
		if (stock->nr_slab_unreclaimable_b) {
			mod_objcg_mlstate(old, stock->cached_pgdat,
					  NR_SLAB_UNRECLAIMABLE_B,
					  stock->nr_slab_unreclaimable_b);
			stock->nr_slab_unreclaimable_b = 0;
		}
		stock->cached_pgdat = NULL;
	}

R
Roman Gushchin 已提交
3144 3145 3146 3147 3148 3149 3150 3151 3152
	obj_cgroup_put(old);
	stock->cached_objcg = NULL;
}

static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	struct mem_cgroup *memcg;

3153 3154 3155 3156 3157 3158 3159
	if (in_task() && stock->task_obj.cached_objcg) {
		memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg);
		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
			return true;
	}
	if (stock->irq_obj.cached_objcg) {
		memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg);
R
Roman Gushchin 已提交
3160 3161 3162 3163 3164 3165 3166
		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
			return true;
	}

	return false;
}

3167 3168
static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
			     bool allow_uncharge)
R
Roman Gushchin 已提交
3169 3170
{
	unsigned long flags;
3171
	struct obj_stock *stock = get_obj_stock(&flags);
3172
	unsigned int nr_pages = 0;
R
Roman Gushchin 已提交
3173 3174 3175 3176 3177

	if (stock->cached_objcg != objcg) { /* reset if necessary */
		drain_obj_stock(stock);
		obj_cgroup_get(objcg);
		stock->cached_objcg = objcg;
3178 3179 3180
		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
		allow_uncharge = true;	/* Allow uncharge when objcg changes */
R
Roman Gushchin 已提交
3181 3182 3183
	}
	stock->nr_bytes += nr_bytes;

3184 3185 3186 3187
	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
		stock->nr_bytes &= (PAGE_SIZE - 1);
	}
R
Roman Gushchin 已提交
3188

3189
	put_obj_stock(flags);
3190 3191 3192

	if (nr_pages)
		obj_cgroup_uncharge_pages(objcg, nr_pages);
R
Roman Gushchin 已提交
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
}

int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
{
	unsigned int nr_pages, nr_bytes;
	int ret;

	if (consume_obj_stock(objcg, size))
		return 0;

	/*
3204
	 * In theory, objcg->nr_charged_bytes can have enough
R
Roman Gushchin 已提交
3205
	 * pre-charged bytes to satisfy the allocation. However,
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
	 * flushing objcg->nr_charged_bytes requires two atomic
	 * operations, and objcg->nr_charged_bytes can't be big.
	 * The shared objcg->nr_charged_bytes can also become a
	 * performance bottleneck if all tasks of the same memcg are
	 * trying to update it. So it's better to ignore it and try
	 * grab some new pages. The stock's nr_bytes will be flushed to
	 * objcg->nr_charged_bytes later on when objcg changes.
	 *
	 * The stock's nr_bytes may contain enough pre-charged bytes
	 * to allow one less page from being charged, but we can't rely
	 * on the pre-charged bytes not being changed outside of
	 * consume_obj_stock() or refill_obj_stock(). So ignore those
	 * pre-charged bytes as well when charging pages. To avoid a
	 * page uncharge right after a page charge, we set the
	 * allow_uncharge flag to false when calling refill_obj_stock()
	 * to temporarily allow the pre-charged bytes to exceed the page
	 * size limit. The maximum reachable value of the pre-charged
	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
	 * race.
R
Roman Gushchin 已提交
3225 3226 3227 3228 3229 3230 3231
	 */
	nr_pages = size >> PAGE_SHIFT;
	nr_bytes = size & (PAGE_SIZE - 1);

	if (nr_bytes)
		nr_pages += 1;

3232
	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
R
Roman Gushchin 已提交
3233
	if (!ret && nr_bytes)
3234
		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
R
Roman Gushchin 已提交
3235 3236 3237 3238 3239 3240

	return ret;
}

void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
{
3241
	refill_obj_stock(objcg, size, true);
R
Roman Gushchin 已提交
3242 3243
}

3244
#endif /* CONFIG_MEMCG_KMEM */
3245

3246
/*
3247
 * Because page_memcg(head) is not set on tails, set it now.
3248
 */
3249
void split_page_memcg(struct page *head, unsigned int nr)
3250
{
3251 3252
	struct folio *folio = page_folio(head);
	struct mem_cgroup *memcg = folio_memcg(folio);
3253
	int i;
3254

3255
	if (mem_cgroup_disabled() || !memcg)
3256
		return;
3257

3258
	for (i = 1; i < nr; i++)
3259
		folio_page(folio, i)->memcg_data = folio->memcg_data;
3260

3261 3262
	if (folio_memcg_kmem(folio))
		obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3263 3264
	else
		css_get_many(&memcg->css, nr - 1);
3265 3266
}

A
Andrew Morton 已提交
3267
#ifdef CONFIG_MEMCG_SWAP
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
3279
 * The caller must have charged to @to, IOW, called page_counter_charge() about
3280 3281 3282
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3283
				struct mem_cgroup *from, struct mem_cgroup *to)
3284 3285 3286
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
3287 3288
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3289 3290

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3291 3292
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
3293 3294 3295 3296 3297 3298
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3299
				struct mem_cgroup *from, struct mem_cgroup *to)
3300 3301 3302
{
	return -EINVAL;
}
3303
#endif
K
KAMEZAWA Hiroyuki 已提交
3304

3305
static DEFINE_MUTEX(memcg_max_mutex);
3306

3307 3308
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
3309
{
3310
	bool enlarge = false;
3311
	bool drained = false;
3312
	int ret;
3313 3314
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3315

3316
	do {
3317 3318 3319 3320
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3321

3322
		mutex_lock(&memcg_max_mutex);
3323 3324
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
3325
		 * break our basic invariant rule memory.max <= memsw.max.
3326
		 */
3327
		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3328
					   max <= memcg->memsw.max;
3329
		if (!limits_invariant) {
3330
			mutex_unlock(&memcg_max_mutex);
3331 3332 3333
			ret = -EINVAL;
			break;
		}
3334
		if (max > counter->max)
3335
			enlarge = true;
3336 3337
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
3338 3339 3340 3341

		if (!ret)
			break;

3342 3343 3344 3345 3346 3347
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

3348 3349 3350 3351 3352 3353
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
3354

3355 3356
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3357

3358 3359 3360
	return ret;
}

3361
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3362 3363 3364 3365
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
3366
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3367 3368
	unsigned long reclaimed;
	int loop = 0;
3369
	struct mem_cgroup_tree_per_node *mctz;
3370
	unsigned long excess;
3371 3372 3373 3374 3375
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

3376
	mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3377 3378 3379 3380 3381 3382

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
3383
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3384 3385
		return 0;

3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
3400
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3401 3402 3403
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3404
		spin_lock_irq(&mctz->lock);
3405
		__mem_cgroup_remove_exceeded(mz, mctz);
3406 3407 3408 3409 3410 3411

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3412 3413 3414
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3415
		excess = soft_limit_excess(mz->memcg);
3416 3417 3418 3419 3420 3421 3422 3423 3424
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3425
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3426
		spin_unlock_irq(&mctz->lock);
3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3444
/*
3445
 * Reclaims as many pages from the given memcg as possible.
3446 3447 3448 3449 3450
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
3451
	int nr_retries = MAX_RECLAIM_RETRIES;
3452

3453 3454
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3455 3456 3457

	drain_all_stock(memcg);

3458
	/* try to free all pages in this cgroup */
3459
	while (nr_retries && page_counter_read(&memcg->memory)) {
3460
		int progress;
3461

3462 3463 3464
		if (signal_pending(current))
			return -EINTR;

3465 3466
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3467
		if (!progress) {
3468
			nr_retries--;
3469
			/* maybe some writeback is necessary */
3470
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3471
		}
3472 3473

	}
3474 3475

	return 0;
3476 3477
}

3478 3479 3480
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3481
{
3482
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3483

3484 3485
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3486
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3487 3488
}

3489 3490
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3491
{
3492
	return 1;
3493 3494
}

3495 3496
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3497
{
3498
	if (val == 1)
3499
		return 0;
3500

3501 3502 3503
	pr_warn_once("Non-hierarchical mode is deprecated. "
		     "Please report your usecase to linux-mm@kvack.org if you "
		     "depend on this functionality.\n");
3504

3505
	return -EINVAL;
3506 3507
}

3508
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3509
{
3510
	unsigned long val;
3511

3512
	if (mem_cgroup_is_root(memcg)) {
3513 3514
		/* mem_cgroup_threshold() calls here from irqsafe context */
		cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
3515
		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3516
			memcg_page_state(memcg, NR_ANON_MAPPED);
3517 3518
		if (swap)
			val += memcg_page_state(memcg, MEMCG_SWAP);
3519
	} else {
3520
		if (!swap)
3521
			val = page_counter_read(&memcg->memory);
3522
		else
3523
			val = page_counter_read(&memcg->memsw);
3524
	}
3525
	return val;
3526 3527
}

3528 3529 3530 3531 3532 3533 3534
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3535

3536
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3537
			       struct cftype *cft)
B
Balbir Singh 已提交
3538
{
3539
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3540
	struct page_counter *counter;
3541

3542
	switch (MEMFILE_TYPE(cft->private)) {
3543
	case _MEM:
3544 3545
		counter = &memcg->memory;
		break;
3546
	case _MEMSWAP:
3547 3548
		counter = &memcg->memsw;
		break;
3549
	case _KMEM:
3550
		counter = &memcg->kmem;
3551
		break;
V
Vladimir Davydov 已提交
3552
	case _TCP:
3553
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3554
		break;
3555 3556 3557
	default:
		BUG();
	}
3558 3559 3560 3561

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
3562
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3563
		if (counter == &memcg->memsw)
3564
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3565 3566
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
3567
		return (u64)counter->max * PAGE_SIZE;
3568 3569 3570 3571 3572 3573 3574 3575 3576
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3577
}
3578

3579
#ifdef CONFIG_MEMCG_KMEM
3580
static int memcg_online_kmem(struct mem_cgroup *memcg)
3581
{
R
Roman Gushchin 已提交
3582
	struct obj_cgroup *objcg;
3583 3584
	int memcg_id;

3585 3586 3587
	if (cgroup_memory_nokmem)
		return 0;

3588
	BUG_ON(memcg->kmemcg_id >= 0);
3589
	BUG_ON(memcg->kmem_state);
3590

3591
	memcg_id = memcg_alloc_cache_id();
3592 3593
	if (memcg_id < 0)
		return memcg_id;
3594

R
Roman Gushchin 已提交
3595 3596 3597 3598 3599 3600 3601 3602
	objcg = obj_cgroup_alloc();
	if (!objcg) {
		memcg_free_cache_id(memcg_id);
		return -ENOMEM;
	}
	objcg->memcg = memcg;
	rcu_assign_pointer(memcg->objcg, objcg);

3603 3604
	static_branch_enable(&memcg_kmem_enabled_key);

V
Vladimir Davydov 已提交
3605
	memcg->kmemcg_id = memcg_id;
3606
	memcg->kmem_state = KMEM_ONLINE;
3607 3608

	return 0;
3609 3610
}

3611 3612 3613 3614 3615 3616 3617 3618
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
3619

3620 3621 3622 3623 3624 3625
	memcg->kmem_state = KMEM_ALLOCATED;

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

R
Roman Gushchin 已提交
3626
	memcg_reparent_objcgs(memcg, parent);
3627 3628 3629 3630

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

3631 3632 3633 3634 3635 3636 3637 3638
	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
3639
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3640 3641 3642 3643 3644
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
	}
3645 3646
	rcu_read_unlock();

3647
	memcg_drain_all_list_lrus(kmemcg_id, parent);
3648 3649 3650 3651 3652 3653

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
3654 3655 3656
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);
3657
}
3658
#else
3659
static int memcg_online_kmem(struct mem_cgroup *memcg)
3660 3661 3662 3663 3664 3665 3666 3667 3668
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
3669
#endif /* CONFIG_MEMCG_KMEM */
3670

3671 3672
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
3673
{
3674
	int ret;
3675

3676 3677 3678
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
3679
	return ret;
3680
}
3681

3682
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
3683 3684 3685
{
	int ret;

3686
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3687

3688
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
3689 3690 3691
	if (ret)
		goto out;

3692
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3693 3694 3695
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3696 3697 3698
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
3699 3700 3701 3702 3703 3704
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3705
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
3706 3707 3708 3709
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3710
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3711 3712
	}
out:
3713
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3714 3715 3716
	return ret;
}

3717 3718 3719 3720
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3721 3722
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3723
{
3724
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3725
	unsigned long nr_pages;
3726 3727
	int ret;

3728
	buf = strstrip(buf);
3729
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3730 3731
	if (ret)
		return ret;
3732

3733
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3734
	case RES_LIMIT:
3735 3736 3737 3738
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3739 3740
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3741
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3742
			break;
3743
		case _MEMSWAP:
3744
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3745
			break;
3746
		case _KMEM:
3747 3748 3749
			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
				     "Please report your usecase to linux-mm@kvack.org if you "
				     "depend on this functionality.\n");
3750
			ret = memcg_update_kmem_max(memcg, nr_pages);
3751
			break;
V
Vladimir Davydov 已提交
3752
		case _TCP:
3753
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
3754
			break;
3755
		}
3756
		break;
3757 3758 3759
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3760 3761
		break;
	}
3762
	return ret ?: nbytes;
B
Balbir Singh 已提交
3763 3764
}

3765 3766
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3767
{
3768
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3769
	struct page_counter *counter;
3770

3771 3772 3773 3774 3775 3776 3777 3778 3779 3780
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3781
	case _TCP:
3782
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3783
		break;
3784 3785 3786
	default:
		BUG();
	}
3787

3788
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3789
	case RES_MAX_USAGE:
3790
		page_counter_reset_watermark(counter);
3791 3792
		break;
	case RES_FAILCNT:
3793
		counter->failcnt = 0;
3794
		break;
3795 3796
	default:
		BUG();
3797
	}
3798

3799
	return nbytes;
3800 3801
}

3802
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3803 3804
					struct cftype *cft)
{
3805
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3806 3807
}

3808
#ifdef CONFIG_MMU
3809
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3810 3811
					struct cftype *cft, u64 val)
{
3812
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3813

3814
	if (val & ~MOVE_MASK)
3815
		return -EINVAL;
3816

3817
	/*
3818 3819 3820 3821
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3822
	 */
3823
	memcg->move_charge_at_immigrate = val;
3824 3825
	return 0;
}
3826
#else
3827
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3828 3829 3830 3831 3832
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3833

3834
#ifdef CONFIG_NUMA
3835 3836 3837 3838 3839 3840

#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)

static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3841
				int nid, unsigned int lru_mask, bool tree)
3842
{
3843
	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3844 3845 3846 3847 3848 3849 3850 3851
	unsigned long nr = 0;
	enum lru_list lru;

	VM_BUG_ON((unsigned)nid >= nr_node_ids);

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3852 3853 3854 3855
		if (tree)
			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
		else
			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3856 3857 3858 3859 3860
	}
	return nr;
}

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3861 3862
					     unsigned int lru_mask,
					     bool tree)
3863 3864 3865 3866 3867 3868 3869
{
	unsigned long nr = 0;
	enum lru_list lru;

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3870 3871 3872 3873
		if (tree)
			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
		else
			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3874 3875 3876 3877
	}
	return nr;
}

3878
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3879
{
3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3892
	int nid;
3893
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3894

3895 3896
	cgroup_rstat_flush(memcg->css.cgroup);

3897
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3898 3899 3900 3901 3902 3903 3904
		seq_printf(m, "%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   false));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, false));
3905
		seq_putc(m, '\n');
3906 3907
	}

3908
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3909 3910 3911 3912 3913 3914 3915 3916

		seq_printf(m, "hierarchical_%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   true));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, true));
3917
		seq_putc(m, '\n');
3918 3919 3920 3921 3922 3923
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3924
static const unsigned int memcg1_stats[] = {
3925
	NR_FILE_PAGES,
3926
	NR_ANON_MAPPED,
3927 3928 3929
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	NR_ANON_THPS,
#endif
3930 3931 3932 3933 3934 3935 3936 3937 3938 3939
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
3940
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3941
	"rss_huge",
3942
#endif
3943 3944 3945 3946 3947 3948 3949
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

3950
/* Universal VM events cgroup1 shows, original sort order */
3951
static const unsigned int memcg1_events[] = {
3952 3953 3954 3955 3956 3957
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

3958
static int memcg_stat_show(struct seq_file *m, void *v)
3959
{
3960
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3961
	unsigned long memory, memsw;
3962 3963
	struct mem_cgroup *mi;
	unsigned int i;
3964

3965
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3966

3967 3968
	cgroup_rstat_flush(memcg->css.cgroup);

3969
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3970 3971
		unsigned long nr;

3972
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3973
			continue;
3974 3975
		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
3976
	}
L
Lee Schermerhorn 已提交
3977

3978
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3979
		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3980
			   memcg_events_local(memcg, memcg1_events[i]));
3981 3982

	for (i = 0; i < NR_LRU_LISTS; i++)
3983
		seq_printf(m, "%s %lu\n", lru_list_name(i),
3984
			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3985
			   PAGE_SIZE);
3986

K
KAMEZAWA Hiroyuki 已提交
3987
	/* Hierarchical information */
3988 3989
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3990 3991
		memory = min(memory, READ_ONCE(mi->memory.max));
		memsw = min(memsw, READ_ONCE(mi->memsw.max));
3992
	}
3993 3994
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3995
	if (do_memsw_account())
3996 3997
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3998

3999
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4000 4001
		unsigned long nr;

4002
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4003
			continue;
4004
		nr = memcg_page_state(memcg, memcg1_stats[i]);
4005
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4006
						(u64)nr * PAGE_SIZE);
4007 4008
	}

4009
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4010 4011
		seq_printf(m, "total_%s %llu\n",
			   vm_event_name(memcg1_events[i]),
4012
			   (u64)memcg_events(memcg, memcg1_events[i]));
4013

4014
	for (i = 0; i < NR_LRU_LISTS; i++)
4015
		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4016 4017
			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			   PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
4018

K
KOSAKI Motohiro 已提交
4019 4020
#ifdef CONFIG_DEBUG_VM
	{
4021 4022
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
4023 4024
		unsigned long anon_cost = 0;
		unsigned long file_cost = 0;
K
KOSAKI Motohiro 已提交
4025

4026
		for_each_online_pgdat(pgdat) {
4027
			mz = memcg->nodeinfo[pgdat->node_id];
K
KOSAKI Motohiro 已提交
4028

4029 4030
			anon_cost += mz->lruvec.anon_cost;
			file_cost += mz->lruvec.file_cost;
4031
		}
4032 4033
		seq_printf(m, "anon_cost %lu\n", anon_cost);
		seq_printf(m, "file_cost %lu\n", file_cost);
K
KOSAKI Motohiro 已提交
4034 4035 4036
	}
#endif

4037 4038 4039
	return 0;
}

4040 4041
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
4042
{
4043
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4044

4045
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4046 4047
}

4048 4049
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
4050
{
4051
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4052

4053
	if (val > 200)
K
KOSAKI Motohiro 已提交
4054 4055
		return -EINVAL;

S
Shakeel Butt 已提交
4056
	if (!mem_cgroup_is_root(memcg))
4057 4058 4059
		memcg->swappiness = val;
	else
		vm_swappiness = val;
4060

K
KOSAKI Motohiro 已提交
4061 4062 4063
	return 0;
}

4064 4065 4066
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
4067
	unsigned long usage;
4068 4069 4070 4071
	int i;

	rcu_read_lock();
	if (!swap)
4072
		t = rcu_dereference(memcg->thresholds.primary);
4073
	else
4074
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4075 4076 4077 4078

	if (!t)
		goto unlock;

4079
	usage = mem_cgroup_usage(memcg, swap);
4080 4081

	/*
4082
	 * current_threshold points to threshold just below or equal to usage.
4083 4084 4085
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4086
	i = t->current_threshold;
4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4110
	t->current_threshold = i - 1;
4111 4112 4113 4114 4115 4116
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4117 4118
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
4119
		if (do_memsw_account())
4120 4121 4122 4123
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4124 4125 4126 4127 4128 4129 4130
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

4131 4132 4133 4134 4135 4136 4137
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
4138 4139
}

4140
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4141 4142 4143
{
	struct mem_cgroup_eventfd_list *ev;

4144 4145
	spin_lock(&memcg_oom_lock);

4146
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4147
		eventfd_signal(ev->eventfd, 1);
4148 4149

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4150 4151 4152
	return 0;
}

4153
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4154
{
K
KAMEZAWA Hiroyuki 已提交
4155 4156
	struct mem_cgroup *iter;

4157
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4158
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4159 4160
}

4161
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4162
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4163
{
4164 4165
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4166 4167
	unsigned long threshold;
	unsigned long usage;
4168
	int i, size, ret;
4169

4170
	ret = page_counter_memparse(args, "-1", &threshold);
4171 4172 4173 4174
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4175

4176
	if (type == _MEM) {
4177
		thresholds = &memcg->thresholds;
4178
		usage = mem_cgroup_usage(memcg, false);
4179
	} else if (type == _MEMSWAP) {
4180
		thresholds = &memcg->memsw_thresholds;
4181
		usage = mem_cgroup_usage(memcg, true);
4182
	} else
4183 4184 4185
		BUG();

	/* Check if a threshold crossed before adding a new one */
4186
	if (thresholds->primary)
4187 4188
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4189
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4190 4191

	/* Allocate memory for new array of thresholds */
4192
	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4193
	if (!new) {
4194 4195 4196
		ret = -ENOMEM;
		goto unlock;
	}
4197
	new->size = size;
4198 4199

	/* Copy thresholds (if any) to new array */
4200 4201 4202
	if (thresholds->primary)
		memcpy(new->entries, thresholds->primary->entries,
		       flex_array_size(new, entries, size - 1));
4203

4204
	/* Add new threshold */
4205 4206
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4207 4208

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4209
	sort(new->entries, size, sizeof(*new->entries),
4210 4211 4212
			compare_thresholds, NULL);

	/* Find current threshold */
4213
	new->current_threshold = -1;
4214
	for (i = 0; i < size; i++) {
4215
		if (new->entries[i].threshold <= usage) {
4216
			/*
4217 4218
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4219 4220
			 * it here.
			 */
4221
			++new->current_threshold;
4222 4223
		} else
			break;
4224 4225
	}

4226 4227 4228 4229 4230
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4231

4232
	/* To be sure that nobody uses thresholds */
4233 4234 4235 4236 4237 4238 4239 4240
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4241
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4242 4243
	struct eventfd_ctx *eventfd, const char *args)
{
4244
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4245 4246
}

4247
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4248 4249
	struct eventfd_ctx *eventfd, const char *args)
{
4250
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4251 4252
}

4253
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4254
	struct eventfd_ctx *eventfd, enum res_type type)
4255
{
4256 4257
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4258
	unsigned long usage;
4259
	int i, j, size, entries;
4260 4261

	mutex_lock(&memcg->thresholds_lock);
4262 4263

	if (type == _MEM) {
4264
		thresholds = &memcg->thresholds;
4265
		usage = mem_cgroup_usage(memcg, false);
4266
	} else if (type == _MEMSWAP) {
4267
		thresholds = &memcg->memsw_thresholds;
4268
		usage = mem_cgroup_usage(memcg, true);
4269
	} else
4270 4271
		BUG();

4272 4273 4274
	if (!thresholds->primary)
		goto unlock;

4275 4276 4277 4278
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4279
	size = entries = 0;
4280 4281
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4282
			size++;
4283 4284
		else
			entries++;
4285 4286
	}

4287
	new = thresholds->spare;
4288

4289 4290 4291 4292
	/* If no items related to eventfd have been cleared, nothing to do */
	if (!entries)
		goto unlock;

4293 4294
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4295 4296
		kfree(new);
		new = NULL;
4297
		goto swap_buffers;
4298 4299
	}

4300
	new->size = size;
4301 4302

	/* Copy thresholds and find current threshold */
4303 4304 4305
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4306 4307
			continue;

4308
		new->entries[j] = thresholds->primary->entries[i];
4309
		if (new->entries[j].threshold <= usage) {
4310
			/*
4311
			 * new->current_threshold will not be used
4312 4313 4314
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4315
			++new->current_threshold;
4316 4317 4318 4319
		}
		j++;
	}

4320
swap_buffers:
4321 4322
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4323

4324
	rcu_assign_pointer(thresholds->primary, new);
4325

4326
	/* To be sure that nobody uses thresholds */
4327
	synchronize_rcu();
4328 4329 4330 4331 4332 4333

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
4334
unlock:
4335 4336
	mutex_unlock(&memcg->thresholds_lock);
}
4337

4338
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4339 4340
	struct eventfd_ctx *eventfd)
{
4341
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4342 4343
}

4344
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4345 4346
	struct eventfd_ctx *eventfd)
{
4347
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4348 4349
}

4350
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4351
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4352 4353 4354 4355 4356 4357 4358
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4359
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4360 4361 4362 4363 4364

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4365
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
4366
		eventfd_signal(eventfd, 1);
4367
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4368 4369 4370 4371

	return 0;
}

4372
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4373
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4374 4375 4376
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4377
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4378

4379
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4380 4381 4382 4383 4384 4385
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4386
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4387 4388
}

4389
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4390
{
4391
	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4392

4393
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4394
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
R
Roman Gushchin 已提交
4395 4396
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4397 4398 4399
	return 0;
}

4400
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4401 4402
	struct cftype *cft, u64 val)
{
4403
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4404 4405

	/* cannot set to root cgroup and only 0 and 1 are allowed */
S
Shakeel Butt 已提交
4406
	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4407 4408
		return -EINVAL;

4409
	memcg->oom_kill_disable = val;
4410
	if (!val)
4411
		memcg_oom_recover(memcg);
4412

4413 4414 4415
	return 0;
}

4416 4417
#ifdef CONFIG_CGROUP_WRITEBACK

4418 4419
#include <trace/events/writeback.h>

T
Tejun Heo 已提交
4420 4421 4422 4423 4424 4425 4426 4427 4428 4429
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

4430 4431 4432 4433 4434
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

4445 4446 4447
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
4448 4449
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
4450 4451 4452
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
4453 4454 4455
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
4456
 *
4457 4458 4459 4460 4461
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
4462
 */
4463 4464 4465
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
4466 4467 4468 4469
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

4470
	cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
4471

4472 4473 4474 4475
	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
			memcg_page_state(memcg, NR_ACTIVE_FILE);
4476

4477
	*pheadroom = PAGE_COUNTER_MAX;
4478
	while ((parent = parent_mem_cgroup(memcg))) {
4479
		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4480
					    READ_ONCE(memcg->memory.high));
4481 4482
		unsigned long used = page_counter_read(&memcg->memory);

4483
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4484 4485 4486 4487
		memcg = parent;
	}
}

4488 4489 4490 4491
/*
 * Foreign dirty flushing
 *
 * There's an inherent mismatch between memcg and writeback.  The former
I
Ingo Molnar 已提交
4492
 * tracks ownership per-page while the latter per-inode.  This was a
4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506
 * deliberate design decision because honoring per-page ownership in the
 * writeback path is complicated, may lead to higher CPU and IO overheads
 * and deemed unnecessary given that write-sharing an inode across
 * different cgroups isn't a common use-case.
 *
 * Combined with inode majority-writer ownership switching, this works well
 * enough in most cases but there are some pathological cases.  For
 * example, let's say there are two cgroups A and B which keep writing to
 * different but confined parts of the same inode.  B owns the inode and
 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
 * triggering background writeback.  A will be slowed down without a way to
 * make writeback of the dirty pages happen.
 *
I
Ingo Molnar 已提交
4507
 * Conditions like the above can lead to a cgroup getting repeatedly and
4508
 * severely throttled after making some progress after each
I
Ingo Molnar 已提交
4509
 * dirty_expire_interval while the underlying IO device is almost
4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531
 * completely idle.
 *
 * Solving this problem completely requires matching the ownership tracking
 * granularities between memcg and writeback in either direction.  However,
 * the more egregious behaviors can be avoided by simply remembering the
 * most recent foreign dirtying events and initiating remote flushes on
 * them when local writeback isn't enough to keep the memory clean enough.
 *
 * The following two functions implement such mechanism.  When a foreign
 * page - a page whose memcg and writeback ownerships don't match - is
 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
 * decides that the memcg needs to sleep due to high dirty ratio, it calls
 * mem_cgroup_flush_foreign() which queues writeback on the recorded
 * foreign bdi_writebacks which haven't expired.  Both the numbers of
 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
 * limited to MEMCG_CGWB_FRN_CNT.
 *
 * The mechanism only remembers IDs and doesn't hold any object references.
 * As being wrong occasionally doesn't matter, updates and accesses to the
 * records are lockless and racy.
 */
4532
void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4533 4534
					     struct bdi_writeback *wb)
{
4535
	struct mem_cgroup *memcg = folio_memcg(folio);
4536 4537 4538 4539 4540 4541
	struct memcg_cgwb_frn *frn;
	u64 now = get_jiffies_64();
	u64 oldest_at = now;
	int oldest = -1;
	int i;

4542
	trace_track_foreign_dirty(folio, wb);
4543

4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
	/*
	 * Pick the slot to use.  If there is already a slot for @wb, keep
	 * using it.  If not replace the oldest one which isn't being
	 * written out.
	 */
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		frn = &memcg->cgwb_frn[i];
		if (frn->bdi_id == wb->bdi->id &&
		    frn->memcg_id == wb->memcg_css->id)
			break;
		if (time_before64(frn->at, oldest_at) &&
		    atomic_read(&frn->done.cnt) == 1) {
			oldest = i;
			oldest_at = frn->at;
		}
	}

	if (i < MEMCG_CGWB_FRN_CNT) {
		/*
		 * Re-using an existing one.  Update timestamp lazily to
		 * avoid making the cacheline hot.  We want them to be
		 * reasonably up-to-date and significantly shorter than
		 * dirty_expire_interval as that's what expires the record.
		 * Use the shorter of 1s and dirty_expire_interval / 8.
		 */
		unsigned long update_intv =
			min_t(unsigned long, HZ,
			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);

		if (time_before64(frn->at, now - update_intv))
			frn->at = now;
	} else if (oldest >= 0) {
		/* replace the oldest free one */
		frn = &memcg->cgwb_frn[oldest];
		frn->bdi_id = wb->bdi->id;
		frn->memcg_id = wb->memcg_css->id;
		frn->at = now;
	}
}

/* issue foreign writeback flushes for recorded foreign dirtying events */
void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
	u64 now = jiffies_64;
	int i;

	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];

		/*
		 * If the record is older than dirty_expire_interval,
		 * writeback on it has already started.  No need to kick it
		 * off again.  Also, don't start a new one if there's
		 * already one in flight.
		 */
		if (time_after64(frn->at, now - intv) &&
		    atomic_read(&frn->done.cnt) == 1) {
			frn->at = 0;
4604
			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4605
			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4606 4607 4608 4609 4610 4611
					       WB_REASON_FOREIGN_FLUSH,
					       &frn->done);
		}
	}
}

T
Tejun Heo 已提交
4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

4623 4624 4625 4626
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

4627 4628
#endif	/* CONFIG_CGROUP_WRITEBACK */

4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4642 4643 4644 4645 4646
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4647
static void memcg_event_remove(struct work_struct *work)
4648
{
4649 4650
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4651
	struct mem_cgroup *memcg = event->memcg;
4652 4653 4654

	remove_wait_queue(event->wqh, &event->wait);

4655
	event->unregister_event(memcg, event->eventfd);
4656 4657 4658 4659 4660 4661

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4662
	css_put(&memcg->css);
4663 4664 4665
}

/*
4666
 * Gets called on EPOLLHUP on eventfd when user closes it.
4667 4668 4669
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4670
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4671
			    int sync, void *key)
4672
{
4673 4674
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4675
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
4676
	__poll_t flags = key_to_poll(key);
4677

4678
	if (flags & EPOLLHUP) {
4679 4680 4681 4682 4683 4684 4685 4686 4687
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4688
		spin_lock(&memcg->event_list_lock);
4689 4690 4691 4692 4693 4694 4695 4696
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4697
		spin_unlock(&memcg->event_list_lock);
4698 4699 4700 4701 4702
	}

	return 0;
}

4703
static void memcg_event_ptable_queue_proc(struct file *file,
4704 4705
		wait_queue_head_t *wqh, poll_table *pt)
{
4706 4707
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4708 4709 4710 4711 4712 4713

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4714 4715
 * DO NOT USE IN NEW FILES.
 *
4716 4717 4718 4719 4720
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4721 4722
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4723
{
4724
	struct cgroup_subsys_state *css = of_css(of);
4725
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4726
	struct mem_cgroup_event *event;
4727 4728 4729 4730
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4731
	const char *name;
4732 4733 4734
	char *endp;
	int ret;

4735 4736 4737
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4738 4739
	if (*endp != ' ')
		return -EINVAL;
4740
	buf = endp + 1;
4741

4742
	cfd = simple_strtoul(buf, &endp, 10);
4743 4744
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4745
	buf = endp + 1;
4746 4747 4748 4749 4750

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4751
	event->memcg = memcg;
4752
	INIT_LIST_HEAD(&event->list);
4753 4754 4755
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
4777
	ret = file_permission(cfile.file, MAY_READ);
4778 4779 4780
	if (ret < 0)
		goto out_put_cfile;

4781 4782 4783 4784 4785
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4786 4787
	 *
	 * DO NOT ADD NEW FILES.
4788
	 */
A
Al Viro 已提交
4789
	name = cfile.file->f_path.dentry->d_name.name;
4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4801 4802
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4803 4804 4805 4806 4807
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4808
	/*
4809 4810 4811
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4812
	 */
A
Al Viro 已提交
4813
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4814
					       &memory_cgrp_subsys);
4815
	ret = -EINVAL;
4816
	if (IS_ERR(cfile_css))
4817
		goto out_put_cfile;
4818 4819
	if (cfile_css != css) {
		css_put(cfile_css);
4820
		goto out_put_cfile;
4821
	}
4822

4823
	ret = event->register_event(memcg, event->eventfd, buf);
4824 4825 4826
	if (ret)
		goto out_put_css;

4827
	vfs_poll(efile.file, &event->pt);
4828

4829
	spin_lock_irq(&memcg->event_list_lock);
4830
	list_add(&event->list, &memcg->event_list);
4831
	spin_unlock_irq(&memcg->event_list_lock);
4832 4833 4834 4835

	fdput(cfile);
	fdput(efile);

4836
	return nbytes;
4837 4838

out_put_css:
4839
	css_put(css);
4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4852
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4853
	{
4854
		.name = "usage_in_bytes",
4855
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4856
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4857
	},
4858 4859
	{
		.name = "max_usage_in_bytes",
4860
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4861
		.write = mem_cgroup_reset,
4862
		.read_u64 = mem_cgroup_read_u64,
4863
	},
B
Balbir Singh 已提交
4864
	{
4865
		.name = "limit_in_bytes",
4866
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4867
		.write = mem_cgroup_write,
4868
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4869
	},
4870 4871 4872
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4873
		.write = mem_cgroup_write,
4874
		.read_u64 = mem_cgroup_read_u64,
4875
	},
B
Balbir Singh 已提交
4876 4877
	{
		.name = "failcnt",
4878
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4879
		.write = mem_cgroup_reset,
4880
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4881
	},
4882 4883
	{
		.name = "stat",
4884
		.seq_show = memcg_stat_show,
4885
	},
4886 4887
	{
		.name = "force_empty",
4888
		.write = mem_cgroup_force_empty_write,
4889
	},
4890 4891 4892 4893 4894
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4895
	{
4896
		.name = "cgroup.event_control",		/* XXX: for compat */
4897
		.write = memcg_write_event_control,
4898
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4899
	},
K
KOSAKI Motohiro 已提交
4900 4901 4902 4903 4904
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4905 4906 4907 4908 4909
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4910 4911
	{
		.name = "oom_control",
4912
		.seq_show = mem_cgroup_oom_control_read,
4913
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4914 4915
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4916 4917 4918
	{
		.name = "pressure_level",
	},
4919 4920 4921
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4922
		.seq_show = memcg_numa_stat_show,
4923 4924
	},
#endif
4925 4926 4927
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4928
		.write = mem_cgroup_write,
4929
		.read_u64 = mem_cgroup_read_u64,
4930 4931 4932 4933
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4934
		.read_u64 = mem_cgroup_read_u64,
4935 4936 4937 4938
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4939
		.write = mem_cgroup_reset,
4940
		.read_u64 = mem_cgroup_read_u64,
4941 4942 4943 4944
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4945
		.write = mem_cgroup_reset,
4946
		.read_u64 = mem_cgroup_read_u64,
4947
	},
4948 4949
#if defined(CONFIG_MEMCG_KMEM) && \
	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4950 4951
	{
		.name = "kmem.slabinfo",
4952
		.seq_show = memcg_slab_show,
4953 4954
	},
#endif
V
Vladimir Davydov 已提交
4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4978
	{ },	/* terminate */
4979
};
4980

4981 4982 4983 4984 4985 4986 4987 4988
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
4989
 * However, there usually are many references to the offline CSS after
4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

5007 5008 5009 5010 5011 5012 5013 5014
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

5015 5016
static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
						  unsigned int n)
5017
{
5018
	refcount_add(n, &memcg->id.ref);
5019 5020
}

5021
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5022
{
5023
	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5024
		mem_cgroup_id_remove(memcg);
5025 5026 5027 5028 5029 5030

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

5031 5032 5033 5034 5035
static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

5048
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5049 5050
{
	struct mem_cgroup_per_node *pn;
5051
	int tmp = node;
5052 5053 5054 5055 5056 5057 5058 5059
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5060 5061
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5062
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5063 5064
	if (!pn)
		return 1;
5065

5066 5067 5068
	pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
						   GFP_KERNEL_ACCOUNT);
	if (!pn->lruvec_stats_percpu) {
5069 5070 5071 5072
		kfree(pn);
		return 1;
	}

5073 5074 5075 5076 5077
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

5078
	memcg->nodeinfo[node] = pn;
5079 5080 5081
	return 0;
}

5082
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5083
{
5084 5085
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
5086 5087 5088
	if (!pn)
		return;

5089
	free_percpu(pn->lruvec_stats_percpu);
5090
	kfree(pn);
5091 5092
}

5093
static void __mem_cgroup_free(struct mem_cgroup *memcg)
5094
{
5095
	int node;
5096

5097
	for_each_node(node)
5098
		free_mem_cgroup_per_node_info(memcg, node);
5099
	free_percpu(memcg->vmstats_percpu);
5100
	kfree(memcg);
5101
}
5102

5103 5104 5105 5106 5107 5108
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
	__mem_cgroup_free(memcg);
}

5109
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
5110
{
5111
	struct mem_cgroup *memcg;
5112
	unsigned int size;
5113
	int node;
5114
	int __maybe_unused i;
5115
	long error = -ENOMEM;
B
Balbir Singh 已提交
5116

5117 5118 5119 5120
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
5121
	if (!memcg)
5122
		return ERR_PTR(error);
5123

5124 5125 5126
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
5127 5128
	if (memcg->id.id < 0) {
		error = memcg->id.id;
5129
		goto fail;
5130
	}
5131

5132 5133
	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
						 GFP_KERNEL_ACCOUNT);
5134
	if (!memcg->vmstats_percpu)
5135
		goto fail;
5136

B
Bob Liu 已提交
5137
	for_each_node(node)
5138
		if (alloc_mem_cgroup_per_node_info(memcg, node))
5139
			goto fail;
5140

5141 5142
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
5143

5144
	INIT_WORK(&memcg->high_work, high_work_func);
5145 5146 5147
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5148
	vmpressure_init(&memcg->vmpressure);
5149 5150
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
5151
	memcg->socket_pressure = jiffies;
5152
#ifdef CONFIG_MEMCG_KMEM
V
Vladimir Davydov 已提交
5153
	memcg->kmemcg_id = -1;
R
Roman Gushchin 已提交
5154
	INIT_LIST_HEAD(&memcg->objcg_list);
V
Vladimir Davydov 已提交
5155
#endif
5156 5157
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
5158 5159 5160
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		memcg->cgwb_frn[i].done =
			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5161 5162 5163 5164 5165
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
	memcg->deferred_split_queue.split_queue_len = 0;
5166
#endif
5167
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5168 5169
	return memcg;
fail:
5170
	mem_cgroup_id_remove(memcg);
5171
	__mem_cgroup_free(memcg);
5172
	return ERR_PTR(error);
5173 5174
}

5175 5176
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5177
{
5178
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5179
	struct mem_cgroup *memcg, *old_memcg;
5180
	long error = -ENOMEM;
5181

5182
	old_memcg = set_active_memcg(parent);
5183
	memcg = mem_cgroup_alloc();
5184
	set_active_memcg(old_memcg);
5185 5186
	if (IS_ERR(memcg))
		return ERR_CAST(memcg);
5187

5188
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5189
	memcg->soft_limit = PAGE_COUNTER_MAX;
5190
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5191 5192 5193
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
5194

5195
		page_counter_init(&memcg->memory, &parent->memory);
5196
		page_counter_init(&memcg->swap, &parent->swap);
5197
		page_counter_init(&memcg->kmem, &parent->kmem);
5198
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5199
	} else {
5200 5201 5202 5203
		page_counter_init(&memcg->memory, NULL);
		page_counter_init(&memcg->swap, NULL);
		page_counter_init(&memcg->kmem, NULL);
		page_counter_init(&memcg->tcpmem, NULL);
5204

5205 5206 5207 5208
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

5209
	/* The following stuff does not apply to the root */
5210
	error = memcg_online_kmem(memcg);
5211 5212
	if (error)
		goto fail;
5213

5214
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5215
		static_branch_inc(&memcg_sockets_enabled_key);
5216

5217 5218
	return &memcg->css;
fail:
5219
	mem_cgroup_id_remove(memcg);
5220
	mem_cgroup_free(memcg);
5221
	return ERR_PTR(error);
5222 5223
}

5224
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5225
{
5226 5227
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5228
	/*
5229
	 * A memcg must be visible for expand_shrinker_info()
5230 5231 5232
	 * by the time the maps are allocated. So, we allocate maps
	 * here, when for_each_mem_cgroup() can't skip it.
	 */
5233
	if (alloc_shrinker_info(memcg)) {
5234 5235 5236 5237
		mem_cgroup_id_remove(memcg);
		return -ENOMEM;
	}

5238
	/* Online state pins memcg ID, memcg ID pins CSS */
5239
	refcount_set(&memcg->id.ref, 1);
5240
	css_get(css);
5241 5242 5243 5244

	if (unlikely(mem_cgroup_is_root(memcg)))
		queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
				   2UL*HZ);
5245
	return 0;
B
Balbir Singh 已提交
5246 5247
}

5248
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5249
{
5250
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5251
	struct mem_cgroup_event *event, *tmp;
5252 5253 5254 5255 5256 5257

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
5258
	spin_lock_irq(&memcg->event_list_lock);
5259
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5260 5261 5262
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
5263
	spin_unlock_irq(&memcg->event_list_lock);
5264

R
Roman Gushchin 已提交
5265
	page_counter_set_min(&memcg->memory, 0);
5266
	page_counter_set_low(&memcg->memory, 0);
5267

5268
	memcg_offline_kmem(memcg);
5269
	reparent_shrinker_deferred(memcg);
5270
	wb_memcg_offline(memcg);
5271

5272 5273
	drain_all_stock(memcg);

5274
	mem_cgroup_id_put(memcg);
5275 5276
}

5277 5278 5279 5280 5281 5282 5283
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

5284
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
5285
{
5286
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5287
	int __maybe_unused i;
5288

5289 5290 5291 5292
#ifdef CONFIG_CGROUP_WRITEBACK
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
#endif
5293
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5294
		static_branch_dec(&memcg_sockets_enabled_key);
5295

5296
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
5297
		static_branch_dec(&memcg_sockets_enabled_key);
5298

5299 5300 5301
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
5302
	free_shrinker_info(memcg);
5303
	memcg_free_kmem(memcg);
5304
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
5305 5306
}

5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5324 5325 5326 5327
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
R
Roman Gushchin 已提交
5328
	page_counter_set_min(&memcg->memory, 0);
5329
	page_counter_set_low(&memcg->memory, 0);
5330
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5331
	memcg->soft_limit = PAGE_COUNTER_MAX;
5332
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5333
	memcg_wb_domain_size_changed(memcg);
5334 5335
}

5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350
void mem_cgroup_flush_stats(void)
{
	if (!spin_trylock(&stats_flush_lock))
		return;

	cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
	spin_unlock(&stats_flush_lock);
}

static void flush_memcg_stats_dwork(struct work_struct *w)
{
	mem_cgroup_flush_stats();
	queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 2UL*HZ);
}

5351 5352 5353 5354 5355 5356
static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	struct memcg_vmstats_percpu *statc;
	long delta, v;
5357
	int i, nid;
5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404

	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);

	for (i = 0; i < MEMCG_NR_STAT; i++) {
		/*
		 * Collect the aggregated propagation counts of groups
		 * below us. We're in a per-cpu loop here and this is
		 * a global counter, so the first cycle will get them.
		 */
		delta = memcg->vmstats.state_pending[i];
		if (delta)
			memcg->vmstats.state_pending[i] = 0;

		/* Add CPU changes on this level since the last flush */
		v = READ_ONCE(statc->state[i]);
		if (v != statc->state_prev[i]) {
			delta += v - statc->state_prev[i];
			statc->state_prev[i] = v;
		}

		if (!delta)
			continue;

		/* Aggregate counts on this level and propagate upwards */
		memcg->vmstats.state[i] += delta;
		if (parent)
			parent->vmstats.state_pending[i] += delta;
	}

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
		delta = memcg->vmstats.events_pending[i];
		if (delta)
			memcg->vmstats.events_pending[i] = 0;

		v = READ_ONCE(statc->events[i]);
		if (v != statc->events_prev[i]) {
			delta += v - statc->events_prev[i];
			statc->events_prev[i] = v;
		}

		if (!delta)
			continue;

		memcg->vmstats.events[i] += delta;
		if (parent)
			parent->vmstats.events_pending[i] += delta;
	}
5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434

	for_each_node_state(nid, N_MEMORY) {
		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
		struct mem_cgroup_per_node *ppn = NULL;
		struct lruvec_stats_percpu *lstatc;

		if (parent)
			ppn = parent->nodeinfo[nid];

		lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);

		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
			delta = pn->lruvec_stats.state_pending[i];
			if (delta)
				pn->lruvec_stats.state_pending[i] = 0;

			v = READ_ONCE(lstatc->state[i]);
			if (v != lstatc->state_prev[i]) {
				delta += v - lstatc->state_prev[i];
				lstatc->state_prev[i] = v;
			}

			if (!delta)
				continue;

			pn->lruvec_stats.state[i] += delta;
			if (ppn)
				ppn->lruvec_stats.state_pending[i] += delta;
		}
	}
5435 5436
}

5437
#ifdef CONFIG_MMU
5438
/* Handlers for move charge at task migration. */
5439
static int mem_cgroup_do_precharge(unsigned long count)
5440
{
5441
	int ret;
5442

5443 5444
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5445
	if (!ret) {
5446 5447 5448
		mc.precharge += count;
		return ret;
	}
5449

5450
	/* Try charges one by one with reclaim, but do not retry */
5451
	while (count--) {
5452
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5453 5454
		if (ret)
			return ret;
5455
		mc.precharge++;
5456
		cond_resched();
5457
	}
5458
	return 0;
5459 5460 5461 5462
}

union mc_target {
	struct page	*page;
5463
	swp_entry_t	ent;
5464 5465 5466
};

enum mc_target_type {
5467
	MC_TARGET_NONE = 0,
5468
	MC_TARGET_PAGE,
5469
	MC_TARGET_SWAP,
5470
	MC_TARGET_DEVICE,
5471 5472
};

D
Daisuke Nishimura 已提交
5473 5474
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5475
{
5476
	struct page *page = vm_normal_page(vma, addr, ptent);
5477

D
Daisuke Nishimura 已提交
5478 5479 5480
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
5481
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5482
			return NULL;
5483 5484 5485 5486
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
5487 5488 5489 5490 5491 5492
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5493
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
5494
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5495
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
5496 5497 5498 5499
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

5500
	if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5501
		return NULL;
5502 5503 5504 5505 5506 5507 5508

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
5509
		page = pfn_swap_entry_to_page(ent);
5510 5511 5512 5513 5514 5515 5516 5517 5518
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

5519 5520 5521
	if (non_swap_entry(ent))
		return NULL;

5522 5523 5524 5525
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5526
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5527
	entry->val = ent.val;
D
Daisuke Nishimura 已提交
5528 5529 5530

	return page;
}
5531 5532
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5533
			pte_t ptent, swp_entry_t *entry)
5534 5535 5536 5537
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5538

5539 5540 5541 5542 5543
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	if (!vma->vm_file) /* anonymous vma */
		return NULL;
5544
	if (!(mc.flags & MOVE_FILE))
5545 5546 5547
		return NULL;

	/* page is moved even if it's not RSS of this task(page-faulted). */
5548
	/* shmem/tmpfs may report page out on swap: account for that too. */
5549 5550
	return find_get_incore_page(vma->vm_file->f_mapping,
			linear_page_index(vma, addr));
5551 5552
}

5553 5554 5555
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
5556
 * @compound: charge the page as compound or small page
5557 5558 5559
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
5560
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5561 5562 5563 5564 5565
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
5566
				   bool compound,
5567 5568 5569
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
5570 5571
	struct lruvec *from_vec, *to_vec;
	struct pglist_data *pgdat;
5572
	unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5573
	int nid, ret;
5574 5575 5576

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
5577
	VM_BUG_ON(compound && !PageTransHuge(page));
5578 5579

	/*
5580
	 * Prevent mem_cgroup_migrate() from looking at
5581
	 * page's memory cgroup of its source page while we change it.
5582
	 */
5583
	ret = -EBUSY;
5584 5585 5586 5587
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
5588
	if (page_memcg(page) != from)
5589 5590
		goto out_unlock;

5591
	pgdat = page_pgdat(page);
5592 5593
	from_vec = mem_cgroup_lruvec(from, pgdat);
	to_vec = mem_cgroup_lruvec(to, pgdat);
5594

5595
	lock_page_memcg(page);
5596

5597 5598 5599 5600
	if (PageAnon(page)) {
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5601
			if (PageTransHuge(page)) {
5602 5603 5604 5605
				__mod_lruvec_state(from_vec, NR_ANON_THPS,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_ANON_THPS,
						   nr_pages);
5606
			}
5607 5608
		}
	} else {
5609 5610 5611 5612 5613 5614 5615 5616
		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);

		if (PageSwapBacked(page)) {
			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
		}

5617 5618 5619 5620
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
		}
5621

5622 5623
		if (PageDirty(page)) {
			struct address_space *mapping = page_mapping(page);
5624

5625
			if (mapping_can_writeback(mapping)) {
5626 5627 5628 5629 5630
				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
						   nr_pages);
			}
5631 5632 5633
		}
	}

5634
	if (PageWriteback(page)) {
5635 5636
		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5637 5638 5639
	}

	/*
5640 5641
	 * All state has been migrated, let's switch to the new memcg.
	 *
5642
	 * It is safe to change page's memcg here because the page
5643 5644
	 * is referenced, charged, isolated, and locked: we can't race
	 * with (un)charging, migration, LRU putback, or anything else
5645
	 * that would rely on a stable page's memory cgroup.
5646 5647
	 *
	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5648
	 * to save space. As soon as we switch page's memory cgroup to a
5649 5650
	 * new memcg that isn't locked, the above state can change
	 * concurrently again. Make sure we're truly done with it.
5651
	 */
5652
	smp_mb();
5653

5654 5655 5656
	css_get(&to->css);
	css_put(&from->css);

5657
	page->memcg_data = (unsigned long)to;
5658

5659
	__folio_memcg_unlock(from);
5660 5661

	ret = 0;
5662
	nid = page_to_nid(page);
5663 5664

	local_irq_disable();
5665
	mem_cgroup_charge_statistics(to, nr_pages);
5666
	memcg_check_events(to, nid);
5667
	mem_cgroup_charge_statistics(from, -nr_pages);
5668
	memcg_check_events(from, nid);
5669 5670 5671 5672 5673 5674 5675
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5691 5692
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
 *     (so ZONE_DEVICE page and thus not on the lru).
5693 5694 5695
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
5696 5697
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5698 5699 5700 5701
 *
 * Called with pte lock held.
 */

5702
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5703 5704 5705
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
5706
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5707 5708 5709 5710 5711
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
5712
		page = mc_handle_swap_pte(vma, ptent, &ent);
5713
	else if (pte_none(ptent))
5714
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5715 5716

	if (!page && !ent.val)
5717
		return ret;
5718 5719
	if (page) {
		/*
5720
		 * Do only loose check w/o serialization.
5721
		 * mem_cgroup_move_account() checks the page is valid or
5722
		 * not under LRU exclusion.
5723
		 */
5724
		if (page_memcg(page) == mc.from) {
5725
			ret = MC_TARGET_PAGE;
5726
			if (is_device_private_page(page))
5727
				ret = MC_TARGET_DEVICE;
5728 5729 5730 5731 5732 5733
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
5734 5735 5736 5737 5738
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
5739
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5740 5741 5742
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5743 5744 5745 5746
	}
	return ret;
}

5747 5748
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
5749 5750
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
5751 5752 5753 5754 5755 5756 5757 5758
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

5759 5760 5761 5762 5763
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
5764
	page = pmd_page(pmd);
5765
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5766
	if (!(mc.flags & MOVE_ANON))
5767
		return ret;
5768
	if (page_memcg(page) == mc.from) {
5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5785 5786 5787 5788
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
5789
	struct vm_area_struct *vma = walk->vma;
5790 5791 5792
	pte_t *pte;
	spinlock_t *ptl;

5793 5794
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5795 5796
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5797 5798
		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
		 * this might change.
5799
		 */
5800 5801
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5802
		spin_unlock(ptl);
5803
		return 0;
5804
	}
5805

5806 5807
	if (pmd_trans_unstable(pmd))
		return 0;
5808 5809
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5810
		if (get_mctgt_type(vma, addr, *pte, NULL))
5811 5812 5813 5814
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5815 5816 5817
	return 0;
}

5818 5819 5820 5821
static const struct mm_walk_ops precharge_walk_ops = {
	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
};

5822 5823 5824 5825
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

5826
	mmap_read_lock(mm);
5827
	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5828
	mmap_read_unlock(mm);
5829 5830 5831 5832 5833 5834 5835 5836 5837

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5838 5839 5840 5841 5842
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5843 5844
}

5845 5846
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5847
{
5848 5849 5850
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5851
	/* we must uncharge all the leftover precharges from mc.to */
5852
	if (mc.precharge) {
5853
		cancel_charge(mc.to, mc.precharge);
5854 5855 5856 5857 5858 5859 5860
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5861
		cancel_charge(mc.from, mc.moved_charge);
5862
		mc.moved_charge = 0;
5863
	}
5864 5865 5866
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5867
		if (!mem_cgroup_is_root(mc.from))
5868
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5869

5870 5871
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

5872
		/*
5873 5874
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5875
		 */
5876
		if (!mem_cgroup_is_root(mc.to))
5877 5878
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5879 5880
		mc.moved_swap = 0;
	}
5881 5882 5883 5884 5885 5886 5887
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
5888 5889
	struct mm_struct *mm = mc.mm;

5890 5891 5892 5893 5894 5895
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5896
	spin_lock(&mc.lock);
5897 5898
	mc.from = NULL;
	mc.to = NULL;
5899
	mc.mm = NULL;
5900
	spin_unlock(&mc.lock);
5901 5902

	mmput(mm);
5903 5904
}

5905
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5906
{
5907
	struct cgroup_subsys_state *css;
5908
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5909
	struct mem_cgroup *from;
5910
	struct task_struct *leader, *p;
5911
	struct mm_struct *mm;
5912
	unsigned long move_flags;
5913
	int ret = 0;
5914

5915 5916
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5917 5918
		return 0;

5919 5920 5921 5922 5923 5924 5925
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
5926
	cgroup_taskset_for_each_leader(leader, css, tset) {
5927 5928
		WARN_ON_ONCE(p);
		p = leader;
5929
		memcg = mem_cgroup_from_css(css);
5930 5931 5932 5933
	}
	if (!p)
		return 0;

5934
	/*
I
Ingo Molnar 已提交
5935
	 * We are now committed to this value whatever it is. Changes in this
5936 5937 5938 5939 5940 5941 5942
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
5959
		mc.mm = mm;
5960 5961 5962 5963 5964 5965 5966 5967 5968
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
5969 5970
	} else {
		mmput(mm);
5971 5972 5973 5974
	}
	return ret;
}

5975
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5976
{
5977 5978
	if (mc.to)
		mem_cgroup_clear_mc();
5979 5980
}

5981 5982 5983
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5984
{
5985
	int ret = 0;
5986
	struct vm_area_struct *vma = walk->vma;
5987 5988
	pte_t *pte;
	spinlock_t *ptl;
5989 5990 5991
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5992

5993 5994
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5995
		if (mc.precharge < HPAGE_PMD_NR) {
5996
			spin_unlock(ptl);
5997 5998 5999 6000 6001 6002
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
6003
				if (!mem_cgroup_move_account(page, true,
6004
							     mc.from, mc.to)) {
6005 6006 6007 6008 6009 6010
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
6011 6012 6013 6014 6015 6016 6017 6018
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
6019
		}
6020
		spin_unlock(ptl);
6021
		return 0;
6022 6023
	}

6024 6025
	if (pmd_trans_unstable(pmd))
		return 0;
6026 6027 6028 6029
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6030
		bool device = false;
6031
		swp_entry_t ent;
6032 6033 6034 6035

		if (!mc.precharge)
			break;

6036
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6037 6038
		case MC_TARGET_DEVICE:
			device = true;
J
Joe Perches 已提交
6039
			fallthrough;
6040 6041
		case MC_TARGET_PAGE:
			page = target.page;
6042 6043 6044 6045 6046 6047 6048 6049
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
6050
			if (!device && isolate_lru_page(page))
6051
				goto put;
6052 6053
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
6054
				mc.precharge--;
6055 6056
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6057
			}
6058 6059
			if (!device)
				putback_lru_page(page);
6060
put:			/* get_mctgt_type() gets the page */
6061 6062
			put_page(page);
			break;
6063 6064
		case MC_TARGET_SWAP:
			ent = target.ent;
6065
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6066
				mc.precharge--;
6067 6068
				mem_cgroup_id_get_many(mc.to, 1);
				/* we fixup other refcnts and charges later. */
6069 6070
				mc.moved_swap++;
			}
6071
			break;
6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6086
		ret = mem_cgroup_do_precharge(1);
6087 6088 6089 6090 6091 6092 6093
		if (!ret)
			goto retry;
	}

	return ret;
}

6094 6095 6096 6097
static const struct mm_walk_ops charge_walk_ops = {
	.pmd_entry	= mem_cgroup_move_charge_pte_range,
};

6098
static void mem_cgroup_move_charge(void)
6099 6100
{
	lru_add_drain_all();
6101
	/*
6102 6103 6104
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
6105 6106 6107
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
6108
retry:
6109
	if (unlikely(!mmap_read_trylock(mc.mm))) {
6110
		/*
6111
		 * Someone who are holding the mmap_lock might be waiting in
6112 6113 6114 6115 6116 6117 6118 6119 6120
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6121 6122 6123 6124
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
6125 6126
	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
			NULL);
6127

6128
	mmap_read_unlock(mc.mm);
6129
	atomic_dec(&mc.from->moving_account);
6130 6131
}

6132
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
6133
{
6134 6135
	if (mc.to) {
		mem_cgroup_move_charge();
6136
		mem_cgroup_clear_mc();
6137
	}
B
Balbir Singh 已提交
6138
}
6139
#else	/* !CONFIG_MMU */
6140
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6141 6142 6143
{
	return 0;
}
6144
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6145 6146
{
}
6147
static void mem_cgroup_move_task(void)
6148 6149 6150
{
}
#endif
B
Balbir Singh 已提交
6151

6152 6153 6154 6155 6156 6157 6158 6159 6160 6161
static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
{
	if (value == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);

	return 0;
}

6162 6163 6164
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
6165 6166 6167
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6168 6169
}

R
Roman Gushchin 已提交
6170 6171
static int memory_min_show(struct seq_file *m, void *v)
{
6172 6173
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
R
Roman Gushchin 已提交
6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

6193 6194
static int memory_low_show(struct seq_file *m, void *v)
{
6195 6196
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6197 6198 6199 6200 6201 6202 6203 6204 6205 6206
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
6207
	err = page_counter_memparse(buf, "max", &low);
6208 6209 6210
	if (err)
		return err;

6211
	page_counter_set_low(&memcg->memory, low);
6212 6213 6214 6215 6216 6217

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
6218 6219
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6220 6221 6222 6223 6224 6225
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6226
	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6227
	bool drained = false;
6228 6229 6230 6231
	unsigned long high;
	int err;

	buf = strstrip(buf);
6232
	err = page_counter_memparse(buf, "max", &high);
6233 6234 6235
	if (err)
		return err;

6236 6237
	page_counter_set_high(&memcg->memory, high);

6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259
	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);
		unsigned long reclaimed;

		if (nr_pages <= high)
			break;

		if (signal_pending(current))
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
							 GFP_KERNEL, true);

		if (!reclaimed && !nr_retries--)
			break;
	}
6260

6261
	memcg_wb_domain_size_changed(memcg);
6262 6263 6264 6265 6266
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
6267 6268
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6269 6270 6271 6272 6273 6274
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6275
	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6276
	bool drained = false;
6277 6278 6279 6280
	unsigned long max;
	int err;

	buf = strstrip(buf);
6281
	err = page_counter_memparse(buf, "max", &max);
6282 6283 6284
	if (err)
		return err;

6285
	xchg(&memcg->memory.max, max);
6286 6287 6288 6289 6290 6291 6292

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

6293
		if (signal_pending(current))
6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

6309
		memcg_memory_event(memcg, MEMCG_OOM);
6310 6311 6312
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
6313

6314
	memcg_wb_domain_size_changed(memcg);
6315 6316 6317
	return nbytes;
}

6318 6319 6320 6321 6322 6323 6324 6325 6326 6327
static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
{
	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&events[MEMCG_OOM_KILL]));
}

6328 6329
static int memory_events_show(struct seq_file *m, void *v)
{
6330
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6331

6332 6333 6334 6335 6336 6337 6338
	__memory_events_show(m, memcg->memory_events);
	return 0;
}

static int memory_events_local_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6339

6340
	__memory_events_show(m, memcg->memory_events_local);
6341 6342 6343
	return 0;
}

6344 6345
static int memory_stat_show(struct seq_file *m, void *v)
{
6346
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6347
	char *buf;
6348

6349 6350 6351 6352 6353
	buf = memory_stat_format(memcg);
	if (!buf)
		return -ENOMEM;
	seq_puts(m, buf);
	kfree(buf);
6354 6355 6356
	return 0;
}

6357
#ifdef CONFIG_NUMA
6358 6359 6360 6361 6362 6363
static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
						     int item)
{
	return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
}

6364 6365 6366 6367 6368
static int memory_numa_stat_show(struct seq_file *m, void *v)
{
	int i;
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);

6369 6370
	cgroup_rstat_flush(memcg->css.cgroup);

6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382
	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
		int nid;

		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
			continue;

		seq_printf(m, "%s", memory_stats[i].name);
		for_each_node_state(nid, N_MEMORY) {
			u64 size;
			struct lruvec *lruvec;

			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6383 6384
			size = lruvec_page_state_output(lruvec,
							memory_stats[i].idx);
6385 6386 6387 6388 6389 6390 6391 6392 6393
			seq_printf(m, " N%d=%llu", nid, size);
		}
		seq_putc(m, '\n');
	}

	return 0;
}
#endif

6394 6395
static int memory_oom_group_show(struct seq_file *m, void *v)
{
6396
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424

	seq_printf(m, "%d\n", memcg->oom_group);

	return 0;
}

static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
				      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	int ret, oom_group;

	buf = strstrip(buf);
	if (!buf)
		return -EINVAL;

	ret = kstrtoint(buf, 0, &oom_group);
	if (ret)
		return ret;

	if (oom_group != 0 && oom_group != 1)
		return -EINVAL;

	memcg->oom_group = oom_group;

	return nbytes;
}

6425 6426 6427
static struct cftype memory_files[] = {
	{
		.name = "current",
6428
		.flags = CFTYPE_NOT_ON_ROOT,
6429 6430
		.read_u64 = memory_current_read,
	},
R
Roman Gushchin 已提交
6431 6432 6433 6434 6435 6436
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
6458
		.file_offset = offsetof(struct mem_cgroup, events_file),
6459 6460
		.seq_show = memory_events_show,
	},
6461 6462 6463 6464 6465 6466
	{
		.name = "events.local",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, events_local_file),
		.seq_show = memory_events_local_show,
	},
6467 6468 6469 6470
	{
		.name = "stat",
		.seq_show = memory_stat_show,
	},
6471 6472 6473 6474 6475 6476
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.seq_show = memory_numa_stat_show,
	},
#endif
6477 6478 6479 6480 6481 6482
	{
		.name = "oom.group",
		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
		.seq_show = memory_oom_group_show,
		.write = memory_oom_group_write,
	},
6483 6484 6485
	{ }	/* terminate */
};

6486
struct cgroup_subsys memory_cgrp_subsys = {
6487
	.css_alloc = mem_cgroup_css_alloc,
6488
	.css_online = mem_cgroup_css_online,
6489
	.css_offline = mem_cgroup_css_offline,
6490
	.css_released = mem_cgroup_css_released,
6491
	.css_free = mem_cgroup_css_free,
6492
	.css_reset = mem_cgroup_css_reset,
6493
	.css_rstat_flush = mem_cgroup_css_rstat_flush,
6494 6495
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
6496
	.post_attach = mem_cgroup_move_task,
6497 6498
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
6499
	.early_init = 0,
B
Balbir Singh 已提交
6500
};
6501

6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531
/*
 * This function calculates an individual cgroup's effective
 * protection which is derived from its own memory.min/low, its
 * parent's and siblings' settings, as well as the actual memory
 * distribution in the tree.
 *
 * The following rules apply to the effective protection values:
 *
 * 1. At the first level of reclaim, effective protection is equal to
 *    the declared protection in memory.min and memory.low.
 *
 * 2. To enable safe delegation of the protection configuration, at
 *    subsequent levels the effective protection is capped to the
 *    parent's effective protection.
 *
 * 3. To make complex and dynamic subtrees easier to configure, the
 *    user is allowed to overcommit the declared protection at a given
 *    level. If that is the case, the parent's effective protection is
 *    distributed to the children in proportion to how much protection
 *    they have declared and how much of it they are utilizing.
 *
 *    This makes distribution proportional, but also work-conserving:
 *    if one cgroup claims much more protection than it uses memory,
 *    the unused remainder is available to its siblings.
 *
 * 4. Conversely, when the declared protection is undercommitted at a
 *    given level, the distribution of the larger parental protection
 *    budget is NOT proportional. A cgroup's protection from a sibling
 *    is capped to its own memory.min/low setting.
 *
6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543
 * 5. However, to allow protecting recursive subtrees from each other
 *    without having to declare each individual cgroup's fixed share
 *    of the ancestor's claim to protection, any unutilized -
 *    "floating" - protection from up the tree is distributed in
 *    proportion to each cgroup's *usage*. This makes the protection
 *    neutral wrt sibling cgroups and lets them compete freely over
 *    the shared parental protection budget, but it protects the
 *    subtree as a whole from neighboring subtrees.
 *
 * Note that 4. and 5. are not in conflict: 4. is about protecting
 * against immediate siblings whereas 5. is about protecting against
 * neighboring subtrees.
6544 6545
 */
static unsigned long effective_protection(unsigned long usage,
6546
					  unsigned long parent_usage,
6547 6548 6549 6550 6551
					  unsigned long setting,
					  unsigned long parent_effective,
					  unsigned long siblings_protected)
{
	unsigned long protected;
6552
	unsigned long ep;
6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582

	protected = min(usage, setting);
	/*
	 * If all cgroups at this level combined claim and use more
	 * protection then what the parent affords them, distribute
	 * shares in proportion to utilization.
	 *
	 * We are using actual utilization rather than the statically
	 * claimed protection in order to be work-conserving: claimed
	 * but unused protection is available to siblings that would
	 * otherwise get a smaller chunk than what they claimed.
	 */
	if (siblings_protected > parent_effective)
		return protected * parent_effective / siblings_protected;

	/*
	 * Ok, utilized protection of all children is within what the
	 * parent affords them, so we know whatever this child claims
	 * and utilizes is effectively protected.
	 *
	 * If there is unprotected usage beyond this value, reclaim
	 * will apply pressure in proportion to that amount.
	 *
	 * If there is unutilized protection, the cgroup will be fully
	 * shielded from reclaim, but we do return a smaller value for
	 * protection than what the group could enjoy in theory. This
	 * is okay. With the overcommit distribution above, effective
	 * protection is always dependent on how memory is actually
	 * consumed among the siblings anyway.
	 */
6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595
	ep = protected;

	/*
	 * If the children aren't claiming (all of) the protection
	 * afforded to them by the parent, distribute the remainder in
	 * proportion to the (unprotected) memory of each cgroup. That
	 * way, cgroups that aren't explicitly prioritized wrt each
	 * other compete freely over the allowance, but they are
	 * collectively protected from neighboring trees.
	 *
	 * We're using unprotected memory for the weight so that if
	 * some cgroups DO claim explicit protection, we don't protect
	 * the same bytes twice.
6596 6597 6598 6599
	 *
	 * Check both usage and parent_usage against the respective
	 * protected values. One should imply the other, but they
	 * aren't read atomically - make sure the division is sane.
6600 6601 6602
	 */
	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
		return ep;
6603 6604 6605
	if (parent_effective > siblings_protected &&
	    parent_usage > siblings_protected &&
	    usage > protected) {
6606 6607 6608 6609 6610 6611 6612 6613 6614 6615
		unsigned long unclaimed;

		unclaimed = parent_effective - siblings_protected;
		unclaimed *= usage - protected;
		unclaimed /= parent_usage - siblings_protected;

		ep += unclaimed;
	}

	return ep;
6616 6617
}

6618
/**
6619
 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6620
 * @root: the top ancestor of the sub-tree being checked
6621 6622
 * @memcg: the memory cgroup to check
 *
6623 6624
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
6625
 */
6626 6627
void mem_cgroup_calculate_protection(struct mem_cgroup *root,
				     struct mem_cgroup *memcg)
6628
{
6629
	unsigned long usage, parent_usage;
6630 6631
	struct mem_cgroup *parent;

6632
	if (mem_cgroup_disabled())
6633
		return;
6634

6635 6636
	if (!root)
		root = root_mem_cgroup;
6637 6638 6639 6640 6641 6642 6643 6644

	/*
	 * Effective values of the reclaim targets are ignored so they
	 * can be stale. Have a look at mem_cgroup_protection for more
	 * details.
	 * TODO: calculation should be more robust so that we do not need
	 * that special casing.
	 */
6645
	if (memcg == root)
6646
		return;
6647

6648
	usage = page_counter_read(&memcg->memory);
R
Roman Gushchin 已提交
6649
	if (!usage)
6650
		return;
R
Roman Gushchin 已提交
6651 6652

	parent = parent_mem_cgroup(memcg);
6653 6654
	/* No parent means a non-hierarchical mode on v1 memcg */
	if (!parent)
6655
		return;
6656

6657
	if (parent == root) {
6658
		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6659
		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6660
		return;
R
Roman Gushchin 已提交
6661 6662
	}

6663 6664
	parent_usage = page_counter_read(&parent->memory);

6665
	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6666 6667
			READ_ONCE(memcg->memory.min),
			READ_ONCE(parent->memory.emin),
6668
			atomic_long_read(&parent->memory.children_min_usage)));
6669

6670
	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6671 6672
			READ_ONCE(memcg->memory.low),
			READ_ONCE(parent->memory.elow),
6673
			atomic_long_read(&parent->memory.children_low_usage)));
6674 6675
}

6676 6677
static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
			gfp_t gfp)
6678
{
6679
	long nr_pages = folio_nr_pages(folio);
6680 6681 6682 6683 6684 6685 6686
	int ret;

	ret = try_charge(memcg, gfp, nr_pages);
	if (ret)
		goto out;

	css_get(&memcg->css);
6687
	commit_charge(folio, memcg);
6688 6689

	local_irq_disable();
6690
	mem_cgroup_charge_statistics(memcg, nr_pages);
6691
	memcg_check_events(memcg, folio_nid(folio));
6692 6693 6694 6695 6696
	local_irq_enable();
out:
	return ret;
}

6697
int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
6698
{
6699 6700
	struct mem_cgroup *memcg;
	int ret;
6701

6702
	memcg = get_mem_cgroup_from_mm(mm);
6703
	ret = charge_memcg(folio, memcg, gfp);
6704
	css_put(&memcg->css);
6705

6706 6707
	return ret;
}
6708

6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723
/**
 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp: reclaim mode
 * @entry: swap entry for which the page is allocated
 *
 * This function charges a page allocated for swapin. Please call this before
 * adding the page to the swapcache.
 *
 * Returns 0 on success. Otherwise, an error code is returned.
 */
int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
				  gfp_t gfp, swp_entry_t entry)
{
6724
	struct folio *folio = page_folio(page);
6725 6726 6727
	struct mem_cgroup *memcg;
	unsigned short id;
	int ret;
6728

6729 6730
	if (mem_cgroup_disabled())
		return 0;
6731

6732 6733 6734 6735 6736 6737
	id = lookup_swap_cgroup_id(entry);
	rcu_read_lock();
	memcg = mem_cgroup_from_id(id);
	if (!memcg || !css_tryget_online(&memcg->css))
		memcg = get_mem_cgroup_from_mm(mm);
	rcu_read_unlock();
6738

6739
	ret = charge_memcg(folio, memcg, gfp);
6740

6741 6742 6743
	css_put(&memcg->css);
	return ret;
}
6744

6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755
/*
 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
 * @entry: swap entry for which the page is charged
 *
 * Call this function after successfully adding the charged page to swapcache.
 *
 * Note: This function assumes the page for which swap slot is being uncharged
 * is order 0 page.
 */
void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
{
6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767
	/*
	 * Cgroup1's unified memory+swap counter has been charged with the
	 * new swapcache page, finish the transfer by uncharging the swap
	 * slot. The swap slot would also get uncharged when it dies, but
	 * it can stick around indefinitely and we'd count the page twice
	 * the entire time.
	 *
	 * Cgroup2 has separate resource counters for memory and swap,
	 * so this is a non-issue here. Memory and swap charge lifetimes
	 * correspond 1:1 to page and swap slot lifetimes: we charge the
	 * page to memory here, and uncharge swap when the slot is freed.
	 */
6768
	if (!mem_cgroup_disabled() && do_memsw_account()) {
6769 6770 6771 6772 6773
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
6774
		mem_cgroup_uncharge_swap(entry, 1);
6775
	}
6776 6777
}

6778 6779
struct uncharge_gather {
	struct mem_cgroup *memcg;
6780
	unsigned long nr_memory;
6781 6782
	unsigned long pgpgout;
	unsigned long nr_kmem;
6783
	int nid;
6784 6785 6786
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6787
{
6788 6789 6790 6791 6792
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
6793 6794
	unsigned long flags;

6795 6796
	if (ug->nr_memory) {
		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6797
		if (do_memsw_account())
6798
			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6799 6800 6801
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
6802
	}
6803 6804

	local_irq_save(flags);
6805
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6806
	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6807
	memcg_check_events(ug->memcg, ug->nid);
6808
	local_irq_restore(flags);
6809

6810
	/* drop reference from uncharge_folio */
6811
	css_put(&ug->memcg->css);
6812 6813
}

6814
static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
6815
{
6816
	long nr_pages;
6817 6818
	struct mem_cgroup *memcg;
	struct obj_cgroup *objcg;
6819
	bool use_objcg = folio_memcg_kmem(folio);
6820

6821
	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
6822 6823 6824

	/*
	 * Nobody should be changing or seriously looking at
6825 6826
	 * folio memcg or objcg at this point, we have fully
	 * exclusive access to the folio.
6827
	 */
6828
	if (use_objcg) {
6829
		objcg = __folio_objcg(folio);
6830 6831 6832 6833 6834 6835
		/*
		 * This get matches the put at the end of the function and
		 * kmem pages do not hold memcg references anymore.
		 */
		memcg = get_mem_cgroup_from_objcg(objcg);
	} else {
6836
		memcg = __folio_memcg(folio);
6837
	}
6838

6839 6840 6841 6842
	if (!memcg)
		return;

	if (ug->memcg != memcg) {
6843 6844 6845 6846
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
6847
		ug->memcg = memcg;
6848
		ug->nid = folio_nid(folio);
6849 6850

		/* pairs with css_put in uncharge_batch */
6851
		css_get(&memcg->css);
6852 6853
	}

6854
	nr_pages = folio_nr_pages(folio);
6855

6856
	if (use_objcg) {
6857
		ug->nr_memory += nr_pages;
6858
		ug->nr_kmem += nr_pages;
6859

6860
		folio->memcg_data = 0;
6861 6862 6863 6864 6865
		obj_cgroup_put(objcg);
	} else {
		/* LRU pages aren't accounted at the root level */
		if (!mem_cgroup_is_root(memcg))
			ug->nr_memory += nr_pages;
6866
		ug->pgpgout++;
6867

6868
		folio->memcg_data = 0;
6869 6870 6871
	}

	css_put(&memcg->css);
6872 6873
}

6874
void __mem_cgroup_uncharge(struct folio *folio)
6875
{
6876 6877
	struct uncharge_gather ug;

6878 6879
	/* Don't touch folio->lru of any random page, pre-check: */
	if (!folio_memcg(folio))
6880 6881
		return;

6882
	uncharge_gather_clear(&ug);
6883
	uncharge_folio(folio, &ug);
6884
	uncharge_batch(&ug);
6885
}
6886

6887
/**
6888
 * __mem_cgroup_uncharge_list - uncharge a list of page
6889 6890 6891
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
6892
 * __mem_cgroup_charge().
6893
 */
6894
void __mem_cgroup_uncharge_list(struct list_head *page_list)
6895
{
6896
	struct uncharge_gather ug;
6897
	struct folio *folio;
6898 6899

	uncharge_gather_clear(&ug);
6900 6901
	list_for_each_entry(folio, page_list, lru)
		uncharge_folio(folio, &ug);
6902 6903
	if (ug.memcg)
		uncharge_batch(&ug);
6904 6905 6906
}

/**
6907 6908 6909
 * mem_cgroup_migrate - Charge a folio's replacement.
 * @old: Currently circulating folio.
 * @new: Replacement folio.
6910
 *
6911
 * Charge @new as a replacement folio for @old. @old will
6912
 * be uncharged upon free.
6913
 *
6914
 * Both folios must be locked, @new->mapping must be set up.
6915
 */
6916
void mem_cgroup_migrate(struct folio *old, struct folio *new)
6917
{
6918
	struct mem_cgroup *memcg;
6919
	long nr_pages = folio_nr_pages(new);
6920
	unsigned long flags;
6921

6922 6923 6924 6925
	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
	VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
6926 6927 6928 6929

	if (mem_cgroup_disabled())
		return;

6930 6931
	/* Page cache replacement: new folio already charged? */
	if (folio_memcg(new))
6932 6933
		return;

6934 6935
	memcg = folio_memcg(old);
	VM_WARN_ON_ONCE_FOLIO(!memcg, old);
6936
	if (!memcg)
6937 6938
		return;

6939
	/* Force-charge the new page. The old one will be freed soon */
6940 6941 6942 6943 6944
	if (!mem_cgroup_is_root(memcg)) {
		page_counter_charge(&memcg->memory, nr_pages);
		if (do_memsw_account())
			page_counter_charge(&memcg->memsw, nr_pages);
	}
6945

6946
	css_get(&memcg->css);
6947
	commit_charge(new, memcg);
6948

6949
	local_irq_save(flags);
6950
	mem_cgroup_charge_statistics(memcg, nr_pages);
6951
	memcg_check_events(memcg, folio_nid(new));
6952
	local_irq_restore(flags);
6953 6954
}

6955
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6956 6957
EXPORT_SYMBOL(memcg_sockets_enabled_key);

6958
void mem_cgroup_sk_alloc(struct sock *sk)
6959 6960 6961
{
	struct mem_cgroup *memcg;

6962 6963 6964
	if (!mem_cgroup_sockets_enabled)
		return;

6965 6966 6967 6968
	/* Do not associate the sock with unrelated interrupted task's memcg. */
	if (in_interrupt())
		return;

6969 6970
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
6971 6972
	if (memcg == root_mem_cgroup)
		goto out;
6973
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6974
		goto out;
S
Shakeel Butt 已提交
6975
	if (css_tryget(&memcg->css))
6976
		sk->sk_memcg = memcg;
6977
out:
6978 6979 6980
	rcu_read_unlock();
}

6981
void mem_cgroup_sk_free(struct sock *sk)
6982
{
6983 6984
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
6985 6986 6987 6988 6989 6990
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
6991
 * @gfp_mask: reclaim mode
6992 6993
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6994
 * @memcg's configured limit, %false if it doesn't.
6995
 */
6996 6997
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
			     gfp_t gfp_mask)
6998
{
6999
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7000
		struct page_counter *fail;
7001

7002 7003
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
7004 7005
			return true;
		}
7006
		memcg->tcpmem_pressure = 1;
7007 7008 7009 7010
		if (gfp_mask & __GFP_NOFAIL) {
			page_counter_charge(&memcg->tcpmem, nr_pages);
			return true;
		}
7011
		return false;
7012
	}
7013

7014 7015
	if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
		mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7016
		return true;
7017
	}
7018

7019 7020 7021 7022 7023
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
7024 7025
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
7026 7027 7028
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
7029
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7030
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7031 7032
		return;
	}
7033

7034
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7035

7036
	refill_stock(memcg, nr_pages);
7037 7038
}

7039 7040 7041 7042 7043 7044 7045 7046 7047
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
7048 7049
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
7050 7051 7052 7053
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
7054

7055
/*
7056 7057
 * subsys_initcall() for memory controller.
 *
7058 7059 7060 7061
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
7062 7063 7064
 */
static int __init mem_cgroup_init(void)
{
7065 7066
	int cpu, node;

7067 7068 7069 7070 7071 7072 7073 7074
	/*
	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
	 * used for per-memcg-per-cpu caching of per-node statistics. In order
	 * to work fine, we should make sure that the overfill threshold can't
	 * exceed S32_MAX / PAGE_SIZE.
	 */
	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);

7075 7076
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

7088
		rtpn->rb_root = RB_ROOT;
7089
		rtpn->rb_rightmost = NULL;
7090
		spin_lock_init(&rtpn->lock);
7091 7092 7093
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

7094 7095 7096
	return 0;
}
subsys_initcall(mem_cgroup_init);
7097 7098

#ifdef CONFIG_MEMCG_SWAP
7099 7100
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
7101
	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

7117 7118 7119 7120 7121 7122 7123 7124 7125
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
7126
	struct mem_cgroup *memcg, *swap_memcg;
7127
	unsigned int nr_entries;
7128 7129 7130 7131 7132
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

7133 7134 7135
	if (mem_cgroup_disabled())
		return;

7136
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7137 7138
		return;

7139
	memcg = page_memcg(page);
7140

7141
	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7142 7143 7144
	if (!memcg)
		return;

7145 7146 7147 7148 7149 7150
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
7151
	nr_entries = thp_nr_pages(page);
7152 7153 7154 7155 7156
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
7157
	VM_BUG_ON_PAGE(oldid, page);
7158
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7159

7160
	page->memcg_data = 0;
7161 7162

	if (!mem_cgroup_is_root(memcg))
7163
		page_counter_uncharge(&memcg->memory, nr_entries);
7164

7165
	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7166
		if (!mem_cgroup_is_root(swap_memcg))
7167 7168
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
7169 7170
	}

7171 7172
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
7173
	 * i_pages lock which is taken with interrupts-off. It is
7174
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
7175
	 * only synchronisation we have for updating the per-CPU variables.
7176 7177
	 */
	VM_BUG_ON(!irqs_disabled());
7178
	mem_cgroup_charge_statistics(memcg, -nr_entries);
7179
	memcg_check_events(memcg, page_to_nid(page));
7180

7181
	css_put(&memcg->css);
7182 7183
}

7184
/**
7185
 * __mem_cgroup_try_charge_swap - try charging swap space for a page
7186 7187 7188
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
7189
 * Try to charge @page's memcg for the swap space at @entry.
7190 7191 7192
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
7193
int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7194
{
7195
	unsigned int nr_pages = thp_nr_pages(page);
7196
	struct page_counter *counter;
7197
	struct mem_cgroup *memcg;
7198 7199
	unsigned short oldid;

7200
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7201 7202
		return 0;

7203
	memcg = page_memcg(page);
7204

7205
	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7206 7207 7208
	if (!memcg)
		return 0;

7209 7210
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7211
		return 0;
7212
	}
7213

7214 7215
	memcg = mem_cgroup_id_get_online(memcg);

7216
	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7217
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7218 7219
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7220
		mem_cgroup_id_put(memcg);
7221
		return -ENOMEM;
7222
	}
7223

7224 7225 7226 7227
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7228
	VM_BUG_ON_PAGE(oldid, page);
7229
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7230 7231 7232 7233

	return 0;
}

7234
/**
7235
 * __mem_cgroup_uncharge_swap - uncharge swap space
7236
 * @entry: swap entry to uncharge
7237
 * @nr_pages: the amount of swap space to uncharge
7238
 */
7239
void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7240 7241 7242 7243
{
	struct mem_cgroup *memcg;
	unsigned short id;

7244
	id = swap_cgroup_record(entry, 0, nr_pages);
7245
	rcu_read_lock();
7246
	memcg = mem_cgroup_from_id(id);
7247
	if (memcg) {
7248
		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7249
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7250
				page_counter_uncharge(&memcg->swap, nr_pages);
7251
			else
7252
				page_counter_uncharge(&memcg->memsw, nr_pages);
7253
		}
7254
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7255
		mem_cgroup_id_put_many(memcg, nr_pages);
7256 7257 7258 7259
	}
	rcu_read_unlock();
}

7260 7261 7262 7263
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

7264
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7265 7266 7267
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
7268
				      READ_ONCE(memcg->swap.max) -
7269 7270 7271 7272
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

7273 7274 7275 7276 7277 7278 7279 7280
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
7281
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7282 7283
		return false;

7284
	memcg = page_memcg(page);
7285 7286 7287
	if (!memcg)
		return false;

7288 7289 7290 7291 7292
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		unsigned long usage = page_counter_read(&memcg->swap);

		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
		    usage * 2 >= READ_ONCE(memcg->swap.max))
7293
			return true;
7294
	}
7295 7296 7297 7298

	return false;
}

7299
static int __init setup_swap_account(char *s)
7300 7301
{
	if (!strcmp(s, "1"))
7302
		cgroup_memory_noswap = false;
7303
	else if (!strcmp(s, "0"))
7304
		cgroup_memory_noswap = true;
7305 7306
	return 1;
}
7307
__setup("swapaccount=", setup_swap_account);
7308

7309 7310 7311 7312 7313 7314 7315 7316
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339
static int swap_high_show(struct seq_file *m, void *v)
{
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
}

static ssize_t swap_high_write(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &high);
	if (err)
		return err;

	page_counter_set_high(&memcg->swap, high);

	return nbytes;
}

7340 7341
static int swap_max_show(struct seq_file *m, void *v)
{
7342 7343
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

7358
	xchg(&memcg->swap.max, max);
7359 7360 7361 7362

	return nbytes;
}

7363 7364
static int swap_events_show(struct seq_file *m, void *v)
{
7365
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7366

7367 7368
	seq_printf(m, "high %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7369 7370 7371 7372 7373 7374 7375 7376
	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

7377 7378 7379 7380 7381 7382
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
7383 7384 7385 7386 7387 7388
	{
		.name = "swap.high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_high_show,
		.write = swap_high_write,
	},
7389 7390 7391 7392 7393 7394
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
7395 7396 7397 7398 7399 7400
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
7401 7402 7403
	{ }	/* terminate */
};

7404
static struct cftype memsw_files[] = {
7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

7431 7432 7433 7434 7435 7436 7437
/*
 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
 * boot parameter. This may result in premature OOPS inside
 * mem_cgroup_get_nr_swap_pages() function in corner cases.
 */
7438 7439
static int __init mem_cgroup_swap_init(void)
{
7440 7441 7442 7443 7444
	/* No memory control -> no swap control */
	if (mem_cgroup_disabled())
		cgroup_memory_noswap = true;

	if (cgroup_memory_noswap)
7445 7446 7447 7448 7449
		return 0;

	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));

7450 7451
	return 0;
}
7452
core_initcall(mem_cgroup_swap_init);
7453 7454

#endif /* CONFIG_MEMCG_SWAP */