memcontrol.c 189.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
B
Balbir Singh 已提交
2 3 4 5 6
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
7 8 9
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
10 11 12 13
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
14 15 16 17
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
B
Balbir Singh 已提交
23 24
 */

25
#include <linux/page_counter.h>
B
Balbir Singh 已提交
26 27
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
28
#include <linux/pagewalk.h>
29
#include <linux/sched/mm.h>
30
#include <linux/shmem_fs.h>
31
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
32
#include <linux/pagemap.h>
33
#include <linux/vm_event_item.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/swap_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
59
#include <linux/tracehook.h>
60
#include <linux/psi.h>
61
#include <linux/seq_buf.h>
K
KAMEZAWA Hiroyuki 已提交
62
#include "internal.h"
G
Glauber Costa 已提交
63
#include <net/sock.h>
M
Michal Hocko 已提交
64
#include <net/ip.h>
65
#include "slab.h"
B
Balbir Singh 已提交
66

67
#include <linux/uaccess.h>
68

69 70
#include <trace/events/vmscan.h>

71 72
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
73

74 75
struct mem_cgroup *root_mem_cgroup __read_mostly;

76 77 78
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

79 80 81
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

82
/* Whether the swap controller is active */
A
Andrew Morton 已提交
83
#ifdef CONFIG_MEMCG_SWAP
84
bool cgroup_memory_noswap __read_mostly;
85
#else
86
#define cgroup_memory_noswap		1
87
#endif
88

89 90 91 92
#ifdef CONFIG_CGROUP_WRITEBACK
static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
#endif

93 94 95
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
96
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
97 98
}

99 100
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
101

102 103 104 105 106
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

107
struct mem_cgroup_tree_per_node {
108
	struct rb_root rb_root;
109
	struct rb_node *rb_rightmost;
110 111 112 113 114 115 116 117 118
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
119 120 121 122 123
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
124

125 126 127
/*
 * cgroup_event represents events which userspace want to receive.
 */
128
struct mem_cgroup_event {
129
	/*
130
	 * memcg which the event belongs to.
131
	 */
132
	struct mem_cgroup *memcg;
133 134 135 136 137 138 139 140
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
141 142 143 144 145
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
146
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
147
			      struct eventfd_ctx *eventfd, const char *args);
148 149 150 151 152
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
153
	void (*unregister_event)(struct mem_cgroup *memcg,
154
				 struct eventfd_ctx *eventfd);
155 156 157 158 159 160
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
161
	wait_queue_entry_t wait;
162 163 164
	struct work_struct remove;
};

165 166
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
167

168 169
/* Stuffs for move charges at task migration. */
/*
170
 * Types of charges to be moved.
171
 */
172 173 174
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
175

176 177
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
178
	spinlock_t	  lock; /* for from, to */
179
	struct mm_struct  *mm;
180 181
	struct mem_cgroup *from;
	struct mem_cgroup *to;
182
	unsigned long flags;
183
	unsigned long precharge;
184
	unsigned long moved_charge;
185
	unsigned long moved_swap;
186 187 188
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
189
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
190 191
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
192

193 194 195 196
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
197
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
198
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
199

200 201
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
202
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
203
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
204
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
205 206 207
	NR_CHARGE_TYPE,
};

208
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
209 210 211 212
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
213
	_KMEM,
V
Vladimir Davydov 已提交
214
	_TCP,
G
Glauber Costa 已提交
215 216
};

217 218
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
219
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
220 221
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
222

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(root, iter, NULL))

#define for_each_mem_cgroup(iter)			\
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(NULL, iter, NULL))

238 239 240 241 242 243
static inline bool should_force_charge(void)
{
	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
		(current->flags & PF_EXITING);
}

244 245 246 247 248 249 250 251 252 253 254 255 256
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

257
#ifdef CONFIG_MEMCG_KMEM
R
Roman Gushchin 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
extern spinlock_t css_set_lock;

static void obj_cgroup_release(struct percpu_ref *ref)
{
	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
	struct mem_cgroup *memcg;
	unsigned int nr_bytes;
	unsigned int nr_pages;
	unsigned long flags;

	/*
	 * At this point all allocated objects are freed, and
	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
	 *
	 * The following sequence can lead to it:
	 * 1) CPU0: objcg == stock->cached_objcg
	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
	 *          PAGE_SIZE bytes are charged
	 * 3) CPU1: a process from another memcg is allocating something,
	 *          the stock if flushed,
	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
	 * 5) CPU0: we do release this object,
	 *          92 bytes are added to stock->nr_bytes
	 * 6) CPU0: stock is flushed,
	 *          92 bytes are added to objcg->nr_charged_bytes
	 *
	 * In the result, nr_charged_bytes == PAGE_SIZE.
	 * This page will be uncharged in obj_cgroup_release().
	 */
	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
	nr_pages = nr_bytes >> PAGE_SHIFT;

	spin_lock_irqsave(&css_set_lock, flags);
	memcg = obj_cgroup_memcg(objcg);
	if (nr_pages)
		__memcg_kmem_uncharge(memcg, nr_pages);
	list_del(&objcg->list);
	mem_cgroup_put(memcg);
	spin_unlock_irqrestore(&css_set_lock, flags);

	percpu_ref_exit(ref);
	kfree_rcu(objcg, rcu);
}

static struct obj_cgroup *obj_cgroup_alloc(void)
{
	struct obj_cgroup *objcg;
	int ret;

	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
	if (!objcg)
		return NULL;

	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
			      GFP_KERNEL);
	if (ret) {
		kfree(objcg);
		return NULL;
	}
	INIT_LIST_HEAD(&objcg->list);
	return objcg;
}

static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
				  struct mem_cgroup *parent)
{
	struct obj_cgroup *objcg, *iter;

	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);

	spin_lock_irq(&css_set_lock);

	/* Move active objcg to the parent's list */
	xchg(&objcg->memcg, parent);
	css_get(&parent->css);
	list_add(&objcg->list, &parent->objcg_list);

	/* Move already reparented objcgs to the parent's list */
	list_for_each_entry(iter, &memcg->objcg_list, list) {
		css_get(&parent->css);
		xchg(&iter->memcg, parent);
		css_put(&memcg->css);
	}
	list_splice(&memcg->objcg_list, &parent->objcg_list);

	spin_unlock_irq(&css_set_lock);

	percpu_ref_kill(&objcg->refcnt);
}

350
/*
351
 * This will be used as a shrinker list's index.
L
Li Zefan 已提交
352 353 354 355 356
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
357
 *
358 359
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
360
 */
361 362
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
363

364 365 366 367 368 369 370 371 372 373 374 375 376
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

377 378 379 380 381 382
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
383
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
384 385
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
386
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
387 388 389
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
390
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
391

392 393
/*
 * A lot of the calls to the cache allocation functions are expected to be
394
 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
395 396 397
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
398
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
399
EXPORT_SYMBOL(memcg_kmem_enabled_key);
400
#endif
401

402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
static int memcg_shrinker_map_size;
static DEFINE_MUTEX(memcg_shrinker_map_mutex);

static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
{
	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
}

static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
					 int size, int old_size)
{
	struct memcg_shrinker_map *new, *old;
	int nid;

	lockdep_assert_held(&memcg_shrinker_map_mutex);

	for_each_node(nid) {
		old = rcu_dereference_protected(
			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
		/* Not yet online memcg */
		if (!old)
			return 0;

425
		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
		if (!new)
			return -ENOMEM;

		/* Set all old bits, clear all new bits */
		memset(new->map, (int)0xff, old_size);
		memset((void *)new->map + old_size, 0, size - old_size);

		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
	}

	return 0;
}

static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *pn;
	struct memcg_shrinker_map *map;
	int nid;

	if (mem_cgroup_is_root(memcg))
		return;

	for_each_node(nid) {
		pn = mem_cgroup_nodeinfo(memcg, nid);
		map = rcu_dereference_protected(pn->shrinker_map, true);
		if (map)
			kvfree(map);
		rcu_assign_pointer(pn->shrinker_map, NULL);
	}
}

static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	struct memcg_shrinker_map *map;
	int nid, size, ret = 0;

	if (mem_cgroup_is_root(memcg))
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	size = memcg_shrinker_map_size;
	for_each_node(nid) {
469
		map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
		if (!map) {
			memcg_free_shrinker_maps(memcg);
			ret = -ENOMEM;
			break;
		}
		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
	}
	mutex_unlock(&memcg_shrinker_map_mutex);

	return ret;
}

int memcg_expand_shrinker_maps(int new_id)
{
	int size, old_size, ret = 0;
	struct mem_cgroup *memcg;

	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
	old_size = memcg_shrinker_map_size;
	if (size <= old_size)
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	if (!root_mem_cgroup)
		goto unlock;

	for_each_mem_cgroup(memcg) {
		if (mem_cgroup_is_root(memcg))
			continue;
		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
500 501
		if (ret) {
			mem_cgroup_iter_break(NULL, memcg);
502
			goto unlock;
503
		}
504 505 506 507 508 509 510
	}
unlock:
	if (!ret)
		memcg_shrinker_map_size = size;
	mutex_unlock(&memcg_shrinker_map_mutex);
	return ret;
}
511 512 513 514 515 516 517 518

void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
{
	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
		struct memcg_shrinker_map *map;

		rcu_read_lock();
		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
519 520
		/* Pairs with smp mb in shrink_slab() */
		smp_mb__before_atomic();
521 522 523 524 525
		set_bit(shrinker_id, map->map);
		rcu_read_unlock();
	}
}

526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

543
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
544 545 546 547 548
		memcg = root_mem_cgroup;

	return &memcg->css;
}

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
568
	memcg = page->mem_cgroup;
569

570 571 572 573 574 575 576 577
	/*
	 * The lowest bit set means that memcg isn't a valid
	 * memcg pointer, but a obj_cgroups pointer.
	 * In this case the page is shared and doesn't belong
	 * to any specific memory cgroup.
	 */
	if ((unsigned long) memcg & 0x1UL)
		memcg = NULL;
578

579 580 581 582 583 584 585 586
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

587 588
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
589
{
590
	int nid = page_to_nid(page);
591

592
	return memcg->nodeinfo[nid];
593 594
}

595 596
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
597
{
598
	return soft_limit_tree.rb_tree_per_node[nid];
599 600
}

601
static struct mem_cgroup_tree_per_node *
602 603 604 605
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

606
	return soft_limit_tree.rb_tree_per_node[nid];
607 608
}

609 610
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
611
					 unsigned long new_usage_in_excess)
612 613 614
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
615
	struct mem_cgroup_per_node *mz_node;
616
	bool rightmost = true;
617 618 619 620 621 622 623 624 625

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
626
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
627
					tree_node);
628
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
629
			p = &(*p)->rb_left;
630 631 632
			rightmost = false;
		}

633 634 635 636 637 638 639
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
640 641 642 643

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

644 645 646 647 648
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

649 650
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
651 652 653
{
	if (!mz->on_tree)
		return;
654 655 656 657

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

658 659 660 661
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

662 663
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
664
{
665 666 667
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
668
	__mem_cgroup_remove_exceeded(mz, mctz);
669
	spin_unlock_irqrestore(&mctz->lock, flags);
670 671
}

672 673 674
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
675
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
676 677 678 679 680 681 682
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
683 684 685

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
686
	unsigned long excess;
687 688
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
689

690
	mctz = soft_limit_tree_from_page(page);
691 692
	if (!mctz)
		return;
693 694 695 696 697
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
698
		mz = mem_cgroup_page_nodeinfo(memcg, page);
699
		excess = soft_limit_excess(memcg);
700 701 702 703 704
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
705 706 707
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
708 709
			/* if on-tree, remove it */
			if (mz->on_tree)
710
				__mem_cgroup_remove_exceeded(mz, mctz);
711 712 713 714
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
715
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
716
			spin_unlock_irqrestore(&mctz->lock, flags);
717 718 719 720 721 722
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
723 724 725
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
726

727
	for_each_node(nid) {
728 729
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
730 731
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
732 733 734
	}
}

735 736
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
737
{
738
	struct mem_cgroup_per_node *mz;
739 740 741

retry:
	mz = NULL;
742
	if (!mctz->rb_rightmost)
743 744
		goto done;		/* Nothing to reclaim from */

745 746
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
747 748 749 750 751
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
752
	__mem_cgroup_remove_exceeded(mz, mctz);
753
	if (!soft_limit_excess(mz->memcg) ||
S
Shakeel Butt 已提交
754
	    !css_tryget(&mz->memcg->css))
755 756 757 758 759
		goto retry;
done:
	return mz;
}

760 761
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
762
{
763
	struct mem_cgroup_per_node *mz;
764

765
	spin_lock_irq(&mctz->lock);
766
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
767
	spin_unlock_irq(&mctz->lock);
768 769 770
	return mz;
}

771 772 773 774 775 776 777 778
/**
 * __mod_memcg_state - update cgroup memory statistics
 * @memcg: the memory cgroup
 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 * @val: delta to add to the counter, can be negative
 */
void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
{
779
	long x, threshold = MEMCG_CHARGE_BATCH;
780 781 782 783

	if (mem_cgroup_disabled())
		return;

784
	if (memcg_stat_item_in_bytes(idx))
785 786
		threshold <<= PAGE_SHIFT;

787
	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
788
	if (unlikely(abs(x) > threshold)) {
789 790
		struct mem_cgroup *mi;

791 792 793 794 795
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
796 797
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmstats[idx]);
798 799 800 801 802
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
}

803 804 805 806 807 808 809 810 811 812 813
static struct mem_cgroup_per_node *
parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
{
	struct mem_cgroup *parent;

	parent = parent_mem_cgroup(pn->memcg);
	if (!parent)
		return NULL;
	return mem_cgroup_nodeinfo(parent, nid);
}

814 815
void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			      int val)
816 817
{
	struct mem_cgroup_per_node *pn;
818
	struct mem_cgroup *memcg;
819
	long x, threshold = MEMCG_CHARGE_BATCH;
820 821

	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
822
	memcg = pn->memcg;
823 824

	/* Update memcg */
825
	__mod_memcg_state(memcg, idx, val);
826

827 828 829
	/* Update lruvec */
	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);

830 831 832
	if (vmstat_item_in_bytes(idx))
		threshold <<= PAGE_SHIFT;

833
	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
834
	if (unlikely(abs(x) > threshold)) {
835
		pg_data_t *pgdat = lruvec_pgdat(lruvec);
836 837 838 839
		struct mem_cgroup_per_node *pi;

		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
			atomic_long_add(x, &pi->lruvec_stat[idx]);
840 841 842 843 844
		x = 0;
	}
	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
}

845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
/**
 * __mod_lruvec_state - update lruvec memory statistics
 * @lruvec: the lruvec
 * @idx: the stat item
 * @val: delta to add to the counter, can be negative
 *
 * The lruvec is the intersection of the NUMA node and a cgroup. This
 * function updates the all three counters that are affected by a
 * change of state at this level: per-node, per-cgroup, per-lruvec.
 */
void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			int val)
{
	/* Update node */
	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);

	/* Update memcg and lruvec */
	if (!mem_cgroup_disabled())
		__mod_memcg_lruvec_state(lruvec, idx, val);
}

866 867
void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
{
868
	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
869 870 871 872
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;

	rcu_read_lock();
873
	memcg = mem_cgroup_from_obj(p);
874 875 876 877 878

	/* Untracked pages have no memcg, no lruvec. Update only the node */
	if (!memcg || memcg == root_mem_cgroup) {
		__mod_node_page_state(pgdat, idx, val);
	} else {
879
		lruvec = mem_cgroup_lruvec(memcg, pgdat);
880 881 882 883 884
		__mod_lruvec_state(lruvec, idx, val);
	}
	rcu_read_unlock();
}

885 886 887 888 889 890 891 892 893 894 895
void mod_memcg_obj_state(void *p, int idx, int val)
{
	struct mem_cgroup *memcg;

	rcu_read_lock();
	memcg = mem_cgroup_from_obj(p);
	if (memcg)
		mod_memcg_state(memcg, idx, val);
	rcu_read_unlock();
}

896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
/**
 * __count_memcg_events - account VM events in a cgroup
 * @memcg: the memory cgroup
 * @idx: the event item
 * @count: the number of events that occured
 */
void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
			  unsigned long count)
{
	unsigned long x;

	if (mem_cgroup_disabled())
		return;

	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
912 913
		struct mem_cgroup *mi;

914 915 916 917 918
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->events[idx], x);
919 920
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmevents[idx]);
921 922 923 924 925
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
}

926
static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
927
{
928
	return atomic_long_read(&memcg->vmevents[event]);
929 930
}

931 932
static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
{
933 934 935 936 937 938
	long x = 0;
	int cpu;

	for_each_possible_cpu(cpu)
		x += per_cpu(memcg->vmstats_local->events[event], cpu);
	return x;
939 940
}

941
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
942
					 struct page *page,
943
					 int nr_pages)
944
{
945 946
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
947
		__count_memcg_events(memcg, PGPGIN, 1);
948
	else {
949
		__count_memcg_events(memcg, PGPGOUT, 1);
950 951
		nr_pages = -nr_pages; /* for event */
	}
952

953
	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
954 955
}

956 957
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
958 959 960
{
	unsigned long val, next;

961 962
	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
963
	/* from time_after() in jiffies.h */
964
	if ((long)(next - val) < 0) {
965 966 967 968
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
969 970 971
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
972 973 974
		default:
			break;
		}
975
		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
976
		return true;
977
	}
978
	return false;
979 980 981 982 983 984
}

/*
 * Check events in order.
 *
 */
985
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
986 987
{
	/* threshold event is triggered in finer grain than soft limit */
988 989
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
990
		bool do_softlimit;
991

992 993
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
994
		mem_cgroup_threshold(memcg);
995 996
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
997
	}
998 999
}

1000
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1001
{
1002 1003 1004 1005 1006 1007 1008 1009
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1010
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1011
}
M
Michal Hocko 已提交
1012
EXPORT_SYMBOL(mem_cgroup_from_task);
1013

1014 1015 1016 1017 1018 1019 1020 1021 1022
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
 * returned.
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1023
{
1024 1025 1026 1027
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
1028

1029 1030
	rcu_read_lock();
	do {
1031 1032 1033 1034 1035 1036
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1037
			memcg = root_mem_cgroup;
1038 1039 1040 1041 1042
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1043
	} while (!css_tryget(&memcg->css));
1044
	rcu_read_unlock();
1045
	return memcg;
1046
}
1047 1048
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
/**
 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
 * @page: page from which memcg should be extracted.
 *
 * Obtain a reference on page->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned.
 */
struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
{
	struct mem_cgroup *memcg = page->mem_cgroup;

	if (mem_cgroup_disabled())
		return NULL;

	rcu_read_lock();
S
Shakeel Butt 已提交
1064 1065
	/* Page should not get uncharged and freed memcg under us. */
	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1066 1067 1068 1069 1070 1071
		memcg = root_mem_cgroup;
	rcu_read_unlock();
	return memcg;
}
EXPORT_SYMBOL(get_mem_cgroup_from_page);

1072 1073 1074 1075 1076 1077
/**
 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
 */
static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
{
	if (unlikely(current->active_memcg)) {
S
Shakeel Butt 已提交
1078
		struct mem_cgroup *memcg;
1079 1080

		rcu_read_lock();
S
Shakeel Butt 已提交
1081 1082 1083 1084
		/* current->active_memcg must hold a ref. */
		if (WARN_ON_ONCE(!css_tryget(&current->active_memcg->css)))
			memcg = root_mem_cgroup;
		else
1085 1086 1087 1088 1089 1090
			memcg = current->active_memcg;
		rcu_read_unlock();
		return memcg;
	}
	return get_mem_cgroup_from_mm(current->mm);
}
1091

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
1105
 * Reclaimers can specify a node and a priority level in @reclaim to
1106
 * divide up the memcgs in the hierarchy among all concurrent
1107
 * reclaimers operating on the same node and priority.
1108
 */
1109
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1110
				   struct mem_cgroup *prev,
1111
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1112
{
1113
	struct mem_cgroup_reclaim_iter *iter;
1114
	struct cgroup_subsys_state *css = NULL;
1115
	struct mem_cgroup *memcg = NULL;
1116
	struct mem_cgroup *pos = NULL;
1117

1118 1119
	if (mem_cgroup_disabled())
		return NULL;
1120

1121 1122
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1123

1124
	if (prev && !reclaim)
1125
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1126

1127 1128
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1129
			goto out;
1130
		return root;
1131
	}
K
KAMEZAWA Hiroyuki 已提交
1132

1133
	rcu_read_lock();
M
Michal Hocko 已提交
1134

1135
	if (reclaim) {
1136
		struct mem_cgroup_per_node *mz;
1137

1138
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1139
		iter = &mz->iter;
1140 1141 1142 1143

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

1144
		while (1) {
1145
			pos = READ_ONCE(iter->position);
1146 1147
			if (!pos || css_tryget(&pos->css))
				break;
1148
			/*
1149 1150 1151 1152 1153 1154
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
1155
			 */
1156 1157
			(void)cmpxchg(&iter->position, pos, NULL);
		}
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1175
		}
K
KAMEZAWA Hiroyuki 已提交
1176

1177 1178 1179 1180 1181 1182
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1183

1184 1185
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1186

1187 1188
		if (css_tryget(css))
			break;
1189

1190
		memcg = NULL;
1191
	}
1192 1193 1194

	if (reclaim) {
		/*
1195 1196 1197
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
1198
		 */
1199 1200
		(void)cmpxchg(&iter->position, pos, memcg);

1201 1202 1203 1204 1205 1206 1207
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1208
	}
1209

1210 1211
out_unlock:
	rcu_read_unlock();
1212
out:
1213 1214 1215
	if (prev && prev != root)
		css_put(&prev->css);

1216
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1217
}
K
KAMEZAWA Hiroyuki 已提交
1218

1219 1220 1221 1222 1223 1224 1225
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1226 1227 1228 1229 1230 1231
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1232

1233 1234
static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
					struct mem_cgroup *dead_memcg)
1235 1236
{
	struct mem_cgroup_reclaim_iter *iter;
1237 1238
	struct mem_cgroup_per_node *mz;
	int nid;
1239

1240 1241
	for_each_node(nid) {
		mz = mem_cgroup_nodeinfo(from, nid);
1242 1243
		iter = &mz->iter;
		cmpxchg(&iter->position, dead_memcg, NULL);
1244 1245 1246
	}
}

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup *last;

	do {
		__invalidate_reclaim_iterators(memcg, dead_memcg);
		last = memcg;
	} while ((memcg = parent_mem_cgroup(memcg)));

	/*
	 * When cgruop1 non-hierarchy mode is used,
	 * parent_mem_cgroup() does not walk all the way up to the
	 * cgroup root (root_mem_cgroup). So we have to handle
	 * dead_memcg from cgroup root separately.
	 */
	if (last != root_mem_cgroup)
		__invalidate_reclaim_iterators(root_mem_cgroup,
						dead_memcg);
}

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

1293
		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

1305
/**
1306
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1307
 * @page: the page
1308
 * @pgdat: pgdat of the page
1309
 *
1310 1311
 * This function relies on page->mem_cgroup being stable - see the
 * access rules in commit_charge().
1312
 */
M
Mel Gorman 已提交
1313
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
1314
{
1315
	struct mem_cgroup_per_node *mz;
1316
	struct mem_cgroup *memcg;
1317
	struct lruvec *lruvec;
1318

1319
	if (mem_cgroup_disabled()) {
1320
		lruvec = &pgdat->__lruvec;
1321 1322
		goto out;
	}
1323

1324
	memcg = page->mem_cgroup;
1325
	/*
1326
	 * Swapcache readahead pages are added to the LRU - and
1327
	 * possibly migrated - before they are charged.
1328
	 */
1329 1330
	if (!memcg)
		memcg = root_mem_cgroup;
1331

1332
	mz = mem_cgroup_page_nodeinfo(memcg, page);
1333 1334 1335 1336 1337 1338 1339
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
1340 1341
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
1342
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1343
}
1344

1345
/**
1346 1347 1348
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1349
 * @zid: zone id of the accounted pages
1350
 * @nr_pages: positive when adding or negative when removing
1351
 *
1352 1353 1354
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1355
 */
1356
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1357
				int zid, int nr_pages)
1358
{
1359
	struct mem_cgroup_per_node *mz;
1360
	unsigned long *lru_size;
1361
	long size;
1362 1363 1364 1365

	if (mem_cgroup_disabled())
		return;

1366
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1367
	lru_size = &mz->lru_zone_size[zid][lru];
1368 1369 1370 1371 1372

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1373 1374 1375
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1376 1377 1378 1379 1380 1381
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1382
}
1383

1384
/**
1385
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1386
 * @memcg: the memory cgroup
1387
 *
1388
 * Returns the maximum amount of memory @mem can be charged with, in
1389
 * pages.
1390
 */
1391
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1392
{
1393 1394 1395
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1396

1397
	count = page_counter_read(&memcg->memory);
1398
	limit = READ_ONCE(memcg->memory.max);
1399 1400 1401
	if (count < limit)
		margin = limit - count;

1402
	if (do_memsw_account()) {
1403
		count = page_counter_read(&memcg->memsw);
1404
		limit = READ_ONCE(memcg->memsw.max);
1405
		if (count < limit)
1406
			margin = min(margin, limit - count);
1407 1408
		else
			margin = 0;
1409 1410 1411
	}

	return margin;
1412 1413
}

1414
/*
Q
Qiang Huang 已提交
1415
 * A routine for checking "mem" is under move_account() or not.
1416
 *
Q
Qiang Huang 已提交
1417 1418 1419
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1420
 */
1421
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1422
{
1423 1424
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1425
	bool ret = false;
1426 1427 1428 1429 1430 1431 1432 1433 1434
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1435

1436 1437
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1438 1439
unlock:
	spin_unlock(&mc.lock);
1440 1441 1442
	return ret;
}

1443
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1444 1445
{
	if (mc.moving_task && current != mc.moving_task) {
1446
		if (mem_cgroup_under_move(memcg)) {
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1459 1460 1461 1462
static char *memory_stat_format(struct mem_cgroup *memcg)
{
	struct seq_buf s;
	int i;
1463

1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
	if (!s.buffer)
		return NULL;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

	seq_buf_printf(&s, "anon %llu\n",
1480
		       (u64)memcg_page_state(memcg, NR_ANON_MAPPED) *
1481 1482
		       PAGE_SIZE);
	seq_buf_printf(&s, "file %llu\n",
1483
		       (u64)memcg_page_state(memcg, NR_FILE_PAGES) *
1484 1485
		       PAGE_SIZE);
	seq_buf_printf(&s, "kernel_stack %llu\n",
1486
		       (u64)memcg_page_state(memcg, NR_KERNEL_STACK_KB) *
1487 1488
		       1024);
	seq_buf_printf(&s, "slab %llu\n",
1489 1490
		       (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
			     memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B)));
1491 1492
	seq_buf_printf(&s, "percpu %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_PERCPU_B));
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
	seq_buf_printf(&s, "sock %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_SOCK) *
		       PAGE_SIZE);

	seq_buf_printf(&s, "shmem %llu\n",
		       (u64)memcg_page_state(memcg, NR_SHMEM) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_mapped %llu\n",
		       (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_dirty %llu\n",
		       (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_writeback %llu\n",
		       (u64)memcg_page_state(memcg, NR_WRITEBACK) *
		       PAGE_SIZE);

1510
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1511
	seq_buf_printf(&s, "anon_thp %llu\n",
1512 1513 1514
		       (u64)memcg_page_state(memcg, NR_ANON_THPS) *
		       HPAGE_PMD_SIZE);
#endif
1515 1516

	for (i = 0; i < NR_LRU_LISTS; i++)
1517
		seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1518 1519 1520 1521
			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			       PAGE_SIZE);

	seq_buf_printf(&s, "slab_reclaimable %llu\n",
1522
		       (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B));
1523
	seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1524
		       (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B));
1525 1526 1527

	/* Accumulated memory events */

1528 1529 1530 1531
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
		       memcg_events(memcg, PGFAULT));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
		       memcg_events(memcg, PGMAJFAULT));
1532 1533 1534 1535 1536

	seq_buf_printf(&s, "workingset_refault %lu\n",
		       memcg_page_state(memcg, WORKINGSET_REFAULT));
	seq_buf_printf(&s, "workingset_activate %lu\n",
		       memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1537 1538
	seq_buf_printf(&s, "workingset_restore %lu\n",
		       memcg_page_state(memcg, WORKINGSET_RESTORE));
1539 1540 1541
	seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
		       memcg_page_state(memcg, WORKINGSET_NODERECLAIM));

1542 1543
	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
		       memcg_events(memcg, PGREFILL));
1544 1545 1546 1547 1548 1549
	seq_buf_printf(&s, "pgscan %lu\n",
		       memcg_events(memcg, PGSCAN_KSWAPD) +
		       memcg_events(memcg, PGSCAN_DIRECT));
	seq_buf_printf(&s, "pgsteal %lu\n",
		       memcg_events(memcg, PGSTEAL_KSWAPD) +
		       memcg_events(memcg, PGSTEAL_DIRECT));
1550 1551 1552 1553 1554 1555 1556 1557
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
		       memcg_events(memcg, PGACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
		       memcg_events(memcg, PGDEACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
		       memcg_events(memcg, PGLAZYFREE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
		       memcg_events(memcg, PGLAZYFREED));
1558 1559

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1560
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1561
		       memcg_events(memcg, THP_FAULT_ALLOC));
1562
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1563 1564 1565 1566 1567 1568 1569 1570
		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

	/* The above should easily fit into one page */
	WARN_ON_ONCE(seq_buf_has_overflowed(&s));

	return s.buffer;
}
1571

1572
#define K(x) ((x) << (PAGE_SHIFT-10))
1573
/**
1574 1575
 * mem_cgroup_print_oom_context: Print OOM information relevant to
 * memory controller.
1576 1577 1578 1579 1580 1581
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
1582
void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1583 1584 1585
{
	rcu_read_lock();

1586 1587 1588 1589 1590
	if (memcg) {
		pr_cont(",oom_memcg=");
		pr_cont_cgroup_path(memcg->css.cgroup);
	} else
		pr_cont(",global_oom");
1591
	if (p) {
1592
		pr_cont(",task_memcg=");
1593 1594
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	}
1595
	rcu_read_unlock();
1596 1597 1598 1599 1600 1601 1602 1603 1604
}

/**
 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
 * memory controller.
 * @memcg: The memory cgroup that went over limit
 */
void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
1605
	char *buf;
1606

1607 1608
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1609
		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1610 1611 1612
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->swap)),
1613
			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1614 1615 1616 1617 1618 1619 1620
	else {
		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->memsw)),
			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->kmem)),
			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1621
	}
1622 1623 1624 1625 1626 1627 1628 1629 1630

	pr_info("Memory cgroup stats for ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(":");
	buf = memory_stat_format(memcg);
	if (!buf)
		return;
	pr_info("%s", buf);
	kfree(buf);
1631 1632
}

D
David Rientjes 已提交
1633 1634 1635
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1636
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1637
{
1638
	unsigned long max;
1639

1640
	max = READ_ONCE(memcg->memory.max);
1641
	if (mem_cgroup_swappiness(memcg)) {
1642 1643
		unsigned long memsw_max;
		unsigned long swap_max;
1644

1645
		memsw_max = memcg->memsw.max;
1646
		swap_max = READ_ONCE(memcg->swap.max);
1647 1648
		swap_max = min(swap_max, (unsigned long)total_swap_pages);
		max = min(max + swap_max, memsw_max);
1649
	}
1650
	return max;
D
David Rientjes 已提交
1651 1652
}

1653 1654 1655 1656 1657
unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
{
	return page_counter_read(&memcg->memory);
}

1658
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1659
				     int order)
1660
{
1661 1662 1663
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1664
		.memcg = memcg,
1665 1666 1667
		.gfp_mask = gfp_mask,
		.order = order,
	};
1668
	bool ret = true;
1669

1670 1671
	if (mutex_lock_killable(&oom_lock))
		return true;
1672 1673 1674 1675

	if (mem_cgroup_margin(memcg) >= (1 << order))
		goto unlock;

1676 1677 1678 1679 1680
	/*
	 * A few threads which were not waiting at mutex_lock_killable() can
	 * fail to bail out. Therefore, check again after holding oom_lock.
	 */
	ret = should_force_charge() || out_of_memory(&oc);
1681 1682

unlock:
1683
	mutex_unlock(&oom_lock);
1684
	return ret;
1685 1686
}

1687
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1688
				   pg_data_t *pgdat,
1689 1690 1691 1692 1693 1694 1695 1696 1697
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1698
		.pgdat = pgdat,
1699 1700
	};

1701
	excess = soft_limit_excess(root_memcg);
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1727
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1728
					pgdat, &nr_scanned);
1729
		*total_scanned += nr_scanned;
1730
		if (!soft_limit_excess(root_memcg))
1731
			break;
1732
	}
1733 1734
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1735 1736
}

1737 1738 1739 1740 1741 1742
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1743 1744
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1745 1746 1747 1748
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1749
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1750
{
1751
	struct mem_cgroup *iter, *failed = NULL;
1752

1753 1754
	spin_lock(&memcg_oom_lock);

1755
	for_each_mem_cgroup_tree(iter, memcg) {
1756
		if (iter->oom_lock) {
1757 1758 1759 1760 1761
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1762 1763
			mem_cgroup_iter_break(memcg, iter);
			break;
1764 1765
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1766
	}
K
KAMEZAWA Hiroyuki 已提交
1767

1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1779
		}
1780 1781
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1782 1783 1784 1785

	spin_unlock(&memcg_oom_lock);

	return !failed;
1786
}
1787

1788
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1789
{
K
KAMEZAWA Hiroyuki 已提交
1790 1791
	struct mem_cgroup *iter;

1792
	spin_lock(&memcg_oom_lock);
1793
	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1794
	for_each_mem_cgroup_tree(iter, memcg)
1795
		iter->oom_lock = false;
1796
	spin_unlock(&memcg_oom_lock);
1797 1798
}

1799
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1800 1801 1802
{
	struct mem_cgroup *iter;

1803
	spin_lock(&memcg_oom_lock);
1804
	for_each_mem_cgroup_tree(iter, memcg)
1805 1806
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1807 1808
}

1809
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1810 1811 1812
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1813 1814
	/*
	 * When a new child is created while the hierarchy is under oom,
1815
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1816
	 */
1817
	spin_lock(&memcg_oom_lock);
1818
	for_each_mem_cgroup_tree(iter, memcg)
1819 1820 1821
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1822 1823
}

K
KAMEZAWA Hiroyuki 已提交
1824 1825
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1826
struct oom_wait_info {
1827
	struct mem_cgroup *memcg;
1828
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1829 1830
};

1831
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1832 1833
	unsigned mode, int sync, void *arg)
{
1834 1835
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1836 1837 1838
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1839
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1840

1841 1842
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1843 1844 1845 1846
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1847
static void memcg_oom_recover(struct mem_cgroup *memcg)
1848
{
1849 1850 1851 1852 1853 1854 1855 1856 1857
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1858
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1859 1860
}

1861 1862 1863 1864 1865 1866 1867 1868
enum oom_status {
	OOM_SUCCESS,
	OOM_FAILED,
	OOM_ASYNC,
	OOM_SKIPPED
};

static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1869
{
1870 1871 1872
	enum oom_status ret;
	bool locked;

1873 1874 1875
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		return OOM_SKIPPED;

1876 1877
	memcg_memory_event(memcg, MEMCG_OOM);

K
KAMEZAWA Hiroyuki 已提交
1878
	/*
1879 1880 1881 1882
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1883 1884 1885 1886
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1887
	 *
1888 1889 1890 1891 1892 1893 1894
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
K
KAMEZAWA Hiroyuki 已提交
1895
	 */
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
	if (memcg->oom_kill_disable) {
		if (!current->in_user_fault)
			return OOM_SKIPPED;
		css_get(&memcg->css);
		current->memcg_in_oom = memcg;
		current->memcg_oom_gfp_mask = mask;
		current->memcg_oom_order = order;

		return OOM_ASYNC;
	}

1907 1908 1909 1910 1911 1912 1913 1914
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	mem_cgroup_unmark_under_oom(memcg);
1915
	if (mem_cgroup_out_of_memory(memcg, mask, order))
1916 1917 1918 1919 1920 1921
		ret = OOM_SUCCESS;
	else
		ret = OOM_FAILED;

	if (locked)
		mem_cgroup_oom_unlock(memcg);
1922

1923
	return ret;
1924 1925 1926 1927
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1928
 * @handle: actually kill/wait or just clean up the OOM state
1929
 *
1930 1931
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1932
 *
1933
 * Memcg supports userspace OOM handling where failed allocations must
1934 1935 1936 1937
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1938
 * the end of the page fault to complete the OOM handling.
1939 1940
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1941
 * completed, %false otherwise.
1942
 */
1943
bool mem_cgroup_oom_synchronize(bool handle)
1944
{
T
Tejun Heo 已提交
1945
	struct mem_cgroup *memcg = current->memcg_in_oom;
1946
	struct oom_wait_info owait;
1947
	bool locked;
1948 1949 1950

	/* OOM is global, do not handle */
	if (!memcg)
1951
		return false;
1952

1953
	if (!handle)
1954
		goto cleanup;
1955 1956 1957 1958 1959

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
1960
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
1961

1962
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1973 1974
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1975
	} else {
1976
		schedule();
1977 1978 1979 1980 1981
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1982 1983 1984 1985 1986 1987 1988 1989
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1990
cleanup:
T
Tejun Heo 已提交
1991
	current->memcg_in_oom = NULL;
1992
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1993
	return true;
1994 1995
}

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
/**
 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 * @victim: task to be killed by the OOM killer
 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 *
 * Returns a pointer to a memory cgroup, which has to be cleaned up
 * by killing all belonging OOM-killable tasks.
 *
 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 */
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
					    struct mem_cgroup *oom_domain)
{
	struct mem_cgroup *oom_group = NULL;
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return NULL;

	if (!oom_domain)
		oom_domain = root_mem_cgroup;

	rcu_read_lock();

	memcg = mem_cgroup_from_task(victim);
	if (memcg == root_mem_cgroup)
		goto out;

2024 2025 2026 2027 2028 2029 2030 2031
	/*
	 * If the victim task has been asynchronously moved to a different
	 * memory cgroup, we might end up killing tasks outside oom_domain.
	 * In this case it's better to ignore memory.group.oom.
	 */
	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
		goto out;

2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
	/*
	 * Traverse the memory cgroup hierarchy from the victim task's
	 * cgroup up to the OOMing cgroup (or root) to find the
	 * highest-level memory cgroup with oom.group set.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		if (memcg->oom_group)
			oom_group = memcg;

		if (memcg == oom_domain)
			break;
	}

	if (oom_group)
		css_get(&oom_group->css);
out:
	rcu_read_unlock();

	return oom_group;
}

void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
	pr_info("Tasks in ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(" are going to be killed due to memory.oom.group set\n");
}

2060
/**
2061 2062
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
2063
 *
2064
 * This function protects unlocked LRU pages from being moved to
2065 2066 2067 2068 2069
 * another cgroup.
 *
 * It ensures lifetime of the returned memcg. Caller is responsible
 * for the lifetime of the page; __unlock_page_memcg() is available
 * when @page might get freed inside the locked section.
2070
 */
2071
struct mem_cgroup *lock_page_memcg(struct page *page)
2072
{
2073
	struct page *head = compound_head(page); /* rmap on tail pages */
2074
	struct mem_cgroup *memcg;
2075
	unsigned long flags;
2076

2077 2078 2079 2080
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
2081 2082 2083 2084 2085 2086 2087
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page itself from being freed. E.g. writeback
	 * doesn't hold a page reference and relies on PG_writeback to
	 * keep off truncation, migration and so forth.
         */
2088 2089 2090
	rcu_read_lock();

	if (mem_cgroup_disabled())
2091
		return NULL;
2092
again:
2093
	memcg = head->mem_cgroup;
2094
	if (unlikely(!memcg))
2095
		return NULL;
2096

Q
Qiang Huang 已提交
2097
	if (atomic_read(&memcg->moving_account) <= 0)
2098
		return memcg;
2099

2100
	spin_lock_irqsave(&memcg->move_lock, flags);
2101
	if (memcg != head->mem_cgroup) {
2102
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2103 2104
		goto again;
	}
2105 2106 2107 2108

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
2109
	 * the task who has the lock for unlock_page_memcg().
2110 2111 2112
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2113

2114
	return memcg;
2115
}
2116
EXPORT_SYMBOL(lock_page_memcg);
2117

2118
/**
2119 2120 2121 2122
 * __unlock_page_memcg - unlock and unpin a memcg
 * @memcg: the memcg
 *
 * Unlock and unpin a memcg returned by lock_page_memcg().
2123
 */
2124
void __unlock_page_memcg(struct mem_cgroup *memcg)
2125
{
2126 2127 2128 2129 2130 2131 2132 2133
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2134

2135
	rcu_read_unlock();
2136
}
2137 2138 2139 2140 2141 2142 2143

/**
 * unlock_page_memcg - unlock a page->mem_cgroup binding
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
2144 2145 2146
	struct page *head = compound_head(page);

	__unlock_page_memcg(head->mem_cgroup);
2147
}
2148
EXPORT_SYMBOL(unlock_page_memcg);
2149

2150 2151
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2152
	unsigned int nr_pages;
R
Roman Gushchin 已提交
2153 2154 2155 2156 2157 2158

#ifdef CONFIG_MEMCG_KMEM
	struct obj_cgroup *cached_objcg;
	unsigned int nr_bytes;
#endif

2159
	struct work_struct work;
2160
	unsigned long flags;
2161
#define FLUSHING_CACHED_CHARGE	0
2162 2163
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2164
static DEFINE_MUTEX(percpu_charge_mutex);
2165

R
Roman Gushchin 已提交
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
#ifdef CONFIG_MEMCG_KMEM
static void drain_obj_stock(struct memcg_stock_pcp *stock);
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg);

#else
static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
{
}
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	return false;
}
#endif

2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2192
 */
2193
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2194 2195
{
	struct memcg_stock_pcp *stock;
2196
	unsigned long flags;
2197
	bool ret = false;
2198

2199
	if (nr_pages > MEMCG_CHARGE_BATCH)
2200
		return ret;
2201

2202 2203 2204
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2205
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2206
		stock->nr_pages -= nr_pages;
2207 2208
		ret = true;
	}
2209 2210 2211

	local_irq_restore(flags);

2212 2213 2214 2215
	return ret;
}

/*
2216
 * Returns stocks cached in percpu and reset cached information.
2217 2218 2219 2220 2221
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2222 2223 2224
	if (!old)
		return;

2225
	if (stock->nr_pages) {
2226
		page_counter_uncharge(&old->memory, stock->nr_pages);
2227
		if (do_memsw_account())
2228
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2229
		stock->nr_pages = 0;
2230
	}
2231 2232

	css_put(&old->css);
2233 2234 2235 2236 2237
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
2238 2239 2240
	struct memcg_stock_pcp *stock;
	unsigned long flags;

2241 2242 2243 2244
	/*
	 * The only protection from memory hotplug vs. drain_stock races is
	 * that we always operate on local CPU stock here with IRQ disabled
	 */
2245 2246 2247
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
R
Roman Gushchin 已提交
2248
	drain_obj_stock(stock);
2249
	drain_stock(stock);
2250
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2251 2252

	local_irq_restore(flags);
2253 2254 2255
}

/*
2256
 * Cache charges(val) to local per_cpu area.
2257
 * This will be consumed by consume_stock() function, later.
2258
 */
2259
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2260
{
2261 2262 2263 2264
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
2265

2266
	stock = this_cpu_ptr(&memcg_stock);
2267
	if (stock->cached != memcg) { /* reset if necessary */
2268
		drain_stock(stock);
2269
		css_get(&memcg->css);
2270
		stock->cached = memcg;
2271
	}
2272
	stock->nr_pages += nr_pages;
2273

2274
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2275 2276
		drain_stock(stock);

2277
	local_irq_restore(flags);
2278 2279 2280
}

/*
2281
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2282
 * of the hierarchy under it.
2283
 */
2284
static void drain_all_stock(struct mem_cgroup *root_memcg)
2285
{
2286
	int cpu, curcpu;
2287

2288 2289 2290
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2291 2292 2293 2294 2295 2296
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
2297
	curcpu = get_cpu();
2298 2299
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2300
		struct mem_cgroup *memcg;
2301
		bool flush = false;
2302

2303
		rcu_read_lock();
2304
		memcg = stock->cached;
2305 2306 2307
		if (memcg && stock->nr_pages &&
		    mem_cgroup_is_descendant(memcg, root_memcg))
			flush = true;
R
Roman Gushchin 已提交
2308 2309
		if (obj_stock_flush_required(stock, root_memcg))
			flush = true;
2310 2311 2312 2313
		rcu_read_unlock();

		if (flush &&
		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2314 2315 2316 2317 2318
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2319
	}
2320
	put_cpu();
2321
	mutex_unlock(&percpu_charge_mutex);
2322 2323
}

2324
static int memcg_hotplug_cpu_dead(unsigned int cpu)
2325 2326
{
	struct memcg_stock_pcp *stock;
2327
	struct mem_cgroup *memcg, *mi;
2328 2329 2330

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
2331 2332 2333 2334 2335 2336 2337 2338

	for_each_mem_cgroup(memcg) {
		int i;

		for (i = 0; i < MEMCG_NR_STAT; i++) {
			int nid;
			long x;

2339
			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2340
			if (x)
2341 2342
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmstats[i]);
2343 2344 2345 2346 2347 2348 2349 2350 2351

			if (i >= NR_VM_NODE_STAT_ITEMS)
				continue;

			for_each_node(nid) {
				struct mem_cgroup_per_node *pn;

				pn = mem_cgroup_nodeinfo(memcg, nid);
				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2352
				if (x)
2353 2354 2355
					do {
						atomic_long_add(x, &pn->lruvec_stat[i]);
					} while ((pn = parent_nodeinfo(pn, nid)));
2356 2357 2358
			}
		}

2359
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2360 2361
			long x;

2362
			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2363
			if (x)
2364 2365
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmevents[i]);
2366 2367 2368
		}
	}

2369
	return 0;
2370 2371
}

2372 2373 2374
static unsigned long reclaim_high(struct mem_cgroup *memcg,
				  unsigned int nr_pages,
				  gfp_t gfp_mask)
2375
{
2376 2377
	unsigned long nr_reclaimed = 0;

2378
	do {
2379 2380
		unsigned long pflags;

2381 2382
		if (page_counter_read(&memcg->memory) <=
		    READ_ONCE(memcg->memory.high))
2383
			continue;
2384

2385
		memcg_memory_event(memcg, MEMCG_HIGH);
2386 2387

		psi_memstall_enter(&pflags);
2388 2389
		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
							     gfp_mask, true);
2390
		psi_memstall_leave(&pflags);
2391 2392
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));
2393 2394

	return nr_reclaimed;
2395 2396 2397 2398 2399 2400 2401
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
2402
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2403 2404
}

2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
/*
 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
 * enough to still cause a significant slowdown in most cases, while still
 * allowing diagnostics and tracing to proceed without becoming stuck.
 */
#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)

/*
 * When calculating the delay, we use these either side of the exponentiation to
 * maintain precision and scale to a reasonable number of jiffies (see the table
 * below.
 *
 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
 *   overage ratio to a delay.
 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
 *   to produce a reasonable delay curve.
 *
 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
 * reasonable delay curve compared to precision-adjusted overage, not
 * penalising heavily at first, but still making sure that growth beyond the
 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
 * example, with a high of 100 megabytes:
 *
 *  +-------+------------------------+
 *  | usage | time to allocate in ms |
 *  +-------+------------------------+
 *  | 100M  |                      0 |
 *  | 101M  |                      6 |
 *  | 102M  |                     25 |
 *  | 103M  |                     57 |
 *  | 104M  |                    102 |
 *  | 105M  |                    159 |
 *  | 106M  |                    230 |
 *  | 107M  |                    313 |
 *  | 108M  |                    409 |
 *  | 109M  |                    518 |
 *  | 110M  |                    639 |
 *  | 111M  |                    774 |
 *  | 112M  |                    921 |
 *  | 113M  |                   1081 |
 *  | 114M  |                   1254 |
 *  | 115M  |                   1439 |
 *  | 116M  |                   1638 |
 *  | 117M  |                   1849 |
 *  | 118M  |                   2000 |
 *  | 119M  |                   2000 |
 *  | 120M  |                   2000 |
 *  +-------+------------------------+
 */
 #define MEMCG_DELAY_PRECISION_SHIFT 20
 #define MEMCG_DELAY_SCALING_SHIFT 14

2458
static u64 calculate_overage(unsigned long usage, unsigned long high)
2459
{
2460
	u64 overage;
2461

2462 2463
	if (usage <= high)
		return 0;
2464

2465 2466 2467 2468 2469
	/*
	 * Prevent division by 0 in overage calculation by acting as if
	 * it was a threshold of 1 page
	 */
	high = max(high, 1UL);
2470

2471 2472 2473 2474
	overage = usage - high;
	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
	return div64_u64(overage, high);
}
2475

2476 2477 2478
static u64 mem_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;
2479

2480 2481
	do {
		overage = calculate_overage(page_counter_read(&memcg->memory),
2482
					    READ_ONCE(memcg->memory.high));
2483
		max_overage = max(overage, max_overage);
2484 2485 2486
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

2487 2488 2489
	return max_overage;
}

2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
static u64 swap_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;

	do {
		overage = calculate_overage(page_counter_read(&memcg->swap),
					    READ_ONCE(memcg->swap.high));
		if (overage)
			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
		max_overage = max(overage, max_overage);
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

	return max_overage;
}

2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
/*
 * Get the number of jiffies that we should penalise a mischievous cgroup which
 * is exceeding its memory.high by checking both it and its ancestors.
 */
static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
					  unsigned int nr_pages,
					  u64 max_overage)
{
	unsigned long penalty_jiffies;

2516 2517
	if (!max_overage)
		return 0;
2518 2519 2520 2521 2522 2523 2524 2525 2526

	/*
	 * We use overage compared to memory.high to calculate the number of
	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
	 * fairly lenient on small overages, and increasingly harsh when the
	 * memcg in question makes it clear that it has no intention of stopping
	 * its crazy behaviour, so we exponentially increase the delay based on
	 * overage amount.
	 */
2527 2528 2529
	penalty_jiffies = max_overage * max_overage * HZ;
	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2530 2531 2532 2533 2534 2535 2536 2537 2538

	/*
	 * Factor in the task's own contribution to the overage, such that four
	 * N-sized allocations are throttled approximately the same as one
	 * 4N-sized allocation.
	 *
	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
	 * larger the current charge patch is than that.
	 */
2539
	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
}

/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned long penalty_jiffies;
	unsigned long pflags;
2550
	unsigned long nr_reclaimed;
2551
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2552
	int nr_retries = MAX_RECLAIM_RETRIES;
2553
	struct mem_cgroup *memcg;
2554
	bool in_retry = false;
2555 2556 2557 2558 2559 2560 2561

	if (likely(!nr_pages))
		return;

	memcg = get_mem_cgroup_from_mm(current->mm);
	current->memcg_nr_pages_over_high = 0;

2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
retry_reclaim:
	/*
	 * The allocating task should reclaim at least the batch size, but for
	 * subsequent retries we only want to do what's necessary to prevent oom
	 * or breaching resource isolation.
	 *
	 * This is distinct from memory.max or page allocator behaviour because
	 * memory.high is currently batched, whereas memory.max and the page
	 * allocator run every time an allocation is made.
	 */
	nr_reclaimed = reclaim_high(memcg,
				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
				    GFP_KERNEL);

2576 2577 2578 2579
	/*
	 * memory.high is breached and reclaim is unable to keep up. Throttle
	 * allocators proactively to slow down excessive growth.
	 */
2580 2581
	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
					       mem_find_max_overage(memcg));
2582

2583 2584 2585
	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
						swap_find_max_overage(memcg));

2586 2587 2588 2589 2590 2591 2592
	/*
	 * Clamp the max delay per usermode return so as to still keep the
	 * application moving forwards and also permit diagnostics, albeit
	 * extremely slowly.
	 */
	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);

2593 2594 2595 2596 2597 2598 2599 2600 2601
	/*
	 * Don't sleep if the amount of jiffies this memcg owes us is so low
	 * that it's not even worth doing, in an attempt to be nice to those who
	 * go only a small amount over their memory.high value and maybe haven't
	 * been aggressively reclaimed enough yet.
	 */
	if (penalty_jiffies <= HZ / 100)
		goto out;

2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
	/*
	 * If reclaim is making forward progress but we're still over
	 * memory.high, we want to encourage that rather than doing allocator
	 * throttling.
	 */
	if (nr_reclaimed || nr_retries--) {
		in_retry = true;
		goto retry_reclaim;
	}

2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
	/*
	 * If we exit early, we're guaranteed to die (since
	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
	 * need to account for any ill-begotten jiffies to pay them off later.
	 */
	psi_memstall_enter(&pflags);
	schedule_timeout_killable(penalty_jiffies);
	psi_memstall_leave(&pflags);

out:
	css_put(&memcg->css);
2623 2624
}

2625 2626
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2627
{
2628
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2629
	int nr_retries = MAX_RECLAIM_RETRIES;
2630
	struct mem_cgroup *mem_over_limit;
2631
	struct page_counter *counter;
2632
	enum oom_status oom_status;
2633
	unsigned long nr_reclaimed;
2634 2635
	bool may_swap = true;
	bool drained = false;
2636
	unsigned long pflags;
2637

2638
	if (mem_cgroup_is_root(memcg))
2639
		return 0;
2640
retry:
2641
	if (consume_stock(memcg, nr_pages))
2642
		return 0;
2643

2644
	if (!do_memsw_account() ||
2645 2646
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2647
			goto done_restock;
2648
		if (do_memsw_account())
2649 2650
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2651
	} else {
2652
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2653
		may_swap = false;
2654
	}
2655

2656 2657 2658 2659
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2660

2661 2662 2663 2664 2665 2666 2667 2668 2669
	/*
	 * Memcg doesn't have a dedicated reserve for atomic
	 * allocations. But like the global atomic pool, we need to
	 * put the burden of reclaim on regular allocation requests
	 * and let these go through as privileged allocations.
	 */
	if (gfp_mask & __GFP_ATOMIC)
		goto force;

2670 2671 2672 2673 2674 2675
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
2676
	if (unlikely(should_force_charge()))
2677
		goto force;
2678

2679 2680 2681 2682 2683 2684 2685 2686 2687
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2688 2689 2690
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2691
	if (!gfpflags_allow_blocking(gfp_mask))
2692
		goto nomem;
2693

2694
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2695

2696
	psi_memstall_enter(&pflags);
2697 2698
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2699
	psi_memstall_leave(&pflags);
2700

2701
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2702
		goto retry;
2703

2704
	if (!drained) {
2705
		drain_all_stock(mem_over_limit);
2706 2707 2708 2709
		drained = true;
		goto retry;
	}

2710 2711
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2712 2713 2714 2715 2716 2717 2718 2719 2720
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2721
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2722 2723 2724 2725 2726 2727 2728 2729
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2730 2731 2732
	if (nr_retries--)
		goto retry;

2733
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2734 2735
		goto nomem;

2736
	if (gfp_mask & __GFP_NOFAIL)
2737
		goto force;
2738

2739
	if (fatal_signal_pending(current))
2740
		goto force;
2741

2742 2743 2744 2745 2746 2747
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2748
		       get_order(nr_pages * PAGE_SIZE));
2749 2750
	switch (oom_status) {
	case OOM_SUCCESS:
2751
		nr_retries = MAX_RECLAIM_RETRIES;
2752 2753 2754 2755 2756 2757
		goto retry;
	case OOM_FAILED:
		goto force;
	default:
		goto nomem;
	}
2758
nomem:
2759
	if (!(gfp_mask & __GFP_NOFAIL))
2760
		return -ENOMEM;
2761 2762 2763 2764 2765 2766 2767
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2768
	if (do_memsw_account())
2769 2770 2771
		page_counter_charge(&memcg->memsw, nr_pages);

	return 0;
2772 2773 2774 2775

done_restock:
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2776

2777
	/*
2778 2779
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2780
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2781 2782 2783 2784
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2785 2786
	 */
	do {
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
		bool mem_high, swap_high;

		mem_high = page_counter_read(&memcg->memory) >
			READ_ONCE(memcg->memory.high);
		swap_high = page_counter_read(&memcg->swap) >
			READ_ONCE(memcg->swap.high);

		/* Don't bother a random interrupted task */
		if (in_interrupt()) {
			if (mem_high) {
2797 2798 2799
				schedule_work(&memcg->high_work);
				break;
			}
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
			continue;
		}

		if (mem_high || swap_high) {
			/*
			 * The allocating tasks in this cgroup will need to do
			 * reclaim or be throttled to prevent further growth
			 * of the memory or swap footprints.
			 *
			 * Target some best-effort fairness between the tasks,
			 * and distribute reclaim work and delay penalties
			 * based on how much each task is actually allocating.
			 */
V
Vladimir Davydov 已提交
2813
			current->memcg_nr_pages_over_high += batch;
2814 2815 2816
			set_notify_resume(current);
			break;
		}
2817
	} while ((memcg = parent_mem_cgroup(memcg)));
2818 2819

	return 0;
2820
}
2821

2822
#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2823
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2824
{
2825 2826 2827
	if (mem_cgroup_is_root(memcg))
		return;

2828
	page_counter_uncharge(&memcg->memory, nr_pages);
2829
	if (do_memsw_account())
2830
		page_counter_uncharge(&memcg->memsw, nr_pages);
2831
}
2832
#endif
2833

2834
static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2835
{
2836
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2837
	/*
2838
	 * Any of the following ensures page->mem_cgroup stability:
2839
	 *
2840 2841 2842 2843
	 * - the page lock
	 * - LRU isolation
	 * - lock_page_memcg()
	 * - exclusive reference
2844
	 */
2845
	page->mem_cgroup = memcg;
2846
}
2847

2848
#ifdef CONFIG_MEMCG_KMEM
2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
				 gfp_t gfp)
{
	unsigned int objects = objs_per_slab_page(s, page);
	void *vec;

	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
			   page_to_nid(page));
	if (!vec)
		return -ENOMEM;

	if (cmpxchg(&page->obj_cgroups, NULL,
		    (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
		kfree(vec);
	else
		kmemleak_not_leak(vec);

	return 0;
}

2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
/*
 * Returns a pointer to the memory cgroup to which the kernel object is charged.
 *
 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
 * cgroup_mutex, etc.
 */
struct mem_cgroup *mem_cgroup_from_obj(void *p)
{
	struct page *page;

	if (mem_cgroup_disabled())
		return NULL;

	page = virt_to_head_page(p);

	/*
2885 2886 2887
	 * Slab objects are accounted individually, not per-page.
	 * Memcg membership data for each individual object is saved in
	 * the page->obj_cgroups.
2888
	 */
2889 2890 2891 2892 2893 2894
	if (page_has_obj_cgroups(page)) {
		struct obj_cgroup *objcg;
		unsigned int off;

		off = obj_to_index(page->slab_cache, page, p);
		objcg = page_obj_cgroups(page)[off];
2895 2896 2897 2898
		if (objcg)
			return obj_cgroup_memcg(objcg);

		return NULL;
2899
	}
2900 2901 2902 2903 2904

	/* All other pages use page->mem_cgroup */
	return page->mem_cgroup;
}

R
Roman Gushchin 已提交
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
{
	struct obj_cgroup *objcg = NULL;
	struct mem_cgroup *memcg;

	if (unlikely(!current->mm && !current->active_memcg))
		return NULL;

	rcu_read_lock();
	if (unlikely(current->active_memcg))
		memcg = rcu_dereference(current->active_memcg);
	else
		memcg = mem_cgroup_from_task(current);

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		objcg = rcu_dereference(memcg->objcg);
		if (objcg && obj_cgroup_tryget(objcg))
			break;
	}
	rcu_read_unlock();

	return objcg;
}

2929
static int memcg_alloc_cache_id(void)
2930
{
2931 2932 2933
	int id, size;
	int err;

2934
	id = ida_simple_get(&memcg_cache_ida,
2935 2936 2937
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2938

2939
	if (id < memcg_nr_cache_ids)
2940 2941 2942 2943 2944 2945
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2946
	down_write(&memcg_cache_ids_sem);
2947 2948

	size = 2 * (id + 1);
2949 2950 2951 2952 2953
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2954
	err = memcg_update_all_list_lrus(size);
2955 2956 2957 2958 2959
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2960
	if (err) {
2961
		ida_simple_remove(&memcg_cache_ida, id);
2962 2963 2964 2965 2966 2967 2968
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2969
	ida_simple_remove(&memcg_cache_ida, id);
2970 2971
}

2972
/**
2973
 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
2974
 * @memcg: memory cgroup to charge
2975
 * @gfp: reclaim mode
2976
 * @nr_pages: number of pages to charge
2977 2978 2979
 *
 * Returns 0 on success, an error code on failure.
 */
2980 2981
int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
			unsigned int nr_pages)
2982
{
2983
	struct page_counter *counter;
2984 2985
	int ret;

2986
	ret = try_charge(memcg, gfp, nr_pages);
2987
	if (ret)
2988
		return ret;
2989 2990 2991

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001

		/*
		 * Enforce __GFP_NOFAIL allocation because callers are not
		 * prepared to see failures and likely do not have any failure
		 * handling code.
		 */
		if (gfp & __GFP_NOFAIL) {
			page_counter_charge(&memcg->kmem, nr_pages);
			return 0;
		}
3002 3003
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
3004
	}
3005
	return 0;
3006 3007
}

3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
/**
 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
 */
void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
{
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

	page_counter_uncharge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_uncharge(&memcg->memsw, nr_pages);
}

3023
/**
3024
 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3025 3026 3027 3028 3029 3030
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
3031
int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3032
{
3033
	struct mem_cgroup *memcg;
3034
	int ret = 0;
3035

3036
	if (memcg_kmem_bypass())
3037 3038
		return 0;

3039
	memcg = get_mem_cgroup_from_current();
3040
	if (!mem_cgroup_is_root(memcg)) {
3041
		ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3042 3043
		if (!ret) {
			page->mem_cgroup = memcg;
3044
			__SetPageKmemcg(page);
3045
			return 0;
3046
		}
3047
	}
3048
	css_put(&memcg->css);
3049
	return ret;
3050
}
3051

3052
/**
3053
 * __memcg_kmem_uncharge_page: uncharge a kmem page
3054 3055 3056
 * @page: page to uncharge
 * @order: allocation order
 */
3057
void __memcg_kmem_uncharge_page(struct page *page, int order)
3058
{
3059
	struct mem_cgroup *memcg = page->mem_cgroup;
3060
	unsigned int nr_pages = 1 << order;
3061 3062 3063 3064

	if (!memcg)
		return;

3065
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3066
	__memcg_kmem_uncharge(memcg, nr_pages);
3067
	page->mem_cgroup = NULL;
3068
	css_put(&memcg->css);
3069 3070 3071 3072

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);
3073
}
R
Roman Gushchin 已提交
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207

static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
{
	struct memcg_stock_pcp *stock;
	unsigned long flags;
	bool ret = false;

	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
		stock->nr_bytes -= nr_bytes;
		ret = true;
	}

	local_irq_restore(flags);

	return ret;
}

static void drain_obj_stock(struct memcg_stock_pcp *stock)
{
	struct obj_cgroup *old = stock->cached_objcg;

	if (!old)
		return;

	if (stock->nr_bytes) {
		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);

		if (nr_pages) {
			rcu_read_lock();
			__memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
			rcu_read_unlock();
		}

		/*
		 * The leftover is flushed to the centralized per-memcg value.
		 * On the next attempt to refill obj stock it will be moved
		 * to a per-cpu stock (probably, on an other CPU), see
		 * refill_obj_stock().
		 *
		 * How often it's flushed is a trade-off between the memory
		 * limit enforcement accuracy and potential CPU contention,
		 * so it might be changed in the future.
		 */
		atomic_add(nr_bytes, &old->nr_charged_bytes);
		stock->nr_bytes = 0;
	}

	obj_cgroup_put(old);
	stock->cached_objcg = NULL;
}

static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	struct mem_cgroup *memcg;

	if (stock->cached_objcg) {
		memcg = obj_cgroup_memcg(stock->cached_objcg);
		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
			return true;
	}

	return false;
}

static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
{
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
	if (stock->cached_objcg != objcg) { /* reset if necessary */
		drain_obj_stock(stock);
		obj_cgroup_get(objcg);
		stock->cached_objcg = objcg;
		stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
	}
	stock->nr_bytes += nr_bytes;

	if (stock->nr_bytes > PAGE_SIZE)
		drain_obj_stock(stock);

	local_irq_restore(flags);
}

int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
{
	struct mem_cgroup *memcg;
	unsigned int nr_pages, nr_bytes;
	int ret;

	if (consume_obj_stock(objcg, size))
		return 0;

	/*
	 * In theory, memcg->nr_charged_bytes can have enough
	 * pre-charged bytes to satisfy the allocation. However,
	 * flushing memcg->nr_charged_bytes requires two atomic
	 * operations, and memcg->nr_charged_bytes can't be big,
	 * so it's better to ignore it and try grab some new pages.
	 * memcg->nr_charged_bytes will be flushed in
	 * refill_obj_stock(), called from this function or
	 * independently later.
	 */
	rcu_read_lock();
	memcg = obj_cgroup_memcg(objcg);
	css_get(&memcg->css);
	rcu_read_unlock();

	nr_pages = size >> PAGE_SHIFT;
	nr_bytes = size & (PAGE_SIZE - 1);

	if (nr_bytes)
		nr_pages += 1;

	ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
	if (!ret && nr_bytes)
		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);

	css_put(&memcg->css);
	return ret;
}

void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
{
	refill_obj_stock(objcg, size);
}

3208
#endif /* CONFIG_MEMCG_KMEM */
3209

3210 3211 3212 3213
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
3214
 * pgdat->lru_lock and migration entries setup in all page mappings.
3215
 */
3216
void mem_cgroup_split_huge_fixup(struct page *head)
3217
{
3218
	struct mem_cgroup *memcg = head->mem_cgroup;
3219
	int i;
3220

3221 3222
	if (mem_cgroup_disabled())
		return;
3223

3224 3225 3226 3227
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		css_get(&memcg->css);
		head[i].mem_cgroup = memcg;
	}
3228
}
3229
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3230

A
Andrew Morton 已提交
3231
#ifdef CONFIG_MEMCG_SWAP
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
3243
 * The caller must have charged to @to, IOW, called page_counter_charge() about
3244 3245 3246
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3247
				struct mem_cgroup *from, struct mem_cgroup *to)
3248 3249 3250
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
3251 3252
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3253 3254

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3255 3256
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
3257 3258 3259 3260 3261 3262
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3263
				struct mem_cgroup *from, struct mem_cgroup *to)
3264 3265 3266
{
	return -EINVAL;
}
3267
#endif
K
KAMEZAWA Hiroyuki 已提交
3268

3269
static DEFINE_MUTEX(memcg_max_mutex);
3270

3271 3272
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
3273
{
3274
	bool enlarge = false;
3275
	bool drained = false;
3276
	int ret;
3277 3278
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3279

3280
	do {
3281 3282 3283 3284
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3285

3286
		mutex_lock(&memcg_max_mutex);
3287 3288
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
3289
		 * break our basic invariant rule memory.max <= memsw.max.
3290
		 */
3291
		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3292
					   max <= memcg->memsw.max;
3293
		if (!limits_invariant) {
3294
			mutex_unlock(&memcg_max_mutex);
3295 3296 3297
			ret = -EINVAL;
			break;
		}
3298
		if (max > counter->max)
3299
			enlarge = true;
3300 3301
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
3302 3303 3304 3305

		if (!ret)
			break;

3306 3307 3308 3309 3310 3311
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

3312 3313 3314 3315 3316 3317
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
3318

3319 3320
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3321

3322 3323 3324
	return ret;
}

3325
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3326 3327 3328 3329
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
3330
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3331 3332
	unsigned long reclaimed;
	int loop = 0;
3333
	struct mem_cgroup_tree_per_node *mctz;
3334
	unsigned long excess;
3335 3336 3337 3338 3339
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

3340
	mctz = soft_limit_tree_node(pgdat->node_id);
3341 3342 3343 3344 3345 3346

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
3347
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3348 3349
		return 0;

3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
3364
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3365 3366 3367
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3368
		spin_lock_irq(&mctz->lock);
3369
		__mem_cgroup_remove_exceeded(mz, mctz);
3370 3371 3372 3373 3374 3375

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3376 3377 3378
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3379
		excess = soft_limit_excess(mz->memcg);
3380 3381 3382 3383 3384 3385 3386 3387 3388
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3389
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3390
		spin_unlock_irq(&mctz->lock);
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3408 3409 3410 3411
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
3412
 * hierarchy.  Testing use_hierarchy is the caller's responsibility.
3413
 */
3414 3415
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3416 3417 3418 3419 3420 3421
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3422 3423
}

3424
/*
3425
 * Reclaims as many pages from the given memcg as possible.
3426 3427 3428 3429 3430
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
3431
	int nr_retries = MAX_RECLAIM_RETRIES;
3432

3433 3434
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3435 3436 3437

	drain_all_stock(memcg);

3438
	/* try to free all pages in this cgroup */
3439
	while (nr_retries && page_counter_read(&memcg->memory)) {
3440
		int progress;
3441

3442 3443 3444
		if (signal_pending(current))
			return -EINTR;

3445 3446
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3447
		if (!progress) {
3448
			nr_retries--;
3449
			/* maybe some writeback is necessary */
3450
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3451
		}
3452 3453

	}
3454 3455

	return 0;
3456 3457
}

3458 3459 3460
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3461
{
3462
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3463

3464 3465
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3466
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3467 3468
}

3469 3470
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3471
{
3472
	return mem_cgroup_from_css(css)->use_hierarchy;
3473 3474
}

3475 3476
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3477 3478
{
	int retval = 0;
3479
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3480
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3481

3482
	if (memcg->use_hierarchy == val)
3483
		return 0;
3484

3485
	/*
3486
	 * If parent's use_hierarchy is set, we can't make any modifications
3487 3488 3489 3490 3491 3492
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3493
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3494
				(val == 1 || val == 0)) {
3495
		if (!memcg_has_children(memcg))
3496
			memcg->use_hierarchy = val;
3497 3498 3499 3500
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3501

3502 3503 3504
	return retval;
}

3505
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3506
{
3507
	unsigned long val;
3508

3509
	if (mem_cgroup_is_root(memcg)) {
3510
		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3511
			memcg_page_state(memcg, NR_ANON_MAPPED);
3512 3513
		if (swap)
			val += memcg_page_state(memcg, MEMCG_SWAP);
3514
	} else {
3515
		if (!swap)
3516
			val = page_counter_read(&memcg->memory);
3517
		else
3518
			val = page_counter_read(&memcg->memsw);
3519
	}
3520
	return val;
3521 3522
}

3523 3524 3525 3526 3527 3528 3529
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3530

3531
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3532
			       struct cftype *cft)
B
Balbir Singh 已提交
3533
{
3534
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3535
	struct page_counter *counter;
3536

3537
	switch (MEMFILE_TYPE(cft->private)) {
3538
	case _MEM:
3539 3540
		counter = &memcg->memory;
		break;
3541
	case _MEMSWAP:
3542 3543
		counter = &memcg->memsw;
		break;
3544
	case _KMEM:
3545
		counter = &memcg->kmem;
3546
		break;
V
Vladimir Davydov 已提交
3547
	case _TCP:
3548
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3549
		break;
3550 3551 3552
	default:
		BUG();
	}
3553 3554 3555 3556

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
3557
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3558
		if (counter == &memcg->memsw)
3559
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3560 3561
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
3562
		return (u64)counter->max * PAGE_SIZE;
3563 3564 3565 3566 3567 3568 3569 3570 3571
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3572
}
3573

3574
static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3575
{
3576
	unsigned long stat[MEMCG_NR_STAT] = {0};
3577 3578 3579 3580
	struct mem_cgroup *mi;
	int node, cpu, i;

	for_each_online_cpu(cpu)
3581
		for (i = 0; i < MEMCG_NR_STAT; i++)
3582
			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3583 3584

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3585
		for (i = 0; i < MEMCG_NR_STAT; i++)
3586 3587 3588 3589 3590 3591
			atomic_long_add(stat[i], &mi->vmstats[i]);

	for_each_node(node) {
		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
		struct mem_cgroup_per_node *pi;

3592
		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3593 3594 3595
			stat[i] = 0;

		for_each_online_cpu(cpu)
3596
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3597 3598
				stat[i] += per_cpu(
					pn->lruvec_stat_cpu->count[i], cpu);
3599 3600

		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3601
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3602 3603 3604 3605
				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
	}
}

3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
{
	unsigned long events[NR_VM_EVENT_ITEMS];
	struct mem_cgroup *mi;
	int cpu, i;

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
		events[i] = 0;

	for_each_online_cpu(cpu)
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3617 3618
			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
					     cpu);
3619 3620 3621 3622 3623 3624

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
			atomic_long_add(events[i], &mi->vmevents[i]);
}

3625
#ifdef CONFIG_MEMCG_KMEM
3626
static int memcg_online_kmem(struct mem_cgroup *memcg)
3627
{
R
Roman Gushchin 已提交
3628
	struct obj_cgroup *objcg;
3629 3630
	int memcg_id;

3631 3632 3633
	if (cgroup_memory_nokmem)
		return 0;

3634
	BUG_ON(memcg->kmemcg_id >= 0);
3635
	BUG_ON(memcg->kmem_state);
3636

3637
	memcg_id = memcg_alloc_cache_id();
3638 3639
	if (memcg_id < 0)
		return memcg_id;
3640

R
Roman Gushchin 已提交
3641 3642 3643 3644 3645 3646 3647 3648
	objcg = obj_cgroup_alloc();
	if (!objcg) {
		memcg_free_cache_id(memcg_id);
		return -ENOMEM;
	}
	objcg->memcg = memcg;
	rcu_assign_pointer(memcg->objcg, objcg);

3649 3650
	static_branch_enable(&memcg_kmem_enabled_key);

3651
	/*
3652
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
3653
	 * kmemcg_id. Setting the id after enabling static branching will
3654 3655 3656
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3657
	memcg->kmemcg_id = memcg_id;
3658
	memcg->kmem_state = KMEM_ONLINE;
3659 3660

	return 0;
3661 3662
}

3663 3664 3665 3666 3667 3668 3669 3670
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
3671

3672 3673 3674 3675 3676 3677
	memcg->kmem_state = KMEM_ALLOCATED;

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

R
Roman Gushchin 已提交
3678
	memcg_reparent_objcgs(memcg, parent);
3679 3680 3681 3682

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

3683 3684 3685 3686 3687 3688 3689 3690
	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
3691
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3692 3693 3694 3695 3696 3697 3698
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
3699 3700
	rcu_read_unlock();

3701
	memcg_drain_all_list_lrus(kmemcg_id, parent);
3702 3703 3704 3705 3706 3707

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
3708 3709 3710
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);
3711
}
3712
#else
3713
static int memcg_online_kmem(struct mem_cgroup *memcg)
3714 3715 3716 3717 3718 3719 3720 3721 3722
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
3723
#endif /* CONFIG_MEMCG_KMEM */
3724

3725 3726
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
3727
{
3728
	int ret;
3729

3730 3731 3732
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
3733
	return ret;
3734
}
3735

3736
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
3737 3738 3739
{
	int ret;

3740
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3741

3742
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
3743 3744 3745
	if (ret)
		goto out;

3746
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3747 3748 3749
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3750 3751 3752
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
3753 3754 3755 3756 3757 3758
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3759
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
3760 3761 3762 3763
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3764
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3765 3766
	}
out:
3767
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3768 3769 3770
	return ret;
}

3771 3772 3773 3774
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3775 3776
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3777
{
3778
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3779
	unsigned long nr_pages;
3780 3781
	int ret;

3782
	buf = strstrip(buf);
3783
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3784 3785
	if (ret)
		return ret;
3786

3787
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3788
	case RES_LIMIT:
3789 3790 3791 3792
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3793 3794
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3795
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3796
			break;
3797
		case _MEMSWAP:
3798
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3799
			break;
3800
		case _KMEM:
3801 3802 3803
			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
				     "Please report your usecase to linux-mm@kvack.org if you "
				     "depend on this functionality.\n");
3804
			ret = memcg_update_kmem_max(memcg, nr_pages);
3805
			break;
V
Vladimir Davydov 已提交
3806
		case _TCP:
3807
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
3808
			break;
3809
		}
3810
		break;
3811 3812 3813
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3814 3815
		break;
	}
3816
	return ret ?: nbytes;
B
Balbir Singh 已提交
3817 3818
}

3819 3820
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3821
{
3822
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3823
	struct page_counter *counter;
3824

3825 3826 3827 3828 3829 3830 3831 3832 3833 3834
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3835
	case _TCP:
3836
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3837
		break;
3838 3839 3840
	default:
		BUG();
	}
3841

3842
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3843
	case RES_MAX_USAGE:
3844
		page_counter_reset_watermark(counter);
3845 3846
		break;
	case RES_FAILCNT:
3847
		counter->failcnt = 0;
3848
		break;
3849 3850
	default:
		BUG();
3851
	}
3852

3853
	return nbytes;
3854 3855
}

3856
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3857 3858
					struct cftype *cft)
{
3859
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3860 3861
}

3862
#ifdef CONFIG_MMU
3863
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3864 3865
					struct cftype *cft, u64 val)
{
3866
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3867

3868
	if (val & ~MOVE_MASK)
3869
		return -EINVAL;
3870

3871
	/*
3872 3873 3874 3875
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3876
	 */
3877
	memcg->move_charge_at_immigrate = val;
3878 3879
	return 0;
}
3880
#else
3881
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3882 3883 3884 3885 3886
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3887

3888
#ifdef CONFIG_NUMA
3889 3890 3891 3892 3893 3894

#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)

static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3895
				int nid, unsigned int lru_mask, bool tree)
3896
{
3897
	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3898 3899 3900 3901 3902 3903 3904 3905
	unsigned long nr = 0;
	enum lru_list lru;

	VM_BUG_ON((unsigned)nid >= nr_node_ids);

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3906 3907 3908 3909
		if (tree)
			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
		else
			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3910 3911 3912 3913 3914
	}
	return nr;
}

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3915 3916
					     unsigned int lru_mask,
					     bool tree)
3917 3918 3919 3920 3921 3922 3923
{
	unsigned long nr = 0;
	enum lru_list lru;

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3924 3925 3926 3927
		if (tree)
			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
		else
			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3928 3929 3930 3931
	}
	return nr;
}

3932
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3933
{
3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3946
	int nid;
3947
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3948

3949
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3950 3951 3952 3953 3954 3955 3956
		seq_printf(m, "%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   false));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, false));
3957
		seq_putc(m, '\n');
3958 3959
	}

3960
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3961 3962 3963 3964 3965 3966 3967 3968

		seq_printf(m, "hierarchical_%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   true));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, true));
3969
		seq_putc(m, '\n');
3970 3971 3972 3973 3974 3975
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3976
static const unsigned int memcg1_stats[] = {
3977
	NR_FILE_PAGES,
3978
	NR_ANON_MAPPED,
3979 3980 3981
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	NR_ANON_THPS,
#endif
3982 3983 3984 3985 3986 3987 3988 3989 3990 3991
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
3992
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3993
	"rss_huge",
3994
#endif
3995 3996 3997 3998 3999 4000 4001
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

4002
/* Universal VM events cgroup1 shows, original sort order */
4003
static const unsigned int memcg1_events[] = {
4004 4005 4006 4007 4008 4009
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

4010
static int memcg_stat_show(struct seq_file *m, void *v)
4011
{
4012
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4013
	unsigned long memory, memsw;
4014 4015
	struct mem_cgroup *mi;
	unsigned int i;
4016

4017
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4018

4019
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4020 4021
		unsigned long nr;

4022
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4023
			continue;
4024 4025 4026 4027 4028 4029
		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
		if (memcg1_stats[i] == NR_ANON_THPS)
			nr *= HPAGE_PMD_NR;
#endif
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4030
	}
L
Lee Schermerhorn 已提交
4031

4032
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4033
		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4034
			   memcg_events_local(memcg, memcg1_events[i]));
4035 4036

	for (i = 0; i < NR_LRU_LISTS; i++)
4037
		seq_printf(m, "%s %lu\n", lru_list_name(i),
4038
			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4039
			   PAGE_SIZE);
4040

K
KAMEZAWA Hiroyuki 已提交
4041
	/* Hierarchical information */
4042 4043
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4044 4045
		memory = min(memory, READ_ONCE(mi->memory.max));
		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4046
	}
4047 4048
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
4049
	if (do_memsw_account())
4050 4051
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
4052

4053
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4054
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4055
			continue;
4056
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4057 4058
			   (u64)memcg_page_state(memcg, memcg1_stats[i]) *
			   PAGE_SIZE);
4059 4060
	}

4061
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4062 4063
		seq_printf(m, "total_%s %llu\n",
			   vm_event_name(memcg1_events[i]),
4064
			   (u64)memcg_events(memcg, memcg1_events[i]));
4065

4066
	for (i = 0; i < NR_LRU_LISTS; i++)
4067
		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4068 4069
			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			   PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
4070

K
KOSAKI Motohiro 已提交
4071 4072
#ifdef CONFIG_DEBUG_VM
	{
4073 4074
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
4075 4076
		unsigned long anon_cost = 0;
		unsigned long file_cost = 0;
K
KOSAKI Motohiro 已提交
4077

4078 4079
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
K
KOSAKI Motohiro 已提交
4080

4081 4082
			anon_cost += mz->lruvec.anon_cost;
			file_cost += mz->lruvec.file_cost;
4083
		}
4084 4085
		seq_printf(m, "anon_cost %lu\n", anon_cost);
		seq_printf(m, "file_cost %lu\n", file_cost);
K
KOSAKI Motohiro 已提交
4086 4087 4088
	}
#endif

4089 4090 4091
	return 0;
}

4092 4093
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
4094
{
4095
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4096

4097
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4098 4099
}

4100 4101
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
4102
{
4103
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4104

4105
	if (val > 100)
K
KOSAKI Motohiro 已提交
4106 4107
		return -EINVAL;

4108
	if (css->parent)
4109 4110 4111
		memcg->swappiness = val;
	else
		vm_swappiness = val;
4112

K
KOSAKI Motohiro 已提交
4113 4114 4115
	return 0;
}

4116 4117 4118
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
4119
	unsigned long usage;
4120 4121 4122 4123
	int i;

	rcu_read_lock();
	if (!swap)
4124
		t = rcu_dereference(memcg->thresholds.primary);
4125
	else
4126
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4127 4128 4129 4130

	if (!t)
		goto unlock;

4131
	usage = mem_cgroup_usage(memcg, swap);
4132 4133

	/*
4134
	 * current_threshold points to threshold just below or equal to usage.
4135 4136 4137
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4138
	i = t->current_threshold;
4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4162
	t->current_threshold = i - 1;
4163 4164 4165 4166 4167 4168
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4169 4170
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
4171
		if (do_memsw_account())
4172 4173 4174 4175
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4176 4177 4178 4179 4180 4181 4182
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

4183 4184 4185 4186 4187 4188 4189
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
4190 4191
}

4192
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4193 4194 4195
{
	struct mem_cgroup_eventfd_list *ev;

4196 4197
	spin_lock(&memcg_oom_lock);

4198
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4199
		eventfd_signal(ev->eventfd, 1);
4200 4201

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4202 4203 4204
	return 0;
}

4205
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4206
{
K
KAMEZAWA Hiroyuki 已提交
4207 4208
	struct mem_cgroup *iter;

4209
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4210
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4211 4212
}

4213
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4214
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4215
{
4216 4217
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4218 4219
	unsigned long threshold;
	unsigned long usage;
4220
	int i, size, ret;
4221

4222
	ret = page_counter_memparse(args, "-1", &threshold);
4223 4224 4225 4226
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4227

4228
	if (type == _MEM) {
4229
		thresholds = &memcg->thresholds;
4230
		usage = mem_cgroup_usage(memcg, false);
4231
	} else if (type == _MEMSWAP) {
4232
		thresholds = &memcg->memsw_thresholds;
4233
		usage = mem_cgroup_usage(memcg, true);
4234
	} else
4235 4236 4237
		BUG();

	/* Check if a threshold crossed before adding a new one */
4238
	if (thresholds->primary)
4239 4240
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4241
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4242 4243

	/* Allocate memory for new array of thresholds */
4244
	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4245
	if (!new) {
4246 4247 4248
		ret = -ENOMEM;
		goto unlock;
	}
4249
	new->size = size;
4250 4251

	/* Copy thresholds (if any) to new array */
4252 4253
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4254
				sizeof(struct mem_cgroup_threshold));
4255 4256
	}

4257
	/* Add new threshold */
4258 4259
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4260 4261

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4262
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4263 4264 4265
			compare_thresholds, NULL);

	/* Find current threshold */
4266
	new->current_threshold = -1;
4267
	for (i = 0; i < size; i++) {
4268
		if (new->entries[i].threshold <= usage) {
4269
			/*
4270 4271
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4272 4273
			 * it here.
			 */
4274
			++new->current_threshold;
4275 4276
		} else
			break;
4277 4278
	}

4279 4280 4281 4282 4283
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4284

4285
	/* To be sure that nobody uses thresholds */
4286 4287 4288 4289 4290 4291 4292 4293
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4294
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4295 4296
	struct eventfd_ctx *eventfd, const char *args)
{
4297
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4298 4299
}

4300
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4301 4302
	struct eventfd_ctx *eventfd, const char *args)
{
4303
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4304 4305
}

4306
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4307
	struct eventfd_ctx *eventfd, enum res_type type)
4308
{
4309 4310
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4311
	unsigned long usage;
4312
	int i, j, size, entries;
4313 4314

	mutex_lock(&memcg->thresholds_lock);
4315 4316

	if (type == _MEM) {
4317
		thresholds = &memcg->thresholds;
4318
		usage = mem_cgroup_usage(memcg, false);
4319
	} else if (type == _MEMSWAP) {
4320
		thresholds = &memcg->memsw_thresholds;
4321
		usage = mem_cgroup_usage(memcg, true);
4322
	} else
4323 4324
		BUG();

4325 4326 4327
	if (!thresholds->primary)
		goto unlock;

4328 4329 4330 4331
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4332
	size = entries = 0;
4333 4334
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4335
			size++;
4336 4337
		else
			entries++;
4338 4339
	}

4340
	new = thresholds->spare;
4341

4342 4343 4344 4345
	/* If no items related to eventfd have been cleared, nothing to do */
	if (!entries)
		goto unlock;

4346 4347
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4348 4349
		kfree(new);
		new = NULL;
4350
		goto swap_buffers;
4351 4352
	}

4353
	new->size = size;
4354 4355

	/* Copy thresholds and find current threshold */
4356 4357 4358
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4359 4360
			continue;

4361
		new->entries[j] = thresholds->primary->entries[i];
4362
		if (new->entries[j].threshold <= usage) {
4363
			/*
4364
			 * new->current_threshold will not be used
4365 4366 4367
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4368
			++new->current_threshold;
4369 4370 4371 4372
		}
		j++;
	}

4373
swap_buffers:
4374 4375
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4376

4377
	rcu_assign_pointer(thresholds->primary, new);
4378

4379
	/* To be sure that nobody uses thresholds */
4380
	synchronize_rcu();
4381 4382 4383 4384 4385 4386

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
4387
unlock:
4388 4389
	mutex_unlock(&memcg->thresholds_lock);
}
4390

4391
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4392 4393
	struct eventfd_ctx *eventfd)
{
4394
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4395 4396
}

4397
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4398 4399
	struct eventfd_ctx *eventfd)
{
4400
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4401 4402
}

4403
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4404
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4405 4406 4407 4408 4409 4410 4411
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4412
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4413 4414 4415 4416 4417

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4418
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
4419
		eventfd_signal(eventfd, 1);
4420
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4421 4422 4423 4424

	return 0;
}

4425
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4426
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4427 4428 4429
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4430
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4431

4432
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4433 4434 4435 4436 4437 4438
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4439
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4440 4441
}

4442
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4443
{
4444
	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4445

4446
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4447
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
R
Roman Gushchin 已提交
4448 4449
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4450 4451 4452
	return 0;
}

4453
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4454 4455
	struct cftype *cft, u64 val)
{
4456
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4457 4458

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4459
	if (!css->parent || !((val == 0) || (val == 1)))
4460 4461
		return -EINVAL;

4462
	memcg->oom_kill_disable = val;
4463
	if (!val)
4464
		memcg_oom_recover(memcg);
4465

4466 4467 4468
	return 0;
}

4469 4470
#ifdef CONFIG_CGROUP_WRITEBACK

4471 4472
#include <trace/events/writeback.h>

T
Tejun Heo 已提交
4473 4474 4475 4476 4477 4478 4479 4480 4481 4482
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

4483 4484 4485 4486 4487
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
4488 4489 4490 4491 4492 4493 4494 4495 4496 4497
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

4498 4499 4500 4501 4502 4503
/*
 * idx can be of type enum memcg_stat_item or node_stat_item.
 * Keep in sync with memcg_exact_page().
 */
static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
{
4504
	long x = atomic_long_read(&memcg->vmstats[idx]);
4505 4506 4507
	int cpu;

	for_each_online_cpu(cpu)
4508
		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4509 4510 4511 4512 4513
	if (x < 0)
		x = 0;
	return x;
}

4514 4515 4516
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
4517 4518
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
4519 4520 4521
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
4522 4523 4524
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
4525
 *
4526 4527 4528 4529 4530
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
4531
 */
4532 4533 4534
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
4535 4536 4537 4538
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

4539
	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4540

4541
	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4542 4543
	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4544
	*pheadroom = PAGE_COUNTER_MAX;
4545 4546

	while ((parent = parent_mem_cgroup(memcg))) {
4547
		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4548
					    READ_ONCE(memcg->memory.high));
4549 4550
		unsigned long used = page_counter_read(&memcg->memory);

4551
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4552 4553 4554 4555
		memcg = parent;
	}
}

4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609
/*
 * Foreign dirty flushing
 *
 * There's an inherent mismatch between memcg and writeback.  The former
 * trackes ownership per-page while the latter per-inode.  This was a
 * deliberate design decision because honoring per-page ownership in the
 * writeback path is complicated, may lead to higher CPU and IO overheads
 * and deemed unnecessary given that write-sharing an inode across
 * different cgroups isn't a common use-case.
 *
 * Combined with inode majority-writer ownership switching, this works well
 * enough in most cases but there are some pathological cases.  For
 * example, let's say there are two cgroups A and B which keep writing to
 * different but confined parts of the same inode.  B owns the inode and
 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
 * triggering background writeback.  A will be slowed down without a way to
 * make writeback of the dirty pages happen.
 *
 * Conditions like the above can lead to a cgroup getting repatedly and
 * severely throttled after making some progress after each
 * dirty_expire_interval while the underyling IO device is almost
 * completely idle.
 *
 * Solving this problem completely requires matching the ownership tracking
 * granularities between memcg and writeback in either direction.  However,
 * the more egregious behaviors can be avoided by simply remembering the
 * most recent foreign dirtying events and initiating remote flushes on
 * them when local writeback isn't enough to keep the memory clean enough.
 *
 * The following two functions implement such mechanism.  When a foreign
 * page - a page whose memcg and writeback ownerships don't match - is
 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
 * decides that the memcg needs to sleep due to high dirty ratio, it calls
 * mem_cgroup_flush_foreign() which queues writeback on the recorded
 * foreign bdi_writebacks which haven't expired.  Both the numbers of
 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
 * limited to MEMCG_CGWB_FRN_CNT.
 *
 * The mechanism only remembers IDs and doesn't hold any object references.
 * As being wrong occasionally doesn't matter, updates and accesses to the
 * records are lockless and racy.
 */
void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
					     struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = page->mem_cgroup;
	struct memcg_cgwb_frn *frn;
	u64 now = get_jiffies_64();
	u64 oldest_at = now;
	int oldest = -1;
	int i;

4610 4611
	trace_track_foreign_dirty(page, wb);

4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671
	/*
	 * Pick the slot to use.  If there is already a slot for @wb, keep
	 * using it.  If not replace the oldest one which isn't being
	 * written out.
	 */
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		frn = &memcg->cgwb_frn[i];
		if (frn->bdi_id == wb->bdi->id &&
		    frn->memcg_id == wb->memcg_css->id)
			break;
		if (time_before64(frn->at, oldest_at) &&
		    atomic_read(&frn->done.cnt) == 1) {
			oldest = i;
			oldest_at = frn->at;
		}
	}

	if (i < MEMCG_CGWB_FRN_CNT) {
		/*
		 * Re-using an existing one.  Update timestamp lazily to
		 * avoid making the cacheline hot.  We want them to be
		 * reasonably up-to-date and significantly shorter than
		 * dirty_expire_interval as that's what expires the record.
		 * Use the shorter of 1s and dirty_expire_interval / 8.
		 */
		unsigned long update_intv =
			min_t(unsigned long, HZ,
			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);

		if (time_before64(frn->at, now - update_intv))
			frn->at = now;
	} else if (oldest >= 0) {
		/* replace the oldest free one */
		frn = &memcg->cgwb_frn[oldest];
		frn->bdi_id = wb->bdi->id;
		frn->memcg_id = wb->memcg_css->id;
		frn->at = now;
	}
}

/* issue foreign writeback flushes for recorded foreign dirtying events */
void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
	u64 now = jiffies_64;
	int i;

	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];

		/*
		 * If the record is older than dirty_expire_interval,
		 * writeback on it has already started.  No need to kick it
		 * off again.  Also, don't start a new one if there's
		 * already one in flight.
		 */
		if (time_after64(frn->at, now - intv) &&
		    atomic_read(&frn->done.cnt) == 1) {
			frn->at = 0;
4672
			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4673 4674 4675 4676 4677 4678 4679
			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
					       WB_REASON_FOREIGN_FLUSH,
					       &frn->done);
		}
	}
}

T
Tejun Heo 已提交
4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

4691 4692 4693 4694
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

4695 4696
#endif	/* CONFIG_CGROUP_WRITEBACK */

4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4710 4711 4712 4713 4714
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4715
static void memcg_event_remove(struct work_struct *work)
4716
{
4717 4718
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4719
	struct mem_cgroup *memcg = event->memcg;
4720 4721 4722

	remove_wait_queue(event->wqh, &event->wait);

4723
	event->unregister_event(memcg, event->eventfd);
4724 4725 4726 4727 4728 4729

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4730
	css_put(&memcg->css);
4731 4732 4733
}

/*
4734
 * Gets called on EPOLLHUP on eventfd when user closes it.
4735 4736 4737
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4738
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4739
			    int sync, void *key)
4740
{
4741 4742
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4743
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
4744
	__poll_t flags = key_to_poll(key);
4745

4746
	if (flags & EPOLLHUP) {
4747 4748 4749 4750 4751 4752 4753 4754 4755
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4756
		spin_lock(&memcg->event_list_lock);
4757 4758 4759 4760 4761 4762 4763 4764
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4765
		spin_unlock(&memcg->event_list_lock);
4766 4767 4768 4769 4770
	}

	return 0;
}

4771
static void memcg_event_ptable_queue_proc(struct file *file,
4772 4773
		wait_queue_head_t *wqh, poll_table *pt)
{
4774 4775
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4776 4777 4778 4779 4780 4781

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4782 4783
 * DO NOT USE IN NEW FILES.
 *
4784 4785 4786 4787 4788
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4789 4790
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4791
{
4792
	struct cgroup_subsys_state *css = of_css(of);
4793
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4794
	struct mem_cgroup_event *event;
4795 4796 4797 4798
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4799
	const char *name;
4800 4801 4802
	char *endp;
	int ret;

4803 4804 4805
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4806 4807
	if (*endp != ' ')
		return -EINVAL;
4808
	buf = endp + 1;
4809

4810
	cfd = simple_strtoul(buf, &endp, 10);
4811 4812
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4813
	buf = endp + 1;
4814 4815 4816 4817 4818

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4819
	event->memcg = memcg;
4820
	INIT_LIST_HEAD(&event->list);
4821 4822 4823
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4849 4850 4851 4852 4853
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4854 4855
	 *
	 * DO NOT ADD NEW FILES.
4856
	 */
A
Al Viro 已提交
4857
	name = cfile.file->f_path.dentry->d_name.name;
4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4869 4870
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4871 4872 4873 4874 4875
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4876
	/*
4877 4878 4879
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4880
	 */
A
Al Viro 已提交
4881
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4882
					       &memory_cgrp_subsys);
4883
	ret = -EINVAL;
4884
	if (IS_ERR(cfile_css))
4885
		goto out_put_cfile;
4886 4887
	if (cfile_css != css) {
		css_put(cfile_css);
4888
		goto out_put_cfile;
4889
	}
4890

4891
	ret = event->register_event(memcg, event->eventfd, buf);
4892 4893 4894
	if (ret)
		goto out_put_css;

4895
	vfs_poll(efile.file, &event->pt);
4896

4897 4898 4899
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4900 4901 4902 4903

	fdput(cfile);
	fdput(efile);

4904
	return nbytes;
4905 4906

out_put_css:
4907
	css_put(css);
4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4920
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4921
	{
4922
		.name = "usage_in_bytes",
4923
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4924
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4925
	},
4926 4927
	{
		.name = "max_usage_in_bytes",
4928
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4929
		.write = mem_cgroup_reset,
4930
		.read_u64 = mem_cgroup_read_u64,
4931
	},
B
Balbir Singh 已提交
4932
	{
4933
		.name = "limit_in_bytes",
4934
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4935
		.write = mem_cgroup_write,
4936
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4937
	},
4938 4939 4940
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4941
		.write = mem_cgroup_write,
4942
		.read_u64 = mem_cgroup_read_u64,
4943
	},
B
Balbir Singh 已提交
4944 4945
	{
		.name = "failcnt",
4946
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4947
		.write = mem_cgroup_reset,
4948
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4949
	},
4950 4951
	{
		.name = "stat",
4952
		.seq_show = memcg_stat_show,
4953
	},
4954 4955
	{
		.name = "force_empty",
4956
		.write = mem_cgroup_force_empty_write,
4957
	},
4958 4959 4960 4961 4962
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4963
	{
4964
		.name = "cgroup.event_control",		/* XXX: for compat */
4965
		.write = memcg_write_event_control,
4966
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4967
	},
K
KOSAKI Motohiro 已提交
4968 4969 4970 4971 4972
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4973 4974 4975 4976 4977
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4978 4979
	{
		.name = "oom_control",
4980
		.seq_show = mem_cgroup_oom_control_read,
4981
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4982 4983
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4984 4985 4986
	{
		.name = "pressure_level",
	},
4987 4988 4989
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4990
		.seq_show = memcg_numa_stat_show,
4991 4992
	},
#endif
4993 4994 4995
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4996
		.write = mem_cgroup_write,
4997
		.read_u64 = mem_cgroup_read_u64,
4998 4999 5000 5001
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5002
		.read_u64 = mem_cgroup_read_u64,
5003 5004 5005 5006
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5007
		.write = mem_cgroup_reset,
5008
		.read_u64 = mem_cgroup_read_u64,
5009 5010 5011 5012
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5013
		.write = mem_cgroup_reset,
5014
		.read_u64 = mem_cgroup_read_u64,
5015
	},
5016 5017
#if defined(CONFIG_MEMCG_KMEM) && \
	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5018 5019
	{
		.name = "kmem.slabinfo",
5020
		.seq_show = memcg_slab_show,
5021 5022
	},
#endif
V
Vladimir Davydov 已提交
5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
5046
	{ },	/* terminate */
5047
};
5048

5049 5050 5051 5052 5053 5054 5055 5056
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
5057
 * However, there usually are many references to the offline CSS after
5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

5075 5076 5077 5078 5079 5080 5081 5082
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

5083 5084
static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
						  unsigned int n)
5085
{
5086
	refcount_add(n, &memcg->id.ref);
5087 5088
}

5089
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5090
{
5091
	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5092
		mem_cgroup_id_remove(memcg);
5093 5094 5095 5096 5097 5098

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

5099 5100 5101 5102 5103
static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

5116
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5117 5118
{
	struct mem_cgroup_per_node *pn;
5119
	int tmp = node;
5120 5121 5122 5123 5124 5125 5126 5127
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5128 5129
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5130
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5131 5132
	if (!pn)
		return 1;
5133

5134 5135 5136 5137 5138 5139
	pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat_local) {
		kfree(pn);
		return 1;
	}

5140 5141
	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat_cpu) {
5142
		free_percpu(pn->lruvec_stat_local);
5143 5144 5145 5146
		kfree(pn);
		return 1;
	}

5147 5148 5149 5150 5151
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

5152
	memcg->nodeinfo[node] = pn;
5153 5154 5155
	return 0;
}

5156
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5157
{
5158 5159
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
5160 5161 5162
	if (!pn)
		return;

5163
	free_percpu(pn->lruvec_stat_cpu);
5164
	free_percpu(pn->lruvec_stat_local);
5165
	kfree(pn);
5166 5167
}

5168
static void __mem_cgroup_free(struct mem_cgroup *memcg)
5169
{
5170
	int node;
5171

5172
	for_each_node(node)
5173
		free_mem_cgroup_per_node_info(memcg, node);
5174
	free_percpu(memcg->vmstats_percpu);
5175
	free_percpu(memcg->vmstats_local);
5176
	kfree(memcg);
5177
}
5178

5179 5180 5181
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
5182 5183 5184 5185
	/*
	 * Flush percpu vmstats and vmevents to guarantee the value correctness
	 * on parent's and all ancestor levels.
	 */
5186
	memcg_flush_percpu_vmstats(memcg);
5187
	memcg_flush_percpu_vmevents(memcg);
5188 5189 5190
	__mem_cgroup_free(memcg);
}

5191
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
5192
{
5193
	struct mem_cgroup *memcg;
5194
	unsigned int size;
5195
	int node;
5196
	int __maybe_unused i;
5197
	long error = -ENOMEM;
B
Balbir Singh 已提交
5198

5199 5200 5201 5202
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
5203
	if (!memcg)
5204
		return ERR_PTR(error);
5205

5206 5207 5208
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
5209 5210
	if (memcg->id.id < 0) {
		error = memcg->id.id;
5211
		goto fail;
5212
	}
5213

5214 5215 5216 5217
	memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
	if (!memcg->vmstats_local)
		goto fail;

5218 5219
	memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
	if (!memcg->vmstats_percpu)
5220
		goto fail;
5221

B
Bob Liu 已提交
5222
	for_each_node(node)
5223
		if (alloc_mem_cgroup_per_node_info(memcg, node))
5224
			goto fail;
5225

5226 5227
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
5228

5229
	INIT_WORK(&memcg->high_work, high_work_func);
5230 5231 5232
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5233
	vmpressure_init(&memcg->vmpressure);
5234 5235
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
5236
	memcg->socket_pressure = jiffies;
5237
#ifdef CONFIG_MEMCG_KMEM
V
Vladimir Davydov 已提交
5238
	memcg->kmemcg_id = -1;
R
Roman Gushchin 已提交
5239
	INIT_LIST_HEAD(&memcg->objcg_list);
V
Vladimir Davydov 已提交
5240
#endif
5241 5242
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
5243 5244 5245
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		memcg->cgwb_frn[i].done =
			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5246 5247 5248 5249 5250
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
	memcg->deferred_split_queue.split_queue_len = 0;
5251
#endif
5252
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5253 5254
	return memcg;
fail:
5255
	mem_cgroup_id_remove(memcg);
5256
	__mem_cgroup_free(memcg);
5257
	return ERR_PTR(error);
5258 5259
}

5260 5261
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5262
{
5263 5264 5265
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
5266

5267
	memcg = mem_cgroup_alloc();
5268 5269
	if (IS_ERR(memcg))
		return ERR_CAST(memcg);
5270

5271
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5272
	memcg->soft_limit = PAGE_COUNTER_MAX;
5273
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5274 5275 5276 5277 5278 5279
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
5280
		page_counter_init(&memcg->memory, &parent->memory);
5281
		page_counter_init(&memcg->swap, &parent->swap);
5282 5283
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
5284
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5285
	} else {
5286
		page_counter_init(&memcg->memory, NULL);
5287
		page_counter_init(&memcg->swap, NULL);
5288 5289
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
5290
		page_counter_init(&memcg->tcpmem, NULL);
5291 5292 5293 5294 5295
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
5296
		if (parent != root_mem_cgroup)
5297
			memory_cgrp_subsys.broken_hierarchy = true;
5298
	}
5299

5300 5301 5302 5303 5304 5305
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

5306
	error = memcg_online_kmem(memcg);
5307 5308
	if (error)
		goto fail;
5309

5310
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5311
		static_branch_inc(&memcg_sockets_enabled_key);
5312

5313 5314
	return &memcg->css;
fail:
5315
	mem_cgroup_id_remove(memcg);
5316
	mem_cgroup_free(memcg);
5317
	return ERR_PTR(error);
5318 5319
}

5320
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5321
{
5322 5323
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5324 5325 5326 5327 5328 5329 5330 5331 5332 5333
	/*
	 * A memcg must be visible for memcg_expand_shrinker_maps()
	 * by the time the maps are allocated. So, we allocate maps
	 * here, when for_each_mem_cgroup() can't skip it.
	 */
	if (memcg_alloc_shrinker_maps(memcg)) {
		mem_cgroup_id_remove(memcg);
		return -ENOMEM;
	}

5334
	/* Online state pins memcg ID, memcg ID pins CSS */
5335
	refcount_set(&memcg->id.ref, 1);
5336
	css_get(css);
5337
	return 0;
B
Balbir Singh 已提交
5338 5339
}

5340
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5341
{
5342
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5343
	struct mem_cgroup_event *event, *tmp;
5344 5345 5346 5347 5348 5349

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
5350 5351
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5352 5353 5354
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
5355
	spin_unlock(&memcg->event_list_lock);
5356

R
Roman Gushchin 已提交
5357
	page_counter_set_min(&memcg->memory, 0);
5358
	page_counter_set_low(&memcg->memory, 0);
5359

5360
	memcg_offline_kmem(memcg);
5361
	wb_memcg_offline(memcg);
5362

5363 5364
	drain_all_stock(memcg);

5365
	mem_cgroup_id_put(memcg);
5366 5367
}

5368 5369 5370 5371 5372 5373 5374
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

5375
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
5376
{
5377
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5378
	int __maybe_unused i;
5379

5380 5381 5382 5383
#ifdef CONFIG_CGROUP_WRITEBACK
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
#endif
5384
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5385
		static_branch_dec(&memcg_sockets_enabled_key);
5386

5387
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
5388
		static_branch_dec(&memcg_sockets_enabled_key);
5389

5390 5391 5392
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
5393
	memcg_free_shrinker_maps(memcg);
5394
	memcg_free_kmem(memcg);
5395
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
5396 5397
}

5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5415 5416 5417 5418 5419
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
R
Roman Gushchin 已提交
5420
	page_counter_set_min(&memcg->memory, 0);
5421
	page_counter_set_low(&memcg->memory, 0);
5422
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5423
	memcg->soft_limit = PAGE_COUNTER_MAX;
5424
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5425
	memcg_wb_domain_size_changed(memcg);
5426 5427
}

5428
#ifdef CONFIG_MMU
5429
/* Handlers for move charge at task migration. */
5430
static int mem_cgroup_do_precharge(unsigned long count)
5431
{
5432
	int ret;
5433

5434 5435
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5436
	if (!ret) {
5437 5438 5439
		mc.precharge += count;
		return ret;
	}
5440

5441
	/* Try charges one by one with reclaim, but do not retry */
5442
	while (count--) {
5443
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5444 5445
		if (ret)
			return ret;
5446
		mc.precharge++;
5447
		cond_resched();
5448
	}
5449
	return 0;
5450 5451 5452 5453
}

union mc_target {
	struct page	*page;
5454
	swp_entry_t	ent;
5455 5456 5457
};

enum mc_target_type {
5458
	MC_TARGET_NONE = 0,
5459
	MC_TARGET_PAGE,
5460
	MC_TARGET_SWAP,
5461
	MC_TARGET_DEVICE,
5462 5463
};

D
Daisuke Nishimura 已提交
5464 5465
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5466
{
5467
	struct page *page = vm_normal_page(vma, addr, ptent);
5468

D
Daisuke Nishimura 已提交
5469 5470 5471
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
5472
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5473
			return NULL;
5474 5475 5476 5477
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
5478 5479 5480 5481 5482 5483
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5484
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
5485
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5486
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
5487 5488 5489 5490
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

5491
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
5492
		return NULL;
5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
		page = device_private_entry_to_page(ent);
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

5510 5511 5512 5513
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5514
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5515
	entry->val = ent.val;
D
Daisuke Nishimura 已提交
5516 5517 5518

	return page;
}
5519 5520
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5521
			pte_t ptent, swp_entry_t *entry)
5522 5523 5524 5525
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5526

5527 5528 5529 5530 5531 5532 5533 5534 5535
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
5536
	if (!(mc.flags & MOVE_FILE))
5537 5538 5539
		return NULL;

	mapping = vma->vm_file->f_mapping;
5540
	pgoff = linear_page_index(vma, addr);
5541 5542

	/* page is moved even if it's not RSS of this task(page-faulted). */
5543 5544
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
5545 5546
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
5547
		if (xa_is_value(page)) {
5548
			swp_entry_t swp = radix_to_swp_entry(page);
5549
			*entry = swp;
5550 5551
			page = find_get_page(swap_address_space(swp),
					     swp_offset(swp));
5552 5553 5554 5555 5556
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
5557
#endif
5558 5559 5560
	return page;
}

5561 5562 5563
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
5564
 * @compound: charge the page as compound or small page
5565 5566 5567
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
5568
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5569 5570 5571 5572 5573
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
5574
				   bool compound,
5575 5576 5577
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
5578 5579
	struct lruvec *from_vec, *to_vec;
	struct pglist_data *pgdat;
5580
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5581 5582 5583 5584
	int ret;

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
5585
	VM_BUG_ON(compound && !PageTransHuge(page));
5586 5587

	/*
5588
	 * Prevent mem_cgroup_migrate() from looking at
5589
	 * page->mem_cgroup of its source page while we change it.
5590
	 */
5591
	ret = -EBUSY;
5592 5593 5594 5595 5596 5597 5598
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

5599
	pgdat = page_pgdat(page);
5600 5601
	from_vec = mem_cgroup_lruvec(from, pgdat);
	to_vec = mem_cgroup_lruvec(to, pgdat);
5602

5603
	lock_page_memcg(page);
5604

5605 5606 5607 5608
	if (PageAnon(page)) {
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5609 5610 5611 5612 5613 5614 5615
			if (PageTransHuge(page)) {
				__mod_lruvec_state(from_vec, NR_ANON_THPS,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_ANON_THPS,
						   nr_pages);
			}

5616 5617
		}
	} else {
5618 5619 5620 5621 5622 5623 5624 5625
		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);

		if (PageSwapBacked(page)) {
			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
		}

5626 5627 5628 5629
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
		}
5630

5631 5632
		if (PageDirty(page)) {
			struct address_space *mapping = page_mapping(page);
5633

5634 5635 5636 5637 5638 5639
			if (mapping_cap_account_dirty(mapping)) {
				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
						   nr_pages);
			}
5640 5641 5642
		}
	}

5643
	if (PageWriteback(page)) {
5644 5645
		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5646 5647 5648
	}

	/*
5649 5650
	 * All state has been migrated, let's switch to the new memcg.
	 *
5651
	 * It is safe to change page->mem_cgroup here because the page
5652 5653 5654 5655 5656 5657 5658 5659
	 * is referenced, charged, isolated, and locked: we can't race
	 * with (un)charging, migration, LRU putback, or anything else
	 * that would rely on a stable page->mem_cgroup.
	 *
	 * Note that lock_page_memcg is a memcg lock, not a page lock,
	 * to save space. As soon as we switch page->mem_cgroup to a
	 * new memcg that isn't locked, the above state can change
	 * concurrently again. Make sure we're truly done with it.
5660
	 */
5661
	smp_mb();
5662

5663 5664 5665 5666
	css_get(&to->css);
	css_put(&from->css);

	page->mem_cgroup = to;
5667

5668
	__unlock_page_memcg(from);
5669 5670 5671 5672

	ret = 0;

	local_irq_disable();
5673
	mem_cgroup_charge_statistics(to, page, nr_pages);
5674
	memcg_check_events(to, page);
5675
	mem_cgroup_charge_statistics(from, page, -nr_pages);
5676 5677 5678 5679 5680 5681 5682 5683
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5699 5700
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
 *     (so ZONE_DEVICE page and thus not on the lru).
5701 5702 5703
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
5704 5705
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5706 5707 5708 5709
 *
 * Called with pte lock held.
 */

5710
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5711 5712 5713
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
5714
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5715 5716 5717 5718 5719
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
5720
		page = mc_handle_swap_pte(vma, ptent, &ent);
5721
	else if (pte_none(ptent))
5722
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5723 5724

	if (!page && !ent.val)
5725
		return ret;
5726 5727
	if (page) {
		/*
5728
		 * Do only loose check w/o serialization.
5729
		 * mem_cgroup_move_account() checks the page is valid or
5730
		 * not under LRU exclusion.
5731
		 */
5732
		if (page->mem_cgroup == mc.from) {
5733
			ret = MC_TARGET_PAGE;
5734
			if (is_device_private_page(page))
5735
				ret = MC_TARGET_DEVICE;
5736 5737 5738 5739 5740 5741
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
5742 5743 5744 5745 5746
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
5747
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5748 5749 5750
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5751 5752 5753 5754
	}
	return ret;
}

5755 5756
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
5757 5758
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
5759 5760 5761 5762 5763 5764 5765 5766
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

5767 5768 5769 5770 5771
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
5772
	page = pmd_page(pmd);
5773
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5774
	if (!(mc.flags & MOVE_ANON))
5775
		return ret;
5776
	if (page->mem_cgroup == mc.from) {
5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5793 5794 5795 5796
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
5797
	struct vm_area_struct *vma = walk->vma;
5798 5799 5800
	pte_t *pte;
	spinlock_t *ptl;

5801 5802
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5803 5804
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5805 5806
		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
		 * this might change.
5807
		 */
5808 5809
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5810
		spin_unlock(ptl);
5811
		return 0;
5812
	}
5813

5814 5815
	if (pmd_trans_unstable(pmd))
		return 0;
5816 5817
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5818
		if (get_mctgt_type(vma, addr, *pte, NULL))
5819 5820 5821 5822
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5823 5824 5825
	return 0;
}

5826 5827 5828 5829
static const struct mm_walk_ops precharge_walk_ops = {
	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
};

5830 5831 5832 5833
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

5834
	mmap_read_lock(mm);
5835
	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5836
	mmap_read_unlock(mm);
5837 5838 5839 5840 5841 5842 5843 5844 5845

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5846 5847 5848 5849 5850
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5851 5852
}

5853 5854
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5855
{
5856 5857 5858
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5859
	/* we must uncharge all the leftover precharges from mc.to */
5860
	if (mc.precharge) {
5861
		cancel_charge(mc.to, mc.precharge);
5862 5863 5864 5865 5866 5867 5868
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5869
		cancel_charge(mc.from, mc.moved_charge);
5870
		mc.moved_charge = 0;
5871
	}
5872 5873 5874
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5875
		if (!mem_cgroup_is_root(mc.from))
5876
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5877

5878 5879
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

5880
		/*
5881 5882
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5883
		 */
5884
		if (!mem_cgroup_is_root(mc.to))
5885 5886
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5887 5888
		mc.moved_swap = 0;
	}
5889 5890 5891 5892 5893 5894 5895
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
5896 5897
	struct mm_struct *mm = mc.mm;

5898 5899 5900 5901 5902 5903
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5904
	spin_lock(&mc.lock);
5905 5906
	mc.from = NULL;
	mc.to = NULL;
5907
	mc.mm = NULL;
5908
	spin_unlock(&mc.lock);
5909 5910

	mmput(mm);
5911 5912
}

5913
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5914
{
5915
	struct cgroup_subsys_state *css;
5916
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5917
	struct mem_cgroup *from;
5918
	struct task_struct *leader, *p;
5919
	struct mm_struct *mm;
5920
	unsigned long move_flags;
5921
	int ret = 0;
5922

5923 5924
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5925 5926
		return 0;

5927 5928 5929 5930 5931 5932 5933
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
5934
	cgroup_taskset_for_each_leader(leader, css, tset) {
5935 5936
		WARN_ON_ONCE(p);
		p = leader;
5937
		memcg = mem_cgroup_from_css(css);
5938 5939 5940 5941
	}
	if (!p)
		return 0;

5942 5943 5944 5945 5946 5947 5948 5949 5950
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
5967
		mc.mm = mm;
5968 5969 5970 5971 5972 5973 5974 5975 5976
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
5977 5978
	} else {
		mmput(mm);
5979 5980 5981 5982
	}
	return ret;
}

5983
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5984
{
5985 5986
	if (mc.to)
		mem_cgroup_clear_mc();
5987 5988
}

5989 5990 5991
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5992
{
5993
	int ret = 0;
5994
	struct vm_area_struct *vma = walk->vma;
5995 5996
	pte_t *pte;
	spinlock_t *ptl;
5997 5998 5999
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
6000

6001 6002
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
6003
		if (mc.precharge < HPAGE_PMD_NR) {
6004
			spin_unlock(ptl);
6005 6006 6007 6008 6009 6010
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
6011
				if (!mem_cgroup_move_account(page, true,
6012
							     mc.from, mc.to)) {
6013 6014 6015 6016 6017 6018
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
6019 6020 6021 6022 6023 6024 6025 6026
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
6027
		}
6028
		spin_unlock(ptl);
6029
		return 0;
6030 6031
	}

6032 6033
	if (pmd_trans_unstable(pmd))
		return 0;
6034 6035 6036 6037
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6038
		bool device = false;
6039
		swp_entry_t ent;
6040 6041 6042 6043

		if (!mc.precharge)
			break;

6044
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6045 6046
		case MC_TARGET_DEVICE:
			device = true;
J
Joe Perches 已提交
6047
			fallthrough;
6048 6049
		case MC_TARGET_PAGE:
			page = target.page;
6050 6051 6052 6053 6054 6055 6056 6057
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
6058
			if (!device && isolate_lru_page(page))
6059
				goto put;
6060 6061
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
6062
				mc.precharge--;
6063 6064
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6065
			}
6066 6067
			if (!device)
				putback_lru_page(page);
6068
put:			/* get_mctgt_type() gets the page */
6069 6070
			put_page(page);
			break;
6071 6072
		case MC_TARGET_SWAP:
			ent = target.ent;
6073
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6074
				mc.precharge--;
6075 6076
				mem_cgroup_id_get_many(mc.to, 1);
				/* we fixup other refcnts and charges later. */
6077 6078
				mc.moved_swap++;
			}
6079
			break;
6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6094
		ret = mem_cgroup_do_precharge(1);
6095 6096 6097 6098 6099 6100 6101
		if (!ret)
			goto retry;
	}

	return ret;
}

6102 6103 6104 6105
static const struct mm_walk_ops charge_walk_ops = {
	.pmd_entry	= mem_cgroup_move_charge_pte_range,
};

6106
static void mem_cgroup_move_charge(void)
6107 6108
{
	lru_add_drain_all();
6109
	/*
6110 6111 6112
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
6113 6114 6115
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
6116
retry:
6117
	if (unlikely(!mmap_read_trylock(mc.mm))) {
6118
		/*
6119
		 * Someone who are holding the mmap_lock might be waiting in
6120 6121 6122 6123 6124 6125 6126 6127 6128
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6129 6130 6131 6132
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
6133 6134
	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
			NULL);
6135

6136
	mmap_read_unlock(mc.mm);
6137
	atomic_dec(&mc.from->moving_account);
6138 6139
}

6140
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
6141
{
6142 6143
	if (mc.to) {
		mem_cgroup_move_charge();
6144
		mem_cgroup_clear_mc();
6145
	}
B
Balbir Singh 已提交
6146
}
6147
#else	/* !CONFIG_MMU */
6148
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6149 6150 6151
{
	return 0;
}
6152
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6153 6154
{
}
6155
static void mem_cgroup_move_task(void)
6156 6157 6158
{
}
#endif
B
Balbir Singh 已提交
6159

6160 6161
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6162 6163
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
6164
 */
6165
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6166 6167
{
	/*
6168
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
6169 6170 6171
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
6172
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6173 6174 6175
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
6176 6177
}

6178 6179 6180 6181 6182 6183 6184 6185 6186 6187
static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
{
	if (value == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);

	return 0;
}

6188 6189 6190
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
6191 6192 6193
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6194 6195
}

R
Roman Gushchin 已提交
6196 6197
static int memory_min_show(struct seq_file *m, void *v)
{
6198 6199
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
R
Roman Gushchin 已提交
6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

6219 6220
static int memory_low_show(struct seq_file *m, void *v)
{
6221 6222
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6223 6224 6225 6226 6227 6228 6229 6230 6231 6232
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
6233
	err = page_counter_memparse(buf, "max", &low);
6234 6235 6236
	if (err)
		return err;

6237
	page_counter_set_low(&memcg->memory, low);
6238 6239 6240 6241 6242 6243

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
6244 6245
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6246 6247 6248 6249 6250 6251
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6252
	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6253
	bool drained = false;
6254 6255 6256 6257
	unsigned long high;
	int err;

	buf = strstrip(buf);
6258
	err = page_counter_memparse(buf, "max", &high);
6259 6260 6261
	if (err)
		return err;

6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283
	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);
		unsigned long reclaimed;

		if (nr_pages <= high)
			break;

		if (signal_pending(current))
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
							 GFP_KERNEL, true);

		if (!reclaimed && !nr_retries--)
			break;
	}
6284

6285 6286
	page_counter_set_high(&memcg->memory, high);

6287 6288
	memcg_wb_domain_size_changed(memcg);

6289 6290 6291 6292 6293
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
6294 6295
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6296 6297 6298 6299 6300 6301
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6302
	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6303
	bool drained = false;
6304 6305 6306 6307
	unsigned long max;
	int err;

	buf = strstrip(buf);
6308
	err = page_counter_memparse(buf, "max", &max);
6309 6310 6311
	if (err)
		return err;

6312
	xchg(&memcg->memory.max, max);
6313 6314 6315 6316 6317 6318 6319

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

6320
		if (signal_pending(current))
6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

6336
		memcg_memory_event(memcg, MEMCG_OOM);
6337 6338 6339
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
6340

6341
	memcg_wb_domain_size_changed(memcg);
6342 6343 6344
	return nbytes;
}

6345 6346 6347 6348 6349 6350 6351 6352 6353 6354
static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
{
	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&events[MEMCG_OOM_KILL]));
}

6355 6356
static int memory_events_show(struct seq_file *m, void *v)
{
6357
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6358

6359 6360 6361 6362 6363 6364 6365
	__memory_events_show(m, memcg->memory_events);
	return 0;
}

static int memory_events_local_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6366

6367
	__memory_events_show(m, memcg->memory_events_local);
6368 6369 6370
	return 0;
}

6371 6372
static int memory_stat_show(struct seq_file *m, void *v)
{
6373
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6374
	char *buf;
6375

6376 6377 6378 6379 6380
	buf = memory_stat_format(memcg);
	if (!buf)
		return -ENOMEM;
	seq_puts(m, buf);
	kfree(buf);
6381 6382 6383
	return 0;
}

6384 6385
static int memory_oom_group_show(struct seq_file *m, void *v)
{
6386
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414

	seq_printf(m, "%d\n", memcg->oom_group);

	return 0;
}

static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
				      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	int ret, oom_group;

	buf = strstrip(buf);
	if (!buf)
		return -EINVAL;

	ret = kstrtoint(buf, 0, &oom_group);
	if (ret)
		return ret;

	if (oom_group != 0 && oom_group != 1)
		return -EINVAL;

	memcg->oom_group = oom_group;

	return nbytes;
}

6415 6416 6417
static struct cftype memory_files[] = {
	{
		.name = "current",
6418
		.flags = CFTYPE_NOT_ON_ROOT,
6419 6420
		.read_u64 = memory_current_read,
	},
R
Roman Gushchin 已提交
6421 6422 6423 6424 6425 6426
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
6448
		.file_offset = offsetof(struct mem_cgroup, events_file),
6449 6450
		.seq_show = memory_events_show,
	},
6451 6452 6453 6454 6455 6456
	{
		.name = "events.local",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, events_local_file),
		.seq_show = memory_events_local_show,
	},
6457 6458 6459 6460
	{
		.name = "stat",
		.seq_show = memory_stat_show,
	},
6461 6462 6463 6464 6465 6466
	{
		.name = "oom.group",
		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
		.seq_show = memory_oom_group_show,
		.write = memory_oom_group_write,
	},
6467 6468 6469
	{ }	/* terminate */
};

6470
struct cgroup_subsys memory_cgrp_subsys = {
6471
	.css_alloc = mem_cgroup_css_alloc,
6472
	.css_online = mem_cgroup_css_online,
6473
	.css_offline = mem_cgroup_css_offline,
6474
	.css_released = mem_cgroup_css_released,
6475
	.css_free = mem_cgroup_css_free,
6476
	.css_reset = mem_cgroup_css_reset,
6477 6478
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
6479
	.post_attach = mem_cgroup_move_task,
6480
	.bind = mem_cgroup_bind,
6481 6482
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
6483
	.early_init = 0,
B
Balbir Singh 已提交
6484
};
6485

6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515
/*
 * This function calculates an individual cgroup's effective
 * protection which is derived from its own memory.min/low, its
 * parent's and siblings' settings, as well as the actual memory
 * distribution in the tree.
 *
 * The following rules apply to the effective protection values:
 *
 * 1. At the first level of reclaim, effective protection is equal to
 *    the declared protection in memory.min and memory.low.
 *
 * 2. To enable safe delegation of the protection configuration, at
 *    subsequent levels the effective protection is capped to the
 *    parent's effective protection.
 *
 * 3. To make complex and dynamic subtrees easier to configure, the
 *    user is allowed to overcommit the declared protection at a given
 *    level. If that is the case, the parent's effective protection is
 *    distributed to the children in proportion to how much protection
 *    they have declared and how much of it they are utilizing.
 *
 *    This makes distribution proportional, but also work-conserving:
 *    if one cgroup claims much more protection than it uses memory,
 *    the unused remainder is available to its siblings.
 *
 * 4. Conversely, when the declared protection is undercommitted at a
 *    given level, the distribution of the larger parental protection
 *    budget is NOT proportional. A cgroup's protection from a sibling
 *    is capped to its own memory.min/low setting.
 *
6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527
 * 5. However, to allow protecting recursive subtrees from each other
 *    without having to declare each individual cgroup's fixed share
 *    of the ancestor's claim to protection, any unutilized -
 *    "floating" - protection from up the tree is distributed in
 *    proportion to each cgroup's *usage*. This makes the protection
 *    neutral wrt sibling cgroups and lets them compete freely over
 *    the shared parental protection budget, but it protects the
 *    subtree as a whole from neighboring subtrees.
 *
 * Note that 4. and 5. are not in conflict: 4. is about protecting
 * against immediate siblings whereas 5. is about protecting against
 * neighboring subtrees.
6528 6529
 */
static unsigned long effective_protection(unsigned long usage,
6530
					  unsigned long parent_usage,
6531 6532 6533 6534 6535
					  unsigned long setting,
					  unsigned long parent_effective,
					  unsigned long siblings_protected)
{
	unsigned long protected;
6536
	unsigned long ep;
6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566

	protected = min(usage, setting);
	/*
	 * If all cgroups at this level combined claim and use more
	 * protection then what the parent affords them, distribute
	 * shares in proportion to utilization.
	 *
	 * We are using actual utilization rather than the statically
	 * claimed protection in order to be work-conserving: claimed
	 * but unused protection is available to siblings that would
	 * otherwise get a smaller chunk than what they claimed.
	 */
	if (siblings_protected > parent_effective)
		return protected * parent_effective / siblings_protected;

	/*
	 * Ok, utilized protection of all children is within what the
	 * parent affords them, so we know whatever this child claims
	 * and utilizes is effectively protected.
	 *
	 * If there is unprotected usage beyond this value, reclaim
	 * will apply pressure in proportion to that amount.
	 *
	 * If there is unutilized protection, the cgroup will be fully
	 * shielded from reclaim, but we do return a smaller value for
	 * protection than what the group could enjoy in theory. This
	 * is okay. With the overcommit distribution above, effective
	 * protection is always dependent on how memory is actually
	 * consumed among the siblings anyway.
	 */
6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579
	ep = protected;

	/*
	 * If the children aren't claiming (all of) the protection
	 * afforded to them by the parent, distribute the remainder in
	 * proportion to the (unprotected) memory of each cgroup. That
	 * way, cgroups that aren't explicitly prioritized wrt each
	 * other compete freely over the allowance, but they are
	 * collectively protected from neighboring trees.
	 *
	 * We're using unprotected memory for the weight so that if
	 * some cgroups DO claim explicit protection, we don't protect
	 * the same bytes twice.
6580 6581 6582 6583
	 *
	 * Check both usage and parent_usage against the respective
	 * protected values. One should imply the other, but they
	 * aren't read atomically - make sure the division is sane.
6584 6585 6586
	 */
	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
		return ep;
6587 6588 6589
	if (parent_effective > siblings_protected &&
	    parent_usage > siblings_protected &&
	    usage > protected) {
6590 6591 6592 6593 6594 6595 6596 6597 6598 6599
		unsigned long unclaimed;

		unclaimed = parent_effective - siblings_protected;
		unclaimed *= usage - protected;
		unclaimed /= parent_usage - siblings_protected;

		ep += unclaimed;
	}

	return ep;
6600 6601
}

6602
/**
R
Roman Gushchin 已提交
6603
 * mem_cgroup_protected - check if memory consumption is in the normal range
6604
 * @root: the top ancestor of the sub-tree being checked
6605 6606
 * @memcg: the memory cgroup to check
 *
6607 6608
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
6609
 */
6610 6611
void mem_cgroup_calculate_protection(struct mem_cgroup *root,
				     struct mem_cgroup *memcg)
6612
{
6613
	unsigned long usage, parent_usage;
6614 6615
	struct mem_cgroup *parent;

6616
	if (mem_cgroup_disabled())
6617
		return;
6618

6619 6620
	if (!root)
		root = root_mem_cgroup;
6621 6622 6623 6624 6625 6626 6627 6628

	/*
	 * Effective values of the reclaim targets are ignored so they
	 * can be stale. Have a look at mem_cgroup_protection for more
	 * details.
	 * TODO: calculation should be more robust so that we do not need
	 * that special casing.
	 */
6629
	if (memcg == root)
6630
		return;
6631

6632
	usage = page_counter_read(&memcg->memory);
R
Roman Gushchin 已提交
6633
	if (!usage)
6634
		return;
R
Roman Gushchin 已提交
6635 6636

	parent = parent_mem_cgroup(memcg);
6637 6638
	/* No parent means a non-hierarchical mode on v1 memcg */
	if (!parent)
6639
		return;
6640

6641
	if (parent == root) {
6642
		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6643
		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6644
		return;
R
Roman Gushchin 已提交
6645 6646
	}

6647 6648
	parent_usage = page_counter_read(&parent->memory);

6649
	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6650 6651
			READ_ONCE(memcg->memory.min),
			READ_ONCE(parent->memory.emin),
6652
			atomic_long_read(&parent->memory.children_min_usage)));
6653

6654
	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6655 6656
			READ_ONCE(memcg->memory.low),
			READ_ONCE(parent->memory.elow),
6657
			atomic_long_read(&parent->memory.children_low_usage)));
6658 6659
}

6660
/**
6661
 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6662 6663 6664 6665 6666 6667 6668
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
6669
 * Returns 0 on success. Otherwise, an error code is returned.
6670
 */
6671
int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6672
{
6673
	unsigned int nr_pages = hpage_nr_pages(page);
6674 6675 6676 6677 6678 6679 6680
	struct mem_cgroup *memcg = NULL;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
6681 6682 6683
		swp_entry_t ent = { .val = page_private(page), };
		unsigned short id;

6684 6685 6686
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
6687 6688
		 * already charged pages, too.  page->mem_cgroup is protected
		 * by the page lock, which serializes swap cache removal, which
6689 6690
		 * in turn serializes uncharging.
		 */
6691
		VM_BUG_ON_PAGE(!PageLocked(page), page);
6692
		if (compound_head(page)->mem_cgroup)
6693
			goto out;
6694

6695 6696 6697 6698 6699 6700
		id = lookup_swap_cgroup_id(ent);
		rcu_read_lock();
		memcg = mem_cgroup_from_id(id);
		if (memcg && !css_tryget_online(&memcg->css))
			memcg = NULL;
		rcu_read_unlock();
6701 6702 6703 6704 6705 6706
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);
6707 6708
	if (ret)
		goto out_put;
6709

6710
	css_get(&memcg->css);
6711
	commit_charge(page, memcg);
6712 6713

	local_irq_disable();
6714
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6715 6716
	memcg_check_events(memcg, page);
	local_irq_enable();
6717

6718
	if (PageSwapCache(page)) {
6719 6720 6721 6722 6723 6724
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
6725
		mem_cgroup_uncharge_swap(entry, nr_pages);
6726 6727
	}

6728 6729 6730 6731
out_put:
	css_put(&memcg->css);
out:
	return ret;
6732 6733
}

6734 6735
struct uncharge_gather {
	struct mem_cgroup *memcg;
6736
	unsigned long nr_pages;
6737 6738 6739 6740 6741 6742
	unsigned long pgpgout;
	unsigned long nr_kmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6743
{
6744 6745 6746 6747 6748
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
6749 6750
	unsigned long flags;

6751
	if (!mem_cgroup_is_root(ug->memcg)) {
6752
		page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6753
		if (do_memsw_account())
6754
			page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6755 6756 6757
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
6758
	}
6759 6760

	local_irq_save(flags);
6761
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6762
	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6763
	memcg_check_events(ug->memcg, ug->dummy_page);
6764
	local_irq_restore(flags);
6765 6766 6767 6768
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
6769 6770
	unsigned long nr_pages;

6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789
	VM_BUG_ON_PAGE(PageLRU(page), page);

	if (!page->mem_cgroup)
		return;

	/*
	 * Nobody should be changing or seriously looking at
	 * page->mem_cgroup at this point, we have fully
	 * exclusive access to the page.
	 */

	if (ug->memcg != page->mem_cgroup) {
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
		ug->memcg = page->mem_cgroup;
	}

6790 6791
	nr_pages = compound_nr(page);
	ug->nr_pages += nr_pages;
6792

6793
	if (!PageKmemcg(page)) {
6794 6795
		ug->pgpgout++;
	} else {
6796
		ug->nr_kmem += nr_pages;
6797 6798 6799 6800 6801
		__ClearPageKmemcg(page);
	}

	ug->dummy_page = page;
	page->mem_cgroup = NULL;
6802
	css_put(&ug->memcg->css);
6803 6804 6805 6806
}

static void uncharge_list(struct list_head *page_list)
{
6807
	struct uncharge_gather ug;
6808
	struct list_head *next;
6809 6810

	uncharge_gather_clear(&ug);
6811

6812 6813 6814 6815
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
6816 6817
	next = page_list->next;
	do {
6818 6819
		struct page *page;

6820 6821 6822
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

6823
		uncharge_page(page, &ug);
6824 6825
	} while (next != page_list);

6826 6827
	if (ug.memcg)
		uncharge_batch(&ug);
6828 6829
}

6830 6831 6832 6833
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
6834
 * Uncharge a page previously charged with mem_cgroup_charge().
6835 6836 6837
 */
void mem_cgroup_uncharge(struct page *page)
{
6838 6839
	struct uncharge_gather ug;

6840 6841 6842
	if (mem_cgroup_disabled())
		return;

6843
	/* Don't touch page->lru of any random page, pre-check: */
6844
	if (!page->mem_cgroup)
6845 6846
		return;

6847 6848 6849
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
6850
}
6851

6852 6853 6854 6855 6856
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
6857
 * mem_cgroup_charge().
6858 6859 6860 6861 6862
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
6863

6864 6865
	if (!list_empty(page_list))
		uncharge_list(page_list);
6866 6867 6868
}

/**
6869 6870 6871
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
6872
 *
6873 6874
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
6875 6876 6877
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
6878
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6879
{
6880
	struct mem_cgroup *memcg;
6881
	unsigned int nr_pages;
6882
	unsigned long flags;
6883 6884 6885 6886

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6887 6888
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6889 6890 6891 6892 6893

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
6894
	if (newpage->mem_cgroup)
6895 6896
		return;

6897
	/* Swapcache readahead pages can get replaced before being charged */
6898
	memcg = oldpage->mem_cgroup;
6899
	if (!memcg)
6900 6901
		return;

6902
	/* Force-charge the new page. The old one will be freed soon */
6903
	nr_pages = hpage_nr_pages(newpage);
6904 6905 6906 6907

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
6908

6909
	css_get(&memcg->css);
6910
	commit_charge(newpage, memcg);
6911

6912
	local_irq_save(flags);
6913
	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6914
	memcg_check_events(memcg, newpage);
6915
	local_irq_restore(flags);
6916 6917
}

6918
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6919 6920
EXPORT_SYMBOL(memcg_sockets_enabled_key);

6921
void mem_cgroup_sk_alloc(struct sock *sk)
6922 6923 6924
{
	struct mem_cgroup *memcg;

6925 6926 6927
	if (!mem_cgroup_sockets_enabled)
		return;

6928 6929 6930 6931
	/* Do not associate the sock with unrelated interrupted task's memcg. */
	if (in_interrupt())
		return;

6932 6933
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
6934 6935
	if (memcg == root_mem_cgroup)
		goto out;
6936
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6937
		goto out;
S
Shakeel Butt 已提交
6938
	if (css_tryget(&memcg->css))
6939
		sk->sk_memcg = memcg;
6940
out:
6941 6942 6943
	rcu_read_unlock();
}

6944
void mem_cgroup_sk_free(struct sock *sk)
6945
{
6946 6947
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6960
	gfp_t gfp_mask = GFP_KERNEL;
6961

6962
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6963
		struct page_counter *fail;
6964

6965 6966
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
6967 6968
			return true;
		}
6969 6970
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
6971
		return false;
6972
	}
6973

6974 6975 6976 6977
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

6978
	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6979

6980 6981 6982 6983
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6984 6985 6986 6987 6988
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
6989 6990
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
6991 6992 6993
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6994
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6995
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6996 6997
		return;
	}
6998

6999
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7000

7001
	refill_stock(memcg, nr_pages);
7002 7003
}

7004 7005 7006 7007 7008 7009 7010 7011 7012
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
7013 7014
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
7015 7016 7017 7018
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
7019

7020
/*
7021 7022
 * subsys_initcall() for memory controller.
 *
7023 7024 7025 7026
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
7027 7028 7029
 */
static int __init mem_cgroup_init(void)
{
7030 7031
	int cpu, node;

7032 7033
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

7045
		rtpn->rb_root = RB_ROOT;
7046
		rtpn->rb_rightmost = NULL;
7047
		spin_lock_init(&rtpn->lock);
7048 7049 7050
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

7051 7052 7053
	return 0;
}
subsys_initcall(mem_cgroup_init);
7054 7055

#ifdef CONFIG_MEMCG_SWAP
7056 7057
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
7058
	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

7074 7075 7076 7077 7078 7079 7080 7081 7082
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
7083
	struct mem_cgroup *memcg, *swap_memcg;
7084
	unsigned int nr_entries;
7085 7086 7087 7088 7089
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

7090
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7091 7092 7093 7094 7095 7096 7097 7098
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

7099 7100 7101 7102 7103 7104
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
7105 7106 7107 7108 7109 7110
	nr_entries = hpage_nr_pages(page);
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
7111
	VM_BUG_ON_PAGE(oldid, page);
7112
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7113 7114 7115 7116

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
7117
		page_counter_uncharge(&memcg->memory, nr_entries);
7118

7119
	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7120
		if (!mem_cgroup_is_root(swap_memcg))
7121 7122
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
7123 7124
	}

7125 7126
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
7127
	 * i_pages lock which is taken with interrupts-off. It is
7128
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
7129
	 * only synchronisation we have for updating the per-CPU variables.
7130 7131
	 */
	VM_BUG_ON(!irqs_disabled());
7132
	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7133
	memcg_check_events(memcg, page);
7134

7135
	css_put(&memcg->css);
7136 7137
}

7138 7139
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
7140 7141 7142
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
7143
 * Try to charge @page's memcg for the swap space at @entry.
7144 7145 7146 7147 7148
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
7149
	unsigned int nr_pages = hpage_nr_pages(page);
7150
	struct page_counter *counter;
7151
	struct mem_cgroup *memcg;
7152 7153
	unsigned short oldid;

7154
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7155 7156 7157 7158 7159 7160 7161 7162
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

7163 7164
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7165
		return 0;
7166
	}
7167

7168 7169
	memcg = mem_cgroup_id_get_online(memcg);

7170
	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7171
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7172 7173
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7174
		mem_cgroup_id_put(memcg);
7175
		return -ENOMEM;
7176
	}
7177

7178 7179 7180 7181
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7182
	VM_BUG_ON_PAGE(oldid, page);
7183
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7184 7185 7186 7187

	return 0;
}

7188
/**
7189
 * mem_cgroup_uncharge_swap - uncharge swap space
7190
 * @entry: swap entry to uncharge
7191
 * @nr_pages: the amount of swap space to uncharge
7192
 */
7193
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7194 7195 7196 7197
{
	struct mem_cgroup *memcg;
	unsigned short id;

7198
	id = swap_cgroup_record(entry, 0, nr_pages);
7199
	rcu_read_lock();
7200
	memcg = mem_cgroup_from_id(id);
7201
	if (memcg) {
7202
		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7203
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7204
				page_counter_uncharge(&memcg->swap, nr_pages);
7205
			else
7206
				page_counter_uncharge(&memcg->memsw, nr_pages);
7207
		}
7208
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7209
		mem_cgroup_id_put_many(memcg, nr_pages);
7210 7211 7212 7213
	}
	rcu_read_unlock();
}

7214 7215 7216 7217
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

7218
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7219 7220 7221
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
7222
				      READ_ONCE(memcg->swap.max) -
7223 7224 7225 7226
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

7227 7228 7229 7230 7231 7232 7233 7234
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
7235
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7236 7237 7238 7239 7240 7241
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

7242 7243 7244 7245 7246
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		unsigned long usage = page_counter_read(&memcg->swap);

		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
		    usage * 2 >= READ_ONCE(memcg->swap.max))
7247
			return true;
7248
	}
7249 7250 7251 7252

	return false;
}

7253
static int __init setup_swap_account(char *s)
7254 7255
{
	if (!strcmp(s, "1"))
7256
		cgroup_memory_noswap = 0;
7257
	else if (!strcmp(s, "0"))
7258
		cgroup_memory_noswap = 1;
7259 7260
	return 1;
}
7261
__setup("swapaccount=", setup_swap_account);
7262

7263 7264 7265 7266 7267 7268 7269 7270
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293
static int swap_high_show(struct seq_file *m, void *v)
{
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
}

static ssize_t swap_high_write(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &high);
	if (err)
		return err;

	page_counter_set_high(&memcg->swap, high);

	return nbytes;
}

7294 7295
static int swap_max_show(struct seq_file *m, void *v)
{
7296 7297
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

7312
	xchg(&memcg->swap.max, max);
7313 7314 7315 7316

	return nbytes;
}

7317 7318
static int swap_events_show(struct seq_file *m, void *v)
{
7319
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7320

7321 7322
	seq_printf(m, "high %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7323 7324 7325 7326 7327 7328 7329 7330
	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

7331 7332 7333 7334 7335 7336
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
7337 7338 7339 7340 7341 7342
	{
		.name = "swap.high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_high_show,
		.write = swap_high_write,
	},
7343 7344 7345 7346 7347 7348
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
7349 7350 7351 7352 7353 7354
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
7355 7356 7357
	{ }	/* terminate */
};

7358
static struct cftype memsw_files[] = {
7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

7385 7386 7387 7388 7389 7390 7391
/*
 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
 * boot parameter. This may result in premature OOPS inside
 * mem_cgroup_get_nr_swap_pages() function in corner cases.
 */
7392 7393
static int __init mem_cgroup_swap_init(void)
{
7394 7395 7396 7397 7398
	/* No memory control -> no swap control */
	if (mem_cgroup_disabled())
		cgroup_memory_noswap = true;

	if (cgroup_memory_noswap)
7399 7400 7401 7402 7403
		return 0;

	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));

7404 7405
	return 0;
}
7406
core_initcall(mem_cgroup_swap_init);
7407 7408

#endif /* CONFIG_MEMCG_SWAP */