memcontrol.c 189.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
B
Balbir Singh 已提交
2 3 4 5 6
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
7 8 9
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
10 11 12 13
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
14 15 16 17
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 24 25
 *
 * Per memcg lru locking
 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
B
Balbir Singh 已提交
26 27
 */

28
#include <linux/page_counter.h>
B
Balbir Singh 已提交
29 30
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/pagewalk.h>
32
#include <linux/sched/mm.h>
33
#include <linux/shmem_fs.h>
34
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
35
#include <linux/pagemap.h>
36
#include <linux/vm_event_item.h>
37
#include <linux/smp.h>
38
#include <linux/page-flags.h>
39
#include <linux/backing-dev.h>
40 41
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
42
#include <linux/limits.h>
43
#include <linux/export.h>
44
#include <linux/mutex.h>
45
#include <linux/rbtree.h>
46
#include <linux/slab.h>
47
#include <linux/swap.h>
48
#include <linux/swapops.h>
49
#include <linux/spinlock.h>
50
#include <linux/eventfd.h>
51
#include <linux/poll.h>
52
#include <linux/sort.h>
53
#include <linux/fs.h>
54
#include <linux/seq_file.h>
55
#include <linux/vmpressure.h>
56
#include <linux/mm_inline.h>
57
#include <linux/swap_cgroup.h>
58
#include <linux/cpu.h>
59
#include <linux/oom.h>
60
#include <linux/lockdep.h>
61
#include <linux/file.h>
62
#include <linux/tracehook.h>
63
#include <linux/psi.h>
64
#include <linux/seq_buf.h>
K
KAMEZAWA Hiroyuki 已提交
65
#include "internal.h"
G
Glauber Costa 已提交
66
#include <net/sock.h>
M
Michal Hocko 已提交
67
#include <net/ip.h>
68
#include "slab.h"
B
Balbir Singh 已提交
69

70
#include <linux/uaccess.h>
71

72 73
#include <trace/events/vmscan.h>

74 75
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
76

77 78
struct mem_cgroup *root_mem_cgroup __read_mostly;

79 80 81
/* Active memory cgroup to use from an interrupt context */
DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);

82 83 84
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

85 86 87
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

88
/* Whether the swap controller is active */
A
Andrew Morton 已提交
89
#ifdef CONFIG_MEMCG_SWAP
90
bool cgroup_memory_noswap __read_mostly;
91
#else
92
#define cgroup_memory_noswap		1
93
#endif
94

95 96 97 98
#ifdef CONFIG_CGROUP_WRITEBACK
static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
#endif

99 100 101
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
102
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
103 104
}

105 106
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
107

108 109 110 111 112
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

113
struct mem_cgroup_tree_per_node {
114
	struct rb_root rb_root;
115
	struct rb_node *rb_rightmost;
116 117 118 119 120 121 122 123 124
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
125 126 127 128 129
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
130

131 132 133
/*
 * cgroup_event represents events which userspace want to receive.
 */
134
struct mem_cgroup_event {
135
	/*
136
	 * memcg which the event belongs to.
137
	 */
138
	struct mem_cgroup *memcg;
139 140 141 142 143 144 145 146
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
147 148 149 150 151
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
152
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
153
			      struct eventfd_ctx *eventfd, const char *args);
154 155 156 157 158
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
159
	void (*unregister_event)(struct mem_cgroup *memcg,
160
				 struct eventfd_ctx *eventfd);
161 162 163 164 165 166
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
167
	wait_queue_entry_t wait;
168 169 170
	struct work_struct remove;
};

171 172
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173

174 175
/* Stuffs for move charges at task migration. */
/*
176
 * Types of charges to be moved.
177
 */
178 179 180
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
181

182 183
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
184
	spinlock_t	  lock; /* for from, to */
185
	struct mm_struct  *mm;
186 187
	struct mem_cgroup *from;
	struct mem_cgroup *to;
188
	unsigned long flags;
189
	unsigned long precharge;
190
	unsigned long moved_charge;
191
	unsigned long moved_swap;
192 193 194
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
195
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196 197
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
198

199 200 201 202
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
203
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
204
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
205

206
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
207 208 209 210
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
211
	_KMEM,
V
Vladimir Davydov 已提交
212
	_TCP,
G
Glauber Costa 已提交
213 214
};

215 216
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
217
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
218 219
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
220

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(root, iter, NULL))

#define for_each_mem_cgroup(iter)			\
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(NULL, iter, NULL))

236 237 238 239 240 241
static inline bool should_force_charge(void)
{
	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
		(current->flags & PF_EXITING);
}

242 243 244 245 246 247 248 249 250 251 252 253 254
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

255
#ifdef CONFIG_MEMCG_KMEM
R
Roman Gushchin 已提交
256 257
extern spinlock_t css_set_lock;

258 259 260 261 262
static int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
			       unsigned int nr_pages);
static void __memcg_kmem_uncharge(struct mem_cgroup *memcg,
				  unsigned int nr_pages);

R
Roman Gushchin 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
static void obj_cgroup_release(struct percpu_ref *ref)
{
	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
	struct mem_cgroup *memcg;
	unsigned int nr_bytes;
	unsigned int nr_pages;
	unsigned long flags;

	/*
	 * At this point all allocated objects are freed, and
	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
	 *
	 * The following sequence can lead to it:
	 * 1) CPU0: objcg == stock->cached_objcg
	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
	 *          PAGE_SIZE bytes are charged
	 * 3) CPU1: a process from another memcg is allocating something,
	 *          the stock if flushed,
	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
	 * 5) CPU0: we do release this object,
	 *          92 bytes are added to stock->nr_bytes
	 * 6) CPU0: stock is flushed,
	 *          92 bytes are added to objcg->nr_charged_bytes
	 *
	 * In the result, nr_charged_bytes == PAGE_SIZE.
	 * This page will be uncharged in obj_cgroup_release().
	 */
	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
	nr_pages = nr_bytes >> PAGE_SHIFT;

	spin_lock_irqsave(&css_set_lock, flags);
	memcg = obj_cgroup_memcg(objcg);
	if (nr_pages)
		__memcg_kmem_uncharge(memcg, nr_pages);
	list_del(&objcg->list);
	mem_cgroup_put(memcg);
	spin_unlock_irqrestore(&css_set_lock, flags);

	percpu_ref_exit(ref);
	kfree_rcu(objcg, rcu);
}

static struct obj_cgroup *obj_cgroup_alloc(void)
{
	struct obj_cgroup *objcg;
	int ret;

	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
	if (!objcg)
		return NULL;

	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
			      GFP_KERNEL);
	if (ret) {
		kfree(objcg);
		return NULL;
	}
	INIT_LIST_HEAD(&objcg->list);
	return objcg;
}

static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
				  struct mem_cgroup *parent)
{
	struct obj_cgroup *objcg, *iter;

	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);

	spin_lock_irq(&css_set_lock);

	/* Move active objcg to the parent's list */
	xchg(&objcg->memcg, parent);
	css_get(&parent->css);
	list_add(&objcg->list, &parent->objcg_list);

	/* Move already reparented objcgs to the parent's list */
	list_for_each_entry(iter, &memcg->objcg_list, list) {
		css_get(&parent->css);
		xchg(&iter->memcg, parent);
		css_put(&memcg->css);
	}
	list_splice(&memcg->objcg_list, &parent->objcg_list);

	spin_unlock_irq(&css_set_lock);

	percpu_ref_kill(&objcg->refcnt);
}

353
/*
354
 * This will be used as a shrinker list's index.
L
Li Zefan 已提交
355 356 357 358 359
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
360
 *
361 362
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
363
 */
364 365
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
366

367 368 369 370 371 372 373 374 375 376 377 378 379
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

380 381 382 383 384 385
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
386
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
387 388
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
389
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
390 391 392
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
393
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
394

395 396
/*
 * A lot of the calls to the cache allocation functions are expected to be
397
 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
398 399 400
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
401
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
402
EXPORT_SYMBOL(memcg_kmem_enabled_key);
403
#endif
404

405 406 407 408 409 410 411 412 413 414 415 416
static int memcg_shrinker_map_size;
static DEFINE_MUTEX(memcg_shrinker_map_mutex);

static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
{
	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
}

static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
					 int size, int old_size)
{
	struct memcg_shrinker_map *new, *old;
417
	struct mem_cgroup_per_node *pn;
418 419 420 421 422
	int nid;

	lockdep_assert_held(&memcg_shrinker_map_mutex);

	for_each_node(nid) {
423 424
		pn = memcg->nodeinfo[nid];
		old = rcu_dereference_protected(pn->shrinker_map, true);
425 426 427 428
		/* Not yet online memcg */
		if (!old)
			return 0;

429
		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
430 431 432 433 434 435 436
		if (!new)
			return -ENOMEM;

		/* Set all old bits, clear all new bits */
		memset(new->map, (int)0xff, old_size);
		memset((void *)new->map + old_size, 0, size - old_size);

437
		rcu_assign_pointer(pn->shrinker_map, new);
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
	}

	return 0;
}

static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *pn;
	struct memcg_shrinker_map *map;
	int nid;

	if (mem_cgroup_is_root(memcg))
		return;

	for_each_node(nid) {
454
		pn = memcg->nodeinfo[nid];
455
		map = rcu_dereference_protected(pn->shrinker_map, true);
456
		kvfree(map);
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
		rcu_assign_pointer(pn->shrinker_map, NULL);
	}
}

static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	struct memcg_shrinker_map *map;
	int nid, size, ret = 0;

	if (mem_cgroup_is_root(memcg))
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	size = memcg_shrinker_map_size;
	for_each_node(nid) {
472
		map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
		if (!map) {
			memcg_free_shrinker_maps(memcg);
			ret = -ENOMEM;
			break;
		}
		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
	}
	mutex_unlock(&memcg_shrinker_map_mutex);

	return ret;
}

int memcg_expand_shrinker_maps(int new_id)
{
	int size, old_size, ret = 0;
	struct mem_cgroup *memcg;

	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
	old_size = memcg_shrinker_map_size;
	if (size <= old_size)
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	if (!root_mem_cgroup)
		goto unlock;

	for_each_mem_cgroup(memcg) {
		if (mem_cgroup_is_root(memcg))
			continue;
		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
503 504
		if (ret) {
			mem_cgroup_iter_break(NULL, memcg);
505
			goto unlock;
506
		}
507 508 509 510 511 512 513
	}
unlock:
	if (!ret)
		memcg_shrinker_map_size = size;
	mutex_unlock(&memcg_shrinker_map_mutex);
	return ret;
}
514 515 516 517 518 519 520 521

void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
{
	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
		struct memcg_shrinker_map *map;

		rcu_read_lock();
		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
522 523
		/* Pairs with smp mb in shrink_slab() */
		smp_mb__before_atomic();
524 525 526 527 528
		set_bit(shrinker_id, map->map);
		rcu_read_unlock();
	}
}

529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

544
	memcg = page_memcg(page);
545

546
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
547 548 549 550 551
		memcg = root_mem_cgroup;

	return &memcg->css;
}

552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
571
	memcg = page_memcg_check(page);
572

573 574 575 576 577 578 579 580
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

581 582
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
583
{
584
	int nid = page_to_nid(page);
585

586
	return memcg->nodeinfo[nid];
587 588
}

589 590
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
591
{
592
	return soft_limit_tree.rb_tree_per_node[nid];
593 594
}

595
static struct mem_cgroup_tree_per_node *
596 597 598 599
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

600
	return soft_limit_tree.rb_tree_per_node[nid];
601 602
}

603 604
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
605
					 unsigned long new_usage_in_excess)
606 607 608
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
609
	struct mem_cgroup_per_node *mz_node;
610
	bool rightmost = true;
611 612 613 614 615 616 617 618 619

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
620
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
621
					tree_node);
622
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
623
			p = &(*p)->rb_left;
624
			rightmost = false;
625
		} else {
626
			p = &(*p)->rb_right;
627
		}
628
	}
629 630 631 632

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

633 634 635 636 637
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

638 639
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
640 641 642
{
	if (!mz->on_tree)
		return;
643 644 645 646

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

647 648 649 650
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

651 652
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
653
{
654 655 656
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
657
	__mem_cgroup_remove_exceeded(mz, mctz);
658
	spin_unlock_irqrestore(&mctz->lock, flags);
659 660
}

661 662 663
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
664
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
665 666 667 668 669 670 671
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
672 673 674

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
675
	unsigned long excess;
676 677
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
678

679
	mctz = soft_limit_tree_from_page(page);
680 681
	if (!mctz)
		return;
682 683 684 685 686
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
687
		mz = mem_cgroup_page_nodeinfo(memcg, page);
688
		excess = soft_limit_excess(memcg);
689 690 691 692 693
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
694 695 696
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
697 698
			/* if on-tree, remove it */
			if (mz->on_tree)
699
				__mem_cgroup_remove_exceeded(mz, mctz);
700 701 702 703
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
704
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
705
			spin_unlock_irqrestore(&mctz->lock, flags);
706 707 708 709 710 711
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
712 713 714
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
715

716
	for_each_node(nid) {
717
		mz = memcg->nodeinfo[nid];
718
		mctz = soft_limit_tree_node(nid);
719 720
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
721 722 723
	}
}

724 725
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
726
{
727
	struct mem_cgroup_per_node *mz;
728 729 730

retry:
	mz = NULL;
731
	if (!mctz->rb_rightmost)
732 733
		goto done;		/* Nothing to reclaim from */

734 735
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
736 737 738 739 740
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
741
	__mem_cgroup_remove_exceeded(mz, mctz);
742
	if (!soft_limit_excess(mz->memcg) ||
S
Shakeel Butt 已提交
743
	    !css_tryget(&mz->memcg->css))
744 745 746 747 748
		goto retry;
done:
	return mz;
}

749 750
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
751
{
752
	struct mem_cgroup_per_node *mz;
753

754
	spin_lock_irq(&mctz->lock);
755
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
756
	spin_unlock_irq(&mctz->lock);
757 758 759
	return mz;
}

760 761 762 763 764 765 766 767 768 769 770
/**
 * __mod_memcg_state - update cgroup memory statistics
 * @memcg: the memory cgroup
 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 * @val: delta to add to the counter, can be negative
 */
void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
{
	if (mem_cgroup_disabled())
		return;

771 772
	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
773 774
}

775
/* idx can be of type enum memcg_stat_item or node_stat_item. */
776 777
static unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
{
778
	long x = READ_ONCE(memcg->vmstats.state[idx]);
779 780 781 782 783 784 785
#ifdef CONFIG_SMP
	if (x < 0)
		x = 0;
#endif
	return x;
}

786
/* idx can be of type enum memcg_stat_item or node_stat_item. */
787 788 789 790 791 792
static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
{
	long x = 0;
	int cpu;

	for_each_possible_cpu(cpu)
793
		x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
794 795 796 797 798 799 800
#ifdef CONFIG_SMP
	if (x < 0)
		x = 0;
#endif
	return x;
}

801 802 803 804 805 806 807 808
static struct mem_cgroup_per_node *
parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
{
	struct mem_cgroup *parent;

	parent = parent_mem_cgroup(pn->memcg);
	if (!parent)
		return NULL;
809
	return parent->nodeinfo[nid];
810 811
}

812 813
void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			      int val)
814 815
{
	struct mem_cgroup_per_node *pn;
816
	struct mem_cgroup *memcg;
817
	long x, threshold = MEMCG_CHARGE_BATCH;
818 819

	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
820
	memcg = pn->memcg;
821 822

	/* Update memcg */
823
	__mod_memcg_state(memcg, idx, val);
824

825 826 827
	/* Update lruvec */
	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);

828 829 830
	if (vmstat_item_in_bytes(idx))
		threshold <<= PAGE_SHIFT;

831
	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
832
	if (unlikely(abs(x) > threshold)) {
833
		pg_data_t *pgdat = lruvec_pgdat(lruvec);
834 835 836 837
		struct mem_cgroup_per_node *pi;

		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
			atomic_long_add(x, &pi->lruvec_stat[idx]);
838 839 840 841 842
		x = 0;
	}
	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
}

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
/**
 * __mod_lruvec_state - update lruvec memory statistics
 * @lruvec: the lruvec
 * @idx: the stat item
 * @val: delta to add to the counter, can be negative
 *
 * The lruvec is the intersection of the NUMA node and a cgroup. This
 * function updates the all three counters that are affected by a
 * change of state at this level: per-node, per-cgroup, per-lruvec.
 */
void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			int val)
{
	/* Update node */
	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);

	/* Update memcg and lruvec */
	if (!mem_cgroup_disabled())
		__mod_memcg_lruvec_state(lruvec, idx, val);
}

864 865 866 867
void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
			     int val)
{
	struct page *head = compound_head(page); /* rmap on tail pages */
868
	struct mem_cgroup *memcg = page_memcg(head);
869 870 871 872
	pg_data_t *pgdat = page_pgdat(page);
	struct lruvec *lruvec;

	/* Untracked pages have no memcg, no lruvec. Update only the node */
873
	if (!memcg) {
874 875 876 877
		__mod_node_page_state(pgdat, idx, val);
		return;
	}

878
	lruvec = mem_cgroup_lruvec(memcg, pgdat);
879 880
	__mod_lruvec_state(lruvec, idx, val);
}
881
EXPORT_SYMBOL(__mod_lruvec_page_state);
882

883
void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
884
{
885
	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
886 887 888 889
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;

	rcu_read_lock();
890
	memcg = mem_cgroup_from_obj(p);
891

892 893 894 895 896 897 898
	/*
	 * Untracked pages have no memcg, no lruvec. Update only the
	 * node. If we reparent the slab objects to the root memcg,
	 * when we free the slab object, we need to update the per-memcg
	 * vmstats to keep it correct for the root memcg.
	 */
	if (!memcg) {
899 900
		__mod_node_page_state(pgdat, idx, val);
	} else {
901
		lruvec = mem_cgroup_lruvec(memcg, pgdat);
902 903 904 905 906
		__mod_lruvec_state(lruvec, idx, val);
	}
	rcu_read_unlock();
}

907 908 909 910 911 912 913 914 915 916 917 918
/**
 * __count_memcg_events - account VM events in a cgroup
 * @memcg: the memory cgroup
 * @idx: the event item
 * @count: the number of events that occured
 */
void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
			  unsigned long count)
{
	if (mem_cgroup_disabled())
		return;

919 920
	__this_cpu_add(memcg->vmstats_percpu->events[idx], count);
	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
921 922
}

923
static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
924
{
925
	return READ_ONCE(memcg->vmstats.events[event]);
926 927
}

928 929
static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
{
930 931 932 933
	long x = 0;
	int cpu;

	for_each_possible_cpu(cpu)
934
		x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
935
	return x;
936 937
}

938
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
939
					 struct page *page,
940
					 int nr_pages)
941
{
942 943
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
944
		__count_memcg_events(memcg, PGPGIN, 1);
945
	else {
946
		__count_memcg_events(memcg, PGPGOUT, 1);
947 948
		nr_pages = -nr_pages; /* for event */
	}
949

950
	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
951 952
}

953 954
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
955 956 957
{
	unsigned long val, next;

958 959
	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
960
	/* from time_after() in jiffies.h */
961
	if ((long)(next - val) < 0) {
962 963 964 965
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
966 967 968
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
969 970 971
		default:
			break;
		}
972
		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
973
		return true;
974
	}
975
	return false;
976 977 978 979 980 981
}

/*
 * Check events in order.
 *
 */
982
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
983 984
{
	/* threshold event is triggered in finer grain than soft limit */
985 986
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
987
		bool do_softlimit;
988

989 990
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
991
		mem_cgroup_threshold(memcg);
992 993
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
994
	}
995 996
}

997
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
998
{
999 1000 1001 1002 1003 1004 1005 1006
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1007
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1008
}
M
Michal Hocko 已提交
1009
EXPORT_SYMBOL(mem_cgroup_from_task);
1010

1011 1012 1013 1014 1015 1016 1017 1018 1019
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
 * returned.
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1020
{
1021 1022 1023 1024
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
1025

1026 1027
	rcu_read_lock();
	do {
1028 1029 1030 1031 1032 1033
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1034
			memcg = root_mem_cgroup;
1035 1036 1037 1038 1039
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1040
	} while (!css_tryget(&memcg->css));
1041
	rcu_read_unlock();
1042
	return memcg;
1043
}
1044 1045
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

1046
static __always_inline struct mem_cgroup *active_memcg(void)
1047
{
1048 1049 1050 1051 1052
	if (in_interrupt())
		return this_cpu_read(int_active_memcg);
	else
		return current->active_memcg;
}
1053

1054 1055 1056
static __always_inline struct mem_cgroup *get_active_memcg(void)
{
	struct mem_cgroup *memcg;
1057

1058 1059
	rcu_read_lock();
	memcg = active_memcg();
1060 1061 1062
	/* remote memcg must hold a ref. */
	if (memcg && WARN_ON_ONCE(!css_tryget(&memcg->css)))
		memcg = root_mem_cgroup;
1063 1064 1065 1066 1067
	rcu_read_unlock();

	return memcg;
}

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
static __always_inline bool memcg_kmem_bypass(void)
{
	/* Allow remote memcg charging from any context. */
	if (unlikely(active_memcg()))
		return false;

	/* Memcg to charge can't be determined. */
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;

	return false;
}

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
/**
 * If active memcg is set, do not fallback to current->mm->memcg.
 */
static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
{
	if (memcg_kmem_bypass())
		return NULL;

	if (unlikely(active_memcg()))
		return get_active_memcg();

1092 1093
	return get_mem_cgroup_from_mm(current->mm);
}
1094

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
1108 1109 1110
 * Reclaimers can specify a node in @reclaim to divide up the memcgs
 * in the hierarchy among all concurrent reclaimers operating on the
 * same node.
1111
 */
1112
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1113
				   struct mem_cgroup *prev,
1114
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1115
{
1116
	struct mem_cgroup_reclaim_iter *iter;
1117
	struct cgroup_subsys_state *css = NULL;
1118
	struct mem_cgroup *memcg = NULL;
1119
	struct mem_cgroup *pos = NULL;
1120

1121 1122
	if (mem_cgroup_disabled())
		return NULL;
1123

1124 1125
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1126

1127
	if (prev && !reclaim)
1128
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1129

1130
	rcu_read_lock();
M
Michal Hocko 已提交
1131

1132
	if (reclaim) {
1133
		struct mem_cgroup_per_node *mz;
1134

1135
		mz = root->nodeinfo[reclaim->pgdat->node_id];
1136
		iter = &mz->iter;
1137 1138 1139 1140

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

1141
		while (1) {
1142
			pos = READ_ONCE(iter->position);
1143 1144
			if (!pos || css_tryget(&pos->css))
				break;
1145
			/*
1146 1147 1148 1149 1150 1151
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
1152
			 */
1153 1154
			(void)cmpxchg(&iter->position, pos, NULL);
		}
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1172
		}
K
KAMEZAWA Hiroyuki 已提交
1173

1174 1175 1176 1177 1178 1179
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1180

1181 1182
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1183

1184 1185
		if (css_tryget(css))
			break;
1186

1187
		memcg = NULL;
1188
	}
1189 1190 1191

	if (reclaim) {
		/*
1192 1193 1194
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
1195
		 */
1196 1197
		(void)cmpxchg(&iter->position, pos, memcg);

1198 1199 1200 1201 1202 1203 1204
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1205
	}
1206

1207 1208
out_unlock:
	rcu_read_unlock();
1209 1210 1211
	if (prev && prev != root)
		css_put(&prev->css);

1212
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1213
}
K
KAMEZAWA Hiroyuki 已提交
1214

1215 1216 1217 1218 1219 1220 1221
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1222 1223 1224 1225 1226 1227
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1228

1229 1230
static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
					struct mem_cgroup *dead_memcg)
1231 1232
{
	struct mem_cgroup_reclaim_iter *iter;
1233 1234
	struct mem_cgroup_per_node *mz;
	int nid;
1235

1236
	for_each_node(nid) {
1237
		mz = from->nodeinfo[nid];
1238 1239
		iter = &mz->iter;
		cmpxchg(&iter->position, dead_memcg, NULL);
1240 1241 1242
	}
}

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup *last;

	do {
		__invalidate_reclaim_iterators(memcg, dead_memcg);
		last = memcg;
	} while ((memcg = parent_mem_cgroup(memcg)));

	/*
	 * When cgruop1 non-hierarchy mode is used,
	 * parent_mem_cgroup() does not walk all the way up to the
	 * cgroup root (root_mem_cgroup). So we have to handle
	 * dead_memcg from cgroup root separately.
	 */
	if (last != root_mem_cgroup)
		__invalidate_reclaim_iterators(root_mem_cgroup,
						dead_memcg);
}

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

1289
		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
#ifdef CONFIG_DEBUG_VM
void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
{
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return;

	memcg = page_memcg(page);

	if (!memcg)
		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
	else
		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
}
#endif

/**
 * lock_page_lruvec - lock and return lruvec for a given page.
 * @page: the page
 *
1322 1323 1324 1325 1326
 * These functions are safe to use under any of the following conditions:
 * - page locked
 * - PageLRU cleared
 * - lock_page_memcg()
 * - page->_refcount is zero
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
 */
struct lruvec *lock_page_lruvec(struct page *page)
{
	struct lruvec *lruvec;
	struct pglist_data *pgdat = page_pgdat(page);

	lruvec = mem_cgroup_page_lruvec(page, pgdat);
	spin_lock(&lruvec->lru_lock);

	lruvec_memcg_debug(lruvec, page);

	return lruvec;
}

struct lruvec *lock_page_lruvec_irq(struct page *page)
{
	struct lruvec *lruvec;
	struct pglist_data *pgdat = page_pgdat(page);

	lruvec = mem_cgroup_page_lruvec(page, pgdat);
	spin_lock_irq(&lruvec->lru_lock);

	lruvec_memcg_debug(lruvec, page);

	return lruvec;
}

struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
{
	struct lruvec *lruvec;
	struct pglist_data *pgdat = page_pgdat(page);

	lruvec = mem_cgroup_page_lruvec(page, pgdat);
	spin_lock_irqsave(&lruvec->lru_lock, *flags);

	lruvec_memcg_debug(lruvec, page);

	return lruvec;
}

1367
/**
1368 1369 1370
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1371
 * @zid: zone id of the accounted pages
1372
 * @nr_pages: positive when adding or negative when removing
1373
 *
1374 1375 1376
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1377
 */
1378
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1379
				int zid, int nr_pages)
1380
{
1381
	struct mem_cgroup_per_node *mz;
1382
	unsigned long *lru_size;
1383
	long size;
1384 1385 1386 1387

	if (mem_cgroup_disabled())
		return;

1388
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1389
	lru_size = &mz->lru_zone_size[zid][lru];
1390 1391 1392 1393 1394

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1395 1396 1397
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1398 1399 1400 1401 1402 1403
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1404
}
1405

1406
/**
1407
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1408
 * @memcg: the memory cgroup
1409
 *
1410
 * Returns the maximum amount of memory @mem can be charged with, in
1411
 * pages.
1412
 */
1413
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1414
{
1415 1416 1417
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1418

1419
	count = page_counter_read(&memcg->memory);
1420
	limit = READ_ONCE(memcg->memory.max);
1421 1422 1423
	if (count < limit)
		margin = limit - count;

1424
	if (do_memsw_account()) {
1425
		count = page_counter_read(&memcg->memsw);
1426
		limit = READ_ONCE(memcg->memsw.max);
1427
		if (count < limit)
1428
			margin = min(margin, limit - count);
1429 1430
		else
			margin = 0;
1431 1432 1433
	}

	return margin;
1434 1435
}

1436
/*
Q
Qiang Huang 已提交
1437
 * A routine for checking "mem" is under move_account() or not.
1438
 *
Q
Qiang Huang 已提交
1439 1440 1441
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1442
 */
1443
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1444
{
1445 1446
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1447
	bool ret = false;
1448 1449 1450 1451 1452 1453 1454 1455 1456
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1457

1458 1459
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1460 1461
unlock:
	spin_unlock(&mc.lock);
1462 1463 1464
	return ret;
}

1465
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1466 1467
{
	if (mc.moving_task && current != mc.moving_task) {
1468
		if (mem_cgroup_under_move(memcg)) {
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1481 1482 1483 1484 1485
struct memory_stat {
	const char *name;
	unsigned int idx;
};

1486
static const struct memory_stat memory_stats[] = {
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
	{ "anon",			NR_ANON_MAPPED			},
	{ "file",			NR_FILE_PAGES			},
	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
	{ "pagetables",			NR_PAGETABLE			},
	{ "percpu",			MEMCG_PERCPU_B			},
	{ "sock",			MEMCG_SOCK			},
	{ "shmem",			NR_SHMEM			},
	{ "file_mapped",		NR_FILE_MAPPED			},
	{ "file_dirty",			NR_FILE_DIRTY			},
	{ "file_writeback",		NR_WRITEBACK			},
1497 1498 1499
#ifdef CONFIG_SWAP
	{ "swapcached",			NR_SWAPCACHE			},
#endif
1500
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1501 1502 1503
	{ "anon_thp",			NR_ANON_THPS			},
	{ "file_thp",			NR_FILE_THPS			},
	{ "shmem_thp",			NR_SHMEM_THPS			},
1504
#endif
1505 1506 1507 1508 1509 1510 1511
	{ "inactive_anon",		NR_INACTIVE_ANON		},
	{ "active_anon",		NR_ACTIVE_ANON			},
	{ "inactive_file",		NR_INACTIVE_FILE		},
	{ "active_file",		NR_ACTIVE_FILE			},
	{ "unevictable",		NR_UNEVICTABLE			},
	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1512 1513

	/* The memory events */
1514 1515 1516 1517 1518 1519 1520
	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1521 1522
};

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
/* Translate stat items to the correct unit for memory.stat output */
static int memcg_page_state_unit(int item)
{
	switch (item) {
	case MEMCG_PERCPU_B:
	case NR_SLAB_RECLAIMABLE_B:
	case NR_SLAB_UNRECLAIMABLE_B:
	case WORKINGSET_REFAULT_ANON:
	case WORKINGSET_REFAULT_FILE:
	case WORKINGSET_ACTIVATE_ANON:
	case WORKINGSET_ACTIVATE_FILE:
	case WORKINGSET_RESTORE_ANON:
	case WORKINGSET_RESTORE_FILE:
	case WORKINGSET_NODERECLAIM:
		return 1;
	case NR_KERNEL_STACK_KB:
		return SZ_1K;
	default:
		return PAGE_SIZE;
	}
}

static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
						    int item)
{
	return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
}

1551 1552 1553 1554
static char *memory_stat_format(struct mem_cgroup *memcg)
{
	struct seq_buf s;
	int i;
1555

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
	if (!s.buffer)
		return NULL;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */
1570
	cgroup_rstat_flush(memcg->css.cgroup);
1571

1572 1573
	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
		u64 size;
1574

1575
		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1576
		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1577

1578
		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1579 1580
			size += memcg_page_state_output(memcg,
							NR_SLAB_RECLAIMABLE_B);
1581 1582 1583
			seq_buf_printf(&s, "slab %llu\n", size);
		}
	}
1584 1585 1586

	/* Accumulated memory events */

1587 1588 1589 1590 1591 1592
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
		       memcg_events(memcg, PGFAULT));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
		       memcg_events(memcg, PGMAJFAULT));
	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
		       memcg_events(memcg, PGREFILL));
1593 1594 1595 1596 1597 1598
	seq_buf_printf(&s, "pgscan %lu\n",
		       memcg_events(memcg, PGSCAN_KSWAPD) +
		       memcg_events(memcg, PGSCAN_DIRECT));
	seq_buf_printf(&s, "pgsteal %lu\n",
		       memcg_events(memcg, PGSTEAL_KSWAPD) +
		       memcg_events(memcg, PGSTEAL_DIRECT));
1599 1600 1601 1602 1603 1604 1605 1606
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
		       memcg_events(memcg, PGACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
		       memcg_events(memcg, PGDEACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
		       memcg_events(memcg, PGLAZYFREE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
		       memcg_events(memcg, PGLAZYFREED));
1607 1608

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1609
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1610
		       memcg_events(memcg, THP_FAULT_ALLOC));
1611
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1612 1613 1614 1615 1616 1617 1618 1619
		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

	/* The above should easily fit into one page */
	WARN_ON_ONCE(seq_buf_has_overflowed(&s));

	return s.buffer;
}
1620

1621
#define K(x) ((x) << (PAGE_SHIFT-10))
1622
/**
1623 1624
 * mem_cgroup_print_oom_context: Print OOM information relevant to
 * memory controller.
1625 1626 1627 1628 1629 1630
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
1631
void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1632 1633 1634
{
	rcu_read_lock();

1635 1636 1637 1638 1639
	if (memcg) {
		pr_cont(",oom_memcg=");
		pr_cont_cgroup_path(memcg->css.cgroup);
	} else
		pr_cont(",global_oom");
1640
	if (p) {
1641
		pr_cont(",task_memcg=");
1642 1643
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	}
1644
	rcu_read_unlock();
1645 1646 1647 1648 1649 1650 1651 1652 1653
}

/**
 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
 * memory controller.
 * @memcg: The memory cgroup that went over limit
 */
void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
1654
	char *buf;
1655

1656 1657
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1658
		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1659 1660 1661
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->swap)),
1662
			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1663 1664 1665 1666 1667 1668 1669
	else {
		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->memsw)),
			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->kmem)),
			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1670
	}
1671 1672 1673 1674 1675 1676 1677 1678 1679

	pr_info("Memory cgroup stats for ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(":");
	buf = memory_stat_format(memcg);
	if (!buf)
		return;
	pr_info("%s", buf);
	kfree(buf);
1680 1681
}

D
David Rientjes 已提交
1682 1683 1684
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1685
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1686
{
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
	unsigned long max = READ_ONCE(memcg->memory.max);

	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
		if (mem_cgroup_swappiness(memcg))
			max += min(READ_ONCE(memcg->swap.max),
				   (unsigned long)total_swap_pages);
	} else { /* v1 */
		if (mem_cgroup_swappiness(memcg)) {
			/* Calculate swap excess capacity from memsw limit */
			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;

			max += min(swap, (unsigned long)total_swap_pages);
		}
1700
	}
1701
	return max;
D
David Rientjes 已提交
1702 1703
}

1704 1705 1706 1707 1708
unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
{
	return page_counter_read(&memcg->memory);
}

1709
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1710
				     int order)
1711
{
1712 1713 1714
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1715
		.memcg = memcg,
1716 1717 1718
		.gfp_mask = gfp_mask,
		.order = order,
	};
1719
	bool ret = true;
1720

1721 1722
	if (mutex_lock_killable(&oom_lock))
		return true;
1723 1724 1725 1726

	if (mem_cgroup_margin(memcg) >= (1 << order))
		goto unlock;

1727 1728 1729 1730 1731
	/*
	 * A few threads which were not waiting at mutex_lock_killable() can
	 * fail to bail out. Therefore, check again after holding oom_lock.
	 */
	ret = should_force_charge() || out_of_memory(&oc);
1732 1733

unlock:
1734
	mutex_unlock(&oom_lock);
1735
	return ret;
1736 1737
}

1738
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1739
				   pg_data_t *pgdat,
1740 1741 1742 1743 1744 1745 1746 1747 1748
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1749
		.pgdat = pgdat,
1750 1751
	};

1752
	excess = soft_limit_excess(root_memcg);
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1778
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1779
					pgdat, &nr_scanned);
1780
		*total_scanned += nr_scanned;
1781
		if (!soft_limit_excess(root_memcg))
1782
			break;
1783
	}
1784 1785
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1786 1787
}

1788 1789 1790 1791 1792 1793
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1794 1795
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1796 1797 1798 1799
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1800
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1801
{
1802
	struct mem_cgroup *iter, *failed = NULL;
1803

1804 1805
	spin_lock(&memcg_oom_lock);

1806
	for_each_mem_cgroup_tree(iter, memcg) {
1807
		if (iter->oom_lock) {
1808 1809 1810 1811 1812
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1813 1814
			mem_cgroup_iter_break(memcg, iter);
			break;
1815 1816
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1817
	}
K
KAMEZAWA Hiroyuki 已提交
1818

1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1830
		}
1831 1832
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1833 1834 1835 1836

	spin_unlock(&memcg_oom_lock);

	return !failed;
1837
}
1838

1839
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1840
{
K
KAMEZAWA Hiroyuki 已提交
1841 1842
	struct mem_cgroup *iter;

1843
	spin_lock(&memcg_oom_lock);
1844
	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1845
	for_each_mem_cgroup_tree(iter, memcg)
1846
		iter->oom_lock = false;
1847
	spin_unlock(&memcg_oom_lock);
1848 1849
}

1850
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1851 1852 1853
{
	struct mem_cgroup *iter;

1854
	spin_lock(&memcg_oom_lock);
1855
	for_each_mem_cgroup_tree(iter, memcg)
1856 1857
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1858 1859
}

1860
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1861 1862 1863
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1864
	/*
1865 1866
	 * Be careful about under_oom underflows becase a child memcg
	 * could have been added after mem_cgroup_mark_under_oom.
K
KAMEZAWA Hiroyuki 已提交
1867
	 */
1868
	spin_lock(&memcg_oom_lock);
1869
	for_each_mem_cgroup_tree(iter, memcg)
1870 1871 1872
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1873 1874
}

K
KAMEZAWA Hiroyuki 已提交
1875 1876
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1877
struct oom_wait_info {
1878
	struct mem_cgroup *memcg;
1879
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1880 1881
};

1882
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1883 1884
	unsigned mode, int sync, void *arg)
{
1885 1886
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1887 1888 1889
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1890
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1891

1892 1893
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1894 1895 1896 1897
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1898
static void memcg_oom_recover(struct mem_cgroup *memcg)
1899
{
1900 1901 1902 1903 1904 1905 1906 1907 1908
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1909
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1910 1911
}

1912 1913 1914 1915 1916 1917 1918 1919
enum oom_status {
	OOM_SUCCESS,
	OOM_FAILED,
	OOM_ASYNC,
	OOM_SKIPPED
};

static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1920
{
1921 1922 1923
	enum oom_status ret;
	bool locked;

1924 1925 1926
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		return OOM_SKIPPED;

1927 1928
	memcg_memory_event(memcg, MEMCG_OOM);

K
KAMEZAWA Hiroyuki 已提交
1929
	/*
1930 1931 1932 1933
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1934 1935 1936 1937
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1938
	 *
1939 1940 1941 1942 1943 1944 1945
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
K
KAMEZAWA Hiroyuki 已提交
1946
	 */
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
	if (memcg->oom_kill_disable) {
		if (!current->in_user_fault)
			return OOM_SKIPPED;
		css_get(&memcg->css);
		current->memcg_in_oom = memcg;
		current->memcg_oom_gfp_mask = mask;
		current->memcg_oom_order = order;

		return OOM_ASYNC;
	}

1958 1959 1960 1961 1962 1963 1964 1965
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	mem_cgroup_unmark_under_oom(memcg);
1966
	if (mem_cgroup_out_of_memory(memcg, mask, order))
1967 1968 1969 1970 1971 1972
		ret = OOM_SUCCESS;
	else
		ret = OOM_FAILED;

	if (locked)
		mem_cgroup_oom_unlock(memcg);
1973

1974
	return ret;
1975 1976 1977 1978
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1979
 * @handle: actually kill/wait or just clean up the OOM state
1980
 *
1981 1982
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1983
 *
1984
 * Memcg supports userspace OOM handling where failed allocations must
1985 1986 1987 1988
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1989
 * the end of the page fault to complete the OOM handling.
1990 1991
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1992
 * completed, %false otherwise.
1993
 */
1994
bool mem_cgroup_oom_synchronize(bool handle)
1995
{
T
Tejun Heo 已提交
1996
	struct mem_cgroup *memcg = current->memcg_in_oom;
1997
	struct oom_wait_info owait;
1998
	bool locked;
1999 2000 2001

	/* OOM is global, do not handle */
	if (!memcg)
2002
		return false;
2003

2004
	if (!handle)
2005
		goto cleanup;
2006 2007 2008 2009 2010

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
2011
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
2012

2013
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
2024 2025
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
2026
	} else {
2027
		schedule();
2028 2029 2030 2031 2032
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
2033 2034 2035 2036 2037 2038 2039 2040
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2041
cleanup:
T
Tejun Heo 已提交
2042
	current->memcg_in_oom = NULL;
2043
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2044
	return true;
2045 2046
}

2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
/**
 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 * @victim: task to be killed by the OOM killer
 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 *
 * Returns a pointer to a memory cgroup, which has to be cleaned up
 * by killing all belonging OOM-killable tasks.
 *
 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 */
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
					    struct mem_cgroup *oom_domain)
{
	struct mem_cgroup *oom_group = NULL;
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return NULL;

	if (!oom_domain)
		oom_domain = root_mem_cgroup;

	rcu_read_lock();

	memcg = mem_cgroup_from_task(victim);
	if (memcg == root_mem_cgroup)
		goto out;

2075 2076 2077 2078 2079 2080 2081 2082
	/*
	 * If the victim task has been asynchronously moved to a different
	 * memory cgroup, we might end up killing tasks outside oom_domain.
	 * In this case it's better to ignore memory.group.oom.
	 */
	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
		goto out;

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
	/*
	 * Traverse the memory cgroup hierarchy from the victim task's
	 * cgroup up to the OOMing cgroup (or root) to find the
	 * highest-level memory cgroup with oom.group set.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		if (memcg->oom_group)
			oom_group = memcg;

		if (memcg == oom_domain)
			break;
	}

	if (oom_group)
		css_get(&oom_group->css);
out:
	rcu_read_unlock();

	return oom_group;
}

void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
	pr_info("Tasks in ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(" are going to be killed due to memory.oom.group set\n");
}

2111
/**
2112
 * lock_page_memcg - lock a page and memcg binding
2113
 * @page: the page
2114
 *
2115
 * This function protects unlocked LRU pages from being moved to
2116 2117
 * another cgroup.
 *
2118 2119
 * It ensures lifetime of the locked memcg. Caller is responsible
 * for the lifetime of the page.
2120
 */
2121
void lock_page_memcg(struct page *page)
2122
{
2123
	struct page *head = compound_head(page); /* rmap on tail pages */
2124
	struct mem_cgroup *memcg;
2125
	unsigned long flags;
2126

2127 2128 2129 2130
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
2131
         */
2132 2133 2134
	rcu_read_lock();

	if (mem_cgroup_disabled())
2135
		return;
2136
again:
2137
	memcg = page_memcg(head);
2138
	if (unlikely(!memcg))
2139
		return;
2140

2141 2142 2143 2144 2145 2146
#ifdef CONFIG_PROVE_LOCKING
	local_irq_save(flags);
	might_lock(&memcg->move_lock);
	local_irq_restore(flags);
#endif

Q
Qiang Huang 已提交
2147
	if (atomic_read(&memcg->moving_account) <= 0)
2148
		return;
2149

2150
	spin_lock_irqsave(&memcg->move_lock, flags);
2151
	if (memcg != page_memcg(head)) {
2152
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2153 2154
		goto again;
	}
2155 2156

	/*
2157 2158 2159 2160
	 * When charge migration first begins, we can have multiple
	 * critical sections holding the fast-path RCU lock and one
	 * holding the slowpath move_lock. Track the task who has the
	 * move_lock for unlock_page_memcg().
2161 2162 2163
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2164
}
2165
EXPORT_SYMBOL(lock_page_memcg);
2166

2167
static void __unlock_page_memcg(struct mem_cgroup *memcg)
2168
{
2169 2170 2171 2172 2173 2174 2175 2176
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2177

2178
	rcu_read_unlock();
2179
}
2180 2181

/**
2182
 * unlock_page_memcg - unlock a page and memcg binding
2183 2184 2185 2186
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
2187 2188
	struct page *head = compound_head(page);

2189
	__unlock_page_memcg(page_memcg(head));
2190
}
2191
EXPORT_SYMBOL(unlock_page_memcg);
2192

2193 2194
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2195
	unsigned int nr_pages;
R
Roman Gushchin 已提交
2196 2197 2198 2199 2200 2201

#ifdef CONFIG_MEMCG_KMEM
	struct obj_cgroup *cached_objcg;
	unsigned int nr_bytes;
#endif

2202
	struct work_struct work;
2203
	unsigned long flags;
2204
#define FLUSHING_CACHED_CHARGE	0
2205 2206
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2207
static DEFINE_MUTEX(percpu_charge_mutex);
2208

R
Roman Gushchin 已提交
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
#ifdef CONFIG_MEMCG_KMEM
static void drain_obj_stock(struct memcg_stock_pcp *stock);
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg);

#else
static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
{
}
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	return false;
}
#endif

2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2235
 */
2236
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2237 2238
{
	struct memcg_stock_pcp *stock;
2239
	unsigned long flags;
2240
	bool ret = false;
2241

2242
	if (nr_pages > MEMCG_CHARGE_BATCH)
2243
		return ret;
2244

2245 2246 2247
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2248
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2249
		stock->nr_pages -= nr_pages;
2250 2251
		ret = true;
	}
2252 2253 2254

	local_irq_restore(flags);

2255 2256 2257 2258
	return ret;
}

/*
2259
 * Returns stocks cached in percpu and reset cached information.
2260 2261 2262 2263 2264
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2265 2266 2267
	if (!old)
		return;

2268
	if (stock->nr_pages) {
2269
		page_counter_uncharge(&old->memory, stock->nr_pages);
2270
		if (do_memsw_account())
2271
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2272
		stock->nr_pages = 0;
2273
	}
2274 2275

	css_put(&old->css);
2276 2277 2278 2279 2280
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
2281 2282 2283
	struct memcg_stock_pcp *stock;
	unsigned long flags;

2284 2285 2286 2287
	/*
	 * The only protection from memory hotplug vs. drain_stock races is
	 * that we always operate on local CPU stock here with IRQ disabled
	 */
2288 2289 2290
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
R
Roman Gushchin 已提交
2291
	drain_obj_stock(stock);
2292
	drain_stock(stock);
2293
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2294 2295

	local_irq_restore(flags);
2296 2297 2298
}

/*
2299
 * Cache charges(val) to local per_cpu area.
2300
 * This will be consumed by consume_stock() function, later.
2301
 */
2302
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2303
{
2304 2305 2306 2307
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
2308

2309
	stock = this_cpu_ptr(&memcg_stock);
2310
	if (stock->cached != memcg) { /* reset if necessary */
2311
		drain_stock(stock);
2312
		css_get(&memcg->css);
2313
		stock->cached = memcg;
2314
	}
2315
	stock->nr_pages += nr_pages;
2316

2317
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2318 2319
		drain_stock(stock);

2320
	local_irq_restore(flags);
2321 2322 2323
}

/*
2324
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2325
 * of the hierarchy under it.
2326
 */
2327
static void drain_all_stock(struct mem_cgroup *root_memcg)
2328
{
2329
	int cpu, curcpu;
2330

2331 2332 2333
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2334 2335 2336 2337 2338 2339
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
2340
	curcpu = get_cpu();
2341 2342
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2343
		struct mem_cgroup *memcg;
2344
		bool flush = false;
2345

2346
		rcu_read_lock();
2347
		memcg = stock->cached;
2348 2349 2350
		if (memcg && stock->nr_pages &&
		    mem_cgroup_is_descendant(memcg, root_memcg))
			flush = true;
R
Roman Gushchin 已提交
2351 2352
		if (obj_stock_flush_required(stock, root_memcg))
			flush = true;
2353 2354 2355 2356
		rcu_read_unlock();

		if (flush &&
		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2357 2358 2359 2360 2361
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2362
	}
2363
	put_cpu();
2364
	mutex_unlock(&percpu_charge_mutex);
2365 2366
}

2367
static void memcg_flush_lruvec_page_state(struct mem_cgroup *memcg, int cpu)
2368
{
2369
	int nid;
2370

2371 2372 2373 2374
	for_each_node(nid) {
		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
		unsigned long stat[NR_VM_NODE_STAT_ITEMS];
		struct batched_lruvec_stat *lstatc;
2375 2376
		int i;

2377
		lstatc = per_cpu_ptr(pn->lruvec_stat_cpu, cpu);
2378
		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
2379 2380 2381
			stat[i] = lstatc->count[i];
			lstatc->count[i] = 0;
		}
2382

2383 2384 2385 2386 2387 2388
		do {
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
				atomic_long_add(stat[i], &pn->lruvec_stat[i]);
		} while ((pn = parent_nodeinfo(pn, nid)));
	}
}
2389

2390 2391 2392 2393
static int memcg_hotplug_cpu_dead(unsigned int cpu)
{
	struct memcg_stock_pcp *stock;
	struct mem_cgroup *memcg;
2394

2395 2396
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
2397

2398 2399
	for_each_mem_cgroup(memcg)
		memcg_flush_lruvec_page_state(memcg, cpu);
2400

2401
	return 0;
2402 2403
}

2404 2405 2406
static unsigned long reclaim_high(struct mem_cgroup *memcg,
				  unsigned int nr_pages,
				  gfp_t gfp_mask)
2407
{
2408 2409
	unsigned long nr_reclaimed = 0;

2410
	do {
2411 2412
		unsigned long pflags;

2413 2414
		if (page_counter_read(&memcg->memory) <=
		    READ_ONCE(memcg->memory.high))
2415
			continue;
2416

2417
		memcg_memory_event(memcg, MEMCG_HIGH);
2418 2419

		psi_memstall_enter(&pflags);
2420 2421
		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
							     gfp_mask, true);
2422
		psi_memstall_leave(&pflags);
2423 2424
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));
2425 2426

	return nr_reclaimed;
2427 2428 2429 2430 2431 2432 2433
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
2434
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2435 2436
}

2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
/*
 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
 * enough to still cause a significant slowdown in most cases, while still
 * allowing diagnostics and tracing to proceed without becoming stuck.
 */
#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)

/*
 * When calculating the delay, we use these either side of the exponentiation to
 * maintain precision and scale to a reasonable number of jiffies (see the table
 * below.
 *
 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
 *   overage ratio to a delay.
2451
 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
 *   to produce a reasonable delay curve.
 *
 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
 * reasonable delay curve compared to precision-adjusted overage, not
 * penalising heavily at first, but still making sure that growth beyond the
 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
 * example, with a high of 100 megabytes:
 *
 *  +-------+------------------------+
 *  | usage | time to allocate in ms |
 *  +-------+------------------------+
 *  | 100M  |                      0 |
 *  | 101M  |                      6 |
 *  | 102M  |                     25 |
 *  | 103M  |                     57 |
 *  | 104M  |                    102 |
 *  | 105M  |                    159 |
 *  | 106M  |                    230 |
 *  | 107M  |                    313 |
 *  | 108M  |                    409 |
 *  | 109M  |                    518 |
 *  | 110M  |                    639 |
 *  | 111M  |                    774 |
 *  | 112M  |                    921 |
 *  | 113M  |                   1081 |
 *  | 114M  |                   1254 |
 *  | 115M  |                   1439 |
 *  | 116M  |                   1638 |
 *  | 117M  |                   1849 |
 *  | 118M  |                   2000 |
 *  | 119M  |                   2000 |
 *  | 120M  |                   2000 |
 *  +-------+------------------------+
 */
 #define MEMCG_DELAY_PRECISION_SHIFT 20
 #define MEMCG_DELAY_SCALING_SHIFT 14

2490
static u64 calculate_overage(unsigned long usage, unsigned long high)
2491
{
2492
	u64 overage;
2493

2494 2495
	if (usage <= high)
		return 0;
2496

2497 2498 2499 2500 2501
	/*
	 * Prevent division by 0 in overage calculation by acting as if
	 * it was a threshold of 1 page
	 */
	high = max(high, 1UL);
2502

2503 2504 2505 2506
	overage = usage - high;
	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
	return div64_u64(overage, high);
}
2507

2508 2509 2510
static u64 mem_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;
2511

2512 2513
	do {
		overage = calculate_overage(page_counter_read(&memcg->memory),
2514
					    READ_ONCE(memcg->memory.high));
2515
		max_overage = max(overage, max_overage);
2516 2517 2518
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

2519 2520 2521
	return max_overage;
}

2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
static u64 swap_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;

	do {
		overage = calculate_overage(page_counter_read(&memcg->swap),
					    READ_ONCE(memcg->swap.high));
		if (overage)
			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
		max_overage = max(overage, max_overage);
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

	return max_overage;
}

2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
/*
 * Get the number of jiffies that we should penalise a mischievous cgroup which
 * is exceeding its memory.high by checking both it and its ancestors.
 */
static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
					  unsigned int nr_pages,
					  u64 max_overage)
{
	unsigned long penalty_jiffies;

2548 2549
	if (!max_overage)
		return 0;
2550 2551 2552 2553 2554 2555 2556 2557 2558

	/*
	 * We use overage compared to memory.high to calculate the number of
	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
	 * fairly lenient on small overages, and increasingly harsh when the
	 * memcg in question makes it clear that it has no intention of stopping
	 * its crazy behaviour, so we exponentially increase the delay based on
	 * overage amount.
	 */
2559 2560 2561
	penalty_jiffies = max_overage * max_overage * HZ;
	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2562 2563 2564 2565 2566 2567 2568 2569 2570

	/*
	 * Factor in the task's own contribution to the overage, such that four
	 * N-sized allocations are throttled approximately the same as one
	 * 4N-sized allocation.
	 *
	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
	 * larger the current charge patch is than that.
	 */
2571
	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
}

/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned long penalty_jiffies;
	unsigned long pflags;
2582
	unsigned long nr_reclaimed;
2583
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2584
	int nr_retries = MAX_RECLAIM_RETRIES;
2585
	struct mem_cgroup *memcg;
2586
	bool in_retry = false;
2587 2588 2589 2590 2591 2592 2593

	if (likely(!nr_pages))
		return;

	memcg = get_mem_cgroup_from_mm(current->mm);
	current->memcg_nr_pages_over_high = 0;

2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
retry_reclaim:
	/*
	 * The allocating task should reclaim at least the batch size, but for
	 * subsequent retries we only want to do what's necessary to prevent oom
	 * or breaching resource isolation.
	 *
	 * This is distinct from memory.max or page allocator behaviour because
	 * memory.high is currently batched, whereas memory.max and the page
	 * allocator run every time an allocation is made.
	 */
	nr_reclaimed = reclaim_high(memcg,
				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
				    GFP_KERNEL);

2608 2609 2610 2611
	/*
	 * memory.high is breached and reclaim is unable to keep up. Throttle
	 * allocators proactively to slow down excessive growth.
	 */
2612 2613
	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
					       mem_find_max_overage(memcg));
2614

2615 2616 2617
	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
						swap_find_max_overage(memcg));

2618 2619 2620 2621 2622 2623 2624
	/*
	 * Clamp the max delay per usermode return so as to still keep the
	 * application moving forwards and also permit diagnostics, albeit
	 * extremely slowly.
	 */
	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);

2625 2626 2627 2628 2629 2630 2631 2632 2633
	/*
	 * Don't sleep if the amount of jiffies this memcg owes us is so low
	 * that it's not even worth doing, in an attempt to be nice to those who
	 * go only a small amount over their memory.high value and maybe haven't
	 * been aggressively reclaimed enough yet.
	 */
	if (penalty_jiffies <= HZ / 100)
		goto out;

2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
	/*
	 * If reclaim is making forward progress but we're still over
	 * memory.high, we want to encourage that rather than doing allocator
	 * throttling.
	 */
	if (nr_reclaimed || nr_retries--) {
		in_retry = true;
		goto retry_reclaim;
	}

2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
	/*
	 * If we exit early, we're guaranteed to die (since
	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
	 * need to account for any ill-begotten jiffies to pay them off later.
	 */
	psi_memstall_enter(&pflags);
	schedule_timeout_killable(penalty_jiffies);
	psi_memstall_leave(&pflags);

out:
	css_put(&memcg->css);
2655 2656
}

2657 2658
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2659
{
2660
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2661
	int nr_retries = MAX_RECLAIM_RETRIES;
2662
	struct mem_cgroup *mem_over_limit;
2663
	struct page_counter *counter;
2664
	enum oom_status oom_status;
2665
	unsigned long nr_reclaimed;
2666 2667
	bool may_swap = true;
	bool drained = false;
2668
	unsigned long pflags;
2669

2670
	if (mem_cgroup_is_root(memcg))
2671
		return 0;
2672
retry:
2673
	if (consume_stock(memcg, nr_pages))
2674
		return 0;
2675

2676
	if (!do_memsw_account() ||
2677 2678
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2679
			goto done_restock;
2680
		if (do_memsw_account())
2681 2682
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2683
	} else {
2684
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2685
		may_swap = false;
2686
	}
2687

2688 2689 2690 2691
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2692

2693 2694 2695 2696 2697 2698 2699 2700 2701
	/*
	 * Memcg doesn't have a dedicated reserve for atomic
	 * allocations. But like the global atomic pool, we need to
	 * put the burden of reclaim on regular allocation requests
	 * and let these go through as privileged allocations.
	 */
	if (gfp_mask & __GFP_ATOMIC)
		goto force;

2702 2703 2704 2705 2706 2707
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
2708
	if (unlikely(should_force_charge()))
2709
		goto force;
2710

2711 2712 2713 2714 2715 2716 2717 2718 2719
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2720 2721 2722
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2723
	if (!gfpflags_allow_blocking(gfp_mask))
2724
		goto nomem;
2725

2726
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2727

2728
	psi_memstall_enter(&pflags);
2729 2730
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2731
	psi_memstall_leave(&pflags);
2732

2733
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2734
		goto retry;
2735

2736
	if (!drained) {
2737
		drain_all_stock(mem_over_limit);
2738 2739 2740 2741
		drained = true;
		goto retry;
	}

2742 2743
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2744 2745 2746 2747 2748 2749 2750 2751 2752
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2753
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2754 2755 2756 2757 2758 2759 2760 2761
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2762 2763 2764
	if (nr_retries--)
		goto retry;

2765
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2766 2767
		goto nomem;

2768
	if (fatal_signal_pending(current))
2769
		goto force;
2770

2771 2772 2773 2774 2775 2776
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2777
		       get_order(nr_pages * PAGE_SIZE));
2778 2779
	switch (oom_status) {
	case OOM_SUCCESS:
2780
		nr_retries = MAX_RECLAIM_RETRIES;
2781 2782 2783 2784 2785 2786
		goto retry;
	case OOM_FAILED:
		goto force;
	default:
		goto nomem;
	}
2787
nomem:
2788
	if (!(gfp_mask & __GFP_NOFAIL))
2789
		return -ENOMEM;
2790 2791 2792 2793 2794 2795 2796
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2797
	if (do_memsw_account())
2798 2799 2800
		page_counter_charge(&memcg->memsw, nr_pages);

	return 0;
2801 2802 2803 2804

done_restock:
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2805

2806
	/*
2807 2808
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2809
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2810 2811 2812 2813
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2814 2815
	 */
	do {
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
		bool mem_high, swap_high;

		mem_high = page_counter_read(&memcg->memory) >
			READ_ONCE(memcg->memory.high);
		swap_high = page_counter_read(&memcg->swap) >
			READ_ONCE(memcg->swap.high);

		/* Don't bother a random interrupted task */
		if (in_interrupt()) {
			if (mem_high) {
2826 2827 2828
				schedule_work(&memcg->high_work);
				break;
			}
2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
			continue;
		}

		if (mem_high || swap_high) {
			/*
			 * The allocating tasks in this cgroup will need to do
			 * reclaim or be throttled to prevent further growth
			 * of the memory or swap footprints.
			 *
			 * Target some best-effort fairness between the tasks,
			 * and distribute reclaim work and delay penalties
			 * based on how much each task is actually allocating.
			 */
V
Vladimir Davydov 已提交
2842
			current->memcg_nr_pages_over_high += batch;
2843 2844 2845
			set_notify_resume(current);
			break;
		}
2846
	} while ((memcg = parent_mem_cgroup(memcg)));
2847 2848

	return 0;
2849
}
2850

2851
#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2852
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2853
{
2854 2855 2856
	if (mem_cgroup_is_root(memcg))
		return;

2857
	page_counter_uncharge(&memcg->memory, nr_pages);
2858
	if (do_memsw_account())
2859
		page_counter_uncharge(&memcg->memsw, nr_pages);
2860
}
2861
#endif
2862

2863
static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2864
{
2865
	VM_BUG_ON_PAGE(page_memcg(page), page);
2866
	/*
2867
	 * Any of the following ensures page's memcg stability:
2868
	 *
2869 2870 2871 2872
	 * - the page lock
	 * - LRU isolation
	 * - lock_page_memcg()
	 * - exclusive reference
2873
	 */
2874
	page->memcg_data = (unsigned long)memcg;
2875
}
2876

2877
#ifdef CONFIG_MEMCG_KMEM
2878
int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2879
				 gfp_t gfp, bool new_page)
2880 2881
{
	unsigned int objects = objs_per_slab_page(s, page);
2882
	unsigned long memcg_data;
2883 2884 2885 2886 2887 2888 2889
	void *vec;

	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
			   page_to_nid(page));
	if (!vec)
		return -ENOMEM;

2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
	if (new_page) {
		/*
		 * If the slab page is brand new and nobody can yet access
		 * it's memcg_data, no synchronization is required and
		 * memcg_data can be simply assigned.
		 */
		page->memcg_data = memcg_data;
	} else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
		/*
		 * If the slab page is already in use, somebody can allocate
		 * and assign obj_cgroups in parallel. In this case the existing
		 * objcg vector should be reused.
		 */
2904
		kfree(vec);
2905 2906
		return 0;
	}
2907

2908
	kmemleak_not_leak(vec);
2909 2910 2911
	return 0;
}

2912 2913 2914
/*
 * Returns a pointer to the memory cgroup to which the kernel object is charged.
 *
2915 2916 2917 2918 2919 2920
 * A passed kernel object can be a slab object or a generic kernel page, so
 * different mechanisms for getting the memory cgroup pointer should be used.
 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
 * can not know for sure how the kernel object is implemented.
 * mem_cgroup_from_obj() can be safely used in such cases.
 *
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
 * cgroup_mutex, etc.
 */
struct mem_cgroup *mem_cgroup_from_obj(void *p)
{
	struct page *page;

	if (mem_cgroup_disabled())
		return NULL;

	page = virt_to_head_page(p);

	/*
2934 2935 2936
	 * Slab objects are accounted individually, not per-page.
	 * Memcg membership data for each individual object is saved in
	 * the page->obj_cgroups.
2937
	 */
2938
	if (page_objcgs_check(page)) {
2939 2940 2941 2942
		struct obj_cgroup *objcg;
		unsigned int off;

		off = obj_to_index(page->slab_cache, page, p);
2943
		objcg = page_objcgs(page)[off];
2944 2945 2946 2947
		if (objcg)
			return obj_cgroup_memcg(objcg);

		return NULL;
2948
	}
2949

2950 2951 2952 2953 2954 2955 2956 2957
	/*
	 * page_memcg_check() is used here, because page_has_obj_cgroups()
	 * check above could fail because the object cgroups vector wasn't set
	 * at that moment, but it can be set concurrently.
	 * page_memcg_check(page) will guarantee that a proper memory
	 * cgroup pointer or NULL will be returned.
	 */
	return page_memcg_check(page);
2958 2959
}

R
Roman Gushchin 已提交
2960 2961 2962 2963 2964
__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
{
	struct obj_cgroup *objcg = NULL;
	struct mem_cgroup *memcg;

2965 2966 2967
	if (memcg_kmem_bypass())
		return NULL;

R
Roman Gushchin 已提交
2968
	rcu_read_lock();
2969 2970
	if (unlikely(active_memcg()))
		memcg = active_memcg();
R
Roman Gushchin 已提交
2971 2972 2973 2974 2975 2976 2977
	else
		memcg = mem_cgroup_from_task(current);

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		objcg = rcu_dereference(memcg->objcg);
		if (objcg && obj_cgroup_tryget(objcg))
			break;
2978
		objcg = NULL;
R
Roman Gushchin 已提交
2979 2980 2981 2982 2983 2984
	}
	rcu_read_unlock();

	return objcg;
}

2985
static int memcg_alloc_cache_id(void)
2986
{
2987 2988 2989
	int id, size;
	int err;

2990
	id = ida_simple_get(&memcg_cache_ida,
2991 2992 2993
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2994

2995
	if (id < memcg_nr_cache_ids)
2996 2997 2998 2999 3000 3001
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
3002
	down_write(&memcg_cache_ids_sem);
3003 3004

	size = 2 * (id + 1);
3005 3006 3007 3008 3009
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

3010
	err = memcg_update_all_list_lrus(size);
3011 3012 3013 3014 3015
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

3016
	if (err) {
3017
		ida_simple_remove(&memcg_cache_ida, id);
3018 3019 3020 3021 3022 3023 3024
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
3025
	ida_simple_remove(&memcg_cache_ida, id);
3026 3027
}

3028
/**
3029
 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
3030
 * @memcg: memory cgroup to charge
3031
 * @gfp: reclaim mode
3032
 * @nr_pages: number of pages to charge
3033 3034 3035
 *
 * Returns 0 on success, an error code on failure.
 */
3036 3037
static int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
			       unsigned int nr_pages)
3038
{
3039
	struct page_counter *counter;
3040 3041
	int ret;

3042
	ret = try_charge(memcg, gfp, nr_pages);
3043
	if (ret)
3044
		return ret;
3045 3046 3047

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057

		/*
		 * Enforce __GFP_NOFAIL allocation because callers are not
		 * prepared to see failures and likely do not have any failure
		 * handling code.
		 */
		if (gfp & __GFP_NOFAIL) {
			page_counter_charge(&memcg->kmem, nr_pages);
			return 0;
		}
3058 3059
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
3060
	}
3061
	return 0;
3062 3063
}

3064 3065 3066 3067 3068
/**
 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
 */
3069
static void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3070 3071 3072 3073
{
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

3074
	refill_stock(memcg, nr_pages);
3075 3076
}

3077
/**
3078
 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3079 3080 3081 3082 3083 3084
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
3085
int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3086
{
3087
	struct mem_cgroup *memcg;
3088
	int ret = 0;
3089

3090
	memcg = get_mem_cgroup_from_current();
3091
	if (memcg && !mem_cgroup_is_root(memcg)) {
3092
		ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3093
		if (!ret) {
3094 3095
			page->memcg_data = (unsigned long)memcg |
				MEMCG_DATA_KMEM;
3096
			return 0;
3097
		}
3098
		css_put(&memcg->css);
3099
	}
3100
	return ret;
3101
}
3102

3103
/**
3104
 * __memcg_kmem_uncharge_page: uncharge a kmem page
3105 3106 3107
 * @page: page to uncharge
 * @order: allocation order
 */
3108
void __memcg_kmem_uncharge_page(struct page *page, int order)
3109
{
3110
	struct mem_cgroup *memcg = page_memcg(page);
3111
	unsigned int nr_pages = 1 << order;
3112 3113 3114 3115

	if (!memcg)
		return;

3116
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3117
	__memcg_kmem_uncharge(memcg, nr_pages);
3118
	page->memcg_data = 0;
3119
	css_put(&memcg->css);
3120
}
R
Roman Gushchin 已提交
3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231

static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
{
	struct memcg_stock_pcp *stock;
	unsigned long flags;
	bool ret = false;

	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
		stock->nr_bytes -= nr_bytes;
		ret = true;
	}

	local_irq_restore(flags);

	return ret;
}

static void drain_obj_stock(struct memcg_stock_pcp *stock)
{
	struct obj_cgroup *old = stock->cached_objcg;

	if (!old)
		return;

	if (stock->nr_bytes) {
		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);

		if (nr_pages) {
			rcu_read_lock();
			__memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
			rcu_read_unlock();
		}

		/*
		 * The leftover is flushed to the centralized per-memcg value.
		 * On the next attempt to refill obj stock it will be moved
		 * to a per-cpu stock (probably, on an other CPU), see
		 * refill_obj_stock().
		 *
		 * How often it's flushed is a trade-off between the memory
		 * limit enforcement accuracy and potential CPU contention,
		 * so it might be changed in the future.
		 */
		atomic_add(nr_bytes, &old->nr_charged_bytes);
		stock->nr_bytes = 0;
	}

	obj_cgroup_put(old);
	stock->cached_objcg = NULL;
}

static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	struct mem_cgroup *memcg;

	if (stock->cached_objcg) {
		memcg = obj_cgroup_memcg(stock->cached_objcg);
		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
			return true;
	}

	return false;
}

static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
{
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
	if (stock->cached_objcg != objcg) { /* reset if necessary */
		drain_obj_stock(stock);
		obj_cgroup_get(objcg);
		stock->cached_objcg = objcg;
		stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
	}
	stock->nr_bytes += nr_bytes;

	if (stock->nr_bytes > PAGE_SIZE)
		drain_obj_stock(stock);

	local_irq_restore(flags);
}

int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
{
	struct mem_cgroup *memcg;
	unsigned int nr_pages, nr_bytes;
	int ret;

	if (consume_obj_stock(objcg, size))
		return 0;

	/*
	 * In theory, memcg->nr_charged_bytes can have enough
	 * pre-charged bytes to satisfy the allocation. However,
	 * flushing memcg->nr_charged_bytes requires two atomic
	 * operations, and memcg->nr_charged_bytes can't be big,
	 * so it's better to ignore it and try grab some new pages.
	 * memcg->nr_charged_bytes will be flushed in
	 * refill_obj_stock(), called from this function or
	 * independently later.
	 */
	rcu_read_lock();
3232
retry:
R
Roman Gushchin 已提交
3233
	memcg = obj_cgroup_memcg(objcg);
3234 3235
	if (unlikely(!css_tryget(&memcg->css)))
		goto retry;
R
Roman Gushchin 已提交
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
	rcu_read_unlock();

	nr_pages = size >> PAGE_SHIFT;
	nr_bytes = size & (PAGE_SIZE - 1);

	if (nr_bytes)
		nr_pages += 1;

	ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
	if (!ret && nr_bytes)
		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);

	css_put(&memcg->css);
	return ret;
}

void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
{
	refill_obj_stock(objcg, size);
}

3257
#endif /* CONFIG_MEMCG_KMEM */
3258

3259
/*
3260
 * Because page_memcg(head) is not set on tails, set it now.
3261
 */
3262
void split_page_memcg(struct page *head, unsigned int nr)
3263
{
3264
	struct mem_cgroup *memcg = page_memcg(head);
3265
	int i;
3266

3267
	if (mem_cgroup_disabled() || !memcg)
3268
		return;
3269

3270 3271 3272
	for (i = 1; i < nr; i++)
		head[i].memcg_data = head->memcg_data;
	css_get_many(&memcg->css, nr - 1);
3273 3274
}

A
Andrew Morton 已提交
3275
#ifdef CONFIG_MEMCG_SWAP
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
3287
 * The caller must have charged to @to, IOW, called page_counter_charge() about
3288 3289 3290
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3291
				struct mem_cgroup *from, struct mem_cgroup *to)
3292 3293 3294
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
3295 3296
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3297 3298

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3299 3300
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
3301 3302 3303 3304 3305 3306
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3307
				struct mem_cgroup *from, struct mem_cgroup *to)
3308 3309 3310
{
	return -EINVAL;
}
3311
#endif
K
KAMEZAWA Hiroyuki 已提交
3312

3313
static DEFINE_MUTEX(memcg_max_mutex);
3314

3315 3316
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
3317
{
3318
	bool enlarge = false;
3319
	bool drained = false;
3320
	int ret;
3321 3322
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3323

3324
	do {
3325 3326 3327 3328
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3329

3330
		mutex_lock(&memcg_max_mutex);
3331 3332
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
3333
		 * break our basic invariant rule memory.max <= memsw.max.
3334
		 */
3335
		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3336
					   max <= memcg->memsw.max;
3337
		if (!limits_invariant) {
3338
			mutex_unlock(&memcg_max_mutex);
3339 3340 3341
			ret = -EINVAL;
			break;
		}
3342
		if (max > counter->max)
3343
			enlarge = true;
3344 3345
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
3346 3347 3348 3349

		if (!ret)
			break;

3350 3351 3352 3353 3354 3355
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

3356 3357 3358 3359 3360 3361
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
3362

3363 3364
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3365

3366 3367 3368
	return ret;
}

3369
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3370 3371 3372 3373
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
3374
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3375 3376
	unsigned long reclaimed;
	int loop = 0;
3377
	struct mem_cgroup_tree_per_node *mctz;
3378
	unsigned long excess;
3379 3380 3381 3382 3383
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

3384
	mctz = soft_limit_tree_node(pgdat->node_id);
3385 3386 3387 3388 3389 3390

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
3391
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3392 3393
		return 0;

3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
3408
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3409 3410 3411
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3412
		spin_lock_irq(&mctz->lock);
3413
		__mem_cgroup_remove_exceeded(mz, mctz);
3414 3415 3416 3417 3418 3419

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3420 3421 3422
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3423
		excess = soft_limit_excess(mz->memcg);
3424 3425 3426 3427 3428 3429 3430 3431 3432
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3433
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3434
		spin_unlock_irq(&mctz->lock);
3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3452
/*
3453
 * Reclaims as many pages from the given memcg as possible.
3454 3455 3456 3457 3458
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
3459
	int nr_retries = MAX_RECLAIM_RETRIES;
3460

3461 3462
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3463 3464 3465

	drain_all_stock(memcg);

3466
	/* try to free all pages in this cgroup */
3467
	while (nr_retries && page_counter_read(&memcg->memory)) {
3468
		int progress;
3469

3470 3471 3472
		if (signal_pending(current))
			return -EINTR;

3473 3474
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3475
		if (!progress) {
3476
			nr_retries--;
3477
			/* maybe some writeback is necessary */
3478
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3479
		}
3480 3481

	}
3482 3483

	return 0;
3484 3485
}

3486 3487 3488
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3489
{
3490
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3491

3492 3493
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3494
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3495 3496
}

3497 3498
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3499
{
3500
	return 1;
3501 3502
}

3503 3504
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3505
{
3506
	if (val == 1)
3507
		return 0;
3508

3509 3510 3511
	pr_warn_once("Non-hierarchical mode is deprecated. "
		     "Please report your usecase to linux-mm@kvack.org if you "
		     "depend on this functionality.\n");
3512

3513
	return -EINVAL;
3514 3515
}

3516
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3517
{
3518
	unsigned long val;
3519

3520
	if (mem_cgroup_is_root(memcg)) {
3521
		cgroup_rstat_flush(memcg->css.cgroup);
3522
		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3523
			memcg_page_state(memcg, NR_ANON_MAPPED);
3524 3525
		if (swap)
			val += memcg_page_state(memcg, MEMCG_SWAP);
3526
	} else {
3527
		if (!swap)
3528
			val = page_counter_read(&memcg->memory);
3529
		else
3530
			val = page_counter_read(&memcg->memsw);
3531
	}
3532
	return val;
3533 3534
}

3535 3536 3537 3538 3539 3540 3541
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3542

3543
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3544
			       struct cftype *cft)
B
Balbir Singh 已提交
3545
{
3546
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3547
	struct page_counter *counter;
3548

3549
	switch (MEMFILE_TYPE(cft->private)) {
3550
	case _MEM:
3551 3552
		counter = &memcg->memory;
		break;
3553
	case _MEMSWAP:
3554 3555
		counter = &memcg->memsw;
		break;
3556
	case _KMEM:
3557
		counter = &memcg->kmem;
3558
		break;
V
Vladimir Davydov 已提交
3559
	case _TCP:
3560
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3561
		break;
3562 3563 3564
	default:
		BUG();
	}
3565 3566 3567 3568

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
3569
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3570
		if (counter == &memcg->memsw)
3571
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3572 3573
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
3574
		return (u64)counter->max * PAGE_SIZE;
3575 3576 3577 3578 3579 3580 3581 3582 3583
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3584
}
3585

3586
#ifdef CONFIG_MEMCG_KMEM
3587
static int memcg_online_kmem(struct mem_cgroup *memcg)
3588
{
R
Roman Gushchin 已提交
3589
	struct obj_cgroup *objcg;
3590 3591
	int memcg_id;

3592 3593 3594
	if (cgroup_memory_nokmem)
		return 0;

3595
	BUG_ON(memcg->kmemcg_id >= 0);
3596
	BUG_ON(memcg->kmem_state);
3597

3598
	memcg_id = memcg_alloc_cache_id();
3599 3600
	if (memcg_id < 0)
		return memcg_id;
3601

R
Roman Gushchin 已提交
3602 3603 3604 3605 3606 3607 3608 3609
	objcg = obj_cgroup_alloc();
	if (!objcg) {
		memcg_free_cache_id(memcg_id);
		return -ENOMEM;
	}
	objcg->memcg = memcg;
	rcu_assign_pointer(memcg->objcg, objcg);

3610 3611
	static_branch_enable(&memcg_kmem_enabled_key);

V
Vladimir Davydov 已提交
3612
	memcg->kmemcg_id = memcg_id;
3613
	memcg->kmem_state = KMEM_ONLINE;
3614 3615

	return 0;
3616 3617
}

3618 3619 3620 3621 3622 3623 3624 3625
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
3626

3627 3628 3629 3630 3631 3632
	memcg->kmem_state = KMEM_ALLOCATED;

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

R
Roman Gushchin 已提交
3633
	memcg_reparent_objcgs(memcg, parent);
3634 3635 3636 3637

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

3638 3639 3640 3641 3642 3643 3644 3645
	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
3646
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3647 3648 3649 3650 3651
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
	}
3652 3653
	rcu_read_unlock();

3654
	memcg_drain_all_list_lrus(kmemcg_id, parent);
3655 3656 3657 3658 3659 3660

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
3661 3662 3663
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);
3664
}
3665
#else
3666
static int memcg_online_kmem(struct mem_cgroup *memcg)
3667 3668 3669 3670 3671 3672 3673 3674 3675
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
3676
#endif /* CONFIG_MEMCG_KMEM */
3677

3678 3679
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
3680
{
3681
	int ret;
3682

3683 3684 3685
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
3686
	return ret;
3687
}
3688

3689
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
3690 3691 3692
{
	int ret;

3693
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3694

3695
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
3696 3697 3698
	if (ret)
		goto out;

3699
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3700 3701 3702
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3703 3704 3705
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
3706 3707 3708 3709 3710 3711
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3712
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
3713 3714 3715 3716
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3717
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3718 3719
	}
out:
3720
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3721 3722 3723
	return ret;
}

3724 3725 3726 3727
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3728 3729
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3730
{
3731
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3732
	unsigned long nr_pages;
3733 3734
	int ret;

3735
	buf = strstrip(buf);
3736
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3737 3738
	if (ret)
		return ret;
3739

3740
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3741
	case RES_LIMIT:
3742 3743 3744 3745
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3746 3747
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3748
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3749
			break;
3750
		case _MEMSWAP:
3751
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3752
			break;
3753
		case _KMEM:
3754 3755 3756
			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
				     "Please report your usecase to linux-mm@kvack.org if you "
				     "depend on this functionality.\n");
3757
			ret = memcg_update_kmem_max(memcg, nr_pages);
3758
			break;
V
Vladimir Davydov 已提交
3759
		case _TCP:
3760
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
3761
			break;
3762
		}
3763
		break;
3764 3765 3766
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3767 3768
		break;
	}
3769
	return ret ?: nbytes;
B
Balbir Singh 已提交
3770 3771
}

3772 3773
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3774
{
3775
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3776
	struct page_counter *counter;
3777

3778 3779 3780 3781 3782 3783 3784 3785 3786 3787
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3788
	case _TCP:
3789
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3790
		break;
3791 3792 3793
	default:
		BUG();
	}
3794

3795
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3796
	case RES_MAX_USAGE:
3797
		page_counter_reset_watermark(counter);
3798 3799
		break;
	case RES_FAILCNT:
3800
		counter->failcnt = 0;
3801
		break;
3802 3803
	default:
		BUG();
3804
	}
3805

3806
	return nbytes;
3807 3808
}

3809
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3810 3811
					struct cftype *cft)
{
3812
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3813 3814
}

3815
#ifdef CONFIG_MMU
3816
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3817 3818
					struct cftype *cft, u64 val)
{
3819
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3820

3821
	if (val & ~MOVE_MASK)
3822
		return -EINVAL;
3823

3824
	/*
3825 3826 3827 3828
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3829
	 */
3830
	memcg->move_charge_at_immigrate = val;
3831 3832
	return 0;
}
3833
#else
3834
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3835 3836 3837 3838 3839
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3840

3841
#ifdef CONFIG_NUMA
3842 3843 3844 3845 3846 3847

#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)

static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3848
				int nid, unsigned int lru_mask, bool tree)
3849
{
3850
	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3851 3852 3853 3854 3855 3856 3857 3858
	unsigned long nr = 0;
	enum lru_list lru;

	VM_BUG_ON((unsigned)nid >= nr_node_ids);

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3859 3860 3861 3862
		if (tree)
			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
		else
			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3863 3864 3865 3866 3867
	}
	return nr;
}

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3868 3869
					     unsigned int lru_mask,
					     bool tree)
3870 3871 3872 3873 3874 3875 3876
{
	unsigned long nr = 0;
	enum lru_list lru;

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3877 3878 3879 3880
		if (tree)
			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
		else
			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3881 3882 3883 3884
	}
	return nr;
}

3885
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3886
{
3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3899
	int nid;
3900
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3901

3902 3903
	cgroup_rstat_flush(memcg->css.cgroup);

3904
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3905 3906 3907 3908 3909 3910 3911
		seq_printf(m, "%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   false));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, false));
3912
		seq_putc(m, '\n');
3913 3914
	}

3915
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3916 3917 3918 3919 3920 3921 3922 3923

		seq_printf(m, "hierarchical_%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   true));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, true));
3924
		seq_putc(m, '\n');
3925 3926 3927 3928 3929 3930
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3931
static const unsigned int memcg1_stats[] = {
3932
	NR_FILE_PAGES,
3933
	NR_ANON_MAPPED,
3934 3935 3936
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	NR_ANON_THPS,
#endif
3937 3938 3939 3940 3941 3942 3943 3944 3945 3946
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
3947
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3948
	"rss_huge",
3949
#endif
3950 3951 3952 3953 3954 3955 3956
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

3957
/* Universal VM events cgroup1 shows, original sort order */
3958
static const unsigned int memcg1_events[] = {
3959 3960 3961 3962 3963 3964
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

3965
static int memcg_stat_show(struct seq_file *m, void *v)
3966
{
3967
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3968
	unsigned long memory, memsw;
3969 3970
	struct mem_cgroup *mi;
	unsigned int i;
3971

3972
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3973

3974 3975
	cgroup_rstat_flush(memcg->css.cgroup);

3976
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3977 3978
		unsigned long nr;

3979
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3980
			continue;
3981 3982
		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
3983
	}
L
Lee Schermerhorn 已提交
3984

3985
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3986
		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3987
			   memcg_events_local(memcg, memcg1_events[i]));
3988 3989

	for (i = 0; i < NR_LRU_LISTS; i++)
3990
		seq_printf(m, "%s %lu\n", lru_list_name(i),
3991
			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3992
			   PAGE_SIZE);
3993

K
KAMEZAWA Hiroyuki 已提交
3994
	/* Hierarchical information */
3995 3996
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3997 3998
		memory = min(memory, READ_ONCE(mi->memory.max));
		memsw = min(memsw, READ_ONCE(mi->memsw.max));
3999
	}
4000 4001
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
4002
	if (do_memsw_account())
4003 4004
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
4005

4006
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4007 4008
		unsigned long nr;

4009
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4010
			continue;
4011
		nr = memcg_page_state(memcg, memcg1_stats[i]);
4012
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4013
						(u64)nr * PAGE_SIZE);
4014 4015
	}

4016
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4017 4018
		seq_printf(m, "total_%s %llu\n",
			   vm_event_name(memcg1_events[i]),
4019
			   (u64)memcg_events(memcg, memcg1_events[i]));
4020

4021
	for (i = 0; i < NR_LRU_LISTS; i++)
4022
		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4023 4024
			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			   PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
4025

K
KOSAKI Motohiro 已提交
4026 4027
#ifdef CONFIG_DEBUG_VM
	{
4028 4029
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
4030 4031
		unsigned long anon_cost = 0;
		unsigned long file_cost = 0;
K
KOSAKI Motohiro 已提交
4032

4033
		for_each_online_pgdat(pgdat) {
4034
			mz = memcg->nodeinfo[pgdat->node_id];
K
KOSAKI Motohiro 已提交
4035

4036 4037
			anon_cost += mz->lruvec.anon_cost;
			file_cost += mz->lruvec.file_cost;
4038
		}
4039 4040
		seq_printf(m, "anon_cost %lu\n", anon_cost);
		seq_printf(m, "file_cost %lu\n", file_cost);
K
KOSAKI Motohiro 已提交
4041 4042 4043
	}
#endif

4044 4045 4046
	return 0;
}

4047 4048
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
4049
{
4050
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4051

4052
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4053 4054
}

4055 4056
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
4057
{
4058
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4059

4060
	if (val > 100)
K
KOSAKI Motohiro 已提交
4061 4062
		return -EINVAL;

S
Shakeel Butt 已提交
4063
	if (!mem_cgroup_is_root(memcg))
4064 4065 4066
		memcg->swappiness = val;
	else
		vm_swappiness = val;
4067

K
KOSAKI Motohiro 已提交
4068 4069 4070
	return 0;
}

4071 4072 4073
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
4074
	unsigned long usage;
4075 4076 4077 4078
	int i;

	rcu_read_lock();
	if (!swap)
4079
		t = rcu_dereference(memcg->thresholds.primary);
4080
	else
4081
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4082 4083 4084 4085

	if (!t)
		goto unlock;

4086
	usage = mem_cgroup_usage(memcg, swap);
4087 4088

	/*
4089
	 * current_threshold points to threshold just below or equal to usage.
4090 4091 4092
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4093
	i = t->current_threshold;
4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4117
	t->current_threshold = i - 1;
4118 4119 4120 4121 4122 4123
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4124 4125
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
4126
		if (do_memsw_account())
4127 4128 4129 4130
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4131 4132 4133 4134 4135 4136 4137
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

4138 4139 4140 4141 4142 4143 4144
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
4145 4146
}

4147
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4148 4149 4150
{
	struct mem_cgroup_eventfd_list *ev;

4151 4152
	spin_lock(&memcg_oom_lock);

4153
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4154
		eventfd_signal(ev->eventfd, 1);
4155 4156

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4157 4158 4159
	return 0;
}

4160
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4161
{
K
KAMEZAWA Hiroyuki 已提交
4162 4163
	struct mem_cgroup *iter;

4164
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4165
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4166 4167
}

4168
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4169
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4170
{
4171 4172
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4173 4174
	unsigned long threshold;
	unsigned long usage;
4175
	int i, size, ret;
4176

4177
	ret = page_counter_memparse(args, "-1", &threshold);
4178 4179 4180 4181
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4182

4183
	if (type == _MEM) {
4184
		thresholds = &memcg->thresholds;
4185
		usage = mem_cgroup_usage(memcg, false);
4186
	} else if (type == _MEMSWAP) {
4187
		thresholds = &memcg->memsw_thresholds;
4188
		usage = mem_cgroup_usage(memcg, true);
4189
	} else
4190 4191 4192
		BUG();

	/* Check if a threshold crossed before adding a new one */
4193
	if (thresholds->primary)
4194 4195
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4196
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4197 4198

	/* Allocate memory for new array of thresholds */
4199
	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4200
	if (!new) {
4201 4202 4203
		ret = -ENOMEM;
		goto unlock;
	}
4204
	new->size = size;
4205 4206

	/* Copy thresholds (if any) to new array */
4207 4208 4209
	if (thresholds->primary)
		memcpy(new->entries, thresholds->primary->entries,
		       flex_array_size(new, entries, size - 1));
4210

4211
	/* Add new threshold */
4212 4213
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4214 4215

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4216
	sort(new->entries, size, sizeof(*new->entries),
4217 4218 4219
			compare_thresholds, NULL);

	/* Find current threshold */
4220
	new->current_threshold = -1;
4221
	for (i = 0; i < size; i++) {
4222
		if (new->entries[i].threshold <= usage) {
4223
			/*
4224 4225
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4226 4227
			 * it here.
			 */
4228
			++new->current_threshold;
4229 4230
		} else
			break;
4231 4232
	}

4233 4234 4235 4236 4237
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4238

4239
	/* To be sure that nobody uses thresholds */
4240 4241 4242 4243 4244 4245 4246 4247
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4248
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4249 4250
	struct eventfd_ctx *eventfd, const char *args)
{
4251
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4252 4253
}

4254
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4255 4256
	struct eventfd_ctx *eventfd, const char *args)
{
4257
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4258 4259
}

4260
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4261
	struct eventfd_ctx *eventfd, enum res_type type)
4262
{
4263 4264
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4265
	unsigned long usage;
4266
	int i, j, size, entries;
4267 4268

	mutex_lock(&memcg->thresholds_lock);
4269 4270

	if (type == _MEM) {
4271
		thresholds = &memcg->thresholds;
4272
		usage = mem_cgroup_usage(memcg, false);
4273
	} else if (type == _MEMSWAP) {
4274
		thresholds = &memcg->memsw_thresholds;
4275
		usage = mem_cgroup_usage(memcg, true);
4276
	} else
4277 4278
		BUG();

4279 4280 4281
	if (!thresholds->primary)
		goto unlock;

4282 4283 4284 4285
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4286
	size = entries = 0;
4287 4288
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4289
			size++;
4290 4291
		else
			entries++;
4292 4293
	}

4294
	new = thresholds->spare;
4295

4296 4297 4298 4299
	/* If no items related to eventfd have been cleared, nothing to do */
	if (!entries)
		goto unlock;

4300 4301
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4302 4303
		kfree(new);
		new = NULL;
4304
		goto swap_buffers;
4305 4306
	}

4307
	new->size = size;
4308 4309

	/* Copy thresholds and find current threshold */
4310 4311 4312
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4313 4314
			continue;

4315
		new->entries[j] = thresholds->primary->entries[i];
4316
		if (new->entries[j].threshold <= usage) {
4317
			/*
4318
			 * new->current_threshold will not be used
4319 4320 4321
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4322
			++new->current_threshold;
4323 4324 4325 4326
		}
		j++;
	}

4327
swap_buffers:
4328 4329
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4330

4331
	rcu_assign_pointer(thresholds->primary, new);
4332

4333
	/* To be sure that nobody uses thresholds */
4334
	synchronize_rcu();
4335 4336 4337 4338 4339 4340

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
4341
unlock:
4342 4343
	mutex_unlock(&memcg->thresholds_lock);
}
4344

4345
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4346 4347
	struct eventfd_ctx *eventfd)
{
4348
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4349 4350
}

4351
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4352 4353
	struct eventfd_ctx *eventfd)
{
4354
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4355 4356
}

4357
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4358
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4359 4360 4361 4362 4363 4364 4365
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4366
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4367 4368 4369 4370 4371

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4372
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
4373
		eventfd_signal(eventfd, 1);
4374
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4375 4376 4377 4378

	return 0;
}

4379
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4380
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4381 4382 4383
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4384
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4385

4386
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4387 4388 4389 4390 4391 4392
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4393
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4394 4395
}

4396
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4397
{
4398
	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4399

4400
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4401
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
R
Roman Gushchin 已提交
4402 4403
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4404 4405 4406
	return 0;
}

4407
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4408 4409
	struct cftype *cft, u64 val)
{
4410
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4411 4412

	/* cannot set to root cgroup and only 0 and 1 are allowed */
S
Shakeel Butt 已提交
4413
	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4414 4415
		return -EINVAL;

4416
	memcg->oom_kill_disable = val;
4417
	if (!val)
4418
		memcg_oom_recover(memcg);
4419

4420 4421 4422
	return 0;
}

4423 4424
#ifdef CONFIG_CGROUP_WRITEBACK

4425 4426
#include <trace/events/writeback.h>

T
Tejun Heo 已提交
4427 4428 4429 4430 4431 4432 4433 4434 4435 4436
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

4437 4438 4439 4440 4441
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

4452 4453 4454
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
4455 4456
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
4457 4458 4459
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
4460 4461 4462
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
4463
 *
4464 4465 4466 4467 4468
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
4469
 */
4470 4471 4472
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
4473 4474 4475 4476
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

4477
	cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
4478

4479 4480 4481 4482
	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
			memcg_page_state(memcg, NR_ACTIVE_FILE);
4483

4484
	*pheadroom = PAGE_COUNTER_MAX;
4485
	while ((parent = parent_mem_cgroup(memcg))) {
4486
		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4487
					    READ_ONCE(memcg->memory.high));
4488 4489
		unsigned long used = page_counter_read(&memcg->memory);

4490
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4491 4492 4493 4494
		memcg = parent;
	}
}

4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541
/*
 * Foreign dirty flushing
 *
 * There's an inherent mismatch between memcg and writeback.  The former
 * trackes ownership per-page while the latter per-inode.  This was a
 * deliberate design decision because honoring per-page ownership in the
 * writeback path is complicated, may lead to higher CPU and IO overheads
 * and deemed unnecessary given that write-sharing an inode across
 * different cgroups isn't a common use-case.
 *
 * Combined with inode majority-writer ownership switching, this works well
 * enough in most cases but there are some pathological cases.  For
 * example, let's say there are two cgroups A and B which keep writing to
 * different but confined parts of the same inode.  B owns the inode and
 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
 * triggering background writeback.  A will be slowed down without a way to
 * make writeback of the dirty pages happen.
 *
 * Conditions like the above can lead to a cgroup getting repatedly and
 * severely throttled after making some progress after each
 * dirty_expire_interval while the underyling IO device is almost
 * completely idle.
 *
 * Solving this problem completely requires matching the ownership tracking
 * granularities between memcg and writeback in either direction.  However,
 * the more egregious behaviors can be avoided by simply remembering the
 * most recent foreign dirtying events and initiating remote flushes on
 * them when local writeback isn't enough to keep the memory clean enough.
 *
 * The following two functions implement such mechanism.  When a foreign
 * page - a page whose memcg and writeback ownerships don't match - is
 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
 * decides that the memcg needs to sleep due to high dirty ratio, it calls
 * mem_cgroup_flush_foreign() which queues writeback on the recorded
 * foreign bdi_writebacks which haven't expired.  Both the numbers of
 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
 * limited to MEMCG_CGWB_FRN_CNT.
 *
 * The mechanism only remembers IDs and doesn't hold any object references.
 * As being wrong occasionally doesn't matter, updates and accesses to the
 * records are lockless and racy.
 */
void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
					     struct bdi_writeback *wb)
{
4542
	struct mem_cgroup *memcg = page_memcg(page);
4543 4544 4545 4546 4547 4548
	struct memcg_cgwb_frn *frn;
	u64 now = get_jiffies_64();
	u64 oldest_at = now;
	int oldest = -1;
	int i;

4549 4550
	trace_track_foreign_dirty(page, wb);

4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610
	/*
	 * Pick the slot to use.  If there is already a slot for @wb, keep
	 * using it.  If not replace the oldest one which isn't being
	 * written out.
	 */
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		frn = &memcg->cgwb_frn[i];
		if (frn->bdi_id == wb->bdi->id &&
		    frn->memcg_id == wb->memcg_css->id)
			break;
		if (time_before64(frn->at, oldest_at) &&
		    atomic_read(&frn->done.cnt) == 1) {
			oldest = i;
			oldest_at = frn->at;
		}
	}

	if (i < MEMCG_CGWB_FRN_CNT) {
		/*
		 * Re-using an existing one.  Update timestamp lazily to
		 * avoid making the cacheline hot.  We want them to be
		 * reasonably up-to-date and significantly shorter than
		 * dirty_expire_interval as that's what expires the record.
		 * Use the shorter of 1s and dirty_expire_interval / 8.
		 */
		unsigned long update_intv =
			min_t(unsigned long, HZ,
			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);

		if (time_before64(frn->at, now - update_intv))
			frn->at = now;
	} else if (oldest >= 0) {
		/* replace the oldest free one */
		frn = &memcg->cgwb_frn[oldest];
		frn->bdi_id = wb->bdi->id;
		frn->memcg_id = wb->memcg_css->id;
		frn->at = now;
	}
}

/* issue foreign writeback flushes for recorded foreign dirtying events */
void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
	u64 now = jiffies_64;
	int i;

	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];

		/*
		 * If the record is older than dirty_expire_interval,
		 * writeback on it has already started.  No need to kick it
		 * off again.  Also, don't start a new one if there's
		 * already one in flight.
		 */
		if (time_after64(frn->at, now - intv) &&
		    atomic_read(&frn->done.cnt) == 1) {
			frn->at = 0;
4611
			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4612 4613 4614 4615 4616 4617 4618
			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
					       WB_REASON_FOREIGN_FLUSH,
					       &frn->done);
		}
	}
}

T
Tejun Heo 已提交
4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

4630 4631 4632 4633
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

4634 4635
#endif	/* CONFIG_CGROUP_WRITEBACK */

4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4649 4650 4651 4652 4653
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4654
static void memcg_event_remove(struct work_struct *work)
4655
{
4656 4657
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4658
	struct mem_cgroup *memcg = event->memcg;
4659 4660 4661

	remove_wait_queue(event->wqh, &event->wait);

4662
	event->unregister_event(memcg, event->eventfd);
4663 4664 4665 4666 4667 4668

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4669
	css_put(&memcg->css);
4670 4671 4672
}

/*
4673
 * Gets called on EPOLLHUP on eventfd when user closes it.
4674 4675 4676
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4677
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4678
			    int sync, void *key)
4679
{
4680 4681
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4682
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
4683
	__poll_t flags = key_to_poll(key);
4684

4685
	if (flags & EPOLLHUP) {
4686 4687 4688 4689 4690 4691 4692 4693 4694
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4695
		spin_lock(&memcg->event_list_lock);
4696 4697 4698 4699 4700 4701 4702 4703
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4704
		spin_unlock(&memcg->event_list_lock);
4705 4706 4707 4708 4709
	}

	return 0;
}

4710
static void memcg_event_ptable_queue_proc(struct file *file,
4711 4712
		wait_queue_head_t *wqh, poll_table *pt)
{
4713 4714
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4715 4716 4717 4718 4719 4720

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4721 4722
 * DO NOT USE IN NEW FILES.
 *
4723 4724 4725 4726 4727
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4728 4729
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4730
{
4731
	struct cgroup_subsys_state *css = of_css(of);
4732
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4733
	struct mem_cgroup_event *event;
4734 4735 4736 4737
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4738
	const char *name;
4739 4740 4741
	char *endp;
	int ret;

4742 4743 4744
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4745 4746
	if (*endp != ' ')
		return -EINVAL;
4747
	buf = endp + 1;
4748

4749
	cfd = simple_strtoul(buf, &endp, 10);
4750 4751
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4752
	buf = endp + 1;
4753 4754 4755 4756 4757

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4758
	event->memcg = memcg;
4759
	INIT_LIST_HEAD(&event->list);
4760 4761 4762
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
4784
	ret = file_permission(cfile.file, MAY_READ);
4785 4786 4787
	if (ret < 0)
		goto out_put_cfile;

4788 4789 4790 4791 4792
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4793 4794
	 *
	 * DO NOT ADD NEW FILES.
4795
	 */
A
Al Viro 已提交
4796
	name = cfile.file->f_path.dentry->d_name.name;
4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4808 4809
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4810 4811 4812 4813 4814
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4815
	/*
4816 4817 4818
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4819
	 */
A
Al Viro 已提交
4820
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4821
					       &memory_cgrp_subsys);
4822
	ret = -EINVAL;
4823
	if (IS_ERR(cfile_css))
4824
		goto out_put_cfile;
4825 4826
	if (cfile_css != css) {
		css_put(cfile_css);
4827
		goto out_put_cfile;
4828
	}
4829

4830
	ret = event->register_event(memcg, event->eventfd, buf);
4831 4832 4833
	if (ret)
		goto out_put_css;

4834
	vfs_poll(efile.file, &event->pt);
4835

4836 4837 4838
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4839 4840 4841 4842

	fdput(cfile);
	fdput(efile);

4843
	return nbytes;
4844 4845

out_put_css:
4846
	css_put(css);
4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4859
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4860
	{
4861
		.name = "usage_in_bytes",
4862
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4863
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4864
	},
4865 4866
	{
		.name = "max_usage_in_bytes",
4867
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4868
		.write = mem_cgroup_reset,
4869
		.read_u64 = mem_cgroup_read_u64,
4870
	},
B
Balbir Singh 已提交
4871
	{
4872
		.name = "limit_in_bytes",
4873
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4874
		.write = mem_cgroup_write,
4875
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4876
	},
4877 4878 4879
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4880
		.write = mem_cgroup_write,
4881
		.read_u64 = mem_cgroup_read_u64,
4882
	},
B
Balbir Singh 已提交
4883 4884
	{
		.name = "failcnt",
4885
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4886
		.write = mem_cgroup_reset,
4887
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4888
	},
4889 4890
	{
		.name = "stat",
4891
		.seq_show = memcg_stat_show,
4892
	},
4893 4894
	{
		.name = "force_empty",
4895
		.write = mem_cgroup_force_empty_write,
4896
	},
4897 4898 4899 4900 4901
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4902
	{
4903
		.name = "cgroup.event_control",		/* XXX: for compat */
4904
		.write = memcg_write_event_control,
4905
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4906
	},
K
KOSAKI Motohiro 已提交
4907 4908 4909 4910 4911
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4912 4913 4914 4915 4916
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4917 4918
	{
		.name = "oom_control",
4919
		.seq_show = mem_cgroup_oom_control_read,
4920
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4921 4922
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4923 4924 4925
	{
		.name = "pressure_level",
	},
4926 4927 4928
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4929
		.seq_show = memcg_numa_stat_show,
4930 4931
	},
#endif
4932 4933 4934
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4935
		.write = mem_cgroup_write,
4936
		.read_u64 = mem_cgroup_read_u64,
4937 4938 4939 4940
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4941
		.read_u64 = mem_cgroup_read_u64,
4942 4943 4944 4945
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4946
		.write = mem_cgroup_reset,
4947
		.read_u64 = mem_cgroup_read_u64,
4948 4949 4950 4951
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4952
		.write = mem_cgroup_reset,
4953
		.read_u64 = mem_cgroup_read_u64,
4954
	},
4955 4956
#if defined(CONFIG_MEMCG_KMEM) && \
	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4957 4958
	{
		.name = "kmem.slabinfo",
4959
		.seq_show = memcg_slab_show,
4960 4961
	},
#endif
V
Vladimir Davydov 已提交
4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4985
	{ },	/* terminate */
4986
};
4987

4988 4989 4990 4991 4992 4993 4994 4995
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
4996
 * However, there usually are many references to the offline CSS after
4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

5014 5015 5016 5017 5018 5019 5020 5021
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

5022 5023
static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
						  unsigned int n)
5024
{
5025
	refcount_add(n, &memcg->id.ref);
5026 5027
}

5028
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5029
{
5030
	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5031
		mem_cgroup_id_remove(memcg);
5032 5033 5034 5035 5036 5037

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

5038 5039 5040 5041 5042
static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

5055
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5056 5057
{
	struct mem_cgroup_per_node *pn;
5058
	int tmp = node;
5059 5060 5061 5062 5063 5064 5065 5066
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5067 5068
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5069
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5070 5071
	if (!pn)
		return 1;
5072

5073 5074
	pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
						 GFP_KERNEL_ACCOUNT);
5075 5076 5077 5078 5079
	if (!pn->lruvec_stat_local) {
		kfree(pn);
		return 1;
	}

5080
	pn->lruvec_stat_cpu = alloc_percpu_gfp(struct batched_lruvec_stat,
5081
					       GFP_KERNEL_ACCOUNT);
5082
	if (!pn->lruvec_stat_cpu) {
5083
		free_percpu(pn->lruvec_stat_local);
5084 5085 5086 5087
		kfree(pn);
		return 1;
	}

5088 5089 5090 5091 5092
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

5093
	memcg->nodeinfo[node] = pn;
5094 5095 5096
	return 0;
}

5097
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5098
{
5099 5100
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
5101 5102 5103
	if (!pn)
		return;

5104
	free_percpu(pn->lruvec_stat_cpu);
5105
	free_percpu(pn->lruvec_stat_local);
5106
	kfree(pn);
5107 5108
}

5109
static void __mem_cgroup_free(struct mem_cgroup *memcg)
5110
{
5111
	int node;
5112

5113
	for_each_node(node)
5114
		free_mem_cgroup_per_node_info(memcg, node);
5115
	free_percpu(memcg->vmstats_percpu);
5116
	kfree(memcg);
5117
}
5118

5119 5120
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
5121 5122
	int cpu;

5123
	memcg_wb_domain_exit(memcg);
5124
	/*
5125 5126
	 * Flush percpu lruvec stats to guarantee the value
	 * correctness on parent's and all ancestor levels.
5127
	 */
5128 5129
	for_each_online_cpu(cpu)
		memcg_flush_lruvec_page_state(memcg, cpu);
5130 5131 5132
	__mem_cgroup_free(memcg);
}

5133
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
5134
{
5135
	struct mem_cgroup *memcg;
5136
	unsigned int size;
5137
	int node;
5138
	int __maybe_unused i;
5139
	long error = -ENOMEM;
B
Balbir Singh 已提交
5140

5141 5142 5143 5144
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
5145
	if (!memcg)
5146
		return ERR_PTR(error);
5147

5148 5149 5150
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
5151 5152
	if (memcg->id.id < 0) {
		error = memcg->id.id;
5153
		goto fail;
5154
	}
5155

5156 5157
	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
						 GFP_KERNEL_ACCOUNT);
5158
	if (!memcg->vmstats_percpu)
5159
		goto fail;
5160

B
Bob Liu 已提交
5161
	for_each_node(node)
5162
		if (alloc_mem_cgroup_per_node_info(memcg, node))
5163
			goto fail;
5164

5165 5166
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
5167

5168
	INIT_WORK(&memcg->high_work, high_work_func);
5169 5170 5171
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5172
	vmpressure_init(&memcg->vmpressure);
5173 5174
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
5175
	memcg->socket_pressure = jiffies;
5176
#ifdef CONFIG_MEMCG_KMEM
V
Vladimir Davydov 已提交
5177
	memcg->kmemcg_id = -1;
R
Roman Gushchin 已提交
5178
	INIT_LIST_HEAD(&memcg->objcg_list);
V
Vladimir Davydov 已提交
5179
#endif
5180 5181
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
5182 5183 5184
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		memcg->cgwb_frn[i].done =
			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5185 5186 5187 5188 5189
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
	memcg->deferred_split_queue.split_queue_len = 0;
5190
#endif
5191
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5192 5193
	return memcg;
fail:
5194
	mem_cgroup_id_remove(memcg);
5195
	__mem_cgroup_free(memcg);
5196
	return ERR_PTR(error);
5197 5198
}

5199 5200
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5201
{
5202
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5203
	struct mem_cgroup *memcg, *old_memcg;
5204
	long error = -ENOMEM;
5205

5206
	old_memcg = set_active_memcg(parent);
5207
	memcg = mem_cgroup_alloc();
5208
	set_active_memcg(old_memcg);
5209 5210
	if (IS_ERR(memcg))
		return ERR_CAST(memcg);
5211

5212
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5213
	memcg->soft_limit = PAGE_COUNTER_MAX;
5214
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5215 5216 5217
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
5218

5219
		page_counter_init(&memcg->memory, &parent->memory);
5220
		page_counter_init(&memcg->swap, &parent->swap);
5221
		page_counter_init(&memcg->kmem, &parent->kmem);
5222
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5223
	} else {
5224 5225 5226 5227
		page_counter_init(&memcg->memory, NULL);
		page_counter_init(&memcg->swap, NULL);
		page_counter_init(&memcg->kmem, NULL);
		page_counter_init(&memcg->tcpmem, NULL);
5228

5229 5230 5231 5232
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

5233
	/* The following stuff does not apply to the root */
5234
	error = memcg_online_kmem(memcg);
5235 5236
	if (error)
		goto fail;
5237

5238
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5239
		static_branch_inc(&memcg_sockets_enabled_key);
5240

5241 5242
	return &memcg->css;
fail:
5243
	mem_cgroup_id_remove(memcg);
5244
	mem_cgroup_free(memcg);
5245
	return ERR_PTR(error);
5246 5247
}

5248
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5249
{
5250 5251
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5252 5253 5254 5255 5256 5257 5258 5259 5260 5261
	/*
	 * A memcg must be visible for memcg_expand_shrinker_maps()
	 * by the time the maps are allocated. So, we allocate maps
	 * here, when for_each_mem_cgroup() can't skip it.
	 */
	if (memcg_alloc_shrinker_maps(memcg)) {
		mem_cgroup_id_remove(memcg);
		return -ENOMEM;
	}

5262
	/* Online state pins memcg ID, memcg ID pins CSS */
5263
	refcount_set(&memcg->id.ref, 1);
5264
	css_get(css);
5265
	return 0;
B
Balbir Singh 已提交
5266 5267
}

5268
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5269
{
5270
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5271
	struct mem_cgroup_event *event, *tmp;
5272 5273 5274 5275 5276 5277

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
5278 5279
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5280 5281 5282
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
5283
	spin_unlock(&memcg->event_list_lock);
5284

R
Roman Gushchin 已提交
5285
	page_counter_set_min(&memcg->memory, 0);
5286
	page_counter_set_low(&memcg->memory, 0);
5287

5288
	memcg_offline_kmem(memcg);
5289
	wb_memcg_offline(memcg);
5290

5291 5292
	drain_all_stock(memcg);

5293
	mem_cgroup_id_put(memcg);
5294 5295
}

5296 5297 5298 5299 5300 5301 5302
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

5303
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
5304
{
5305
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5306
	int __maybe_unused i;
5307

5308 5309 5310 5311
#ifdef CONFIG_CGROUP_WRITEBACK
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
#endif
5312
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5313
		static_branch_dec(&memcg_sockets_enabled_key);
5314

5315
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
5316
		static_branch_dec(&memcg_sockets_enabled_key);
5317

5318 5319 5320
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
5321
	memcg_free_shrinker_maps(memcg);
5322
	memcg_free_kmem(memcg);
5323
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
5324 5325
}

5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5343 5344 5345 5346
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
R
Roman Gushchin 已提交
5347
	page_counter_set_min(&memcg->memory, 0);
5348
	page_counter_set_low(&memcg->memory, 0);
5349
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5350
	memcg->soft_limit = PAGE_COUNTER_MAX;
5351
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5352
	memcg_wb_domain_size_changed(memcg);
5353 5354
}

5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410
static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	struct memcg_vmstats_percpu *statc;
	long delta, v;
	int i;

	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);

	for (i = 0; i < MEMCG_NR_STAT; i++) {
		/*
		 * Collect the aggregated propagation counts of groups
		 * below us. We're in a per-cpu loop here and this is
		 * a global counter, so the first cycle will get them.
		 */
		delta = memcg->vmstats.state_pending[i];
		if (delta)
			memcg->vmstats.state_pending[i] = 0;

		/* Add CPU changes on this level since the last flush */
		v = READ_ONCE(statc->state[i]);
		if (v != statc->state_prev[i]) {
			delta += v - statc->state_prev[i];
			statc->state_prev[i] = v;
		}

		if (!delta)
			continue;

		/* Aggregate counts on this level and propagate upwards */
		memcg->vmstats.state[i] += delta;
		if (parent)
			parent->vmstats.state_pending[i] += delta;
	}

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
		delta = memcg->vmstats.events_pending[i];
		if (delta)
			memcg->vmstats.events_pending[i] = 0;

		v = READ_ONCE(statc->events[i]);
		if (v != statc->events_prev[i]) {
			delta += v - statc->events_prev[i];
			statc->events_prev[i] = v;
		}

		if (!delta)
			continue;

		memcg->vmstats.events[i] += delta;
		if (parent)
			parent->vmstats.events_pending[i] += delta;
	}
}

5411
#ifdef CONFIG_MMU
5412
/* Handlers for move charge at task migration. */
5413
static int mem_cgroup_do_precharge(unsigned long count)
5414
{
5415
	int ret;
5416

5417 5418
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5419
	if (!ret) {
5420 5421 5422
		mc.precharge += count;
		return ret;
	}
5423

5424
	/* Try charges one by one with reclaim, but do not retry */
5425
	while (count--) {
5426
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5427 5428
		if (ret)
			return ret;
5429
		mc.precharge++;
5430
		cond_resched();
5431
	}
5432
	return 0;
5433 5434 5435 5436
}

union mc_target {
	struct page	*page;
5437
	swp_entry_t	ent;
5438 5439 5440
};

enum mc_target_type {
5441
	MC_TARGET_NONE = 0,
5442
	MC_TARGET_PAGE,
5443
	MC_TARGET_SWAP,
5444
	MC_TARGET_DEVICE,
5445 5446
};

D
Daisuke Nishimura 已提交
5447 5448
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5449
{
5450
	struct page *page = vm_normal_page(vma, addr, ptent);
5451

D
Daisuke Nishimura 已提交
5452 5453 5454
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
5455
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5456
			return NULL;
5457 5458 5459 5460
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
5461 5462 5463 5464 5465 5466
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5467
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
5468
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5469
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
5470 5471 5472 5473
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

5474
	if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5475
		return NULL;
5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
		page = device_private_entry_to_page(ent);
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

5493 5494 5495
	if (non_swap_entry(ent))
		return NULL;

5496 5497 5498 5499
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5500
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5501
	entry->val = ent.val;
D
Daisuke Nishimura 已提交
5502 5503 5504

	return page;
}
5505 5506
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5507
			pte_t ptent, swp_entry_t *entry)
5508 5509 5510 5511
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5512

5513 5514 5515 5516 5517
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	if (!vma->vm_file) /* anonymous vma */
		return NULL;
5518
	if (!(mc.flags & MOVE_FILE))
5519 5520 5521
		return NULL;

	/* page is moved even if it's not RSS of this task(page-faulted). */
5522
	/* shmem/tmpfs may report page out on swap: account for that too. */
5523 5524
	return find_get_incore_page(vma->vm_file->f_mapping,
			linear_page_index(vma, addr));
5525 5526
}

5527 5528 5529
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
5530
 * @compound: charge the page as compound or small page
5531 5532 5533
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
5534
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5535 5536 5537 5538 5539
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
5540
				   bool compound,
5541 5542 5543
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
5544 5545
	struct lruvec *from_vec, *to_vec;
	struct pglist_data *pgdat;
5546
	unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5547 5548 5549 5550
	int ret;

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
5551
	VM_BUG_ON(compound && !PageTransHuge(page));
5552 5553

	/*
5554
	 * Prevent mem_cgroup_migrate() from looking at
5555
	 * page's memory cgroup of its source page while we change it.
5556
	 */
5557
	ret = -EBUSY;
5558 5559 5560 5561
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
5562
	if (page_memcg(page) != from)
5563 5564
		goto out_unlock;

5565
	pgdat = page_pgdat(page);
5566 5567
	from_vec = mem_cgroup_lruvec(from, pgdat);
	to_vec = mem_cgroup_lruvec(to, pgdat);
5568

5569
	lock_page_memcg(page);
5570

5571 5572 5573 5574
	if (PageAnon(page)) {
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5575
			if (PageTransHuge(page)) {
5576 5577 5578 5579
				__mod_lruvec_state(from_vec, NR_ANON_THPS,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_ANON_THPS,
						   nr_pages);
5580
			}
5581 5582
		}
	} else {
5583 5584 5585 5586 5587 5588 5589 5590
		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);

		if (PageSwapBacked(page)) {
			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
		}

5591 5592 5593 5594
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
		}
5595

5596 5597
		if (PageDirty(page)) {
			struct address_space *mapping = page_mapping(page);
5598

5599
			if (mapping_can_writeback(mapping)) {
5600 5601 5602 5603 5604
				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
						   nr_pages);
			}
5605 5606 5607
		}
	}

5608
	if (PageWriteback(page)) {
5609 5610
		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5611 5612 5613
	}

	/*
5614 5615
	 * All state has been migrated, let's switch to the new memcg.
	 *
5616
	 * It is safe to change page's memcg here because the page
5617 5618
	 * is referenced, charged, isolated, and locked: we can't race
	 * with (un)charging, migration, LRU putback, or anything else
5619
	 * that would rely on a stable page's memory cgroup.
5620 5621
	 *
	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5622
	 * to save space. As soon as we switch page's memory cgroup to a
5623 5624
	 * new memcg that isn't locked, the above state can change
	 * concurrently again. Make sure we're truly done with it.
5625
	 */
5626
	smp_mb();
5627

5628 5629 5630
	css_get(&to->css);
	css_put(&from->css);

5631
	page->memcg_data = (unsigned long)to;
5632

5633
	__unlock_page_memcg(from);
5634 5635 5636 5637

	ret = 0;

	local_irq_disable();
5638
	mem_cgroup_charge_statistics(to, page, nr_pages);
5639
	memcg_check_events(to, page);
5640
	mem_cgroup_charge_statistics(from, page, -nr_pages);
5641 5642 5643 5644 5645 5646 5647 5648
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5664 5665
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
 *     (so ZONE_DEVICE page and thus not on the lru).
5666 5667 5668
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
5669 5670
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5671 5672 5673 5674
 *
 * Called with pte lock held.
 */

5675
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5676 5677 5678
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
5679
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5680 5681 5682 5683 5684
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
5685
		page = mc_handle_swap_pte(vma, ptent, &ent);
5686
	else if (pte_none(ptent))
5687
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5688 5689

	if (!page && !ent.val)
5690
		return ret;
5691 5692
	if (page) {
		/*
5693
		 * Do only loose check w/o serialization.
5694
		 * mem_cgroup_move_account() checks the page is valid or
5695
		 * not under LRU exclusion.
5696
		 */
5697
		if (page_memcg(page) == mc.from) {
5698
			ret = MC_TARGET_PAGE;
5699
			if (is_device_private_page(page))
5700
				ret = MC_TARGET_DEVICE;
5701 5702 5703 5704 5705 5706
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
5707 5708 5709 5710 5711
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
5712
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5713 5714 5715
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5716 5717 5718 5719
	}
	return ret;
}

5720 5721
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
5722 5723
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
5724 5725 5726 5727 5728 5729 5730 5731
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

5732 5733 5734 5735 5736
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
5737
	page = pmd_page(pmd);
5738
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5739
	if (!(mc.flags & MOVE_ANON))
5740
		return ret;
5741
	if (page_memcg(page) == mc.from) {
5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5758 5759 5760 5761
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
5762
	struct vm_area_struct *vma = walk->vma;
5763 5764 5765
	pte_t *pte;
	spinlock_t *ptl;

5766 5767
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5768 5769
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5770 5771
		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
		 * this might change.
5772
		 */
5773 5774
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5775
		spin_unlock(ptl);
5776
		return 0;
5777
	}
5778

5779 5780
	if (pmd_trans_unstable(pmd))
		return 0;
5781 5782
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5783
		if (get_mctgt_type(vma, addr, *pte, NULL))
5784 5785 5786 5787
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5788 5789 5790
	return 0;
}

5791 5792 5793 5794
static const struct mm_walk_ops precharge_walk_ops = {
	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
};

5795 5796 5797 5798
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

5799
	mmap_read_lock(mm);
5800
	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5801
	mmap_read_unlock(mm);
5802 5803 5804 5805 5806 5807 5808 5809 5810

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5811 5812 5813 5814 5815
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5816 5817
}

5818 5819
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5820
{
5821 5822 5823
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5824
	/* we must uncharge all the leftover precharges from mc.to */
5825
	if (mc.precharge) {
5826
		cancel_charge(mc.to, mc.precharge);
5827 5828 5829 5830 5831 5832 5833
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5834
		cancel_charge(mc.from, mc.moved_charge);
5835
		mc.moved_charge = 0;
5836
	}
5837 5838 5839
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5840
		if (!mem_cgroup_is_root(mc.from))
5841
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5842

5843 5844
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

5845
		/*
5846 5847
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5848
		 */
5849
		if (!mem_cgroup_is_root(mc.to))
5850 5851
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5852 5853
		mc.moved_swap = 0;
	}
5854 5855 5856 5857 5858 5859 5860
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
5861 5862
	struct mm_struct *mm = mc.mm;

5863 5864 5865 5866 5867 5868
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5869
	spin_lock(&mc.lock);
5870 5871
	mc.from = NULL;
	mc.to = NULL;
5872
	mc.mm = NULL;
5873
	spin_unlock(&mc.lock);
5874 5875

	mmput(mm);
5876 5877
}

5878
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5879
{
5880
	struct cgroup_subsys_state *css;
5881
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5882
	struct mem_cgroup *from;
5883
	struct task_struct *leader, *p;
5884
	struct mm_struct *mm;
5885
	unsigned long move_flags;
5886
	int ret = 0;
5887

5888 5889
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5890 5891
		return 0;

5892 5893 5894 5895 5896 5897 5898
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
5899
	cgroup_taskset_for_each_leader(leader, css, tset) {
5900 5901
		WARN_ON_ONCE(p);
		p = leader;
5902
		memcg = mem_cgroup_from_css(css);
5903 5904 5905 5906
	}
	if (!p)
		return 0;

5907 5908 5909 5910 5911 5912 5913 5914 5915
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
5932
		mc.mm = mm;
5933 5934 5935 5936 5937 5938 5939 5940 5941
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
5942 5943
	} else {
		mmput(mm);
5944 5945 5946 5947
	}
	return ret;
}

5948
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5949
{
5950 5951
	if (mc.to)
		mem_cgroup_clear_mc();
5952 5953
}

5954 5955 5956
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5957
{
5958
	int ret = 0;
5959
	struct vm_area_struct *vma = walk->vma;
5960 5961
	pte_t *pte;
	spinlock_t *ptl;
5962 5963 5964
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5965

5966 5967
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5968
		if (mc.precharge < HPAGE_PMD_NR) {
5969
			spin_unlock(ptl);
5970 5971 5972 5973 5974 5975
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
5976
				if (!mem_cgroup_move_account(page, true,
5977
							     mc.from, mc.to)) {
5978 5979 5980 5981 5982 5983
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
5984 5985 5986 5987 5988 5989 5990 5991
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
5992
		}
5993
		spin_unlock(ptl);
5994
		return 0;
5995 5996
	}

5997 5998
	if (pmd_trans_unstable(pmd))
		return 0;
5999 6000 6001 6002
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6003
		bool device = false;
6004
		swp_entry_t ent;
6005 6006 6007 6008

		if (!mc.precharge)
			break;

6009
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6010 6011
		case MC_TARGET_DEVICE:
			device = true;
J
Joe Perches 已提交
6012
			fallthrough;
6013 6014
		case MC_TARGET_PAGE:
			page = target.page;
6015 6016 6017 6018 6019 6020 6021 6022
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
6023
			if (!device && isolate_lru_page(page))
6024
				goto put;
6025 6026
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
6027
				mc.precharge--;
6028 6029
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6030
			}
6031 6032
			if (!device)
				putback_lru_page(page);
6033
put:			/* get_mctgt_type() gets the page */
6034 6035
			put_page(page);
			break;
6036 6037
		case MC_TARGET_SWAP:
			ent = target.ent;
6038
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6039
				mc.precharge--;
6040 6041
				mem_cgroup_id_get_many(mc.to, 1);
				/* we fixup other refcnts and charges later. */
6042 6043
				mc.moved_swap++;
			}
6044
			break;
6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6059
		ret = mem_cgroup_do_precharge(1);
6060 6061 6062 6063 6064 6065 6066
		if (!ret)
			goto retry;
	}

	return ret;
}

6067 6068 6069 6070
static const struct mm_walk_ops charge_walk_ops = {
	.pmd_entry	= mem_cgroup_move_charge_pte_range,
};

6071
static void mem_cgroup_move_charge(void)
6072 6073
{
	lru_add_drain_all();
6074
	/*
6075 6076 6077
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
6078 6079 6080
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
6081
retry:
6082
	if (unlikely(!mmap_read_trylock(mc.mm))) {
6083
		/*
6084
		 * Someone who are holding the mmap_lock might be waiting in
6085 6086 6087 6088 6089 6090 6091 6092 6093
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6094 6095 6096 6097
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
6098 6099
	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
			NULL);
6100

6101
	mmap_read_unlock(mc.mm);
6102
	atomic_dec(&mc.from->moving_account);
6103 6104
}

6105
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
6106
{
6107 6108
	if (mc.to) {
		mem_cgroup_move_charge();
6109
		mem_cgroup_clear_mc();
6110
	}
B
Balbir Singh 已提交
6111
}
6112
#else	/* !CONFIG_MMU */
6113
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6114 6115 6116
{
	return 0;
}
6117
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6118 6119
{
}
6120
static void mem_cgroup_move_task(void)
6121 6122 6123
{
}
#endif
B
Balbir Singh 已提交
6124

6125 6126 6127 6128 6129 6130 6131 6132 6133 6134
static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
{
	if (value == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);

	return 0;
}

6135 6136 6137
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
6138 6139 6140
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6141 6142
}

R
Roman Gushchin 已提交
6143 6144
static int memory_min_show(struct seq_file *m, void *v)
{
6145 6146
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
R
Roman Gushchin 已提交
6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

6166 6167
static int memory_low_show(struct seq_file *m, void *v)
{
6168 6169
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6170 6171 6172 6173 6174 6175 6176 6177 6178 6179
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
6180
	err = page_counter_memparse(buf, "max", &low);
6181 6182 6183
	if (err)
		return err;

6184
	page_counter_set_low(&memcg->memory, low);
6185 6186 6187 6188 6189 6190

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
6191 6192
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6193 6194 6195 6196 6197 6198
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6199
	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6200
	bool drained = false;
6201 6202 6203 6204
	unsigned long high;
	int err;

	buf = strstrip(buf);
6205
	err = page_counter_memparse(buf, "max", &high);
6206 6207 6208
	if (err)
		return err;

6209 6210
	page_counter_set_high(&memcg->memory, high);

6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232
	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);
		unsigned long reclaimed;

		if (nr_pages <= high)
			break;

		if (signal_pending(current))
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
							 GFP_KERNEL, true);

		if (!reclaimed && !nr_retries--)
			break;
	}
6233

6234
	memcg_wb_domain_size_changed(memcg);
6235 6236 6237 6238 6239
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
6240 6241
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6242 6243 6244 6245 6246 6247
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6248
	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6249
	bool drained = false;
6250 6251 6252 6253
	unsigned long max;
	int err;

	buf = strstrip(buf);
6254
	err = page_counter_memparse(buf, "max", &max);
6255 6256 6257
	if (err)
		return err;

6258
	xchg(&memcg->memory.max, max);
6259 6260 6261 6262 6263 6264 6265

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

6266
		if (signal_pending(current))
6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

6282
		memcg_memory_event(memcg, MEMCG_OOM);
6283 6284 6285
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
6286

6287
	memcg_wb_domain_size_changed(memcg);
6288 6289 6290
	return nbytes;
}

6291 6292 6293 6294 6295 6296 6297 6298 6299 6300
static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
{
	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&events[MEMCG_OOM_KILL]));
}

6301 6302
static int memory_events_show(struct seq_file *m, void *v)
{
6303
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6304

6305 6306 6307 6308 6309 6310 6311
	__memory_events_show(m, memcg->memory_events);
	return 0;
}

static int memory_events_local_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6312

6313
	__memory_events_show(m, memcg->memory_events_local);
6314 6315 6316
	return 0;
}

6317 6318
static int memory_stat_show(struct seq_file *m, void *v)
{
6319
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6320
	char *buf;
6321

6322 6323 6324 6325 6326
	buf = memory_stat_format(memcg);
	if (!buf)
		return -ENOMEM;
	seq_puts(m, buf);
	kfree(buf);
6327 6328 6329
	return 0;
}

6330
#ifdef CONFIG_NUMA
6331 6332 6333 6334 6335 6336
static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
						     int item)
{
	return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
}

6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353
static int memory_numa_stat_show(struct seq_file *m, void *v)
{
	int i;
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);

	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
		int nid;

		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
			continue;

		seq_printf(m, "%s", memory_stats[i].name);
		for_each_node_state(nid, N_MEMORY) {
			u64 size;
			struct lruvec *lruvec;

			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6354 6355
			size = lruvec_page_state_output(lruvec,
							memory_stats[i].idx);
6356 6357 6358 6359 6360 6361 6362 6363 6364
			seq_printf(m, " N%d=%llu", nid, size);
		}
		seq_putc(m, '\n');
	}

	return 0;
}
#endif

6365 6366
static int memory_oom_group_show(struct seq_file *m, void *v)
{
6367
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395

	seq_printf(m, "%d\n", memcg->oom_group);

	return 0;
}

static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
				      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	int ret, oom_group;

	buf = strstrip(buf);
	if (!buf)
		return -EINVAL;

	ret = kstrtoint(buf, 0, &oom_group);
	if (ret)
		return ret;

	if (oom_group != 0 && oom_group != 1)
		return -EINVAL;

	memcg->oom_group = oom_group;

	return nbytes;
}

6396 6397 6398
static struct cftype memory_files[] = {
	{
		.name = "current",
6399
		.flags = CFTYPE_NOT_ON_ROOT,
6400 6401
		.read_u64 = memory_current_read,
	},
R
Roman Gushchin 已提交
6402 6403 6404 6405 6406 6407
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
6429
		.file_offset = offsetof(struct mem_cgroup, events_file),
6430 6431
		.seq_show = memory_events_show,
	},
6432 6433 6434 6435 6436 6437
	{
		.name = "events.local",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, events_local_file),
		.seq_show = memory_events_local_show,
	},
6438 6439 6440 6441
	{
		.name = "stat",
		.seq_show = memory_stat_show,
	},
6442 6443 6444 6445 6446 6447
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.seq_show = memory_numa_stat_show,
	},
#endif
6448 6449 6450 6451 6452 6453
	{
		.name = "oom.group",
		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
		.seq_show = memory_oom_group_show,
		.write = memory_oom_group_write,
	},
6454 6455 6456
	{ }	/* terminate */
};

6457
struct cgroup_subsys memory_cgrp_subsys = {
6458
	.css_alloc = mem_cgroup_css_alloc,
6459
	.css_online = mem_cgroup_css_online,
6460
	.css_offline = mem_cgroup_css_offline,
6461
	.css_released = mem_cgroup_css_released,
6462
	.css_free = mem_cgroup_css_free,
6463
	.css_reset = mem_cgroup_css_reset,
6464
	.css_rstat_flush = mem_cgroup_css_rstat_flush,
6465 6466
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
6467
	.post_attach = mem_cgroup_move_task,
6468 6469
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
6470
	.early_init = 0,
B
Balbir Singh 已提交
6471
};
6472

6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502
/*
 * This function calculates an individual cgroup's effective
 * protection which is derived from its own memory.min/low, its
 * parent's and siblings' settings, as well as the actual memory
 * distribution in the tree.
 *
 * The following rules apply to the effective protection values:
 *
 * 1. At the first level of reclaim, effective protection is equal to
 *    the declared protection in memory.min and memory.low.
 *
 * 2. To enable safe delegation of the protection configuration, at
 *    subsequent levels the effective protection is capped to the
 *    parent's effective protection.
 *
 * 3. To make complex and dynamic subtrees easier to configure, the
 *    user is allowed to overcommit the declared protection at a given
 *    level. If that is the case, the parent's effective protection is
 *    distributed to the children in proportion to how much protection
 *    they have declared and how much of it they are utilizing.
 *
 *    This makes distribution proportional, but also work-conserving:
 *    if one cgroup claims much more protection than it uses memory,
 *    the unused remainder is available to its siblings.
 *
 * 4. Conversely, when the declared protection is undercommitted at a
 *    given level, the distribution of the larger parental protection
 *    budget is NOT proportional. A cgroup's protection from a sibling
 *    is capped to its own memory.min/low setting.
 *
6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514
 * 5. However, to allow protecting recursive subtrees from each other
 *    without having to declare each individual cgroup's fixed share
 *    of the ancestor's claim to protection, any unutilized -
 *    "floating" - protection from up the tree is distributed in
 *    proportion to each cgroup's *usage*. This makes the protection
 *    neutral wrt sibling cgroups and lets them compete freely over
 *    the shared parental protection budget, but it protects the
 *    subtree as a whole from neighboring subtrees.
 *
 * Note that 4. and 5. are not in conflict: 4. is about protecting
 * against immediate siblings whereas 5. is about protecting against
 * neighboring subtrees.
6515 6516
 */
static unsigned long effective_protection(unsigned long usage,
6517
					  unsigned long parent_usage,
6518 6519 6520 6521 6522
					  unsigned long setting,
					  unsigned long parent_effective,
					  unsigned long siblings_protected)
{
	unsigned long protected;
6523
	unsigned long ep;
6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553

	protected = min(usage, setting);
	/*
	 * If all cgroups at this level combined claim and use more
	 * protection then what the parent affords them, distribute
	 * shares in proportion to utilization.
	 *
	 * We are using actual utilization rather than the statically
	 * claimed protection in order to be work-conserving: claimed
	 * but unused protection is available to siblings that would
	 * otherwise get a smaller chunk than what they claimed.
	 */
	if (siblings_protected > parent_effective)
		return protected * parent_effective / siblings_protected;

	/*
	 * Ok, utilized protection of all children is within what the
	 * parent affords them, so we know whatever this child claims
	 * and utilizes is effectively protected.
	 *
	 * If there is unprotected usage beyond this value, reclaim
	 * will apply pressure in proportion to that amount.
	 *
	 * If there is unutilized protection, the cgroup will be fully
	 * shielded from reclaim, but we do return a smaller value for
	 * protection than what the group could enjoy in theory. This
	 * is okay. With the overcommit distribution above, effective
	 * protection is always dependent on how memory is actually
	 * consumed among the siblings anyway.
	 */
6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566
	ep = protected;

	/*
	 * If the children aren't claiming (all of) the protection
	 * afforded to them by the parent, distribute the remainder in
	 * proportion to the (unprotected) memory of each cgroup. That
	 * way, cgroups that aren't explicitly prioritized wrt each
	 * other compete freely over the allowance, but they are
	 * collectively protected from neighboring trees.
	 *
	 * We're using unprotected memory for the weight so that if
	 * some cgroups DO claim explicit protection, we don't protect
	 * the same bytes twice.
6567 6568 6569 6570
	 *
	 * Check both usage and parent_usage against the respective
	 * protected values. One should imply the other, but they
	 * aren't read atomically - make sure the division is sane.
6571 6572 6573
	 */
	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
		return ep;
6574 6575 6576
	if (parent_effective > siblings_protected &&
	    parent_usage > siblings_protected &&
	    usage > protected) {
6577 6578 6579 6580 6581 6582 6583 6584 6585 6586
		unsigned long unclaimed;

		unclaimed = parent_effective - siblings_protected;
		unclaimed *= usage - protected;
		unclaimed /= parent_usage - siblings_protected;

		ep += unclaimed;
	}

	return ep;
6587 6588
}

6589
/**
R
Roman Gushchin 已提交
6590
 * mem_cgroup_protected - check if memory consumption is in the normal range
6591
 * @root: the top ancestor of the sub-tree being checked
6592 6593
 * @memcg: the memory cgroup to check
 *
6594 6595
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
6596
 */
6597 6598
void mem_cgroup_calculate_protection(struct mem_cgroup *root,
				     struct mem_cgroup *memcg)
6599
{
6600
	unsigned long usage, parent_usage;
6601 6602
	struct mem_cgroup *parent;

6603
	if (mem_cgroup_disabled())
6604
		return;
6605

6606 6607
	if (!root)
		root = root_mem_cgroup;
6608 6609 6610 6611 6612 6613 6614 6615

	/*
	 * Effective values of the reclaim targets are ignored so they
	 * can be stale. Have a look at mem_cgroup_protection for more
	 * details.
	 * TODO: calculation should be more robust so that we do not need
	 * that special casing.
	 */
6616
	if (memcg == root)
6617
		return;
6618

6619
	usage = page_counter_read(&memcg->memory);
R
Roman Gushchin 已提交
6620
	if (!usage)
6621
		return;
R
Roman Gushchin 已提交
6622 6623

	parent = parent_mem_cgroup(memcg);
6624 6625
	/* No parent means a non-hierarchical mode on v1 memcg */
	if (!parent)
6626
		return;
6627

6628
	if (parent == root) {
6629
		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6630
		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6631
		return;
R
Roman Gushchin 已提交
6632 6633
	}

6634 6635
	parent_usage = page_counter_read(&parent->memory);

6636
	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6637 6638
			READ_ONCE(memcg->memory.min),
			READ_ONCE(parent->memory.emin),
6639
			atomic_long_read(&parent->memory.children_min_usage)));
6640

6641
	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6642 6643
			READ_ONCE(memcg->memory.low),
			READ_ONCE(parent->memory.elow),
6644
			atomic_long_read(&parent->memory.children_low_usage)));
6645 6646
}

6647
/**
6648
 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6649 6650 6651 6652 6653 6654 6655
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
6656
 * Returns 0 on success. Otherwise, an error code is returned.
6657
 */
6658
int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6659
{
6660
	unsigned int nr_pages = thp_nr_pages(page);
6661 6662 6663 6664 6665 6666 6667
	struct mem_cgroup *memcg = NULL;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
6668 6669 6670
		swp_entry_t ent = { .val = page_private(page), };
		unsigned short id;

6671 6672 6673
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
6674 6675 6676
		 * already charged pages, too.  page and memcg binding is
		 * protected by the page lock, which serializes swap cache
		 * removal, which in turn serializes uncharging.
6677
		 */
6678
		VM_BUG_ON_PAGE(!PageLocked(page), page);
6679
		if (page_memcg(compound_head(page)))
6680
			goto out;
6681

6682 6683 6684 6685 6686 6687
		id = lookup_swap_cgroup_id(ent);
		rcu_read_lock();
		memcg = mem_cgroup_from_id(id);
		if (memcg && !css_tryget_online(&memcg->css))
			memcg = NULL;
		rcu_read_unlock();
6688 6689 6690 6691 6692 6693
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);
6694 6695
	if (ret)
		goto out_put;
6696

6697
	css_get(&memcg->css);
6698
	commit_charge(page, memcg);
6699 6700

	local_irq_disable();
6701
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6702 6703
	memcg_check_events(memcg, page);
	local_irq_enable();
6704

6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717
	/*
	 * Cgroup1's unified memory+swap counter has been charged with the
	 * new swapcache page, finish the transfer by uncharging the swap
	 * slot. The swap slot would also get uncharged when it dies, but
	 * it can stick around indefinitely and we'd count the page twice
	 * the entire time.
	 *
	 * Cgroup2 has separate resource counters for memory and swap,
	 * so this is a non-issue here. Memory and swap charge lifetimes
	 * correspond 1:1 to page and swap slot lifetimes: we charge the
	 * page to memory here, and uncharge swap when the slot is freed.
	 */
	if (do_memsw_account() && PageSwapCache(page)) {
6718 6719 6720 6721 6722 6723
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
6724
		mem_cgroup_uncharge_swap(entry, nr_pages);
6725 6726
	}

6727 6728 6729 6730
out_put:
	css_put(&memcg->css);
out:
	return ret;
6731 6732
}

6733 6734
struct uncharge_gather {
	struct mem_cgroup *memcg;
6735
	unsigned long nr_pages;
6736 6737 6738 6739 6740 6741
	unsigned long pgpgout;
	unsigned long nr_kmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6742
{
6743 6744 6745 6746 6747
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
6748 6749
	unsigned long flags;

6750
	if (!mem_cgroup_is_root(ug->memcg)) {
6751
		page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6752
		if (do_memsw_account())
6753
			page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6754 6755 6756
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
6757
	}
6758 6759

	local_irq_save(flags);
6760
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6761
	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6762
	memcg_check_events(ug->memcg, ug->dummy_page);
6763
	local_irq_restore(flags);
6764 6765 6766

	/* drop reference from uncharge_page */
	css_put(&ug->memcg->css);
6767 6768 6769 6770
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
6771 6772
	unsigned long nr_pages;

6773 6774
	VM_BUG_ON_PAGE(PageLRU(page), page);

6775
	if (!page_memcg(page))
6776 6777 6778 6779
		return;

	/*
	 * Nobody should be changing or seriously looking at
6780
	 * page_memcg(page) at this point, we have fully
6781 6782 6783
	 * exclusive access to the page.
	 */

6784
	if (ug->memcg != page_memcg(page)) {
6785 6786 6787 6788
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
6789
		ug->memcg = page_memcg(page);
6790 6791 6792

		/* pairs with css_put in uncharge_batch */
		css_get(&ug->memcg->css);
6793 6794
	}

6795 6796
	nr_pages = compound_nr(page);
	ug->nr_pages += nr_pages;
6797

6798
	if (PageMemcgKmem(page))
6799
		ug->nr_kmem += nr_pages;
6800 6801
	else
		ug->pgpgout++;
6802 6803

	ug->dummy_page = page;
6804
	page->memcg_data = 0;
6805
	css_put(&ug->memcg->css);
6806 6807
}

6808 6809 6810 6811
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
6812
 * Uncharge a page previously charged with mem_cgroup_charge().
6813 6814 6815
 */
void mem_cgroup_uncharge(struct page *page)
{
6816 6817
	struct uncharge_gather ug;

6818 6819 6820
	if (mem_cgroup_disabled())
		return;

6821
	/* Don't touch page->lru of any random page, pre-check: */
6822
	if (!page_memcg(page))
6823 6824
		return;

6825 6826 6827
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
6828
}
6829

6830 6831 6832 6833 6834
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
6835
 * mem_cgroup_charge().
6836 6837 6838
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
6839 6840 6841
	struct uncharge_gather ug;
	struct page *page;

6842 6843
	if (mem_cgroup_disabled())
		return;
6844

6845 6846 6847 6848 6849
	uncharge_gather_clear(&ug);
	list_for_each_entry(page, page_list, lru)
		uncharge_page(page, &ug);
	if (ug.memcg)
		uncharge_batch(&ug);
6850 6851 6852
}

/**
6853 6854 6855
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
6856
 *
6857 6858
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
6859 6860 6861
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
6862
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6863
{
6864
	struct mem_cgroup *memcg;
6865
	unsigned int nr_pages;
6866
	unsigned long flags;
6867 6868 6869 6870

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6871 6872
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6873 6874 6875 6876 6877

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
6878
	if (page_memcg(newpage))
6879 6880
		return;

6881
	memcg = page_memcg(oldpage);
6882
	VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
6883
	if (!memcg)
6884 6885
		return;

6886
	/* Force-charge the new page. The old one will be freed soon */
6887
	nr_pages = thp_nr_pages(newpage);
6888 6889 6890 6891

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
6892

6893
	css_get(&memcg->css);
6894
	commit_charge(newpage, memcg);
6895

6896
	local_irq_save(flags);
6897
	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6898
	memcg_check_events(memcg, newpage);
6899
	local_irq_restore(flags);
6900 6901
}

6902
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6903 6904
EXPORT_SYMBOL(memcg_sockets_enabled_key);

6905
void mem_cgroup_sk_alloc(struct sock *sk)
6906 6907 6908
{
	struct mem_cgroup *memcg;

6909 6910 6911
	if (!mem_cgroup_sockets_enabled)
		return;

6912 6913 6914 6915
	/* Do not associate the sock with unrelated interrupted task's memcg. */
	if (in_interrupt())
		return;

6916 6917
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
6918 6919
	if (memcg == root_mem_cgroup)
		goto out;
6920
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6921
		goto out;
S
Shakeel Butt 已提交
6922
	if (css_tryget(&memcg->css))
6923
		sk->sk_memcg = memcg;
6924
out:
6925 6926 6927
	rcu_read_unlock();
}

6928
void mem_cgroup_sk_free(struct sock *sk)
6929
{
6930 6931
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6944
	gfp_t gfp_mask = GFP_KERNEL;
6945

6946
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6947
		struct page_counter *fail;
6948

6949 6950
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
6951 6952
			return true;
		}
6953 6954
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
6955
		return false;
6956
	}
6957

6958 6959 6960 6961
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

6962
	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6963

6964 6965 6966 6967
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6968 6969 6970 6971 6972
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
6973 6974
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
6975 6976 6977
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6978
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6979
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6980 6981
		return;
	}
6982

6983
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6984

6985
	refill_stock(memcg, nr_pages);
6986 6987
}

6988 6989 6990 6991 6992 6993 6994 6995 6996
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
6997 6998
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
6999 7000 7001 7002
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
7003

7004
/*
7005 7006
 * subsys_initcall() for memory controller.
 *
7007 7008 7009 7010
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
7011 7012 7013
 */
static int __init mem_cgroup_init(void)
{
7014 7015
	int cpu, node;

7016 7017 7018 7019 7020 7021 7022 7023
	/*
	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
	 * used for per-memcg-per-cpu caching of per-node statistics. In order
	 * to work fine, we should make sure that the overfill threshold can't
	 * exceed S32_MAX / PAGE_SIZE.
	 */
	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);

7024 7025
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

7037
		rtpn->rb_root = RB_ROOT;
7038
		rtpn->rb_rightmost = NULL;
7039
		spin_lock_init(&rtpn->lock);
7040 7041 7042
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

7043 7044 7045
	return 0;
}
subsys_initcall(mem_cgroup_init);
7046 7047

#ifdef CONFIG_MEMCG_SWAP
7048 7049
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
7050
	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

7066 7067 7068 7069 7070 7071 7072 7073 7074
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
7075
	struct mem_cgroup *memcg, *swap_memcg;
7076
	unsigned int nr_entries;
7077 7078 7079 7080 7081
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

7082 7083 7084
	if (mem_cgroup_disabled())
		return;

7085
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7086 7087
		return;

7088
	memcg = page_memcg(page);
7089

7090
	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7091 7092 7093
	if (!memcg)
		return;

7094 7095 7096 7097 7098 7099
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
7100
	nr_entries = thp_nr_pages(page);
7101 7102 7103 7104 7105
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
7106
	VM_BUG_ON_PAGE(oldid, page);
7107
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7108

7109
	page->memcg_data = 0;
7110 7111

	if (!mem_cgroup_is_root(memcg))
7112
		page_counter_uncharge(&memcg->memory, nr_entries);
7113

7114
	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7115
		if (!mem_cgroup_is_root(swap_memcg))
7116 7117
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
7118 7119
	}

7120 7121
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
7122
	 * i_pages lock which is taken with interrupts-off. It is
7123
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
7124
	 * only synchronisation we have for updating the per-CPU variables.
7125 7126
	 */
	VM_BUG_ON(!irqs_disabled());
7127
	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7128
	memcg_check_events(memcg, page);
7129

7130
	css_put(&memcg->css);
7131 7132
}

7133 7134
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
7135 7136 7137
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
7138
 * Try to charge @page's memcg for the swap space at @entry.
7139 7140 7141 7142 7143
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
7144
	unsigned int nr_pages = thp_nr_pages(page);
7145
	struct page_counter *counter;
7146
	struct mem_cgroup *memcg;
7147 7148
	unsigned short oldid;

7149 7150 7151
	if (mem_cgroup_disabled())
		return 0;

7152
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7153 7154
		return 0;

7155
	memcg = page_memcg(page);
7156

7157
	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7158 7159 7160
	if (!memcg)
		return 0;

7161 7162
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7163
		return 0;
7164
	}
7165

7166 7167
	memcg = mem_cgroup_id_get_online(memcg);

7168
	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7169
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7170 7171
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7172
		mem_cgroup_id_put(memcg);
7173
		return -ENOMEM;
7174
	}
7175

7176 7177 7178 7179
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7180
	VM_BUG_ON_PAGE(oldid, page);
7181
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7182 7183 7184 7185

	return 0;
}

7186
/**
7187
 * mem_cgroup_uncharge_swap - uncharge swap space
7188
 * @entry: swap entry to uncharge
7189
 * @nr_pages: the amount of swap space to uncharge
7190
 */
7191
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7192 7193 7194 7195
{
	struct mem_cgroup *memcg;
	unsigned short id;

7196
	id = swap_cgroup_record(entry, 0, nr_pages);
7197
	rcu_read_lock();
7198
	memcg = mem_cgroup_from_id(id);
7199
	if (memcg) {
7200
		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7201
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7202
				page_counter_uncharge(&memcg->swap, nr_pages);
7203
			else
7204
				page_counter_uncharge(&memcg->memsw, nr_pages);
7205
		}
7206
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7207
		mem_cgroup_id_put_many(memcg, nr_pages);
7208 7209 7210 7211
	}
	rcu_read_unlock();
}

7212 7213 7214 7215
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

7216
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7217 7218 7219
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
7220
				      READ_ONCE(memcg->swap.max) -
7221 7222 7223 7224
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

7225 7226 7227 7228 7229 7230 7231 7232
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
7233
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7234 7235
		return false;

7236
	memcg = page_memcg(page);
7237 7238 7239
	if (!memcg)
		return false;

7240 7241 7242 7243 7244
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		unsigned long usage = page_counter_read(&memcg->swap);

		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
		    usage * 2 >= READ_ONCE(memcg->swap.max))
7245
			return true;
7246
	}
7247 7248 7249 7250

	return false;
}

7251
static int __init setup_swap_account(char *s)
7252 7253
{
	if (!strcmp(s, "1"))
7254
		cgroup_memory_noswap = false;
7255
	else if (!strcmp(s, "0"))
7256
		cgroup_memory_noswap = true;
7257 7258
	return 1;
}
7259
__setup("swapaccount=", setup_swap_account);
7260

7261 7262 7263 7264 7265 7266 7267 7268
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291
static int swap_high_show(struct seq_file *m, void *v)
{
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
}

static ssize_t swap_high_write(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &high);
	if (err)
		return err;

	page_counter_set_high(&memcg->swap, high);

	return nbytes;
}

7292 7293
static int swap_max_show(struct seq_file *m, void *v)
{
7294 7295
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

7310
	xchg(&memcg->swap.max, max);
7311 7312 7313 7314

	return nbytes;
}

7315 7316
static int swap_events_show(struct seq_file *m, void *v)
{
7317
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7318

7319 7320
	seq_printf(m, "high %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7321 7322 7323 7324 7325 7326 7327 7328
	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

7329 7330 7331 7332 7333 7334
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
7335 7336 7337 7338 7339 7340
	{
		.name = "swap.high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_high_show,
		.write = swap_high_write,
	},
7341 7342 7343 7344 7345 7346
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
7347 7348 7349 7350 7351 7352
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
7353 7354 7355
	{ }	/* terminate */
};

7356
static struct cftype memsw_files[] = {
7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

7383 7384 7385 7386 7387 7388 7389
/*
 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
 * boot parameter. This may result in premature OOPS inside
 * mem_cgroup_get_nr_swap_pages() function in corner cases.
 */
7390 7391
static int __init mem_cgroup_swap_init(void)
{
7392 7393 7394 7395 7396
	/* No memory control -> no swap control */
	if (mem_cgroup_disabled())
		cgroup_memory_noswap = true;

	if (cgroup_memory_noswap)
7397 7398 7399 7400 7401
		return 0;

	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));

7402 7403
	return 0;
}
7404
core_initcall(mem_cgroup_swap_init);
7405 7406

#endif /* CONFIG_MEMCG_SWAP */