memcontrol.c 189.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
B
Balbir Singh 已提交
2 3 4 5 6
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
7 8 9
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
10 11 12 13
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
14 15 16 17
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
B
Balbir Singh 已提交
23 24
 */

25
#include <linux/page_counter.h>
B
Balbir Singh 已提交
26 27
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
28
#include <linux/pagewalk.h>
29
#include <linux/sched/mm.h>
30
#include <linux/shmem_fs.h>
31
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
32
#include <linux/pagemap.h>
33
#include <linux/vm_event_item.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/swap_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
59
#include <linux/tracehook.h>
60
#include <linux/psi.h>
61
#include <linux/seq_buf.h>
K
KAMEZAWA Hiroyuki 已提交
62
#include "internal.h"
G
Glauber Costa 已提交
63
#include <net/sock.h>
M
Michal Hocko 已提交
64
#include <net/ip.h>
65
#include "slab.h"
B
Balbir Singh 已提交
66

67
#include <linux/uaccess.h>
68

69 70
#include <trace/events/vmscan.h>

71 72
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
73

74 75
struct mem_cgroup *root_mem_cgroup __read_mostly;

76 77 78
/* Active memory cgroup to use from an interrupt context */
DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);

79 80 81
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

82 83 84
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

85
/* Whether the swap controller is active */
A
Andrew Morton 已提交
86
#ifdef CONFIG_MEMCG_SWAP
87
bool cgroup_memory_noswap __read_mostly;
88
#else
89
#define cgroup_memory_noswap		1
90
#endif
91

92 93 94 95
#ifdef CONFIG_CGROUP_WRITEBACK
static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
#endif

96 97 98
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
99
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
100 101
}

102 103
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
104

105 106 107 108 109
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

110
struct mem_cgroup_tree_per_node {
111
	struct rb_root rb_root;
112
	struct rb_node *rb_rightmost;
113 114 115 116 117 118 119 120 121
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
122 123 124 125 126
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
127

128 129 130
/*
 * cgroup_event represents events which userspace want to receive.
 */
131
struct mem_cgroup_event {
132
	/*
133
	 * memcg which the event belongs to.
134
	 */
135
	struct mem_cgroup *memcg;
136 137 138 139 140 141 142 143
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
144 145 146 147 148
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
149
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
150
			      struct eventfd_ctx *eventfd, const char *args);
151 152 153 154 155
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
156
	void (*unregister_event)(struct mem_cgroup *memcg,
157
				 struct eventfd_ctx *eventfd);
158 159 160 161 162 163
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
164
	wait_queue_entry_t wait;
165 166 167
	struct work_struct remove;
};

168 169
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
170

171 172
/* Stuffs for move charges at task migration. */
/*
173
 * Types of charges to be moved.
174
 */
175 176 177
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
178

179 180
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
181
	spinlock_t	  lock; /* for from, to */
182
	struct mm_struct  *mm;
183 184
	struct mem_cgroup *from;
	struct mem_cgroup *to;
185
	unsigned long flags;
186
	unsigned long precharge;
187
	unsigned long moved_charge;
188
	unsigned long moved_swap;
189 190 191
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
192
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
193 194
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
195

196 197 198 199
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
200
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
201
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
202

203
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
204 205 206 207
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
208
	_KMEM,
V
Vladimir Davydov 已提交
209
	_TCP,
G
Glauber Costa 已提交
210 211
};

212 213
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
214
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
215 216
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
217

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(root, iter, NULL))

#define for_each_mem_cgroup(iter)			\
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(NULL, iter, NULL))

233 234 235 236 237 238
static inline bool should_force_charge(void)
{
	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
		(current->flags & PF_EXITING);
}

239 240 241 242 243 244 245 246 247 248 249 250 251
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

252
#ifdef CONFIG_MEMCG_KMEM
R
Roman Gushchin 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
extern spinlock_t css_set_lock;

static void obj_cgroup_release(struct percpu_ref *ref)
{
	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
	struct mem_cgroup *memcg;
	unsigned int nr_bytes;
	unsigned int nr_pages;
	unsigned long flags;

	/*
	 * At this point all allocated objects are freed, and
	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
	 *
	 * The following sequence can lead to it:
	 * 1) CPU0: objcg == stock->cached_objcg
	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
	 *          PAGE_SIZE bytes are charged
	 * 3) CPU1: a process from another memcg is allocating something,
	 *          the stock if flushed,
	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
	 * 5) CPU0: we do release this object,
	 *          92 bytes are added to stock->nr_bytes
	 * 6) CPU0: stock is flushed,
	 *          92 bytes are added to objcg->nr_charged_bytes
	 *
	 * In the result, nr_charged_bytes == PAGE_SIZE.
	 * This page will be uncharged in obj_cgroup_release().
	 */
	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
	nr_pages = nr_bytes >> PAGE_SHIFT;

	spin_lock_irqsave(&css_set_lock, flags);
	memcg = obj_cgroup_memcg(objcg);
	if (nr_pages)
		__memcg_kmem_uncharge(memcg, nr_pages);
	list_del(&objcg->list);
	mem_cgroup_put(memcg);
	spin_unlock_irqrestore(&css_set_lock, flags);

	percpu_ref_exit(ref);
	kfree_rcu(objcg, rcu);
}

static struct obj_cgroup *obj_cgroup_alloc(void)
{
	struct obj_cgroup *objcg;
	int ret;

	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
	if (!objcg)
		return NULL;

	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
			      GFP_KERNEL);
	if (ret) {
		kfree(objcg);
		return NULL;
	}
	INIT_LIST_HEAD(&objcg->list);
	return objcg;
}

static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
				  struct mem_cgroup *parent)
{
	struct obj_cgroup *objcg, *iter;

	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);

	spin_lock_irq(&css_set_lock);

	/* Move active objcg to the parent's list */
	xchg(&objcg->memcg, parent);
	css_get(&parent->css);
	list_add(&objcg->list, &parent->objcg_list);

	/* Move already reparented objcgs to the parent's list */
	list_for_each_entry(iter, &memcg->objcg_list, list) {
		css_get(&parent->css);
		xchg(&iter->memcg, parent);
		css_put(&memcg->css);
	}
	list_splice(&memcg->objcg_list, &parent->objcg_list);

	spin_unlock_irq(&css_set_lock);

	percpu_ref_kill(&objcg->refcnt);
}

345
/*
346
 * This will be used as a shrinker list's index.
L
Li Zefan 已提交
347 348 349 350 351
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
352
 *
353 354
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
355
 */
356 357
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
358

359 360 361 362 363 364 365 366 367 368 369 370 371
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

372 373 374 375 376 377
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
378
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
379 380
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
381
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
382 383 384
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
385
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
386

387 388
/*
 * A lot of the calls to the cache allocation functions are expected to be
389
 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
390 391 392
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
393
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
394
EXPORT_SYMBOL(memcg_kmem_enabled_key);
395
#endif
396

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
static int memcg_shrinker_map_size;
static DEFINE_MUTEX(memcg_shrinker_map_mutex);

static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
{
	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
}

static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
					 int size, int old_size)
{
	struct memcg_shrinker_map *new, *old;
	int nid;

	lockdep_assert_held(&memcg_shrinker_map_mutex);

	for_each_node(nid) {
		old = rcu_dereference_protected(
			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
		/* Not yet online memcg */
		if (!old)
			return 0;

420
		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
		if (!new)
			return -ENOMEM;

		/* Set all old bits, clear all new bits */
		memset(new->map, (int)0xff, old_size);
		memset((void *)new->map + old_size, 0, size - old_size);

		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
	}

	return 0;
}

static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *pn;
	struct memcg_shrinker_map *map;
	int nid;

	if (mem_cgroup_is_root(memcg))
		return;

	for_each_node(nid) {
		pn = mem_cgroup_nodeinfo(memcg, nid);
		map = rcu_dereference_protected(pn->shrinker_map, true);
		if (map)
			kvfree(map);
		rcu_assign_pointer(pn->shrinker_map, NULL);
	}
}

static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	struct memcg_shrinker_map *map;
	int nid, size, ret = 0;

	if (mem_cgroup_is_root(memcg))
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	size = memcg_shrinker_map_size;
	for_each_node(nid) {
464
		map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
		if (!map) {
			memcg_free_shrinker_maps(memcg);
			ret = -ENOMEM;
			break;
		}
		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
	}
	mutex_unlock(&memcg_shrinker_map_mutex);

	return ret;
}

int memcg_expand_shrinker_maps(int new_id)
{
	int size, old_size, ret = 0;
	struct mem_cgroup *memcg;

	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
	old_size = memcg_shrinker_map_size;
	if (size <= old_size)
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	if (!root_mem_cgroup)
		goto unlock;

	for_each_mem_cgroup(memcg) {
		if (mem_cgroup_is_root(memcg))
			continue;
		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
495 496
		if (ret) {
			mem_cgroup_iter_break(NULL, memcg);
497
			goto unlock;
498
		}
499 500 501 502 503 504 505
	}
unlock:
	if (!ret)
		memcg_shrinker_map_size = size;
	mutex_unlock(&memcg_shrinker_map_mutex);
	return ret;
}
506 507 508 509 510 511 512 513

void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
{
	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
		struct memcg_shrinker_map *map;

		rcu_read_lock();
		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
514 515
		/* Pairs with smp mb in shrink_slab() */
		smp_mb__before_atomic();
516 517 518 519 520
		set_bit(shrinker_id, map->map);
		rcu_read_unlock();
	}
}

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

538
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
539 540 541 542 543
		memcg = root_mem_cgroup;

	return &memcg->css;
}

544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
563
	memcg = page->mem_cgroup;
564

565 566 567 568 569 570 571 572
	/*
	 * The lowest bit set means that memcg isn't a valid
	 * memcg pointer, but a obj_cgroups pointer.
	 * In this case the page is shared and doesn't belong
	 * to any specific memory cgroup.
	 */
	if ((unsigned long) memcg & 0x1UL)
		memcg = NULL;
573

574 575 576 577 578 579 580 581
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

582 583
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
584
{
585
	int nid = page_to_nid(page);
586

587
	return memcg->nodeinfo[nid];
588 589
}

590 591
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
592
{
593
	return soft_limit_tree.rb_tree_per_node[nid];
594 595
}

596
static struct mem_cgroup_tree_per_node *
597 598 599 600
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

601
	return soft_limit_tree.rb_tree_per_node[nid];
602 603
}

604 605
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
606
					 unsigned long new_usage_in_excess)
607 608 609
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
610
	struct mem_cgroup_per_node *mz_node;
611
	bool rightmost = true;
612 613 614 615 616 617 618 619 620

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
621
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
622
					tree_node);
623
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
624
			p = &(*p)->rb_left;
625
			rightmost = false;
626
		} else {
627
			p = &(*p)->rb_right;
628
		}
629
	}
630 631 632 633

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

634 635 636 637 638
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

639 640
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
641 642 643
{
	if (!mz->on_tree)
		return;
644 645 646 647

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

648 649 650 651
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

652 653
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
654
{
655 656 657
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
658
	__mem_cgroup_remove_exceeded(mz, mctz);
659
	spin_unlock_irqrestore(&mctz->lock, flags);
660 661
}

662 663 664
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
665
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
666 667 668 669 670 671 672
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
673 674 675

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
676
	unsigned long excess;
677 678
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
679

680
	mctz = soft_limit_tree_from_page(page);
681 682
	if (!mctz)
		return;
683 684 685 686 687
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
688
		mz = mem_cgroup_page_nodeinfo(memcg, page);
689
		excess = soft_limit_excess(memcg);
690 691 692 693 694
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
695 696 697
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
698 699
			/* if on-tree, remove it */
			if (mz->on_tree)
700
				__mem_cgroup_remove_exceeded(mz, mctz);
701 702 703 704
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
705
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
706
			spin_unlock_irqrestore(&mctz->lock, flags);
707 708 709 710 711 712
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
713 714 715
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
716

717
	for_each_node(nid) {
718 719
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
720 721
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
722 723 724
	}
}

725 726
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
727
{
728
	struct mem_cgroup_per_node *mz;
729 730 731

retry:
	mz = NULL;
732
	if (!mctz->rb_rightmost)
733 734
		goto done;		/* Nothing to reclaim from */

735 736
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
737 738 739 740 741
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
742
	__mem_cgroup_remove_exceeded(mz, mctz);
743
	if (!soft_limit_excess(mz->memcg) ||
S
Shakeel Butt 已提交
744
	    !css_tryget(&mz->memcg->css))
745 746 747 748 749
		goto retry;
done:
	return mz;
}

750 751
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
752
{
753
	struct mem_cgroup_per_node *mz;
754

755
	spin_lock_irq(&mctz->lock);
756
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
757
	spin_unlock_irq(&mctz->lock);
758 759 760
	return mz;
}

761 762 763 764 765 766 767 768
/**
 * __mod_memcg_state - update cgroup memory statistics
 * @memcg: the memory cgroup
 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 * @val: delta to add to the counter, can be negative
 */
void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
{
769
	long x, threshold = MEMCG_CHARGE_BATCH;
770 771 772 773

	if (mem_cgroup_disabled())
		return;

774
	if (memcg_stat_item_in_bytes(idx))
775 776
		threshold <<= PAGE_SHIFT;

777
	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
778
	if (unlikely(abs(x) > threshold)) {
779 780
		struct mem_cgroup *mi;

781 782 783 784 785
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
786 787
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmstats[idx]);
788 789 790 791 792
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
}

793 794 795 796 797 798 799 800 801 802 803
static struct mem_cgroup_per_node *
parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
{
	struct mem_cgroup *parent;

	parent = parent_mem_cgroup(pn->memcg);
	if (!parent)
		return NULL;
	return mem_cgroup_nodeinfo(parent, nid);
}

804 805
void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			      int val)
806 807
{
	struct mem_cgroup_per_node *pn;
808
	struct mem_cgroup *memcg;
809
	long x, threshold = MEMCG_CHARGE_BATCH;
810 811

	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
812
	memcg = pn->memcg;
813 814

	/* Update memcg */
815
	__mod_memcg_state(memcg, idx, val);
816

817 818 819
	/* Update lruvec */
	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);

820 821 822
	if (vmstat_item_in_bytes(idx))
		threshold <<= PAGE_SHIFT;

823
	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
824
	if (unlikely(abs(x) > threshold)) {
825
		pg_data_t *pgdat = lruvec_pgdat(lruvec);
826 827 828 829
		struct mem_cgroup_per_node *pi;

		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
			atomic_long_add(x, &pi->lruvec_stat[idx]);
830 831 832 833 834
		x = 0;
	}
	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
}

835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
/**
 * __mod_lruvec_state - update lruvec memory statistics
 * @lruvec: the lruvec
 * @idx: the stat item
 * @val: delta to add to the counter, can be negative
 *
 * The lruvec is the intersection of the NUMA node and a cgroup. This
 * function updates the all three counters that are affected by a
 * change of state at this level: per-node, per-cgroup, per-lruvec.
 */
void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			int val)
{
	/* Update node */
	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);

	/* Update memcg and lruvec */
	if (!mem_cgroup_disabled())
		__mod_memcg_lruvec_state(lruvec, idx, val);
}

856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
			     int val)
{
	struct page *head = compound_head(page); /* rmap on tail pages */
	pg_data_t *pgdat = page_pgdat(page);
	struct lruvec *lruvec;

	/* Untracked pages have no memcg, no lruvec. Update only the node */
	if (!head->mem_cgroup) {
		__mod_node_page_state(pgdat, idx, val);
		return;
	}

	lruvec = mem_cgroup_lruvec(head->mem_cgroup, pgdat);
	__mod_lruvec_state(lruvec, idx, val);
}
872
EXPORT_SYMBOL(__mod_lruvec_page_state);
873

874
void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
875
{
876
	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
877 878 879 880
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;

	rcu_read_lock();
881
	memcg = mem_cgroup_from_obj(p);
882

883 884 885 886 887 888 889
	/*
	 * Untracked pages have no memcg, no lruvec. Update only the
	 * node. If we reparent the slab objects to the root memcg,
	 * when we free the slab object, we need to update the per-memcg
	 * vmstats to keep it correct for the root memcg.
	 */
	if (!memcg) {
890 891
		__mod_node_page_state(pgdat, idx, val);
	} else {
892
		lruvec = mem_cgroup_lruvec(memcg, pgdat);
893 894 895 896 897
		__mod_lruvec_state(lruvec, idx, val);
	}
	rcu_read_unlock();
}

898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
/**
 * __count_memcg_events - account VM events in a cgroup
 * @memcg: the memory cgroup
 * @idx: the event item
 * @count: the number of events that occured
 */
void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
			  unsigned long count)
{
	unsigned long x;

	if (mem_cgroup_disabled())
		return;

	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
914 915
		struct mem_cgroup *mi;

916 917 918 919 920
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->events[idx], x);
921 922
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmevents[idx]);
923 924 925 926 927
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
}

928
static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
929
{
930
	return atomic_long_read(&memcg->vmevents[event]);
931 932
}

933 934
static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
{
935 936 937 938 939 940
	long x = 0;
	int cpu;

	for_each_possible_cpu(cpu)
		x += per_cpu(memcg->vmstats_local->events[event], cpu);
	return x;
941 942
}

943
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
944
					 struct page *page,
945
					 int nr_pages)
946
{
947 948
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
949
		__count_memcg_events(memcg, PGPGIN, 1);
950
	else {
951
		__count_memcg_events(memcg, PGPGOUT, 1);
952 953
		nr_pages = -nr_pages; /* for event */
	}
954

955
	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
956 957
}

958 959
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
960 961 962
{
	unsigned long val, next;

963 964
	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
965
	/* from time_after() in jiffies.h */
966
	if ((long)(next - val) < 0) {
967 968 969 970
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
971 972 973
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
974 975 976
		default:
			break;
		}
977
		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
978
		return true;
979
	}
980
	return false;
981 982 983 984 985 986
}

/*
 * Check events in order.
 *
 */
987
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
988 989
{
	/* threshold event is triggered in finer grain than soft limit */
990 991
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
992
		bool do_softlimit;
993

994 995
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
996
		mem_cgroup_threshold(memcg);
997 998
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
999
	}
1000 1001
}

1002
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1003
{
1004 1005 1006 1007 1008 1009 1010 1011
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1012
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1013
}
M
Michal Hocko 已提交
1014
EXPORT_SYMBOL(mem_cgroup_from_task);
1015

1016 1017 1018 1019 1020 1021 1022 1023 1024
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
 * returned.
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1025
{
1026 1027 1028 1029
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
1030

1031 1032
	rcu_read_lock();
	do {
1033 1034 1035 1036 1037 1038
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1039
			memcg = root_mem_cgroup;
1040 1041 1042 1043 1044
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1045
	} while (!css_tryget(&memcg->css));
1046
	rcu_read_unlock();
1047
	return memcg;
1048
}
1049 1050
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
/**
 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
 * @page: page from which memcg should be extracted.
 *
 * Obtain a reference on page->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned.
 */
struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
{
	struct mem_cgroup *memcg = page->mem_cgroup;

	if (mem_cgroup_disabled())
		return NULL;

	rcu_read_lock();
S
Shakeel Butt 已提交
1066 1067
	/* Page should not get uncharged and freed memcg under us. */
	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1068 1069 1070 1071 1072 1073
		memcg = root_mem_cgroup;
	rcu_read_unlock();
	return memcg;
}
EXPORT_SYMBOL(get_mem_cgroup_from_page);

1074
static __always_inline struct mem_cgroup *active_memcg(void)
1075
{
1076 1077 1078 1079 1080
	if (in_interrupt())
		return this_cpu_read(int_active_memcg);
	else
		return current->active_memcg;
}
1081

1082 1083 1084
static __always_inline struct mem_cgroup *get_active_memcg(void)
{
	struct mem_cgroup *memcg;
1085

1086 1087 1088
	rcu_read_lock();
	memcg = active_memcg();
	if (memcg) {
S
Shakeel Butt 已提交
1089
		/* current->active_memcg must hold a ref. */
1090
		if (WARN_ON_ONCE(!css_tryget(&memcg->css)))
S
Shakeel Butt 已提交
1091 1092
			memcg = root_mem_cgroup;
		else
1093 1094
			memcg = current->active_memcg;
	}
1095 1096 1097 1098 1099
	rcu_read_unlock();

	return memcg;
}

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
static __always_inline bool memcg_kmem_bypass(void)
{
	/* Allow remote memcg charging from any context. */
	if (unlikely(active_memcg()))
		return false;

	/* Memcg to charge can't be determined. */
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;

	return false;
}

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
/**
 * If active memcg is set, do not fallback to current->mm->memcg.
 */
static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
{
	if (memcg_kmem_bypass())
		return NULL;

	if (unlikely(active_memcg()))
		return get_active_memcg();

1124 1125
	return get_mem_cgroup_from_mm(current->mm);
}
1126

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
1140 1141 1142
 * Reclaimers can specify a node in @reclaim to divide up the memcgs
 * in the hierarchy among all concurrent reclaimers operating on the
 * same node.
1143
 */
1144
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1145
				   struct mem_cgroup *prev,
1146
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1147
{
1148
	struct mem_cgroup_reclaim_iter *iter;
1149
	struct cgroup_subsys_state *css = NULL;
1150
	struct mem_cgroup *memcg = NULL;
1151
	struct mem_cgroup *pos = NULL;
1152

1153 1154
	if (mem_cgroup_disabled())
		return NULL;
1155

1156 1157
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1158

1159
	if (prev && !reclaim)
1160
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1161

1162
	rcu_read_lock();
M
Michal Hocko 已提交
1163

1164
	if (reclaim) {
1165
		struct mem_cgroup_per_node *mz;
1166

1167
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1168
		iter = &mz->iter;
1169 1170 1171 1172

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

1173
		while (1) {
1174
			pos = READ_ONCE(iter->position);
1175 1176
			if (!pos || css_tryget(&pos->css))
				break;
1177
			/*
1178 1179 1180 1181 1182 1183
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
1184
			 */
1185 1186
			(void)cmpxchg(&iter->position, pos, NULL);
		}
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1204
		}
K
KAMEZAWA Hiroyuki 已提交
1205

1206 1207 1208 1209 1210 1211
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1212

1213 1214
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1215

1216 1217
		if (css_tryget(css))
			break;
1218

1219
		memcg = NULL;
1220
	}
1221 1222 1223

	if (reclaim) {
		/*
1224 1225 1226
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
1227
		 */
1228 1229
		(void)cmpxchg(&iter->position, pos, memcg);

1230 1231 1232 1233 1234 1235 1236
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1237
	}
1238

1239 1240
out_unlock:
	rcu_read_unlock();
1241 1242 1243
	if (prev && prev != root)
		css_put(&prev->css);

1244
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1245
}
K
KAMEZAWA Hiroyuki 已提交
1246

1247 1248 1249 1250 1251 1252 1253
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1254 1255 1256 1257 1258 1259
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1260

1261 1262
static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
					struct mem_cgroup *dead_memcg)
1263 1264
{
	struct mem_cgroup_reclaim_iter *iter;
1265 1266
	struct mem_cgroup_per_node *mz;
	int nid;
1267

1268 1269
	for_each_node(nid) {
		mz = mem_cgroup_nodeinfo(from, nid);
1270 1271
		iter = &mz->iter;
		cmpxchg(&iter->position, dead_memcg, NULL);
1272 1273 1274
	}
}

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup *last;

	do {
		__invalidate_reclaim_iterators(memcg, dead_memcg);
		last = memcg;
	} while ((memcg = parent_mem_cgroup(memcg)));

	/*
	 * When cgruop1 non-hierarchy mode is used,
	 * parent_mem_cgroup() does not walk all the way up to the
	 * cgroup root (root_mem_cgroup). So we have to handle
	 * dead_memcg from cgroup root separately.
	 */
	if (last != root_mem_cgroup)
		__invalidate_reclaim_iterators(root_mem_cgroup,
						dead_memcg);
}

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

1321
		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

1333
/**
1334
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1335
 * @page: the page
1336
 * @pgdat: pgdat of the page
1337
 *
1338
 * This function relies on page's memcg being stable - see the
1339
 * access rules in commit_charge().
1340
 */
M
Mel Gorman 已提交
1341
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
1342
{
1343
	struct mem_cgroup_per_node *mz;
1344
	struct mem_cgroup *memcg;
1345
	struct lruvec *lruvec;
1346

1347
	if (mem_cgroup_disabled()) {
1348
		lruvec = &pgdat->__lruvec;
1349 1350
		goto out;
	}
1351

1352
	memcg = page->mem_cgroup;
1353
	/*
1354
	 * Swapcache readahead pages are added to the LRU - and
1355
	 * possibly migrated - before they are charged.
1356
	 */
1357 1358
	if (!memcg)
		memcg = root_mem_cgroup;
1359

1360
	mz = mem_cgroup_page_nodeinfo(memcg, page);
1361 1362 1363 1364 1365 1366 1367
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
1368 1369
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
1370
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1371
}
1372

1373
/**
1374 1375 1376
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1377
 * @zid: zone id of the accounted pages
1378
 * @nr_pages: positive when adding or negative when removing
1379
 *
1380 1381 1382
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1383
 */
1384
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1385
				int zid, int nr_pages)
1386
{
1387
	struct mem_cgroup_per_node *mz;
1388
	unsigned long *lru_size;
1389
	long size;
1390 1391 1392 1393

	if (mem_cgroup_disabled())
		return;

1394
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1395
	lru_size = &mz->lru_zone_size[zid][lru];
1396 1397 1398 1399 1400

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1401 1402 1403
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1404 1405 1406 1407 1408 1409
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1410
}
1411

1412
/**
1413
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1414
 * @memcg: the memory cgroup
1415
 *
1416
 * Returns the maximum amount of memory @mem can be charged with, in
1417
 * pages.
1418
 */
1419
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1420
{
1421 1422 1423
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1424

1425
	count = page_counter_read(&memcg->memory);
1426
	limit = READ_ONCE(memcg->memory.max);
1427 1428 1429
	if (count < limit)
		margin = limit - count;

1430
	if (do_memsw_account()) {
1431
		count = page_counter_read(&memcg->memsw);
1432
		limit = READ_ONCE(memcg->memsw.max);
1433
		if (count < limit)
1434
			margin = min(margin, limit - count);
1435 1436
		else
			margin = 0;
1437 1438 1439
	}

	return margin;
1440 1441
}

1442
/*
Q
Qiang Huang 已提交
1443
 * A routine for checking "mem" is under move_account() or not.
1444
 *
Q
Qiang Huang 已提交
1445 1446 1447
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1448
 */
1449
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1450
{
1451 1452
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1453
	bool ret = false;
1454 1455 1456 1457 1458 1459 1460 1461 1462
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1463

1464 1465
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1466 1467
unlock:
	spin_unlock(&mc.lock);
1468 1469 1470
	return ret;
}

1471
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1472 1473
{
	if (mc.moving_task && current != mc.moving_task) {
1474
		if (mem_cgroup_under_move(memcg)) {
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
struct memory_stat {
	const char *name;
	unsigned int ratio;
	unsigned int idx;
};

static struct memory_stat memory_stats[] = {
	{ "anon", PAGE_SIZE, NR_ANON_MAPPED },
	{ "file", PAGE_SIZE, NR_FILE_PAGES },
	{ "kernel_stack", 1024, NR_KERNEL_STACK_KB },
1497
	{ "pagetables", PAGE_SIZE, NR_PAGETABLE },
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
	{ "percpu", 1, MEMCG_PERCPU_B },
	{ "sock", PAGE_SIZE, MEMCG_SOCK },
	{ "shmem", PAGE_SIZE, NR_SHMEM },
	{ "file_mapped", PAGE_SIZE, NR_FILE_MAPPED },
	{ "file_dirty", PAGE_SIZE, NR_FILE_DIRTY },
	{ "file_writeback", PAGE_SIZE, NR_WRITEBACK },
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	/*
	 * The ratio will be initialized in memory_stats_init(). Because
	 * on some architectures, the macro of HPAGE_PMD_SIZE is not
	 * constant(e.g. powerpc).
	 */
	{ "anon_thp", 0, NR_ANON_THPS },
1511 1512
	{ "file_thp", 0, NR_FILE_THPS },
	{ "shmem_thp", 0, NR_SHMEM_THPS },
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
#endif
	{ "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON },
	{ "active_anon", PAGE_SIZE, NR_ACTIVE_ANON },
	{ "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE },
	{ "active_file", PAGE_SIZE, NR_ACTIVE_FILE },
	{ "unevictable", PAGE_SIZE, NR_UNEVICTABLE },

	/*
	 * Note: The slab_reclaimable and slab_unreclaimable must be
	 * together and slab_reclaimable must be in front.
	 */
	{ "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B },
	{ "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B },

	/* The memory events */
	{ "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON },
	{ "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE },
	{ "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON },
	{ "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE },
	{ "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON },
	{ "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE },
	{ "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM },
};

static int __init memory_stats_init(void)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1543 1544 1545
		if (memory_stats[i].idx == NR_ANON_THPS ||
		    memory_stats[i].idx == NR_FILE_THPS ||
		    memory_stats[i].idx == NR_SHMEM_THPS)
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
			memory_stats[i].ratio = HPAGE_PMD_SIZE;
#endif
		VM_BUG_ON(!memory_stats[i].ratio);
		VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT);
	}

	return 0;
}
pure_initcall(memory_stats_init);

1556 1557 1558 1559
static char *memory_stat_format(struct mem_cgroup *memcg)
{
	struct seq_buf s;
	int i;
1560

1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
	if (!s.buffer)
		return NULL;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

1576 1577
	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
		u64 size;
1578

1579 1580 1581
		size = memcg_page_state(memcg, memory_stats[i].idx);
		size *= memory_stats[i].ratio;
		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1582

1583 1584 1585 1586 1587 1588
		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
			size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
			       memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B);
			seq_buf_printf(&s, "slab %llu\n", size);
		}
	}
1589 1590 1591

	/* Accumulated memory events */

1592 1593 1594 1595 1596 1597
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
		       memcg_events(memcg, PGFAULT));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
		       memcg_events(memcg, PGMAJFAULT));
	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
		       memcg_events(memcg, PGREFILL));
1598 1599 1600 1601 1602 1603
	seq_buf_printf(&s, "pgscan %lu\n",
		       memcg_events(memcg, PGSCAN_KSWAPD) +
		       memcg_events(memcg, PGSCAN_DIRECT));
	seq_buf_printf(&s, "pgsteal %lu\n",
		       memcg_events(memcg, PGSTEAL_KSWAPD) +
		       memcg_events(memcg, PGSTEAL_DIRECT));
1604 1605 1606 1607 1608 1609 1610 1611
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
		       memcg_events(memcg, PGACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
		       memcg_events(memcg, PGDEACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
		       memcg_events(memcg, PGLAZYFREE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
		       memcg_events(memcg, PGLAZYFREED));
1612 1613

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1614
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1615
		       memcg_events(memcg, THP_FAULT_ALLOC));
1616
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1617 1618 1619 1620 1621 1622 1623 1624
		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

	/* The above should easily fit into one page */
	WARN_ON_ONCE(seq_buf_has_overflowed(&s));

	return s.buffer;
}
1625

1626
#define K(x) ((x) << (PAGE_SHIFT-10))
1627
/**
1628 1629
 * mem_cgroup_print_oom_context: Print OOM information relevant to
 * memory controller.
1630 1631 1632 1633 1634 1635
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
1636
void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1637 1638 1639
{
	rcu_read_lock();

1640 1641 1642 1643 1644
	if (memcg) {
		pr_cont(",oom_memcg=");
		pr_cont_cgroup_path(memcg->css.cgroup);
	} else
		pr_cont(",global_oom");
1645
	if (p) {
1646
		pr_cont(",task_memcg=");
1647 1648
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	}
1649
	rcu_read_unlock();
1650 1651 1652 1653 1654 1655 1656 1657 1658
}

/**
 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
 * memory controller.
 * @memcg: The memory cgroup that went over limit
 */
void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
1659
	char *buf;
1660

1661 1662
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1663
		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1664 1665 1666
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->swap)),
1667
			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1668 1669 1670 1671 1672 1673 1674
	else {
		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->memsw)),
			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->kmem)),
			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1675
	}
1676 1677 1678 1679 1680 1681 1682 1683 1684

	pr_info("Memory cgroup stats for ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(":");
	buf = memory_stat_format(memcg);
	if (!buf)
		return;
	pr_info("%s", buf);
	kfree(buf);
1685 1686
}

D
David Rientjes 已提交
1687 1688 1689
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1690
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1691
{
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
	unsigned long max = READ_ONCE(memcg->memory.max);

	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
		if (mem_cgroup_swappiness(memcg))
			max += min(READ_ONCE(memcg->swap.max),
				   (unsigned long)total_swap_pages);
	} else { /* v1 */
		if (mem_cgroup_swappiness(memcg)) {
			/* Calculate swap excess capacity from memsw limit */
			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;

			max += min(swap, (unsigned long)total_swap_pages);
		}
1705
	}
1706
	return max;
D
David Rientjes 已提交
1707 1708
}

1709 1710 1711 1712 1713
unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
{
	return page_counter_read(&memcg->memory);
}

1714
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1715
				     int order)
1716
{
1717 1718 1719
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1720
		.memcg = memcg,
1721 1722 1723
		.gfp_mask = gfp_mask,
		.order = order,
	};
1724
	bool ret = true;
1725

1726 1727
	if (mutex_lock_killable(&oom_lock))
		return true;
1728 1729 1730 1731

	if (mem_cgroup_margin(memcg) >= (1 << order))
		goto unlock;

1732 1733 1734 1735 1736
	/*
	 * A few threads which were not waiting at mutex_lock_killable() can
	 * fail to bail out. Therefore, check again after holding oom_lock.
	 */
	ret = should_force_charge() || out_of_memory(&oc);
1737 1738

unlock:
1739
	mutex_unlock(&oom_lock);
1740
	return ret;
1741 1742
}

1743
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1744
				   pg_data_t *pgdat,
1745 1746 1747 1748 1749 1750 1751 1752 1753
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1754
		.pgdat = pgdat,
1755 1756
	};

1757
	excess = soft_limit_excess(root_memcg);
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1783
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1784
					pgdat, &nr_scanned);
1785
		*total_scanned += nr_scanned;
1786
		if (!soft_limit_excess(root_memcg))
1787
			break;
1788
	}
1789 1790
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1791 1792
}

1793 1794 1795 1796 1797 1798
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1799 1800
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1801 1802 1803 1804
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1805
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1806
{
1807
	struct mem_cgroup *iter, *failed = NULL;
1808

1809 1810
	spin_lock(&memcg_oom_lock);

1811
	for_each_mem_cgroup_tree(iter, memcg) {
1812
		if (iter->oom_lock) {
1813 1814 1815 1816 1817
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1818 1819
			mem_cgroup_iter_break(memcg, iter);
			break;
1820 1821
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1822
	}
K
KAMEZAWA Hiroyuki 已提交
1823

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1835
		}
1836 1837
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1838 1839 1840 1841

	spin_unlock(&memcg_oom_lock);

	return !failed;
1842
}
1843

1844
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1845
{
K
KAMEZAWA Hiroyuki 已提交
1846 1847
	struct mem_cgroup *iter;

1848
	spin_lock(&memcg_oom_lock);
1849
	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1850
	for_each_mem_cgroup_tree(iter, memcg)
1851
		iter->oom_lock = false;
1852
	spin_unlock(&memcg_oom_lock);
1853 1854
}

1855
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1856 1857 1858
{
	struct mem_cgroup *iter;

1859
	spin_lock(&memcg_oom_lock);
1860
	for_each_mem_cgroup_tree(iter, memcg)
1861 1862
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1863 1864
}

1865
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1866 1867 1868
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1869
	/*
1870 1871
	 * Be careful about under_oom underflows becase a child memcg
	 * could have been added after mem_cgroup_mark_under_oom.
K
KAMEZAWA Hiroyuki 已提交
1872
	 */
1873
	spin_lock(&memcg_oom_lock);
1874
	for_each_mem_cgroup_tree(iter, memcg)
1875 1876 1877
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1878 1879
}

K
KAMEZAWA Hiroyuki 已提交
1880 1881
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1882
struct oom_wait_info {
1883
	struct mem_cgroup *memcg;
1884
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1885 1886
};

1887
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1888 1889
	unsigned mode, int sync, void *arg)
{
1890 1891
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1892 1893 1894
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1895
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1896

1897 1898
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1899 1900 1901 1902
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1903
static void memcg_oom_recover(struct mem_cgroup *memcg)
1904
{
1905 1906 1907 1908 1909 1910 1911 1912 1913
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1914
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1915 1916
}

1917 1918 1919 1920 1921 1922 1923 1924
enum oom_status {
	OOM_SUCCESS,
	OOM_FAILED,
	OOM_ASYNC,
	OOM_SKIPPED
};

static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1925
{
1926 1927 1928
	enum oom_status ret;
	bool locked;

1929 1930 1931
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		return OOM_SKIPPED;

1932 1933
	memcg_memory_event(memcg, MEMCG_OOM);

K
KAMEZAWA Hiroyuki 已提交
1934
	/*
1935 1936 1937 1938
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1939 1940 1941 1942
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1943
	 *
1944 1945 1946 1947 1948 1949 1950
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
K
KAMEZAWA Hiroyuki 已提交
1951
	 */
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
	if (memcg->oom_kill_disable) {
		if (!current->in_user_fault)
			return OOM_SKIPPED;
		css_get(&memcg->css);
		current->memcg_in_oom = memcg;
		current->memcg_oom_gfp_mask = mask;
		current->memcg_oom_order = order;

		return OOM_ASYNC;
	}

1963 1964 1965 1966 1967 1968 1969 1970
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	mem_cgroup_unmark_under_oom(memcg);
1971
	if (mem_cgroup_out_of_memory(memcg, mask, order))
1972 1973 1974 1975 1976 1977
		ret = OOM_SUCCESS;
	else
		ret = OOM_FAILED;

	if (locked)
		mem_cgroup_oom_unlock(memcg);
1978

1979
	return ret;
1980 1981 1982 1983
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1984
 * @handle: actually kill/wait or just clean up the OOM state
1985
 *
1986 1987
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1988
 *
1989
 * Memcg supports userspace OOM handling where failed allocations must
1990 1991 1992 1993
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1994
 * the end of the page fault to complete the OOM handling.
1995 1996
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1997
 * completed, %false otherwise.
1998
 */
1999
bool mem_cgroup_oom_synchronize(bool handle)
2000
{
T
Tejun Heo 已提交
2001
	struct mem_cgroup *memcg = current->memcg_in_oom;
2002
	struct oom_wait_info owait;
2003
	bool locked;
2004 2005 2006

	/* OOM is global, do not handle */
	if (!memcg)
2007
		return false;
2008

2009
	if (!handle)
2010
		goto cleanup;
2011 2012 2013 2014 2015

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
2016
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
2017

2018
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
2029 2030
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
2031
	} else {
2032
		schedule();
2033 2034 2035 2036 2037
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
2038 2039 2040 2041 2042 2043 2044 2045
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2046
cleanup:
T
Tejun Heo 已提交
2047
	current->memcg_in_oom = NULL;
2048
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2049
	return true;
2050 2051
}

2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
/**
 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 * @victim: task to be killed by the OOM killer
 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 *
 * Returns a pointer to a memory cgroup, which has to be cleaned up
 * by killing all belonging OOM-killable tasks.
 *
 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 */
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
					    struct mem_cgroup *oom_domain)
{
	struct mem_cgroup *oom_group = NULL;
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return NULL;

	if (!oom_domain)
		oom_domain = root_mem_cgroup;

	rcu_read_lock();

	memcg = mem_cgroup_from_task(victim);
	if (memcg == root_mem_cgroup)
		goto out;

2080 2081 2082 2083 2084 2085 2086 2087
	/*
	 * If the victim task has been asynchronously moved to a different
	 * memory cgroup, we might end up killing tasks outside oom_domain.
	 * In this case it's better to ignore memory.group.oom.
	 */
	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
		goto out;

2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
	/*
	 * Traverse the memory cgroup hierarchy from the victim task's
	 * cgroup up to the OOMing cgroup (or root) to find the
	 * highest-level memory cgroup with oom.group set.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		if (memcg->oom_group)
			oom_group = memcg;

		if (memcg == oom_domain)
			break;
	}

	if (oom_group)
		css_get(&oom_group->css);
out:
	rcu_read_unlock();

	return oom_group;
}

void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
	pr_info("Tasks in ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(" are going to be killed due to memory.oom.group set\n");
}

2116
/**
2117 2118
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
2119
 *
2120
 * This function protects unlocked LRU pages from being moved to
2121 2122 2123 2124 2125
 * another cgroup.
 *
 * It ensures lifetime of the returned memcg. Caller is responsible
 * for the lifetime of the page; __unlock_page_memcg() is available
 * when @page might get freed inside the locked section.
2126
 */
2127
struct mem_cgroup *lock_page_memcg(struct page *page)
2128
{
2129
	struct page *head = compound_head(page); /* rmap on tail pages */
2130
	struct mem_cgroup *memcg;
2131
	unsigned long flags;
2132

2133 2134 2135 2136
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
2137 2138 2139 2140 2141 2142 2143
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page itself from being freed. E.g. writeback
	 * doesn't hold a page reference and relies on PG_writeback to
	 * keep off truncation, migration and so forth.
         */
2144 2145 2146
	rcu_read_lock();

	if (mem_cgroup_disabled())
2147
		return NULL;
2148
again:
2149
	memcg = head->mem_cgroup;
2150
	if (unlikely(!memcg))
2151
		return NULL;
2152

2153 2154 2155 2156 2157 2158
#ifdef CONFIG_PROVE_LOCKING
	local_irq_save(flags);
	might_lock(&memcg->move_lock);
	local_irq_restore(flags);
#endif

Q
Qiang Huang 已提交
2159
	if (atomic_read(&memcg->moving_account) <= 0)
2160
		return memcg;
2161

2162
	spin_lock_irqsave(&memcg->move_lock, flags);
2163
	if (memcg != head->mem_cgroup) {
2164
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2165 2166
		goto again;
	}
2167 2168 2169 2170

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
2171
	 * the task who has the lock for unlock_page_memcg().
2172 2173 2174
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2175

2176
	return memcg;
2177
}
2178
EXPORT_SYMBOL(lock_page_memcg);
2179

2180
/**
2181 2182 2183 2184
 * __unlock_page_memcg - unlock and unpin a memcg
 * @memcg: the memcg
 *
 * Unlock and unpin a memcg returned by lock_page_memcg().
2185
 */
2186
void __unlock_page_memcg(struct mem_cgroup *memcg)
2187
{
2188 2189 2190 2191 2192 2193 2194 2195
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2196

2197
	rcu_read_unlock();
2198
}
2199 2200 2201 2202 2203 2204 2205

/**
 * unlock_page_memcg - unlock a page->mem_cgroup binding
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
2206 2207 2208
	struct page *head = compound_head(page);

	__unlock_page_memcg(head->mem_cgroup);
2209
}
2210
EXPORT_SYMBOL(unlock_page_memcg);
2211

2212 2213
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2214
	unsigned int nr_pages;
R
Roman Gushchin 已提交
2215 2216 2217 2218 2219 2220

#ifdef CONFIG_MEMCG_KMEM
	struct obj_cgroup *cached_objcg;
	unsigned int nr_bytes;
#endif

2221
	struct work_struct work;
2222
	unsigned long flags;
2223
#define FLUSHING_CACHED_CHARGE	0
2224 2225
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2226
static DEFINE_MUTEX(percpu_charge_mutex);
2227

R
Roman Gushchin 已提交
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
#ifdef CONFIG_MEMCG_KMEM
static void drain_obj_stock(struct memcg_stock_pcp *stock);
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg);

#else
static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
{
}
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	return false;
}
#endif

2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2254
 */
2255
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2256 2257
{
	struct memcg_stock_pcp *stock;
2258
	unsigned long flags;
2259
	bool ret = false;
2260

2261
	if (nr_pages > MEMCG_CHARGE_BATCH)
2262
		return ret;
2263

2264 2265 2266
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2267
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2268
		stock->nr_pages -= nr_pages;
2269 2270
		ret = true;
	}
2271 2272 2273

	local_irq_restore(flags);

2274 2275 2276 2277
	return ret;
}

/*
2278
 * Returns stocks cached in percpu and reset cached information.
2279 2280 2281 2282 2283
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2284 2285 2286
	if (!old)
		return;

2287
	if (stock->nr_pages) {
2288
		page_counter_uncharge(&old->memory, stock->nr_pages);
2289
		if (do_memsw_account())
2290
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2291
		stock->nr_pages = 0;
2292
	}
2293 2294

	css_put(&old->css);
2295 2296 2297 2298 2299
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
2300 2301 2302
	struct memcg_stock_pcp *stock;
	unsigned long flags;

2303 2304 2305 2306
	/*
	 * The only protection from memory hotplug vs. drain_stock races is
	 * that we always operate on local CPU stock here with IRQ disabled
	 */
2307 2308 2309
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
R
Roman Gushchin 已提交
2310
	drain_obj_stock(stock);
2311
	drain_stock(stock);
2312
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2313 2314

	local_irq_restore(flags);
2315 2316 2317
}

/*
2318
 * Cache charges(val) to local per_cpu area.
2319
 * This will be consumed by consume_stock() function, later.
2320
 */
2321
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2322
{
2323 2324 2325 2326
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
2327

2328
	stock = this_cpu_ptr(&memcg_stock);
2329
	if (stock->cached != memcg) { /* reset if necessary */
2330
		drain_stock(stock);
2331
		css_get(&memcg->css);
2332
		stock->cached = memcg;
2333
	}
2334
	stock->nr_pages += nr_pages;
2335

2336
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2337 2338
		drain_stock(stock);

2339
	local_irq_restore(flags);
2340 2341 2342
}

/*
2343
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2344
 * of the hierarchy under it.
2345
 */
2346
static void drain_all_stock(struct mem_cgroup *root_memcg)
2347
{
2348
	int cpu, curcpu;
2349

2350 2351 2352
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2353 2354 2355 2356 2357 2358
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
2359
	curcpu = get_cpu();
2360 2361
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2362
		struct mem_cgroup *memcg;
2363
		bool flush = false;
2364

2365
		rcu_read_lock();
2366
		memcg = stock->cached;
2367 2368 2369
		if (memcg && stock->nr_pages &&
		    mem_cgroup_is_descendant(memcg, root_memcg))
			flush = true;
R
Roman Gushchin 已提交
2370 2371
		if (obj_stock_flush_required(stock, root_memcg))
			flush = true;
2372 2373 2374 2375
		rcu_read_unlock();

		if (flush &&
		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2376 2377 2378 2379 2380
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2381
	}
2382
	put_cpu();
2383
	mutex_unlock(&percpu_charge_mutex);
2384 2385
}

2386
static int memcg_hotplug_cpu_dead(unsigned int cpu)
2387 2388
{
	struct memcg_stock_pcp *stock;
2389
	struct mem_cgroup *memcg, *mi;
2390 2391 2392

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
2393 2394 2395 2396 2397 2398 2399 2400

	for_each_mem_cgroup(memcg) {
		int i;

		for (i = 0; i < MEMCG_NR_STAT; i++) {
			int nid;
			long x;

2401
			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2402
			if (x)
2403 2404
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmstats[i]);
2405 2406 2407 2408 2409 2410 2411 2412 2413

			if (i >= NR_VM_NODE_STAT_ITEMS)
				continue;

			for_each_node(nid) {
				struct mem_cgroup_per_node *pn;

				pn = mem_cgroup_nodeinfo(memcg, nid);
				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2414
				if (x)
2415 2416 2417
					do {
						atomic_long_add(x, &pn->lruvec_stat[i]);
					} while ((pn = parent_nodeinfo(pn, nid)));
2418 2419 2420
			}
		}

2421
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2422 2423
			long x;

2424
			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2425
			if (x)
2426 2427
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmevents[i]);
2428 2429 2430
		}
	}

2431
	return 0;
2432 2433
}

2434 2435 2436
static unsigned long reclaim_high(struct mem_cgroup *memcg,
				  unsigned int nr_pages,
				  gfp_t gfp_mask)
2437
{
2438 2439
	unsigned long nr_reclaimed = 0;

2440
	do {
2441 2442
		unsigned long pflags;

2443 2444
		if (page_counter_read(&memcg->memory) <=
		    READ_ONCE(memcg->memory.high))
2445
			continue;
2446

2447
		memcg_memory_event(memcg, MEMCG_HIGH);
2448 2449

		psi_memstall_enter(&pflags);
2450 2451
		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
							     gfp_mask, true);
2452
		psi_memstall_leave(&pflags);
2453 2454
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));
2455 2456

	return nr_reclaimed;
2457 2458 2459 2460 2461 2462 2463
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
2464
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2465 2466
}

2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
/*
 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
 * enough to still cause a significant slowdown in most cases, while still
 * allowing diagnostics and tracing to proceed without becoming stuck.
 */
#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)

/*
 * When calculating the delay, we use these either side of the exponentiation to
 * maintain precision and scale to a reasonable number of jiffies (see the table
 * below.
 *
 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
 *   overage ratio to a delay.
2481
 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
 *   to produce a reasonable delay curve.
 *
 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
 * reasonable delay curve compared to precision-adjusted overage, not
 * penalising heavily at first, but still making sure that growth beyond the
 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
 * example, with a high of 100 megabytes:
 *
 *  +-------+------------------------+
 *  | usage | time to allocate in ms |
 *  +-------+------------------------+
 *  | 100M  |                      0 |
 *  | 101M  |                      6 |
 *  | 102M  |                     25 |
 *  | 103M  |                     57 |
 *  | 104M  |                    102 |
 *  | 105M  |                    159 |
 *  | 106M  |                    230 |
 *  | 107M  |                    313 |
 *  | 108M  |                    409 |
 *  | 109M  |                    518 |
 *  | 110M  |                    639 |
 *  | 111M  |                    774 |
 *  | 112M  |                    921 |
 *  | 113M  |                   1081 |
 *  | 114M  |                   1254 |
 *  | 115M  |                   1439 |
 *  | 116M  |                   1638 |
 *  | 117M  |                   1849 |
 *  | 118M  |                   2000 |
 *  | 119M  |                   2000 |
 *  | 120M  |                   2000 |
 *  +-------+------------------------+
 */
 #define MEMCG_DELAY_PRECISION_SHIFT 20
 #define MEMCG_DELAY_SCALING_SHIFT 14

2520
static u64 calculate_overage(unsigned long usage, unsigned long high)
2521
{
2522
	u64 overage;
2523

2524 2525
	if (usage <= high)
		return 0;
2526

2527 2528 2529 2530 2531
	/*
	 * Prevent division by 0 in overage calculation by acting as if
	 * it was a threshold of 1 page
	 */
	high = max(high, 1UL);
2532

2533 2534 2535 2536
	overage = usage - high;
	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
	return div64_u64(overage, high);
}
2537

2538 2539 2540
static u64 mem_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;
2541

2542 2543
	do {
		overage = calculate_overage(page_counter_read(&memcg->memory),
2544
					    READ_ONCE(memcg->memory.high));
2545
		max_overage = max(overage, max_overage);
2546 2547 2548
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

2549 2550 2551
	return max_overage;
}

2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
static u64 swap_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;

	do {
		overage = calculate_overage(page_counter_read(&memcg->swap),
					    READ_ONCE(memcg->swap.high));
		if (overage)
			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
		max_overage = max(overage, max_overage);
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

	return max_overage;
}

2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
/*
 * Get the number of jiffies that we should penalise a mischievous cgroup which
 * is exceeding its memory.high by checking both it and its ancestors.
 */
static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
					  unsigned int nr_pages,
					  u64 max_overage)
{
	unsigned long penalty_jiffies;

2578 2579
	if (!max_overage)
		return 0;
2580 2581 2582 2583 2584 2585 2586 2587 2588

	/*
	 * We use overage compared to memory.high to calculate the number of
	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
	 * fairly lenient on small overages, and increasingly harsh when the
	 * memcg in question makes it clear that it has no intention of stopping
	 * its crazy behaviour, so we exponentially increase the delay based on
	 * overage amount.
	 */
2589 2590 2591
	penalty_jiffies = max_overage * max_overage * HZ;
	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2592 2593 2594 2595 2596 2597 2598 2599 2600

	/*
	 * Factor in the task's own contribution to the overage, such that four
	 * N-sized allocations are throttled approximately the same as one
	 * 4N-sized allocation.
	 *
	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
	 * larger the current charge patch is than that.
	 */
2601
	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
}

/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned long penalty_jiffies;
	unsigned long pflags;
2612
	unsigned long nr_reclaimed;
2613
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2614
	int nr_retries = MAX_RECLAIM_RETRIES;
2615
	struct mem_cgroup *memcg;
2616
	bool in_retry = false;
2617 2618 2619 2620 2621 2622 2623

	if (likely(!nr_pages))
		return;

	memcg = get_mem_cgroup_from_mm(current->mm);
	current->memcg_nr_pages_over_high = 0;

2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
retry_reclaim:
	/*
	 * The allocating task should reclaim at least the batch size, but for
	 * subsequent retries we only want to do what's necessary to prevent oom
	 * or breaching resource isolation.
	 *
	 * This is distinct from memory.max or page allocator behaviour because
	 * memory.high is currently batched, whereas memory.max and the page
	 * allocator run every time an allocation is made.
	 */
	nr_reclaimed = reclaim_high(memcg,
				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
				    GFP_KERNEL);

2638 2639 2640 2641
	/*
	 * memory.high is breached and reclaim is unable to keep up. Throttle
	 * allocators proactively to slow down excessive growth.
	 */
2642 2643
	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
					       mem_find_max_overage(memcg));
2644

2645 2646 2647
	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
						swap_find_max_overage(memcg));

2648 2649 2650 2651 2652 2653 2654
	/*
	 * Clamp the max delay per usermode return so as to still keep the
	 * application moving forwards and also permit diagnostics, albeit
	 * extremely slowly.
	 */
	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);

2655 2656 2657 2658 2659 2660 2661 2662 2663
	/*
	 * Don't sleep if the amount of jiffies this memcg owes us is so low
	 * that it's not even worth doing, in an attempt to be nice to those who
	 * go only a small amount over their memory.high value and maybe haven't
	 * been aggressively reclaimed enough yet.
	 */
	if (penalty_jiffies <= HZ / 100)
		goto out;

2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
	/*
	 * If reclaim is making forward progress but we're still over
	 * memory.high, we want to encourage that rather than doing allocator
	 * throttling.
	 */
	if (nr_reclaimed || nr_retries--) {
		in_retry = true;
		goto retry_reclaim;
	}

2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
	/*
	 * If we exit early, we're guaranteed to die (since
	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
	 * need to account for any ill-begotten jiffies to pay them off later.
	 */
	psi_memstall_enter(&pflags);
	schedule_timeout_killable(penalty_jiffies);
	psi_memstall_leave(&pflags);

out:
	css_put(&memcg->css);
2685 2686
}

2687 2688
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2689
{
2690
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2691
	int nr_retries = MAX_RECLAIM_RETRIES;
2692
	struct mem_cgroup *mem_over_limit;
2693
	struct page_counter *counter;
2694
	enum oom_status oom_status;
2695
	unsigned long nr_reclaimed;
2696 2697
	bool may_swap = true;
	bool drained = false;
2698
	unsigned long pflags;
2699

2700
	if (mem_cgroup_is_root(memcg))
2701
		return 0;
2702
retry:
2703
	if (consume_stock(memcg, nr_pages))
2704
		return 0;
2705

2706
	if (!do_memsw_account() ||
2707 2708
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2709
			goto done_restock;
2710
		if (do_memsw_account())
2711 2712
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2713
	} else {
2714
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2715
		may_swap = false;
2716
	}
2717

2718 2719 2720 2721
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2722

2723 2724 2725 2726 2727 2728 2729 2730 2731
	/*
	 * Memcg doesn't have a dedicated reserve for atomic
	 * allocations. But like the global atomic pool, we need to
	 * put the burden of reclaim on regular allocation requests
	 * and let these go through as privileged allocations.
	 */
	if (gfp_mask & __GFP_ATOMIC)
		goto force;

2732 2733 2734 2735 2736 2737
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
2738
	if (unlikely(should_force_charge()))
2739
		goto force;
2740

2741 2742 2743 2744 2745 2746 2747 2748 2749
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2750 2751 2752
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2753
	if (!gfpflags_allow_blocking(gfp_mask))
2754
		goto nomem;
2755

2756
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2757

2758
	psi_memstall_enter(&pflags);
2759 2760
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2761
	psi_memstall_leave(&pflags);
2762

2763
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2764
		goto retry;
2765

2766
	if (!drained) {
2767
		drain_all_stock(mem_over_limit);
2768 2769 2770 2771
		drained = true;
		goto retry;
	}

2772 2773
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2774 2775 2776 2777 2778 2779 2780 2781 2782
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2783
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2784 2785 2786 2787 2788 2789 2790 2791
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2792 2793 2794
	if (nr_retries--)
		goto retry;

2795
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2796 2797
		goto nomem;

2798
	if (gfp_mask & __GFP_NOFAIL)
2799
		goto force;
2800

2801
	if (fatal_signal_pending(current))
2802
		goto force;
2803

2804 2805 2806 2807 2808 2809
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2810
		       get_order(nr_pages * PAGE_SIZE));
2811 2812
	switch (oom_status) {
	case OOM_SUCCESS:
2813
		nr_retries = MAX_RECLAIM_RETRIES;
2814 2815 2816 2817 2818 2819
		goto retry;
	case OOM_FAILED:
		goto force;
	default:
		goto nomem;
	}
2820
nomem:
2821
	if (!(gfp_mask & __GFP_NOFAIL))
2822
		return -ENOMEM;
2823 2824 2825 2826 2827 2828 2829
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2830
	if (do_memsw_account())
2831 2832 2833
		page_counter_charge(&memcg->memsw, nr_pages);

	return 0;
2834 2835 2836 2837

done_restock:
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2838

2839
	/*
2840 2841
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2842
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2843 2844 2845 2846
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2847 2848
	 */
	do {
2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
		bool mem_high, swap_high;

		mem_high = page_counter_read(&memcg->memory) >
			READ_ONCE(memcg->memory.high);
		swap_high = page_counter_read(&memcg->swap) >
			READ_ONCE(memcg->swap.high);

		/* Don't bother a random interrupted task */
		if (in_interrupt()) {
			if (mem_high) {
2859 2860 2861
				schedule_work(&memcg->high_work);
				break;
			}
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
			continue;
		}

		if (mem_high || swap_high) {
			/*
			 * The allocating tasks in this cgroup will need to do
			 * reclaim or be throttled to prevent further growth
			 * of the memory or swap footprints.
			 *
			 * Target some best-effort fairness between the tasks,
			 * and distribute reclaim work and delay penalties
			 * based on how much each task is actually allocating.
			 */
V
Vladimir Davydov 已提交
2875
			current->memcg_nr_pages_over_high += batch;
2876 2877 2878
			set_notify_resume(current);
			break;
		}
2879
	} while ((memcg = parent_mem_cgroup(memcg)));
2880 2881

	return 0;
2882
}
2883

2884
#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2885
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2886
{
2887 2888 2889
	if (mem_cgroup_is_root(memcg))
		return;

2890
	page_counter_uncharge(&memcg->memory, nr_pages);
2891
	if (do_memsw_account())
2892
		page_counter_uncharge(&memcg->memsw, nr_pages);
2893
}
2894
#endif
2895

2896
static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2897
{
2898
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2899
	/*
2900
	 * Any of the following ensures page's memcg stability:
2901
	 *
2902 2903 2904 2905
	 * - the page lock
	 * - LRU isolation
	 * - lock_page_memcg()
	 * - exclusive reference
2906
	 */
2907
	page->mem_cgroup = memcg;
2908
}
2909

2910
#ifdef CONFIG_MEMCG_KMEM
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
				 gfp_t gfp)
{
	unsigned int objects = objs_per_slab_page(s, page);
	void *vec;

	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
			   page_to_nid(page));
	if (!vec)
		return -ENOMEM;

	if (cmpxchg(&page->obj_cgroups, NULL,
		    (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
		kfree(vec);
	else
		kmemleak_not_leak(vec);

	return 0;
}

2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
/*
 * Returns a pointer to the memory cgroup to which the kernel object is charged.
 *
 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
 * cgroup_mutex, etc.
 */
struct mem_cgroup *mem_cgroup_from_obj(void *p)
{
	struct page *page;

	if (mem_cgroup_disabled())
		return NULL;

	page = virt_to_head_page(p);

2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
	/*
	 * If page->mem_cgroup is set, it's either a simple mem_cgroup pointer
	 * or a pointer to obj_cgroup vector. In the latter case the lowest
	 * bit of the pointer is set.
	 * The page->mem_cgroup pointer can be asynchronously changed
	 * from NULL to (obj_cgroup_vec | 0x1UL), but can't be changed
	 * from a valid memcg pointer to objcg vector or back.
	 */
	if (!page->mem_cgroup)
		return NULL;

2957
	/*
2958 2959 2960
	 * Slab objects are accounted individually, not per-page.
	 * Memcg membership data for each individual object is saved in
	 * the page->obj_cgroups.
2961
	 */
2962 2963 2964 2965 2966 2967
	if (page_has_obj_cgroups(page)) {
		struct obj_cgroup *objcg;
		unsigned int off;

		off = obj_to_index(page->slab_cache, page, p);
		objcg = page_obj_cgroups(page)[off];
2968 2969 2970 2971
		if (objcg)
			return obj_cgroup_memcg(objcg);

		return NULL;
2972
	}
2973 2974 2975 2976 2977

	/* All other pages use page->mem_cgroup */
	return page->mem_cgroup;
}

R
Roman Gushchin 已提交
2978 2979 2980 2981 2982
__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
{
	struct obj_cgroup *objcg = NULL;
	struct mem_cgroup *memcg;

2983 2984 2985
	if (memcg_kmem_bypass())
		return NULL;

R
Roman Gushchin 已提交
2986
	rcu_read_lock();
2987 2988
	if (unlikely(active_memcg()))
		memcg = active_memcg();
R
Roman Gushchin 已提交
2989 2990 2991 2992 2993 2994 2995
	else
		memcg = mem_cgroup_from_task(current);

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		objcg = rcu_dereference(memcg->objcg);
		if (objcg && obj_cgroup_tryget(objcg))
			break;
2996
		objcg = NULL;
R
Roman Gushchin 已提交
2997 2998 2999 3000 3001 3002
	}
	rcu_read_unlock();

	return objcg;
}

3003
static int memcg_alloc_cache_id(void)
3004
{
3005 3006 3007
	int id, size;
	int err;

3008
	id = ida_simple_get(&memcg_cache_ida,
3009 3010 3011
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
3012

3013
	if (id < memcg_nr_cache_ids)
3014 3015 3016 3017 3018 3019
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
3020
	down_write(&memcg_cache_ids_sem);
3021 3022

	size = 2 * (id + 1);
3023 3024 3025 3026 3027
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

3028
	err = memcg_update_all_list_lrus(size);
3029 3030 3031 3032 3033
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

3034
	if (err) {
3035
		ida_simple_remove(&memcg_cache_ida, id);
3036 3037 3038 3039 3040 3041 3042
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
3043
	ida_simple_remove(&memcg_cache_ida, id);
3044 3045
}

3046
/**
3047
 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
3048
 * @memcg: memory cgroup to charge
3049
 * @gfp: reclaim mode
3050
 * @nr_pages: number of pages to charge
3051 3052 3053
 *
 * Returns 0 on success, an error code on failure.
 */
3054 3055
int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
			unsigned int nr_pages)
3056
{
3057
	struct page_counter *counter;
3058 3059
	int ret;

3060
	ret = try_charge(memcg, gfp, nr_pages);
3061
	if (ret)
3062
		return ret;
3063 3064 3065

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3066 3067 3068 3069 3070 3071 3072 3073 3074 3075

		/*
		 * Enforce __GFP_NOFAIL allocation because callers are not
		 * prepared to see failures and likely do not have any failure
		 * handling code.
		 */
		if (gfp & __GFP_NOFAIL) {
			page_counter_charge(&memcg->kmem, nr_pages);
			return 0;
		}
3076 3077
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
3078
	}
3079
	return 0;
3080 3081
}

3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
/**
 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
 */
void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
{
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

	page_counter_uncharge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_uncharge(&memcg->memsw, nr_pages);
}

3097
/**
3098
 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3099 3100 3101 3102 3103 3104
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
3105
int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3106
{
3107
	struct mem_cgroup *memcg;
3108
	int ret = 0;
3109

3110
	memcg = get_mem_cgroup_from_current();
3111
	if (memcg && !mem_cgroup_is_root(memcg)) {
3112
		ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3113 3114
		if (!ret) {
			page->mem_cgroup = memcg;
3115
			__SetPageKmemcg(page);
3116
			return 0;
3117
		}
3118
		css_put(&memcg->css);
3119
	}
3120
	return ret;
3121
}
3122

3123
/**
3124
 * __memcg_kmem_uncharge_page: uncharge a kmem page
3125 3126 3127
 * @page: page to uncharge
 * @order: allocation order
 */
3128
void __memcg_kmem_uncharge_page(struct page *page, int order)
3129
{
3130
	struct mem_cgroup *memcg = page->mem_cgroup;
3131
	unsigned int nr_pages = 1 << order;
3132 3133 3134 3135

	if (!memcg)
		return;

3136
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3137
	__memcg_kmem_uncharge(memcg, nr_pages);
3138
	page->mem_cgroup = NULL;
3139
	css_put(&memcg->css);
3140 3141 3142 3143

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);
3144
}
R
Roman Gushchin 已提交
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255

static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
{
	struct memcg_stock_pcp *stock;
	unsigned long flags;
	bool ret = false;

	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
		stock->nr_bytes -= nr_bytes;
		ret = true;
	}

	local_irq_restore(flags);

	return ret;
}

static void drain_obj_stock(struct memcg_stock_pcp *stock)
{
	struct obj_cgroup *old = stock->cached_objcg;

	if (!old)
		return;

	if (stock->nr_bytes) {
		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);

		if (nr_pages) {
			rcu_read_lock();
			__memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
			rcu_read_unlock();
		}

		/*
		 * The leftover is flushed to the centralized per-memcg value.
		 * On the next attempt to refill obj stock it will be moved
		 * to a per-cpu stock (probably, on an other CPU), see
		 * refill_obj_stock().
		 *
		 * How often it's flushed is a trade-off between the memory
		 * limit enforcement accuracy and potential CPU contention,
		 * so it might be changed in the future.
		 */
		atomic_add(nr_bytes, &old->nr_charged_bytes);
		stock->nr_bytes = 0;
	}

	obj_cgroup_put(old);
	stock->cached_objcg = NULL;
}

static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	struct mem_cgroup *memcg;

	if (stock->cached_objcg) {
		memcg = obj_cgroup_memcg(stock->cached_objcg);
		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
			return true;
	}

	return false;
}

static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
{
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
	if (stock->cached_objcg != objcg) { /* reset if necessary */
		drain_obj_stock(stock);
		obj_cgroup_get(objcg);
		stock->cached_objcg = objcg;
		stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
	}
	stock->nr_bytes += nr_bytes;

	if (stock->nr_bytes > PAGE_SIZE)
		drain_obj_stock(stock);

	local_irq_restore(flags);
}

int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
{
	struct mem_cgroup *memcg;
	unsigned int nr_pages, nr_bytes;
	int ret;

	if (consume_obj_stock(objcg, size))
		return 0;

	/*
	 * In theory, memcg->nr_charged_bytes can have enough
	 * pre-charged bytes to satisfy the allocation. However,
	 * flushing memcg->nr_charged_bytes requires two atomic
	 * operations, and memcg->nr_charged_bytes can't be big,
	 * so it's better to ignore it and try grab some new pages.
	 * memcg->nr_charged_bytes will be flushed in
	 * refill_obj_stock(), called from this function or
	 * independently later.
	 */
	rcu_read_lock();
3256
retry:
R
Roman Gushchin 已提交
3257
	memcg = obj_cgroup_memcg(objcg);
3258 3259
	if (unlikely(!css_tryget(&memcg->css)))
		goto retry;
R
Roman Gushchin 已提交
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
	rcu_read_unlock();

	nr_pages = size >> PAGE_SHIFT;
	nr_bytes = size & (PAGE_SIZE - 1);

	if (nr_bytes)
		nr_pages += 1;

	ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
	if (!ret && nr_bytes)
		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);

	css_put(&memcg->css);
	return ret;
}

void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
{
	refill_obj_stock(objcg, size);
}

3281
#endif /* CONFIG_MEMCG_KMEM */
3282

3283 3284 3285 3286
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
3287
 * pgdat->lru_lock and migration entries setup in all page mappings.
3288
 */
3289
void mem_cgroup_split_huge_fixup(struct page *head)
3290
{
3291
	struct mem_cgroup *memcg = head->mem_cgroup;
3292
	int i;
3293

3294 3295
	if (mem_cgroup_disabled())
		return;
3296

3297 3298 3299 3300
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		css_get(&memcg->css);
		head[i].mem_cgroup = memcg;
	}
3301
}
3302
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3303

A
Andrew Morton 已提交
3304
#ifdef CONFIG_MEMCG_SWAP
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
3316
 * The caller must have charged to @to, IOW, called page_counter_charge() about
3317 3318 3319
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3320
				struct mem_cgroup *from, struct mem_cgroup *to)
3321 3322 3323
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
3324 3325
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3326 3327

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3328 3329
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
3330 3331 3332 3333 3334 3335
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3336
				struct mem_cgroup *from, struct mem_cgroup *to)
3337 3338 3339
{
	return -EINVAL;
}
3340
#endif
K
KAMEZAWA Hiroyuki 已提交
3341

3342
static DEFINE_MUTEX(memcg_max_mutex);
3343

3344 3345
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
3346
{
3347
	bool enlarge = false;
3348
	bool drained = false;
3349
	int ret;
3350 3351
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3352

3353
	do {
3354 3355 3356 3357
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3358

3359
		mutex_lock(&memcg_max_mutex);
3360 3361
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
3362
		 * break our basic invariant rule memory.max <= memsw.max.
3363
		 */
3364
		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3365
					   max <= memcg->memsw.max;
3366
		if (!limits_invariant) {
3367
			mutex_unlock(&memcg_max_mutex);
3368 3369 3370
			ret = -EINVAL;
			break;
		}
3371
		if (max > counter->max)
3372
			enlarge = true;
3373 3374
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
3375 3376 3377 3378

		if (!ret)
			break;

3379 3380 3381 3382 3383 3384
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

3385 3386 3387 3388 3389 3390
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
3391

3392 3393
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3394

3395 3396 3397
	return ret;
}

3398
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3399 3400 3401 3402
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
3403
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3404 3405
	unsigned long reclaimed;
	int loop = 0;
3406
	struct mem_cgroup_tree_per_node *mctz;
3407
	unsigned long excess;
3408 3409 3410 3411 3412
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

3413
	mctz = soft_limit_tree_node(pgdat->node_id);
3414 3415 3416 3417 3418 3419

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
3420
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3421 3422
		return 0;

3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
3437
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3438 3439 3440
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3441
		spin_lock_irq(&mctz->lock);
3442
		__mem_cgroup_remove_exceeded(mz, mctz);
3443 3444 3445 3446 3447 3448

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3449 3450 3451
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3452
		excess = soft_limit_excess(mz->memcg);
3453 3454 3455 3456 3457 3458 3459 3460 3461
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3462
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3463
		spin_unlock_irq(&mctz->lock);
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3481
/*
3482
 * Reclaims as many pages from the given memcg as possible.
3483 3484 3485 3486 3487
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
3488
	int nr_retries = MAX_RECLAIM_RETRIES;
3489

3490 3491
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3492 3493 3494

	drain_all_stock(memcg);

3495
	/* try to free all pages in this cgroup */
3496
	while (nr_retries && page_counter_read(&memcg->memory)) {
3497
		int progress;
3498

3499 3500 3501
		if (signal_pending(current))
			return -EINTR;

3502 3503
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3504
		if (!progress) {
3505
			nr_retries--;
3506
			/* maybe some writeback is necessary */
3507
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3508
		}
3509 3510

	}
3511 3512

	return 0;
3513 3514
}

3515 3516 3517
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3518
{
3519
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3520

3521 3522
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3523
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3524 3525
}

3526 3527
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3528
{
3529
	return 1;
3530 3531
}

3532 3533
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3534
{
3535
	if (val == 1)
3536
		return 0;
3537

3538 3539 3540
	pr_warn_once("Non-hierarchical mode is deprecated. "
		     "Please report your usecase to linux-mm@kvack.org if you "
		     "depend on this functionality.\n");
3541

3542
	return -EINVAL;
3543 3544
}

3545
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3546
{
3547
	unsigned long val;
3548

3549
	if (mem_cgroup_is_root(memcg)) {
3550
		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3551
			memcg_page_state(memcg, NR_ANON_MAPPED);
3552 3553
		if (swap)
			val += memcg_page_state(memcg, MEMCG_SWAP);
3554
	} else {
3555
		if (!swap)
3556
			val = page_counter_read(&memcg->memory);
3557
		else
3558
			val = page_counter_read(&memcg->memsw);
3559
	}
3560
	return val;
3561 3562
}

3563 3564 3565 3566 3567 3568 3569
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3570

3571
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3572
			       struct cftype *cft)
B
Balbir Singh 已提交
3573
{
3574
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3575
	struct page_counter *counter;
3576

3577
	switch (MEMFILE_TYPE(cft->private)) {
3578
	case _MEM:
3579 3580
		counter = &memcg->memory;
		break;
3581
	case _MEMSWAP:
3582 3583
		counter = &memcg->memsw;
		break;
3584
	case _KMEM:
3585
		counter = &memcg->kmem;
3586
		break;
V
Vladimir Davydov 已提交
3587
	case _TCP:
3588
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3589
		break;
3590 3591 3592
	default:
		BUG();
	}
3593 3594 3595 3596

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
3597
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3598
		if (counter == &memcg->memsw)
3599
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3600 3601
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
3602
		return (u64)counter->max * PAGE_SIZE;
3603 3604 3605 3606 3607 3608 3609 3610 3611
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3612
}
3613

3614
static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3615
{
3616
	unsigned long stat[MEMCG_NR_STAT] = {0};
3617 3618 3619 3620
	struct mem_cgroup *mi;
	int node, cpu, i;

	for_each_online_cpu(cpu)
3621
		for (i = 0; i < MEMCG_NR_STAT; i++)
3622
			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3623 3624

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3625
		for (i = 0; i < MEMCG_NR_STAT; i++)
3626 3627 3628 3629 3630 3631
			atomic_long_add(stat[i], &mi->vmstats[i]);

	for_each_node(node) {
		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
		struct mem_cgroup_per_node *pi;

3632
		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3633 3634 3635
			stat[i] = 0;

		for_each_online_cpu(cpu)
3636
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3637 3638
				stat[i] += per_cpu(
					pn->lruvec_stat_cpu->count[i], cpu);
3639 3640

		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3641
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3642 3643 3644 3645
				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
	}
}

3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
{
	unsigned long events[NR_VM_EVENT_ITEMS];
	struct mem_cgroup *mi;
	int cpu, i;

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
		events[i] = 0;

	for_each_online_cpu(cpu)
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3657 3658
			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
					     cpu);
3659 3660 3661 3662 3663 3664

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
			atomic_long_add(events[i], &mi->vmevents[i]);
}

3665
#ifdef CONFIG_MEMCG_KMEM
3666
static int memcg_online_kmem(struct mem_cgroup *memcg)
3667
{
R
Roman Gushchin 已提交
3668
	struct obj_cgroup *objcg;
3669 3670
	int memcg_id;

3671 3672 3673
	if (cgroup_memory_nokmem)
		return 0;

3674
	BUG_ON(memcg->kmemcg_id >= 0);
3675
	BUG_ON(memcg->kmem_state);
3676

3677
	memcg_id = memcg_alloc_cache_id();
3678 3679
	if (memcg_id < 0)
		return memcg_id;
3680

R
Roman Gushchin 已提交
3681 3682 3683 3684 3685 3686 3687 3688
	objcg = obj_cgroup_alloc();
	if (!objcg) {
		memcg_free_cache_id(memcg_id);
		return -ENOMEM;
	}
	objcg->memcg = memcg;
	rcu_assign_pointer(memcg->objcg, objcg);

3689 3690
	static_branch_enable(&memcg_kmem_enabled_key);

V
Vladimir Davydov 已提交
3691
	memcg->kmemcg_id = memcg_id;
3692
	memcg->kmem_state = KMEM_ONLINE;
3693 3694

	return 0;
3695 3696
}

3697 3698 3699 3700 3701 3702 3703 3704
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
3705

3706 3707 3708 3709 3710 3711
	memcg->kmem_state = KMEM_ALLOCATED;

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

R
Roman Gushchin 已提交
3712
	memcg_reparent_objcgs(memcg, parent);
3713 3714 3715 3716

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

3717 3718 3719 3720 3721 3722 3723 3724
	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
3725
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3726 3727 3728 3729 3730
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
	}
3731 3732
	rcu_read_unlock();

3733
	memcg_drain_all_list_lrus(kmemcg_id, parent);
3734 3735 3736 3737 3738 3739

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
3740 3741 3742
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);
3743
}
3744
#else
3745
static int memcg_online_kmem(struct mem_cgroup *memcg)
3746 3747 3748 3749 3750 3751 3752 3753 3754
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
3755
#endif /* CONFIG_MEMCG_KMEM */
3756

3757 3758
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
3759
{
3760
	int ret;
3761

3762 3763 3764
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
3765
	return ret;
3766
}
3767

3768
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
3769 3770 3771
{
	int ret;

3772
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3773

3774
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
3775 3776 3777
	if (ret)
		goto out;

3778
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3779 3780 3781
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3782 3783 3784
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
3785 3786 3787 3788 3789 3790
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3791
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
3792 3793 3794 3795
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3796
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3797 3798
	}
out:
3799
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3800 3801 3802
	return ret;
}

3803 3804 3805 3806
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3807 3808
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3809
{
3810
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3811
	unsigned long nr_pages;
3812 3813
	int ret;

3814
	buf = strstrip(buf);
3815
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3816 3817
	if (ret)
		return ret;
3818

3819
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3820
	case RES_LIMIT:
3821 3822 3823 3824
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3825 3826
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3827
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3828
			break;
3829
		case _MEMSWAP:
3830
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3831
			break;
3832
		case _KMEM:
3833 3834 3835
			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
				     "Please report your usecase to linux-mm@kvack.org if you "
				     "depend on this functionality.\n");
3836
			ret = memcg_update_kmem_max(memcg, nr_pages);
3837
			break;
V
Vladimir Davydov 已提交
3838
		case _TCP:
3839
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
3840
			break;
3841
		}
3842
		break;
3843 3844 3845
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3846 3847
		break;
	}
3848
	return ret ?: nbytes;
B
Balbir Singh 已提交
3849 3850
}

3851 3852
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3853
{
3854
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3855
	struct page_counter *counter;
3856

3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3867
	case _TCP:
3868
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3869
		break;
3870 3871 3872
	default:
		BUG();
	}
3873

3874
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3875
	case RES_MAX_USAGE:
3876
		page_counter_reset_watermark(counter);
3877 3878
		break;
	case RES_FAILCNT:
3879
		counter->failcnt = 0;
3880
		break;
3881 3882
	default:
		BUG();
3883
	}
3884

3885
	return nbytes;
3886 3887
}

3888
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3889 3890
					struct cftype *cft)
{
3891
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3892 3893
}

3894
#ifdef CONFIG_MMU
3895
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3896 3897
					struct cftype *cft, u64 val)
{
3898
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3899

3900
	if (val & ~MOVE_MASK)
3901
		return -EINVAL;
3902

3903
	/*
3904 3905 3906 3907
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3908
	 */
3909
	memcg->move_charge_at_immigrate = val;
3910 3911
	return 0;
}
3912
#else
3913
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3914 3915 3916 3917 3918
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3919

3920
#ifdef CONFIG_NUMA
3921 3922 3923 3924 3925 3926

#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)

static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3927
				int nid, unsigned int lru_mask, bool tree)
3928
{
3929
	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3930 3931 3932 3933 3934 3935 3936 3937
	unsigned long nr = 0;
	enum lru_list lru;

	VM_BUG_ON((unsigned)nid >= nr_node_ids);

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3938 3939 3940 3941
		if (tree)
			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
		else
			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3942 3943 3944 3945 3946
	}
	return nr;
}

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3947 3948
					     unsigned int lru_mask,
					     bool tree)
3949 3950 3951 3952 3953 3954 3955
{
	unsigned long nr = 0;
	enum lru_list lru;

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3956 3957 3958 3959
		if (tree)
			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
		else
			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3960 3961 3962 3963
	}
	return nr;
}

3964
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3965
{
3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3978
	int nid;
3979
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3980

3981
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3982 3983 3984 3985 3986 3987 3988
		seq_printf(m, "%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   false));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, false));
3989
		seq_putc(m, '\n');
3990 3991
	}

3992
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3993 3994 3995 3996 3997 3998 3999 4000

		seq_printf(m, "hierarchical_%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   true));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, true));
4001
		seq_putc(m, '\n');
4002 4003 4004 4005 4006 4007
	}

	return 0;
}
#endif /* CONFIG_NUMA */

4008
static const unsigned int memcg1_stats[] = {
4009
	NR_FILE_PAGES,
4010
	NR_ANON_MAPPED,
4011 4012 4013
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	NR_ANON_THPS,
#endif
4014 4015 4016 4017 4018 4019 4020 4021 4022 4023
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
4024
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4025
	"rss_huge",
4026
#endif
4027 4028 4029 4030 4031 4032 4033
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

4034
/* Universal VM events cgroup1 shows, original sort order */
4035
static const unsigned int memcg1_events[] = {
4036 4037 4038 4039 4040 4041
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

4042
static int memcg_stat_show(struct seq_file *m, void *v)
4043
{
4044
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4045
	unsigned long memory, memsw;
4046 4047
	struct mem_cgroup *mi;
	unsigned int i;
4048

4049
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4050

4051
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4052 4053
		unsigned long nr;

4054
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4055
			continue;
4056 4057 4058 4059 4060 4061
		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
		if (memcg1_stats[i] == NR_ANON_THPS)
			nr *= HPAGE_PMD_NR;
#endif
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4062
	}
L
Lee Schermerhorn 已提交
4063

4064
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4065
		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4066
			   memcg_events_local(memcg, memcg1_events[i]));
4067 4068

	for (i = 0; i < NR_LRU_LISTS; i++)
4069
		seq_printf(m, "%s %lu\n", lru_list_name(i),
4070
			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4071
			   PAGE_SIZE);
4072

K
KAMEZAWA Hiroyuki 已提交
4073
	/* Hierarchical information */
4074 4075
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4076 4077
		memory = min(memory, READ_ONCE(mi->memory.max));
		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4078
	}
4079 4080
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
4081
	if (do_memsw_account())
4082 4083
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
4084

4085
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4086 4087
		unsigned long nr;

4088
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4089
			continue;
4090 4091 4092 4093 4094
		nr = memcg_page_state(memcg, memcg1_stats[i]);
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
		if (memcg1_stats[i] == NR_ANON_THPS)
			nr *= HPAGE_PMD_NR;
#endif
4095
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4096
						(u64)nr * PAGE_SIZE);
4097 4098
	}

4099
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4100 4101
		seq_printf(m, "total_%s %llu\n",
			   vm_event_name(memcg1_events[i]),
4102
			   (u64)memcg_events(memcg, memcg1_events[i]));
4103

4104
	for (i = 0; i < NR_LRU_LISTS; i++)
4105
		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4106 4107
			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			   PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
4108

K
KOSAKI Motohiro 已提交
4109 4110
#ifdef CONFIG_DEBUG_VM
	{
4111 4112
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
4113 4114
		unsigned long anon_cost = 0;
		unsigned long file_cost = 0;
K
KOSAKI Motohiro 已提交
4115

4116 4117
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
K
KOSAKI Motohiro 已提交
4118

4119 4120
			anon_cost += mz->lruvec.anon_cost;
			file_cost += mz->lruvec.file_cost;
4121
		}
4122 4123
		seq_printf(m, "anon_cost %lu\n", anon_cost);
		seq_printf(m, "file_cost %lu\n", file_cost);
K
KOSAKI Motohiro 已提交
4124 4125 4126
	}
#endif

4127 4128 4129
	return 0;
}

4130 4131
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
4132
{
4133
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4134

4135
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4136 4137
}

4138 4139
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
4140
{
4141
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4142

4143
	if (val > 100)
K
KOSAKI Motohiro 已提交
4144 4145
		return -EINVAL;

4146
	if (css->parent)
4147 4148 4149
		memcg->swappiness = val;
	else
		vm_swappiness = val;
4150

K
KOSAKI Motohiro 已提交
4151 4152 4153
	return 0;
}

4154 4155 4156
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
4157
	unsigned long usage;
4158 4159 4160 4161
	int i;

	rcu_read_lock();
	if (!swap)
4162
		t = rcu_dereference(memcg->thresholds.primary);
4163
	else
4164
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4165 4166 4167 4168

	if (!t)
		goto unlock;

4169
	usage = mem_cgroup_usage(memcg, swap);
4170 4171

	/*
4172
	 * current_threshold points to threshold just below or equal to usage.
4173 4174 4175
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4176
	i = t->current_threshold;
4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4200
	t->current_threshold = i - 1;
4201 4202 4203 4204 4205 4206
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4207 4208
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
4209
		if (do_memsw_account())
4210 4211 4212 4213
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4214 4215 4216 4217 4218 4219 4220
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

4221 4222 4223 4224 4225 4226 4227
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
4228 4229
}

4230
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4231 4232 4233
{
	struct mem_cgroup_eventfd_list *ev;

4234 4235
	spin_lock(&memcg_oom_lock);

4236
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4237
		eventfd_signal(ev->eventfd, 1);
4238 4239

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4240 4241 4242
	return 0;
}

4243
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4244
{
K
KAMEZAWA Hiroyuki 已提交
4245 4246
	struct mem_cgroup *iter;

4247
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4248
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4249 4250
}

4251
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4252
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4253
{
4254 4255
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4256 4257
	unsigned long threshold;
	unsigned long usage;
4258
	int i, size, ret;
4259

4260
	ret = page_counter_memparse(args, "-1", &threshold);
4261 4262 4263 4264
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4265

4266
	if (type == _MEM) {
4267
		thresholds = &memcg->thresholds;
4268
		usage = mem_cgroup_usage(memcg, false);
4269
	} else if (type == _MEMSWAP) {
4270
		thresholds = &memcg->memsw_thresholds;
4271
		usage = mem_cgroup_usage(memcg, true);
4272
	} else
4273 4274 4275
		BUG();

	/* Check if a threshold crossed before adding a new one */
4276
	if (thresholds->primary)
4277 4278
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4279
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4280 4281

	/* Allocate memory for new array of thresholds */
4282
	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4283
	if (!new) {
4284 4285 4286
		ret = -ENOMEM;
		goto unlock;
	}
4287
	new->size = size;
4288 4289

	/* Copy thresholds (if any) to new array */
4290 4291 4292
	if (thresholds->primary)
		memcpy(new->entries, thresholds->primary->entries,
		       flex_array_size(new, entries, size - 1));
4293

4294
	/* Add new threshold */
4295 4296
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4297 4298

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4299
	sort(new->entries, size, sizeof(*new->entries),
4300 4301 4302
			compare_thresholds, NULL);

	/* Find current threshold */
4303
	new->current_threshold = -1;
4304
	for (i = 0; i < size; i++) {
4305
		if (new->entries[i].threshold <= usage) {
4306
			/*
4307 4308
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4309 4310
			 * it here.
			 */
4311
			++new->current_threshold;
4312 4313
		} else
			break;
4314 4315
	}

4316 4317 4318 4319 4320
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4321

4322
	/* To be sure that nobody uses thresholds */
4323 4324 4325 4326 4327 4328 4329 4330
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4331
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4332 4333
	struct eventfd_ctx *eventfd, const char *args)
{
4334
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4335 4336
}

4337
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4338 4339
	struct eventfd_ctx *eventfd, const char *args)
{
4340
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4341 4342
}

4343
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4344
	struct eventfd_ctx *eventfd, enum res_type type)
4345
{
4346 4347
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4348
	unsigned long usage;
4349
	int i, j, size, entries;
4350 4351

	mutex_lock(&memcg->thresholds_lock);
4352 4353

	if (type == _MEM) {
4354
		thresholds = &memcg->thresholds;
4355
		usage = mem_cgroup_usage(memcg, false);
4356
	} else if (type == _MEMSWAP) {
4357
		thresholds = &memcg->memsw_thresholds;
4358
		usage = mem_cgroup_usage(memcg, true);
4359
	} else
4360 4361
		BUG();

4362 4363 4364
	if (!thresholds->primary)
		goto unlock;

4365 4366 4367 4368
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4369
	size = entries = 0;
4370 4371
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4372
			size++;
4373 4374
		else
			entries++;
4375 4376
	}

4377
	new = thresholds->spare;
4378

4379 4380 4381 4382
	/* If no items related to eventfd have been cleared, nothing to do */
	if (!entries)
		goto unlock;

4383 4384
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4385 4386
		kfree(new);
		new = NULL;
4387
		goto swap_buffers;
4388 4389
	}

4390
	new->size = size;
4391 4392

	/* Copy thresholds and find current threshold */
4393 4394 4395
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4396 4397
			continue;

4398
		new->entries[j] = thresholds->primary->entries[i];
4399
		if (new->entries[j].threshold <= usage) {
4400
			/*
4401
			 * new->current_threshold will not be used
4402 4403 4404
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4405
			++new->current_threshold;
4406 4407 4408 4409
		}
		j++;
	}

4410
swap_buffers:
4411 4412
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4413

4414
	rcu_assign_pointer(thresholds->primary, new);
4415

4416
	/* To be sure that nobody uses thresholds */
4417
	synchronize_rcu();
4418 4419 4420 4421 4422 4423

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
4424
unlock:
4425 4426
	mutex_unlock(&memcg->thresholds_lock);
}
4427

4428
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4429 4430
	struct eventfd_ctx *eventfd)
{
4431
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4432 4433
}

4434
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4435 4436
	struct eventfd_ctx *eventfd)
{
4437
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4438 4439
}

4440
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4441
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4442 4443 4444 4445 4446 4447 4448
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4449
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4450 4451 4452 4453 4454

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4455
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
4456
		eventfd_signal(eventfd, 1);
4457
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4458 4459 4460 4461

	return 0;
}

4462
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4463
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4464 4465 4466
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4467
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4468

4469
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4470 4471 4472 4473 4474 4475
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4476
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4477 4478
}

4479
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4480
{
4481
	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4482

4483
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4484
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
R
Roman Gushchin 已提交
4485 4486
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4487 4488 4489
	return 0;
}

4490
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4491 4492
	struct cftype *cft, u64 val)
{
4493
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4494 4495

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4496
	if (!css->parent || !((val == 0) || (val == 1)))
4497 4498
		return -EINVAL;

4499
	memcg->oom_kill_disable = val;
4500
	if (!val)
4501
		memcg_oom_recover(memcg);
4502

4503 4504 4505
	return 0;
}

4506 4507
#ifdef CONFIG_CGROUP_WRITEBACK

4508 4509
#include <trace/events/writeback.h>

T
Tejun Heo 已提交
4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

4520 4521 4522 4523 4524
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
4525 4526 4527 4528 4529 4530 4531 4532 4533 4534
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

4535 4536 4537 4538 4539 4540
/*
 * idx can be of type enum memcg_stat_item or node_stat_item.
 * Keep in sync with memcg_exact_page().
 */
static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
{
4541
	long x = atomic_long_read(&memcg->vmstats[idx]);
4542 4543 4544
	int cpu;

	for_each_online_cpu(cpu)
4545
		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4546 4547 4548 4549 4550
	if (x < 0)
		x = 0;
	return x;
}

4551 4552 4553
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
4554 4555
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
4556 4557 4558
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
4559 4560 4561
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
4562
 *
4563 4564 4565 4566 4567
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
4568
 */
4569 4570 4571
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
4572 4573 4574 4575
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

4576
	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4577

4578
	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4579 4580
	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4581
	*pheadroom = PAGE_COUNTER_MAX;
4582 4583

	while ((parent = parent_mem_cgroup(memcg))) {
4584
		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4585
					    READ_ONCE(memcg->memory.high));
4586 4587
		unsigned long used = page_counter_read(&memcg->memory);

4588
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4589 4590 4591 4592
		memcg = parent;
	}
}

4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646
/*
 * Foreign dirty flushing
 *
 * There's an inherent mismatch between memcg and writeback.  The former
 * trackes ownership per-page while the latter per-inode.  This was a
 * deliberate design decision because honoring per-page ownership in the
 * writeback path is complicated, may lead to higher CPU and IO overheads
 * and deemed unnecessary given that write-sharing an inode across
 * different cgroups isn't a common use-case.
 *
 * Combined with inode majority-writer ownership switching, this works well
 * enough in most cases but there are some pathological cases.  For
 * example, let's say there are two cgroups A and B which keep writing to
 * different but confined parts of the same inode.  B owns the inode and
 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
 * triggering background writeback.  A will be slowed down without a way to
 * make writeback of the dirty pages happen.
 *
 * Conditions like the above can lead to a cgroup getting repatedly and
 * severely throttled after making some progress after each
 * dirty_expire_interval while the underyling IO device is almost
 * completely idle.
 *
 * Solving this problem completely requires matching the ownership tracking
 * granularities between memcg and writeback in either direction.  However,
 * the more egregious behaviors can be avoided by simply remembering the
 * most recent foreign dirtying events and initiating remote flushes on
 * them when local writeback isn't enough to keep the memory clean enough.
 *
 * The following two functions implement such mechanism.  When a foreign
 * page - a page whose memcg and writeback ownerships don't match - is
 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
 * decides that the memcg needs to sleep due to high dirty ratio, it calls
 * mem_cgroup_flush_foreign() which queues writeback on the recorded
 * foreign bdi_writebacks which haven't expired.  Both the numbers of
 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
 * limited to MEMCG_CGWB_FRN_CNT.
 *
 * The mechanism only remembers IDs and doesn't hold any object references.
 * As being wrong occasionally doesn't matter, updates and accesses to the
 * records are lockless and racy.
 */
void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
					     struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = page->mem_cgroup;
	struct memcg_cgwb_frn *frn;
	u64 now = get_jiffies_64();
	u64 oldest_at = now;
	int oldest = -1;
	int i;

4647 4648
	trace_track_foreign_dirty(page, wb);

4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708
	/*
	 * Pick the slot to use.  If there is already a slot for @wb, keep
	 * using it.  If not replace the oldest one which isn't being
	 * written out.
	 */
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		frn = &memcg->cgwb_frn[i];
		if (frn->bdi_id == wb->bdi->id &&
		    frn->memcg_id == wb->memcg_css->id)
			break;
		if (time_before64(frn->at, oldest_at) &&
		    atomic_read(&frn->done.cnt) == 1) {
			oldest = i;
			oldest_at = frn->at;
		}
	}

	if (i < MEMCG_CGWB_FRN_CNT) {
		/*
		 * Re-using an existing one.  Update timestamp lazily to
		 * avoid making the cacheline hot.  We want them to be
		 * reasonably up-to-date and significantly shorter than
		 * dirty_expire_interval as that's what expires the record.
		 * Use the shorter of 1s and dirty_expire_interval / 8.
		 */
		unsigned long update_intv =
			min_t(unsigned long, HZ,
			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);

		if (time_before64(frn->at, now - update_intv))
			frn->at = now;
	} else if (oldest >= 0) {
		/* replace the oldest free one */
		frn = &memcg->cgwb_frn[oldest];
		frn->bdi_id = wb->bdi->id;
		frn->memcg_id = wb->memcg_css->id;
		frn->at = now;
	}
}

/* issue foreign writeback flushes for recorded foreign dirtying events */
void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
	u64 now = jiffies_64;
	int i;

	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];

		/*
		 * If the record is older than dirty_expire_interval,
		 * writeback on it has already started.  No need to kick it
		 * off again.  Also, don't start a new one if there's
		 * already one in flight.
		 */
		if (time_after64(frn->at, now - intv) &&
		    atomic_read(&frn->done.cnt) == 1) {
			frn->at = 0;
4709
			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4710 4711 4712 4713 4714 4715 4716
			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
					       WB_REASON_FOREIGN_FLUSH,
					       &frn->done);
		}
	}
}

T
Tejun Heo 已提交
4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

4728 4729 4730 4731
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

4732 4733
#endif	/* CONFIG_CGROUP_WRITEBACK */

4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4747 4748 4749 4750 4751
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4752
static void memcg_event_remove(struct work_struct *work)
4753
{
4754 4755
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4756
	struct mem_cgroup *memcg = event->memcg;
4757 4758 4759

	remove_wait_queue(event->wqh, &event->wait);

4760
	event->unregister_event(memcg, event->eventfd);
4761 4762 4763 4764 4765 4766

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4767
	css_put(&memcg->css);
4768 4769 4770
}

/*
4771
 * Gets called on EPOLLHUP on eventfd when user closes it.
4772 4773 4774
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4775
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4776
			    int sync, void *key)
4777
{
4778 4779
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4780
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
4781
	__poll_t flags = key_to_poll(key);
4782

4783
	if (flags & EPOLLHUP) {
4784 4785 4786 4787 4788 4789 4790 4791 4792
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4793
		spin_lock(&memcg->event_list_lock);
4794 4795 4796 4797 4798 4799 4800 4801
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4802
		spin_unlock(&memcg->event_list_lock);
4803 4804 4805 4806 4807
	}

	return 0;
}

4808
static void memcg_event_ptable_queue_proc(struct file *file,
4809 4810
		wait_queue_head_t *wqh, poll_table *pt)
{
4811 4812
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4813 4814 4815 4816 4817 4818

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4819 4820
 * DO NOT USE IN NEW FILES.
 *
4821 4822 4823 4824 4825
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4826 4827
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4828
{
4829
	struct cgroup_subsys_state *css = of_css(of);
4830
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4831
	struct mem_cgroup_event *event;
4832 4833 4834 4835
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4836
	const char *name;
4837 4838 4839
	char *endp;
	int ret;

4840 4841 4842
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4843 4844
	if (*endp != ' ')
		return -EINVAL;
4845
	buf = endp + 1;
4846

4847
	cfd = simple_strtoul(buf, &endp, 10);
4848 4849
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4850
	buf = endp + 1;
4851 4852 4853 4854 4855

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4856
	event->memcg = memcg;
4857
	INIT_LIST_HEAD(&event->list);
4858 4859 4860
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4886 4887 4888 4889 4890
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4891 4892
	 *
	 * DO NOT ADD NEW FILES.
4893
	 */
A
Al Viro 已提交
4894
	name = cfile.file->f_path.dentry->d_name.name;
4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4906 4907
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4908 4909 4910 4911 4912
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4913
	/*
4914 4915 4916
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4917
	 */
A
Al Viro 已提交
4918
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4919
					       &memory_cgrp_subsys);
4920
	ret = -EINVAL;
4921
	if (IS_ERR(cfile_css))
4922
		goto out_put_cfile;
4923 4924
	if (cfile_css != css) {
		css_put(cfile_css);
4925
		goto out_put_cfile;
4926
	}
4927

4928
	ret = event->register_event(memcg, event->eventfd, buf);
4929 4930 4931
	if (ret)
		goto out_put_css;

4932
	vfs_poll(efile.file, &event->pt);
4933

4934 4935 4936
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4937 4938 4939 4940

	fdput(cfile);
	fdput(efile);

4941
	return nbytes;
4942 4943

out_put_css:
4944
	css_put(css);
4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4957
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4958
	{
4959
		.name = "usage_in_bytes",
4960
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4961
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4962
	},
4963 4964
	{
		.name = "max_usage_in_bytes",
4965
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4966
		.write = mem_cgroup_reset,
4967
		.read_u64 = mem_cgroup_read_u64,
4968
	},
B
Balbir Singh 已提交
4969
	{
4970
		.name = "limit_in_bytes",
4971
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4972
		.write = mem_cgroup_write,
4973
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4974
	},
4975 4976 4977
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4978
		.write = mem_cgroup_write,
4979
		.read_u64 = mem_cgroup_read_u64,
4980
	},
B
Balbir Singh 已提交
4981 4982
	{
		.name = "failcnt",
4983
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4984
		.write = mem_cgroup_reset,
4985
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4986
	},
4987 4988
	{
		.name = "stat",
4989
		.seq_show = memcg_stat_show,
4990
	},
4991 4992
	{
		.name = "force_empty",
4993
		.write = mem_cgroup_force_empty_write,
4994
	},
4995 4996 4997 4998 4999
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
5000
	{
5001
		.name = "cgroup.event_control",		/* XXX: for compat */
5002
		.write = memcg_write_event_control,
5003
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5004
	},
K
KOSAKI Motohiro 已提交
5005 5006 5007 5008 5009
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5010 5011 5012 5013 5014
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5015 5016
	{
		.name = "oom_control",
5017
		.seq_show = mem_cgroup_oom_control_read,
5018
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5019 5020
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5021 5022 5023
	{
		.name = "pressure_level",
	},
5024 5025 5026
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5027
		.seq_show = memcg_numa_stat_show,
5028 5029
	},
#endif
5030 5031 5032
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5033
		.write = mem_cgroup_write,
5034
		.read_u64 = mem_cgroup_read_u64,
5035 5036 5037 5038
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5039
		.read_u64 = mem_cgroup_read_u64,
5040 5041 5042 5043
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5044
		.write = mem_cgroup_reset,
5045
		.read_u64 = mem_cgroup_read_u64,
5046 5047 5048 5049
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5050
		.write = mem_cgroup_reset,
5051
		.read_u64 = mem_cgroup_read_u64,
5052
	},
5053 5054
#if defined(CONFIG_MEMCG_KMEM) && \
	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5055 5056
	{
		.name = "kmem.slabinfo",
5057
		.seq_show = memcg_slab_show,
5058 5059
	},
#endif
V
Vladimir Davydov 已提交
5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
5083
	{ },	/* terminate */
5084
};
5085

5086 5087 5088 5089 5090 5091 5092 5093
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
5094
 * However, there usually are many references to the offline CSS after
5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

5112 5113 5114 5115 5116 5117 5118 5119
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

5120 5121
static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
						  unsigned int n)
5122
{
5123
	refcount_add(n, &memcg->id.ref);
5124 5125
}

5126
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5127
{
5128
	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5129
		mem_cgroup_id_remove(memcg);
5130 5131 5132 5133 5134 5135

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

5136 5137 5138 5139 5140
static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

5153
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5154 5155
{
	struct mem_cgroup_per_node *pn;
5156
	int tmp = node;
5157 5158 5159 5160 5161 5162 5163 5164
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5165 5166
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5167
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5168 5169
	if (!pn)
		return 1;
5170

5171 5172
	pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
						 GFP_KERNEL_ACCOUNT);
5173 5174 5175 5176 5177
	if (!pn->lruvec_stat_local) {
		kfree(pn);
		return 1;
	}

5178 5179
	pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
					       GFP_KERNEL_ACCOUNT);
5180
	if (!pn->lruvec_stat_cpu) {
5181
		free_percpu(pn->lruvec_stat_local);
5182 5183 5184 5185
		kfree(pn);
		return 1;
	}

5186 5187 5188 5189 5190
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

5191
	memcg->nodeinfo[node] = pn;
5192 5193 5194
	return 0;
}

5195
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5196
{
5197 5198
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
5199 5200 5201
	if (!pn)
		return;

5202
	free_percpu(pn->lruvec_stat_cpu);
5203
	free_percpu(pn->lruvec_stat_local);
5204
	kfree(pn);
5205 5206
}

5207
static void __mem_cgroup_free(struct mem_cgroup *memcg)
5208
{
5209
	int node;
5210

5211
	for_each_node(node)
5212
		free_mem_cgroup_per_node_info(memcg, node);
5213
	free_percpu(memcg->vmstats_percpu);
5214
	free_percpu(memcg->vmstats_local);
5215
	kfree(memcg);
5216
}
5217

5218 5219 5220
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
5221 5222 5223 5224
	/*
	 * Flush percpu vmstats and vmevents to guarantee the value correctness
	 * on parent's and all ancestor levels.
	 */
5225
	memcg_flush_percpu_vmstats(memcg);
5226
	memcg_flush_percpu_vmevents(memcg);
5227 5228 5229
	__mem_cgroup_free(memcg);
}

5230
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
5231
{
5232
	struct mem_cgroup *memcg;
5233
	unsigned int size;
5234
	int node;
5235
	int __maybe_unused i;
5236
	long error = -ENOMEM;
B
Balbir Singh 已提交
5237

5238 5239 5240 5241
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
5242
	if (!memcg)
5243
		return ERR_PTR(error);
5244

5245 5246 5247
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
5248 5249
	if (memcg->id.id < 0) {
		error = memcg->id.id;
5250
		goto fail;
5251
	}
5252

5253 5254
	memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
						GFP_KERNEL_ACCOUNT);
5255 5256 5257
	if (!memcg->vmstats_local)
		goto fail;

5258 5259
	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
						 GFP_KERNEL_ACCOUNT);
5260
	if (!memcg->vmstats_percpu)
5261
		goto fail;
5262

B
Bob Liu 已提交
5263
	for_each_node(node)
5264
		if (alloc_mem_cgroup_per_node_info(memcg, node))
5265
			goto fail;
5266

5267 5268
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
5269

5270
	INIT_WORK(&memcg->high_work, high_work_func);
5271 5272 5273
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5274
	vmpressure_init(&memcg->vmpressure);
5275 5276
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
5277
	memcg->socket_pressure = jiffies;
5278
#ifdef CONFIG_MEMCG_KMEM
V
Vladimir Davydov 已提交
5279
	memcg->kmemcg_id = -1;
R
Roman Gushchin 已提交
5280
	INIT_LIST_HEAD(&memcg->objcg_list);
V
Vladimir Davydov 已提交
5281
#endif
5282 5283
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
5284 5285 5286
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		memcg->cgwb_frn[i].done =
			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5287 5288 5289 5290 5291
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
	memcg->deferred_split_queue.split_queue_len = 0;
5292
#endif
5293
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5294 5295
	return memcg;
fail:
5296
	mem_cgroup_id_remove(memcg);
5297
	__mem_cgroup_free(memcg);
5298
	return ERR_PTR(error);
5299 5300
}

5301 5302
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5303
{
5304
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5305
	struct mem_cgroup *memcg, *old_memcg;
5306
	long error = -ENOMEM;
5307

5308
	old_memcg = set_active_memcg(parent);
5309
	memcg = mem_cgroup_alloc();
5310
	set_active_memcg(old_memcg);
5311 5312
	if (IS_ERR(memcg))
		return ERR_CAST(memcg);
5313

5314
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5315
	memcg->soft_limit = PAGE_COUNTER_MAX;
5316
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5317 5318 5319
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
5320

5321
		page_counter_init(&memcg->memory, &parent->memory);
5322
		page_counter_init(&memcg->swap, &parent->swap);
5323
		page_counter_init(&memcg->kmem, &parent->kmem);
5324
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5325
	} else {
5326 5327 5328 5329
		page_counter_init(&memcg->memory, NULL);
		page_counter_init(&memcg->swap, NULL);
		page_counter_init(&memcg->kmem, NULL);
		page_counter_init(&memcg->tcpmem, NULL);
5330

5331 5332 5333 5334
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

5335
	/* The following stuff does not apply to the root */
5336
	error = memcg_online_kmem(memcg);
5337 5338
	if (error)
		goto fail;
5339

5340
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5341
		static_branch_inc(&memcg_sockets_enabled_key);
5342

5343 5344
	return &memcg->css;
fail:
5345
	mem_cgroup_id_remove(memcg);
5346
	mem_cgroup_free(memcg);
5347
	return ERR_PTR(error);
5348 5349
}

5350
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5351
{
5352 5353
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5354 5355 5356 5357 5358 5359 5360 5361 5362 5363
	/*
	 * A memcg must be visible for memcg_expand_shrinker_maps()
	 * by the time the maps are allocated. So, we allocate maps
	 * here, when for_each_mem_cgroup() can't skip it.
	 */
	if (memcg_alloc_shrinker_maps(memcg)) {
		mem_cgroup_id_remove(memcg);
		return -ENOMEM;
	}

5364
	/* Online state pins memcg ID, memcg ID pins CSS */
5365
	refcount_set(&memcg->id.ref, 1);
5366
	css_get(css);
5367
	return 0;
B
Balbir Singh 已提交
5368 5369
}

5370
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5371
{
5372
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5373
	struct mem_cgroup_event *event, *tmp;
5374 5375 5376 5377 5378 5379

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
5380 5381
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5382 5383 5384
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
5385
	spin_unlock(&memcg->event_list_lock);
5386

R
Roman Gushchin 已提交
5387
	page_counter_set_min(&memcg->memory, 0);
5388
	page_counter_set_low(&memcg->memory, 0);
5389

5390
	memcg_offline_kmem(memcg);
5391
	wb_memcg_offline(memcg);
5392

5393 5394
	drain_all_stock(memcg);

5395
	mem_cgroup_id_put(memcg);
5396 5397
}

5398 5399 5400 5401 5402 5403 5404
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

5405
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
5406
{
5407
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5408
	int __maybe_unused i;
5409

5410 5411 5412 5413
#ifdef CONFIG_CGROUP_WRITEBACK
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
#endif
5414
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5415
		static_branch_dec(&memcg_sockets_enabled_key);
5416

5417
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
5418
		static_branch_dec(&memcg_sockets_enabled_key);
5419

5420 5421 5422
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
5423
	memcg_free_shrinker_maps(memcg);
5424
	memcg_free_kmem(memcg);
5425
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
5426 5427
}

5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5445 5446 5447 5448
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
R
Roman Gushchin 已提交
5449
	page_counter_set_min(&memcg->memory, 0);
5450
	page_counter_set_low(&memcg->memory, 0);
5451
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5452
	memcg->soft_limit = PAGE_COUNTER_MAX;
5453
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5454
	memcg_wb_domain_size_changed(memcg);
5455 5456
}

5457
#ifdef CONFIG_MMU
5458
/* Handlers for move charge at task migration. */
5459
static int mem_cgroup_do_precharge(unsigned long count)
5460
{
5461
	int ret;
5462

5463 5464
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5465
	if (!ret) {
5466 5467 5468
		mc.precharge += count;
		return ret;
	}
5469

5470
	/* Try charges one by one with reclaim, but do not retry */
5471
	while (count--) {
5472
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5473 5474
		if (ret)
			return ret;
5475
		mc.precharge++;
5476
		cond_resched();
5477
	}
5478
	return 0;
5479 5480 5481 5482
}

union mc_target {
	struct page	*page;
5483
	swp_entry_t	ent;
5484 5485 5486
};

enum mc_target_type {
5487
	MC_TARGET_NONE = 0,
5488
	MC_TARGET_PAGE,
5489
	MC_TARGET_SWAP,
5490
	MC_TARGET_DEVICE,
5491 5492
};

D
Daisuke Nishimura 已提交
5493 5494
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5495
{
5496
	struct page *page = vm_normal_page(vma, addr, ptent);
5497

D
Daisuke Nishimura 已提交
5498 5499 5500
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
5501
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5502
			return NULL;
5503 5504 5505 5506
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
5507 5508 5509 5510 5511 5512
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5513
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
5514
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5515
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
5516 5517 5518 5519
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

5520
	if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5521
		return NULL;
5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
		page = device_private_entry_to_page(ent);
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

5539 5540 5541
	if (non_swap_entry(ent))
		return NULL;

5542 5543 5544 5545
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5546
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5547
	entry->val = ent.val;
D
Daisuke Nishimura 已提交
5548 5549 5550

	return page;
}
5551 5552
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5553
			pte_t ptent, swp_entry_t *entry)
5554 5555 5556 5557
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5558

5559 5560 5561 5562 5563
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	if (!vma->vm_file) /* anonymous vma */
		return NULL;
5564
	if (!(mc.flags & MOVE_FILE))
5565 5566 5567
		return NULL;

	/* page is moved even if it's not RSS of this task(page-faulted). */
5568
	/* shmem/tmpfs may report page out on swap: account for that too. */
5569 5570
	return find_get_incore_page(vma->vm_file->f_mapping,
			linear_page_index(vma, addr));
5571 5572
}

5573 5574 5575
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
5576
 * @compound: charge the page as compound or small page
5577 5578 5579
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
5580
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5581 5582 5583 5584 5585
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
5586
				   bool compound,
5587 5588 5589
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
5590 5591
	struct lruvec *from_vec, *to_vec;
	struct pglist_data *pgdat;
5592
	unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5593 5594 5595 5596
	int ret;

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
5597
	VM_BUG_ON(compound && !PageTransHuge(page));
5598 5599

	/*
5600
	 * Prevent mem_cgroup_migrate() from looking at
5601
	 * page->mem_cgroup of its source page while we change it.
5602
	 */
5603
	ret = -EBUSY;
5604 5605 5606 5607 5608 5609 5610
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

5611
	pgdat = page_pgdat(page);
5612 5613
	from_vec = mem_cgroup_lruvec(from, pgdat);
	to_vec = mem_cgroup_lruvec(to, pgdat);
5614

5615
	lock_page_memcg(page);
5616

5617 5618 5619 5620
	if (PageAnon(page)) {
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5621 5622 5623 5624 5625 5626 5627
			if (PageTransHuge(page)) {
				__mod_lruvec_state(from_vec, NR_ANON_THPS,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_ANON_THPS,
						   nr_pages);
			}

5628 5629
		}
	} else {
5630 5631 5632 5633 5634 5635 5636 5637
		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);

		if (PageSwapBacked(page)) {
			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
		}

5638 5639 5640 5641
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
		}
5642

5643 5644
		if (PageDirty(page)) {
			struct address_space *mapping = page_mapping(page);
5645

5646
			if (mapping_can_writeback(mapping)) {
5647 5648 5649 5650 5651
				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
						   nr_pages);
			}
5652 5653 5654
		}
	}

5655
	if (PageWriteback(page)) {
5656 5657
		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5658 5659 5660
	}

	/*
5661 5662
	 * All state has been migrated, let's switch to the new memcg.
	 *
5663
	 * It is safe to change page->mem_cgroup here because the page
5664 5665 5666 5667 5668 5669 5670 5671
	 * is referenced, charged, isolated, and locked: we can't race
	 * with (un)charging, migration, LRU putback, or anything else
	 * that would rely on a stable page->mem_cgroup.
	 *
	 * Note that lock_page_memcg is a memcg lock, not a page lock,
	 * to save space. As soon as we switch page->mem_cgroup to a
	 * new memcg that isn't locked, the above state can change
	 * concurrently again. Make sure we're truly done with it.
5672
	 */
5673
	smp_mb();
5674

5675 5676 5677 5678
	css_get(&to->css);
	css_put(&from->css);

	page->mem_cgroup = to;
5679

5680
	__unlock_page_memcg(from);
5681 5682 5683 5684

	ret = 0;

	local_irq_disable();
5685
	mem_cgroup_charge_statistics(to, page, nr_pages);
5686
	memcg_check_events(to, page);
5687
	mem_cgroup_charge_statistics(from, page, -nr_pages);
5688 5689 5690 5691 5692 5693 5694 5695
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5711 5712
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
 *     (so ZONE_DEVICE page and thus not on the lru).
5713 5714 5715
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
5716 5717
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5718 5719 5720 5721
 *
 * Called with pte lock held.
 */

5722
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5723 5724 5725
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
5726
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5727 5728 5729 5730 5731
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
5732
		page = mc_handle_swap_pte(vma, ptent, &ent);
5733
	else if (pte_none(ptent))
5734
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5735 5736

	if (!page && !ent.val)
5737
		return ret;
5738 5739
	if (page) {
		/*
5740
		 * Do only loose check w/o serialization.
5741
		 * mem_cgroup_move_account() checks the page is valid or
5742
		 * not under LRU exclusion.
5743
		 */
5744
		if (page->mem_cgroup == mc.from) {
5745
			ret = MC_TARGET_PAGE;
5746
			if (is_device_private_page(page))
5747
				ret = MC_TARGET_DEVICE;
5748 5749 5750 5751 5752 5753
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
5754 5755 5756 5757 5758
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
5759
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5760 5761 5762
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5763 5764 5765 5766
	}
	return ret;
}

5767 5768
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
5769 5770
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
5771 5772 5773 5774 5775 5776 5777 5778
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

5779 5780 5781 5782 5783
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
5784
	page = pmd_page(pmd);
5785
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5786
	if (!(mc.flags & MOVE_ANON))
5787
		return ret;
5788
	if (page->mem_cgroup == mc.from) {
5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5805 5806 5807 5808
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
5809
	struct vm_area_struct *vma = walk->vma;
5810 5811 5812
	pte_t *pte;
	spinlock_t *ptl;

5813 5814
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5815 5816
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5817 5818
		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
		 * this might change.
5819
		 */
5820 5821
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5822
		spin_unlock(ptl);
5823
		return 0;
5824
	}
5825

5826 5827
	if (pmd_trans_unstable(pmd))
		return 0;
5828 5829
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5830
		if (get_mctgt_type(vma, addr, *pte, NULL))
5831 5832 5833 5834
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5835 5836 5837
	return 0;
}

5838 5839 5840 5841
static const struct mm_walk_ops precharge_walk_ops = {
	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
};

5842 5843 5844 5845
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

5846
	mmap_read_lock(mm);
5847
	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5848
	mmap_read_unlock(mm);
5849 5850 5851 5852 5853 5854 5855 5856 5857

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5858 5859 5860 5861 5862
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5863 5864
}

5865 5866
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5867
{
5868 5869 5870
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5871
	/* we must uncharge all the leftover precharges from mc.to */
5872
	if (mc.precharge) {
5873
		cancel_charge(mc.to, mc.precharge);
5874 5875 5876 5877 5878 5879 5880
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5881
		cancel_charge(mc.from, mc.moved_charge);
5882
		mc.moved_charge = 0;
5883
	}
5884 5885 5886
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5887
		if (!mem_cgroup_is_root(mc.from))
5888
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5889

5890 5891
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

5892
		/*
5893 5894
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5895
		 */
5896
		if (!mem_cgroup_is_root(mc.to))
5897 5898
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5899 5900
		mc.moved_swap = 0;
	}
5901 5902 5903 5904 5905 5906 5907
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
5908 5909
	struct mm_struct *mm = mc.mm;

5910 5911 5912 5913 5914 5915
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5916
	spin_lock(&mc.lock);
5917 5918
	mc.from = NULL;
	mc.to = NULL;
5919
	mc.mm = NULL;
5920
	spin_unlock(&mc.lock);
5921 5922

	mmput(mm);
5923 5924
}

5925
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5926
{
5927
	struct cgroup_subsys_state *css;
5928
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5929
	struct mem_cgroup *from;
5930
	struct task_struct *leader, *p;
5931
	struct mm_struct *mm;
5932
	unsigned long move_flags;
5933
	int ret = 0;
5934

5935 5936
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5937 5938
		return 0;

5939 5940 5941 5942 5943 5944 5945
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
5946
	cgroup_taskset_for_each_leader(leader, css, tset) {
5947 5948
		WARN_ON_ONCE(p);
		p = leader;
5949
		memcg = mem_cgroup_from_css(css);
5950 5951 5952 5953
	}
	if (!p)
		return 0;

5954 5955 5956 5957 5958 5959 5960 5961 5962
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
5979
		mc.mm = mm;
5980 5981 5982 5983 5984 5985 5986 5987 5988
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
5989 5990
	} else {
		mmput(mm);
5991 5992 5993 5994
	}
	return ret;
}

5995
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5996
{
5997 5998
	if (mc.to)
		mem_cgroup_clear_mc();
5999 6000
}

6001 6002 6003
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6004
{
6005
	int ret = 0;
6006
	struct vm_area_struct *vma = walk->vma;
6007 6008
	pte_t *pte;
	spinlock_t *ptl;
6009 6010 6011
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
6012

6013 6014
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
6015
		if (mc.precharge < HPAGE_PMD_NR) {
6016
			spin_unlock(ptl);
6017 6018 6019 6020 6021 6022
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
6023
				if (!mem_cgroup_move_account(page, true,
6024
							     mc.from, mc.to)) {
6025 6026 6027 6028 6029 6030
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
6031 6032 6033 6034 6035 6036 6037 6038
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
6039
		}
6040
		spin_unlock(ptl);
6041
		return 0;
6042 6043
	}

6044 6045
	if (pmd_trans_unstable(pmd))
		return 0;
6046 6047 6048 6049
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6050
		bool device = false;
6051
		swp_entry_t ent;
6052 6053 6054 6055

		if (!mc.precharge)
			break;

6056
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6057 6058
		case MC_TARGET_DEVICE:
			device = true;
J
Joe Perches 已提交
6059
			fallthrough;
6060 6061
		case MC_TARGET_PAGE:
			page = target.page;
6062 6063 6064 6065 6066 6067 6068 6069
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
6070
			if (!device && isolate_lru_page(page))
6071
				goto put;
6072 6073
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
6074
				mc.precharge--;
6075 6076
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6077
			}
6078 6079
			if (!device)
				putback_lru_page(page);
6080
put:			/* get_mctgt_type() gets the page */
6081 6082
			put_page(page);
			break;
6083 6084
		case MC_TARGET_SWAP:
			ent = target.ent;
6085
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6086
				mc.precharge--;
6087 6088
				mem_cgroup_id_get_many(mc.to, 1);
				/* we fixup other refcnts and charges later. */
6089 6090
				mc.moved_swap++;
			}
6091
			break;
6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6106
		ret = mem_cgroup_do_precharge(1);
6107 6108 6109 6110 6111 6112 6113
		if (!ret)
			goto retry;
	}

	return ret;
}

6114 6115 6116 6117
static const struct mm_walk_ops charge_walk_ops = {
	.pmd_entry	= mem_cgroup_move_charge_pte_range,
};

6118
static void mem_cgroup_move_charge(void)
6119 6120
{
	lru_add_drain_all();
6121
	/*
6122 6123 6124
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
6125 6126 6127
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
6128
retry:
6129
	if (unlikely(!mmap_read_trylock(mc.mm))) {
6130
		/*
6131
		 * Someone who are holding the mmap_lock might be waiting in
6132 6133 6134 6135 6136 6137 6138 6139 6140
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6141 6142 6143 6144
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
6145 6146
	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
			NULL);
6147

6148
	mmap_read_unlock(mc.mm);
6149
	atomic_dec(&mc.from->moving_account);
6150 6151
}

6152
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
6153
{
6154 6155
	if (mc.to) {
		mem_cgroup_move_charge();
6156
		mem_cgroup_clear_mc();
6157
	}
B
Balbir Singh 已提交
6158
}
6159
#else	/* !CONFIG_MMU */
6160
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6161 6162 6163
{
	return 0;
}
6164
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6165 6166
{
}
6167
static void mem_cgroup_move_task(void)
6168 6169 6170
{
}
#endif
B
Balbir Singh 已提交
6171

6172 6173 6174 6175 6176 6177 6178 6179 6180 6181
static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
{
	if (value == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);

	return 0;
}

6182 6183 6184
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
6185 6186 6187
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6188 6189
}

R
Roman Gushchin 已提交
6190 6191
static int memory_min_show(struct seq_file *m, void *v)
{
6192 6193
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
R
Roman Gushchin 已提交
6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

6213 6214
static int memory_low_show(struct seq_file *m, void *v)
{
6215 6216
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6217 6218 6219 6220 6221 6222 6223 6224 6225 6226
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
6227
	err = page_counter_memparse(buf, "max", &low);
6228 6229 6230
	if (err)
		return err;

6231
	page_counter_set_low(&memcg->memory, low);
6232 6233 6234 6235 6236 6237

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
6238 6239
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6240 6241 6242 6243 6244 6245
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6246
	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6247
	bool drained = false;
6248 6249 6250 6251
	unsigned long high;
	int err;

	buf = strstrip(buf);
6252
	err = page_counter_memparse(buf, "max", &high);
6253 6254 6255
	if (err)
		return err;

6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277
	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);
		unsigned long reclaimed;

		if (nr_pages <= high)
			break;

		if (signal_pending(current))
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
							 GFP_KERNEL, true);

		if (!reclaimed && !nr_retries--)
			break;
	}
6278

6279 6280
	page_counter_set_high(&memcg->memory, high);

6281 6282
	memcg_wb_domain_size_changed(memcg);

6283 6284 6285 6286 6287
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
6288 6289
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6290 6291 6292 6293 6294 6295
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6296
	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6297
	bool drained = false;
6298 6299 6300 6301
	unsigned long max;
	int err;

	buf = strstrip(buf);
6302
	err = page_counter_memparse(buf, "max", &max);
6303 6304 6305
	if (err)
		return err;

6306
	xchg(&memcg->memory.max, max);
6307 6308 6309 6310 6311 6312 6313

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

6314
		if (signal_pending(current))
6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

6330
		memcg_memory_event(memcg, MEMCG_OOM);
6331 6332 6333
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
6334

6335
	memcg_wb_domain_size_changed(memcg);
6336 6337 6338
	return nbytes;
}

6339 6340 6341 6342 6343 6344 6345 6346 6347 6348
static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
{
	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&events[MEMCG_OOM_KILL]));
}

6349 6350
static int memory_events_show(struct seq_file *m, void *v)
{
6351
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6352

6353 6354 6355 6356 6357 6358 6359
	__memory_events_show(m, memcg->memory_events);
	return 0;
}

static int memory_events_local_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6360

6361
	__memory_events_show(m, memcg->memory_events_local);
6362 6363 6364
	return 0;
}

6365 6366
static int memory_stat_show(struct seq_file *m, void *v)
{
6367
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6368
	char *buf;
6369

6370 6371 6372 6373 6374
	buf = memory_stat_format(memcg);
	if (!buf)
		return -ENOMEM;
	seq_puts(m, buf);
	kfree(buf);
6375 6376 6377
	return 0;
}

6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406
#ifdef CONFIG_NUMA
static int memory_numa_stat_show(struct seq_file *m, void *v)
{
	int i;
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);

	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
		int nid;

		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
			continue;

		seq_printf(m, "%s", memory_stats[i].name);
		for_each_node_state(nid, N_MEMORY) {
			u64 size;
			struct lruvec *lruvec;

			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
			size = lruvec_page_state(lruvec, memory_stats[i].idx);
			size *= memory_stats[i].ratio;
			seq_printf(m, " N%d=%llu", nid, size);
		}
		seq_putc(m, '\n');
	}

	return 0;
}
#endif

6407 6408
static int memory_oom_group_show(struct seq_file *m, void *v)
{
6409
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437

	seq_printf(m, "%d\n", memcg->oom_group);

	return 0;
}

static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
				      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	int ret, oom_group;

	buf = strstrip(buf);
	if (!buf)
		return -EINVAL;

	ret = kstrtoint(buf, 0, &oom_group);
	if (ret)
		return ret;

	if (oom_group != 0 && oom_group != 1)
		return -EINVAL;

	memcg->oom_group = oom_group;

	return nbytes;
}

6438 6439 6440
static struct cftype memory_files[] = {
	{
		.name = "current",
6441
		.flags = CFTYPE_NOT_ON_ROOT,
6442 6443
		.read_u64 = memory_current_read,
	},
R
Roman Gushchin 已提交
6444 6445 6446 6447 6448 6449
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
6471
		.file_offset = offsetof(struct mem_cgroup, events_file),
6472 6473
		.seq_show = memory_events_show,
	},
6474 6475 6476 6477 6478 6479
	{
		.name = "events.local",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, events_local_file),
		.seq_show = memory_events_local_show,
	},
6480 6481 6482 6483
	{
		.name = "stat",
		.seq_show = memory_stat_show,
	},
6484 6485 6486 6487 6488 6489
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.seq_show = memory_numa_stat_show,
	},
#endif
6490 6491 6492 6493 6494 6495
	{
		.name = "oom.group",
		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
		.seq_show = memory_oom_group_show,
		.write = memory_oom_group_write,
	},
6496 6497 6498
	{ }	/* terminate */
};

6499
struct cgroup_subsys memory_cgrp_subsys = {
6500
	.css_alloc = mem_cgroup_css_alloc,
6501
	.css_online = mem_cgroup_css_online,
6502
	.css_offline = mem_cgroup_css_offline,
6503
	.css_released = mem_cgroup_css_released,
6504
	.css_free = mem_cgroup_css_free,
6505
	.css_reset = mem_cgroup_css_reset,
6506 6507
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
6508
	.post_attach = mem_cgroup_move_task,
6509 6510
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
6511
	.early_init = 0,
B
Balbir Singh 已提交
6512
};
6513

6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543
/*
 * This function calculates an individual cgroup's effective
 * protection which is derived from its own memory.min/low, its
 * parent's and siblings' settings, as well as the actual memory
 * distribution in the tree.
 *
 * The following rules apply to the effective protection values:
 *
 * 1. At the first level of reclaim, effective protection is equal to
 *    the declared protection in memory.min and memory.low.
 *
 * 2. To enable safe delegation of the protection configuration, at
 *    subsequent levels the effective protection is capped to the
 *    parent's effective protection.
 *
 * 3. To make complex and dynamic subtrees easier to configure, the
 *    user is allowed to overcommit the declared protection at a given
 *    level. If that is the case, the parent's effective protection is
 *    distributed to the children in proportion to how much protection
 *    they have declared and how much of it they are utilizing.
 *
 *    This makes distribution proportional, but also work-conserving:
 *    if one cgroup claims much more protection than it uses memory,
 *    the unused remainder is available to its siblings.
 *
 * 4. Conversely, when the declared protection is undercommitted at a
 *    given level, the distribution of the larger parental protection
 *    budget is NOT proportional. A cgroup's protection from a sibling
 *    is capped to its own memory.min/low setting.
 *
6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555
 * 5. However, to allow protecting recursive subtrees from each other
 *    without having to declare each individual cgroup's fixed share
 *    of the ancestor's claim to protection, any unutilized -
 *    "floating" - protection from up the tree is distributed in
 *    proportion to each cgroup's *usage*. This makes the protection
 *    neutral wrt sibling cgroups and lets them compete freely over
 *    the shared parental protection budget, but it protects the
 *    subtree as a whole from neighboring subtrees.
 *
 * Note that 4. and 5. are not in conflict: 4. is about protecting
 * against immediate siblings whereas 5. is about protecting against
 * neighboring subtrees.
6556 6557
 */
static unsigned long effective_protection(unsigned long usage,
6558
					  unsigned long parent_usage,
6559 6560 6561 6562 6563
					  unsigned long setting,
					  unsigned long parent_effective,
					  unsigned long siblings_protected)
{
	unsigned long protected;
6564
	unsigned long ep;
6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594

	protected = min(usage, setting);
	/*
	 * If all cgroups at this level combined claim and use more
	 * protection then what the parent affords them, distribute
	 * shares in proportion to utilization.
	 *
	 * We are using actual utilization rather than the statically
	 * claimed protection in order to be work-conserving: claimed
	 * but unused protection is available to siblings that would
	 * otherwise get a smaller chunk than what they claimed.
	 */
	if (siblings_protected > parent_effective)
		return protected * parent_effective / siblings_protected;

	/*
	 * Ok, utilized protection of all children is within what the
	 * parent affords them, so we know whatever this child claims
	 * and utilizes is effectively protected.
	 *
	 * If there is unprotected usage beyond this value, reclaim
	 * will apply pressure in proportion to that amount.
	 *
	 * If there is unutilized protection, the cgroup will be fully
	 * shielded from reclaim, but we do return a smaller value for
	 * protection than what the group could enjoy in theory. This
	 * is okay. With the overcommit distribution above, effective
	 * protection is always dependent on how memory is actually
	 * consumed among the siblings anyway.
	 */
6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607
	ep = protected;

	/*
	 * If the children aren't claiming (all of) the protection
	 * afforded to them by the parent, distribute the remainder in
	 * proportion to the (unprotected) memory of each cgroup. That
	 * way, cgroups that aren't explicitly prioritized wrt each
	 * other compete freely over the allowance, but they are
	 * collectively protected from neighboring trees.
	 *
	 * We're using unprotected memory for the weight so that if
	 * some cgroups DO claim explicit protection, we don't protect
	 * the same bytes twice.
6608 6609 6610 6611
	 *
	 * Check both usage and parent_usage against the respective
	 * protected values. One should imply the other, but they
	 * aren't read atomically - make sure the division is sane.
6612 6613 6614
	 */
	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
		return ep;
6615 6616 6617
	if (parent_effective > siblings_protected &&
	    parent_usage > siblings_protected &&
	    usage > protected) {
6618 6619 6620 6621 6622 6623 6624 6625 6626 6627
		unsigned long unclaimed;

		unclaimed = parent_effective - siblings_protected;
		unclaimed *= usage - protected;
		unclaimed /= parent_usage - siblings_protected;

		ep += unclaimed;
	}

	return ep;
6628 6629
}

6630
/**
R
Roman Gushchin 已提交
6631
 * mem_cgroup_protected - check if memory consumption is in the normal range
6632
 * @root: the top ancestor of the sub-tree being checked
6633 6634
 * @memcg: the memory cgroup to check
 *
6635 6636
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
6637
 */
6638 6639
void mem_cgroup_calculate_protection(struct mem_cgroup *root,
				     struct mem_cgroup *memcg)
6640
{
6641
	unsigned long usage, parent_usage;
6642 6643
	struct mem_cgroup *parent;

6644
	if (mem_cgroup_disabled())
6645
		return;
6646

6647 6648
	if (!root)
		root = root_mem_cgroup;
6649 6650 6651 6652 6653 6654 6655 6656

	/*
	 * Effective values of the reclaim targets are ignored so they
	 * can be stale. Have a look at mem_cgroup_protection for more
	 * details.
	 * TODO: calculation should be more robust so that we do not need
	 * that special casing.
	 */
6657
	if (memcg == root)
6658
		return;
6659

6660
	usage = page_counter_read(&memcg->memory);
R
Roman Gushchin 已提交
6661
	if (!usage)
6662
		return;
R
Roman Gushchin 已提交
6663 6664

	parent = parent_mem_cgroup(memcg);
6665 6666
	/* No parent means a non-hierarchical mode on v1 memcg */
	if (!parent)
6667
		return;
6668

6669
	if (parent == root) {
6670
		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6671
		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6672
		return;
R
Roman Gushchin 已提交
6673 6674
	}

6675 6676
	parent_usage = page_counter_read(&parent->memory);

6677
	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6678 6679
			READ_ONCE(memcg->memory.min),
			READ_ONCE(parent->memory.emin),
6680
			atomic_long_read(&parent->memory.children_min_usage)));
6681

6682
	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6683 6684
			READ_ONCE(memcg->memory.low),
			READ_ONCE(parent->memory.elow),
6685
			atomic_long_read(&parent->memory.children_low_usage)));
6686 6687
}

6688
/**
6689
 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6690 6691 6692 6693 6694 6695 6696
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
6697
 * Returns 0 on success. Otherwise, an error code is returned.
6698
 */
6699
int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6700
{
6701
	unsigned int nr_pages = thp_nr_pages(page);
6702 6703 6704 6705 6706 6707 6708
	struct mem_cgroup *memcg = NULL;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
6709 6710 6711
		swp_entry_t ent = { .val = page_private(page), };
		unsigned short id;

6712 6713 6714
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
6715 6716
		 * already charged pages, too.  page->mem_cgroup is protected
		 * by the page lock, which serializes swap cache removal, which
6717 6718
		 * in turn serializes uncharging.
		 */
6719
		VM_BUG_ON_PAGE(!PageLocked(page), page);
6720
		if (compound_head(page)->mem_cgroup)
6721
			goto out;
6722

6723 6724 6725 6726 6727 6728
		id = lookup_swap_cgroup_id(ent);
		rcu_read_lock();
		memcg = mem_cgroup_from_id(id);
		if (memcg && !css_tryget_online(&memcg->css))
			memcg = NULL;
		rcu_read_unlock();
6729 6730 6731 6732 6733 6734
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);
6735 6736
	if (ret)
		goto out_put;
6737

6738
	css_get(&memcg->css);
6739
	commit_charge(page, memcg);
6740 6741

	local_irq_disable();
6742
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6743 6744
	memcg_check_events(memcg, page);
	local_irq_enable();
6745

6746
	if (PageSwapCache(page)) {
6747 6748 6749 6750 6751 6752
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
6753
		mem_cgroup_uncharge_swap(entry, nr_pages);
6754 6755
	}

6756 6757 6758 6759
out_put:
	css_put(&memcg->css);
out:
	return ret;
6760 6761
}

6762 6763
struct uncharge_gather {
	struct mem_cgroup *memcg;
6764
	unsigned long nr_pages;
6765 6766 6767 6768 6769 6770
	unsigned long pgpgout;
	unsigned long nr_kmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6771
{
6772 6773 6774 6775 6776
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
6777 6778
	unsigned long flags;

6779
	if (!mem_cgroup_is_root(ug->memcg)) {
6780
		page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6781
		if (do_memsw_account())
6782
			page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6783 6784 6785
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
6786
	}
6787 6788

	local_irq_save(flags);
6789
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6790
	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6791
	memcg_check_events(ug->memcg, ug->dummy_page);
6792
	local_irq_restore(flags);
6793 6794 6795

	/* drop reference from uncharge_page */
	css_put(&ug->memcg->css);
6796 6797 6798 6799
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
6800 6801
	unsigned long nr_pages;

6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818
	VM_BUG_ON_PAGE(PageLRU(page), page);

	if (!page->mem_cgroup)
		return;

	/*
	 * Nobody should be changing or seriously looking at
	 * page->mem_cgroup at this point, we have fully
	 * exclusive access to the page.
	 */

	if (ug->memcg != page->mem_cgroup) {
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
		ug->memcg = page->mem_cgroup;
6819 6820 6821

		/* pairs with css_put in uncharge_batch */
		css_get(&ug->memcg->css);
6822 6823
	}

6824 6825
	nr_pages = compound_nr(page);
	ug->nr_pages += nr_pages;
6826

6827
	if (!PageKmemcg(page)) {
6828 6829
		ug->pgpgout++;
	} else {
6830
		ug->nr_kmem += nr_pages;
6831 6832 6833 6834 6835
		__ClearPageKmemcg(page);
	}

	ug->dummy_page = page;
	page->mem_cgroup = NULL;
6836
	css_put(&ug->memcg->css);
6837 6838 6839 6840
}

static void uncharge_list(struct list_head *page_list)
{
6841
	struct uncharge_gather ug;
6842
	struct list_head *next;
6843 6844

	uncharge_gather_clear(&ug);
6845

6846 6847 6848 6849
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
6850 6851
	next = page_list->next;
	do {
6852 6853
		struct page *page;

6854 6855 6856
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

6857
		uncharge_page(page, &ug);
6858 6859
	} while (next != page_list);

6860 6861
	if (ug.memcg)
		uncharge_batch(&ug);
6862 6863
}

6864 6865 6866 6867
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
6868
 * Uncharge a page previously charged with mem_cgroup_charge().
6869 6870 6871
 */
void mem_cgroup_uncharge(struct page *page)
{
6872 6873
	struct uncharge_gather ug;

6874 6875 6876
	if (mem_cgroup_disabled())
		return;

6877
	/* Don't touch page->lru of any random page, pre-check: */
6878
	if (!page->mem_cgroup)
6879 6880
		return;

6881 6882 6883
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
6884
}
6885

6886 6887 6888 6889 6890
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
6891
 * mem_cgroup_charge().
6892 6893 6894 6895 6896
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
6897

6898 6899
	if (!list_empty(page_list))
		uncharge_list(page_list);
6900 6901 6902
}

/**
6903 6904 6905
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
6906
 *
6907 6908
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
6909 6910 6911
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
6912
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6913
{
6914
	struct mem_cgroup *memcg;
6915
	unsigned int nr_pages;
6916
	unsigned long flags;
6917 6918 6919 6920

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6921 6922
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6923 6924 6925 6926 6927

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
6928
	if (newpage->mem_cgroup)
6929 6930
		return;

6931
	memcg = oldpage->mem_cgroup;
6932
	if (!memcg)
6933 6934
		return;

6935
	/* Force-charge the new page. The old one will be freed soon */
6936
	nr_pages = thp_nr_pages(newpage);
6937 6938 6939 6940

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
6941

6942
	css_get(&memcg->css);
6943
	commit_charge(newpage, memcg);
6944

6945
	local_irq_save(flags);
6946
	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6947
	memcg_check_events(memcg, newpage);
6948
	local_irq_restore(flags);
6949 6950
}

6951
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6952 6953
EXPORT_SYMBOL(memcg_sockets_enabled_key);

6954
void mem_cgroup_sk_alloc(struct sock *sk)
6955 6956 6957
{
	struct mem_cgroup *memcg;

6958 6959 6960
	if (!mem_cgroup_sockets_enabled)
		return;

6961 6962 6963 6964
	/* Do not associate the sock with unrelated interrupted task's memcg. */
	if (in_interrupt())
		return;

6965 6966
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
6967 6968
	if (memcg == root_mem_cgroup)
		goto out;
6969
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6970
		goto out;
S
Shakeel Butt 已提交
6971
	if (css_tryget(&memcg->css))
6972
		sk->sk_memcg = memcg;
6973
out:
6974 6975 6976
	rcu_read_unlock();
}

6977
void mem_cgroup_sk_free(struct sock *sk)
6978
{
6979 6980
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6993
	gfp_t gfp_mask = GFP_KERNEL;
6994

6995
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6996
		struct page_counter *fail;
6997

6998 6999
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
7000 7001
			return true;
		}
7002 7003
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
7004
		return false;
7005
	}
7006

7007 7008 7009 7010
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

7011
	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7012

7013 7014 7015 7016
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7017 7018 7019 7020 7021
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
7022 7023
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
7024 7025 7026
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
7027
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7028
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7029 7030
		return;
	}
7031

7032
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7033

7034
	refill_stock(memcg, nr_pages);
7035 7036
}

7037 7038 7039 7040 7041 7042 7043 7044 7045
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
7046 7047
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
7048 7049 7050 7051
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
7052

7053
/*
7054 7055
 * subsys_initcall() for memory controller.
 *
7056 7057 7058 7059
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
7060 7061 7062
 */
static int __init mem_cgroup_init(void)
{
7063 7064
	int cpu, node;

7065 7066
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

7078
		rtpn->rb_root = RB_ROOT;
7079
		rtpn->rb_rightmost = NULL;
7080
		spin_lock_init(&rtpn->lock);
7081 7082 7083
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

7084 7085 7086
	return 0;
}
subsys_initcall(mem_cgroup_init);
7087 7088

#ifdef CONFIG_MEMCG_SWAP
7089 7090
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
7091
	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

7107 7108 7109 7110 7111 7112 7113 7114 7115
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
7116
	struct mem_cgroup *memcg, *swap_memcg;
7117
	unsigned int nr_entries;
7118 7119 7120 7121 7122
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

7123
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7124 7125 7126 7127 7128 7129 7130 7131
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

7132 7133 7134 7135 7136 7137
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
7138
	nr_entries = thp_nr_pages(page);
7139 7140 7141 7142 7143
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
7144
	VM_BUG_ON_PAGE(oldid, page);
7145
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7146 7147 7148 7149

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
7150
		page_counter_uncharge(&memcg->memory, nr_entries);
7151

7152
	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7153
		if (!mem_cgroup_is_root(swap_memcg))
7154 7155
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
7156 7157
	}

7158 7159
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
7160
	 * i_pages lock which is taken with interrupts-off. It is
7161
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
7162
	 * only synchronisation we have for updating the per-CPU variables.
7163 7164
	 */
	VM_BUG_ON(!irqs_disabled());
7165
	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7166
	memcg_check_events(memcg, page);
7167

7168
	css_put(&memcg->css);
7169 7170
}

7171 7172
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
7173 7174 7175
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
7176
 * Try to charge @page's memcg for the swap space at @entry.
7177 7178 7179 7180 7181
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
7182
	unsigned int nr_pages = thp_nr_pages(page);
7183
	struct page_counter *counter;
7184
	struct mem_cgroup *memcg;
7185 7186
	unsigned short oldid;

7187
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7188 7189 7190 7191 7192 7193 7194 7195
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

7196 7197
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7198
		return 0;
7199
	}
7200

7201 7202
	memcg = mem_cgroup_id_get_online(memcg);

7203
	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7204
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7205 7206
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7207
		mem_cgroup_id_put(memcg);
7208
		return -ENOMEM;
7209
	}
7210

7211 7212 7213 7214
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7215
	VM_BUG_ON_PAGE(oldid, page);
7216
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7217 7218 7219 7220

	return 0;
}

7221
/**
7222
 * mem_cgroup_uncharge_swap - uncharge swap space
7223
 * @entry: swap entry to uncharge
7224
 * @nr_pages: the amount of swap space to uncharge
7225
 */
7226
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7227 7228 7229 7230
{
	struct mem_cgroup *memcg;
	unsigned short id;

7231
	id = swap_cgroup_record(entry, 0, nr_pages);
7232
	rcu_read_lock();
7233
	memcg = mem_cgroup_from_id(id);
7234
	if (memcg) {
7235
		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7236
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7237
				page_counter_uncharge(&memcg->swap, nr_pages);
7238
			else
7239
				page_counter_uncharge(&memcg->memsw, nr_pages);
7240
		}
7241
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7242
		mem_cgroup_id_put_many(memcg, nr_pages);
7243 7244 7245 7246
	}
	rcu_read_unlock();
}

7247 7248 7249 7250
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

7251
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7252 7253 7254
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
7255
				      READ_ONCE(memcg->swap.max) -
7256 7257 7258 7259
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

7260 7261 7262 7263 7264 7265 7266 7267
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
7268
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7269 7270 7271 7272 7273 7274
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

7275 7276 7277 7278 7279
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		unsigned long usage = page_counter_read(&memcg->swap);

		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
		    usage * 2 >= READ_ONCE(memcg->swap.max))
7280
			return true;
7281
	}
7282 7283 7284 7285

	return false;
}

7286
static int __init setup_swap_account(char *s)
7287 7288
{
	if (!strcmp(s, "1"))
7289
		cgroup_memory_noswap = false;
7290
	else if (!strcmp(s, "0"))
7291
		cgroup_memory_noswap = true;
7292 7293
	return 1;
}
7294
__setup("swapaccount=", setup_swap_account);
7295

7296 7297 7298 7299 7300 7301 7302 7303
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326
static int swap_high_show(struct seq_file *m, void *v)
{
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
}

static ssize_t swap_high_write(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &high);
	if (err)
		return err;

	page_counter_set_high(&memcg->swap, high);

	return nbytes;
}

7327 7328
static int swap_max_show(struct seq_file *m, void *v)
{
7329 7330
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

7345
	xchg(&memcg->swap.max, max);
7346 7347 7348 7349

	return nbytes;
}

7350 7351
static int swap_events_show(struct seq_file *m, void *v)
{
7352
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7353

7354 7355
	seq_printf(m, "high %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7356 7357 7358 7359 7360 7361 7362 7363
	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

7364 7365 7366 7367 7368 7369
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
7370 7371 7372 7373 7374 7375
	{
		.name = "swap.high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_high_show,
		.write = swap_high_write,
	},
7376 7377 7378 7379 7380 7381
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
7382 7383 7384 7385 7386 7387
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
7388 7389 7390
	{ }	/* terminate */
};

7391
static struct cftype memsw_files[] = {
7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

7418 7419 7420 7421 7422 7423 7424
/*
 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
 * boot parameter. This may result in premature OOPS inside
 * mem_cgroup_get_nr_swap_pages() function in corner cases.
 */
7425 7426
static int __init mem_cgroup_swap_init(void)
{
7427 7428 7429 7430 7431
	/* No memory control -> no swap control */
	if (mem_cgroup_disabled())
		cgroup_memory_noswap = true;

	if (cgroup_memory_noswap)
7432 7433 7434 7435 7436
		return 0;

	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));

7437 7438
	return 0;
}
7439
core_initcall(mem_cgroup_swap_init);
7440 7441

#endif /* CONFIG_MEMCG_SWAP */