memcontrol.c 185.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
B
Balbir Singh 已提交
2 3 4 5 6
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
7 8 9
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
10 11 12 13
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
14 15 16 17
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
B
Balbir Singh 已提交
23 24
 */

25
#include <linux/page_counter.h>
B
Balbir Singh 已提交
26 27
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
28
#include <linux/pagewalk.h>
29
#include <linux/sched/mm.h>
30
#include <linux/shmem_fs.h>
31
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
32
#include <linux/pagemap.h>
33
#include <linux/vm_event_item.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/swap_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
59
#include <linux/tracehook.h>
60
#include <linux/psi.h>
61
#include <linux/seq_buf.h>
K
KAMEZAWA Hiroyuki 已提交
62
#include "internal.h"
G
Glauber Costa 已提交
63
#include <net/sock.h>
M
Michal Hocko 已提交
64
#include <net/ip.h>
65
#include "slab.h"
B
Balbir Singh 已提交
66

67
#include <linux/uaccess.h>
68

69 70
#include <trace/events/vmscan.h>

71 72
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
73

74 75
struct mem_cgroup *root_mem_cgroup __read_mostly;

76
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
77

78 79 80
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

81 82 83
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

84
/* Whether the swap controller is active */
A
Andrew Morton 已提交
85
#ifdef CONFIG_MEMCG_SWAP
86
bool cgroup_memory_noswap __read_mostly;
87
#else
88
#define cgroup_memory_noswap		1
89
#endif
90

91 92 93 94
#ifdef CONFIG_CGROUP_WRITEBACK
static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
#endif

95 96 97
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
98
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
99 100
}

101 102
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
103

104 105 106 107 108
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

109
struct mem_cgroup_tree_per_node {
110
	struct rb_root rb_root;
111
	struct rb_node *rb_rightmost;
112 113 114 115 116 117 118 119 120
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
121 122 123 124 125
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
126

127 128 129
/*
 * cgroup_event represents events which userspace want to receive.
 */
130
struct mem_cgroup_event {
131
	/*
132
	 * memcg which the event belongs to.
133
	 */
134
	struct mem_cgroup *memcg;
135 136 137 138 139 140 141 142
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
143 144 145 146 147
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
148
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
149
			      struct eventfd_ctx *eventfd, const char *args);
150 151 152 153 154
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
155
	void (*unregister_event)(struct mem_cgroup *memcg,
156
				 struct eventfd_ctx *eventfd);
157 158 159 160 161 162
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
163
	wait_queue_entry_t wait;
164 165 166
	struct work_struct remove;
};

167 168
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
169

170 171
/* Stuffs for move charges at task migration. */
/*
172
 * Types of charges to be moved.
173
 */
174 175 176
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
177

178 179
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
180
	spinlock_t	  lock; /* for from, to */
181
	struct mm_struct  *mm;
182 183
	struct mem_cgroup *from;
	struct mem_cgroup *to;
184
	unsigned long flags;
185
	unsigned long precharge;
186
	unsigned long moved_charge;
187
	unsigned long moved_swap;
188 189 190
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
191
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
192 193
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
194

195 196 197 198
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
199
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
200
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
201

202 203
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
204
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
205
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
206
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
207 208 209
	NR_CHARGE_TYPE,
};

210
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
211 212 213 214
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
215
	_KMEM,
V
Vladimir Davydov 已提交
216
	_TCP,
G
Glauber Costa 已提交
217 218
};

219 220
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
221
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
222 223
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
224

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(root, iter, NULL))

#define for_each_mem_cgroup(iter)			\
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(NULL, iter, NULL))

240 241 242 243 244 245
static inline bool should_force_charge(void)
{
	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
		(current->flags & PF_EXITING);
}

246 247 248 249 250 251 252 253 254 255 256 257 258
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

259
#ifdef CONFIG_MEMCG_KMEM
260
/*
261
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
262 263 264 265 266
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
267
 *
268 269
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
270
 */
271 272
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
273

274 275 276 277 278 279 280 281 282 283 284 285 286
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

287 288 289 290 291 292
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
293
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
294 295
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
296
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
297 298 299
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
300
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
301

302 303 304 305 306 307
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
308
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
309
EXPORT_SYMBOL(memcg_kmem_enabled_key);
310

311
struct workqueue_struct *memcg_kmem_cache_wq;
312
#endif
313

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
static int memcg_shrinker_map_size;
static DEFINE_MUTEX(memcg_shrinker_map_mutex);

static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
{
	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
}

static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
					 int size, int old_size)
{
	struct memcg_shrinker_map *new, *old;
	int nid;

	lockdep_assert_held(&memcg_shrinker_map_mutex);

	for_each_node(nid) {
		old = rcu_dereference_protected(
			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
		/* Not yet online memcg */
		if (!old)
			return 0;

337
		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
		if (!new)
			return -ENOMEM;

		/* Set all old bits, clear all new bits */
		memset(new->map, (int)0xff, old_size);
		memset((void *)new->map + old_size, 0, size - old_size);

		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
	}

	return 0;
}

static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *pn;
	struct memcg_shrinker_map *map;
	int nid;

	if (mem_cgroup_is_root(memcg))
		return;

	for_each_node(nid) {
		pn = mem_cgroup_nodeinfo(memcg, nid);
		map = rcu_dereference_protected(pn->shrinker_map, true);
		if (map)
			kvfree(map);
		rcu_assign_pointer(pn->shrinker_map, NULL);
	}
}

static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	struct memcg_shrinker_map *map;
	int nid, size, ret = 0;

	if (mem_cgroup_is_root(memcg))
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	size = memcg_shrinker_map_size;
	for_each_node(nid) {
381
		map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
		if (!map) {
			memcg_free_shrinker_maps(memcg);
			ret = -ENOMEM;
			break;
		}
		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
	}
	mutex_unlock(&memcg_shrinker_map_mutex);

	return ret;
}

int memcg_expand_shrinker_maps(int new_id)
{
	int size, old_size, ret = 0;
	struct mem_cgroup *memcg;

	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
	old_size = memcg_shrinker_map_size;
	if (size <= old_size)
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	if (!root_mem_cgroup)
		goto unlock;

	for_each_mem_cgroup(memcg) {
		if (mem_cgroup_is_root(memcg))
			continue;
		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
412 413
		if (ret) {
			mem_cgroup_iter_break(NULL, memcg);
414
			goto unlock;
415
		}
416 417 418 419 420 421 422
	}
unlock:
	if (!ret)
		memcg_shrinker_map_size = size;
	mutex_unlock(&memcg_shrinker_map_mutex);
	return ret;
}
423 424 425 426 427 428 429 430

void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
{
	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
		struct memcg_shrinker_map *map;

		rcu_read_lock();
		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
431 432
		/* Pairs with smp mb in shrink_slab() */
		smp_mb__before_atomic();
433 434 435 436 437
		set_bit(shrinker_id, map->map);
		rcu_read_unlock();
	}
}

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

455
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
456 457 458 459 460
		memcg = root_mem_cgroup;

	return &memcg->css;
}

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
480
	if (PageSlab(page) && !PageTail(page))
481 482 483
		memcg = memcg_from_slab_page(page);
	else
		memcg = READ_ONCE(page->mem_cgroup);
484 485 486 487 488 489 490 491
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

492 493
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
494
{
495
	int nid = page_to_nid(page);
496

497
	return memcg->nodeinfo[nid];
498 499
}

500 501
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
502
{
503
	return soft_limit_tree.rb_tree_per_node[nid];
504 505
}

506
static struct mem_cgroup_tree_per_node *
507 508 509 510
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

511
	return soft_limit_tree.rb_tree_per_node[nid];
512 513
}

514 515
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
516
					 unsigned long new_usage_in_excess)
517 518 519
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
520
	struct mem_cgroup_per_node *mz_node;
521
	bool rightmost = true;
522 523 524 525 526 527 528 529 530

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
531
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
532
					tree_node);
533
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
534
			p = &(*p)->rb_left;
535 536 537
			rightmost = false;
		}

538 539 540 541 542 543 544
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
545 546 547 548

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

549 550 551 552 553
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

554 555
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
556 557 558
{
	if (!mz->on_tree)
		return;
559 560 561 562

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

563 564 565 566
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

567 568
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
569
{
570 571 572
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
573
	__mem_cgroup_remove_exceeded(mz, mctz);
574
	spin_unlock_irqrestore(&mctz->lock, flags);
575 576
}

577 578 579
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
580
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
581 582 583 584 585 586 587
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
588 589 590

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
591
	unsigned long excess;
592 593
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
594

595
	mctz = soft_limit_tree_from_page(page);
596 597
	if (!mctz)
		return;
598 599 600 601 602
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
603
		mz = mem_cgroup_page_nodeinfo(memcg, page);
604
		excess = soft_limit_excess(memcg);
605 606 607 608 609
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
610 611 612
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
613 614
			/* if on-tree, remove it */
			if (mz->on_tree)
615
				__mem_cgroup_remove_exceeded(mz, mctz);
616 617 618 619
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
620
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
621
			spin_unlock_irqrestore(&mctz->lock, flags);
622 623 624 625 626 627
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
628 629 630
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
631

632
	for_each_node(nid) {
633 634
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
635 636
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
637 638 639
	}
}

640 641
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
642
{
643
	struct mem_cgroup_per_node *mz;
644 645 646

retry:
	mz = NULL;
647
	if (!mctz->rb_rightmost)
648 649
		goto done;		/* Nothing to reclaim from */

650 651
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
652 653 654 655 656
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
657
	__mem_cgroup_remove_exceeded(mz, mctz);
658
	if (!soft_limit_excess(mz->memcg) ||
S
Shakeel Butt 已提交
659
	    !css_tryget(&mz->memcg->css))
660 661 662 663 664
		goto retry;
done:
	return mz;
}

665 666
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
667
{
668
	struct mem_cgroup_per_node *mz;
669

670
	spin_lock_irq(&mctz->lock);
671
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
672
	spin_unlock_irq(&mctz->lock);
673 674 675
	return mz;
}

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
/**
 * __mod_memcg_state - update cgroup memory statistics
 * @memcg: the memory cgroup
 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 * @val: delta to add to the counter, can be negative
 */
void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
{
	long x;

	if (mem_cgroup_disabled())
		return;

	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
691 692
		struct mem_cgroup *mi;

693 694 695 696 697
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
698 699
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmstats[idx]);
700 701 702 703 704
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
}

705 706 707 708 709 710 711 712 713 714 715
static struct mem_cgroup_per_node *
parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
{
	struct mem_cgroup *parent;

	parent = parent_mem_cgroup(pn->memcg);
	if (!parent)
		return NULL;
	return mem_cgroup_nodeinfo(parent, nid);
}

716 717 718 719 720 721 722 723 724 725 726 727 728
/**
 * __mod_lruvec_state - update lruvec memory statistics
 * @lruvec: the lruvec
 * @idx: the stat item
 * @val: delta to add to the counter, can be negative
 *
 * The lruvec is the intersection of the NUMA node and a cgroup. This
 * function updates the all three counters that are affected by a
 * change of state at this level: per-node, per-cgroup, per-lruvec.
 */
void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			int val)
{
729
	pg_data_t *pgdat = lruvec_pgdat(lruvec);
730
	struct mem_cgroup_per_node *pn;
731
	struct mem_cgroup *memcg;
732 733 734
	long x;

	/* Update node */
735
	__mod_node_page_state(pgdat, idx, val);
736 737 738 739 740

	if (mem_cgroup_disabled())
		return;

	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
741
	memcg = pn->memcg;
742 743

	/* Update memcg */
744
	__mod_memcg_state(memcg, idx, val);
745

746 747 748
	/* Update lruvec */
	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);

749 750
	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
751 752 753 754
		struct mem_cgroup_per_node *pi;

		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
			atomic_long_add(x, &pi->lruvec_stat[idx]);
755 756 757 758 759
		x = 0;
	}
	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
}

760 761
void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
{
762
	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
763 764 765 766
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;

	rcu_read_lock();
767
	memcg = mem_cgroup_from_obj(p);
768 769 770 771 772

	/* Untracked pages have no memcg, no lruvec. Update only the node */
	if (!memcg || memcg == root_mem_cgroup) {
		__mod_node_page_state(pgdat, idx, val);
	} else {
773
		lruvec = mem_cgroup_lruvec(memcg, pgdat);
774 775 776 777 778
		__mod_lruvec_state(lruvec, idx, val);
	}
	rcu_read_unlock();
}

779 780 781 782 783 784 785 786 787 788 789
void mod_memcg_obj_state(void *p, int idx, int val)
{
	struct mem_cgroup *memcg;

	rcu_read_lock();
	memcg = mem_cgroup_from_obj(p);
	if (memcg)
		mod_memcg_state(memcg, idx, val);
	rcu_read_unlock();
}

790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
/**
 * __count_memcg_events - account VM events in a cgroup
 * @memcg: the memory cgroup
 * @idx: the event item
 * @count: the number of events that occured
 */
void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
			  unsigned long count)
{
	unsigned long x;

	if (mem_cgroup_disabled())
		return;

	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
806 807
		struct mem_cgroup *mi;

808 809 810 811 812
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->events[idx], x);
813 814
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmevents[idx]);
815 816 817 818 819
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
}

820
static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
821
{
822
	return atomic_long_read(&memcg->vmevents[event]);
823 824
}

825 826
static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
{
827 828 829 830 831 832
	long x = 0;
	int cpu;

	for_each_possible_cpu(cpu)
		x += per_cpu(memcg->vmstats_local->events[event], cpu);
	return x;
833 834
}

835
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
836
					 struct page *page,
837
					 int nr_pages)
838
{
839 840
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
841
		__count_memcg_events(memcg, PGPGIN, 1);
842
	else {
843
		__count_memcg_events(memcg, PGPGOUT, 1);
844 845
		nr_pages = -nr_pages; /* for event */
	}
846

847
	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
848 849
}

850 851
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
852 853 854
{
	unsigned long val, next;

855 856
	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
857
	/* from time_after() in jiffies.h */
858
	if ((long)(next - val) < 0) {
859 860 861 862
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
863 864 865
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
866 867 868
		default:
			break;
		}
869
		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
870
		return true;
871
	}
872
	return false;
873 874 875 876 877 878
}

/*
 * Check events in order.
 *
 */
879
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
880 881
{
	/* threshold event is triggered in finer grain than soft limit */
882 883
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
884
		bool do_softlimit;
885

886 887
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
888
		mem_cgroup_threshold(memcg);
889 890
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
891
	}
892 893
}

894
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
895
{
896 897 898 899 900 901 902 903
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

904
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
905
}
M
Michal Hocko 已提交
906
EXPORT_SYMBOL(mem_cgroup_from_task);
907

908 909 910 911 912 913 914 915 916
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
 * returned.
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
917
{
918 919 920 921
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
922

923 924
	rcu_read_lock();
	do {
925 926 927 928 929 930
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
931
			memcg = root_mem_cgroup;
932 933 934 935 936
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
937
	} while (!css_tryget(&memcg->css));
938
	rcu_read_unlock();
939
	return memcg;
940
}
941 942
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
/**
 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
 * @page: page from which memcg should be extracted.
 *
 * Obtain a reference on page->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned.
 */
struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
{
	struct mem_cgroup *memcg = page->mem_cgroup;

	if (mem_cgroup_disabled())
		return NULL;

	rcu_read_lock();
S
Shakeel Butt 已提交
958 959
	/* Page should not get uncharged and freed memcg under us. */
	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
960 961 962 963 964 965
		memcg = root_mem_cgroup;
	rcu_read_unlock();
	return memcg;
}
EXPORT_SYMBOL(get_mem_cgroup_from_page);

966 967 968 969 970 971
/**
 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
 */
static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
{
	if (unlikely(current->active_memcg)) {
S
Shakeel Butt 已提交
972
		struct mem_cgroup *memcg;
973 974

		rcu_read_lock();
S
Shakeel Butt 已提交
975 976 977 978
		/* current->active_memcg must hold a ref. */
		if (WARN_ON_ONCE(!css_tryget(&current->active_memcg->css)))
			memcg = root_mem_cgroup;
		else
979 980 981 982 983 984
			memcg = current->active_memcg;
		rcu_read_unlock();
		return memcg;
	}
	return get_mem_cgroup_from_mm(current->mm);
}
985

986 987 988 989 990 991 992 993 994 995 996 997 998
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
999
 * Reclaimers can specify a node and a priority level in @reclaim to
1000
 * divide up the memcgs in the hierarchy among all concurrent
1001
 * reclaimers operating on the same node and priority.
1002
 */
1003
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1004
				   struct mem_cgroup *prev,
1005
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1006
{
M
Michal Hocko 已提交
1007
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1008
	struct cgroup_subsys_state *css = NULL;
1009
	struct mem_cgroup *memcg = NULL;
1010
	struct mem_cgroup *pos = NULL;
1011

1012 1013
	if (mem_cgroup_disabled())
		return NULL;
1014

1015 1016
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1017

1018
	if (prev && !reclaim)
1019
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1020

1021 1022
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1023
			goto out;
1024
		return root;
1025
	}
K
KAMEZAWA Hiroyuki 已提交
1026

1027
	rcu_read_lock();
M
Michal Hocko 已提交
1028

1029
	if (reclaim) {
1030
		struct mem_cgroup_per_node *mz;
1031

1032
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1033
		iter = &mz->iter;
1034 1035 1036 1037

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

1038
		while (1) {
1039
			pos = READ_ONCE(iter->position);
1040 1041
			if (!pos || css_tryget(&pos->css))
				break;
1042
			/*
1043 1044 1045 1046 1047 1048
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
1049
			 */
1050 1051
			(void)cmpxchg(&iter->position, pos, NULL);
		}
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1069
		}
K
KAMEZAWA Hiroyuki 已提交
1070

1071 1072 1073 1074 1075 1076
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1077

1078 1079
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1080

1081 1082
		if (css_tryget(css))
			break;
1083

1084
		memcg = NULL;
1085
	}
1086 1087 1088

	if (reclaim) {
		/*
1089 1090 1091
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
1092
		 */
1093 1094
		(void)cmpxchg(&iter->position, pos, memcg);

1095 1096 1097 1098 1099 1100 1101
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1102
	}
1103

1104 1105
out_unlock:
	rcu_read_unlock();
1106
out:
1107 1108 1109
	if (prev && prev != root)
		css_put(&prev->css);

1110
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1111
}
K
KAMEZAWA Hiroyuki 已提交
1112

1113 1114 1115 1116 1117 1118 1119
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1120 1121 1122 1123 1124 1125
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1126

1127 1128
static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
					struct mem_cgroup *dead_memcg)
1129 1130
{
	struct mem_cgroup_reclaim_iter *iter;
1131 1132
	struct mem_cgroup_per_node *mz;
	int nid;
1133

1134 1135
	for_each_node(nid) {
		mz = mem_cgroup_nodeinfo(from, nid);
1136 1137
		iter = &mz->iter;
		cmpxchg(&iter->position, dead_memcg, NULL);
1138 1139 1140
	}
}

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup *last;

	do {
		__invalidate_reclaim_iterators(memcg, dead_memcg);
		last = memcg;
	} while ((memcg = parent_mem_cgroup(memcg)));

	/*
	 * When cgruop1 non-hierarchy mode is used,
	 * parent_mem_cgroup() does not walk all the way up to the
	 * cgroup root (root_mem_cgroup). So we have to handle
	 * dead_memcg from cgroup root separately.
	 */
	if (last != root_mem_cgroup)
		__invalidate_reclaim_iterators(root_mem_cgroup,
						dead_memcg);
}

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

1187
		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

1199
/**
1200
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1201
 * @page: the page
1202
 * @pgdat: pgdat of the page
1203
 *
1204 1205
 * This function relies on page->mem_cgroup being stable - see the
 * access rules in commit_charge().
1206
 */
M
Mel Gorman 已提交
1207
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
1208
{
1209
	struct mem_cgroup_per_node *mz;
1210
	struct mem_cgroup *memcg;
1211
	struct lruvec *lruvec;
1212

1213
	if (mem_cgroup_disabled()) {
1214
		lruvec = &pgdat->__lruvec;
1215 1216
		goto out;
	}
1217

1218
	memcg = page->mem_cgroup;
1219
	/*
1220
	 * Swapcache readahead pages are added to the LRU - and
1221
	 * possibly migrated - before they are charged.
1222
	 */
1223 1224
	if (!memcg)
		memcg = root_mem_cgroup;
1225

1226
	mz = mem_cgroup_page_nodeinfo(memcg, page);
1227 1228 1229 1230 1231 1232 1233
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
1234 1235
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
1236
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1237
}
1238

1239
/**
1240 1241 1242
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1243
 * @zid: zone id of the accounted pages
1244
 * @nr_pages: positive when adding or negative when removing
1245
 *
1246 1247 1248
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1249
 */
1250
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1251
				int zid, int nr_pages)
1252
{
1253
	struct mem_cgroup_per_node *mz;
1254
	unsigned long *lru_size;
1255
	long size;
1256 1257 1258 1259

	if (mem_cgroup_disabled())
		return;

1260
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1261
	lru_size = &mz->lru_zone_size[zid][lru];
1262 1263 1264 1265 1266

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1267 1268 1269
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1270 1271 1272 1273 1274 1275
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1276
}
1277

1278
/**
1279
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1280
 * @memcg: the memory cgroup
1281
 *
1282
 * Returns the maximum amount of memory @mem can be charged with, in
1283
 * pages.
1284
 */
1285
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1286
{
1287 1288 1289
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1290

1291
	count = page_counter_read(&memcg->memory);
1292
	limit = READ_ONCE(memcg->memory.max);
1293 1294 1295
	if (count < limit)
		margin = limit - count;

1296
	if (do_memsw_account()) {
1297
		count = page_counter_read(&memcg->memsw);
1298
		limit = READ_ONCE(memcg->memsw.max);
1299
		if (count < limit)
1300
			margin = min(margin, limit - count);
1301 1302
		else
			margin = 0;
1303 1304 1305
	}

	return margin;
1306 1307
}

1308
/*
Q
Qiang Huang 已提交
1309
 * A routine for checking "mem" is under move_account() or not.
1310
 *
Q
Qiang Huang 已提交
1311 1312 1313
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1314
 */
1315
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1316
{
1317 1318
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1319
	bool ret = false;
1320 1321 1322 1323 1324 1325 1326 1327 1328
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1329

1330 1331
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1332 1333
unlock:
	spin_unlock(&mc.lock);
1334 1335 1336
	return ret;
}

1337
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1338 1339
{
	if (mc.moving_task && current != mc.moving_task) {
1340
		if (mem_cgroup_under_move(memcg)) {
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1353 1354 1355 1356
static char *memory_stat_format(struct mem_cgroup *memcg)
{
	struct seq_buf s;
	int i;
1357

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
	if (!s.buffer)
		return NULL;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

	seq_buf_printf(&s, "anon %llu\n",
1374
		       (u64)memcg_page_state(memcg, NR_ANON_MAPPED) *
1375 1376
		       PAGE_SIZE);
	seq_buf_printf(&s, "file %llu\n",
1377
		       (u64)memcg_page_state(memcg, NR_FILE_PAGES) *
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
		       PAGE_SIZE);
	seq_buf_printf(&s, "kernel_stack %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
		       1024);
	seq_buf_printf(&s, "slab %llu\n",
		       (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
			     memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "sock %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_SOCK) *
		       PAGE_SIZE);

	seq_buf_printf(&s, "shmem %llu\n",
		       (u64)memcg_page_state(memcg, NR_SHMEM) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_mapped %llu\n",
		       (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_dirty %llu\n",
		       (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_writeback %llu\n",
		       (u64)memcg_page_state(memcg, NR_WRITEBACK) *
		       PAGE_SIZE);

1403
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1404
	seq_buf_printf(&s, "anon_thp %llu\n",
1405 1406 1407
		       (u64)memcg_page_state(memcg, NR_ANON_THPS) *
		       HPAGE_PMD_SIZE);
#endif
1408 1409

	for (i = 0; i < NR_LRU_LISTS; i++)
1410
		seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			       PAGE_SIZE);

	seq_buf_printf(&s, "slab_reclaimable %llu\n",
		       (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "slab_unreclaimable %llu\n",
		       (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
		       PAGE_SIZE);

	/* Accumulated memory events */

1423 1424 1425 1426
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
		       memcg_events(memcg, PGFAULT));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
		       memcg_events(memcg, PGMAJFAULT));
1427 1428 1429 1430 1431

	seq_buf_printf(&s, "workingset_refault %lu\n",
		       memcg_page_state(memcg, WORKINGSET_REFAULT));
	seq_buf_printf(&s, "workingset_activate %lu\n",
		       memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1432 1433
	seq_buf_printf(&s, "workingset_restore %lu\n",
		       memcg_page_state(memcg, WORKINGSET_RESTORE));
1434 1435 1436
	seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
		       memcg_page_state(memcg, WORKINGSET_NODERECLAIM));

1437 1438
	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
		       memcg_events(memcg, PGREFILL));
1439 1440 1441 1442 1443 1444
	seq_buf_printf(&s, "pgscan %lu\n",
		       memcg_events(memcg, PGSCAN_KSWAPD) +
		       memcg_events(memcg, PGSCAN_DIRECT));
	seq_buf_printf(&s, "pgsteal %lu\n",
		       memcg_events(memcg, PGSTEAL_KSWAPD) +
		       memcg_events(memcg, PGSTEAL_DIRECT));
1445 1446 1447 1448 1449 1450 1451 1452
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
		       memcg_events(memcg, PGACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
		       memcg_events(memcg, PGDEACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
		       memcg_events(memcg, PGLAZYFREE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
		       memcg_events(memcg, PGLAZYFREED));
1453 1454

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1455
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1456
		       memcg_events(memcg, THP_FAULT_ALLOC));
1457
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1458 1459 1460 1461 1462 1463 1464 1465
		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

	/* The above should easily fit into one page */
	WARN_ON_ONCE(seq_buf_has_overflowed(&s));

	return s.buffer;
}
1466

1467
#define K(x) ((x) << (PAGE_SHIFT-10))
1468
/**
1469 1470
 * mem_cgroup_print_oom_context: Print OOM information relevant to
 * memory controller.
1471 1472 1473 1474 1475 1476
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
1477
void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1478 1479 1480
{
	rcu_read_lock();

1481 1482 1483 1484 1485
	if (memcg) {
		pr_cont(",oom_memcg=");
		pr_cont_cgroup_path(memcg->css.cgroup);
	} else
		pr_cont(",global_oom");
1486
	if (p) {
1487
		pr_cont(",task_memcg=");
1488 1489
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	}
1490
	rcu_read_unlock();
1491 1492 1493 1494 1495 1496 1497 1498 1499
}

/**
 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
 * memory controller.
 * @memcg: The memory cgroup that went over limit
 */
void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
1500
	char *buf;
1501

1502 1503
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1504
		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1505 1506 1507
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->swap)),
1508
			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1509 1510 1511 1512 1513 1514 1515
	else {
		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->memsw)),
			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->kmem)),
			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1516
	}
1517 1518 1519 1520 1521 1522 1523 1524 1525

	pr_info("Memory cgroup stats for ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(":");
	buf = memory_stat_format(memcg);
	if (!buf)
		return;
	pr_info("%s", buf);
	kfree(buf);
1526 1527
}

D
David Rientjes 已提交
1528 1529 1530
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1531
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1532
{
1533
	unsigned long max;
1534

1535
	max = READ_ONCE(memcg->memory.max);
1536
	if (mem_cgroup_swappiness(memcg)) {
1537 1538
		unsigned long memsw_max;
		unsigned long swap_max;
1539

1540
		memsw_max = memcg->memsw.max;
1541
		swap_max = READ_ONCE(memcg->swap.max);
1542 1543
		swap_max = min(swap_max, (unsigned long)total_swap_pages);
		max = min(max + swap_max, memsw_max);
1544
	}
1545
	return max;
D
David Rientjes 已提交
1546 1547
}

1548 1549 1550 1551 1552
unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
{
	return page_counter_read(&memcg->memory);
}

1553
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1554
				     int order)
1555
{
1556 1557 1558
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1559
		.memcg = memcg,
1560 1561 1562
		.gfp_mask = gfp_mask,
		.order = order,
	};
1563
	bool ret;
1564

1565 1566 1567 1568 1569 1570 1571
	if (mutex_lock_killable(&oom_lock))
		return true;
	/*
	 * A few threads which were not waiting at mutex_lock_killable() can
	 * fail to bail out. Therefore, check again after holding oom_lock.
	 */
	ret = should_force_charge() || out_of_memory(&oc);
1572
	mutex_unlock(&oom_lock);
1573
	return ret;
1574 1575
}

1576
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1577
				   pg_data_t *pgdat,
1578 1579 1580 1581 1582 1583 1584 1585 1586
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1587
		.pgdat = pgdat,
1588 1589
	};

1590
	excess = soft_limit_excess(root_memcg);
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1616
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1617
					pgdat, &nr_scanned);
1618
		*total_scanned += nr_scanned;
1619
		if (!soft_limit_excess(root_memcg))
1620
			break;
1621
	}
1622 1623
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1624 1625
}

1626 1627 1628 1629 1630 1631
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1632 1633
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1634 1635 1636 1637
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1638
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1639
{
1640
	struct mem_cgroup *iter, *failed = NULL;
1641

1642 1643
	spin_lock(&memcg_oom_lock);

1644
	for_each_mem_cgroup_tree(iter, memcg) {
1645
		if (iter->oom_lock) {
1646 1647 1648 1649 1650
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1651 1652
			mem_cgroup_iter_break(memcg, iter);
			break;
1653 1654
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1655
	}
K
KAMEZAWA Hiroyuki 已提交
1656

1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1668
		}
1669 1670
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1671 1672 1673 1674

	spin_unlock(&memcg_oom_lock);

	return !failed;
1675
}
1676

1677
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1678
{
K
KAMEZAWA Hiroyuki 已提交
1679 1680
	struct mem_cgroup *iter;

1681
	spin_lock(&memcg_oom_lock);
1682
	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1683
	for_each_mem_cgroup_tree(iter, memcg)
1684
		iter->oom_lock = false;
1685
	spin_unlock(&memcg_oom_lock);
1686 1687
}

1688
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1689 1690 1691
{
	struct mem_cgroup *iter;

1692
	spin_lock(&memcg_oom_lock);
1693
	for_each_mem_cgroup_tree(iter, memcg)
1694 1695
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1696 1697
}

1698
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1699 1700 1701
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1702 1703
	/*
	 * When a new child is created while the hierarchy is under oom,
1704
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1705
	 */
1706
	spin_lock(&memcg_oom_lock);
1707
	for_each_mem_cgroup_tree(iter, memcg)
1708 1709 1710
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1711 1712
}

K
KAMEZAWA Hiroyuki 已提交
1713 1714
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1715
struct oom_wait_info {
1716
	struct mem_cgroup *memcg;
1717
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1718 1719
};

1720
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1721 1722
	unsigned mode, int sync, void *arg)
{
1723 1724
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1725 1726 1727
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1728
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1729

1730 1731
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1732 1733 1734 1735
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1736
static void memcg_oom_recover(struct mem_cgroup *memcg)
1737
{
1738 1739 1740 1741 1742 1743 1744 1745 1746
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1747
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1748 1749
}

1750 1751 1752 1753 1754 1755 1756 1757
enum oom_status {
	OOM_SUCCESS,
	OOM_FAILED,
	OOM_ASYNC,
	OOM_SKIPPED
};

static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1758
{
1759 1760 1761
	enum oom_status ret;
	bool locked;

1762 1763 1764
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		return OOM_SKIPPED;

1765 1766
	memcg_memory_event(memcg, MEMCG_OOM);

K
KAMEZAWA Hiroyuki 已提交
1767
	/*
1768 1769 1770 1771
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1772 1773 1774 1775
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1776
	 *
1777 1778 1779 1780 1781 1782 1783
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
K
KAMEZAWA Hiroyuki 已提交
1784
	 */
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
	if (memcg->oom_kill_disable) {
		if (!current->in_user_fault)
			return OOM_SKIPPED;
		css_get(&memcg->css);
		current->memcg_in_oom = memcg;
		current->memcg_oom_gfp_mask = mask;
		current->memcg_oom_order = order;

		return OOM_ASYNC;
	}

1796 1797 1798 1799 1800 1801 1802 1803
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	mem_cgroup_unmark_under_oom(memcg);
1804
	if (mem_cgroup_out_of_memory(memcg, mask, order))
1805 1806 1807 1808 1809 1810
		ret = OOM_SUCCESS;
	else
		ret = OOM_FAILED;

	if (locked)
		mem_cgroup_oom_unlock(memcg);
1811

1812
	return ret;
1813 1814 1815 1816
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1817
 * @handle: actually kill/wait or just clean up the OOM state
1818
 *
1819 1820
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1821
 *
1822
 * Memcg supports userspace OOM handling where failed allocations must
1823 1824 1825 1826
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1827
 * the end of the page fault to complete the OOM handling.
1828 1829
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1830
 * completed, %false otherwise.
1831
 */
1832
bool mem_cgroup_oom_synchronize(bool handle)
1833
{
T
Tejun Heo 已提交
1834
	struct mem_cgroup *memcg = current->memcg_in_oom;
1835
	struct oom_wait_info owait;
1836
	bool locked;
1837 1838 1839

	/* OOM is global, do not handle */
	if (!memcg)
1840
		return false;
1841

1842
	if (!handle)
1843
		goto cleanup;
1844 1845 1846 1847 1848

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
1849
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
1850

1851
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1862 1863
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1864
	} else {
1865
		schedule();
1866 1867 1868 1869 1870
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1871 1872 1873 1874 1875 1876 1877 1878
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1879
cleanup:
T
Tejun Heo 已提交
1880
	current->memcg_in_oom = NULL;
1881
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1882
	return true;
1883 1884
}

1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
/**
 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 * @victim: task to be killed by the OOM killer
 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 *
 * Returns a pointer to a memory cgroup, which has to be cleaned up
 * by killing all belonging OOM-killable tasks.
 *
 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 */
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
					    struct mem_cgroup *oom_domain)
{
	struct mem_cgroup *oom_group = NULL;
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return NULL;

	if (!oom_domain)
		oom_domain = root_mem_cgroup;

	rcu_read_lock();

	memcg = mem_cgroup_from_task(victim);
	if (memcg == root_mem_cgroup)
		goto out;

1913 1914 1915 1916 1917 1918 1919 1920
	/*
	 * If the victim task has been asynchronously moved to a different
	 * memory cgroup, we might end up killing tasks outside oom_domain.
	 * In this case it's better to ignore memory.group.oom.
	 */
	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
		goto out;

1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
	/*
	 * Traverse the memory cgroup hierarchy from the victim task's
	 * cgroup up to the OOMing cgroup (or root) to find the
	 * highest-level memory cgroup with oom.group set.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		if (memcg->oom_group)
			oom_group = memcg;

		if (memcg == oom_domain)
			break;
	}

	if (oom_group)
		css_get(&oom_group->css);
out:
	rcu_read_unlock();

	return oom_group;
}

void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
	pr_info("Tasks in ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(" are going to be killed due to memory.oom.group set\n");
}

1949
/**
1950 1951
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1952
 *
1953
 * This function protects unlocked LRU pages from being moved to
1954 1955 1956 1957 1958
 * another cgroup.
 *
 * It ensures lifetime of the returned memcg. Caller is responsible
 * for the lifetime of the page; __unlock_page_memcg() is available
 * when @page might get freed inside the locked section.
1959
 */
1960
struct mem_cgroup *lock_page_memcg(struct page *page)
1961
{
1962
	struct page *head = compound_head(page); /* rmap on tail pages */
1963
	struct mem_cgroup *memcg;
1964
	unsigned long flags;
1965

1966 1967 1968 1969
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
1970 1971 1972 1973 1974 1975 1976
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page itself from being freed. E.g. writeback
	 * doesn't hold a page reference and relies on PG_writeback to
	 * keep off truncation, migration and so forth.
         */
1977 1978 1979
	rcu_read_lock();

	if (mem_cgroup_disabled())
1980
		return NULL;
1981
again:
1982
	memcg = head->mem_cgroup;
1983
	if (unlikely(!memcg))
1984
		return NULL;
1985

Q
Qiang Huang 已提交
1986
	if (atomic_read(&memcg->moving_account) <= 0)
1987
		return memcg;
1988

1989
	spin_lock_irqsave(&memcg->move_lock, flags);
1990
	if (memcg != head->mem_cgroup) {
1991
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1992 1993
		goto again;
	}
1994 1995 1996 1997

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
1998
	 * the task who has the lock for unlock_page_memcg().
1999 2000 2001
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2002

2003
	return memcg;
2004
}
2005
EXPORT_SYMBOL(lock_page_memcg);
2006

2007
/**
2008 2009 2010 2011
 * __unlock_page_memcg - unlock and unpin a memcg
 * @memcg: the memcg
 *
 * Unlock and unpin a memcg returned by lock_page_memcg().
2012
 */
2013
void __unlock_page_memcg(struct mem_cgroup *memcg)
2014
{
2015 2016 2017 2018 2019 2020 2021 2022
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2023

2024
	rcu_read_unlock();
2025
}
2026 2027 2028 2029 2030 2031 2032

/**
 * unlock_page_memcg - unlock a page->mem_cgroup binding
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
2033 2034 2035
	struct page *head = compound_head(page);

	__unlock_page_memcg(head->mem_cgroup);
2036
}
2037
EXPORT_SYMBOL(unlock_page_memcg);
2038

2039 2040
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2041
	unsigned int nr_pages;
2042
	struct work_struct work;
2043
	unsigned long flags;
2044
#define FLUSHING_CACHED_CHARGE	0
2045 2046
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2047
static DEFINE_MUTEX(percpu_charge_mutex);
2048

2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2059
 */
2060
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2061 2062
{
	struct memcg_stock_pcp *stock;
2063
	unsigned long flags;
2064
	bool ret = false;
2065

2066
	if (nr_pages > MEMCG_CHARGE_BATCH)
2067
		return ret;
2068

2069 2070 2071
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2072
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2073
		stock->nr_pages -= nr_pages;
2074 2075
		ret = true;
	}
2076 2077 2078

	local_irq_restore(flags);

2079 2080 2081 2082
	return ret;
}

/*
2083
 * Returns stocks cached in percpu and reset cached information.
2084 2085 2086 2087 2088
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2089
	if (stock->nr_pages) {
2090
		page_counter_uncharge(&old->memory, stock->nr_pages);
2091
		if (do_memsw_account())
2092
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2093
		css_put_many(&old->css, stock->nr_pages);
2094
		stock->nr_pages = 0;
2095 2096 2097 2098 2099 2100
	}
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
2101 2102 2103
	struct memcg_stock_pcp *stock;
	unsigned long flags;

2104 2105 2106 2107
	/*
	 * The only protection from memory hotplug vs. drain_stock races is
	 * that we always operate on local CPU stock here with IRQ disabled
	 */
2108 2109 2110
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2111
	drain_stock(stock);
2112
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2113 2114

	local_irq_restore(flags);
2115 2116 2117
}

/*
2118
 * Cache charges(val) to local per_cpu area.
2119
 * This will be consumed by consume_stock() function, later.
2120
 */
2121
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2122
{
2123 2124 2125 2126
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
2127

2128
	stock = this_cpu_ptr(&memcg_stock);
2129
	if (stock->cached != memcg) { /* reset if necessary */
2130
		drain_stock(stock);
2131
		stock->cached = memcg;
2132
	}
2133
	stock->nr_pages += nr_pages;
2134

2135
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2136 2137
		drain_stock(stock);

2138
	local_irq_restore(flags);
2139 2140 2141
}

/*
2142
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2143
 * of the hierarchy under it.
2144
 */
2145
static void drain_all_stock(struct mem_cgroup *root_memcg)
2146
{
2147
	int cpu, curcpu;
2148

2149 2150 2151
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2152 2153 2154 2155 2156 2157
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
2158
	curcpu = get_cpu();
2159 2160
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2161
		struct mem_cgroup *memcg;
2162
		bool flush = false;
2163

2164
		rcu_read_lock();
2165
		memcg = stock->cached;
2166 2167 2168 2169 2170 2171 2172
		if (memcg && stock->nr_pages &&
		    mem_cgroup_is_descendant(memcg, root_memcg))
			flush = true;
		rcu_read_unlock();

		if (flush &&
		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2173 2174 2175 2176 2177
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2178
	}
2179
	put_cpu();
2180
	mutex_unlock(&percpu_charge_mutex);
2181 2182
}

2183
static int memcg_hotplug_cpu_dead(unsigned int cpu)
2184 2185
{
	struct memcg_stock_pcp *stock;
2186
	struct mem_cgroup *memcg, *mi;
2187 2188 2189

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
2190 2191 2192 2193 2194 2195 2196 2197

	for_each_mem_cgroup(memcg) {
		int i;

		for (i = 0; i < MEMCG_NR_STAT; i++) {
			int nid;
			long x;

2198
			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2199
			if (x)
2200 2201
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmstats[i]);
2202 2203 2204 2205 2206 2207 2208 2209 2210

			if (i >= NR_VM_NODE_STAT_ITEMS)
				continue;

			for_each_node(nid) {
				struct mem_cgroup_per_node *pn;

				pn = mem_cgroup_nodeinfo(memcg, nid);
				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2211
				if (x)
2212 2213 2214
					do {
						atomic_long_add(x, &pn->lruvec_stat[i]);
					} while ((pn = parent_nodeinfo(pn, nid)));
2215 2216 2217
			}
		}

2218
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2219 2220
			long x;

2221
			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2222
			if (x)
2223 2224
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmevents[i]);
2225 2226 2227
		}
	}

2228
	return 0;
2229 2230
}

2231 2232 2233 2234 2235
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
2236 2237
		if (page_counter_read(&memcg->memory) <=
		    READ_ONCE(memcg->memory.high))
2238
			continue;
2239
		memcg_memory_event(memcg, MEMCG_HIGH);
2240
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2241 2242
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));
2243 2244 2245 2246 2247 2248 2249
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
2250
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2251 2252
}

2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
/*
 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
 * enough to still cause a significant slowdown in most cases, while still
 * allowing diagnostics and tracing to proceed without becoming stuck.
 */
#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)

/*
 * When calculating the delay, we use these either side of the exponentiation to
 * maintain precision and scale to a reasonable number of jiffies (see the table
 * below.
 *
 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
 *   overage ratio to a delay.
 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
 *   to produce a reasonable delay curve.
 *
 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
 * reasonable delay curve compared to precision-adjusted overage, not
 * penalising heavily at first, but still making sure that growth beyond the
 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
 * example, with a high of 100 megabytes:
 *
 *  +-------+------------------------+
 *  | usage | time to allocate in ms |
 *  +-------+------------------------+
 *  | 100M  |                      0 |
 *  | 101M  |                      6 |
 *  | 102M  |                     25 |
 *  | 103M  |                     57 |
 *  | 104M  |                    102 |
 *  | 105M  |                    159 |
 *  | 106M  |                    230 |
 *  | 107M  |                    313 |
 *  | 108M  |                    409 |
 *  | 109M  |                    518 |
 *  | 110M  |                    639 |
 *  | 111M  |                    774 |
 *  | 112M  |                    921 |
 *  | 113M  |                   1081 |
 *  | 114M  |                   1254 |
 *  | 115M  |                   1439 |
 *  | 116M  |                   1638 |
 *  | 117M  |                   1849 |
 *  | 118M  |                   2000 |
 *  | 119M  |                   2000 |
 *  | 120M  |                   2000 |
 *  +-------+------------------------+
 */
 #define MEMCG_DELAY_PRECISION_SHIFT 20
 #define MEMCG_DELAY_SCALING_SHIFT 14

2306
static u64 calculate_overage(unsigned long usage, unsigned long high)
2307
{
2308
	u64 overage;
2309

2310 2311
	if (usage <= high)
		return 0;
2312

2313 2314 2315 2316 2317
	/*
	 * Prevent division by 0 in overage calculation by acting as if
	 * it was a threshold of 1 page
	 */
	high = max(high, 1UL);
2318

2319 2320 2321 2322
	overage = usage - high;
	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
	return div64_u64(overage, high);
}
2323

2324 2325 2326
static u64 mem_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;
2327

2328 2329
	do {
		overage = calculate_overage(page_counter_read(&memcg->memory),
2330
					    READ_ONCE(memcg->memory.high));
2331
		max_overage = max(overage, max_overage);
2332 2333 2334
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

2335 2336 2337
	return max_overage;
}

2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
static u64 swap_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;

	do {
		overage = calculate_overage(page_counter_read(&memcg->swap),
					    READ_ONCE(memcg->swap.high));
		if (overage)
			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
		max_overage = max(overage, max_overage);
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

	return max_overage;
}

2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
/*
 * Get the number of jiffies that we should penalise a mischievous cgroup which
 * is exceeding its memory.high by checking both it and its ancestors.
 */
static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
					  unsigned int nr_pages,
					  u64 max_overage)
{
	unsigned long penalty_jiffies;

2364 2365
	if (!max_overage)
		return 0;
2366 2367 2368 2369 2370 2371 2372 2373 2374

	/*
	 * We use overage compared to memory.high to calculate the number of
	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
	 * fairly lenient on small overages, and increasingly harsh when the
	 * memcg in question makes it clear that it has no intention of stopping
	 * its crazy behaviour, so we exponentially increase the delay based on
	 * overage amount.
	 */
2375 2376 2377
	penalty_jiffies = max_overage * max_overage * HZ;
	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2378 2379 2380 2381 2382 2383 2384 2385 2386

	/*
	 * Factor in the task's own contribution to the overage, such that four
	 * N-sized allocations are throttled approximately the same as one
	 * 4N-sized allocation.
	 *
	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
	 * larger the current charge patch is than that.
	 */
2387
	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
}

/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned long penalty_jiffies;
	unsigned long pflags;
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
	struct mem_cgroup *memcg;

	if (likely(!nr_pages))
		return;

	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
	current->memcg_nr_pages_over_high = 0;

	/*
	 * memory.high is breached and reclaim is unable to keep up. Throttle
	 * allocators proactively to slow down excessive growth.
	 */
2412 2413
	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
					       mem_find_max_overage(memcg));
2414

2415 2416 2417
	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
						swap_find_max_overage(memcg));

2418 2419 2420 2421 2422 2423 2424
	/*
	 * Clamp the max delay per usermode return so as to still keep the
	 * application moving forwards and also permit diagnostics, albeit
	 * extremely slowly.
	 */
	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);

2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
	/*
	 * Don't sleep if the amount of jiffies this memcg owes us is so low
	 * that it's not even worth doing, in an attempt to be nice to those who
	 * go only a small amount over their memory.high value and maybe haven't
	 * been aggressively reclaimed enough yet.
	 */
	if (penalty_jiffies <= HZ / 100)
		goto out;

	/*
	 * If we exit early, we're guaranteed to die (since
	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
	 * need to account for any ill-begotten jiffies to pay them off later.
	 */
	psi_memstall_enter(&pflags);
	schedule_timeout_killable(penalty_jiffies);
	psi_memstall_leave(&pflags);

out:
	css_put(&memcg->css);
2445 2446
}

2447 2448
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2449
{
2450
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2451
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2452
	struct mem_cgroup *mem_over_limit;
2453
	struct page_counter *counter;
2454
	unsigned long nr_reclaimed;
2455 2456
	bool may_swap = true;
	bool drained = false;
2457
	enum oom_status oom_status;
2458

2459
	if (mem_cgroup_is_root(memcg))
2460
		return 0;
2461
retry:
2462
	if (consume_stock(memcg, nr_pages))
2463
		return 0;
2464

2465
	if (!do_memsw_account() ||
2466 2467
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2468
			goto done_restock;
2469
		if (do_memsw_account())
2470 2471
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2472
	} else {
2473
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2474
		may_swap = false;
2475
	}
2476

2477 2478 2479 2480
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2481

2482 2483 2484 2485 2486 2487 2488 2489 2490
	/*
	 * Memcg doesn't have a dedicated reserve for atomic
	 * allocations. But like the global atomic pool, we need to
	 * put the burden of reclaim on regular allocation requests
	 * and let these go through as privileged allocations.
	 */
	if (gfp_mask & __GFP_ATOMIC)
		goto force;

2491 2492 2493 2494 2495 2496
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
2497
	if (unlikely(should_force_charge()))
2498
		goto force;
2499

2500 2501 2502 2503 2504 2505 2506 2507 2508
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2509 2510 2511
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2512
	if (!gfpflags_allow_blocking(gfp_mask))
2513
		goto nomem;
2514

2515
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2516

2517 2518
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2519

2520
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2521
		goto retry;
2522

2523
	if (!drained) {
2524
		drain_all_stock(mem_over_limit);
2525 2526 2527 2528
		drained = true;
		goto retry;
	}

2529 2530
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2531 2532 2533 2534 2535 2536 2537 2538 2539
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2540
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2541 2542 2543 2544 2545 2546 2547 2548
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2549 2550 2551
	if (nr_retries--)
		goto retry;

2552
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2553 2554
		goto nomem;

2555
	if (gfp_mask & __GFP_NOFAIL)
2556
		goto force;
2557

2558
	if (fatal_signal_pending(current))
2559
		goto force;
2560

2561 2562 2563 2564 2565 2566
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2567
		       get_order(nr_pages * PAGE_SIZE));
2568 2569 2570 2571 2572 2573 2574 2575 2576
	switch (oom_status) {
	case OOM_SUCCESS:
		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
		goto retry;
	case OOM_FAILED:
		goto force;
	default:
		goto nomem;
	}
2577
nomem:
2578
	if (!(gfp_mask & __GFP_NOFAIL))
2579
		return -ENOMEM;
2580 2581 2582 2583 2584 2585 2586
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2587
	if (do_memsw_account())
2588 2589 2590 2591
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2592 2593

done_restock:
2594
	css_get_many(&memcg->css, batch);
2595 2596
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2597

2598
	/*
2599 2600
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2601
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2602 2603 2604 2605
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2606 2607
	 */
	do {
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
		bool mem_high, swap_high;

		mem_high = page_counter_read(&memcg->memory) >
			READ_ONCE(memcg->memory.high);
		swap_high = page_counter_read(&memcg->swap) >
			READ_ONCE(memcg->swap.high);

		/* Don't bother a random interrupted task */
		if (in_interrupt()) {
			if (mem_high) {
2618 2619 2620
				schedule_work(&memcg->high_work);
				break;
			}
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
			continue;
		}

		if (mem_high || swap_high) {
			/*
			 * The allocating tasks in this cgroup will need to do
			 * reclaim or be throttled to prevent further growth
			 * of the memory or swap footprints.
			 *
			 * Target some best-effort fairness between the tasks,
			 * and distribute reclaim work and delay penalties
			 * based on how much each task is actually allocating.
			 */
V
Vladimir Davydov 已提交
2634
			current->memcg_nr_pages_over_high += batch;
2635 2636 2637
			set_notify_resume(current);
			break;
		}
2638
	} while ((memcg = parent_mem_cgroup(memcg)));
2639 2640

	return 0;
2641
}
2642

2643
#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2644
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2645
{
2646 2647 2648
	if (mem_cgroup_is_root(memcg))
		return;

2649
	page_counter_uncharge(&memcg->memory, nr_pages);
2650
	if (do_memsw_account())
2651
		page_counter_uncharge(&memcg->memsw, nr_pages);
2652

2653
	css_put_many(&memcg->css, nr_pages);
2654
}
2655
#endif
2656

2657
static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2658
{
2659
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2660
	/*
2661
	 * Any of the following ensures page->mem_cgroup stability:
2662
	 *
2663 2664 2665 2666
	 * - the page lock
	 * - LRU isolation
	 * - lock_page_memcg()
	 * - exclusive reference
2667
	 */
2668
	page->mem_cgroup = memcg;
2669
}
2670

2671
#ifdef CONFIG_MEMCG_KMEM
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
/*
 * Returns a pointer to the memory cgroup to which the kernel object is charged.
 *
 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
 * cgroup_mutex, etc.
 */
struct mem_cgroup *mem_cgroup_from_obj(void *p)
{
	struct page *page;

	if (mem_cgroup_disabled())
		return NULL;

	page = virt_to_head_page(p);

	/*
	 * Slab pages don't have page->mem_cgroup set because corresponding
	 * kmem caches can be reparented during the lifetime. That's why
	 * memcg_from_slab_page() should be used instead.
	 */
	if (PageSlab(page))
		return memcg_from_slab_page(page);

	/* All other pages use page->mem_cgroup */
	return page->mem_cgroup;
}

2699
static int memcg_alloc_cache_id(void)
2700
{
2701 2702 2703
	int id, size;
	int err;

2704
	id = ida_simple_get(&memcg_cache_ida,
2705 2706 2707
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2708

2709
	if (id < memcg_nr_cache_ids)
2710 2711 2712 2713 2714 2715
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2716
	down_write(&memcg_cache_ids_sem);
2717 2718

	size = 2 * (id + 1);
2719 2720 2721 2722 2723
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2724
	err = memcg_update_all_caches(size);
2725 2726
	if (!err)
		err = memcg_update_all_list_lrus(size);
2727 2728 2729 2730 2731
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2732
	if (err) {
2733
		ida_simple_remove(&memcg_cache_ida, id);
2734 2735 2736 2737 2738 2739 2740
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2741
	ida_simple_remove(&memcg_cache_ida, id);
2742 2743
}

2744
struct memcg_kmem_cache_create_work {
2745 2746 2747 2748 2749
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2750
static void memcg_kmem_cache_create_func(struct work_struct *w)
2751
{
2752 2753
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2754 2755
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2756

2757
	memcg_create_kmem_cache(memcg, cachep);
2758

2759
	css_put(&memcg->css);
2760 2761 2762 2763 2764 2765
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2766
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2767
					       struct kmem_cache *cachep)
2768
{
2769
	struct memcg_kmem_cache_create_work *cw;
2770

2771 2772 2773
	if (!css_tryget_online(&memcg->css))
		return;

2774
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2775
	if (!cw)
2776
		return;
2777

2778 2779
	cw->memcg = memcg;
	cw->cachep = cachep;
2780
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2781

2782
	queue_work(memcg_kmem_cache_wq, &cw->work);
2783 2784
}

2785 2786
static inline bool memcg_kmem_bypass(void)
{
2787 2788 2789 2790 2791 2792
	if (in_interrupt())
		return true;

	/* Allow remote memcg charging in kthread contexts. */
	if ((!current->mm || (current->flags & PF_KTHREAD)) &&
	     !current->active_memcg)
2793 2794 2795 2796 2797 2798 2799 2800
		return true;
	return false;
}

/**
 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
 * @cachep: the original global kmem cache
 *
2801 2802 2803
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
2804 2805 2806
 * If the cache does not exist yet, if we are the first user of it, we
 * create it asynchronously in a workqueue and let the current allocation
 * go through with the original cache.
2807
 *
2808 2809 2810 2811
 * This function takes a reference to the cache it returns to assure it
 * won't get destroyed while we are working with it. Once the caller is
 * done with it, memcg_kmem_put_cache() must be called to release the
 * reference.
2812
 */
2813
struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2814 2815
{
	struct mem_cgroup *memcg;
2816
	struct kmem_cache *memcg_cachep;
2817
	struct memcg_cache_array *arr;
2818
	int kmemcg_id;
2819

2820
	VM_BUG_ON(!is_root_cache(cachep));
2821

2822
	if (memcg_kmem_bypass())
V
Vladimir Davydov 已提交
2823 2824
		return cachep;

2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
	rcu_read_lock();

	if (unlikely(current->active_memcg))
		memcg = current->active_memcg;
	else
		memcg = mem_cgroup_from_task(current);

	if (!memcg || memcg == root_mem_cgroup)
		goto out_unlock;

2835
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2836
	if (kmemcg_id < 0)
2837
		goto out_unlock;
2838

2839 2840 2841 2842 2843 2844 2845 2846
	arr = rcu_dereference(cachep->memcg_params.memcg_caches);

	/*
	 * Make sure we will access the up-to-date value. The code updating
	 * memcg_caches issues a write barrier to match the data dependency
	 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
	 */
	memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2847 2848 2849 2850 2851 2852 2853 2854 2855

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2856 2857 2858
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2859 2860 2861 2862 2863 2864 2865
	 *
	 * If the memcg is dying or memcg_cache is about to be released,
	 * don't bother creating new kmem_caches. Because memcg_cachep
	 * is ZEROed as the fist step of kmem offlining, we don't need
	 * percpu_ref_tryget_live() here. css_tryget_online() check in
	 * memcg_schedule_kmem_cache_create() will prevent us from
	 * creation of a new kmem_cache.
2866
	 */
2867 2868 2869 2870 2871 2872
	if (unlikely(!memcg_cachep))
		memcg_schedule_kmem_cache_create(memcg, cachep);
	else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
		cachep = memcg_cachep;
out_unlock:
	rcu_read_unlock();
2873
	return cachep;
2874 2875
}

2876 2877 2878 2879 2880
/**
 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
 * @cachep: the cache returned by memcg_kmem_get_cache
 */
void memcg_kmem_put_cache(struct kmem_cache *cachep)
2881 2882
{
	if (!is_root_cache(cachep))
2883
		percpu_ref_put(&cachep->memcg_params.refcnt);
2884 2885
}

2886
/**
2887
 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
2888
 * @memcg: memory cgroup to charge
2889
 * @gfp: reclaim mode
2890
 * @nr_pages: number of pages to charge
2891 2892 2893
 *
 * Returns 0 on success, an error code on failure.
 */
2894 2895
int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
			unsigned int nr_pages)
2896
{
2897
	struct page_counter *counter;
2898 2899
	int ret;

2900
	ret = try_charge(memcg, gfp, nr_pages);
2901
	if (ret)
2902
		return ret;
2903 2904 2905

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915

		/*
		 * Enforce __GFP_NOFAIL allocation because callers are not
		 * prepared to see failures and likely do not have any failure
		 * handling code.
		 */
		if (gfp & __GFP_NOFAIL) {
			page_counter_charge(&memcg->kmem, nr_pages);
			return 0;
		}
2916 2917
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2918
	}
2919
	return 0;
2920 2921
}

2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
/**
 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
 */
void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
{
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

	page_counter_uncharge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_uncharge(&memcg->memsw, nr_pages);
}

2937
/**
2938
 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2939 2940 2941 2942 2943 2944
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
2945
int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2946
{
2947
	struct mem_cgroup *memcg;
2948
	int ret = 0;
2949

2950
	if (memcg_kmem_bypass())
2951 2952
		return 0;

2953
	memcg = get_mem_cgroup_from_current();
2954
	if (!mem_cgroup_is_root(memcg)) {
2955
		ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
2956 2957
		if (!ret) {
			page->mem_cgroup = memcg;
2958
			__SetPageKmemcg(page);
2959
		}
2960
	}
2961
	css_put(&memcg->css);
2962
	return ret;
2963
}
2964

2965
/**
2966
 * __memcg_kmem_uncharge_page: uncharge a kmem page
2967 2968 2969
 * @page: page to uncharge
 * @order: allocation order
 */
2970
void __memcg_kmem_uncharge_page(struct page *page, int order)
2971
{
2972
	struct mem_cgroup *memcg = page->mem_cgroup;
2973
	unsigned int nr_pages = 1 << order;
2974 2975 2976 2977

	if (!memcg)
		return;

2978
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2979
	__memcg_kmem_uncharge(memcg, nr_pages);
2980
	page->mem_cgroup = NULL;
2981 2982 2983 2984 2985

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);

2986
	css_put_many(&memcg->css, nr_pages);
2987
}
2988
#endif /* CONFIG_MEMCG_KMEM */
2989

2990 2991 2992 2993
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2994
 * pgdat->lru_lock and migration entries setup in all page mappings.
2995
 */
2996
void mem_cgroup_split_huge_fixup(struct page *head)
2997
{
2998
	int i;
2999

3000 3001
	if (mem_cgroup_disabled())
		return;
3002

3003
	for (i = 1; i < HPAGE_PMD_NR; i++)
3004
		head[i].mem_cgroup = head->mem_cgroup;
3005
}
3006
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3007

A
Andrew Morton 已提交
3008
#ifdef CONFIG_MEMCG_SWAP
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
3020
 * The caller must have charged to @to, IOW, called page_counter_charge() about
3021 3022 3023
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3024
				struct mem_cgroup *from, struct mem_cgroup *to)
3025 3026 3027
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
3028 3029
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3030 3031

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3032 3033
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
3034 3035 3036 3037 3038 3039
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3040
				struct mem_cgroup *from, struct mem_cgroup *to)
3041 3042 3043
{
	return -EINVAL;
}
3044
#endif
K
KAMEZAWA Hiroyuki 已提交
3045

3046
static DEFINE_MUTEX(memcg_max_mutex);
3047

3048 3049
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
3050
{
3051
	bool enlarge = false;
3052
	bool drained = false;
3053
	int ret;
3054 3055
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3056

3057
	do {
3058 3059 3060 3061
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3062

3063
		mutex_lock(&memcg_max_mutex);
3064 3065
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
3066
		 * break our basic invariant rule memory.max <= memsw.max.
3067
		 */
3068
		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3069
					   max <= memcg->memsw.max;
3070
		if (!limits_invariant) {
3071
			mutex_unlock(&memcg_max_mutex);
3072 3073 3074
			ret = -EINVAL;
			break;
		}
3075
		if (max > counter->max)
3076
			enlarge = true;
3077 3078
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
3079 3080 3081 3082

		if (!ret)
			break;

3083 3084 3085 3086 3087 3088
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

3089 3090 3091 3092 3093 3094
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
3095

3096 3097
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3098

3099 3100 3101
	return ret;
}

3102
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3103 3104 3105 3106
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
3107
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3108 3109
	unsigned long reclaimed;
	int loop = 0;
3110
	struct mem_cgroup_tree_per_node *mctz;
3111
	unsigned long excess;
3112 3113 3114 3115 3116
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

3117
	mctz = soft_limit_tree_node(pgdat->node_id);
3118 3119 3120 3121 3122 3123

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
3124
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3125 3126
		return 0;

3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
3141
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3142 3143 3144
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3145
		spin_lock_irq(&mctz->lock);
3146
		__mem_cgroup_remove_exceeded(mz, mctz);
3147 3148 3149 3150 3151 3152

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3153 3154 3155
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3156
		excess = soft_limit_excess(mz->memcg);
3157 3158 3159 3160 3161 3162 3163 3164 3165
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3166
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3167
		spin_unlock_irq(&mctz->lock);
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3185 3186 3187 3188
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
3189
 * hierarchy.  Testing use_hierarchy is the caller's responsibility.
3190
 */
3191 3192
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3193 3194 3195 3196 3197 3198
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3199 3200
}

3201
/*
3202
 * Reclaims as many pages from the given memcg as possible.
3203 3204 3205 3206 3207 3208 3209
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

3210 3211
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3212 3213 3214

	drain_all_stock(memcg);

3215
	/* try to free all pages in this cgroup */
3216
	while (nr_retries && page_counter_read(&memcg->memory)) {
3217
		int progress;
3218

3219 3220 3221
		if (signal_pending(current))
			return -EINTR;

3222 3223
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3224
		if (!progress) {
3225
			nr_retries--;
3226
			/* maybe some writeback is necessary */
3227
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3228
		}
3229 3230

	}
3231 3232

	return 0;
3233 3234
}

3235 3236 3237
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3238
{
3239
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3240

3241 3242
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3243
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3244 3245
}

3246 3247
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3248
{
3249
	return mem_cgroup_from_css(css)->use_hierarchy;
3250 3251
}

3252 3253
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3254 3255
{
	int retval = 0;
3256
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3257
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3258

3259
	if (memcg->use_hierarchy == val)
3260
		return 0;
3261

3262
	/*
3263
	 * If parent's use_hierarchy is set, we can't make any modifications
3264 3265 3266 3267 3268 3269
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3270
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3271
				(val == 1 || val == 0)) {
3272
		if (!memcg_has_children(memcg))
3273
			memcg->use_hierarchy = val;
3274 3275 3276 3277
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3278

3279 3280 3281
	return retval;
}

3282
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3283
{
3284
	unsigned long val;
3285

3286
	if (mem_cgroup_is_root(memcg)) {
3287
		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3288
			memcg_page_state(memcg, NR_ANON_MAPPED);
3289 3290
		if (swap)
			val += memcg_page_state(memcg, MEMCG_SWAP);
3291
	} else {
3292
		if (!swap)
3293
			val = page_counter_read(&memcg->memory);
3294
		else
3295
			val = page_counter_read(&memcg->memsw);
3296
	}
3297
	return val;
3298 3299
}

3300 3301 3302 3303 3304 3305 3306
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3307

3308
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3309
			       struct cftype *cft)
B
Balbir Singh 已提交
3310
{
3311
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3312
	struct page_counter *counter;
3313

3314
	switch (MEMFILE_TYPE(cft->private)) {
3315
	case _MEM:
3316 3317
		counter = &memcg->memory;
		break;
3318
	case _MEMSWAP:
3319 3320
		counter = &memcg->memsw;
		break;
3321
	case _KMEM:
3322
		counter = &memcg->kmem;
3323
		break;
V
Vladimir Davydov 已提交
3324
	case _TCP:
3325
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3326
		break;
3327 3328 3329
	default:
		BUG();
	}
3330 3331 3332 3333

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
3334
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3335
		if (counter == &memcg->memsw)
3336
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3337 3338
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
3339
		return (u64)counter->max * PAGE_SIZE;
3340 3341 3342 3343 3344 3345 3346 3347 3348
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3349
}
3350

3351
static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3352
{
3353
	unsigned long stat[MEMCG_NR_STAT] = {0};
3354 3355 3356 3357
	struct mem_cgroup *mi;
	int node, cpu, i;

	for_each_online_cpu(cpu)
3358
		for (i = 0; i < MEMCG_NR_STAT; i++)
3359
			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3360 3361

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3362
		for (i = 0; i < MEMCG_NR_STAT; i++)
3363 3364 3365 3366 3367 3368
			atomic_long_add(stat[i], &mi->vmstats[i]);

	for_each_node(node) {
		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
		struct mem_cgroup_per_node *pi;

3369
		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3370 3371 3372
			stat[i] = 0;

		for_each_online_cpu(cpu)
3373
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3374 3375
				stat[i] += per_cpu(
					pn->lruvec_stat_cpu->count[i], cpu);
3376 3377

		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3378
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3379 3380 3381 3382
				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
	}
}

3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
{
	unsigned long events[NR_VM_EVENT_ITEMS];
	struct mem_cgroup *mi;
	int cpu, i;

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
		events[i] = 0;

	for_each_online_cpu(cpu)
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3394 3395
			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
					     cpu);
3396 3397 3398 3399 3400 3401

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
			atomic_long_add(events[i], &mi->vmevents[i]);
}

3402
#ifdef CONFIG_MEMCG_KMEM
3403
static int memcg_online_kmem(struct mem_cgroup *memcg)
3404 3405 3406
{
	int memcg_id;

3407 3408 3409
	if (cgroup_memory_nokmem)
		return 0;

3410
	BUG_ON(memcg->kmemcg_id >= 0);
3411
	BUG_ON(memcg->kmem_state);
3412

3413
	memcg_id = memcg_alloc_cache_id();
3414 3415
	if (memcg_id < 0)
		return memcg_id;
3416

3417
	static_branch_inc(&memcg_kmem_enabled_key);
3418
	/*
3419
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
3420
	 * kmemcg_id. Setting the id after enabling static branching will
3421 3422 3423
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3424
	memcg->kmemcg_id = memcg_id;
3425
	memcg->kmem_state = KMEM_ONLINE;
3426
	INIT_LIST_HEAD(&memcg->kmem_caches);
3427 3428

	return 0;
3429 3430
}

3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

3451
	/*
3452
	 * Deactivate and reparent kmem_caches.
3453
	 */
3454 3455 3456 3457 3458
	memcg_deactivate_kmem_caches(memcg, parent);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

3459 3460 3461 3462 3463 3464 3465 3466
	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
3467
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3468 3469 3470 3471 3472 3473 3474
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
3475 3476
	rcu_read_unlock();

3477
	memcg_drain_all_list_lrus(kmemcg_id, parent);
3478 3479 3480 3481 3482 3483

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
3484 3485 3486 3487
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

3488
	if (memcg->kmem_state == KMEM_ALLOCATED) {
3489
		WARN_ON(!list_empty(&memcg->kmem_caches));
3490 3491 3492
		static_branch_dec(&memcg_kmem_enabled_key);
	}
}
3493
#else
3494
static int memcg_online_kmem(struct mem_cgroup *memcg)
3495 3496 3497 3498 3499 3500 3501 3502 3503
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
3504
#endif /* CONFIG_MEMCG_KMEM */
3505

3506 3507
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
3508
{
3509
	int ret;
3510

3511 3512 3513
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
3514
	return ret;
3515
}
3516

3517
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
3518 3519 3520
{
	int ret;

3521
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3522

3523
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
3524 3525 3526
	if (ret)
		goto out;

3527
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3528 3529 3530
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3531 3532 3533
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
3534 3535 3536 3537 3538 3539
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3540
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
3541 3542 3543 3544
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3545
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3546 3547
	}
out:
3548
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3549 3550 3551
	return ret;
}

3552 3553 3554 3555
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3556 3557
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3558
{
3559
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3560
	unsigned long nr_pages;
3561 3562
	int ret;

3563
	buf = strstrip(buf);
3564
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3565 3566
	if (ret)
		return ret;
3567

3568
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3569
	case RES_LIMIT:
3570 3571 3572 3573
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3574 3575
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3576
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3577
			break;
3578
		case _MEMSWAP:
3579
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3580
			break;
3581
		case _KMEM:
3582 3583 3584
			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
				     "Please report your usecase to linux-mm@kvack.org if you "
				     "depend on this functionality.\n");
3585
			ret = memcg_update_kmem_max(memcg, nr_pages);
3586
			break;
V
Vladimir Davydov 已提交
3587
		case _TCP:
3588
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
3589
			break;
3590
		}
3591
		break;
3592 3593 3594
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3595 3596
		break;
	}
3597
	return ret ?: nbytes;
B
Balbir Singh 已提交
3598 3599
}

3600 3601
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3602
{
3603
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3604
	struct page_counter *counter;
3605

3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3616
	case _TCP:
3617
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3618
		break;
3619 3620 3621
	default:
		BUG();
	}
3622

3623
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3624
	case RES_MAX_USAGE:
3625
		page_counter_reset_watermark(counter);
3626 3627
		break;
	case RES_FAILCNT:
3628
		counter->failcnt = 0;
3629
		break;
3630 3631
	default:
		BUG();
3632
	}
3633

3634
	return nbytes;
3635 3636
}

3637
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3638 3639
					struct cftype *cft)
{
3640
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3641 3642
}

3643
#ifdef CONFIG_MMU
3644
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3645 3646
					struct cftype *cft, u64 val)
{
3647
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3648

3649
	if (val & ~MOVE_MASK)
3650
		return -EINVAL;
3651

3652
	/*
3653 3654 3655 3656
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3657
	 */
3658
	memcg->move_charge_at_immigrate = val;
3659 3660
	return 0;
}
3661
#else
3662
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3663 3664 3665 3666 3667
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3668

3669
#ifdef CONFIG_NUMA
3670 3671 3672 3673 3674 3675

#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)

static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3676
				int nid, unsigned int lru_mask, bool tree)
3677
{
3678
	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3679 3680 3681 3682 3683 3684 3685 3686
	unsigned long nr = 0;
	enum lru_list lru;

	VM_BUG_ON((unsigned)nid >= nr_node_ids);

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3687 3688 3689 3690
		if (tree)
			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
		else
			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3691 3692 3693 3694 3695
	}
	return nr;
}

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3696 3697
					     unsigned int lru_mask,
					     bool tree)
3698 3699 3700 3701 3702 3703 3704
{
	unsigned long nr = 0;
	enum lru_list lru;

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3705 3706 3707 3708
		if (tree)
			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
		else
			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3709 3710 3711 3712
	}
	return nr;
}

3713
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3714
{
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3727
	int nid;
3728
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3729

3730
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3731 3732 3733 3734 3735 3736 3737
		seq_printf(m, "%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   false));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, false));
3738
		seq_putc(m, '\n');
3739 3740
	}

3741
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3742 3743 3744 3745 3746 3747 3748 3749

		seq_printf(m, "hierarchical_%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   true));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, true));
3750
		seq_putc(m, '\n');
3751 3752 3753 3754 3755 3756
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3757
static const unsigned int memcg1_stats[] = {
3758
	NR_FILE_PAGES,
3759
	NR_ANON_MAPPED,
3760 3761 3762
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	NR_ANON_THPS,
#endif
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
3773
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3774
	"rss_huge",
3775
#endif
3776 3777 3778 3779 3780 3781 3782
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

3783
/* Universal VM events cgroup1 shows, original sort order */
3784
static const unsigned int memcg1_events[] = {
3785 3786 3787 3788 3789 3790
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

3791
static int memcg_stat_show(struct seq_file *m, void *v)
3792
{
3793
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3794
	unsigned long memory, memsw;
3795 3796
	struct mem_cgroup *mi;
	unsigned int i;
3797

3798
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3799

3800
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3801 3802
		unsigned long nr;

3803
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3804
			continue;
3805 3806 3807 3808 3809 3810
		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
		if (memcg1_stats[i] == NR_ANON_THPS)
			nr *= HPAGE_PMD_NR;
#endif
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
3811
	}
L
Lee Schermerhorn 已提交
3812

3813
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3814
		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3815
			   memcg_events_local(memcg, memcg1_events[i]));
3816 3817

	for (i = 0; i < NR_LRU_LISTS; i++)
3818
		seq_printf(m, "%s %lu\n", lru_list_name(i),
3819
			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3820
			   PAGE_SIZE);
3821

K
KAMEZAWA Hiroyuki 已提交
3822
	/* Hierarchical information */
3823 3824
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3825 3826
		memory = min(memory, READ_ONCE(mi->memory.max));
		memsw = min(memsw, READ_ONCE(mi->memsw.max));
3827
	}
3828 3829
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3830
	if (do_memsw_account())
3831 3832
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3833

3834
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3835
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3836
			continue;
3837
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3838 3839
			   (u64)memcg_page_state(memcg, memcg1_stats[i]) *
			   PAGE_SIZE);
3840 3841
	}

3842
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3843 3844
		seq_printf(m, "total_%s %llu\n",
			   vm_event_name(memcg1_events[i]),
3845
			   (u64)memcg_events(memcg, memcg1_events[i]));
3846

3847
	for (i = 0; i < NR_LRU_LISTS; i++)
3848
		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
3849 3850
			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			   PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
3851

K
KOSAKI Motohiro 已提交
3852 3853
#ifdef CONFIG_DEBUG_VM
	{
3854 3855
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
3856 3857
		unsigned long anon_cost = 0;
		unsigned long file_cost = 0;
K
KOSAKI Motohiro 已提交
3858

3859 3860
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
K
KOSAKI Motohiro 已提交
3861

3862 3863
			anon_cost += mz->lruvec.anon_cost;
			file_cost += mz->lruvec.file_cost;
3864
		}
3865 3866
		seq_printf(m, "anon_cost %lu\n", anon_cost);
		seq_printf(m, "file_cost %lu\n", file_cost);
K
KOSAKI Motohiro 已提交
3867 3868 3869
	}
#endif

3870 3871 3872
	return 0;
}

3873 3874
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3875
{
3876
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3877

3878
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3879 3880
}

3881 3882
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3883
{
3884
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3885

3886
	if (val > 100)
K
KOSAKI Motohiro 已提交
3887 3888
		return -EINVAL;

3889
	if (css->parent)
3890 3891 3892
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3893

K
KOSAKI Motohiro 已提交
3894 3895 3896
	return 0;
}

3897 3898 3899
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3900
	unsigned long usage;
3901 3902 3903 3904
	int i;

	rcu_read_lock();
	if (!swap)
3905
		t = rcu_dereference(memcg->thresholds.primary);
3906
	else
3907
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3908 3909 3910 3911

	if (!t)
		goto unlock;

3912
	usage = mem_cgroup_usage(memcg, swap);
3913 3914

	/*
3915
	 * current_threshold points to threshold just below or equal to usage.
3916 3917 3918
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3919
	i = t->current_threshold;
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3943
	t->current_threshold = i - 1;
3944 3945 3946 3947 3948 3949
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3950 3951
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3952
		if (do_memsw_account())
3953 3954 3955 3956
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3957 3958 3959 3960 3961 3962 3963
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3964 3965 3966 3967 3968 3969 3970
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3971 3972
}

3973
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3974 3975 3976
{
	struct mem_cgroup_eventfd_list *ev;

3977 3978
	spin_lock(&memcg_oom_lock);

3979
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3980
		eventfd_signal(ev->eventfd, 1);
3981 3982

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3983 3984 3985
	return 0;
}

3986
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3987
{
K
KAMEZAWA Hiroyuki 已提交
3988 3989
	struct mem_cgroup *iter;

3990
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3991
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3992 3993
}

3994
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3995
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3996
{
3997 3998
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3999 4000
	unsigned long threshold;
	unsigned long usage;
4001
	int i, size, ret;
4002

4003
	ret = page_counter_memparse(args, "-1", &threshold);
4004 4005 4006 4007
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4008

4009
	if (type == _MEM) {
4010
		thresholds = &memcg->thresholds;
4011
		usage = mem_cgroup_usage(memcg, false);
4012
	} else if (type == _MEMSWAP) {
4013
		thresholds = &memcg->memsw_thresholds;
4014
		usage = mem_cgroup_usage(memcg, true);
4015
	} else
4016 4017 4018
		BUG();

	/* Check if a threshold crossed before adding a new one */
4019
	if (thresholds->primary)
4020 4021
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4022
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4023 4024

	/* Allocate memory for new array of thresholds */
4025
	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4026
	if (!new) {
4027 4028 4029
		ret = -ENOMEM;
		goto unlock;
	}
4030
	new->size = size;
4031 4032

	/* Copy thresholds (if any) to new array */
4033 4034
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4035
				sizeof(struct mem_cgroup_threshold));
4036 4037
	}

4038
	/* Add new threshold */
4039 4040
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4041 4042

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4043
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4044 4045 4046
			compare_thresholds, NULL);

	/* Find current threshold */
4047
	new->current_threshold = -1;
4048
	for (i = 0; i < size; i++) {
4049
		if (new->entries[i].threshold <= usage) {
4050
			/*
4051 4052
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4053 4054
			 * it here.
			 */
4055
			++new->current_threshold;
4056 4057
		} else
			break;
4058 4059
	}

4060 4061 4062 4063 4064
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4065

4066
	/* To be sure that nobody uses thresholds */
4067 4068 4069 4070 4071 4072 4073 4074
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4075
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4076 4077
	struct eventfd_ctx *eventfd, const char *args)
{
4078
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4079 4080
}

4081
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4082 4083
	struct eventfd_ctx *eventfd, const char *args)
{
4084
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4085 4086
}

4087
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4088
	struct eventfd_ctx *eventfd, enum res_type type)
4089
{
4090 4091
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4092
	unsigned long usage;
4093
	int i, j, size, entries;
4094 4095

	mutex_lock(&memcg->thresholds_lock);
4096 4097

	if (type == _MEM) {
4098
		thresholds = &memcg->thresholds;
4099
		usage = mem_cgroup_usage(memcg, false);
4100
	} else if (type == _MEMSWAP) {
4101
		thresholds = &memcg->memsw_thresholds;
4102
		usage = mem_cgroup_usage(memcg, true);
4103
	} else
4104 4105
		BUG();

4106 4107 4108
	if (!thresholds->primary)
		goto unlock;

4109 4110 4111 4112
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4113
	size = entries = 0;
4114 4115
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4116
			size++;
4117 4118
		else
			entries++;
4119 4120
	}

4121
	new = thresholds->spare;
4122

4123 4124 4125 4126
	/* If no items related to eventfd have been cleared, nothing to do */
	if (!entries)
		goto unlock;

4127 4128
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4129 4130
		kfree(new);
		new = NULL;
4131
		goto swap_buffers;
4132 4133
	}

4134
	new->size = size;
4135 4136

	/* Copy thresholds and find current threshold */
4137 4138 4139
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4140 4141
			continue;

4142
		new->entries[j] = thresholds->primary->entries[i];
4143
		if (new->entries[j].threshold <= usage) {
4144
			/*
4145
			 * new->current_threshold will not be used
4146 4147 4148
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4149
			++new->current_threshold;
4150 4151 4152 4153
		}
		j++;
	}

4154
swap_buffers:
4155 4156
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4157

4158
	rcu_assign_pointer(thresholds->primary, new);
4159

4160
	/* To be sure that nobody uses thresholds */
4161
	synchronize_rcu();
4162 4163 4164 4165 4166 4167

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
4168
unlock:
4169 4170
	mutex_unlock(&memcg->thresholds_lock);
}
4171

4172
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4173 4174
	struct eventfd_ctx *eventfd)
{
4175
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4176 4177
}

4178
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4179 4180
	struct eventfd_ctx *eventfd)
{
4181
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4182 4183
}

4184
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4185
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4186 4187 4188 4189 4190 4191 4192
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4193
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4194 4195 4196 4197 4198

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4199
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
4200
		eventfd_signal(eventfd, 1);
4201
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4202 4203 4204 4205

	return 0;
}

4206
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4207
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4208 4209 4210
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4211
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4212

4213
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4214 4215 4216 4217 4218 4219
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4220
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4221 4222
}

4223
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4224
{
4225
	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4226

4227
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4228
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
R
Roman Gushchin 已提交
4229 4230
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4231 4232 4233
	return 0;
}

4234
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4235 4236
	struct cftype *cft, u64 val)
{
4237
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4238 4239

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4240
	if (!css->parent || !((val == 0) || (val == 1)))
4241 4242
		return -EINVAL;

4243
	memcg->oom_kill_disable = val;
4244
	if (!val)
4245
		memcg_oom_recover(memcg);
4246

4247 4248 4249
	return 0;
}

4250 4251
#ifdef CONFIG_CGROUP_WRITEBACK

4252 4253
#include <trace/events/writeback.h>

T
Tejun Heo 已提交
4254 4255 4256 4257 4258 4259 4260 4261 4262 4263
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

4264 4265 4266 4267 4268
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
4269 4270 4271 4272 4273 4274 4275 4276 4277 4278
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

4279 4280 4281 4282 4283 4284
/*
 * idx can be of type enum memcg_stat_item or node_stat_item.
 * Keep in sync with memcg_exact_page().
 */
static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
{
4285
	long x = atomic_long_read(&memcg->vmstats[idx]);
4286 4287 4288
	int cpu;

	for_each_online_cpu(cpu)
4289
		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4290 4291 4292 4293 4294
	if (x < 0)
		x = 0;
	return x;
}

4295 4296 4297
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
4298 4299
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
4300 4301 4302
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
4303 4304 4305
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
4306
 *
4307 4308 4309 4310 4311
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
4312
 */
4313 4314 4315
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
4316 4317 4318 4319
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

4320
	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4321

4322
	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4323 4324
	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4325
	*pheadroom = PAGE_COUNTER_MAX;
4326 4327

	while ((parent = parent_mem_cgroup(memcg))) {
4328
		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4329
					    READ_ONCE(memcg->memory.high));
4330 4331
		unsigned long used = page_counter_read(&memcg->memory);

4332
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4333 4334 4335 4336
		memcg = parent;
	}
}

4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390
/*
 * Foreign dirty flushing
 *
 * There's an inherent mismatch between memcg and writeback.  The former
 * trackes ownership per-page while the latter per-inode.  This was a
 * deliberate design decision because honoring per-page ownership in the
 * writeback path is complicated, may lead to higher CPU and IO overheads
 * and deemed unnecessary given that write-sharing an inode across
 * different cgroups isn't a common use-case.
 *
 * Combined with inode majority-writer ownership switching, this works well
 * enough in most cases but there are some pathological cases.  For
 * example, let's say there are two cgroups A and B which keep writing to
 * different but confined parts of the same inode.  B owns the inode and
 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
 * triggering background writeback.  A will be slowed down without a way to
 * make writeback of the dirty pages happen.
 *
 * Conditions like the above can lead to a cgroup getting repatedly and
 * severely throttled after making some progress after each
 * dirty_expire_interval while the underyling IO device is almost
 * completely idle.
 *
 * Solving this problem completely requires matching the ownership tracking
 * granularities between memcg and writeback in either direction.  However,
 * the more egregious behaviors can be avoided by simply remembering the
 * most recent foreign dirtying events and initiating remote flushes on
 * them when local writeback isn't enough to keep the memory clean enough.
 *
 * The following two functions implement such mechanism.  When a foreign
 * page - a page whose memcg and writeback ownerships don't match - is
 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
 * decides that the memcg needs to sleep due to high dirty ratio, it calls
 * mem_cgroup_flush_foreign() which queues writeback on the recorded
 * foreign bdi_writebacks which haven't expired.  Both the numbers of
 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
 * limited to MEMCG_CGWB_FRN_CNT.
 *
 * The mechanism only remembers IDs and doesn't hold any object references.
 * As being wrong occasionally doesn't matter, updates and accesses to the
 * records are lockless and racy.
 */
void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
					     struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = page->mem_cgroup;
	struct memcg_cgwb_frn *frn;
	u64 now = get_jiffies_64();
	u64 oldest_at = now;
	int oldest = -1;
	int i;

4391 4392
	trace_track_foreign_dirty(page, wb);

4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452
	/*
	 * Pick the slot to use.  If there is already a slot for @wb, keep
	 * using it.  If not replace the oldest one which isn't being
	 * written out.
	 */
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		frn = &memcg->cgwb_frn[i];
		if (frn->bdi_id == wb->bdi->id &&
		    frn->memcg_id == wb->memcg_css->id)
			break;
		if (time_before64(frn->at, oldest_at) &&
		    atomic_read(&frn->done.cnt) == 1) {
			oldest = i;
			oldest_at = frn->at;
		}
	}

	if (i < MEMCG_CGWB_FRN_CNT) {
		/*
		 * Re-using an existing one.  Update timestamp lazily to
		 * avoid making the cacheline hot.  We want them to be
		 * reasonably up-to-date and significantly shorter than
		 * dirty_expire_interval as that's what expires the record.
		 * Use the shorter of 1s and dirty_expire_interval / 8.
		 */
		unsigned long update_intv =
			min_t(unsigned long, HZ,
			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);

		if (time_before64(frn->at, now - update_intv))
			frn->at = now;
	} else if (oldest >= 0) {
		/* replace the oldest free one */
		frn = &memcg->cgwb_frn[oldest];
		frn->bdi_id = wb->bdi->id;
		frn->memcg_id = wb->memcg_css->id;
		frn->at = now;
	}
}

/* issue foreign writeback flushes for recorded foreign dirtying events */
void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
	u64 now = jiffies_64;
	int i;

	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];

		/*
		 * If the record is older than dirty_expire_interval,
		 * writeback on it has already started.  No need to kick it
		 * off again.  Also, don't start a new one if there's
		 * already one in flight.
		 */
		if (time_after64(frn->at, now - intv) &&
		    atomic_read(&frn->done.cnt) == 1) {
			frn->at = 0;
4453
			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4454 4455 4456 4457 4458 4459 4460
			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
					       WB_REASON_FOREIGN_FLUSH,
					       &frn->done);
		}
	}
}

T
Tejun Heo 已提交
4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

4472 4473 4474 4475
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

4476 4477
#endif	/* CONFIG_CGROUP_WRITEBACK */

4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4491 4492 4493 4494 4495
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4496
static void memcg_event_remove(struct work_struct *work)
4497
{
4498 4499
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4500
	struct mem_cgroup *memcg = event->memcg;
4501 4502 4503

	remove_wait_queue(event->wqh, &event->wait);

4504
	event->unregister_event(memcg, event->eventfd);
4505 4506 4507 4508 4509 4510

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4511
	css_put(&memcg->css);
4512 4513 4514
}

/*
4515
 * Gets called on EPOLLHUP on eventfd when user closes it.
4516 4517 4518
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4519
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4520
			    int sync, void *key)
4521
{
4522 4523
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4524
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
4525
	__poll_t flags = key_to_poll(key);
4526

4527
	if (flags & EPOLLHUP) {
4528 4529 4530 4531 4532 4533 4534 4535 4536
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4537
		spin_lock(&memcg->event_list_lock);
4538 4539 4540 4541 4542 4543 4544 4545
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4546
		spin_unlock(&memcg->event_list_lock);
4547 4548 4549 4550 4551
	}

	return 0;
}

4552
static void memcg_event_ptable_queue_proc(struct file *file,
4553 4554
		wait_queue_head_t *wqh, poll_table *pt)
{
4555 4556
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4557 4558 4559 4560 4561 4562

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4563 4564
 * DO NOT USE IN NEW FILES.
 *
4565 4566 4567 4568 4569
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4570 4571
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4572
{
4573
	struct cgroup_subsys_state *css = of_css(of);
4574
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4575
	struct mem_cgroup_event *event;
4576 4577 4578 4579
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4580
	const char *name;
4581 4582 4583
	char *endp;
	int ret;

4584 4585 4586
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4587 4588
	if (*endp != ' ')
		return -EINVAL;
4589
	buf = endp + 1;
4590

4591
	cfd = simple_strtoul(buf, &endp, 10);
4592 4593
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4594
	buf = endp + 1;
4595 4596 4597 4598 4599

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4600
	event->memcg = memcg;
4601
	INIT_LIST_HEAD(&event->list);
4602 4603 4604
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4630 4631 4632 4633 4634
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4635 4636
	 *
	 * DO NOT ADD NEW FILES.
4637
	 */
A
Al Viro 已提交
4638
	name = cfile.file->f_path.dentry->d_name.name;
4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4650 4651
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4652 4653 4654 4655 4656
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4657
	/*
4658 4659 4660
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4661
	 */
A
Al Viro 已提交
4662
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4663
					       &memory_cgrp_subsys);
4664
	ret = -EINVAL;
4665
	if (IS_ERR(cfile_css))
4666
		goto out_put_cfile;
4667 4668
	if (cfile_css != css) {
		css_put(cfile_css);
4669
		goto out_put_cfile;
4670
	}
4671

4672
	ret = event->register_event(memcg, event->eventfd, buf);
4673 4674 4675
	if (ret)
		goto out_put_css;

4676
	vfs_poll(efile.file, &event->pt);
4677

4678 4679 4680
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4681 4682 4683 4684

	fdput(cfile);
	fdput(efile);

4685
	return nbytes;
4686 4687

out_put_css:
4688
	css_put(css);
4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4701
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4702
	{
4703
		.name = "usage_in_bytes",
4704
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4705
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4706
	},
4707 4708
	{
		.name = "max_usage_in_bytes",
4709
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4710
		.write = mem_cgroup_reset,
4711
		.read_u64 = mem_cgroup_read_u64,
4712
	},
B
Balbir Singh 已提交
4713
	{
4714
		.name = "limit_in_bytes",
4715
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4716
		.write = mem_cgroup_write,
4717
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4718
	},
4719 4720 4721
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4722
		.write = mem_cgroup_write,
4723
		.read_u64 = mem_cgroup_read_u64,
4724
	},
B
Balbir Singh 已提交
4725 4726
	{
		.name = "failcnt",
4727
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4728
		.write = mem_cgroup_reset,
4729
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4730
	},
4731 4732
	{
		.name = "stat",
4733
		.seq_show = memcg_stat_show,
4734
	},
4735 4736
	{
		.name = "force_empty",
4737
		.write = mem_cgroup_force_empty_write,
4738
	},
4739 4740 4741 4742 4743
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4744
	{
4745
		.name = "cgroup.event_control",		/* XXX: for compat */
4746
		.write = memcg_write_event_control,
4747
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4748
	},
K
KOSAKI Motohiro 已提交
4749 4750 4751 4752 4753
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4754 4755 4756 4757 4758
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4759 4760
	{
		.name = "oom_control",
4761
		.seq_show = mem_cgroup_oom_control_read,
4762
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4763 4764
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4765 4766 4767
	{
		.name = "pressure_level",
	},
4768 4769 4770
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4771
		.seq_show = memcg_numa_stat_show,
4772 4773
	},
#endif
4774 4775 4776
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4777
		.write = mem_cgroup_write,
4778
		.read_u64 = mem_cgroup_read_u64,
4779 4780 4781 4782
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4783
		.read_u64 = mem_cgroup_read_u64,
4784 4785 4786 4787
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4788
		.write = mem_cgroup_reset,
4789
		.read_u64 = mem_cgroup_read_u64,
4790 4791 4792 4793
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4794
		.write = mem_cgroup_reset,
4795
		.read_u64 = mem_cgroup_read_u64,
4796
	},
4797 4798
#if defined(CONFIG_MEMCG_KMEM) && \
	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4799 4800
	{
		.name = "kmem.slabinfo",
4801 4802 4803
		.seq_start = memcg_slab_start,
		.seq_next = memcg_slab_next,
		.seq_stop = memcg_slab_stop,
4804
		.seq_show = memcg_slab_show,
4805 4806
	},
#endif
V
Vladimir Davydov 已提交
4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4830
	{ },	/* terminate */
4831
};
4832

4833 4834 4835 4836 4837 4838 4839 4840
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
4841
 * However, there usually are many references to the offline CSS after
4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

4859 4860 4861 4862 4863 4864 4865 4866
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

4867 4868
static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
						  unsigned int n)
4869
{
4870
	refcount_add(n, &memcg->id.ref);
4871 4872
}

4873
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4874
{
4875
	if (refcount_sub_and_test(n, &memcg->id.ref)) {
4876
		mem_cgroup_id_remove(memcg);
4877 4878 4879 4880 4881 4882

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

4883 4884 4885 4886 4887
static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

4900
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4901 4902
{
	struct mem_cgroup_per_node *pn;
4903
	int tmp = node;
4904 4905 4906 4907 4908 4909 4910 4911
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4912 4913
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4914
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4915 4916
	if (!pn)
		return 1;
4917

4918 4919 4920 4921 4922 4923
	pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat_local) {
		kfree(pn);
		return 1;
	}

4924 4925
	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat_cpu) {
4926
		free_percpu(pn->lruvec_stat_local);
4927 4928 4929 4930
		kfree(pn);
		return 1;
	}

4931 4932 4933 4934 4935
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

4936
	memcg->nodeinfo[node] = pn;
4937 4938 4939
	return 0;
}

4940
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4941
{
4942 4943
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
4944 4945 4946
	if (!pn)
		return;

4947
	free_percpu(pn->lruvec_stat_cpu);
4948
	free_percpu(pn->lruvec_stat_local);
4949
	kfree(pn);
4950 4951
}

4952
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4953
{
4954
	int node;
4955

4956
	for_each_node(node)
4957
		free_mem_cgroup_per_node_info(memcg, node);
4958
	free_percpu(memcg->vmstats_percpu);
4959
	free_percpu(memcg->vmstats_local);
4960
	kfree(memcg);
4961
}
4962

4963 4964 4965
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
4966 4967 4968 4969
	/*
	 * Flush percpu vmstats and vmevents to guarantee the value correctness
	 * on parent's and all ancestor levels.
	 */
4970
	memcg_flush_percpu_vmstats(memcg);
4971
	memcg_flush_percpu_vmevents(memcg);
4972 4973 4974
	__mem_cgroup_free(memcg);
}

4975
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4976
{
4977
	struct mem_cgroup *memcg;
4978
	unsigned int size;
4979
	int node;
4980
	int __maybe_unused i;
4981
	long error = -ENOMEM;
B
Balbir Singh 已提交
4982

4983 4984 4985 4986
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4987
	if (!memcg)
4988
		return ERR_PTR(error);
4989

4990 4991 4992
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
4993 4994
	if (memcg->id.id < 0) {
		error = memcg->id.id;
4995
		goto fail;
4996
	}
4997

4998 4999 5000 5001
	memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
	if (!memcg->vmstats_local)
		goto fail;

5002 5003
	memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
	if (!memcg->vmstats_percpu)
5004
		goto fail;
5005

B
Bob Liu 已提交
5006
	for_each_node(node)
5007
		if (alloc_mem_cgroup_per_node_info(memcg, node))
5008
			goto fail;
5009

5010 5011
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
5012

5013
	INIT_WORK(&memcg->high_work, high_work_func);
5014 5015 5016
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5017
	vmpressure_init(&memcg->vmpressure);
5018 5019
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
5020
	memcg->socket_pressure = jiffies;
5021
#ifdef CONFIG_MEMCG_KMEM
V
Vladimir Davydov 已提交
5022 5023
	memcg->kmemcg_id = -1;
#endif
5024 5025
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
5026 5027 5028
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		memcg->cgwb_frn[i].done =
			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5029 5030 5031 5032 5033
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
	memcg->deferred_split_queue.split_queue_len = 0;
5034
#endif
5035
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5036 5037
	return memcg;
fail:
5038
	mem_cgroup_id_remove(memcg);
5039
	__mem_cgroup_free(memcg);
5040
	return ERR_PTR(error);
5041 5042
}

5043 5044
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5045
{
5046 5047 5048
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
5049

5050
	memcg = mem_cgroup_alloc();
5051 5052
	if (IS_ERR(memcg))
		return ERR_CAST(memcg);
5053

5054
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5055
	memcg->soft_limit = PAGE_COUNTER_MAX;
5056
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5057 5058 5059 5060 5061 5062
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
5063
		page_counter_init(&memcg->memory, &parent->memory);
5064
		page_counter_init(&memcg->swap, &parent->swap);
5065 5066
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
5067
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5068
	} else {
5069
		page_counter_init(&memcg->memory, NULL);
5070
		page_counter_init(&memcg->swap, NULL);
5071 5072
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
5073
		page_counter_init(&memcg->tcpmem, NULL);
5074 5075 5076 5077 5078
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
5079
		if (parent != root_mem_cgroup)
5080
			memory_cgrp_subsys.broken_hierarchy = true;
5081
	}
5082

5083 5084
	/* The following stuff does not apply to the root */
	if (!parent) {
5085 5086 5087
#ifdef CONFIG_MEMCG_KMEM
		INIT_LIST_HEAD(&memcg->kmem_caches);
#endif
5088 5089 5090 5091
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

5092
	error = memcg_online_kmem(memcg);
5093 5094
	if (error)
		goto fail;
5095

5096
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5097
		static_branch_inc(&memcg_sockets_enabled_key);
5098

5099 5100
	return &memcg->css;
fail:
5101
	mem_cgroup_id_remove(memcg);
5102
	mem_cgroup_free(memcg);
5103
	return ERR_PTR(error);
5104 5105
}

5106
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5107
{
5108 5109
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5110 5111 5112 5113 5114 5115 5116 5117 5118 5119
	/*
	 * A memcg must be visible for memcg_expand_shrinker_maps()
	 * by the time the maps are allocated. So, we allocate maps
	 * here, when for_each_mem_cgroup() can't skip it.
	 */
	if (memcg_alloc_shrinker_maps(memcg)) {
		mem_cgroup_id_remove(memcg);
		return -ENOMEM;
	}

5120
	/* Online state pins memcg ID, memcg ID pins CSS */
5121
	refcount_set(&memcg->id.ref, 1);
5122
	css_get(css);
5123
	return 0;
B
Balbir Singh 已提交
5124 5125
}

5126
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5127
{
5128
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5129
	struct mem_cgroup_event *event, *tmp;
5130 5131 5132 5133 5134 5135

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
5136 5137
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5138 5139 5140
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
5141
	spin_unlock(&memcg->event_list_lock);
5142

R
Roman Gushchin 已提交
5143
	page_counter_set_min(&memcg->memory, 0);
5144
	page_counter_set_low(&memcg->memory, 0);
5145

5146
	memcg_offline_kmem(memcg);
5147
	wb_memcg_offline(memcg);
5148

5149 5150
	drain_all_stock(memcg);

5151
	mem_cgroup_id_put(memcg);
5152 5153
}

5154 5155 5156 5157 5158 5159 5160
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

5161
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
5162
{
5163
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5164
	int __maybe_unused i;
5165

5166 5167 5168 5169
#ifdef CONFIG_CGROUP_WRITEBACK
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
#endif
5170
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5171
		static_branch_dec(&memcg_sockets_enabled_key);
5172

5173
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
5174
		static_branch_dec(&memcg_sockets_enabled_key);
5175

5176 5177 5178
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
5179
	memcg_free_shrinker_maps(memcg);
5180
	memcg_free_kmem(memcg);
5181
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
5182 5183
}

5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5201 5202 5203 5204 5205
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
R
Roman Gushchin 已提交
5206
	page_counter_set_min(&memcg->memory, 0);
5207
	page_counter_set_low(&memcg->memory, 0);
5208
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5209
	memcg->soft_limit = PAGE_COUNTER_MAX;
5210
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5211
	memcg_wb_domain_size_changed(memcg);
5212 5213
}

5214
#ifdef CONFIG_MMU
5215
/* Handlers for move charge at task migration. */
5216
static int mem_cgroup_do_precharge(unsigned long count)
5217
{
5218
	int ret;
5219

5220 5221
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5222
	if (!ret) {
5223 5224 5225
		mc.precharge += count;
		return ret;
	}
5226

5227
	/* Try charges one by one with reclaim, but do not retry */
5228
	while (count--) {
5229
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5230 5231
		if (ret)
			return ret;
5232
		mc.precharge++;
5233
		cond_resched();
5234
	}
5235
	return 0;
5236 5237 5238 5239
}

union mc_target {
	struct page	*page;
5240
	swp_entry_t	ent;
5241 5242 5243
};

enum mc_target_type {
5244
	MC_TARGET_NONE = 0,
5245
	MC_TARGET_PAGE,
5246
	MC_TARGET_SWAP,
5247
	MC_TARGET_DEVICE,
5248 5249
};

D
Daisuke Nishimura 已提交
5250 5251
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5252
{
5253
	struct page *page = vm_normal_page(vma, addr, ptent);
5254

D
Daisuke Nishimura 已提交
5255 5256 5257
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
5258
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5259
			return NULL;
5260 5261 5262 5263
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
5264 5265 5266 5267 5268 5269
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5270
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
5271
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5272
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
5273 5274 5275 5276
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

5277
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
5278
		return NULL;
5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
		page = device_private_entry_to_page(ent);
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

5296 5297 5298 5299
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5300
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5301
	entry->val = ent.val;
D
Daisuke Nishimura 已提交
5302 5303 5304

	return page;
}
5305 5306
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5307
			pte_t ptent, swp_entry_t *entry)
5308 5309 5310 5311
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5312

5313 5314 5315 5316 5317 5318 5319 5320 5321
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
5322
	if (!(mc.flags & MOVE_FILE))
5323 5324 5325
		return NULL;

	mapping = vma->vm_file->f_mapping;
5326
	pgoff = linear_page_index(vma, addr);
5327 5328

	/* page is moved even if it's not RSS of this task(page-faulted). */
5329 5330
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
5331 5332
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
5333
		if (xa_is_value(page)) {
5334
			swp_entry_t swp = radix_to_swp_entry(page);
5335
			*entry = swp;
5336 5337
			page = find_get_page(swap_address_space(swp),
					     swp_offset(swp));
5338 5339 5340 5341 5342
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
5343
#endif
5344 5345 5346
	return page;
}

5347 5348 5349
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
5350
 * @compound: charge the page as compound or small page
5351 5352 5353
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
5354
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5355 5356 5357 5358 5359
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
5360
				   bool compound,
5361 5362 5363
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
5364 5365
	struct lruvec *from_vec, *to_vec;
	struct pglist_data *pgdat;
5366
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5367 5368 5369 5370
	int ret;

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
5371
	VM_BUG_ON(compound && !PageTransHuge(page));
5372 5373

	/*
5374
	 * Prevent mem_cgroup_migrate() from looking at
5375
	 * page->mem_cgroup of its source page while we change it.
5376
	 */
5377
	ret = -EBUSY;
5378 5379 5380 5381 5382 5383 5384
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

5385
	pgdat = page_pgdat(page);
5386 5387
	from_vec = mem_cgroup_lruvec(from, pgdat);
	to_vec = mem_cgroup_lruvec(to, pgdat);
5388

5389
	lock_page_memcg(page);
5390

5391 5392 5393 5394
	if (PageAnon(page)) {
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5395 5396 5397 5398 5399 5400 5401
			if (PageTransHuge(page)) {
				__mod_lruvec_state(from_vec, NR_ANON_THPS,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_ANON_THPS,
						   nr_pages);
			}

5402 5403
		}
	} else {
5404 5405 5406 5407 5408 5409 5410 5411
		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);

		if (PageSwapBacked(page)) {
			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
		}

5412 5413 5414 5415
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
		}
5416

5417 5418
		if (PageDirty(page)) {
			struct address_space *mapping = page_mapping(page);
5419

5420 5421 5422 5423 5424 5425
			if (mapping_cap_account_dirty(mapping)) {
				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
						   nr_pages);
			}
5426 5427 5428
		}
	}

5429
	if (PageWriteback(page)) {
5430 5431
		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5432 5433 5434
	}

	/*
5435 5436
	 * All state has been migrated, let's switch to the new memcg.
	 *
5437
	 * It is safe to change page->mem_cgroup here because the page
5438 5439 5440 5441 5442 5443 5444 5445
	 * is referenced, charged, isolated, and locked: we can't race
	 * with (un)charging, migration, LRU putback, or anything else
	 * that would rely on a stable page->mem_cgroup.
	 *
	 * Note that lock_page_memcg is a memcg lock, not a page lock,
	 * to save space. As soon as we switch page->mem_cgroup to a
	 * new memcg that isn't locked, the above state can change
	 * concurrently again. Make sure we're truly done with it.
5446
	 */
5447
	smp_mb();
5448

5449
	page->mem_cgroup = to; 	/* caller should have done css_get */
5450

5451
	__unlock_page_memcg(from);
5452 5453 5454 5455

	ret = 0;

	local_irq_disable();
5456
	mem_cgroup_charge_statistics(to, page, nr_pages);
5457
	memcg_check_events(to, page);
5458
	mem_cgroup_charge_statistics(from, page, -nr_pages);
5459 5460 5461 5462 5463 5464 5465 5466
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5482 5483
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
 *     (so ZONE_DEVICE page and thus not on the lru).
5484 5485 5486
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
5487 5488
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5489 5490 5491 5492
 *
 * Called with pte lock held.
 */

5493
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5494 5495 5496
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
5497
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5498 5499 5500 5501 5502
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
5503
		page = mc_handle_swap_pte(vma, ptent, &ent);
5504
	else if (pte_none(ptent))
5505
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5506 5507

	if (!page && !ent.val)
5508
		return ret;
5509 5510
	if (page) {
		/*
5511
		 * Do only loose check w/o serialization.
5512
		 * mem_cgroup_move_account() checks the page is valid or
5513
		 * not under LRU exclusion.
5514
		 */
5515
		if (page->mem_cgroup == mc.from) {
5516
			ret = MC_TARGET_PAGE;
5517
			if (is_device_private_page(page))
5518
				ret = MC_TARGET_DEVICE;
5519 5520 5521 5522 5523 5524
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
5525 5526 5527 5528 5529
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
5530
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5531 5532 5533
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5534 5535 5536 5537
	}
	return ret;
}

5538 5539
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
5540 5541
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
5542 5543 5544 5545 5546 5547 5548 5549
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

5550 5551 5552 5553 5554
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
5555
	page = pmd_page(pmd);
5556
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5557
	if (!(mc.flags & MOVE_ANON))
5558
		return ret;
5559
	if (page->mem_cgroup == mc.from) {
5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5576 5577 5578 5579
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
5580
	struct vm_area_struct *vma = walk->vma;
5581 5582 5583
	pte_t *pte;
	spinlock_t *ptl;

5584 5585
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5586 5587
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5588 5589
		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
		 * this might change.
5590
		 */
5591 5592
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5593
		spin_unlock(ptl);
5594
		return 0;
5595
	}
5596

5597 5598
	if (pmd_trans_unstable(pmd))
		return 0;
5599 5600
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5601
		if (get_mctgt_type(vma, addr, *pte, NULL))
5602 5603 5604 5605
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5606 5607 5608
	return 0;
}

5609 5610 5611 5612
static const struct mm_walk_ops precharge_walk_ops = {
	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
};

5613 5614 5615 5616
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

5617
	down_read(&mm->mmap_sem);
5618
	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5619
	up_read(&mm->mmap_sem);
5620 5621 5622 5623 5624 5625 5626 5627 5628

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5629 5630 5631 5632 5633
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5634 5635
}

5636 5637
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5638
{
5639 5640 5641
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5642
	/* we must uncharge all the leftover precharges from mc.to */
5643
	if (mc.precharge) {
5644
		cancel_charge(mc.to, mc.precharge);
5645 5646 5647 5648 5649 5650 5651
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5652
		cancel_charge(mc.from, mc.moved_charge);
5653
		mc.moved_charge = 0;
5654
	}
5655 5656 5657
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5658
		if (!mem_cgroup_is_root(mc.from))
5659
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5660

5661 5662
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

5663
		/*
5664 5665
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5666
		 */
5667
		if (!mem_cgroup_is_root(mc.to))
5668 5669
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5670 5671
		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
		css_put_many(&mc.to->css, mc.moved_swap);
5672

5673 5674
		mc.moved_swap = 0;
	}
5675 5676 5677 5678 5679 5680 5681
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
5682 5683
	struct mm_struct *mm = mc.mm;

5684 5685 5686 5687 5688 5689
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5690
	spin_lock(&mc.lock);
5691 5692
	mc.from = NULL;
	mc.to = NULL;
5693
	mc.mm = NULL;
5694
	spin_unlock(&mc.lock);
5695 5696

	mmput(mm);
5697 5698
}

5699
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5700
{
5701
	struct cgroup_subsys_state *css;
5702
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5703
	struct mem_cgroup *from;
5704
	struct task_struct *leader, *p;
5705
	struct mm_struct *mm;
5706
	unsigned long move_flags;
5707
	int ret = 0;
5708

5709 5710
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5711 5712
		return 0;

5713 5714 5715 5716 5717 5718 5719
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
5720
	cgroup_taskset_for_each_leader(leader, css, tset) {
5721 5722
		WARN_ON_ONCE(p);
		p = leader;
5723
		memcg = mem_cgroup_from_css(css);
5724 5725 5726 5727
	}
	if (!p)
		return 0;

5728 5729 5730 5731 5732 5733 5734 5735 5736
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
5753
		mc.mm = mm;
5754 5755 5756 5757 5758 5759 5760 5761 5762
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
5763 5764
	} else {
		mmput(mm);
5765 5766 5767 5768
	}
	return ret;
}

5769
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5770
{
5771 5772
	if (mc.to)
		mem_cgroup_clear_mc();
5773 5774
}

5775 5776 5777
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5778
{
5779
	int ret = 0;
5780
	struct vm_area_struct *vma = walk->vma;
5781 5782
	pte_t *pte;
	spinlock_t *ptl;
5783 5784 5785
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5786

5787 5788
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5789
		if (mc.precharge < HPAGE_PMD_NR) {
5790
			spin_unlock(ptl);
5791 5792 5793 5794 5795 5796
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
5797
				if (!mem_cgroup_move_account(page, true,
5798
							     mc.from, mc.to)) {
5799 5800 5801 5802 5803 5804
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
5805 5806 5807 5808 5809 5810 5811 5812
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
5813
		}
5814
		spin_unlock(ptl);
5815
		return 0;
5816 5817
	}

5818 5819
	if (pmd_trans_unstable(pmd))
		return 0;
5820 5821 5822 5823
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5824
		bool device = false;
5825
		swp_entry_t ent;
5826 5827 5828 5829

		if (!mc.precharge)
			break;

5830
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5831 5832
		case MC_TARGET_DEVICE:
			device = true;
J
Joe Perches 已提交
5833
			fallthrough;
5834 5835
		case MC_TARGET_PAGE:
			page = target.page;
5836 5837 5838 5839 5840 5841 5842 5843
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
5844
			if (!device && isolate_lru_page(page))
5845
				goto put;
5846 5847
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
5848
				mc.precharge--;
5849 5850
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5851
			}
5852 5853
			if (!device)
				putback_lru_page(page);
5854
put:			/* get_mctgt_type() gets the page */
5855 5856
			put_page(page);
			break;
5857 5858
		case MC_TARGET_SWAP:
			ent = target.ent;
5859
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5860
				mc.precharge--;
5861 5862 5863
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5864
			break;
5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5879
		ret = mem_cgroup_do_precharge(1);
5880 5881 5882 5883 5884 5885 5886
		if (!ret)
			goto retry;
	}

	return ret;
}

5887 5888 5889 5890
static const struct mm_walk_ops charge_walk_ops = {
	.pmd_entry	= mem_cgroup_move_charge_pte_range,
};

5891
static void mem_cgroup_move_charge(void)
5892 5893
{
	lru_add_drain_all();
5894
	/*
5895 5896 5897
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
5898 5899 5900
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5901
retry:
5902
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5914 5915 5916 5917
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
5918 5919
	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
			NULL);
5920

5921
	up_read(&mc.mm->mmap_sem);
5922
	atomic_dec(&mc.from->moving_account);
5923 5924
}

5925
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
5926
{
5927 5928
	if (mc.to) {
		mem_cgroup_move_charge();
5929
		mem_cgroup_clear_mc();
5930
	}
B
Balbir Singh 已提交
5931
}
5932
#else	/* !CONFIG_MMU */
5933
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5934 5935 5936
{
	return 0;
}
5937
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5938 5939
{
}
5940
static void mem_cgroup_move_task(void)
5941 5942 5943
{
}
#endif
B
Balbir Singh 已提交
5944

5945 5946
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5947 5948
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5949
 */
5950
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5951 5952
{
	/*
5953
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5954 5955 5956
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5957
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5958 5959 5960
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5961 5962
}

5963 5964 5965 5966 5967 5968 5969 5970 5971 5972
static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
{
	if (value == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);

	return 0;
}

5973 5974 5975
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5976 5977 5978
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5979 5980
}

R
Roman Gushchin 已提交
5981 5982
static int memory_min_show(struct seq_file *m, void *v)
{
5983 5984
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
R
Roman Gushchin 已提交
5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

6004 6005
static int memory_low_show(struct seq_file *m, void *v)
{
6006 6007
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6008 6009 6010 6011 6012 6013 6014 6015 6016 6017
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
6018
	err = page_counter_memparse(buf, "max", &low);
6019 6020 6021
	if (err)
		return err;

6022
	page_counter_set_low(&memcg->memory, low);
6023 6024 6025 6026 6027 6028

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
6029 6030
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6031 6032 6033 6034 6035 6036
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6037 6038
	unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
6039 6040 6041 6042
	unsigned long high;
	int err;

	buf = strstrip(buf);
6043
	err = page_counter_memparse(buf, "max", &high);
6044 6045 6046
	if (err)
		return err;

6047
	page_counter_set_high(&memcg->memory, high);
6048

6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070
	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);
		unsigned long reclaimed;

		if (nr_pages <= high)
			break;

		if (signal_pending(current))
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
							 GFP_KERNEL, true);

		if (!reclaimed && !nr_retries--)
			break;
	}
6071

6072 6073 6074 6075 6076
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
6077 6078
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6079 6080 6081 6082 6083 6084
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6085 6086
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
6087 6088 6089 6090
	unsigned long max;
	int err;

	buf = strstrip(buf);
6091
	err = page_counter_memparse(buf, "max", &max);
6092 6093 6094
	if (err)
		return err;

6095
	xchg(&memcg->memory.max, max);
6096 6097 6098 6099 6100 6101 6102

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

6103
		if (signal_pending(current))
6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

6119
		memcg_memory_event(memcg, MEMCG_OOM);
6120 6121 6122
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
6123

6124
	memcg_wb_domain_size_changed(memcg);
6125 6126 6127
	return nbytes;
}

6128 6129 6130 6131 6132 6133 6134 6135 6136 6137
static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
{
	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&events[MEMCG_OOM_KILL]));
}

6138 6139
static int memory_events_show(struct seq_file *m, void *v)
{
6140
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6141

6142 6143 6144 6145 6146 6147 6148
	__memory_events_show(m, memcg->memory_events);
	return 0;
}

static int memory_events_local_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6149

6150
	__memory_events_show(m, memcg->memory_events_local);
6151 6152 6153
	return 0;
}

6154 6155
static int memory_stat_show(struct seq_file *m, void *v)
{
6156
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6157
	char *buf;
6158

6159 6160 6161 6162 6163
	buf = memory_stat_format(memcg);
	if (!buf)
		return -ENOMEM;
	seq_puts(m, buf);
	kfree(buf);
6164 6165 6166
	return 0;
}

6167 6168
static int memory_oom_group_show(struct seq_file *m, void *v)
{
6169
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197

	seq_printf(m, "%d\n", memcg->oom_group);

	return 0;
}

static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
				      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	int ret, oom_group;

	buf = strstrip(buf);
	if (!buf)
		return -EINVAL;

	ret = kstrtoint(buf, 0, &oom_group);
	if (ret)
		return ret;

	if (oom_group != 0 && oom_group != 1)
		return -EINVAL;

	memcg->oom_group = oom_group;

	return nbytes;
}

6198 6199 6200
static struct cftype memory_files[] = {
	{
		.name = "current",
6201
		.flags = CFTYPE_NOT_ON_ROOT,
6202 6203
		.read_u64 = memory_current_read,
	},
R
Roman Gushchin 已提交
6204 6205 6206 6207 6208 6209
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
6231
		.file_offset = offsetof(struct mem_cgroup, events_file),
6232 6233
		.seq_show = memory_events_show,
	},
6234 6235 6236 6237 6238 6239
	{
		.name = "events.local",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, events_local_file),
		.seq_show = memory_events_local_show,
	},
6240 6241 6242 6243
	{
		.name = "stat",
		.seq_show = memory_stat_show,
	},
6244 6245 6246 6247 6248 6249
	{
		.name = "oom.group",
		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
		.seq_show = memory_oom_group_show,
		.write = memory_oom_group_write,
	},
6250 6251 6252
	{ }	/* terminate */
};

6253
struct cgroup_subsys memory_cgrp_subsys = {
6254
	.css_alloc = mem_cgroup_css_alloc,
6255
	.css_online = mem_cgroup_css_online,
6256
	.css_offline = mem_cgroup_css_offline,
6257
	.css_released = mem_cgroup_css_released,
6258
	.css_free = mem_cgroup_css_free,
6259
	.css_reset = mem_cgroup_css_reset,
6260 6261
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
6262
	.post_attach = mem_cgroup_move_task,
6263
	.bind = mem_cgroup_bind,
6264 6265
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
6266
	.early_init = 0,
B
Balbir Singh 已提交
6267
};
6268

6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298
/*
 * This function calculates an individual cgroup's effective
 * protection which is derived from its own memory.min/low, its
 * parent's and siblings' settings, as well as the actual memory
 * distribution in the tree.
 *
 * The following rules apply to the effective protection values:
 *
 * 1. At the first level of reclaim, effective protection is equal to
 *    the declared protection in memory.min and memory.low.
 *
 * 2. To enable safe delegation of the protection configuration, at
 *    subsequent levels the effective protection is capped to the
 *    parent's effective protection.
 *
 * 3. To make complex and dynamic subtrees easier to configure, the
 *    user is allowed to overcommit the declared protection at a given
 *    level. If that is the case, the parent's effective protection is
 *    distributed to the children in proportion to how much protection
 *    they have declared and how much of it they are utilizing.
 *
 *    This makes distribution proportional, but also work-conserving:
 *    if one cgroup claims much more protection than it uses memory,
 *    the unused remainder is available to its siblings.
 *
 * 4. Conversely, when the declared protection is undercommitted at a
 *    given level, the distribution of the larger parental protection
 *    budget is NOT proportional. A cgroup's protection from a sibling
 *    is capped to its own memory.min/low setting.
 *
6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310
 * 5. However, to allow protecting recursive subtrees from each other
 *    without having to declare each individual cgroup's fixed share
 *    of the ancestor's claim to protection, any unutilized -
 *    "floating" - protection from up the tree is distributed in
 *    proportion to each cgroup's *usage*. This makes the protection
 *    neutral wrt sibling cgroups and lets them compete freely over
 *    the shared parental protection budget, but it protects the
 *    subtree as a whole from neighboring subtrees.
 *
 * Note that 4. and 5. are not in conflict: 4. is about protecting
 * against immediate siblings whereas 5. is about protecting against
 * neighboring subtrees.
6311 6312
 */
static unsigned long effective_protection(unsigned long usage,
6313
					  unsigned long parent_usage,
6314 6315 6316 6317 6318
					  unsigned long setting,
					  unsigned long parent_effective,
					  unsigned long siblings_protected)
{
	unsigned long protected;
6319
	unsigned long ep;
6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349

	protected = min(usage, setting);
	/*
	 * If all cgroups at this level combined claim and use more
	 * protection then what the parent affords them, distribute
	 * shares in proportion to utilization.
	 *
	 * We are using actual utilization rather than the statically
	 * claimed protection in order to be work-conserving: claimed
	 * but unused protection is available to siblings that would
	 * otherwise get a smaller chunk than what they claimed.
	 */
	if (siblings_protected > parent_effective)
		return protected * parent_effective / siblings_protected;

	/*
	 * Ok, utilized protection of all children is within what the
	 * parent affords them, so we know whatever this child claims
	 * and utilizes is effectively protected.
	 *
	 * If there is unprotected usage beyond this value, reclaim
	 * will apply pressure in proportion to that amount.
	 *
	 * If there is unutilized protection, the cgroup will be fully
	 * shielded from reclaim, but we do return a smaller value for
	 * protection than what the group could enjoy in theory. This
	 * is okay. With the overcommit distribution above, effective
	 * protection is always dependent on how memory is actually
	 * consumed among the siblings anyway.
	 */
6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377
	ep = protected;

	/*
	 * If the children aren't claiming (all of) the protection
	 * afforded to them by the parent, distribute the remainder in
	 * proportion to the (unprotected) memory of each cgroup. That
	 * way, cgroups that aren't explicitly prioritized wrt each
	 * other compete freely over the allowance, but they are
	 * collectively protected from neighboring trees.
	 *
	 * We're using unprotected memory for the weight so that if
	 * some cgroups DO claim explicit protection, we don't protect
	 * the same bytes twice.
	 */
	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
		return ep;

	if (parent_effective > siblings_protected && usage > protected) {
		unsigned long unclaimed;

		unclaimed = parent_effective - siblings_protected;
		unclaimed *= usage - protected;
		unclaimed /= parent_usage - siblings_protected;

		ep += unclaimed;
	}

	return ep;
6378 6379
}

6380
/**
R
Roman Gushchin 已提交
6381
 * mem_cgroup_protected - check if memory consumption is in the normal range
6382
 * @root: the top ancestor of the sub-tree being checked
6383 6384
 * @memcg: the memory cgroup to check
 *
6385 6386
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
6387
 *
R
Roman Gushchin 已提交
6388 6389 6390 6391 6392
 * Returns one of the following:
 *   MEMCG_PROT_NONE: cgroup memory is not protected
 *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
 *     an unprotected supply of reclaimable memory from other cgroups.
 *   MEMCG_PROT_MIN: cgroup memory is protected
6393
 */
R
Roman Gushchin 已提交
6394 6395
enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
						struct mem_cgroup *memcg)
6396
{
6397
	unsigned long usage, parent_usage;
6398 6399
	struct mem_cgroup *parent;

6400
	if (mem_cgroup_disabled())
R
Roman Gushchin 已提交
6401
		return MEMCG_PROT_NONE;
6402

6403 6404 6405
	if (!root)
		root = root_mem_cgroup;
	if (memcg == root)
R
Roman Gushchin 已提交
6406
		return MEMCG_PROT_NONE;
6407

6408
	usage = page_counter_read(&memcg->memory);
R
Roman Gushchin 已提交
6409 6410 6411 6412
	if (!usage)
		return MEMCG_PROT_NONE;

	parent = parent_mem_cgroup(memcg);
6413 6414 6415 6416
	/* No parent means a non-hierarchical mode on v1 memcg */
	if (!parent)
		return MEMCG_PROT_NONE;

6417
	if (parent == root) {
6418
		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6419 6420
		memcg->memory.elow = memcg->memory.low;
		goto out;
R
Roman Gushchin 已提交
6421 6422
	}

6423 6424
	parent_usage = page_counter_read(&parent->memory);

6425
	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6426 6427
			READ_ONCE(memcg->memory.min),
			READ_ONCE(parent->memory.emin),
6428
			atomic_long_read(&parent->memory.children_min_usage)));
6429

6430
	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6431
			memcg->memory.low, READ_ONCE(parent->memory.elow),
6432
			atomic_long_read(&parent->memory.children_low_usage)));
6433

6434 6435
out:
	if (usage <= memcg->memory.emin)
R
Roman Gushchin 已提交
6436
		return MEMCG_PROT_MIN;
6437
	else if (usage <= memcg->memory.elow)
R
Roman Gushchin 已提交
6438 6439 6440
		return MEMCG_PROT_LOW;
	else
		return MEMCG_PROT_NONE;
6441 6442
}

6443
/**
6444
 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6445 6446 6447 6448 6449 6450 6451
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
6452
 * Returns 0 on success. Otherwise, an error code is returned.
6453
 */
6454
int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6455
{
6456
	unsigned int nr_pages = hpage_nr_pages(page);
6457 6458 6459 6460 6461 6462 6463
	struct mem_cgroup *memcg = NULL;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
6464 6465 6466
		swp_entry_t ent = { .val = page_private(page), };
		unsigned short id;

6467 6468 6469
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
6470 6471
		 * already charged pages, too.  page->mem_cgroup is protected
		 * by the page lock, which serializes swap cache removal, which
6472 6473
		 * in turn serializes uncharging.
		 */
6474
		VM_BUG_ON_PAGE(!PageLocked(page), page);
6475
		if (compound_head(page)->mem_cgroup)
6476
			goto out;
6477

6478 6479 6480 6481 6482 6483
		id = lookup_swap_cgroup_id(ent);
		rcu_read_lock();
		memcg = mem_cgroup_from_id(id);
		if (memcg && !css_tryget_online(&memcg->css))
			memcg = NULL;
		rcu_read_unlock();
6484 6485 6486 6487 6488 6489
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);
6490 6491
	if (ret)
		goto out_put;
6492

6493
	commit_charge(page, memcg);
6494 6495

	local_irq_disable();
6496
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6497 6498
	memcg_check_events(memcg, page);
	local_irq_enable();
6499

6500
	if (PageSwapCache(page)) {
6501 6502 6503 6504 6505 6506
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
6507
		mem_cgroup_uncharge_swap(entry, nr_pages);
6508 6509
	}

6510 6511 6512 6513
out_put:
	css_put(&memcg->css);
out:
	return ret;
6514 6515
}

6516 6517
struct uncharge_gather {
	struct mem_cgroup *memcg;
6518
	unsigned long nr_pages;
6519 6520 6521 6522 6523 6524
	unsigned long pgpgout;
	unsigned long nr_kmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6525
{
6526 6527 6528 6529 6530
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
6531 6532
	unsigned long flags;

6533
	if (!mem_cgroup_is_root(ug->memcg)) {
6534
		page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6535
		if (do_memsw_account())
6536
			page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6537 6538 6539
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
6540
	}
6541 6542

	local_irq_save(flags);
6543
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6544
	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6545
	memcg_check_events(ug->memcg, ug->dummy_page);
6546
	local_irq_restore(flags);
6547

6548
	if (!mem_cgroup_is_root(ug->memcg))
6549
		css_put_many(&ug->memcg->css, ug->nr_pages);
6550 6551 6552 6553
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
6554 6555
	unsigned long nr_pages;

6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574
	VM_BUG_ON_PAGE(PageLRU(page), page);

	if (!page->mem_cgroup)
		return;

	/*
	 * Nobody should be changing or seriously looking at
	 * page->mem_cgroup at this point, we have fully
	 * exclusive access to the page.
	 */

	if (ug->memcg != page->mem_cgroup) {
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
		ug->memcg = page->mem_cgroup;
	}

6575 6576
	nr_pages = compound_nr(page);
	ug->nr_pages += nr_pages;
6577

6578
	if (!PageKmemcg(page)) {
6579 6580
		ug->pgpgout++;
	} else {
6581
		ug->nr_kmem += nr_pages;
6582 6583 6584 6585 6586
		__ClearPageKmemcg(page);
	}

	ug->dummy_page = page;
	page->mem_cgroup = NULL;
6587 6588 6589 6590
}

static void uncharge_list(struct list_head *page_list)
{
6591
	struct uncharge_gather ug;
6592
	struct list_head *next;
6593 6594

	uncharge_gather_clear(&ug);
6595

6596 6597 6598 6599
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
6600 6601
	next = page_list->next;
	do {
6602 6603
		struct page *page;

6604 6605 6606
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

6607
		uncharge_page(page, &ug);
6608 6609
	} while (next != page_list);

6610 6611
	if (ug.memcg)
		uncharge_batch(&ug);
6612 6613
}

6614 6615 6616 6617
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
6618
 * Uncharge a page previously charged with mem_cgroup_charge().
6619 6620 6621
 */
void mem_cgroup_uncharge(struct page *page)
{
6622 6623
	struct uncharge_gather ug;

6624 6625 6626
	if (mem_cgroup_disabled())
		return;

6627
	/* Don't touch page->lru of any random page, pre-check: */
6628
	if (!page->mem_cgroup)
6629 6630
		return;

6631 6632 6633
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
6634
}
6635

6636 6637 6638 6639 6640
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
6641
 * mem_cgroup_charge().
6642 6643 6644 6645 6646
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
6647

6648 6649
	if (!list_empty(page_list))
		uncharge_list(page_list);
6650 6651 6652
}

/**
6653 6654 6655
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
6656
 *
6657 6658
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
6659 6660 6661
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
6662
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6663
{
6664
	struct mem_cgroup *memcg;
6665
	unsigned int nr_pages;
6666
	unsigned long flags;
6667 6668 6669 6670

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6671 6672
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6673 6674 6675 6676 6677

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
6678
	if (newpage->mem_cgroup)
6679 6680
		return;

6681
	/* Swapcache readahead pages can get replaced before being charged */
6682
	memcg = oldpage->mem_cgroup;
6683
	if (!memcg)
6684 6685
		return;

6686
	/* Force-charge the new page. The old one will be freed soon */
6687
	nr_pages = hpage_nr_pages(newpage);
6688 6689 6690 6691 6692

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
6693

6694
	commit_charge(newpage, memcg);
6695

6696
	local_irq_save(flags);
6697
	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6698
	memcg_check_events(memcg, newpage);
6699
	local_irq_restore(flags);
6700 6701
}

6702
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6703 6704
EXPORT_SYMBOL(memcg_sockets_enabled_key);

6705
void mem_cgroup_sk_alloc(struct sock *sk)
6706 6707 6708
{
	struct mem_cgroup *memcg;

6709 6710 6711
	if (!mem_cgroup_sockets_enabled)
		return;

6712 6713 6714 6715
	/* Do not associate the sock with unrelated interrupted task's memcg. */
	if (in_interrupt())
		return;

6716 6717
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
6718 6719
	if (memcg == root_mem_cgroup)
		goto out;
6720
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6721
		goto out;
S
Shakeel Butt 已提交
6722
	if (css_tryget(&memcg->css))
6723
		sk->sk_memcg = memcg;
6724
out:
6725 6726 6727
	rcu_read_unlock();
}

6728
void mem_cgroup_sk_free(struct sock *sk)
6729
{
6730 6731
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6744
	gfp_t gfp_mask = GFP_KERNEL;
6745

6746
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6747
		struct page_counter *fail;
6748

6749 6750
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
6751 6752
			return true;
		}
6753 6754
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
6755
		return false;
6756
	}
6757

6758 6759 6760 6761
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

6762
	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6763

6764 6765 6766 6767
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6768 6769 6770 6771 6772
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
6773 6774
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
6775 6776 6777
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6778
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6779
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6780 6781
		return;
	}
6782

6783
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6784

6785
	refill_stock(memcg, nr_pages);
6786 6787
}

6788 6789 6790 6791 6792 6793 6794 6795 6796
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
6797 6798
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
6799 6800 6801 6802
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
6803

6804
/*
6805 6806
 * subsys_initcall() for memory controller.
 *
6807 6808 6809 6810
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
6811 6812 6813
 */
static int __init mem_cgroup_init(void)
{
6814 6815
	int cpu, node;

6816
#ifdef CONFIG_MEMCG_KMEM
6817 6818
	/*
	 * Kmem cache creation is mostly done with the slab_mutex held,
6819 6820 6821
	 * so use a workqueue with limited concurrency to avoid stalling
	 * all worker threads in case lots of cgroups are created and
	 * destroyed simultaneously.
6822
	 */
6823 6824
	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
	BUG_ON(!memcg_kmem_cache_wq);
6825 6826
#endif

6827 6828
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

6840
		rtpn->rb_root = RB_ROOT;
6841
		rtpn->rb_rightmost = NULL;
6842
		spin_lock_init(&rtpn->lock);
6843 6844 6845
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

6846 6847 6848
	return 0;
}
subsys_initcall(mem_cgroup_init);
6849 6850

#ifdef CONFIG_MEMCG_SWAP
6851 6852
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
6853
	while (!refcount_inc_not_zero(&memcg->id.ref)) {
6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

6869 6870 6871 6872 6873 6874 6875 6876 6877
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
6878
	struct mem_cgroup *memcg, *swap_memcg;
6879
	unsigned int nr_entries;
6880 6881 6882 6883 6884
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

6885
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6886 6887 6888 6889 6890 6891 6892 6893
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

6894 6895 6896 6897 6898 6899
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
6900 6901 6902 6903 6904 6905
	nr_entries = hpage_nr_pages(page);
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
6906
	VM_BUG_ON_PAGE(oldid, page);
6907
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6908 6909 6910 6911

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
6912
		page_counter_uncharge(&memcg->memory, nr_entries);
6913

6914
	if (!cgroup_memory_noswap && memcg != swap_memcg) {
6915
		if (!mem_cgroup_is_root(swap_memcg))
6916 6917
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
6918 6919
	}

6920 6921
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
6922
	 * i_pages lock which is taken with interrupts-off. It is
6923
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
6924
	 * only synchronisation we have for updating the per-CPU variables.
6925 6926
	 */
	VM_BUG_ON(!irqs_disabled());
6927
	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
6928
	memcg_check_events(memcg, page);
6929 6930

	if (!mem_cgroup_is_root(memcg))
6931
		css_put_many(&memcg->css, nr_entries);
6932 6933
}

6934 6935
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
6936 6937 6938
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
6939
 * Try to charge @page's memcg for the swap space at @entry.
6940 6941 6942 6943 6944
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
6945
	unsigned int nr_pages = hpage_nr_pages(page);
6946
	struct page_counter *counter;
6947
	struct mem_cgroup *memcg;
6948 6949
	unsigned short oldid;

6950
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
6951 6952 6953 6954 6955 6956 6957 6958
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

6959 6960
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6961
		return 0;
6962
	}
6963

6964 6965
	memcg = mem_cgroup_id_get_online(memcg);

6966
	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
6967
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6968 6969
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6970
		mem_cgroup_id_put(memcg);
6971
		return -ENOMEM;
6972
	}
6973

6974 6975 6976 6977
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6978
	VM_BUG_ON_PAGE(oldid, page);
6979
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6980 6981 6982 6983

	return 0;
}

6984
/**
6985
 * mem_cgroup_uncharge_swap - uncharge swap space
6986
 * @entry: swap entry to uncharge
6987
 * @nr_pages: the amount of swap space to uncharge
6988
 */
6989
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6990 6991 6992 6993
{
	struct mem_cgroup *memcg;
	unsigned short id;

6994
	id = swap_cgroup_record(entry, 0, nr_pages);
6995
	rcu_read_lock();
6996
	memcg = mem_cgroup_from_id(id);
6997
	if (memcg) {
6998
		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
6999
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7000
				page_counter_uncharge(&memcg->swap, nr_pages);
7001
			else
7002
				page_counter_uncharge(&memcg->memsw, nr_pages);
7003
		}
7004
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7005
		mem_cgroup_id_put_many(memcg, nr_pages);
7006 7007 7008 7009
	}
	rcu_read_unlock();
}

7010 7011 7012 7013
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

7014
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7015 7016 7017
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
7018
				      READ_ONCE(memcg->swap.max) -
7019 7020 7021 7022
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

7023 7024 7025 7026 7027 7028 7029 7030
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
7031
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7032 7033 7034 7035 7036 7037
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

7038 7039 7040 7041 7042
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		unsigned long usage = page_counter_read(&memcg->swap);

		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
		    usage * 2 >= READ_ONCE(memcg->swap.max))
7043
			return true;
7044
	}
7045 7046 7047 7048

	return false;
}

7049
static int __init setup_swap_account(char *s)
7050 7051
{
	if (!strcmp(s, "1"))
7052
		cgroup_memory_noswap = 0;
7053
	else if (!strcmp(s, "0"))
7054
		cgroup_memory_noswap = 1;
7055 7056
	return 1;
}
7057
__setup("swapaccount=", setup_swap_account);
7058

7059 7060 7061 7062 7063 7064 7065 7066
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089
static int swap_high_show(struct seq_file *m, void *v)
{
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
}

static ssize_t swap_high_write(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &high);
	if (err)
		return err;

	page_counter_set_high(&memcg->swap, high);

	return nbytes;
}

7090 7091
static int swap_max_show(struct seq_file *m, void *v)
{
7092 7093
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

7108
	xchg(&memcg->swap.max, max);
7109 7110 7111 7112

	return nbytes;
}

7113 7114
static int swap_events_show(struct seq_file *m, void *v)
{
7115
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7116

7117 7118
	seq_printf(m, "high %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7119 7120 7121 7122 7123 7124 7125 7126
	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

7127 7128 7129 7130 7131 7132
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
7133 7134 7135 7136 7137 7138
	{
		.name = "swap.high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_high_show,
		.write = swap_high_write,
	},
7139 7140 7141 7142 7143 7144
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
7145 7146 7147 7148 7149 7150
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
7151 7152 7153
	{ }	/* terminate */
};

7154
static struct cftype memsw_files[] = {
7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
7183 7184 7185 7186 7187
	/* No memory control -> no swap control */
	if (mem_cgroup_disabled())
		cgroup_memory_noswap = true;

	if (cgroup_memory_noswap)
7188 7189 7190 7191 7192
		return 0;

	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));

7193 7194 7195 7196 7197
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */