memcontrol.c 170.5 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/sched/mm.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
41
#include <linux/pagemap.h>
42
#include <linux/vm_event_item.h>
43
#include <linux/smp.h>
44
#include <linux/page-flags.h>
45
#include <linux/backing-dev.h>
46 47
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
48
#include <linux/limits.h>
49
#include <linux/export.h>
50
#include <linux/mutex.h>
51
#include <linux/rbtree.h>
52
#include <linux/slab.h>
53
#include <linux/swap.h>
54
#include <linux/swapops.h>
55
#include <linux/spinlock.h>
56
#include <linux/eventfd.h>
57
#include <linux/poll.h>
58
#include <linux/sort.h>
59
#include <linux/fs.h>
60
#include <linux/seq_file.h>
61
#include <linux/vmpressure.h>
62
#include <linux/mm_inline.h>
63
#include <linux/swap_cgroup.h>
64
#include <linux/cpu.h>
65
#include <linux/oom.h>
66
#include <linux/lockdep.h>
67
#include <linux/file.h>
68
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
69
#include "internal.h"
G
Glauber Costa 已提交
70
#include <net/sock.h>
M
Michal Hocko 已提交
71
#include <net/ip.h>
72
#include "slab.h"
B
Balbir Singh 已提交
73

74
#include <linux/uaccess.h>
75

76 77
#include <trace/events/vmscan.h>

78 79
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
80

81 82
struct mem_cgroup *root_mem_cgroup __read_mostly;

83
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
84

85 86 87
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

88 89 90
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

91
/* Whether the swap controller is active */
A
Andrew Morton 已提交
92
#ifdef CONFIG_MEMCG_SWAP
93 94
int do_swap_account __read_mostly;
#else
95
#define do_swap_account		0
96 97
#endif

98 99 100 101 102 103
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

104
static const char *const mem_cgroup_lru_names[] = {
105 106 107 108 109 110 111
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

112 113 114
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
115

116 117 118 119 120
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

121
struct mem_cgroup_tree_per_node {
122
	struct rb_root rb_root;
123
	struct rb_node *rb_rightmost;
124 125 126 127 128 129 130 131 132
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
133 134 135 136 137
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
138

139 140 141
/*
 * cgroup_event represents events which userspace want to receive.
 */
142
struct mem_cgroup_event {
143
	/*
144
	 * memcg which the event belongs to.
145
	 */
146
	struct mem_cgroup *memcg;
147 148 149 150 151 152 153 154
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
155 156 157 158 159
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
160
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
161
			      struct eventfd_ctx *eventfd, const char *args);
162 163 164 165 166
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
167
	void (*unregister_event)(struct mem_cgroup *memcg,
168
				 struct eventfd_ctx *eventfd);
169 170 171 172 173 174
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
175
	wait_queue_entry_t wait;
176 177 178
	struct work_struct remove;
};

179 180
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
181

182 183
/* Stuffs for move charges at task migration. */
/*
184
 * Types of charges to be moved.
185
 */
186 187 188
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
189

190 191
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
192
	spinlock_t	  lock; /* for from, to */
193
	struct mm_struct  *mm;
194 195
	struct mem_cgroup *from;
	struct mem_cgroup *to;
196
	unsigned long flags;
197
	unsigned long precharge;
198
	unsigned long moved_charge;
199
	unsigned long moved_swap;
200 201 202
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
203
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
204 205
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
206

207 208 209 210
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
211
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
212
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
213

214 215
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
216
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
217
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
218
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
219 220 221
	NR_CHARGE_TYPE,
};

222
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
223 224 225 226
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
227
	_KMEM,
V
Vladimir Davydov 已提交
228
	_TCP,
G
Glauber Costa 已提交
229 230
};

231 232
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
233
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
234 235
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
236

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(root, iter, NULL))

#define for_each_mem_cgroup(iter)			\
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(NULL, iter, NULL))

252 253 254 255 256 257
static inline bool should_force_charge(void)
{
	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
		(current->flags & PF_EXITING);
}

258 259 260 261 262 263 264 265 266 267 268 269 270
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

271
#ifdef CONFIG_MEMCG_KMEM
272
/*
273
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
274 275 276 277 278
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
279
 *
280 281
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
282
 */
283 284
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
285

286 287 288 289 290 291 292 293 294 295 296 297 298
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

299 300 301 302 303 304
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
305
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
306 307
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
308
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
309 310 311
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
312
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
313

314 315 316 317 318 319
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
320
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
321
EXPORT_SYMBOL(memcg_kmem_enabled_key);
322

323 324
struct workqueue_struct *memcg_kmem_cache_wq;

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
static int memcg_shrinker_map_size;
static DEFINE_MUTEX(memcg_shrinker_map_mutex);

static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
{
	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
}

static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
					 int size, int old_size)
{
	struct memcg_shrinker_map *new, *old;
	int nid;

	lockdep_assert_held(&memcg_shrinker_map_mutex);

	for_each_node(nid) {
		old = rcu_dereference_protected(
			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
		/* Not yet online memcg */
		if (!old)
			return 0;

		new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
		if (!new)
			return -ENOMEM;

		/* Set all old bits, clear all new bits */
		memset(new->map, (int)0xff, old_size);
		memset((void *)new->map + old_size, 0, size - old_size);

		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
	}

	return 0;
}

static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *pn;
	struct memcg_shrinker_map *map;
	int nid;

	if (mem_cgroup_is_root(memcg))
		return;

	for_each_node(nid) {
		pn = mem_cgroup_nodeinfo(memcg, nid);
		map = rcu_dereference_protected(pn->shrinker_map, true);
		if (map)
			kvfree(map);
		rcu_assign_pointer(pn->shrinker_map, NULL);
	}
}

static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	struct memcg_shrinker_map *map;
	int nid, size, ret = 0;

	if (mem_cgroup_is_root(memcg))
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	size = memcg_shrinker_map_size;
	for_each_node(nid) {
		map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
		if (!map) {
			memcg_free_shrinker_maps(memcg);
			ret = -ENOMEM;
			break;
		}
		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
	}
	mutex_unlock(&memcg_shrinker_map_mutex);

	return ret;
}

int memcg_expand_shrinker_maps(int new_id)
{
	int size, old_size, ret = 0;
	struct mem_cgroup *memcg;

	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
	old_size = memcg_shrinker_map_size;
	if (size <= old_size)
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	if (!root_mem_cgroup)
		goto unlock;

	for_each_mem_cgroup(memcg) {
		if (mem_cgroup_is_root(memcg))
			continue;
		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
		if (ret)
			goto unlock;
	}
unlock:
	if (!ret)
		memcg_shrinker_map_size = size;
	mutex_unlock(&memcg_shrinker_map_mutex);
	return ret;
}
432 433 434 435 436 437 438 439

void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
{
	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
		struct memcg_shrinker_map *map;

		rcu_read_lock();
		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
440 441
		/* Pairs with smp mb in shrink_slab() */
		smp_mb__before_atomic();
442 443 444 445 446
		set_bit(shrinker_id, map->map);
		rcu_read_unlock();
	}
}

447 448 449 450 451 452
#else /* CONFIG_MEMCG_KMEM */
static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	return 0;
}
static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
453
#endif /* CONFIG_MEMCG_KMEM */
454

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

472
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
473 474 475 476 477
		memcg = root_mem_cgroup;

	return &memcg->css;
}

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

506 507
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
508
{
509
	int nid = page_to_nid(page);
510

511
	return memcg->nodeinfo[nid];
512 513
}

514 515
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
516
{
517
	return soft_limit_tree.rb_tree_per_node[nid];
518 519
}

520
static struct mem_cgroup_tree_per_node *
521 522 523 524
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

525
	return soft_limit_tree.rb_tree_per_node[nid];
526 527
}

528 529
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
530
					 unsigned long new_usage_in_excess)
531 532 533
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
534
	struct mem_cgroup_per_node *mz_node;
535
	bool rightmost = true;
536 537 538 539 540 541 542 543 544

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
545
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
546
					tree_node);
547
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
548
			p = &(*p)->rb_left;
549 550 551
			rightmost = false;
		}

552 553 554 555 556 557 558
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
559 560 561 562

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

563 564 565 566 567
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

568 569
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
570 571 572
{
	if (!mz->on_tree)
		return;
573 574 575 576

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

577 578 579 580
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

581 582
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
583
{
584 585 586
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
587
	__mem_cgroup_remove_exceeded(mz, mctz);
588
	spin_unlock_irqrestore(&mctz->lock, flags);
589 590
}

591 592 593
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
594
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
595 596 597 598 599 600 601
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
602 603 604

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
605
	unsigned long excess;
606 607
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
608

609
	mctz = soft_limit_tree_from_page(page);
610 611
	if (!mctz)
		return;
612 613 614 615 616
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
617
		mz = mem_cgroup_page_nodeinfo(memcg, page);
618
		excess = soft_limit_excess(memcg);
619 620 621 622 623
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
624 625 626
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
627 628
			/* if on-tree, remove it */
			if (mz->on_tree)
629
				__mem_cgroup_remove_exceeded(mz, mctz);
630 631 632 633
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
634
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
635
			spin_unlock_irqrestore(&mctz->lock, flags);
636 637 638 639 640 641
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
642 643 644
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
645

646
	for_each_node(nid) {
647 648
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
649 650
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
651 652 653
	}
}

654 655
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
656
{
657
	struct mem_cgroup_per_node *mz;
658 659 660

retry:
	mz = NULL;
661
	if (!mctz->rb_rightmost)
662 663
		goto done;		/* Nothing to reclaim from */

664 665
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
666 667 668 669 670
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
671
	__mem_cgroup_remove_exceeded(mz, mctz);
672
	if (!soft_limit_excess(mz->memcg) ||
673
	    !css_tryget_online(&mz->memcg->css))
674 675 676 677 678
		goto retry;
done:
	return mz;
}

679 680
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
681
{
682
	struct mem_cgroup_per_node *mz;
683

684
	spin_lock_irq(&mctz->lock);
685
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
686
	spin_unlock_irq(&mctz->lock);
687 688 689
	return mz;
}

690
static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
691
				      int event)
692
{
693
	return atomic_long_read(&memcg->events[event]);
694 695
}

696
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
697
					 struct page *page,
698
					 bool compound, int nr_pages)
699
{
700 701 702 703
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
704
	if (PageAnon(page))
705
		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
706
	else {
707
		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
708
		if (PageSwapBacked(page))
709
			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
710
	}
711

712 713
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
714
		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
715
	}
716

717 718
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
719
		__count_memcg_events(memcg, PGPGIN, 1);
720
	else {
721
		__count_memcg_events(memcg, PGPGOUT, 1);
722 723
		nr_pages = -nr_pages; /* for event */
	}
724

725
	__this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
726 727
}

728
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
729
					   int nid, unsigned int lru_mask)
730
{
731
	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
732
	unsigned long nr = 0;
733
	enum lru_list lru;
734

735
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
736

737 738 739
	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
740
		nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
741 742
	}
	return nr;
743
}
744

745
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
746
			unsigned int lru_mask)
747
{
748
	unsigned long nr = 0;
749
	enum lru_list lru;
750

751 752 753 754 755
	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
		nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
	}
756
	return nr;
757 758
}

759 760
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
761 762 763
{
	unsigned long val, next;

764 765
	val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
	next = __this_cpu_read(memcg->stat_cpu->targets[target]);
766
	/* from time_after() in jiffies.h */
767
	if ((long)(next - val) < 0) {
768 769 770 771
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
772 773 774
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
775 776 777 778 779 780
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
781
		__this_cpu_write(memcg->stat_cpu->targets[target], next);
782
		return true;
783
	}
784
	return false;
785 786 787 788 789 790
}

/*
 * Check events in order.
 *
 */
791
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
792 793
{
	/* threshold event is triggered in finer grain than soft limit */
794 795
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
796
		bool do_softlimit;
797
		bool do_numainfo __maybe_unused;
798

799 800
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
801 802 803 804
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
805
		mem_cgroup_threshold(memcg);
806 807
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
808
#if MAX_NUMNODES > 1
809
		if (unlikely(do_numainfo))
810
			atomic_inc(&memcg->numainfo_events);
811
#endif
812
	}
813 814
}

815
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
816
{
817 818 819 820 821 822 823 824
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

825
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
826
}
M
Michal Hocko 已提交
827
EXPORT_SYMBOL(mem_cgroup_from_task);
828

829 830 831 832 833 834 835 836 837
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
 * returned.
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
838
{
839 840 841 842
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
843

844 845
	rcu_read_lock();
	do {
846 847 848 849 850 851
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
852
			memcg = root_mem_cgroup;
853 854 855 856 857
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
858
	} while (!css_tryget_online(&memcg->css));
859
	rcu_read_unlock();
860
	return memcg;
861
}
862 863
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
/**
 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
 * @page: page from which memcg should be extracted.
 *
 * Obtain a reference on page->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned.
 */
struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
{
	struct mem_cgroup *memcg = page->mem_cgroup;

	if (mem_cgroup_disabled())
		return NULL;

	rcu_read_lock();
	if (!memcg || !css_tryget_online(&memcg->css))
		memcg = root_mem_cgroup;
	rcu_read_unlock();
	return memcg;
}
EXPORT_SYMBOL(get_mem_cgroup_from_page);

886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
/**
 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
 */
static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
{
	if (unlikely(current->active_memcg)) {
		struct mem_cgroup *memcg = root_mem_cgroup;

		rcu_read_lock();
		if (css_tryget_online(&current->active_memcg->css))
			memcg = current->active_memcg;
		rcu_read_unlock();
		return memcg;
	}
	return get_mem_cgroup_from_mm(current->mm);
}
902

903 904 905 906 907 908 909 910 911 912 913 914 915
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
916
 * Reclaimers can specify a node and a priority level in @reclaim to
917
 * divide up the memcgs in the hierarchy among all concurrent
918
 * reclaimers operating on the same node and priority.
919
 */
920
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
921
				   struct mem_cgroup *prev,
922
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
923
{
M
Michal Hocko 已提交
924
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
925
	struct cgroup_subsys_state *css = NULL;
926
	struct mem_cgroup *memcg = NULL;
927
	struct mem_cgroup *pos = NULL;
928

929 930
	if (mem_cgroup_disabled())
		return NULL;
931

932 933
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
934

935
	if (prev && !reclaim)
936
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
937

938 939
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
940
			goto out;
941
		return root;
942
	}
K
KAMEZAWA Hiroyuki 已提交
943

944
	rcu_read_lock();
M
Michal Hocko 已提交
945

946
	if (reclaim) {
947
		struct mem_cgroup_per_node *mz;
948

949
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
950 951 952 953 954
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

955
		while (1) {
956
			pos = READ_ONCE(iter->position);
957 958
			if (!pos || css_tryget(&pos->css))
				break;
959
			/*
960 961 962 963 964 965
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
966
			 */
967 968
			(void)cmpxchg(&iter->position, pos, NULL);
		}
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
986
		}
K
KAMEZAWA Hiroyuki 已提交
987

988 989 990 991 992 993
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
994

995 996
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
997

998 999
		if (css_tryget(css))
			break;
1000

1001
		memcg = NULL;
1002
	}
1003 1004 1005

	if (reclaim) {
		/*
1006 1007 1008
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
1009
		 */
1010 1011
		(void)cmpxchg(&iter->position, pos, memcg);

1012 1013 1014 1015 1016 1017 1018
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1019
	}
1020

1021 1022
out_unlock:
	rcu_read_unlock();
1023
out:
1024 1025 1026
	if (prev && prev != root)
		css_put(&prev->css);

1027
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1028
}
K
KAMEZAWA Hiroyuki 已提交
1029

1030 1031 1032 1033 1034 1035 1036
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1037 1038 1039 1040 1041 1042
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1043

1044 1045 1046 1047
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
1048 1049
	struct mem_cgroup_per_node *mz;
	int nid;
1050 1051
	int i;

1052
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1053
		for_each_node(nid) {
1054 1055 1056 1057 1058
			mz = mem_cgroup_nodeinfo(memcg, nid);
			for (i = 0; i <= DEF_PRIORITY; i++) {
				iter = &mz->iter[i];
				cmpxchg(&iter->position,
					dead_memcg, NULL);
1059 1060 1061 1062 1063
			}
		}
	}
}

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

1089
		css_task_iter_start(&iter->css, 0, &it);
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

1101
/**
1102
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1103
 * @page: the page
1104
 * @pgdat: pgdat of the page
1105 1106 1107 1108
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1109
 */
M
Mel Gorman 已提交
1110
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
1111
{
1112
	struct mem_cgroup_per_node *mz;
1113
	struct mem_cgroup *memcg;
1114
	struct lruvec *lruvec;
1115

1116
	if (mem_cgroup_disabled()) {
M
Mel Gorman 已提交
1117
		lruvec = &pgdat->lruvec;
1118 1119
		goto out;
	}
1120

1121
	memcg = page->mem_cgroup;
1122
	/*
1123
	 * Swapcache readahead pages are added to the LRU - and
1124
	 * possibly migrated - before they are charged.
1125
	 */
1126 1127
	if (!memcg)
		memcg = root_mem_cgroup;
1128

1129
	mz = mem_cgroup_page_nodeinfo(memcg, page);
1130 1131 1132 1133 1134 1135 1136
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
1137 1138
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
1139
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1140
}
1141

1142
/**
1143 1144 1145
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1146
 * @zid: zone id of the accounted pages
1147
 * @nr_pages: positive when adding or negative when removing
1148
 *
1149 1150 1151
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1152
 */
1153
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1154
				int zid, int nr_pages)
1155
{
1156
	struct mem_cgroup_per_node *mz;
1157
	unsigned long *lru_size;
1158
	long size;
1159 1160 1161 1162

	if (mem_cgroup_disabled())
		return;

1163
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1164
	lru_size = &mz->lru_zone_size[zid][lru];
1165 1166 1167 1168 1169

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1170 1171 1172
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1173 1174 1175 1176 1177 1178
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1179
}
1180

1181
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1182
{
1183
	struct mem_cgroup *task_memcg;
1184
	struct task_struct *p;
1185
	bool ret;
1186

1187
	p = find_lock_task_mm(task);
1188
	if (p) {
1189
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1190 1191 1192 1193 1194 1195 1196
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1197
		rcu_read_lock();
1198 1199
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1200
		rcu_read_unlock();
1201
	}
1202 1203
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1204 1205 1206
	return ret;
}

1207
/**
1208
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1209
 * @memcg: the memory cgroup
1210
 *
1211
 * Returns the maximum amount of memory @mem can be charged with, in
1212
 * pages.
1213
 */
1214
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1215
{
1216 1217 1218
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1219

1220
	count = page_counter_read(&memcg->memory);
1221
	limit = READ_ONCE(memcg->memory.max);
1222 1223 1224
	if (count < limit)
		margin = limit - count;

1225
	if (do_memsw_account()) {
1226
		count = page_counter_read(&memcg->memsw);
1227
		limit = READ_ONCE(memcg->memsw.max);
1228 1229
		if (count <= limit)
			margin = min(margin, limit - count);
1230 1231
		else
			margin = 0;
1232 1233 1234
	}

	return margin;
1235 1236
}

1237
/*
Q
Qiang Huang 已提交
1238
 * A routine for checking "mem" is under move_account() or not.
1239
 *
Q
Qiang Huang 已提交
1240 1241 1242
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1243
 */
1244
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1245
{
1246 1247
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1248
	bool ret = false;
1249 1250 1251 1252 1253 1254 1255 1256 1257
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1258

1259 1260
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1261 1262
unlock:
	spin_unlock(&mc.lock);
1263 1264 1265
	return ret;
}

1266
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1267 1268
{
	if (mc.moving_task && current != mc.moving_task) {
1269
		if (mem_cgroup_under_move(memcg)) {
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1282
static const unsigned int memcg1_stats[] = {
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
	MEMCG_CACHE,
	MEMCG_RSS,
	MEMCG_RSS_HUGE,
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
	"rss_huge",
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

1304
#define K(x) ((x) << (PAGE_SHIFT-10))
1305
/**
1306 1307
 * mem_cgroup_print_oom_context: Print OOM information relevant to
 * memory controller.
1308 1309 1310 1311 1312 1313
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
1314
void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1315 1316 1317
{
	rcu_read_lock();

1318 1319 1320 1321 1322
	if (memcg) {
		pr_cont(",oom_memcg=");
		pr_cont_cgroup_path(memcg->css.cgroup);
	} else
		pr_cont(",global_oom");
1323
	if (p) {
1324
		pr_cont(",task_memcg=");
1325 1326
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	}
1327
	rcu_read_unlock();
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
}

/**
 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
 * memory controller.
 * @memcg: The memory cgroup that went over limit
 */
void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
	struct mem_cgroup *iter;
	unsigned int i;
1339

1340 1341
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1342
		K((u64)memcg->memory.max), memcg->memory.failcnt);
1343 1344
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
1345
		K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1346 1347
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
1348
		K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1349 1350

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1351 1352
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1353 1354
		pr_cont(":");

1355 1356
		for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
			if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1357
				continue;
1358
			pr_cont(" %s:%luKB", memcg1_stat_names[i],
1359
				K(memcg_page_state(iter, memcg1_stats[i])));
1360 1361 1362 1363
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1364
				K(memcg_page_state(iter, NR_LRU_BASE + i)));
1365 1366 1367

		pr_cont("\n");
	}
1368 1369
}

D
David Rientjes 已提交
1370 1371 1372
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1373
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1374
{
1375
	unsigned long max;
1376

1377
	max = memcg->memory.max;
1378
	if (mem_cgroup_swappiness(memcg)) {
1379 1380
		unsigned long memsw_max;
		unsigned long swap_max;
1381

1382 1383 1384 1385
		memsw_max = memcg->memsw.max;
		swap_max = memcg->swap.max;
		swap_max = min(swap_max, (unsigned long)total_swap_pages);
		max = min(max + swap_max, memsw_max);
1386
	}
1387
	return max;
D
David Rientjes 已提交
1388 1389
}

1390
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1391
				     int order)
1392
{
1393 1394 1395
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1396
		.memcg = memcg,
1397 1398 1399
		.gfp_mask = gfp_mask,
		.order = order,
	};
1400
	bool ret;
1401

1402 1403 1404 1405 1406 1407 1408
	if (mutex_lock_killable(&oom_lock))
		return true;
	/*
	 * A few threads which were not waiting at mutex_lock_killable() can
	 * fail to bail out. Therefore, check again after holding oom_lock.
	 */
	ret = should_force_charge() || out_of_memory(&oc);
1409
	mutex_unlock(&oom_lock);
1410
	return ret;
1411 1412
}

1413 1414
#if MAX_NUMNODES > 1

1415 1416
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1417
 * @memcg: the target memcg
1418 1419 1420 1421 1422 1423 1424
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1425
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1426 1427
		int nid, bool noswap)
{
1428 1429 1430 1431
	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);

	if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
	    lruvec_page_state(lruvec, NR_ACTIVE_FILE))
1432 1433 1434
		return true;
	if (noswap || !total_swap_pages)
		return false;
1435 1436
	if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
	    lruvec_page_state(lruvec, NR_ACTIVE_ANON))
1437 1438 1439 1440
		return true;
	return false;

}
1441 1442 1443 1444 1445 1446 1447

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1448
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1449 1450
{
	int nid;
1451 1452 1453 1454
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1455
	if (!atomic_read(&memcg->numainfo_events))
1456
		return;
1457
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1458 1459 1460
		return;

	/* make a nodemask where this memcg uses memory from */
1461
	memcg->scan_nodes = node_states[N_MEMORY];
1462

1463
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1464

1465 1466
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1467
	}
1468

1469 1470
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1485
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1486 1487 1488
{
	int node;

1489 1490
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1491

1492
	node = next_node_in(node, memcg->scan_nodes);
1493
	/*
1494 1495 1496
	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
	 * last time it really checked all the LRUs due to rate limiting.
	 * Fallback to the current node in that case for simplicity.
1497 1498 1499 1500
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1501
	memcg->last_scanned_node = node;
1502 1503 1504
	return node;
}
#else
1505
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1506 1507 1508 1509 1510
{
	return 0;
}
#endif

1511
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1512
				   pg_data_t *pgdat,
1513 1514 1515 1516 1517 1518 1519 1520 1521
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1522
		.pgdat = pgdat,
1523 1524 1525
		.priority = 0,
	};

1526
	excess = soft_limit_excess(root_memcg);
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1552
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1553
					pgdat, &nr_scanned);
1554
		*total_scanned += nr_scanned;
1555
		if (!soft_limit_excess(root_memcg))
1556
			break;
1557
	}
1558 1559
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1560 1561
}

1562 1563 1564 1565 1566 1567
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1568 1569
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1570 1571 1572 1573
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1574
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1575
{
1576
	struct mem_cgroup *iter, *failed = NULL;
1577

1578 1579
	spin_lock(&memcg_oom_lock);

1580
	for_each_mem_cgroup_tree(iter, memcg) {
1581
		if (iter->oom_lock) {
1582 1583 1584 1585 1586
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1587 1588
			mem_cgroup_iter_break(memcg, iter);
			break;
1589 1590
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1591
	}
K
KAMEZAWA Hiroyuki 已提交
1592

1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1604
		}
1605 1606
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1607 1608 1609 1610

	spin_unlock(&memcg_oom_lock);

	return !failed;
1611
}
1612

1613
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1614
{
K
KAMEZAWA Hiroyuki 已提交
1615 1616
	struct mem_cgroup *iter;

1617
	spin_lock(&memcg_oom_lock);
1618
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1619
	for_each_mem_cgroup_tree(iter, memcg)
1620
		iter->oom_lock = false;
1621
	spin_unlock(&memcg_oom_lock);
1622 1623
}

1624
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1625 1626 1627
{
	struct mem_cgroup *iter;

1628
	spin_lock(&memcg_oom_lock);
1629
	for_each_mem_cgroup_tree(iter, memcg)
1630 1631
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1632 1633
}

1634
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1635 1636 1637
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1638 1639
	/*
	 * When a new child is created while the hierarchy is under oom,
1640
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1641
	 */
1642
	spin_lock(&memcg_oom_lock);
1643
	for_each_mem_cgroup_tree(iter, memcg)
1644 1645 1646
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1647 1648
}

K
KAMEZAWA Hiroyuki 已提交
1649 1650
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1651
struct oom_wait_info {
1652
	struct mem_cgroup *memcg;
1653
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1654 1655
};

1656
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1657 1658
	unsigned mode, int sync, void *arg)
{
1659 1660
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1661 1662 1663
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1664
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1665

1666 1667
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1668 1669 1670 1671
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1672
static void memcg_oom_recover(struct mem_cgroup *memcg)
1673
{
1674 1675 1676 1677 1678 1679 1680 1681 1682
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1683
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1684 1685
}

1686 1687 1688 1689 1690 1691 1692 1693
enum oom_status {
	OOM_SUCCESS,
	OOM_FAILED,
	OOM_ASYNC,
	OOM_SKIPPED
};

static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1694
{
1695 1696 1697
	enum oom_status ret;
	bool locked;

1698 1699 1700
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		return OOM_SKIPPED;

1701 1702
	memcg_memory_event(memcg, MEMCG_OOM);

K
KAMEZAWA Hiroyuki 已提交
1703
	/*
1704 1705 1706 1707
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1708 1709 1710 1711
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1712
	 *
1713 1714 1715 1716 1717 1718 1719
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
K
KAMEZAWA Hiroyuki 已提交
1720
	 */
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
	if (memcg->oom_kill_disable) {
		if (!current->in_user_fault)
			return OOM_SKIPPED;
		css_get(&memcg->css);
		current->memcg_in_oom = memcg;
		current->memcg_oom_gfp_mask = mask;
		current->memcg_oom_order = order;

		return OOM_ASYNC;
	}

1732 1733 1734 1735 1736 1737 1738 1739
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	mem_cgroup_unmark_under_oom(memcg);
1740
	if (mem_cgroup_out_of_memory(memcg, mask, order))
1741 1742 1743 1744 1745 1746
		ret = OOM_SUCCESS;
	else
		ret = OOM_FAILED;

	if (locked)
		mem_cgroup_oom_unlock(memcg);
1747

1748
	return ret;
1749 1750 1751 1752
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1753
 * @handle: actually kill/wait or just clean up the OOM state
1754
 *
1755 1756
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1757
 *
1758
 * Memcg supports userspace OOM handling where failed allocations must
1759 1760 1761 1762
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1763
 * the end of the page fault to complete the OOM handling.
1764 1765
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1766
 * completed, %false otherwise.
1767
 */
1768
bool mem_cgroup_oom_synchronize(bool handle)
1769
{
T
Tejun Heo 已提交
1770
	struct mem_cgroup *memcg = current->memcg_in_oom;
1771
	struct oom_wait_info owait;
1772
	bool locked;
1773 1774 1775

	/* OOM is global, do not handle */
	if (!memcg)
1776
		return false;
1777

1778
	if (!handle)
1779
		goto cleanup;
1780 1781 1782 1783 1784

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
1785
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
1786

1787
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1798 1799
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1800
	} else {
1801
		schedule();
1802 1803 1804 1805 1806
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1807 1808 1809 1810 1811 1812 1813 1814
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1815
cleanup:
T
Tejun Heo 已提交
1816
	current->memcg_in_oom = NULL;
1817
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1818
	return true;
1819 1820
}

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
/**
 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 * @victim: task to be killed by the OOM killer
 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 *
 * Returns a pointer to a memory cgroup, which has to be cleaned up
 * by killing all belonging OOM-killable tasks.
 *
 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 */
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
					    struct mem_cgroup *oom_domain)
{
	struct mem_cgroup *oom_group = NULL;
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return NULL;

	if (!oom_domain)
		oom_domain = root_mem_cgroup;

	rcu_read_lock();

	memcg = mem_cgroup_from_task(victim);
	if (memcg == root_mem_cgroup)
		goto out;

	/*
	 * Traverse the memory cgroup hierarchy from the victim task's
	 * cgroup up to the OOMing cgroup (or root) to find the
	 * highest-level memory cgroup with oom.group set.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		if (memcg->oom_group)
			oom_group = memcg;

		if (memcg == oom_domain)
			break;
	}

	if (oom_group)
		css_get(&oom_group->css);
out:
	rcu_read_unlock();

	return oom_group;
}

void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
	pr_info("Tasks in ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(" are going to be killed due to memory.oom.group set\n");
}

1877
/**
1878 1879
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1880
 *
1881
 * This function protects unlocked LRU pages from being moved to
1882 1883 1884 1885 1886
 * another cgroup.
 *
 * It ensures lifetime of the returned memcg. Caller is responsible
 * for the lifetime of the page; __unlock_page_memcg() is available
 * when @page might get freed inside the locked section.
1887
 */
1888
struct mem_cgroup *lock_page_memcg(struct page *page)
1889 1890
{
	struct mem_cgroup *memcg;
1891
	unsigned long flags;
1892

1893 1894 1895 1896
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
1897 1898 1899 1900 1901 1902 1903
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page itself from being freed. E.g. writeback
	 * doesn't hold a page reference and relies on PG_writeback to
	 * keep off truncation, migration and so forth.
         */
1904 1905 1906
	rcu_read_lock();

	if (mem_cgroup_disabled())
1907
		return NULL;
1908
again:
1909
	memcg = page->mem_cgroup;
1910
	if (unlikely(!memcg))
1911
		return NULL;
1912

Q
Qiang Huang 已提交
1913
	if (atomic_read(&memcg->moving_account) <= 0)
1914
		return memcg;
1915

1916
	spin_lock_irqsave(&memcg->move_lock, flags);
1917
	if (memcg != page->mem_cgroup) {
1918
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1919 1920
		goto again;
	}
1921 1922 1923 1924

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
1925
	 * the task who has the lock for unlock_page_memcg().
1926 1927 1928
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1929

1930
	return memcg;
1931
}
1932
EXPORT_SYMBOL(lock_page_memcg);
1933

1934
/**
1935 1936 1937 1938
 * __unlock_page_memcg - unlock and unpin a memcg
 * @memcg: the memcg
 *
 * Unlock and unpin a memcg returned by lock_page_memcg().
1939
 */
1940
void __unlock_page_memcg(struct mem_cgroup *memcg)
1941
{
1942 1943 1944 1945 1946 1947 1948 1949
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1950

1951
	rcu_read_unlock();
1952
}
1953 1954 1955 1956 1957 1958 1959 1960 1961

/**
 * unlock_page_memcg - unlock a page->mem_cgroup binding
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
	__unlock_page_memcg(page->mem_cgroup);
}
1962
EXPORT_SYMBOL(unlock_page_memcg);
1963

1964 1965
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1966
	unsigned int nr_pages;
1967
	struct work_struct work;
1968
	unsigned long flags;
1969
#define FLUSHING_CACHED_CHARGE	0
1970 1971
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1972
static DEFINE_MUTEX(percpu_charge_mutex);
1973

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1984
 */
1985
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1986 1987
{
	struct memcg_stock_pcp *stock;
1988
	unsigned long flags;
1989
	bool ret = false;
1990

1991
	if (nr_pages > MEMCG_CHARGE_BATCH)
1992
		return ret;
1993

1994 1995 1996
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
1997
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1998
		stock->nr_pages -= nr_pages;
1999 2000
		ret = true;
	}
2001 2002 2003

	local_irq_restore(flags);

2004 2005 2006 2007
	return ret;
}

/*
2008
 * Returns stocks cached in percpu and reset cached information.
2009 2010 2011 2012 2013
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2014
	if (stock->nr_pages) {
2015
		page_counter_uncharge(&old->memory, stock->nr_pages);
2016
		if (do_memsw_account())
2017
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2018
		css_put_many(&old->css, stock->nr_pages);
2019
		stock->nr_pages = 0;
2020 2021 2022 2023 2024 2025
	}
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
2026 2027 2028
	struct memcg_stock_pcp *stock;
	unsigned long flags;

2029 2030 2031 2032
	/*
	 * The only protection from memory hotplug vs. drain_stock races is
	 * that we always operate on local CPU stock here with IRQ disabled
	 */
2033 2034 2035
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2036
	drain_stock(stock);
2037
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2038 2039

	local_irq_restore(flags);
2040 2041 2042
}

/*
2043
 * Cache charges(val) to local per_cpu area.
2044
 * This will be consumed by consume_stock() function, later.
2045
 */
2046
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2047
{
2048 2049 2050 2051
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
2052

2053
	stock = this_cpu_ptr(&memcg_stock);
2054
	if (stock->cached != memcg) { /* reset if necessary */
2055
		drain_stock(stock);
2056
		stock->cached = memcg;
2057
	}
2058
	stock->nr_pages += nr_pages;
2059

2060
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2061 2062
		drain_stock(stock);

2063
	local_irq_restore(flags);
2064 2065 2066
}

/*
2067
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2068
 * of the hierarchy under it.
2069
 */
2070
static void drain_all_stock(struct mem_cgroup *root_memcg)
2071
{
2072
	int cpu, curcpu;
2073

2074 2075 2076
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2077 2078 2079 2080 2081 2082
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
2083
	curcpu = get_cpu();
2084 2085
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2086
		struct mem_cgroup *memcg;
2087

2088
		memcg = stock->cached;
2089
		if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
2090
			continue;
2091 2092
		if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
			css_put(&memcg->css);
2093
			continue;
2094
		}
2095 2096 2097 2098 2099 2100
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2101
		css_put(&memcg->css);
2102
	}
2103
	put_cpu();
2104
	mutex_unlock(&percpu_charge_mutex);
2105 2106
}

2107
static int memcg_hotplug_cpu_dead(unsigned int cpu)
2108 2109
{
	struct memcg_stock_pcp *stock;
2110
	struct mem_cgroup *memcg;
2111 2112 2113

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138

	for_each_mem_cgroup(memcg) {
		int i;

		for (i = 0; i < MEMCG_NR_STAT; i++) {
			int nid;
			long x;

			x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
			if (x)
				atomic_long_add(x, &memcg->stat[i]);

			if (i >= NR_VM_NODE_STAT_ITEMS)
				continue;

			for_each_node(nid) {
				struct mem_cgroup_per_node *pn;

				pn = mem_cgroup_nodeinfo(memcg, nid);
				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
				if (x)
					atomic_long_add(x, &pn->lruvec_stat[i]);
			}
		}

2139
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2140 2141 2142 2143 2144 2145 2146 2147
			long x;

			x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
			if (x)
				atomic_long_add(x, &memcg->events[i]);
		}
	}

2148
	return 0;
2149 2150
}

2151 2152 2153 2154 2155 2156 2157
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
2158
		memcg_memory_event(memcg, MEMCG_HIGH);
2159 2160 2161 2162 2163 2164 2165 2166 2167
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
2168
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2169 2170
}

2171 2172 2173 2174 2175 2176 2177
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2178
	struct mem_cgroup *memcg;
2179 2180 2181 2182

	if (likely(!nr_pages))
		return;

2183 2184
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
2185 2186 2187 2188
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

2189 2190
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2191
{
2192
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2193
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2194
	struct mem_cgroup *mem_over_limit;
2195
	struct page_counter *counter;
2196
	unsigned long nr_reclaimed;
2197 2198
	bool may_swap = true;
	bool drained = false;
2199 2200
	bool oomed = false;
	enum oom_status oom_status;
2201

2202
	if (mem_cgroup_is_root(memcg))
2203
		return 0;
2204
retry:
2205
	if (consume_stock(memcg, nr_pages))
2206
		return 0;
2207

2208
	if (!do_memsw_account() ||
2209 2210
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2211
			goto done_restock;
2212
		if (do_memsw_account())
2213 2214
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2215
	} else {
2216
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2217
		may_swap = false;
2218
	}
2219

2220 2221 2222 2223
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2224

2225 2226 2227 2228 2229 2230
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
2231
	if (unlikely(should_force_charge()))
2232
		goto force;
2233

2234 2235 2236 2237 2238 2239 2240 2241 2242
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2243 2244 2245
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2246
	if (!gfpflags_allow_blocking(gfp_mask))
2247
		goto nomem;
2248

2249
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2250

2251 2252
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2253

2254
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2255
		goto retry;
2256

2257
	if (!drained) {
2258
		drain_all_stock(mem_over_limit);
2259 2260 2261 2262
		drained = true;
		goto retry;
	}

2263 2264
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2265 2266 2267 2268 2269 2270 2271 2272 2273
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2274
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2275 2276 2277 2278 2279 2280 2281 2282
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2283 2284 2285
	if (nr_retries--)
		goto retry;

2286 2287 2288
	if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed)
		goto nomem;

2289
	if (gfp_mask & __GFP_NOFAIL)
2290
		goto force;
2291

2292
	if (fatal_signal_pending(current))
2293
		goto force;
2294

2295 2296 2297 2298 2299 2300
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2301
		       get_order(nr_pages * PAGE_SIZE));
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
	switch (oom_status) {
	case OOM_SUCCESS:
		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
		oomed = true;
		goto retry;
	case OOM_FAILED:
		goto force;
	default:
		goto nomem;
	}
2312
nomem:
2313
	if (!(gfp_mask & __GFP_NOFAIL))
2314
		return -ENOMEM;
2315 2316 2317 2318 2319 2320 2321
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2322
	if (do_memsw_account())
2323 2324 2325 2326
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2327 2328

done_restock:
2329
	css_get_many(&memcg->css, batch);
2330 2331
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2332

2333
	/*
2334 2335
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2336
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2337 2338 2339 2340
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2341 2342
	 */
	do {
2343
		if (page_counter_read(&memcg->memory) > memcg->high) {
2344 2345 2346 2347 2348
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2349
			current->memcg_nr_pages_over_high += batch;
2350 2351 2352
			set_notify_resume(current);
			break;
		}
2353
	} while ((memcg = parent_mem_cgroup(memcg)));
2354 2355

	return 0;
2356
}
2357

2358
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2359
{
2360 2361 2362
	if (mem_cgroup_is_root(memcg))
		return;

2363
	page_counter_uncharge(&memcg->memory, nr_pages);
2364
	if (do_memsw_account())
2365
		page_counter_uncharge(&memcg->memsw, nr_pages);
2366

2367
	css_put_many(&memcg->css, nr_pages);
2368 2369
}

2370 2371
static void lock_page_lru(struct page *page, int *isolated)
{
2372
	pg_data_t *pgdat = page_pgdat(page);
2373

2374
	spin_lock_irq(&pgdat->lru_lock);
2375 2376 2377
	if (PageLRU(page)) {
		struct lruvec *lruvec;

2378
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2379 2380 2381 2382 2383 2384 2385 2386 2387
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
2388
	pg_data_t *pgdat = page_pgdat(page);
2389 2390 2391 2392

	if (isolated) {
		struct lruvec *lruvec;

2393
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2394 2395 2396 2397
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
2398
	spin_unlock_irq(&pgdat->lru_lock);
2399 2400
}

2401
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2402
			  bool lrucare)
2403
{
2404
	int isolated;
2405

2406
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2407 2408 2409 2410 2411

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2412 2413
	if (lrucare)
		lock_page_lru(page, &isolated);
2414

2415 2416
	/*
	 * Nobody should be changing or seriously looking at
2417
	 * page->mem_cgroup at this point:
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2429
	page->mem_cgroup = memcg;
2430

2431 2432
	if (lrucare)
		unlock_page_lru(page, isolated);
2433
}
2434

2435
#ifdef CONFIG_MEMCG_KMEM
2436
static int memcg_alloc_cache_id(void)
2437
{
2438 2439 2440
	int id, size;
	int err;

2441
	id = ida_simple_get(&memcg_cache_ida,
2442 2443 2444
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2445

2446
	if (id < memcg_nr_cache_ids)
2447 2448 2449 2450 2451 2452
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2453
	down_write(&memcg_cache_ids_sem);
2454 2455

	size = 2 * (id + 1);
2456 2457 2458 2459 2460
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2461
	err = memcg_update_all_caches(size);
2462 2463
	if (!err)
		err = memcg_update_all_list_lrus(size);
2464 2465 2466 2467 2468
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2469
	if (err) {
2470
		ida_simple_remove(&memcg_cache_ida, id);
2471 2472 2473 2474 2475 2476 2477
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2478
	ida_simple_remove(&memcg_cache_ida, id);
2479 2480
}

2481
struct memcg_kmem_cache_create_work {
2482 2483 2484 2485 2486
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2487
static void memcg_kmem_cache_create_func(struct work_struct *w)
2488
{
2489 2490
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2491 2492
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2493

2494
	memcg_create_kmem_cache(memcg, cachep);
2495

2496
	css_put(&memcg->css);
2497 2498 2499 2500 2501 2502
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2503
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2504
					       struct kmem_cache *cachep)
2505
{
2506
	struct memcg_kmem_cache_create_work *cw;
2507

2508
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2509
	if (!cw)
2510
		return;
2511 2512

	css_get(&memcg->css);
2513 2514 2515

	cw->memcg = memcg;
	cw->cachep = cachep;
2516
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2517

2518
	queue_work(memcg_kmem_cache_wq, &cw->work);
2519 2520
}

2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
static inline bool memcg_kmem_bypass(void)
{
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;
	return false;
}

/**
 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
 * @cachep: the original global kmem cache
 *
2532 2533 2534
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
2535 2536 2537
 * If the cache does not exist yet, if we are the first user of it, we
 * create it asynchronously in a workqueue and let the current allocation
 * go through with the original cache.
2538
 *
2539 2540 2541 2542
 * This function takes a reference to the cache it returns to assure it
 * won't get destroyed while we are working with it. Once the caller is
 * done with it, memcg_kmem_put_cache() must be called to release the
 * reference.
2543
 */
2544
struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2545 2546
{
	struct mem_cgroup *memcg;
2547
	struct kmem_cache *memcg_cachep;
2548
	int kmemcg_id;
2549

2550
	VM_BUG_ON(!is_root_cache(cachep));
2551

2552
	if (memcg_kmem_bypass())
V
Vladimir Davydov 已提交
2553 2554
		return cachep;

2555
	memcg = get_mem_cgroup_from_current();
2556
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2557
	if (kmemcg_id < 0)
2558
		goto out;
2559

2560
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2561 2562
	if (likely(memcg_cachep))
		return memcg_cachep;
2563 2564 2565 2566 2567 2568 2569 2570 2571

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2572 2573 2574
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2575
	 */
2576
	memcg_schedule_kmem_cache_create(memcg, cachep);
2577
out:
2578
	css_put(&memcg->css);
2579
	return cachep;
2580 2581
}

2582 2583 2584 2585 2586
/**
 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
 * @cachep: the cache returned by memcg_kmem_get_cache
 */
void memcg_kmem_put_cache(struct kmem_cache *cachep)
2587 2588
{
	if (!is_root_cache(cachep))
2589
		css_put(&cachep->memcg_params.memcg->css);
2590 2591
}

2592
/**
2593
 * __memcg_kmem_charge_memcg: charge a kmem page
2594 2595 2596 2597 2598 2599 2600
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 * @memcg: memory cgroup to charge
 *
 * Returns 0 on success, an error code on failure.
 */
2601
int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2602
			    struct mem_cgroup *memcg)
2603
{
2604 2605
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2606 2607
	int ret;

2608
	ret = try_charge(memcg, gfp, nr_pages);
2609
	if (ret)
2610
		return ret;
2611 2612 2613 2614 2615

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2616 2617
	}

2618
	page->mem_cgroup = memcg;
2619

2620
	return 0;
2621 2622
}

2623
/**
2624
 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2625 2626 2627 2628 2629 2630
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
2631
int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2632
{
2633
	struct mem_cgroup *memcg;
2634
	int ret = 0;
2635

2636
	if (memcg_kmem_bypass())
2637 2638
		return 0;

2639
	memcg = get_mem_cgroup_from_current();
2640
	if (!mem_cgroup_is_root(memcg)) {
2641
		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2642 2643 2644
		if (!ret)
			__SetPageKmemcg(page);
	}
2645
	css_put(&memcg->css);
2646
	return ret;
2647
}
2648
/**
2649
 * __memcg_kmem_uncharge: uncharge a kmem page
2650 2651 2652
 * @page: page to uncharge
 * @order: allocation order
 */
2653
void __memcg_kmem_uncharge(struct page *page, int order)
2654
{
2655
	struct mem_cgroup *memcg = page->mem_cgroup;
2656
	unsigned int nr_pages = 1 << order;
2657 2658 2659 2660

	if (!memcg)
		return;

2661
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2662

2663 2664 2665
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

2666
	page_counter_uncharge(&memcg->memory, nr_pages);
2667
	if (do_memsw_account())
2668
		page_counter_uncharge(&memcg->memsw, nr_pages);
2669

2670
	page->mem_cgroup = NULL;
2671 2672 2673 2674 2675

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);

2676
	css_put_many(&memcg->css, nr_pages);
2677
}
2678
#endif /* CONFIG_MEMCG_KMEM */
2679

2680 2681 2682 2683
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2684
 * pgdat->lru_lock and migration entries setup in all page mappings.
2685
 */
2686
void mem_cgroup_split_huge_fixup(struct page *head)
2687
{
2688
	int i;
2689

2690 2691
	if (mem_cgroup_disabled())
		return;
2692

2693
	for (i = 1; i < HPAGE_PMD_NR; i++)
2694
		head[i].mem_cgroup = head->mem_cgroup;
2695

2696
	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2697
}
2698
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2699

A
Andrew Morton 已提交
2700
#ifdef CONFIG_MEMCG_SWAP
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2712
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2713 2714 2715
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2716
				struct mem_cgroup *from, struct mem_cgroup *to)
2717 2718 2719
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2720 2721
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2722 2723

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2724 2725
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
2726 2727 2728 2729 2730 2731
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2732
				struct mem_cgroup *from, struct mem_cgroup *to)
2733 2734 2735
{
	return -EINVAL;
}
2736
#endif
K
KAMEZAWA Hiroyuki 已提交
2737

2738
static DEFINE_MUTEX(memcg_max_mutex);
2739

2740 2741
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
2742
{
2743
	bool enlarge = false;
2744
	bool drained = false;
2745
	int ret;
2746 2747
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2748

2749
	do {
2750 2751 2752 2753
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2754

2755
		mutex_lock(&memcg_max_mutex);
2756 2757
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
2758
		 * break our basic invariant rule memory.max <= memsw.max.
2759
		 */
2760 2761
		limits_invariant = memsw ? max >= memcg->memory.max :
					   max <= memcg->memsw.max;
2762
		if (!limits_invariant) {
2763
			mutex_unlock(&memcg_max_mutex);
2764 2765 2766
			ret = -EINVAL;
			break;
		}
2767
		if (max > counter->max)
2768
			enlarge = true;
2769 2770
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
2771 2772 2773 2774

		if (!ret)
			break;

2775 2776 2777 2778 2779 2780
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

2781 2782 2783 2784 2785 2786
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
2787

2788 2789
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2790

2791 2792 2793
	return ret;
}

2794
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2795 2796 2797 2798
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
2799
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2800 2801
	unsigned long reclaimed;
	int loop = 0;
2802
	struct mem_cgroup_tree_per_node *mctz;
2803
	unsigned long excess;
2804 2805 2806 2807 2808
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

2809
	mctz = soft_limit_tree_node(pgdat->node_id);
2810 2811 2812 2813 2814 2815

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
2816
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2817 2818
		return 0;

2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
2833
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2834 2835 2836
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2837
		spin_lock_irq(&mctz->lock);
2838
		__mem_cgroup_remove_exceeded(mz, mctz);
2839 2840 2841 2842 2843 2844

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2845 2846 2847
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2848
		excess = soft_limit_excess(mz->memcg);
2849 2850 2851 2852 2853 2854 2855 2856 2857
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2858
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2859
		spin_unlock_irq(&mctz->lock);
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2877 2878 2879 2880 2881 2882
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2883 2884
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2885 2886 2887 2888 2889 2890
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2891 2892
}

2893
/*
2894
 * Reclaims as many pages from the given memcg as possible.
2895 2896 2897 2898 2899 2900 2901
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2902 2903
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2904 2905 2906

	drain_all_stock(memcg);

2907
	/* try to free all pages in this cgroup */
2908
	while (nr_retries && page_counter_read(&memcg->memory)) {
2909
		int progress;
2910

2911 2912 2913
		if (signal_pending(current))
			return -EINTR;

2914 2915
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2916
		if (!progress) {
2917
			nr_retries--;
2918
			/* maybe some writeback is necessary */
2919
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2920
		}
2921 2922

	}
2923 2924

	return 0;
2925 2926
}

2927 2928 2929
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2930
{
2931
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2932

2933 2934
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2935
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2936 2937
}

2938 2939
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2940
{
2941
	return mem_cgroup_from_css(css)->use_hierarchy;
2942 2943
}

2944 2945
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2946 2947
{
	int retval = 0;
2948
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2949
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2950

2951
	if (memcg->use_hierarchy == val)
2952
		return 0;
2953

2954
	/*
2955
	 * If parent's use_hierarchy is set, we can't make any modifications
2956 2957 2958 2959 2960 2961
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2962
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2963
				(val == 1 || val == 0)) {
2964
		if (!memcg_has_children(memcg))
2965
			memcg->use_hierarchy = val;
2966 2967 2968 2969
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2970

2971 2972 2973
	return retval;
}

2974 2975 2976 2977 2978 2979 2980 2981 2982
struct accumulated_stats {
	unsigned long stat[MEMCG_NR_STAT];
	unsigned long events[NR_VM_EVENT_ITEMS];
	unsigned long lru_pages[NR_LRU_LISTS];
	const unsigned int *stats_array;
	const unsigned int *events_array;
	int stats_size;
	int events_size;
};
2983

2984 2985
static void accumulate_memcg_tree(struct mem_cgroup *memcg,
				  struct accumulated_stats *acc)
2986
{
2987
	struct mem_cgroup *mi;
2988
	int i;
2989

2990 2991 2992 2993
	for_each_mem_cgroup_tree(mi, memcg) {
		for (i = 0; i < acc->stats_size; i++)
			acc->stat[i] += memcg_page_state(mi,
				acc->stats_array ? acc->stats_array[i] : i);
2994

2995 2996 2997 2998 2999
		for (i = 0; i < acc->events_size; i++)
			acc->events[i] += memcg_sum_events(mi,
				acc->events_array ? acc->events_array[i] : i);

		for (i = 0; i < NR_LRU_LISTS; i++)
3000 3001
			acc->lru_pages[i] += memcg_page_state(mi,
							      NR_LRU_BASE + i);
3002
	}
3003 3004
}

3005
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3006
{
3007
	unsigned long val = 0;
3008

3009
	if (mem_cgroup_is_root(memcg)) {
3010 3011 3012
		struct mem_cgroup *iter;

		for_each_mem_cgroup_tree(iter, memcg) {
3013 3014
			val += memcg_page_state(iter, MEMCG_CACHE);
			val += memcg_page_state(iter, MEMCG_RSS);
3015
			if (swap)
3016
				val += memcg_page_state(iter, MEMCG_SWAP);
3017
		}
3018
	} else {
3019
		if (!swap)
3020
			val = page_counter_read(&memcg->memory);
3021
		else
3022
			val = page_counter_read(&memcg->memsw);
3023
	}
3024
	return val;
3025 3026
}

3027 3028 3029 3030 3031 3032 3033
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3034

3035
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3036
			       struct cftype *cft)
B
Balbir Singh 已提交
3037
{
3038
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3039
	struct page_counter *counter;
3040

3041
	switch (MEMFILE_TYPE(cft->private)) {
3042
	case _MEM:
3043 3044
		counter = &memcg->memory;
		break;
3045
	case _MEMSWAP:
3046 3047
		counter = &memcg->memsw;
		break;
3048
	case _KMEM:
3049
		counter = &memcg->kmem;
3050
		break;
V
Vladimir Davydov 已提交
3051
	case _TCP:
3052
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3053
		break;
3054 3055 3056
	default:
		BUG();
	}
3057 3058 3059 3060

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
3061
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3062
		if (counter == &memcg->memsw)
3063
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3064 3065
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
3066
		return (u64)counter->max * PAGE_SIZE;
3067 3068 3069 3070 3071 3072 3073 3074 3075
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3076
}
3077

3078
#ifdef CONFIG_MEMCG_KMEM
3079
static int memcg_online_kmem(struct mem_cgroup *memcg)
3080 3081 3082
{
	int memcg_id;

3083 3084 3085
	if (cgroup_memory_nokmem)
		return 0;

3086
	BUG_ON(memcg->kmemcg_id >= 0);
3087
	BUG_ON(memcg->kmem_state);
3088

3089
	memcg_id = memcg_alloc_cache_id();
3090 3091
	if (memcg_id < 0)
		return memcg_id;
3092

3093
	static_branch_inc(&memcg_kmem_enabled_key);
3094
	/*
3095
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
3096
	 * kmemcg_id. Setting the id after enabling static branching will
3097 3098 3099
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3100
	memcg->kmemcg_id = memcg_id;
3101
	memcg->kmem_state = KMEM_ONLINE;
3102
	INIT_LIST_HEAD(&memcg->kmem_caches);
3103 3104

	return 0;
3105 3106
}

3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	memcg_deactivate_kmem_caches(memcg);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
3140
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3141 3142 3143 3144 3145 3146 3147
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
3148 3149
	rcu_read_unlock();

3150
	memcg_drain_all_list_lrus(kmemcg_id, parent);
3151 3152 3153 3154 3155 3156

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
3157 3158 3159 3160
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

3161 3162 3163 3164 3165 3166
	if (memcg->kmem_state == KMEM_ALLOCATED) {
		memcg_destroy_kmem_caches(memcg);
		static_branch_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
}
3167
#else
3168
static int memcg_online_kmem(struct mem_cgroup *memcg)
3169 3170 3171 3172 3173 3174 3175 3176 3177
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
3178
#endif /* CONFIG_MEMCG_KMEM */
3179

3180 3181
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
3182
{
3183
	int ret;
3184

3185 3186 3187
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
3188
	return ret;
3189
}
3190

3191
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
3192 3193 3194
{
	int ret;

3195
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3196

3197
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
3198 3199 3200
	if (ret)
		goto out;

3201
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3202 3203 3204
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3205 3206 3207
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
3208 3209 3210 3211 3212 3213
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3214
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
3215 3216 3217 3218
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3219
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3220 3221
	}
out:
3222
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3223 3224 3225
	return ret;
}

3226 3227 3228 3229
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3230 3231
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3232
{
3233
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3234
	unsigned long nr_pages;
3235 3236
	int ret;

3237
	buf = strstrip(buf);
3238
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3239 3240
	if (ret)
		return ret;
3241

3242
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3243
	case RES_LIMIT:
3244 3245 3246 3247
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3248 3249
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3250
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3251
			break;
3252
		case _MEMSWAP:
3253
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3254
			break;
3255
		case _KMEM:
3256
			ret = memcg_update_kmem_max(memcg, nr_pages);
3257
			break;
V
Vladimir Davydov 已提交
3258
		case _TCP:
3259
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
3260
			break;
3261
		}
3262
		break;
3263 3264 3265
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3266 3267
		break;
	}
3268
	return ret ?: nbytes;
B
Balbir Singh 已提交
3269 3270
}

3271 3272
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3273
{
3274
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3275
	struct page_counter *counter;
3276

3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3287
	case _TCP:
3288
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3289
		break;
3290 3291 3292
	default:
		BUG();
	}
3293

3294
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3295
	case RES_MAX_USAGE:
3296
		page_counter_reset_watermark(counter);
3297 3298
		break;
	case RES_FAILCNT:
3299
		counter->failcnt = 0;
3300
		break;
3301 3302
	default:
		BUG();
3303
	}
3304

3305
	return nbytes;
3306 3307
}

3308
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3309 3310
					struct cftype *cft)
{
3311
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3312 3313
}

3314
#ifdef CONFIG_MMU
3315
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3316 3317
					struct cftype *cft, u64 val)
{
3318
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3319

3320
	if (val & ~MOVE_MASK)
3321
		return -EINVAL;
3322

3323
	/*
3324 3325 3326 3327
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3328
	 */
3329
	memcg->move_charge_at_immigrate = val;
3330 3331
	return 0;
}
3332
#else
3333
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3334 3335 3336 3337 3338
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3339

3340
#ifdef CONFIG_NUMA
3341
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3342
{
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3355
	int nid;
3356
	unsigned long nr;
3357
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3358

3359 3360 3361 3362 3363 3364 3365 3366 3367
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3368 3369
	}

3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3385 3386 3387 3388 3389 3390
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3391
/* Universal VM events cgroup1 shows, original sort order */
3392
static const unsigned int memcg1_events[] = {
3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

static const char *const memcg1_event_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

3406
static int memcg_stat_show(struct seq_file *m, void *v)
3407
{
3408
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3409
	unsigned long memory, memsw;
3410 3411
	struct mem_cgroup *mi;
	unsigned int i;
3412
	struct accumulated_stats acc;
3413

3414
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3415 3416
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3417 3418
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3419
			continue;
3420
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3421
			   memcg_page_state(memcg, memcg1_stats[i]) *
3422
			   PAGE_SIZE);
3423
	}
L
Lee Schermerhorn 已提交
3424

3425 3426
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3427
			   memcg_sum_events(memcg, memcg1_events[i]));
3428 3429 3430

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3431 3432
			   memcg_page_state(memcg, NR_LRU_BASE + i) *
			   PAGE_SIZE);
3433

K
KAMEZAWA Hiroyuki 已提交
3434
	/* Hierarchical information */
3435 3436
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3437 3438
		memory = min(memory, mi->memory.max);
		memsw = min(memsw, mi->memsw.max);
3439
	}
3440 3441
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3442
	if (do_memsw_account())
3443 3444
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3445

3446 3447 3448 3449 3450 3451
	memset(&acc, 0, sizeof(acc));
	acc.stats_size = ARRAY_SIZE(memcg1_stats);
	acc.stats_array = memcg1_stats;
	acc.events_size = ARRAY_SIZE(memcg1_events);
	acc.events_array = memcg1_events;
	accumulate_memcg_tree(memcg, &acc);
3452

3453
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3454
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3455
			continue;
3456 3457
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
			   (u64)acc.stat[i] * PAGE_SIZE);
3458 3459
	}

3460 3461 3462
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
			   (u64)acc.events[i]);
3463

3464 3465 3466
	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
			   (u64)acc.lru_pages[i] * PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
3467

K
KOSAKI Motohiro 已提交
3468 3469
#ifdef CONFIG_DEBUG_VM
	{
3470 3471
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
3472
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3473 3474 3475
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

3476 3477 3478
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
			rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3479

3480 3481 3482 3483 3484
			recent_rotated[0] += rstat->recent_rotated[0];
			recent_rotated[1] += rstat->recent_rotated[1];
			recent_scanned[0] += rstat->recent_scanned[0];
			recent_scanned[1] += rstat->recent_scanned[1];
		}
3485 3486 3487 3488
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3489 3490 3491
	}
#endif

3492 3493 3494
	return 0;
}

3495 3496
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3497
{
3498
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3499

3500
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3501 3502
}

3503 3504
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3505
{
3506
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3507

3508
	if (val > 100)
K
KOSAKI Motohiro 已提交
3509 3510
		return -EINVAL;

3511
	if (css->parent)
3512 3513 3514
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3515

K
KOSAKI Motohiro 已提交
3516 3517 3518
	return 0;
}

3519 3520 3521
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3522
	unsigned long usage;
3523 3524 3525 3526
	int i;

	rcu_read_lock();
	if (!swap)
3527
		t = rcu_dereference(memcg->thresholds.primary);
3528
	else
3529
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3530 3531 3532 3533

	if (!t)
		goto unlock;

3534
	usage = mem_cgroup_usage(memcg, swap);
3535 3536

	/*
3537
	 * current_threshold points to threshold just below or equal to usage.
3538 3539 3540
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3541
	i = t->current_threshold;
3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3565
	t->current_threshold = i - 1;
3566 3567 3568 3569 3570 3571
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3572 3573
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3574
		if (do_memsw_account())
3575 3576 3577 3578
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3579 3580 3581 3582 3583 3584 3585
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3586 3587 3588 3589 3590 3591 3592
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3593 3594
}

3595
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3596 3597 3598
{
	struct mem_cgroup_eventfd_list *ev;

3599 3600
	spin_lock(&memcg_oom_lock);

3601
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3602
		eventfd_signal(ev->eventfd, 1);
3603 3604

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3605 3606 3607
	return 0;
}

3608
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3609
{
K
KAMEZAWA Hiroyuki 已提交
3610 3611
	struct mem_cgroup *iter;

3612
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3613
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3614 3615
}

3616
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3617
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3618
{
3619 3620
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3621 3622
	unsigned long threshold;
	unsigned long usage;
3623
	int i, size, ret;
3624

3625
	ret = page_counter_memparse(args, "-1", &threshold);
3626 3627 3628 3629
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3630

3631
	if (type == _MEM) {
3632
		thresholds = &memcg->thresholds;
3633
		usage = mem_cgroup_usage(memcg, false);
3634
	} else if (type == _MEMSWAP) {
3635
		thresholds = &memcg->memsw_thresholds;
3636
		usage = mem_cgroup_usage(memcg, true);
3637
	} else
3638 3639 3640
		BUG();

	/* Check if a threshold crossed before adding a new one */
3641
	if (thresholds->primary)
3642 3643
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3644
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3645 3646

	/* Allocate memory for new array of thresholds */
3647
	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
3648
	if (!new) {
3649 3650 3651
		ret = -ENOMEM;
		goto unlock;
	}
3652
	new->size = size;
3653 3654

	/* Copy thresholds (if any) to new array */
3655 3656
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3657
				sizeof(struct mem_cgroup_threshold));
3658 3659
	}

3660
	/* Add new threshold */
3661 3662
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3663 3664

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3665
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3666 3667 3668
			compare_thresholds, NULL);

	/* Find current threshold */
3669
	new->current_threshold = -1;
3670
	for (i = 0; i < size; i++) {
3671
		if (new->entries[i].threshold <= usage) {
3672
			/*
3673 3674
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3675 3676
			 * it here.
			 */
3677
			++new->current_threshold;
3678 3679
		} else
			break;
3680 3681
	}

3682 3683 3684 3685 3686
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3687

3688
	/* To be sure that nobody uses thresholds */
3689 3690 3691 3692 3693 3694 3695 3696
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3697
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3698 3699
	struct eventfd_ctx *eventfd, const char *args)
{
3700
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3701 3702
}

3703
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3704 3705
	struct eventfd_ctx *eventfd, const char *args)
{
3706
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3707 3708
}

3709
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3710
	struct eventfd_ctx *eventfd, enum res_type type)
3711
{
3712 3713
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3714
	unsigned long usage;
3715
	int i, j, size;
3716 3717

	mutex_lock(&memcg->thresholds_lock);
3718 3719

	if (type == _MEM) {
3720
		thresholds = &memcg->thresholds;
3721
		usage = mem_cgroup_usage(memcg, false);
3722
	} else if (type == _MEMSWAP) {
3723
		thresholds = &memcg->memsw_thresholds;
3724
		usage = mem_cgroup_usage(memcg, true);
3725
	} else
3726 3727
		BUG();

3728 3729 3730
	if (!thresholds->primary)
		goto unlock;

3731 3732 3733 3734
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3735 3736 3737
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3738 3739 3740
			size++;
	}

3741
	new = thresholds->spare;
3742

3743 3744
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3745 3746
		kfree(new);
		new = NULL;
3747
		goto swap_buffers;
3748 3749
	}

3750
	new->size = size;
3751 3752

	/* Copy thresholds and find current threshold */
3753 3754 3755
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3756 3757
			continue;

3758
		new->entries[j] = thresholds->primary->entries[i];
3759
		if (new->entries[j].threshold <= usage) {
3760
			/*
3761
			 * new->current_threshold will not be used
3762 3763 3764
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3765
			++new->current_threshold;
3766 3767 3768 3769
		}
		j++;
	}

3770
swap_buffers:
3771 3772
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3773

3774
	rcu_assign_pointer(thresholds->primary, new);
3775

3776
	/* To be sure that nobody uses thresholds */
3777
	synchronize_rcu();
3778 3779 3780 3781 3782 3783

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
3784
unlock:
3785 3786
	mutex_unlock(&memcg->thresholds_lock);
}
3787

3788
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3789 3790
	struct eventfd_ctx *eventfd)
{
3791
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3792 3793
}

3794
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3795 3796
	struct eventfd_ctx *eventfd)
{
3797
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3798 3799
}

3800
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3801
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3802 3803 3804 3805 3806 3807 3808
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3809
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3810 3811 3812 3813 3814

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3815
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3816
		eventfd_signal(eventfd, 1);
3817
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3818 3819 3820 3821

	return 0;
}

3822
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3823
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3824 3825 3826
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3827
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3828

3829
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3830 3831 3832 3833 3834 3835
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3836
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3837 3838
}

3839
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3840
{
3841
	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3842

3843
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3844
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
R
Roman Gushchin 已提交
3845 3846
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3847 3848 3849
	return 0;
}

3850
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3851 3852
	struct cftype *cft, u64 val)
{
3853
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3854 3855

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3856
	if (!css->parent || !((val == 0) || (val == 1)))
3857 3858
		return -EINVAL;

3859
	memcg->oom_kill_disable = val;
3860
	if (!val)
3861
		memcg_oom_recover(memcg);
3862

3863 3864 3865
	return 0;
}

3866 3867
#ifdef CONFIG_CGROUP_WRITEBACK

T
Tejun Heo 已提交
3868 3869 3870 3871 3872 3873 3874 3875 3876 3877
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3878 3879 3880 3881 3882
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3883 3884 3885 3886 3887 3888 3889 3890 3891 3892
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
/*
 * idx can be of type enum memcg_stat_item or node_stat_item.
 * Keep in sync with memcg_exact_page().
 */
static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
{
	long x = atomic_long_read(&memcg->stat[idx]);
	int cpu;

	for_each_online_cpu(cpu)
		x += per_cpu_ptr(memcg->stat_cpu, cpu)->count[idx];
	if (x < 0)
		x = 0;
	return x;
}

3909 3910 3911
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3912 3913
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3914 3915 3916
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3917 3918 3919
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3920
 *
3921 3922 3923 3924 3925
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3926
 */
3927 3928 3929
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3930 3931 3932 3933
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

3934
	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
3935 3936

	/* this should eventually include NR_UNSTABLE_NFS */
3937
	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
3938 3939
	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
3940
	*pheadroom = PAGE_COUNTER_MAX;
3941 3942

	while ((parent = parent_mem_cgroup(memcg))) {
3943
		unsigned long ceiling = min(memcg->memory.max, memcg->high);
3944 3945
		unsigned long used = page_counter_read(&memcg->memory);

3946
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3947 3948 3949 3950
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3962 3963 3964 3965
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3966 3967
#endif	/* CONFIG_CGROUP_WRITEBACK */

3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3981 3982 3983 3984 3985
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3986
static void memcg_event_remove(struct work_struct *work)
3987
{
3988 3989
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3990
	struct mem_cgroup *memcg = event->memcg;
3991 3992 3993

	remove_wait_queue(event->wqh, &event->wait);

3994
	event->unregister_event(memcg, event->eventfd);
3995 3996 3997 3998 3999 4000

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4001
	css_put(&memcg->css);
4002 4003 4004
}

/*
4005
 * Gets called on EPOLLHUP on eventfd when user closes it.
4006 4007 4008
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4009
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4010
			    int sync, void *key)
4011
{
4012 4013
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4014
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
4015
	__poll_t flags = key_to_poll(key);
4016

4017
	if (flags & EPOLLHUP) {
4018 4019 4020 4021 4022 4023 4024 4025 4026
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4027
		spin_lock(&memcg->event_list_lock);
4028 4029 4030 4031 4032 4033 4034 4035
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4036
		spin_unlock(&memcg->event_list_lock);
4037 4038 4039 4040 4041
	}

	return 0;
}

4042
static void memcg_event_ptable_queue_proc(struct file *file,
4043 4044
		wait_queue_head_t *wqh, poll_table *pt)
{
4045 4046
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4047 4048 4049 4050 4051 4052

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4053 4054
 * DO NOT USE IN NEW FILES.
 *
4055 4056 4057 4058 4059
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4060 4061
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4062
{
4063
	struct cgroup_subsys_state *css = of_css(of);
4064
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4065
	struct mem_cgroup_event *event;
4066 4067 4068 4069
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4070
	const char *name;
4071 4072 4073
	char *endp;
	int ret;

4074 4075 4076
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4077 4078
	if (*endp != ' ')
		return -EINVAL;
4079
	buf = endp + 1;
4080

4081
	cfd = simple_strtoul(buf, &endp, 10);
4082 4083
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4084
	buf = endp + 1;
4085 4086 4087 4088 4089

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4090
	event->memcg = memcg;
4091
	INIT_LIST_HEAD(&event->list);
4092 4093 4094
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4120 4121 4122 4123 4124
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4125 4126
	 *
	 * DO NOT ADD NEW FILES.
4127
	 */
A
Al Viro 已提交
4128
	name = cfile.file->f_path.dentry->d_name.name;
4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4140 4141
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4142 4143 4144 4145 4146
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4147
	/*
4148 4149 4150
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4151
	 */
A
Al Viro 已提交
4152
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4153
					       &memory_cgrp_subsys);
4154
	ret = -EINVAL;
4155
	if (IS_ERR(cfile_css))
4156
		goto out_put_cfile;
4157 4158
	if (cfile_css != css) {
		css_put(cfile_css);
4159
		goto out_put_cfile;
4160
	}
4161

4162
	ret = event->register_event(memcg, event->eventfd, buf);
4163 4164 4165
	if (ret)
		goto out_put_css;

4166
	vfs_poll(efile.file, &event->pt);
4167

4168 4169 4170
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4171 4172 4173 4174

	fdput(cfile);
	fdput(efile);

4175
	return nbytes;
4176 4177

out_put_css:
4178
	css_put(css);
4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4191
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4192
	{
4193
		.name = "usage_in_bytes",
4194
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4195
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4196
	},
4197 4198
	{
		.name = "max_usage_in_bytes",
4199
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4200
		.write = mem_cgroup_reset,
4201
		.read_u64 = mem_cgroup_read_u64,
4202
	},
B
Balbir Singh 已提交
4203
	{
4204
		.name = "limit_in_bytes",
4205
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4206
		.write = mem_cgroup_write,
4207
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4208
	},
4209 4210 4211
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4212
		.write = mem_cgroup_write,
4213
		.read_u64 = mem_cgroup_read_u64,
4214
	},
B
Balbir Singh 已提交
4215 4216
	{
		.name = "failcnt",
4217
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4218
		.write = mem_cgroup_reset,
4219
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4220
	},
4221 4222
	{
		.name = "stat",
4223
		.seq_show = memcg_stat_show,
4224
	},
4225 4226
	{
		.name = "force_empty",
4227
		.write = mem_cgroup_force_empty_write,
4228
	},
4229 4230 4231 4232 4233
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4234
	{
4235
		.name = "cgroup.event_control",		/* XXX: for compat */
4236
		.write = memcg_write_event_control,
4237
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4238
	},
K
KOSAKI Motohiro 已提交
4239 4240 4241 4242 4243
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4244 4245 4246 4247 4248
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4249 4250
	{
		.name = "oom_control",
4251
		.seq_show = mem_cgroup_oom_control_read,
4252
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4253 4254
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4255 4256 4257
	{
		.name = "pressure_level",
	},
4258 4259 4260
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4261
		.seq_show = memcg_numa_stat_show,
4262 4263
	},
#endif
4264 4265 4266
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4267
		.write = mem_cgroup_write,
4268
		.read_u64 = mem_cgroup_read_u64,
4269 4270 4271 4272
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4273
		.read_u64 = mem_cgroup_read_u64,
4274 4275 4276 4277
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4278
		.write = mem_cgroup_reset,
4279
		.read_u64 = mem_cgroup_read_u64,
4280 4281 4282 4283
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4284
		.write = mem_cgroup_reset,
4285
		.read_u64 = mem_cgroup_read_u64,
4286
	},
Y
Yang Shi 已提交
4287
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4288 4289
	{
		.name = "kmem.slabinfo",
4290 4291 4292
		.seq_start = memcg_slab_start,
		.seq_next = memcg_slab_next,
		.seq_stop = memcg_slab_stop,
4293
		.seq_show = memcg_slab_show,
4294 4295
	},
#endif
V
Vladimir Davydov 已提交
4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4319
	{ },	/* terminate */
4320
};
4321

4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
 * However, there usually are many references to the oflline CSS after
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

4348 4349 4350 4351 4352 4353 4354 4355
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

4356
static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4357
{
4358
	refcount_add(n, &memcg->id.ref);
4359 4360
}

4361
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4362
{
4363
	if (refcount_sub_and_test(n, &memcg->id.ref)) {
4364
		mem_cgroup_id_remove(memcg);
4365 4366 4367 4368 4369 4370

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

4371 4372 4373 4374 4375 4376 4377 4378 4379 4380
static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
{
	mem_cgroup_id_get_many(memcg, 1);
}

static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

4393
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4394 4395
{
	struct mem_cgroup_per_node *pn;
4396
	int tmp = node;
4397 4398 4399 4400 4401 4402 4403 4404
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4405 4406
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4407
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4408 4409
	if (!pn)
		return 1;
4410

4411 4412
	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat_cpu) {
4413 4414 4415 4416
		kfree(pn);
		return 1;
	}

4417 4418 4419 4420 4421
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

4422
	memcg->nodeinfo[node] = pn;
4423 4424 4425
	return 0;
}

4426
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4427
{
4428 4429
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
4430 4431 4432
	if (!pn)
		return;

4433
	free_percpu(pn->lruvec_stat_cpu);
4434
	kfree(pn);
4435 4436
}

4437
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4438
{
4439
	int node;
4440

4441
	for_each_node(node)
4442
		free_mem_cgroup_per_node_info(memcg, node);
4443
	free_percpu(memcg->stat_cpu);
4444
	kfree(memcg);
4445
}
4446

4447 4448 4449 4450 4451 4452
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
	__mem_cgroup_free(memcg);
}

4453
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4454
{
4455
	struct mem_cgroup *memcg;
4456
	unsigned int size;
4457
	int node;
B
Balbir Singh 已提交
4458

4459 4460 4461 4462
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4463
	if (!memcg)
4464 4465
		return NULL;

4466 4467 4468 4469 4470 4471
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
	if (memcg->id.id < 0)
		goto fail;

4472 4473
	memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat_cpu)
4474
		goto fail;
4475

B
Bob Liu 已提交
4476
	for_each_node(node)
4477
		if (alloc_mem_cgroup_per_node_info(memcg, node))
4478
			goto fail;
4479

4480 4481
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4482

4483
	INIT_WORK(&memcg->high_work, high_work_func);
4484 4485 4486 4487
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4488
	vmpressure_init(&memcg->vmpressure);
4489 4490
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4491
	memcg->socket_pressure = jiffies;
4492
#ifdef CONFIG_MEMCG_KMEM
V
Vladimir Davydov 已提交
4493 4494
	memcg->kmemcg_id = -1;
#endif
4495 4496 4497
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4498
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4499 4500
	return memcg;
fail:
4501
	mem_cgroup_id_remove(memcg);
4502
	__mem_cgroup_free(memcg);
4503
	return NULL;
4504 4505
}

4506 4507
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4508
{
4509 4510 4511
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
4512

4513 4514 4515
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
4516

4517 4518 4519 4520 4521 4522 4523 4524
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
4525
		page_counter_init(&memcg->memory, &parent->memory);
4526
		page_counter_init(&memcg->swap, &parent->swap);
4527 4528
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4529
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4530
	} else {
4531
		page_counter_init(&memcg->memory, NULL);
4532
		page_counter_init(&memcg->swap, NULL);
4533 4534
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4535
		page_counter_init(&memcg->tcpmem, NULL);
4536 4537 4538 4539 4540
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4541
		if (parent != root_mem_cgroup)
4542
			memory_cgrp_subsys.broken_hierarchy = true;
4543
	}
4544

4545 4546 4547 4548 4549 4550
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

4551
	error = memcg_online_kmem(memcg);
4552 4553
	if (error)
		goto fail;
4554

4555
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4556
		static_branch_inc(&memcg_sockets_enabled_key);
4557

4558 4559
	return &memcg->css;
fail:
4560
	mem_cgroup_id_remove(memcg);
4561
	mem_cgroup_free(memcg);
4562
	return ERR_PTR(-ENOMEM);
4563 4564
}

4565
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4566
{
4567 4568
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4569 4570 4571 4572 4573 4574 4575 4576 4577 4578
	/*
	 * A memcg must be visible for memcg_expand_shrinker_maps()
	 * by the time the maps are allocated. So, we allocate maps
	 * here, when for_each_mem_cgroup() can't skip it.
	 */
	if (memcg_alloc_shrinker_maps(memcg)) {
		mem_cgroup_id_remove(memcg);
		return -ENOMEM;
	}

4579
	/* Online state pins memcg ID, memcg ID pins CSS */
4580
	refcount_set(&memcg->id.ref, 1);
4581
	css_get(css);
4582
	return 0;
B
Balbir Singh 已提交
4583 4584
}

4585
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4586
{
4587
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4588
	struct mem_cgroup_event *event, *tmp;
4589 4590 4591 4592 4593 4594

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4595 4596
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4597 4598 4599
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4600
	spin_unlock(&memcg->event_list_lock);
4601

R
Roman Gushchin 已提交
4602
	page_counter_set_min(&memcg->memory, 0);
4603
	page_counter_set_low(&memcg->memory, 0);
4604

4605
	memcg_offline_kmem(memcg);
4606
	wb_memcg_offline(memcg);
4607

4608 4609
	drain_all_stock(memcg);

4610
	mem_cgroup_id_put(memcg);
4611 4612
}

4613 4614 4615 4616 4617 4618 4619
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4620
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4621
{
4622
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4623

4624
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4625
		static_branch_dec(&memcg_sockets_enabled_key);
4626

4627
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
4628
		static_branch_dec(&memcg_sockets_enabled_key);
4629

4630 4631 4632
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
4633
	memcg_free_shrinker_maps(memcg);
4634
	memcg_free_kmem(memcg);
4635
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4636 4637
}

4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4655 4656 4657 4658 4659
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
R
Roman Gushchin 已提交
4660
	page_counter_set_min(&memcg->memory, 0);
4661
	page_counter_set_low(&memcg->memory, 0);
4662
	memcg->high = PAGE_COUNTER_MAX;
4663
	memcg->soft_limit = PAGE_COUNTER_MAX;
4664
	memcg_wb_domain_size_changed(memcg);
4665 4666
}

4667
#ifdef CONFIG_MMU
4668
/* Handlers for move charge at task migration. */
4669
static int mem_cgroup_do_precharge(unsigned long count)
4670
{
4671
	int ret;
4672

4673 4674
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4675
	if (!ret) {
4676 4677 4678
		mc.precharge += count;
		return ret;
	}
4679

4680
	/* Try charges one by one with reclaim, but do not retry */
4681
	while (count--) {
4682
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4683 4684
		if (ret)
			return ret;
4685
		mc.precharge++;
4686
		cond_resched();
4687
	}
4688
	return 0;
4689 4690 4691 4692
}

union mc_target {
	struct page	*page;
4693
	swp_entry_t	ent;
4694 4695 4696
};

enum mc_target_type {
4697
	MC_TARGET_NONE = 0,
4698
	MC_TARGET_PAGE,
4699
	MC_TARGET_SWAP,
4700
	MC_TARGET_DEVICE,
4701 4702
};

D
Daisuke Nishimura 已提交
4703 4704
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4705
{
4706
	struct page *page = _vm_normal_page(vma, addr, ptent, true);
4707

D
Daisuke Nishimura 已提交
4708 4709 4710
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4711
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4712
			return NULL;
4713 4714 4715 4716
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4717 4718 4719 4720 4721 4722
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4723
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
4724
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4725
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
4726 4727 4728 4729
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4730
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4731
		return NULL;
4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
		page = device_private_entry_to_page(ent);
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

4749 4750 4751 4752
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4753
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4754
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4755 4756 4757 4758
		entry->val = ent.val;

	return page;
}
4759 4760
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4761
			pte_t ptent, swp_entry_t *entry)
4762 4763 4764 4765
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4766

4767 4768 4769 4770 4771 4772 4773 4774 4775
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4776
	if (!(mc.flags & MOVE_FILE))
4777 4778 4779
		return NULL;

	mapping = vma->vm_file->f_mapping;
4780
	pgoff = linear_page_index(vma, addr);
4781 4782

	/* page is moved even if it's not RSS of this task(page-faulted). */
4783 4784
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4785 4786
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
4787
		if (xa_is_value(page)) {
4788
			swp_entry_t swp = radix_to_swp_entry(page);
4789
			if (do_memsw_account())
4790
				*entry = swp;
4791 4792
			page = find_get_page(swap_address_space(swp),
					     swp_offset(swp));
4793 4794 4795 4796 4797
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4798
#endif
4799 4800 4801
	return page;
}

4802 4803 4804
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
4805
 * @compound: charge the page as compound or small page
4806 4807 4808
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
4809
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4810 4811 4812 4813 4814
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
4815
				   bool compound,
4816 4817 4818 4819
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
4820
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4821
	int ret;
4822
	bool anon;
4823 4824 4825

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
4826
	VM_BUG_ON(compound && !PageTransHuge(page));
4827 4828

	/*
4829
	 * Prevent mem_cgroup_migrate() from looking at
4830
	 * page->mem_cgroup of its source page while we change it.
4831
	 */
4832
	ret = -EBUSY;
4833 4834 4835 4836 4837 4838 4839
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4840 4841
	anon = PageAnon(page);

4842 4843
	spin_lock_irqsave(&from->move_lock, flags);

4844
	if (!anon && page_mapped(page)) {
4845 4846
		__mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
		__mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
4847 4848
	}

4849 4850
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
4851
	 * mod_memcg_page_state will serialize updates to PageDirty.
4852 4853 4854 4855 4856 4857
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
4858 4859
			__mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
			__mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
4860 4861 4862
		}
	}

4863
	if (PageWriteback(page)) {
4864 4865
		__mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
		__mod_memcg_state(to, NR_WRITEBACK, nr_pages);
4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
4881
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4882
	memcg_check_events(to, page);
4883
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4884 4885 4886 4887 4888 4889 4890 4891
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4907 4908 4909 4910 4911
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PUBLIC
 *     or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
4912 4913
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
4914 4915 4916 4917
 *
 * Called with pte lock held.
 */

4918
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4919 4920 4921
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4922
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4923 4924 4925 4926 4927
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
4928
		page = mc_handle_swap_pte(vma, ptent, &ent);
4929
	else if (pte_none(ptent))
4930
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4931 4932

	if (!page && !ent.val)
4933
		return ret;
4934 4935
	if (page) {
		/*
4936
		 * Do only loose check w/o serialization.
4937
		 * mem_cgroup_move_account() checks the page is valid or
4938
		 * not under LRU exclusion.
4939
		 */
4940
		if (page->mem_cgroup == mc.from) {
4941
			ret = MC_TARGET_PAGE;
4942 4943
			if (is_device_private_page(page) ||
			    is_device_public_page(page))
4944
				ret = MC_TARGET_DEVICE;
4945 4946 4947 4948 4949 4950
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
4951 4952 4953 4954 4955
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
4956
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4957 4958 4959
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4960 4961 4962 4963
	}
	return ret;
}

4964 4965
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
4966 4967
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
4968 4969 4970 4971 4972 4973 4974 4975
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

4976 4977 4978 4979 4980
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
4981
	page = pmd_page(pmd);
4982
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4983
	if (!(mc.flags & MOVE_ANON))
4984
		return ret;
4985
	if (page->mem_cgroup == mc.from) {
4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5002 5003 5004 5005
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
5006
	struct vm_area_struct *vma = walk->vma;
5007 5008 5009
	pte_t *pte;
	spinlock_t *ptl;

5010 5011
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5012 5013 5014 5015 5016
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
		 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
		 * MEMORY_DEVICE_PRIVATE but this might change.
		 */
5017 5018
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5019
		spin_unlock(ptl);
5020
		return 0;
5021
	}
5022

5023 5024
	if (pmd_trans_unstable(pmd))
		return 0;
5025 5026
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5027
		if (get_mctgt_type(vma, addr, *pte, NULL))
5028 5029 5030 5031
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5032 5033 5034
	return 0;
}

5035 5036 5037 5038
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

5039 5040 5041 5042
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
5043
	down_read(&mm->mmap_sem);
5044 5045
	walk_page_range(0, mm->highest_vm_end,
			&mem_cgroup_count_precharge_walk);
5046
	up_read(&mm->mmap_sem);
5047 5048 5049 5050 5051 5052 5053 5054 5055

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5056 5057 5058 5059 5060
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5061 5062
}

5063 5064
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5065
{
5066 5067 5068
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5069
	/* we must uncharge all the leftover precharges from mc.to */
5070
	if (mc.precharge) {
5071
		cancel_charge(mc.to, mc.precharge);
5072 5073 5074 5075 5076 5077 5078
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5079
		cancel_charge(mc.from, mc.moved_charge);
5080
		mc.moved_charge = 0;
5081
	}
5082 5083 5084
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5085
		if (!mem_cgroup_is_root(mc.from))
5086
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5087

5088 5089
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

5090
		/*
5091 5092
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5093
		 */
5094
		if (!mem_cgroup_is_root(mc.to))
5095 5096
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5097 5098
		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
		css_put_many(&mc.to->css, mc.moved_swap);
5099

5100 5101
		mc.moved_swap = 0;
	}
5102 5103 5104 5105 5106 5107 5108
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
5109 5110
	struct mm_struct *mm = mc.mm;

5111 5112 5113 5114 5115 5116
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5117
	spin_lock(&mc.lock);
5118 5119
	mc.from = NULL;
	mc.to = NULL;
5120
	mc.mm = NULL;
5121
	spin_unlock(&mc.lock);
5122 5123

	mmput(mm);
5124 5125
}

5126
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5127
{
5128
	struct cgroup_subsys_state *css;
5129
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5130
	struct mem_cgroup *from;
5131
	struct task_struct *leader, *p;
5132
	struct mm_struct *mm;
5133
	unsigned long move_flags;
5134
	int ret = 0;
5135

5136 5137
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5138 5139
		return 0;

5140 5141 5142 5143 5144 5145 5146
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
5147
	cgroup_taskset_for_each_leader(leader, css, tset) {
5148 5149
		WARN_ON_ONCE(p);
		p = leader;
5150
		memcg = mem_cgroup_from_css(css);
5151 5152 5153 5154
	}
	if (!p)
		return 0;

5155 5156 5157 5158 5159 5160 5161 5162 5163
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
5180
		mc.mm = mm;
5181 5182 5183 5184 5185 5186 5187 5188 5189
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
5190 5191
	} else {
		mmput(mm);
5192 5193 5194 5195
	}
	return ret;
}

5196
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5197
{
5198 5199
	if (mc.to)
		mem_cgroup_clear_mc();
5200 5201
}

5202 5203 5204
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5205
{
5206
	int ret = 0;
5207
	struct vm_area_struct *vma = walk->vma;
5208 5209
	pte_t *pte;
	spinlock_t *ptl;
5210 5211 5212
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5213

5214 5215
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5216
		if (mc.precharge < HPAGE_PMD_NR) {
5217
			spin_unlock(ptl);
5218 5219 5220 5221 5222 5223
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
5224
				if (!mem_cgroup_move_account(page, true,
5225
							     mc.from, mc.to)) {
5226 5227 5228 5229 5230 5231
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
5232 5233 5234 5235 5236 5237 5238 5239
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
5240
		}
5241
		spin_unlock(ptl);
5242
		return 0;
5243 5244
	}

5245 5246
	if (pmd_trans_unstable(pmd))
		return 0;
5247 5248 5249 5250
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5251
		bool device = false;
5252
		swp_entry_t ent;
5253 5254 5255 5256

		if (!mc.precharge)
			break;

5257
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5258 5259 5260
		case MC_TARGET_DEVICE:
			device = true;
			/* fall through */
5261 5262
		case MC_TARGET_PAGE:
			page = target.page;
5263 5264 5265 5266 5267 5268 5269 5270
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
5271
			if (!device && isolate_lru_page(page))
5272
				goto put;
5273 5274
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
5275
				mc.precharge--;
5276 5277
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5278
			}
5279 5280
			if (!device)
				putback_lru_page(page);
5281
put:			/* get_mctgt_type() gets the page */
5282 5283
			put_page(page);
			break;
5284 5285
		case MC_TARGET_SWAP:
			ent = target.ent;
5286
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5287
				mc.precharge--;
5288 5289 5290
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5291
			break;
5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5306
		ret = mem_cgroup_do_precharge(1);
5307 5308 5309 5310 5311 5312 5313
		if (!ret)
			goto retry;
	}

	return ret;
}

5314
static void mem_cgroup_move_charge(void)
5315
{
5316 5317
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
5318
		.mm = mc.mm,
5319
	};
5320 5321

	lru_add_drain_all();
5322
	/*
5323 5324 5325
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
5326 5327 5328
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5329
retry:
5330
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5342 5343 5344 5345
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
5346 5347
	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);

5348
	up_read(&mc.mm->mmap_sem);
5349
	atomic_dec(&mc.from->moving_account);
5350 5351
}

5352
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
5353
{
5354 5355
	if (mc.to) {
		mem_cgroup_move_charge();
5356
		mem_cgroup_clear_mc();
5357
	}
B
Balbir Singh 已提交
5358
}
5359
#else	/* !CONFIG_MMU */
5360
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5361 5362 5363
{
	return 0;
}
5364
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5365 5366
{
}
5367
static void mem_cgroup_move_task(void)
5368 5369 5370
{
}
#endif
B
Balbir Singh 已提交
5371

5372 5373
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5374 5375
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5376
 */
5377
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5378 5379
{
	/*
5380
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5381 5382 5383
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5384
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5385 5386 5387
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5388 5389
}

5390 5391 5392 5393 5394 5395 5396 5397 5398 5399
static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
{
	if (value == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);

	return 0;
}

5400 5401 5402
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5403 5404 5405
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5406 5407
}

R
Roman Gushchin 已提交
5408 5409
static int memory_min_show(struct seq_file *m, void *v)
{
5410 5411
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
R
Roman Gushchin 已提交
5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

5431 5432
static int memory_low_show(struct seq_file *m, void *v)
{
5433 5434
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5435 5436 5437 5438 5439 5440 5441 5442 5443 5444
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5445
	err = page_counter_memparse(buf, "max", &low);
5446 5447 5448
	if (err)
		return err;

5449
	page_counter_set_low(&memcg->memory, low);
5450 5451 5452 5453 5454 5455

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
5456
	return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
5457 5458 5459 5460 5461 5462
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5463
	unsigned long nr_pages;
5464 5465 5466 5467
	unsigned long high;
	int err;

	buf = strstrip(buf);
5468
	err = page_counter_memparse(buf, "max", &high);
5469 5470 5471 5472 5473
	if (err)
		return err;

	memcg->high = high;

5474 5475 5476 5477 5478
	nr_pages = page_counter_read(&memcg->memory);
	if (nr_pages > high)
		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
					     GFP_KERNEL, true);

5479
	memcg_wb_domain_size_changed(memcg);
5480 5481 5482 5483 5484
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
5485 5486
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
5487 5488 5489 5490 5491 5492
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5493 5494
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
5495 5496 5497 5498
	unsigned long max;
	int err;

	buf = strstrip(buf);
5499
	err = page_counter_memparse(buf, "max", &max);
5500 5501 5502
	if (err)
		return err;

5503
	xchg(&memcg->memory.max, max);
5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

		if (signal_pending(current)) {
			err = -EINTR;
			break;
		}

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

5529
		memcg_memory_event(memcg, MEMCG_OOM);
5530 5531 5532
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
5533

5534
	memcg_wb_domain_size_changed(memcg);
5535 5536 5537 5538 5539
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
5540
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5541

5542 5543 5544 5545 5546 5547 5548 5549
	seq_printf(m, "low %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
R
Roman Gushchin 已提交
5550 5551
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
5552 5553 5554 5555

	return 0;
}

5556 5557
static int memory_stat_show(struct seq_file *m, void *v)
{
5558
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5559
	struct accumulated_stats acc;
5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572
	int i;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

5573 5574 5575 5576
	memset(&acc, 0, sizeof(acc));
	acc.stats_size = MEMCG_NR_STAT;
	acc.events_size = NR_VM_EVENT_ITEMS;
	accumulate_memcg_tree(memcg, &acc);
5577

5578
	seq_printf(m, "anon %llu\n",
5579
		   (u64)acc.stat[MEMCG_RSS] * PAGE_SIZE);
5580
	seq_printf(m, "file %llu\n",
5581
		   (u64)acc.stat[MEMCG_CACHE] * PAGE_SIZE);
5582
	seq_printf(m, "kernel_stack %llu\n",
5583
		   (u64)acc.stat[MEMCG_KERNEL_STACK_KB] * 1024);
5584
	seq_printf(m, "slab %llu\n",
5585 5586
		   (u64)(acc.stat[NR_SLAB_RECLAIMABLE] +
			 acc.stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5587
	seq_printf(m, "sock %llu\n",
5588
		   (u64)acc.stat[MEMCG_SOCK] * PAGE_SIZE);
5589

5590
	seq_printf(m, "shmem %llu\n",
5591
		   (u64)acc.stat[NR_SHMEM] * PAGE_SIZE);
5592
	seq_printf(m, "file_mapped %llu\n",
5593
		   (u64)acc.stat[NR_FILE_MAPPED] * PAGE_SIZE);
5594
	seq_printf(m, "file_dirty %llu\n",
5595
		   (u64)acc.stat[NR_FILE_DIRTY] * PAGE_SIZE);
5596
	seq_printf(m, "file_writeback %llu\n",
5597
		   (u64)acc.stat[NR_WRITEBACK] * PAGE_SIZE);
5598

5599 5600 5601 5602 5603 5604 5605 5606 5607
	/*
	 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
	 * with the NR_ANON_THP vm counter, but right now it's a pain in the
	 * arse because it requires migrating the work out of rmap to a place
	 * where the page->mem_cgroup is set up and stable.
	 */
	seq_printf(m, "anon_thp %llu\n",
		   (u64)acc.stat[MEMCG_RSS_HUGE] * PAGE_SIZE);

5608 5609 5610
	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i],
			   (u64)acc.lru_pages[i] * PAGE_SIZE);
5611

5612
	seq_printf(m, "slab_reclaimable %llu\n",
5613
		   (u64)acc.stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5614
	seq_printf(m, "slab_unreclaimable %llu\n",
5615
		   (u64)acc.stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5616

5617 5618
	/* Accumulated memory events */

5619 5620
	seq_printf(m, "pgfault %lu\n", acc.events[PGFAULT]);
	seq_printf(m, "pgmajfault %lu\n", acc.events[PGMAJFAULT]);
5621

5622 5623 5624 5625 5626 5627 5628
	seq_printf(m, "workingset_refault %lu\n",
		   acc.stat[WORKINGSET_REFAULT]);
	seq_printf(m, "workingset_activate %lu\n",
		   acc.stat[WORKINGSET_ACTIVATE]);
	seq_printf(m, "workingset_nodereclaim %lu\n",
		   acc.stat[WORKINGSET_NODERECLAIM]);

5629 5630 5631 5632 5633 5634 5635 5636 5637
	seq_printf(m, "pgrefill %lu\n", acc.events[PGREFILL]);
	seq_printf(m, "pgscan %lu\n", acc.events[PGSCAN_KSWAPD] +
		   acc.events[PGSCAN_DIRECT]);
	seq_printf(m, "pgsteal %lu\n", acc.events[PGSTEAL_KSWAPD] +
		   acc.events[PGSTEAL_DIRECT]);
	seq_printf(m, "pgactivate %lu\n", acc.events[PGACTIVATE]);
	seq_printf(m, "pgdeactivate %lu\n", acc.events[PGDEACTIVATE]);
	seq_printf(m, "pglazyfree %lu\n", acc.events[PGLAZYFREE]);
	seq_printf(m, "pglazyfreed %lu\n", acc.events[PGLAZYFREED]);
5638

5639 5640 5641 5642 5643 5644
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	seq_printf(m, "thp_fault_alloc %lu\n", acc.events[THP_FAULT_ALLOC]);
	seq_printf(m, "thp_collapse_alloc %lu\n",
		   acc.events[THP_COLLAPSE_ALLOC]);
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

5645 5646 5647
	return 0;
}

5648 5649
static int memory_oom_group_show(struct seq_file *m, void *v)
{
5650
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678

	seq_printf(m, "%d\n", memcg->oom_group);

	return 0;
}

static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
				      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	int ret, oom_group;

	buf = strstrip(buf);
	if (!buf)
		return -EINVAL;

	ret = kstrtoint(buf, 0, &oom_group);
	if (ret)
		return ret;

	if (oom_group != 0 && oom_group != 1)
		return -EINVAL;

	memcg->oom_group = oom_group;

	return nbytes;
}

5679 5680 5681
static struct cftype memory_files[] = {
	{
		.name = "current",
5682
		.flags = CFTYPE_NOT_ON_ROOT,
5683 5684
		.read_u64 = memory_current_read,
	},
R
Roman Gushchin 已提交
5685 5686 5687 5688 5689 5690
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5712
		.file_offset = offsetof(struct mem_cgroup, events_file),
5713 5714
		.seq_show = memory_events_show,
	},
5715 5716 5717 5718 5719
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
5720 5721 5722 5723 5724 5725
	{
		.name = "oom.group",
		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
		.seq_show = memory_oom_group_show,
		.write = memory_oom_group_write,
	},
5726 5727 5728
	{ }	/* terminate */
};

5729
struct cgroup_subsys memory_cgrp_subsys = {
5730
	.css_alloc = mem_cgroup_css_alloc,
5731
	.css_online = mem_cgroup_css_online,
5732
	.css_offline = mem_cgroup_css_offline,
5733
	.css_released = mem_cgroup_css_released,
5734
	.css_free = mem_cgroup_css_free,
5735
	.css_reset = mem_cgroup_css_reset,
5736 5737
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
5738
	.post_attach = mem_cgroup_move_task,
5739
	.bind = mem_cgroup_bind,
5740 5741
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5742
	.early_init = 0,
B
Balbir Singh 已提交
5743
};
5744

5745
/**
R
Roman Gushchin 已提交
5746
 * mem_cgroup_protected - check if memory consumption is in the normal range
5747
 * @root: the top ancestor of the sub-tree being checked
5748 5749
 * @memcg: the memory cgroup to check
 *
5750 5751
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
5752
 *
R
Roman Gushchin 已提交
5753 5754 5755 5756 5757
 * Returns one of the following:
 *   MEMCG_PROT_NONE: cgroup memory is not protected
 *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
 *     an unprotected supply of reclaimable memory from other cgroups.
 *   MEMCG_PROT_MIN: cgroup memory is protected
5758
 *
R
Roman Gushchin 已提交
5759
 * @root is exclusive; it is never protected when looked at directly
5760
 *
R
Roman Gushchin 已提交
5761 5762 5763
 * To provide a proper hierarchical behavior, effective memory.min/low values
 * are used. Below is the description of how effective memory.low is calculated.
 * Effective memory.min values is calculated in the same way.
5764
 *
5765 5766 5767 5768 5769 5770 5771
 * Effective memory.low is always equal or less than the original memory.low.
 * If there is no memory.low overcommittment (which is always true for
 * top-level memory cgroups), these two values are equal.
 * Otherwise, it's a part of parent's effective memory.low,
 * calculated as a cgroup's memory.low usage divided by sum of sibling's
 * memory.low usages, where memory.low usage is the size of actually
 * protected memory.
5772
 *
5773 5774 5775
 *                                             low_usage
 * elow = min( memory.low, parent->elow * ------------------ ),
 *                                        siblings_low_usage
5776
 *
5777 5778
 *             | memory.current, if memory.current < memory.low
 * low_usage = |
5779
 *	       | 0, otherwise.
5780
 *
5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807
 *
 * Such definition of the effective memory.low provides the expected
 * hierarchical behavior: parent's memory.low value is limiting
 * children, unprotected memory is reclaimed first and cgroups,
 * which are not using their guarantee do not affect actual memory
 * distribution.
 *
 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
 *
 *     A      A/memory.low = 2G, A/memory.current = 6G
 *    //\\
 *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
 *            C/memory.low = 1G  C/memory.current = 2G
 *            D/memory.low = 0   D/memory.current = 2G
 *            E/memory.low = 10G E/memory.current = 0
 *
 * and the memory pressure is applied, the following memory distribution
 * is expected (approximately):
 *
 *     A/memory.current = 2G
 *
 *     B/memory.current = 1.3G
 *     C/memory.current = 0.6G
 *     D/memory.current = 0
 *     E/memory.current = 0
 *
 * These calculations require constant tracking of the actual low usages
R
Roman Gushchin 已提交
5808 5809
 * (see propagate_protected_usage()), as well as recursive calculation of
 * effective memory.low values. But as we do call mem_cgroup_protected()
5810 5811 5812 5813
 * path for each memory cgroup top-down from the reclaim,
 * it's possible to optimize this part, and save calculated elow
 * for next usage. This part is intentionally racy, but it's ok,
 * as memory.low is a best-effort mechanism.
5814
 */
R
Roman Gushchin 已提交
5815 5816
enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
						struct mem_cgroup *memcg)
5817
{
5818
	struct mem_cgroup *parent;
R
Roman Gushchin 已提交
5819 5820 5821
	unsigned long emin, parent_emin;
	unsigned long elow, parent_elow;
	unsigned long usage;
5822

5823
	if (mem_cgroup_disabled())
R
Roman Gushchin 已提交
5824
		return MEMCG_PROT_NONE;
5825

5826 5827 5828
	if (!root)
		root = root_mem_cgroup;
	if (memcg == root)
R
Roman Gushchin 已提交
5829
		return MEMCG_PROT_NONE;
5830

5831
	usage = page_counter_read(&memcg->memory);
R
Roman Gushchin 已提交
5832 5833 5834 5835 5836
	if (!usage)
		return MEMCG_PROT_NONE;

	emin = memcg->memory.min;
	elow = memcg->memory.low;
5837

R
Roman Gushchin 已提交
5838
	parent = parent_mem_cgroup(memcg);
5839 5840 5841 5842
	/* No parent means a non-hierarchical mode on v1 memcg */
	if (!parent)
		return MEMCG_PROT_NONE;

5843 5844 5845
	if (parent == root)
		goto exit;

R
Roman Gushchin 已提交
5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859
	parent_emin = READ_ONCE(parent->memory.emin);
	emin = min(emin, parent_emin);
	if (emin && parent_emin) {
		unsigned long min_usage, siblings_min_usage;

		min_usage = min(usage, memcg->memory.min);
		siblings_min_usage = atomic_long_read(
			&parent->memory.children_min_usage);

		if (min_usage && siblings_min_usage)
			emin = min(emin, parent_emin * min_usage /
				   siblings_min_usage);
	}

5860 5861
	parent_elow = READ_ONCE(parent->memory.elow);
	elow = min(elow, parent_elow);
R
Roman Gushchin 已提交
5862 5863
	if (elow && parent_elow) {
		unsigned long low_usage, siblings_low_usage;
5864

R
Roman Gushchin 已提交
5865 5866 5867
		low_usage = min(usage, memcg->memory.low);
		siblings_low_usage = atomic_long_read(
			&parent->memory.children_low_usage);
5868

R
Roman Gushchin 已提交
5869 5870 5871 5872
		if (low_usage && siblings_low_usage)
			elow = min(elow, parent_elow * low_usage /
				   siblings_low_usage);
	}
5873 5874

exit:
R
Roman Gushchin 已提交
5875
	memcg->memory.emin = emin;
5876
	memcg->memory.elow = elow;
R
Roman Gushchin 已提交
5877 5878 5879 5880 5881 5882 5883

	if (usage <= emin)
		return MEMCG_PROT_MIN;
	else if (usage <= elow)
		return MEMCG_PROT_LOW;
	else
		return MEMCG_PROT_NONE;
5884 5885
}

5886 5887 5888 5889 5890 5891
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
5892
 * @compound: charge the page as compound or small page
5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5905 5906
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
5907 5908
{
	struct mem_cgroup *memcg = NULL;
5909
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5923
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5924
		if (compound_head(page)->mem_cgroup)
5925
			goto out;
5926

5927
		if (do_swap_account) {
5928 5929 5930 5931 5932 5933 5934 5935 5936
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962
int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
{
	struct mem_cgroup *memcg;
	int ret;

	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
	memcg = *memcgp;
	mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
	return ret;
}

5963 5964 5965 5966 5967
/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
5968
 * @compound: charge the page as compound or small page
5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5981
			      bool lrucare, bool compound)
5982
{
5983
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5998 5999 6000
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
6001
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6002 6003
	memcg_check_events(memcg, page);
	local_irq_enable();
6004

6005
	if (do_memsw_account() && PageSwapCache(page)) {
6006 6007 6008 6009 6010 6011
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
6012
		mem_cgroup_uncharge_swap(entry, nr_pages);
6013 6014 6015 6016 6017 6018 6019
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
6020
 * @compound: charge the page as compound or small page
6021 6022 6023
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
6024 6025
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
6026
{
6027
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053
struct uncharge_gather {
	struct mem_cgroup *memcg;
	unsigned long pgpgout;
	unsigned long nr_anon;
	unsigned long nr_file;
	unsigned long nr_kmem;
	unsigned long nr_huge;
	unsigned long nr_shmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6054
{
6055 6056 6057 6058 6059 6060
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6061 6062
	unsigned long flags;

6063 6064
	if (!mem_cgroup_is_root(ug->memcg)) {
		page_counter_uncharge(&ug->memcg->memory, nr_pages);
6065
		if (do_memsw_account())
6066 6067 6068 6069
			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
6070
	}
6071 6072

	local_irq_save(flags);
6073 6074 6075 6076 6077
	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6078
	__this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
6079
	memcg_check_events(ug->memcg, ug->dummy_page);
6080
	local_irq_restore(flags);
6081

6082 6083 6084 6085 6086 6087 6088
	if (!mem_cgroup_is_root(ug->memcg))
		css_put_many(&ug->memcg->css, nr_pages);
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
	VM_BUG_ON_PAGE(PageLRU(page), page);
6089 6090
	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
			!PageHWPoison(page) , page);
6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130

	if (!page->mem_cgroup)
		return;

	/*
	 * Nobody should be changing or seriously looking at
	 * page->mem_cgroup at this point, we have fully
	 * exclusive access to the page.
	 */

	if (ug->memcg != page->mem_cgroup) {
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
		ug->memcg = page->mem_cgroup;
	}

	if (!PageKmemcg(page)) {
		unsigned int nr_pages = 1;

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			ug->nr_huge += nr_pages;
		}
		if (PageAnon(page))
			ug->nr_anon += nr_pages;
		else {
			ug->nr_file += nr_pages;
			if (PageSwapBacked(page))
				ug->nr_shmem += nr_pages;
		}
		ug->pgpgout++;
	} else {
		ug->nr_kmem += 1 << compound_order(page);
		__ClearPageKmemcg(page);
	}

	ug->dummy_page = page;
	page->mem_cgroup = NULL;
6131 6132 6133 6134
}

static void uncharge_list(struct list_head *page_list)
{
6135
	struct uncharge_gather ug;
6136
	struct list_head *next;
6137 6138

	uncharge_gather_clear(&ug);
6139

6140 6141 6142 6143
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
6144 6145
	next = page_list->next;
	do {
6146 6147
		struct page *page;

6148 6149 6150
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

6151
		uncharge_page(page, &ug);
6152 6153
	} while (next != page_list);

6154 6155
	if (ug.memcg)
		uncharge_batch(&ug);
6156 6157
}

6158 6159 6160 6161 6162 6163 6164 6165 6166
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
6167 6168
	struct uncharge_gather ug;

6169 6170 6171
	if (mem_cgroup_disabled())
		return;

6172
	/* Don't touch page->lru of any random page, pre-check: */
6173
	if (!page->mem_cgroup)
6174 6175
		return;

6176 6177 6178
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
6179
}
6180

6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
6192

6193 6194
	if (!list_empty(page_list))
		uncharge_list(page_list);
6195 6196 6197
}

/**
6198 6199 6200
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
6201
 *
6202 6203
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
6204 6205 6206
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
6207
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6208
{
6209
	struct mem_cgroup *memcg;
6210 6211
	unsigned int nr_pages;
	bool compound;
6212
	unsigned long flags;
6213 6214 6215 6216

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6217 6218
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6219 6220 6221 6222 6223

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
6224
	if (newpage->mem_cgroup)
6225 6226
		return;

6227
	/* Swapcache readahead pages can get replaced before being charged */
6228
	memcg = oldpage->mem_cgroup;
6229
	if (!memcg)
6230 6231
		return;

6232 6233 6234 6235 6236 6237 6238 6239
	/* Force-charge the new page. The old one will be freed soon */
	compound = PageTransHuge(newpage);
	nr_pages = compound ? hpage_nr_pages(newpage) : 1;

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
6240

6241
	commit_charge(newpage, memcg, false);
6242

6243
	local_irq_save(flags);
6244 6245
	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
	memcg_check_events(memcg, newpage);
6246
	local_irq_restore(flags);
6247 6248
}

6249
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6250 6251
EXPORT_SYMBOL(memcg_sockets_enabled_key);

6252
void mem_cgroup_sk_alloc(struct sock *sk)
6253 6254 6255
{
	struct mem_cgroup *memcg;

6256 6257 6258
	if (!mem_cgroup_sockets_enabled)
		return;

6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272
	/*
	 * Socket cloning can throw us here with sk_memcg already
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		css_get(&sk->sk_memcg->css);
		return;
	}

6273 6274
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
6275 6276
	if (memcg == root_mem_cgroup)
		goto out;
6277
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6278 6279
		goto out;
	if (css_tryget_online(&memcg->css))
6280
		sk->sk_memcg = memcg;
6281
out:
6282 6283 6284
	rcu_read_unlock();
}

6285
void mem_cgroup_sk_free(struct sock *sk)
6286
{
6287 6288
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6301
	gfp_t gfp_mask = GFP_KERNEL;
6302

6303
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6304
		struct page_counter *fail;
6305

6306 6307
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
6308 6309
			return true;
		}
6310 6311
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
6312
		return false;
6313
	}
6314

6315 6316 6317 6318
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

6319
	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6320

6321 6322 6323 6324
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6325 6326 6327 6328 6329
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
6330 6331
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
6332 6333 6334
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6335
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6336
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6337 6338
		return;
	}
6339

6340
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6341

6342
	refill_stock(memcg, nr_pages);
6343 6344
}

6345 6346 6347 6348 6349 6350 6351 6352 6353
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
6354 6355
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
6356 6357 6358 6359
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
6360

6361
/*
6362 6363
 * subsys_initcall() for memory controller.
 *
6364 6365 6366 6367
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
6368 6369 6370
 */
static int __init mem_cgroup_init(void)
{
6371 6372
	int cpu, node;

6373
#ifdef CONFIG_MEMCG_KMEM
6374 6375
	/*
	 * Kmem cache creation is mostly done with the slab_mutex held,
6376 6377 6378
	 * so use a workqueue with limited concurrency to avoid stalling
	 * all worker threads in case lots of cgroups are created and
	 * destroyed simultaneously.
6379
	 */
6380 6381
	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
	BUG_ON(!memcg_kmem_cache_wq);
6382 6383
#endif

6384 6385
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

6397
		rtpn->rb_root = RB_ROOT;
6398
		rtpn->rb_rightmost = NULL;
6399
		spin_lock_init(&rtpn->lock);
6400 6401 6402
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

6403 6404 6405
	return 0;
}
subsys_initcall(mem_cgroup_init);
6406 6407

#ifdef CONFIG_MEMCG_SWAP
6408 6409
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
6410
	while (!refcount_inc_not_zero(&memcg->id.ref)) {
6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

6426 6427 6428 6429 6430 6431 6432 6433 6434
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
6435
	struct mem_cgroup *memcg, *swap_memcg;
6436
	unsigned int nr_entries;
6437 6438 6439 6440 6441
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

6442
	if (!do_memsw_account())
6443 6444 6445 6446 6447 6448 6449 6450
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

6451 6452 6453 6454 6455 6456
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
6457 6458 6459 6460 6461 6462
	nr_entries = hpage_nr_pages(page);
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
6463
	VM_BUG_ON_PAGE(oldid, page);
6464
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6465 6466 6467 6468

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
6469
		page_counter_uncharge(&memcg->memory, nr_entries);
6470

6471 6472
	if (memcg != swap_memcg) {
		if (!mem_cgroup_is_root(swap_memcg))
6473 6474
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
6475 6476
	}

6477 6478
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
6479
	 * i_pages lock which is taken with interrupts-off. It is
6480
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
6481
	 * only synchronisation we have for updating the per-CPU variables.
6482 6483
	 */
	VM_BUG_ON(!irqs_disabled());
6484 6485
	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
				     -nr_entries);
6486
	memcg_check_events(memcg, page);
6487 6488

	if (!mem_cgroup_is_root(memcg))
6489
		css_put_many(&memcg->css, nr_entries);
6490 6491
}

6492 6493
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
6494 6495 6496
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
6497
 * Try to charge @page's memcg for the swap space at @entry.
6498 6499 6500 6501 6502
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
6503
	unsigned int nr_pages = hpage_nr_pages(page);
6504
	struct page_counter *counter;
6505
	struct mem_cgroup *memcg;
6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

6517 6518
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6519
		return 0;
6520
	}
6521

6522 6523
	memcg = mem_cgroup_id_get_online(memcg);

6524
	if (!mem_cgroup_is_root(memcg) &&
6525
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6526 6527
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6528
		mem_cgroup_id_put(memcg);
6529
		return -ENOMEM;
6530
	}
6531

6532 6533 6534 6535
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6536
	VM_BUG_ON_PAGE(oldid, page);
6537
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6538 6539 6540 6541

	return 0;
}

6542
/**
6543
 * mem_cgroup_uncharge_swap - uncharge swap space
6544
 * @entry: swap entry to uncharge
6545
 * @nr_pages: the amount of swap space to uncharge
6546
 */
6547
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6548 6549 6550 6551
{
	struct mem_cgroup *memcg;
	unsigned short id;

6552
	if (!do_swap_account)
6553 6554
		return;

6555
	id = swap_cgroup_record(entry, 0, nr_pages);
6556
	rcu_read_lock();
6557
	memcg = mem_cgroup_from_id(id);
6558
	if (memcg) {
6559 6560
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6561
				page_counter_uncharge(&memcg->swap, nr_pages);
6562
			else
6563
				page_counter_uncharge(&memcg->memsw, nr_pages);
6564
		}
6565
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6566
		mem_cgroup_id_put_many(memcg, nr_pages);
6567 6568 6569 6570
	}
	rcu_read_unlock();
}

6571 6572 6573 6574 6575 6576 6577 6578
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
6579
				      READ_ONCE(memcg->swap.max) -
6580 6581 6582 6583
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6600
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6601 6602 6603 6604 6605
			return true;

	return false;
}

6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

6623 6624 6625 6626 6627 6628 6629 6630 6631 6632
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
6633 6634
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

6649
	xchg(&memcg->swap.max, max);
6650 6651 6652 6653

	return nbytes;
}

6654 6655
static int swap_events_show(struct seq_file *m, void *v)
{
6656
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6657 6658 6659 6660 6661 6662 6663 6664 6665

	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
6678 6679 6680 6681 6682 6683
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
6684 6685 6686
	{ }	/* terminate */
};

6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
6718 6719
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
6720 6721 6722 6723 6724 6725 6726 6727
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */