memcontrol.c 154.5 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include <linux/pagemap.h>
40
#include <linux/smp.h>
41
#include <linux/page-flags.h>
42
#include <linux/backing-dev.h>
43 44
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
45
#include <linux/limits.h>
46
#include <linux/export.h>
47
#include <linux/mutex.h>
48
#include <linux/rbtree.h>
49
#include <linux/slab.h>
50
#include <linux/swap.h>
51
#include <linux/swapops.h>
52
#include <linux/spinlock.h>
53
#include <linux/eventfd.h>
54
#include <linux/poll.h>
55
#include <linux/sort.h>
56
#include <linux/fs.h>
57
#include <linux/seq_file.h>
58
#include <linux/vmpressure.h>
59
#include <linux/mm_inline.h>
60
#include <linux/swap_cgroup.h>
61
#include <linux/cpu.h>
62
#include <linux/oom.h>
63
#include <linux/lockdep.h>
64
#include <linux/file.h>
65
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
66
#include "internal.h"
G
Glauber Costa 已提交
67
#include <net/sock.h>
M
Michal Hocko 已提交
68
#include <net/ip.h>
69
#include "slab.h"
B
Balbir Singh 已提交
70

71 72
#include <asm/uaccess.h>

73 74
#include <trace/events/vmscan.h>

75 76
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
77

78 79
struct mem_cgroup *root_mem_cgroup __read_mostly;

80
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
81

82 83 84
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

85 86 87
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

88
/* Whether the swap controller is active */
A
Andrew Morton 已提交
89
#ifdef CONFIG_MEMCG_SWAP
90 91
int do_swap_account __read_mostly;
#else
92
#define do_swap_account		0
93 94
#endif

95 96 97 98 99 100
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

101 102 103
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
104
	"rss_huge",
105
	"mapped_file",
106
	"dirty",
107
	"writeback",
108 109 110 111 112 113 114 115 116 117
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

118 119 120 121 122 123 124 125
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

126 127 128
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
129

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
150 151 152 153 154
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
155

156 157 158
/*
 * cgroup_event represents events which userspace want to receive.
 */
159
struct mem_cgroup_event {
160
	/*
161
	 * memcg which the event belongs to.
162
	 */
163
	struct mem_cgroup *memcg;
164 165 166 167 168 169 170 171
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
172 173 174 175 176
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
177
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
178
			      struct eventfd_ctx *eventfd, const char *args);
179 180 181 182 183
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
184
	void (*unregister_event)(struct mem_cgroup *memcg,
185
				 struct eventfd_ctx *eventfd);
186 187 188 189 190 191 192 193 194 195
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

196 197
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198

199 200
/* Stuffs for move charges at task migration. */
/*
201
 * Types of charges to be moved.
202
 */
203 204 205
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
206

207 208
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
209
	spinlock_t	  lock; /* for from, to */
210
	struct mm_struct  *mm;
211 212
	struct mem_cgroup *from;
	struct mem_cgroup *to;
213
	unsigned long flags;
214
	unsigned long precharge;
215
	unsigned long moved_charge;
216
	unsigned long moved_swap;
217 218 219
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
220
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
221 222
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
223

224 225 226 227
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
228
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
229
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
230

231 232
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
233
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
234
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
235
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
236 237 238
	NR_CHARGE_TYPE,
};

239
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
240 241 242 243
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
244
	_KMEM,
V
Vladimir Davydov 已提交
245
	_TCP,
G
Glauber Costa 已提交
246 247
};

248 249
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
250
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
251 252
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
253

254 255 256 257 258 259 260 261 262 263 264 265 266
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

267 268 269 270 271
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

272
#ifndef CONFIG_SLOB
273
/*
274
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
275 276 277 278 279
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
280
 *
281 282
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
283
 */
284 285
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
286

287 288 289 290 291 292 293 294 295 296 297 298 299
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

300 301 302 303 304 305
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
306
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
307 308
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
309
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
310 311 312
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
313
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
314

315 316 317 318 319 320
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
321
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
322
EXPORT_SYMBOL(memcg_kmem_enabled_key);
323

324
#endif /* !CONFIG_SLOB */
325

326
static struct mem_cgroup_per_zone *
327
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
328
{
329 330 331
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

332
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
333 334
}

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

352
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
353 354 355 356 357
		memcg = root_mem_cgroup;

	return &memcg->css;
}

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

386
static struct mem_cgroup_per_zone *
387
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
388
{
389 390
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
391

392
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
393 394
}

395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

410 411
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
412
					 unsigned long new_usage_in_excess)
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

442 443
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
444 445 446 447 448 449 450
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

451 452
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
453
{
454 455 456
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
457
	__mem_cgroup_remove_exceeded(mz, mctz);
458
	spin_unlock_irqrestore(&mctz->lock, flags);
459 460
}

461 462 463
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
464
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
465 466 467 468 469 470 471
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
472 473 474

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
475
	unsigned long excess;
476 477 478
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

479
	mctz = soft_limit_tree_from_page(page);
480 481 482 483 484
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
485
		mz = mem_cgroup_page_zoneinfo(memcg, page);
486
		excess = soft_limit_excess(memcg);
487 488 489 490 491
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
492 493 494
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
495 496
			/* if on-tree, remove it */
			if (mz->on_tree)
497
				__mem_cgroup_remove_exceeded(mz, mctz);
498 499 500 501
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
502
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
503
			spin_unlock_irqrestore(&mctz->lock, flags);
504 505 506 507 508 509 510
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
511 512
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
513

514 515 516 517
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
518
			mem_cgroup_remove_exceeded(mz, mctz);
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
541
	__mem_cgroup_remove_exceeded(mz, mctz);
542
	if (!soft_limit_excess(mz->memcg) ||
543
	    !css_tryget_online(&mz->memcg->css))
544 545 546 547 548 549 550 551 552 553
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

554
	spin_lock_irq(&mctz->lock);
555
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
556
	spin_unlock_irq(&mctz->lock);
557 558 559
	return mz;
}

560
/*
561 562
 * Return page count for single (non recursive) @memcg.
 *
563 564 565 566 567
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
568
 * a periodic synchronization of counter in memcg's counter.
569 570 571 572 573 574 575 576 577
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
578
 * common workload, threshold and synchronization as vmstat[] should be
579 580
 * implemented.
 */
581 582
static unsigned long
mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
583
{
584
	long val = 0;
585 586
	int cpu;

587
	/* Per-cpu values can be negative, use a signed accumulator */
588
	for_each_possible_cpu(cpu)
589
		val += per_cpu(memcg->stat->count[idx], cpu);
590 591 592 593 594 595
	/*
	 * Summing races with updates, so val may be negative.  Avoid exposing
	 * transient negative values.
	 */
	if (val < 0)
		val = 0;
596 597 598
	return val;
}

599
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
600 601 602 603 604
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

605
	for_each_possible_cpu(cpu)
606
		val += per_cpu(memcg->stat->events[idx], cpu);
607 608 609
	return val;
}

610
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
611
					 struct page *page,
612
					 bool compound, int nr_pages)
613
{
614 615 616 617
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
618
	if (PageAnon(page))
619
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
620
				nr_pages);
621
	else
622
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
623
				nr_pages);
624

625 626
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
627 628
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);
629
	}
630

631 632
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
633
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
634
	else {
635
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
636 637
		nr_pages = -nr_pages; /* for event */
	}
638

639
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
640 641
}

642 643
unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
					   int nid, unsigned int lru_mask)
644
{
645
	unsigned long nr = 0;
646 647
	int zid;

648
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
649

650 651 652 653 654 655 656 657 658 659 660 661
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
662
}
663

664
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
665
			unsigned int lru_mask)
666
{
667
	unsigned long nr = 0;
668
	int nid;
669

670
	for_each_node_state(nid, N_MEMORY)
671 672
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
673 674
}

675 676
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
677 678 679
{
	unsigned long val, next;

680
	val = __this_cpu_read(memcg->stat->nr_page_events);
681
	next = __this_cpu_read(memcg->stat->targets[target]);
682
	/* from time_after() in jiffies.h */
683 684 685 686 687
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
688 689 690
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
691 692 693 694 695 696 697 698
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
699
	}
700
	return false;
701 702 703 704 705 706
}

/*
 * Check events in order.
 *
 */
707
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
708 709
{
	/* threshold event is triggered in finer grain than soft limit */
710 711
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
712
		bool do_softlimit;
713
		bool do_numainfo __maybe_unused;
714

715 716
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
717 718 719 720
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
721
		mem_cgroup_threshold(memcg);
722 723
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
724
#if MAX_NUMNODES > 1
725
		if (unlikely(do_numainfo))
726
			atomic_inc(&memcg->numainfo_events);
727
#endif
728
	}
729 730
}

731
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
732
{
733 734 735 736 737 738 739 740
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

741
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
742
}
M
Michal Hocko 已提交
743
EXPORT_SYMBOL(mem_cgroup_from_task);
744

745
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
746
{
747
	struct mem_cgroup *memcg = NULL;
748

749 750
	rcu_read_lock();
	do {
751 752 753 754 755 756
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
757
			memcg = root_mem_cgroup;
758 759 760 761 762
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
763
	} while (!css_tryget_online(&memcg->css));
764
	rcu_read_unlock();
765
	return memcg;
766 767
}

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
785
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
786
				   struct mem_cgroup *prev,
787
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
788
{
M
Michal Hocko 已提交
789
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
790
	struct cgroup_subsys_state *css = NULL;
791
	struct mem_cgroup *memcg = NULL;
792
	struct mem_cgroup *pos = NULL;
793

794 795
	if (mem_cgroup_disabled())
		return NULL;
796

797 798
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
799

800
	if (prev && !reclaim)
801
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
802

803 804
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
805
			goto out;
806
		return root;
807
	}
K
KAMEZAWA Hiroyuki 已提交
808

809
	rcu_read_lock();
M
Michal Hocko 已提交
810

811 812 813 814 815 816 817 818 819
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

820
		while (1) {
821
			pos = READ_ONCE(iter->position);
822 823
			if (!pos || css_tryget(&pos->css))
				break;
824
			/*
825 826 827 828 829 830
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
831
			 */
832 833
			(void)cmpxchg(&iter->position, pos, NULL);
		}
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
851
		}
K
KAMEZAWA Hiroyuki 已提交
852

853 854 855 856 857 858
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
859

860 861
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
862

863 864
		if (css_tryget(css))
			break;
865

866
		memcg = NULL;
867
	}
868 869 870

	if (reclaim) {
		/*
871 872 873
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
874
		 */
875 876
		(void)cmpxchg(&iter->position, pos, memcg);

877 878 879 880 881 882 883
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
884
	}
885

886 887
out_unlock:
	rcu_read_unlock();
888
out:
889 890 891
	if (prev && prev != root)
		css_put(&prev->css);

892
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
893
}
K
KAMEZAWA Hiroyuki 已提交
894

895 896 897 898 899 900 901
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
902 903 904 905 906 907
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
908

909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
	int i;

	while ((memcg = parent_mem_cgroup(memcg))) {
		for_each_node(nid) {
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
				for (i = 0; i <= DEF_PRIORITY; i++) {
					iter = &mz->iter[i];
					cmpxchg(&iter->position,
						dead_memcg, NULL);
				}
			}
		}
	}
}

931 932 933 934 935 936
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
937
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
938
	     iter != NULL;				\
939
	     iter = mem_cgroup_iter(root, iter, NULL))
940

941
#define for_each_mem_cgroup(iter)			\
942
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
943
	     iter != NULL;				\
944
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
945

946 947 948
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
949
 * @memcg: memcg of the wanted lruvec
950 951 952 953 954 955 956 957 958
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
959
	struct lruvec *lruvec;
960

961 962 963 964
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
965

966
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
967 968 969 970 971 972 973 974 975 976
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
977 978 979
}

/**
980
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
981
 * @page: the page
982
 * @zone: zone of the page
983 984 985 986
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
987
 */
988
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
989 990
{
	struct mem_cgroup_per_zone *mz;
991
	struct mem_cgroup *memcg;
992
	struct lruvec *lruvec;
993

994 995 996 997
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
998

999
	memcg = page->mem_cgroup;
1000
	/*
1001
	 * Swapcache readahead pages are added to the LRU - and
1002
	 * possibly migrated - before they are charged.
1003
	 */
1004 1005
	if (!memcg)
		memcg = root_mem_cgroup;
1006

1007
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1018
}
1019

1020
/**
1021 1022 1023 1024
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1025
 *
1026 1027 1028
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1029
 */
1030 1031
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1032 1033
{
	struct mem_cgroup_per_zone *mz;
1034
	unsigned long *lru_size;
1035 1036
	long size;
	bool empty;
1037

1038 1039
	__update_lru_size(lruvec, lru, nr_pages);

1040 1041 1042
	if (mem_cgroup_disabled())
		return;

1043 1044
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
	empty = list_empty(lruvec->lists + lru);

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
	if (WARN_ONCE(size < 0 || empty != !size,
		"%s(%p, %d, %d): lru_size %ld but %sempty\n",
		__func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1060
}
1061

1062
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1063
{
1064
	struct mem_cgroup *task_memcg;
1065
	struct task_struct *p;
1066
	bool ret;
1067

1068
	p = find_lock_task_mm(task);
1069
	if (p) {
1070
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1071 1072 1073 1074 1075 1076 1077
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1078
		rcu_read_lock();
1079 1080
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1081
		rcu_read_unlock();
1082
	}
1083 1084
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1085 1086 1087
	return ret;
}

1088
/**
1089
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1090
 * @memcg: the memory cgroup
1091
 *
1092
 * Returns the maximum amount of memory @mem can be charged with, in
1093
 * pages.
1094
 */
1095
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1096
{
1097 1098 1099
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1100

1101
	count = page_counter_read(&memcg->memory);
1102
	limit = READ_ONCE(memcg->memory.limit);
1103 1104 1105
	if (count < limit)
		margin = limit - count;

1106
	if (do_memsw_account()) {
1107
		count = page_counter_read(&memcg->memsw);
1108
		limit = READ_ONCE(memcg->memsw.limit);
1109 1110
		if (count <= limit)
			margin = min(margin, limit - count);
1111 1112
		else
			margin = 0;
1113 1114 1115
	}

	return margin;
1116 1117
}

1118
/*
Q
Qiang Huang 已提交
1119
 * A routine for checking "mem" is under move_account() or not.
1120
 *
Q
Qiang Huang 已提交
1121 1122 1123
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1124
 */
1125
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1126
{
1127 1128
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1129
	bool ret = false;
1130 1131 1132 1133 1134 1135 1136 1137 1138
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1139

1140 1141
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1142 1143
unlock:
	spin_unlock(&mc.lock);
1144 1145 1146
	return ret;
}

1147
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1148 1149
{
	if (mc.moving_task && current != mc.moving_task) {
1150
		if (mem_cgroup_under_move(memcg)) {
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1163
#define K(x) ((x) << (PAGE_SHIFT-10))
1164
/**
1165
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1166 1167 1168 1169 1170 1171 1172 1173
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
1174 1175
	struct mem_cgroup *iter;
	unsigned int i;
1176 1177 1178

	rcu_read_lock();

1179 1180 1181 1182 1183 1184 1185 1186
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1187
	pr_cont_cgroup_path(memcg->css.cgroup);
1188
	pr_cont("\n");
1189 1190 1191

	rcu_read_unlock();

1192 1193 1194 1195 1196 1197 1198 1199 1200
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1201 1202

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1203 1204
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1205 1206 1207
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1208
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1209
				continue;
1210
			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1211 1212 1213 1214 1215 1216 1217 1218 1219
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1220 1221
}

1222 1223 1224 1225
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1226
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1227 1228
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1229 1230
	struct mem_cgroup *iter;

1231
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1232
		num++;
1233 1234 1235
	return num;
}

D
David Rientjes 已提交
1236 1237 1238
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1239
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1240
{
1241
	unsigned long limit;
1242

1243
	limit = memcg->memory.limit;
1244
	if (mem_cgroup_swappiness(memcg)) {
1245
		unsigned long memsw_limit;
1246
		unsigned long swap_limit;
1247

1248
		memsw_limit = memcg->memsw.limit;
1249 1250 1251
		swap_limit = memcg->swap.limit;
		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
		limit = min(limit + swap_limit, memsw_limit);
1252 1253
	}
	return limit;
D
David Rientjes 已提交
1254 1255
}

1256
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1257
				     int order)
1258
{
1259 1260 1261
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1262
		.memcg = memcg,
1263 1264 1265
		.gfp_mask = gfp_mask,
		.order = order,
	};
1266 1267 1268 1269 1270 1271
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1272 1273
	mutex_lock(&oom_lock);

1274
	/*
1275 1276 1277
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1278
	 */
1279
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1280
		mark_oom_victim(current);
1281
		try_oom_reaper(current);
1282
		goto unlock;
1283 1284
	}

1285
	check_panic_on_oom(&oc, CONSTRAINT_MEMCG);
1286
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1287
	for_each_mem_cgroup_tree(iter, memcg) {
1288
		struct css_task_iter it;
1289 1290
		struct task_struct *task;

1291 1292
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1293
			switch (oom_scan_process_thread(&oc, task)) {
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1304
				css_task_iter_end(&it);
1305 1306 1307
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
1308 1309
				/* Set a dummy value to return "true". */
				chosen = (void *) 1;
1310
				goto unlock;
1311 1312 1313 1314
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1327
		}
1328
		css_task_iter_end(&it);
1329 1330
	}

1331 1332
	if (chosen) {
		points = chosen_points * 1000 / totalpages;
1333
		oom_kill_process(&oc, chosen, points, totalpages,
1334
				 "Memory cgroup out of memory");
1335 1336 1337
	}
unlock:
	mutex_unlock(&oom_lock);
1338
	return chosen;
1339 1340
}

1341 1342
#if MAX_NUMNODES > 1

1343 1344
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1345
 * @memcg: the target memcg
1346 1347 1348 1349 1350 1351 1352
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1353
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1354 1355
		int nid, bool noswap)
{
1356
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1357 1358 1359
		return true;
	if (noswap || !total_swap_pages)
		return false;
1360
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1361 1362 1363 1364
		return true;
	return false;

}
1365 1366 1367 1368 1369 1370 1371

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1372
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1373 1374
{
	int nid;
1375 1376 1377 1378
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1379
	if (!atomic_read(&memcg->numainfo_events))
1380
		return;
1381
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1382 1383 1384
		return;

	/* make a nodemask where this memcg uses memory from */
1385
	memcg->scan_nodes = node_states[N_MEMORY];
1386

1387
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1388

1389 1390
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1391
	}
1392

1393 1394
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1409
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1410 1411 1412
{
	int node;

1413 1414
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1415

1416
	node = next_node_in(node, memcg->scan_nodes);
1417
	/*
1418 1419 1420
	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
	 * last time it really checked all the LRUs due to rate limiting.
	 * Fallback to the current node in that case for simplicity.
1421 1422 1423 1424
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1425
	memcg->last_scanned_node = node;
1426 1427 1428
	return node;
}
#else
1429
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1430 1431 1432 1433 1434
{
	return 0;
}
#endif

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1450
	excess = soft_limit_excess(root_memcg);
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1479
		if (!soft_limit_excess(root_memcg))
1480
			break;
1481
	}
1482 1483
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1484 1485
}

1486 1487 1488 1489 1490 1491
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1492 1493
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1494 1495 1496 1497
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1498
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1499
{
1500
	struct mem_cgroup *iter, *failed = NULL;
1501

1502 1503
	spin_lock(&memcg_oom_lock);

1504
	for_each_mem_cgroup_tree(iter, memcg) {
1505
		if (iter->oom_lock) {
1506 1507 1508 1509 1510
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1511 1512
			mem_cgroup_iter_break(memcg, iter);
			break;
1513 1514
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1515
	}
K
KAMEZAWA Hiroyuki 已提交
1516

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1528
		}
1529 1530
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1531 1532 1533 1534

	spin_unlock(&memcg_oom_lock);

	return !failed;
1535
}
1536

1537
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1538
{
K
KAMEZAWA Hiroyuki 已提交
1539 1540
	struct mem_cgroup *iter;

1541
	spin_lock(&memcg_oom_lock);
1542
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1543
	for_each_mem_cgroup_tree(iter, memcg)
1544
		iter->oom_lock = false;
1545
	spin_unlock(&memcg_oom_lock);
1546 1547
}

1548
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1549 1550 1551
{
	struct mem_cgroup *iter;

1552
	spin_lock(&memcg_oom_lock);
1553
	for_each_mem_cgroup_tree(iter, memcg)
1554 1555
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1556 1557
}

1558
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1559 1560 1561
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1562 1563
	/*
	 * When a new child is created while the hierarchy is under oom,
1564
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1565
	 */
1566
	spin_lock(&memcg_oom_lock);
1567
	for_each_mem_cgroup_tree(iter, memcg)
1568 1569 1570
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1571 1572
}

K
KAMEZAWA Hiroyuki 已提交
1573 1574
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1575
struct oom_wait_info {
1576
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1577 1578 1579 1580 1581 1582
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1583 1584
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1585 1586 1587
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1588
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1589

1590 1591
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1592 1593 1594 1595
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1596
static void memcg_oom_recover(struct mem_cgroup *memcg)
1597
{
1598 1599 1600 1601 1602 1603 1604 1605 1606
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1607
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1608 1609
}

1610
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1611
{
1612
	if (!current->memcg_may_oom)
1613
		return;
K
KAMEZAWA Hiroyuki 已提交
1614
	/*
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1627
	 */
1628
	css_get(&memcg->css);
T
Tejun Heo 已提交
1629 1630 1631
	current->memcg_in_oom = memcg;
	current->memcg_oom_gfp_mask = mask;
	current->memcg_oom_order = order;
1632 1633 1634 1635
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1636
 * @handle: actually kill/wait or just clean up the OOM state
1637
 *
1638 1639
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1640
 *
1641
 * Memcg supports userspace OOM handling where failed allocations must
1642 1643 1644 1645
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1646
 * the end of the page fault to complete the OOM handling.
1647 1648
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1649
 * completed, %false otherwise.
1650
 */
1651
bool mem_cgroup_oom_synchronize(bool handle)
1652
{
T
Tejun Heo 已提交
1653
	struct mem_cgroup *memcg = current->memcg_in_oom;
1654
	struct oom_wait_info owait;
1655
	bool locked;
1656 1657 1658

	/* OOM is global, do not handle */
	if (!memcg)
1659
		return false;
1660

1661
	if (!handle || oom_killer_disabled)
1662
		goto cleanup;
1663 1664 1665 1666 1667 1668

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1669

1670
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1681 1682
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1683
	} else {
1684
		schedule();
1685 1686 1687 1688 1689
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1690 1691 1692 1693 1694 1695 1696 1697
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1698
cleanup:
T
Tejun Heo 已提交
1699
	current->memcg_in_oom = NULL;
1700
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1701
	return true;
1702 1703
}

1704
/**
1705 1706
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1707
 *
1708 1709
 * This function protects unlocked LRU pages from being moved to
 * another cgroup and stabilizes their page->mem_cgroup binding.
1710
 */
J
Johannes Weiner 已提交
1711
void lock_page_memcg(struct page *page)
1712 1713
{
	struct mem_cgroup *memcg;
1714
	unsigned long flags;
1715

1716 1717 1718 1719 1720
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 */
1721 1722 1723
	rcu_read_lock();

	if (mem_cgroup_disabled())
J
Johannes Weiner 已提交
1724
		return;
1725
again:
1726
	memcg = page->mem_cgroup;
1727
	if (unlikely(!memcg))
J
Johannes Weiner 已提交
1728
		return;
1729

Q
Qiang Huang 已提交
1730
	if (atomic_read(&memcg->moving_account) <= 0)
J
Johannes Weiner 已提交
1731
		return;
1732

1733
	spin_lock_irqsave(&memcg->move_lock, flags);
1734
	if (memcg != page->mem_cgroup) {
1735
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1736 1737
		goto again;
	}
1738 1739 1740 1741

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
1742
	 * the task who has the lock for unlock_page_memcg().
1743 1744 1745
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1746

J
Johannes Weiner 已提交
1747
	return;
1748
}
1749
EXPORT_SYMBOL(lock_page_memcg);
1750

1751
/**
1752
 * unlock_page_memcg - unlock a page->mem_cgroup binding
J
Johannes Weiner 已提交
1753
 * @page: the page
1754
 */
J
Johannes Weiner 已提交
1755
void unlock_page_memcg(struct page *page)
1756
{
J
Johannes Weiner 已提交
1757 1758
	struct mem_cgroup *memcg = page->mem_cgroup;

1759 1760 1761 1762 1763 1764 1765 1766
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1767

1768
	rcu_read_unlock();
1769
}
1770
EXPORT_SYMBOL(unlock_page_memcg);
1771

1772 1773 1774 1775
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1776
#define CHARGE_BATCH	32U
1777 1778
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1779
	unsigned int nr_pages;
1780
	struct work_struct work;
1781
	unsigned long flags;
1782
#define FLUSHING_CACHED_CHARGE	0
1783 1784
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1785
static DEFINE_MUTEX(percpu_charge_mutex);
1786

1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1797
 */
1798
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1799 1800
{
	struct memcg_stock_pcp *stock;
1801
	bool ret = false;
1802

1803
	if (nr_pages > CHARGE_BATCH)
1804
		return ret;
1805

1806
	stock = &get_cpu_var(memcg_stock);
1807
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1808
		stock->nr_pages -= nr_pages;
1809 1810
		ret = true;
	}
1811 1812 1813 1814 1815
	put_cpu_var(memcg_stock);
	return ret;
}

/*
1816
 * Returns stocks cached in percpu and reset cached information.
1817 1818 1819 1820 1821
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1822
	if (stock->nr_pages) {
1823
		page_counter_uncharge(&old->memory, stock->nr_pages);
1824
		if (do_memsw_account())
1825
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1826
		css_put_many(&old->css, stock->nr_pages);
1827
		stock->nr_pages = 0;
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
1838
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1839
	drain_stock(stock);
1840
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1841 1842 1843
}

/*
1844
 * Cache charges(val) to local per_cpu area.
1845
 * This will be consumed by consume_stock() function, later.
1846
 */
1847
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1848 1849 1850
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

1851
	if (stock->cached != memcg) { /* reset if necessary */
1852
		drain_stock(stock);
1853
		stock->cached = memcg;
1854
	}
1855
	stock->nr_pages += nr_pages;
1856 1857 1858 1859
	put_cpu_var(memcg_stock);
}

/*
1860
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1861
 * of the hierarchy under it.
1862
 */
1863
static void drain_all_stock(struct mem_cgroup *root_memcg)
1864
{
1865
	int cpu, curcpu;
1866

1867 1868 1869
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1870 1871
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1872
	curcpu = get_cpu();
1873 1874
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1875
		struct mem_cgroup *memcg;
1876

1877 1878
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
1879
			continue;
1880
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1881
			continue;
1882 1883 1884 1885 1886 1887
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1888
	}
1889
	put_cpu();
A
Andrew Morton 已提交
1890
	put_online_cpus();
1891
	mutex_unlock(&percpu_charge_mutex);
1892 1893
}

1894
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1895 1896 1897 1898 1899 1900
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

1901
	if (action == CPU_ONLINE)
1902 1903
		return NOTIFY_OK;

1904
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1905
		return NOTIFY_OK;
1906

1907 1908 1909 1910 1911
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
}

1932 1933 1934 1935 1936 1937 1938
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1939
	struct mem_cgroup *memcg;
1940 1941 1942 1943

	if (likely(!nr_pages))
		return;

1944 1945
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1946 1947 1948 1949
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

1950 1951
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
1952
{
1953
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1954
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1955
	struct mem_cgroup *mem_over_limit;
1956
	struct page_counter *counter;
1957
	unsigned long nr_reclaimed;
1958 1959
	bool may_swap = true;
	bool drained = false;
1960

1961
	if (mem_cgroup_is_root(memcg))
1962
		return 0;
1963
retry:
1964
	if (consume_stock(memcg, nr_pages))
1965
		return 0;
1966

1967
	if (!do_memsw_account() ||
1968 1969
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1970
			goto done_restock;
1971
		if (do_memsw_account())
1972 1973
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1974
	} else {
1975
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1976
		may_swap = false;
1977
	}
1978

1979 1980 1981 1982
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
1983

1984 1985 1986 1987 1988 1989 1990 1991 1992
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
1993
		goto force;
1994 1995 1996 1997

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

1998
	if (!gfpflags_allow_blocking(gfp_mask))
1999
		goto nomem;
2000

2001 2002
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

2003 2004
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2005

2006
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2007
		goto retry;
2008

2009
	if (!drained) {
2010
		drain_all_stock(mem_over_limit);
2011 2012 2013 2014
		drained = true;
		goto retry;
	}

2015 2016
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2017 2018 2019 2020 2021 2022 2023 2024 2025
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2026
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2027 2028 2029 2030 2031 2032 2033 2034
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2035 2036 2037
	if (nr_retries--)
		goto retry;

2038
	if (gfp_mask & __GFP_NOFAIL)
2039
		goto force;
2040

2041
	if (fatal_signal_pending(current))
2042
		goto force;
2043

2044 2045
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2046 2047
	mem_cgroup_oom(mem_over_limit, gfp_mask,
		       get_order(nr_pages * PAGE_SIZE));
2048
nomem:
2049
	if (!(gfp_mask & __GFP_NOFAIL))
2050
		return -ENOMEM;
2051 2052 2053 2054 2055 2056 2057
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2058
	if (do_memsw_account())
2059 2060 2061 2062
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2063 2064

done_restock:
2065
	css_get_many(&memcg->css, batch);
2066 2067
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2068

2069
	/*
2070 2071
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2072
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2073 2074 2075 2076
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2077 2078
	 */
	do {
2079
		if (page_counter_read(&memcg->memory) > memcg->high) {
2080 2081 2082 2083 2084
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2085
			current->memcg_nr_pages_over_high += batch;
2086 2087 2088
			set_notify_resume(current);
			break;
		}
2089
	} while ((memcg = parent_mem_cgroup(memcg)));
2090 2091

	return 0;
2092
}
2093

2094
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2095
{
2096 2097 2098
	if (mem_cgroup_is_root(memcg))
		return;

2099
	page_counter_uncharge(&memcg->memory, nr_pages);
2100
	if (do_memsw_account())
2101
		page_counter_uncharge(&memcg->memsw, nr_pages);
2102

2103
	css_put_many(&memcg->css, nr_pages);
2104 2105
}

2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2137
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2138
			  bool lrucare)
2139
{
2140
	int isolated;
2141

2142
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2143 2144 2145 2146 2147

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2148 2149
	if (lrucare)
		lock_page_lru(page, &isolated);
2150

2151 2152
	/*
	 * Nobody should be changing or seriously looking at
2153
	 * page->mem_cgroup at this point:
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2165
	page->mem_cgroup = memcg;
2166

2167 2168
	if (lrucare)
		unlock_page_lru(page, isolated);
2169
}
2170

2171
#ifndef CONFIG_SLOB
2172
static int memcg_alloc_cache_id(void)
2173
{
2174 2175 2176
	int id, size;
	int err;

2177
	id = ida_simple_get(&memcg_cache_ida,
2178 2179 2180
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2181

2182
	if (id < memcg_nr_cache_ids)
2183 2184 2185 2186 2187 2188
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2189
	down_write(&memcg_cache_ids_sem);
2190 2191

	size = 2 * (id + 1);
2192 2193 2194 2195 2196
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2197
	err = memcg_update_all_caches(size);
2198 2199
	if (!err)
		err = memcg_update_all_list_lrus(size);
2200 2201 2202 2203 2204
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2205
	if (err) {
2206
		ida_simple_remove(&memcg_cache_ida, id);
2207 2208 2209 2210 2211 2212 2213
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2214
	ida_simple_remove(&memcg_cache_ida, id);
2215 2216
}

2217
struct memcg_kmem_cache_create_work {
2218 2219 2220 2221 2222
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2223
static void memcg_kmem_cache_create_func(struct work_struct *w)
2224
{
2225 2226
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2227 2228
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2229

2230
	memcg_create_kmem_cache(memcg, cachep);
2231

2232
	css_put(&memcg->css);
2233 2234 2235 2236 2237 2238
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2239 2240
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2241
{
2242
	struct memcg_kmem_cache_create_work *cw;
2243

2244
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2245
	if (!cw)
2246
		return;
2247 2248

	css_get(&memcg->css);
2249 2250 2251

	cw->memcg = memcg;
	cw->cachep = cachep;
2252
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2253 2254 2255 2256

	schedule_work(&cw->work);
}

2257 2258
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2259 2260 2261 2262
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2263
	 * in __memcg_schedule_kmem_cache_create will recurse.
2264 2265 2266 2267 2268 2269 2270
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2271
	current->memcg_kmem_skip_account = 1;
2272
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2273
	current->memcg_kmem_skip_account = 0;
2274
}
2275

2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
static inline bool memcg_kmem_bypass(void)
{
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;
	return false;
}

/**
 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
 * @cachep: the original global kmem cache
 *
2287 2288 2289
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
2290 2291 2292
 * If the cache does not exist yet, if we are the first user of it, we
 * create it asynchronously in a workqueue and let the current allocation
 * go through with the original cache.
2293
 *
2294 2295 2296 2297
 * This function takes a reference to the cache it returns to assure it
 * won't get destroyed while we are working with it. Once the caller is
 * done with it, memcg_kmem_put_cache() must be called to release the
 * reference.
2298
 */
2299
struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2300 2301
{
	struct mem_cgroup *memcg;
2302
	struct kmem_cache *memcg_cachep;
2303
	int kmemcg_id;
2304

2305
	VM_BUG_ON(!is_root_cache(cachep));
2306

2307
	if (memcg_kmem_bypass())
V
Vladimir Davydov 已提交
2308 2309
		return cachep;

2310
	if (current->memcg_kmem_skip_account)
2311 2312
		return cachep;

2313
	memcg = get_mem_cgroup_from_mm(current->mm);
2314
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2315
	if (kmemcg_id < 0)
2316
		goto out;
2317

2318
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2319 2320
	if (likely(memcg_cachep))
		return memcg_cachep;
2321 2322 2323 2324 2325 2326 2327 2328 2329

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2330 2331 2332
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2333
	 */
2334
	memcg_schedule_kmem_cache_create(memcg, cachep);
2335
out:
2336
	css_put(&memcg->css);
2337
	return cachep;
2338 2339
}

2340 2341 2342 2343 2344
/**
 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
 * @cachep: the cache returned by memcg_kmem_get_cache
 */
void memcg_kmem_put_cache(struct kmem_cache *cachep)
2345 2346
{
	if (!is_root_cache(cachep))
2347
		css_put(&cachep->memcg_params.memcg->css);
2348 2349
}

2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
/**
 * memcg_kmem_charge: charge a kmem page
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 * @memcg: memory cgroup to charge
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			    struct mem_cgroup *memcg)
2361
{
2362 2363
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2364 2365
	int ret;

2366
	ret = try_charge(memcg, gfp, nr_pages);
2367
	if (ret)
2368
		return ret;
2369 2370 2371 2372 2373

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2374 2375
	}

2376
	page->mem_cgroup = memcg;
2377

2378
	return 0;
2379 2380
}

2381 2382 2383 2384 2385 2386 2387 2388 2389
/**
 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2390
{
2391
	struct mem_cgroup *memcg;
2392
	int ret = 0;
2393

2394 2395 2396
	if (memcg_kmem_bypass())
		return 0;

2397
	memcg = get_mem_cgroup_from_mm(current->mm);
2398
	if (!mem_cgroup_is_root(memcg))
2399
		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2400
	css_put(&memcg->css);
2401
	return ret;
2402
}
2403 2404 2405 2406 2407 2408
/**
 * memcg_kmem_uncharge: uncharge a kmem page
 * @page: page to uncharge
 * @order: allocation order
 */
void memcg_kmem_uncharge(struct page *page, int order)
2409
{
2410
	struct mem_cgroup *memcg = page->mem_cgroup;
2411
	unsigned int nr_pages = 1 << order;
2412 2413 2414 2415

	if (!memcg)
		return;

2416
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2417

2418 2419 2420
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

2421
	page_counter_uncharge(&memcg->memory, nr_pages);
2422
	if (do_memsw_account())
2423
		page_counter_uncharge(&memcg->memsw, nr_pages);
2424

2425
	page->mem_cgroup = NULL;
2426
	css_put_many(&memcg->css, nr_pages);
2427
}
2428
#endif /* !CONFIG_SLOB */
2429

2430 2431 2432 2433
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2434
 * zone->lru_lock and migration entries setup in all page mappings.
2435
 */
2436
void mem_cgroup_split_huge_fixup(struct page *head)
2437
{
2438
	int i;
2439

2440 2441
	if (mem_cgroup_disabled())
		return;
2442

2443
	for (i = 1; i < HPAGE_PMD_NR; i++)
2444
		head[i].mem_cgroup = head->mem_cgroup;
2445

2446
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2447
		       HPAGE_PMD_NR);
2448
}
2449
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2450

A
Andrew Morton 已提交
2451
#ifdef CONFIG_MEMCG_SWAP
2452 2453
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2454
{
2455 2456
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2457
}
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2470
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2471 2472 2473
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2474
				struct mem_cgroup *from, struct mem_cgroup *to)
2475 2476 2477
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2478 2479
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2480 2481 2482

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2483
		mem_cgroup_swap_statistics(to, true);
2484 2485 2486 2487 2488 2489
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2490
				struct mem_cgroup *from, struct mem_cgroup *to)
2491 2492 2493
{
	return -EINVAL;
}
2494
#endif
K
KAMEZAWA Hiroyuki 已提交
2495

2496
static DEFINE_MUTEX(memcg_limit_mutex);
2497

2498
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2499
				   unsigned long limit)
2500
{
2501 2502 2503
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2504
	int retry_count;
2505
	int ret;
2506 2507 2508 2509 2510 2511

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2512 2513
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2514

2515
	oldusage = page_counter_read(&memcg->memory);
2516

2517
	do {
2518 2519 2520 2521
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2522 2523 2524 2525

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2526
			ret = -EINVAL;
2527 2528
			break;
		}
2529 2530 2531 2532
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2533 2534 2535 2536

		if (!ret)
			break;

2537 2538
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2539
		curusage = page_counter_read(&memcg->memory);
2540
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2541
		if (curusage >= oldusage)
2542 2543 2544
			retry_count--;
		else
			oldusage = curusage;
2545 2546
	} while (retry_count);

2547 2548
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2549

2550 2551 2552
	return ret;
}

L
Li Zefan 已提交
2553
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2554
					 unsigned long limit)
2555
{
2556 2557 2558
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2559
	int retry_count;
2560
	int ret;
2561

2562
	/* see mem_cgroup_resize_res_limit */
2563 2564 2565 2566 2567 2568
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2569 2570 2571 2572
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2573 2574 2575 2576

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2577 2578 2579
			ret = -EINVAL;
			break;
		}
2580 2581 2582 2583
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2584 2585 2586 2587

		if (!ret)
			break;

2588 2589
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2590
		curusage = page_counter_read(&memcg->memsw);
2591
		/* Usage is reduced ? */
2592
		if (curusage >= oldusage)
2593
			retry_count--;
2594 2595
		else
			oldusage = curusage;
2596 2597
	} while (retry_count);

2598 2599
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2600

2601 2602 2603
	return ret;
}

2604 2605 2606 2607 2608 2609 2610 2611 2612
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2613
	unsigned long excess;
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2638
		spin_lock_irq(&mctz->lock);
2639
		__mem_cgroup_remove_exceeded(mz, mctz);
2640 2641 2642 2643 2644 2645

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2646 2647 2648
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2649
		excess = soft_limit_excess(mz->memcg);
2650 2651 2652 2653 2654 2655 2656 2657 2658
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2659
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2660
		spin_unlock_irq(&mctz->lock);
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2678 2679 2680 2681 2682 2683
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2684 2685
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2686 2687 2688 2689 2690 2691
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2692 2693
}

2694
/*
2695
 * Reclaims as many pages from the given memcg as possible.
2696 2697 2698 2699 2700 2701 2702
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2703 2704
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2705
	/* try to free all pages in this cgroup */
2706
	while (nr_retries && page_counter_read(&memcg->memory)) {
2707
		int progress;
2708

2709 2710 2711
		if (signal_pending(current))
			return -EINTR;

2712 2713
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2714
		if (!progress) {
2715
			nr_retries--;
2716
			/* maybe some writeback is necessary */
2717
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2718
		}
2719 2720

	}
2721 2722

	return 0;
2723 2724
}

2725 2726 2727
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2728
{
2729
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2730

2731 2732
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2733
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2734 2735
}

2736 2737
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2738
{
2739
	return mem_cgroup_from_css(css)->use_hierarchy;
2740 2741
}

2742 2743
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2744 2745
{
	int retval = 0;
2746
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2747
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2748

2749
	if (memcg->use_hierarchy == val)
2750
		return 0;
2751

2752
	/*
2753
	 * If parent's use_hierarchy is set, we can't make any modifications
2754 2755 2756 2757 2758 2759
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2760
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2761
				(val == 1 || val == 0)) {
2762
		if (!memcg_has_children(memcg))
2763
			memcg->use_hierarchy = val;
2764 2765 2766 2767
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2768

2769 2770 2771
	return retval;
}

2772
static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2773 2774
{
	struct mem_cgroup *iter;
2775
	int i;
2776

2777
	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2778

2779 2780 2781 2782
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_STAT; i++)
			stat[i] += mem_cgroup_read_stat(iter, i);
	}
2783 2784
}

2785
static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2786 2787
{
	struct mem_cgroup *iter;
2788
	int i;
2789

2790
	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2791

2792 2793 2794 2795
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_EVENTS; i++)
			events[i] += mem_cgroup_read_events(iter, i);
	}
2796 2797
}

2798
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2799
{
2800
	unsigned long val = 0;
2801

2802
	if (mem_cgroup_is_root(memcg)) {
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
		struct mem_cgroup *iter;

		for_each_mem_cgroup_tree(iter, memcg) {
			val += mem_cgroup_read_stat(iter,
					MEM_CGROUP_STAT_CACHE);
			val += mem_cgroup_read_stat(iter,
					MEM_CGROUP_STAT_RSS);
			if (swap)
				val += mem_cgroup_read_stat(iter,
						MEM_CGROUP_STAT_SWAP);
		}
2814
	} else {
2815
		if (!swap)
2816
			val = page_counter_read(&memcg->memory);
2817
		else
2818
			val = page_counter_read(&memcg->memsw);
2819
	}
2820
	return val;
2821 2822
}

2823 2824 2825 2826 2827 2828 2829
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2830

2831
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2832
			       struct cftype *cft)
B
Balbir Singh 已提交
2833
{
2834
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2835
	struct page_counter *counter;
2836

2837
	switch (MEMFILE_TYPE(cft->private)) {
2838
	case _MEM:
2839 2840
		counter = &memcg->memory;
		break;
2841
	case _MEMSWAP:
2842 2843
		counter = &memcg->memsw;
		break;
2844
	case _KMEM:
2845
		counter = &memcg->kmem;
2846
		break;
V
Vladimir Davydov 已提交
2847
	case _TCP:
2848
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
2849
		break;
2850 2851 2852
	default:
		BUG();
	}
2853 2854 2855 2856

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
2857
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2858
		if (counter == &memcg->memsw)
2859
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2872
}
2873

2874
#ifndef CONFIG_SLOB
2875
static int memcg_online_kmem(struct mem_cgroup *memcg)
2876 2877 2878
{
	int memcg_id;

2879 2880 2881
	if (cgroup_memory_nokmem)
		return 0;

2882
	BUG_ON(memcg->kmemcg_id >= 0);
2883
	BUG_ON(memcg->kmem_state);
2884

2885
	memcg_id = memcg_alloc_cache_id();
2886 2887
	if (memcg_id < 0)
		return memcg_id;
2888

2889
	static_branch_inc(&memcg_kmem_enabled_key);
2890
	/*
2891
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
2892
	 * kmemcg_id. Setting the id after enabling static branching will
2893 2894 2895
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2896
	memcg->kmemcg_id = memcg_id;
2897
	memcg->kmem_state = KMEM_ONLINE;
2898 2899

	return 0;
2900 2901
}

2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	memcg_deactivate_kmem_caches(memcg);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
2935
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2936 2937 2938 2939 2940 2941 2942
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
2943 2944
	rcu_read_unlock();

2945 2946 2947 2948 2949 2950 2951
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
2952 2953 2954 2955
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

2956 2957 2958 2959 2960 2961
	if (memcg->kmem_state == KMEM_ALLOCATED) {
		memcg_destroy_kmem_caches(memcg);
		static_branch_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
}
2962
#else
2963
static int memcg_online_kmem(struct mem_cgroup *memcg)
2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
#endif /* !CONFIG_SLOB */

2975
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2976
				   unsigned long limit)
2977
{
2978
	int ret;
2979 2980 2981 2982 2983

	mutex_lock(&memcg_limit_mutex);
	ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
	return ret;
2984
}
2985

V
Vladimir Davydov 已提交
2986 2987 2988 2989 2990 2991
static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
{
	int ret;

	mutex_lock(&memcg_limit_mutex);

2992
	ret = page_counter_limit(&memcg->tcpmem, limit);
V
Vladimir Davydov 已提交
2993 2994 2995
	if (ret)
		goto out;

2996
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
		 * function is the last one to run. See sock_update_memcg() for
		 * details, and note that we don't mark any socket as belonging
		 * to this memcg until that flag is up.
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
		 * We never race with the readers in sock_update_memcg(),
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3014
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3015 3016 3017 3018 3019 3020
	}
out:
	mutex_unlock(&memcg_limit_mutex);
	return ret;
}

3021 3022 3023 3024
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3025 3026
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3027
{
3028
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3029
	unsigned long nr_pages;
3030 3031
	int ret;

3032
	buf = strstrip(buf);
3033
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3034 3035
	if (ret)
		return ret;
3036

3037
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3038
	case RES_LIMIT:
3039 3040 3041 3042
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3043 3044 3045
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3046
			break;
3047 3048
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3049
			break;
3050 3051 3052
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
V
Vladimir Davydov 已提交
3053 3054 3055
		case _TCP:
			ret = memcg_update_tcp_limit(memcg, nr_pages);
			break;
3056
		}
3057
		break;
3058 3059 3060
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3061 3062
		break;
	}
3063
	return ret ?: nbytes;
B
Balbir Singh 已提交
3064 3065
}

3066 3067
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3068
{
3069
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3070
	struct page_counter *counter;
3071

3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3082
	case _TCP:
3083
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3084
		break;
3085 3086 3087
	default:
		BUG();
	}
3088

3089
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3090
	case RES_MAX_USAGE:
3091
		page_counter_reset_watermark(counter);
3092 3093
		break;
	case RES_FAILCNT:
3094
		counter->failcnt = 0;
3095
		break;
3096 3097
	default:
		BUG();
3098
	}
3099

3100
	return nbytes;
3101 3102
}

3103
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3104 3105
					struct cftype *cft)
{
3106
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3107 3108
}

3109
#ifdef CONFIG_MMU
3110
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3111 3112
					struct cftype *cft, u64 val)
{
3113
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3114

3115
	if (val & ~MOVE_MASK)
3116
		return -EINVAL;
3117

3118
	/*
3119 3120 3121 3122
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3123
	 */
3124
	memcg->move_charge_at_immigrate = val;
3125 3126
	return 0;
}
3127
#else
3128
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3129 3130 3131 3132 3133
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3134

3135
#ifdef CONFIG_NUMA
3136
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3137
{
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3150
	int nid;
3151
	unsigned long nr;
3152
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3153

3154 3155 3156 3157 3158 3159 3160 3161 3162
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3163 3164
	}

3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3180 3181 3182 3183 3184 3185
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3186
static int memcg_stat_show(struct seq_file *m, void *v)
3187
{
3188
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3189
	unsigned long memory, memsw;
3190 3191
	struct mem_cgroup *mi;
	unsigned int i;
3192

3193 3194 3195 3196
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3197 3198
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3199
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3200
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3201
			continue;
3202
		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3203
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3204
	}
L
Lee Schermerhorn 已提交
3205

3206 3207 3208 3209 3210 3211 3212 3213
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3214
	/* Hierarchical information */
3215 3216 3217 3218
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3219
	}
3220 3221
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3222
	if (do_memsw_account())
3223 3224
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3225

3226
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3227
		unsigned long long val = 0;
3228

3229
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3230
			continue;
3231 3232
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3233
		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3251
	}
K
KAMEZAWA Hiroyuki 已提交
3252

K
KOSAKI Motohiro 已提交
3253 3254 3255 3256
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3257
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3258 3259 3260 3261 3262
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3263
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3264
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3265

3266 3267 3268 3269
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3270
			}
3271 3272 3273 3274
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3275 3276 3277
	}
#endif

3278 3279 3280
	return 0;
}

3281 3282
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3283
{
3284
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3285

3286
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3287 3288
}

3289 3290
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3291
{
3292
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3293

3294
	if (val > 100)
K
KOSAKI Motohiro 已提交
3295 3296
		return -EINVAL;

3297
	if (css->parent)
3298 3299 3300
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3301

K
KOSAKI Motohiro 已提交
3302 3303 3304
	return 0;
}

3305 3306 3307
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3308
	unsigned long usage;
3309 3310 3311 3312
	int i;

	rcu_read_lock();
	if (!swap)
3313
		t = rcu_dereference(memcg->thresholds.primary);
3314
	else
3315
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3316 3317 3318 3319

	if (!t)
		goto unlock;

3320
	usage = mem_cgroup_usage(memcg, swap);
3321 3322

	/*
3323
	 * current_threshold points to threshold just below or equal to usage.
3324 3325 3326
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3327
	i = t->current_threshold;
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3351
	t->current_threshold = i - 1;
3352 3353 3354 3355 3356 3357
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3358 3359
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3360
		if (do_memsw_account())
3361 3362 3363 3364
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3365 3366 3367 3368 3369 3370 3371
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3372 3373 3374 3375 3376 3377 3378
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3379 3380
}

3381
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3382 3383 3384
{
	struct mem_cgroup_eventfd_list *ev;

3385 3386
	spin_lock(&memcg_oom_lock);

3387
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3388
		eventfd_signal(ev->eventfd, 1);
3389 3390

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3391 3392 3393
	return 0;
}

3394
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3395
{
K
KAMEZAWA Hiroyuki 已提交
3396 3397
	struct mem_cgroup *iter;

3398
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3399
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3400 3401
}

3402
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3403
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3404
{
3405 3406
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3407 3408
	unsigned long threshold;
	unsigned long usage;
3409
	int i, size, ret;
3410

3411
	ret = page_counter_memparse(args, "-1", &threshold);
3412 3413 3414 3415
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3416

3417
	if (type == _MEM) {
3418
		thresholds = &memcg->thresholds;
3419
		usage = mem_cgroup_usage(memcg, false);
3420
	} else if (type == _MEMSWAP) {
3421
		thresholds = &memcg->memsw_thresholds;
3422
		usage = mem_cgroup_usage(memcg, true);
3423
	} else
3424 3425 3426
		BUG();

	/* Check if a threshold crossed before adding a new one */
3427
	if (thresholds->primary)
3428 3429
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3430
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3431 3432

	/* Allocate memory for new array of thresholds */
3433
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3434
			GFP_KERNEL);
3435
	if (!new) {
3436 3437 3438
		ret = -ENOMEM;
		goto unlock;
	}
3439
	new->size = size;
3440 3441

	/* Copy thresholds (if any) to new array */
3442 3443
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3444
				sizeof(struct mem_cgroup_threshold));
3445 3446
	}

3447
	/* Add new threshold */
3448 3449
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3450 3451

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3452
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3453 3454 3455
			compare_thresholds, NULL);

	/* Find current threshold */
3456
	new->current_threshold = -1;
3457
	for (i = 0; i < size; i++) {
3458
		if (new->entries[i].threshold <= usage) {
3459
			/*
3460 3461
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3462 3463
			 * it here.
			 */
3464
			++new->current_threshold;
3465 3466
		} else
			break;
3467 3468
	}

3469 3470 3471 3472 3473
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3474

3475
	/* To be sure that nobody uses thresholds */
3476 3477 3478 3479 3480 3481 3482 3483
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3484
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3485 3486
	struct eventfd_ctx *eventfd, const char *args)
{
3487
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3488 3489
}

3490
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3491 3492
	struct eventfd_ctx *eventfd, const char *args)
{
3493
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3494 3495
}

3496
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3497
	struct eventfd_ctx *eventfd, enum res_type type)
3498
{
3499 3500
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3501
	unsigned long usage;
3502
	int i, j, size;
3503 3504

	mutex_lock(&memcg->thresholds_lock);
3505 3506

	if (type == _MEM) {
3507
		thresholds = &memcg->thresholds;
3508
		usage = mem_cgroup_usage(memcg, false);
3509
	} else if (type == _MEMSWAP) {
3510
		thresholds = &memcg->memsw_thresholds;
3511
		usage = mem_cgroup_usage(memcg, true);
3512
	} else
3513 3514
		BUG();

3515 3516 3517
	if (!thresholds->primary)
		goto unlock;

3518 3519 3520 3521
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3522 3523 3524
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3525 3526 3527
			size++;
	}

3528
	new = thresholds->spare;
3529

3530 3531
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3532 3533
		kfree(new);
		new = NULL;
3534
		goto swap_buffers;
3535 3536
	}

3537
	new->size = size;
3538 3539

	/* Copy thresholds and find current threshold */
3540 3541 3542
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3543 3544
			continue;

3545
		new->entries[j] = thresholds->primary->entries[i];
3546
		if (new->entries[j].threshold <= usage) {
3547
			/*
3548
			 * new->current_threshold will not be used
3549 3550 3551
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3552
			++new->current_threshold;
3553 3554 3555 3556
		}
		j++;
	}

3557
swap_buffers:
3558 3559
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3560

3561
	rcu_assign_pointer(thresholds->primary, new);
3562

3563
	/* To be sure that nobody uses thresholds */
3564
	synchronize_rcu();
3565 3566 3567 3568 3569 3570

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
3571
unlock:
3572 3573
	mutex_unlock(&memcg->thresholds_lock);
}
3574

3575
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3576 3577
	struct eventfd_ctx *eventfd)
{
3578
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3579 3580
}

3581
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3582 3583
	struct eventfd_ctx *eventfd)
{
3584
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3585 3586
}

3587
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3588
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3589 3590 3591 3592 3593 3594 3595
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3596
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3597 3598 3599 3600 3601

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3602
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3603
		eventfd_signal(eventfd, 1);
3604
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3605 3606 3607 3608

	return 0;
}

3609
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3610
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3611 3612 3613
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3614
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3615

3616
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3617 3618 3619 3620 3621 3622
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3623
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3624 3625
}

3626
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3627
{
3628
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3629

3630
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3631
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3632 3633 3634
	return 0;
}

3635
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3636 3637
	struct cftype *cft, u64 val)
{
3638
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3639 3640

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3641
	if (!css->parent || !((val == 0) || (val == 1)))
3642 3643
		return -EINVAL;

3644
	memcg->oom_kill_disable = val;
3645
	if (!val)
3646
		memcg_oom_recover(memcg);
3647

3648 3649 3650
	return 0;
}

3651 3652 3653 3654 3655 3656 3657
#ifdef CONFIG_CGROUP_WRITEBACK

struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
{
	return &memcg->cgwb_list;
}

T
Tejun Heo 已提交
3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3668 3669 3670 3671 3672
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3673 3674 3675 3676 3677 3678 3679 3680 3681 3682
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3683 3684 3685
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3686 3687
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3688 3689 3690
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3691 3692 3693
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3694
 *
3695 3696 3697 3698 3699
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3700
 */
3701 3702 3703
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3704 3705 3706 3707 3708 3709 3710 3711
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);

	/* this should eventually include NR_UNSTABLE_NFS */
	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3712 3713 3714
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3715 3716 3717 3718 3719

	while ((parent = parent_mem_cgroup(memcg))) {
		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
		unsigned long used = page_counter_read(&memcg->memory);

3720
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3721 3722 3723 3724
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3736 3737 3738 3739
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3740 3741
#endif	/* CONFIG_CGROUP_WRITEBACK */

3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3755 3756 3757 3758 3759
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3760
static void memcg_event_remove(struct work_struct *work)
3761
{
3762 3763
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3764
	struct mem_cgroup *memcg = event->memcg;
3765 3766 3767

	remove_wait_queue(event->wqh, &event->wait);

3768
	event->unregister_event(memcg, event->eventfd);
3769 3770 3771 3772 3773 3774

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3775
	css_put(&memcg->css);
3776 3777 3778 3779 3780 3781 3782
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3783 3784
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
3785
{
3786 3787
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3788
	struct mem_cgroup *memcg = event->memcg;
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3801
		spin_lock(&memcg->event_list_lock);
3802 3803 3804 3805 3806 3807 3808 3809
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3810
		spin_unlock(&memcg->event_list_lock);
3811 3812 3813 3814 3815
	}

	return 0;
}

3816
static void memcg_event_ptable_queue_proc(struct file *file,
3817 3818
		wait_queue_head_t *wqh, poll_table *pt)
{
3819 3820
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3821 3822 3823 3824 3825 3826

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3827 3828
 * DO NOT USE IN NEW FILES.
 *
3829 3830 3831 3832 3833
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3834 3835
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3836
{
3837
	struct cgroup_subsys_state *css = of_css(of);
3838
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3839
	struct mem_cgroup_event *event;
3840 3841 3842 3843
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3844
	const char *name;
3845 3846 3847
	char *endp;
	int ret;

3848 3849 3850
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3851 3852
	if (*endp != ' ')
		return -EINVAL;
3853
	buf = endp + 1;
3854

3855
	cfd = simple_strtoul(buf, &endp, 10);
3856 3857
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3858
	buf = endp + 1;
3859 3860 3861 3862 3863

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3864
	event->memcg = memcg;
3865
	INIT_LIST_HEAD(&event->list);
3866 3867 3868
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3894 3895 3896 3897 3898
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3899 3900
	 *
	 * DO NOT ADD NEW FILES.
3901
	 */
A
Al Viro 已提交
3902
	name = cfile.file->f_path.dentry->d_name.name;
3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3914 3915
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3916 3917 3918 3919 3920
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3921
	/*
3922 3923 3924
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
3925
	 */
A
Al Viro 已提交
3926
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3927
					       &memory_cgrp_subsys);
3928
	ret = -EINVAL;
3929
	if (IS_ERR(cfile_css))
3930
		goto out_put_cfile;
3931 3932
	if (cfile_css != css) {
		css_put(cfile_css);
3933
		goto out_put_cfile;
3934
	}
3935

3936
	ret = event->register_event(memcg, event->eventfd, buf);
3937 3938 3939 3940 3941
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

3942 3943 3944
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
3945 3946 3947 3948

	fdput(cfile);
	fdput(efile);

3949
	return nbytes;
3950 3951

out_put_css:
3952
	css_put(css);
3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

3965
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
3966
	{
3967
		.name = "usage_in_bytes",
3968
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3969
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3970
	},
3971 3972
	{
		.name = "max_usage_in_bytes",
3973
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3974
		.write = mem_cgroup_reset,
3975
		.read_u64 = mem_cgroup_read_u64,
3976
	},
B
Balbir Singh 已提交
3977
	{
3978
		.name = "limit_in_bytes",
3979
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3980
		.write = mem_cgroup_write,
3981
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3982
	},
3983 3984 3985
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3986
		.write = mem_cgroup_write,
3987
		.read_u64 = mem_cgroup_read_u64,
3988
	},
B
Balbir Singh 已提交
3989 3990
	{
		.name = "failcnt",
3991
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3992
		.write = mem_cgroup_reset,
3993
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3994
	},
3995 3996
	{
		.name = "stat",
3997
		.seq_show = memcg_stat_show,
3998
	},
3999 4000
	{
		.name = "force_empty",
4001
		.write = mem_cgroup_force_empty_write,
4002
	},
4003 4004 4005 4006 4007
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4008
	{
4009
		.name = "cgroup.event_control",		/* XXX: for compat */
4010
		.write = memcg_write_event_control,
4011
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4012
	},
K
KOSAKI Motohiro 已提交
4013 4014 4015 4016 4017
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4018 4019 4020 4021 4022
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4023 4024
	{
		.name = "oom_control",
4025
		.seq_show = mem_cgroup_oom_control_read,
4026
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4027 4028
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4029 4030 4031
	{
		.name = "pressure_level",
	},
4032 4033 4034
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4035
		.seq_show = memcg_numa_stat_show,
4036 4037
	},
#endif
4038 4039 4040
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4041
		.write = mem_cgroup_write,
4042
		.read_u64 = mem_cgroup_read_u64,
4043 4044 4045 4046
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4047
		.read_u64 = mem_cgroup_read_u64,
4048 4049 4050 4051
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4052
		.write = mem_cgroup_reset,
4053
		.read_u64 = mem_cgroup_read_u64,
4054 4055 4056 4057
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4058
		.write = mem_cgroup_reset,
4059
		.read_u64 = mem_cgroup_read_u64,
4060
	},
4061 4062 4063
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4064 4065 4066 4067
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4068 4069
	},
#endif
V
Vladimir Davydov 已提交
4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4093
	{ },	/* terminate */
4094
};
4095

4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
 * However, there usually are many references to the oflline CSS after
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

static void mem_cgroup_id_get(struct mem_cgroup *memcg)
{
	atomic_inc(&memcg->id.ref);
}

static void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	if (atomic_dec_and_test(&memcg->id.ref)) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

4150
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4151 4152
{
	struct mem_cgroup_per_node *pn;
4153
	struct mem_cgroup_per_zone *mz;
4154
	int zone, tmp = node;
4155 4156 4157 4158 4159 4160 4161 4162
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4163 4164
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4165
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4166 4167
	if (!pn)
		return 1;
4168 4169 4170

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4171
		lruvec_init(&mz->lruvec);
4172 4173
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4174
		mz->memcg = memcg;
4175
	}
4176
	memcg->nodeinfo[node] = pn;
4177 4178 4179
	return 0;
}

4180
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4181
{
4182
	kfree(memcg->nodeinfo[node]);
4183 4184
}

4185
static void mem_cgroup_free(struct mem_cgroup *memcg)
4186
{
4187
	int node;
4188

4189
	memcg_wb_domain_exit(memcg);
4190 4191 4192
	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);
	free_percpu(memcg->stat);
4193
	kfree(memcg);
4194
}
4195

4196
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4197
{
4198
	struct mem_cgroup *memcg;
4199
	size_t size;
4200
	int node;
B
Balbir Singh 已提交
4201

4202 4203 4204 4205
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4206
	if (!memcg)
4207 4208
		return NULL;

4209 4210 4211 4212 4213 4214
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
	if (memcg->id.id < 0)
		goto fail;

4215 4216 4217
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
		goto fail;
4218

B
Bob Liu 已提交
4219
	for_each_node(node)
4220
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4221
			goto fail;
4222

4223 4224
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4225

4226
	INIT_WORK(&memcg->high_work, high_work_func);
4227 4228 4229 4230
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4231
	vmpressure_init(&memcg->vmpressure);
4232 4233
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4234
	memcg->socket_pressure = jiffies;
4235
#ifndef CONFIG_SLOB
V
Vladimir Davydov 已提交
4236 4237
	memcg->kmemcg_id = -1;
#endif
4238 4239 4240
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4241
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4242 4243
	return memcg;
fail:
4244 4245
	if (memcg->id.id > 0)
		idr_remove(&mem_cgroup_idr, memcg->id.id);
4246 4247
	mem_cgroup_free(memcg);
	return NULL;
4248 4249
}

4250 4251
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4252
{
4253 4254 4255
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
4256

4257 4258 4259
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
4260

4261 4262 4263 4264 4265 4266 4267 4268
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
4269
		page_counter_init(&memcg->memory, &parent->memory);
4270
		page_counter_init(&memcg->swap, &parent->swap);
4271 4272
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4273
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4274
	} else {
4275
		page_counter_init(&memcg->memory, NULL);
4276
		page_counter_init(&memcg->swap, NULL);
4277 4278
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4279
		page_counter_init(&memcg->tcpmem, NULL);
4280 4281 4282 4283 4284
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4285
		if (parent != root_mem_cgroup)
4286
			memory_cgrp_subsys.broken_hierarchy = true;
4287
	}
4288

4289 4290 4291 4292 4293 4294
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

4295
	error = memcg_online_kmem(memcg);
4296 4297
	if (error)
		goto fail;
4298

4299
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4300
		static_branch_inc(&memcg_sockets_enabled_key);
4301

4302 4303 4304
	return &memcg->css;
fail:
	mem_cgroup_free(memcg);
4305
	return ERR_PTR(-ENOMEM);
4306 4307
}

4308
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4309
{
4310 4311 4312
	/* Online state pins memcg ID, memcg ID pins CSS */
	mem_cgroup_id_get(mem_cgroup_from_css(css));
	css_get(css);
4313
	return 0;
B
Balbir Singh 已提交
4314 4315
}

4316
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4317
{
4318
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4319
	struct mem_cgroup_event *event, *tmp;
4320 4321 4322 4323 4324 4325

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4326 4327
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4328 4329 4330
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4331
	spin_unlock(&memcg->event_list_lock);
4332

4333
	memcg_offline_kmem(memcg);
4334
	wb_memcg_offline(memcg);
4335 4336

	mem_cgroup_id_put(memcg);
4337 4338
}

4339 4340 4341 4342 4343 4344 4345
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4346
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4347
{
4348
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4349

4350
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4351
		static_branch_dec(&memcg_sockets_enabled_key);
4352

4353
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
4354
		static_branch_dec(&memcg_sockets_enabled_key);
4355

4356 4357 4358
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
4359
	memcg_free_kmem(memcg);
4360
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4361 4362
}

4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4380 4381 4382 4383 4384
	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4385 4386
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4387
	memcg->soft_limit = PAGE_COUNTER_MAX;
4388
	memcg_wb_domain_size_changed(memcg);
4389 4390
}

4391
#ifdef CONFIG_MMU
4392
/* Handlers for move charge at task migration. */
4393
static int mem_cgroup_do_precharge(unsigned long count)
4394
{
4395
	int ret;
4396

4397 4398
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4399
	if (!ret) {
4400 4401 4402
		mc.precharge += count;
		return ret;
	}
4403 4404

	/* Try charges one by one with reclaim */
4405
	while (count--) {
4406
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4407 4408
		if (ret)
			return ret;
4409
		mc.precharge++;
4410
		cond_resched();
4411
	}
4412
	return 0;
4413 4414 4415 4416
}

union mc_target {
	struct page	*page;
4417
	swp_entry_t	ent;
4418 4419 4420
};

enum mc_target_type {
4421
	MC_TARGET_NONE = 0,
4422
	MC_TARGET_PAGE,
4423
	MC_TARGET_SWAP,
4424 4425
};

D
Daisuke Nishimura 已提交
4426 4427
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4428
{
D
Daisuke Nishimura 已提交
4429
	struct page *page = vm_normal_page(vma, addr, ptent);
4430

D
Daisuke Nishimura 已提交
4431 4432 4433
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4434
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4435
			return NULL;
4436 4437 4438 4439
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4440 4441 4442 4443 4444 4445
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4446
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4447
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4448
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
4449 4450 4451 4452
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4453
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4454
		return NULL;
4455 4456 4457 4458
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4459
	page = find_get_page(swap_address_space(ent), ent.val);
4460
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4461 4462 4463 4464
		entry->val = ent.val;

	return page;
}
4465 4466
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4467
			pte_t ptent, swp_entry_t *entry)
4468 4469 4470 4471
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4472

4473 4474 4475 4476 4477 4478 4479 4480 4481
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4482
	if (!(mc.flags & MOVE_FILE))
4483 4484 4485
		return NULL;

	mapping = vma->vm_file->f_mapping;
4486
	pgoff = linear_page_index(vma, addr);
4487 4488

	/* page is moved even if it's not RSS of this task(page-faulted). */
4489 4490
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4491 4492 4493 4494
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
4495
			if (do_memsw_account())
4496 4497 4498 4499 4500 4501 4502
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4503
#endif
4504 4505 4506
	return page;
}

4507 4508 4509 4510 4511 4512 4513
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
 * @nr_pages: number of regular pages (>1 for huge pages)
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
4514
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4515 4516 4517 4518 4519
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
4520
				   bool compound,
4521 4522 4523 4524
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
4525
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4526
	int ret;
4527
	bool anon;
4528 4529 4530

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
4531
	VM_BUG_ON(compound && !PageTransHuge(page));
4532 4533

	/*
4534
	 * Prevent mem_cgroup_migrate() from looking at
4535
	 * page->mem_cgroup of its source page while we change it.
4536
	 */
4537
	ret = -EBUSY;
4538 4539 4540 4541 4542 4543 4544
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4545 4546
	anon = PageAnon(page);

4547 4548
	spin_lock_irqsave(&from->move_lock, flags);

4549
	if (!anon && page_mapped(page)) {
4550 4551 4552 4553 4554 4555
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
		}
	}

4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
4592
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4593
	memcg_check_events(to, page);
4594
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4595 4596 4597 4598 4599 4600 4601 4602
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
 *
 * Called with pte lock held.
 */

4622
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4623 4624 4625
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4626
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4627 4628 4629 4630 4631
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
4632
		page = mc_handle_swap_pte(vma, ptent, &ent);
4633
	else if (pte_none(ptent))
4634
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4635 4636

	if (!page && !ent.val)
4637
		return ret;
4638 4639
	if (page) {
		/*
4640
		 * Do only loose check w/o serialization.
4641
		 * mem_cgroup_move_account() checks the page is valid or
4642
		 * not under LRU exclusion.
4643
		 */
4644
		if (page->mem_cgroup == mc.from) {
4645 4646 4647 4648 4649 4650 4651
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4652 4653
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4654
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4655 4656 4657
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4658 4659 4660 4661
	}
	return ret;
}

4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4675
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4676
	if (!(mc.flags & MOVE_ANON))
4677
		return ret;
4678
	if (page->mem_cgroup == mc.from) {
4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4695 4696 4697 4698
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4699
	struct vm_area_struct *vma = walk->vma;
4700 4701 4702
	pte_t *pte;
	spinlock_t *ptl;

4703 4704
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4705 4706
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4707
		spin_unlock(ptl);
4708
		return 0;
4709
	}
4710

4711 4712
	if (pmd_trans_unstable(pmd))
		return 0;
4713 4714
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4715
		if (get_mctgt_type(vma, addr, *pte, NULL))
4716 4717 4718 4719
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4720 4721 4722
	return 0;
}

4723 4724 4725 4726
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4727 4728 4729 4730
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4731
	down_read(&mm->mmap_sem);
4732
	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4733
	up_read(&mm->mmap_sem);
4734 4735 4736 4737 4738 4739 4740 4741 4742

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4743 4744 4745 4746 4747
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4748 4749
}

4750 4751
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4752
{
4753 4754 4755
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4756
	/* we must uncharge all the leftover precharges from mc.to */
4757
	if (mc.precharge) {
4758
		cancel_charge(mc.to, mc.precharge);
4759 4760 4761 4762 4763 4764 4765
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4766
		cancel_charge(mc.from, mc.moved_charge);
4767
		mc.moved_charge = 0;
4768
	}
4769 4770 4771
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4772
		if (!mem_cgroup_is_root(mc.from))
4773
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4774

4775
		/*
4776 4777
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4778
		 */
4779
		if (!mem_cgroup_is_root(mc.to))
4780 4781
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4782
		css_put_many(&mc.from->css, mc.moved_swap);
4783

L
Li Zefan 已提交
4784
		/* we've already done css_get(mc.to) */
4785 4786
		mc.moved_swap = 0;
	}
4787 4788 4789 4790 4791 4792 4793
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
4794 4795
	struct mm_struct *mm = mc.mm;

4796 4797 4798 4799 4800 4801
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4802
	spin_lock(&mc.lock);
4803 4804
	mc.from = NULL;
	mc.to = NULL;
4805
	mc.mm = NULL;
4806
	spin_unlock(&mc.lock);
4807 4808

	mmput(mm);
4809 4810
}

4811
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4812
{
4813
	struct cgroup_subsys_state *css;
4814
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4815
	struct mem_cgroup *from;
4816
	struct task_struct *leader, *p;
4817
	struct mm_struct *mm;
4818
	unsigned long move_flags;
4819
	int ret = 0;
4820

4821 4822
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4823 4824
		return 0;

4825 4826 4827 4828 4829 4830 4831
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
4832
	cgroup_taskset_for_each_leader(leader, css, tset) {
4833 4834
		WARN_ON_ONCE(p);
		p = leader;
4835
		memcg = mem_cgroup_from_css(css);
4836 4837 4838 4839
	}
	if (!p)
		return 0;

4840 4841 4842 4843 4844 4845 4846 4847 4848
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
4865
		mc.mm = mm;
4866 4867 4868 4869 4870 4871 4872 4873 4874
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
4875 4876
	} else {
		mmput(mm);
4877 4878 4879 4880
	}
	return ret;
}

4881
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4882
{
4883 4884
	if (mc.to)
		mem_cgroup_clear_mc();
4885 4886
}

4887 4888 4889
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4890
{
4891
	int ret = 0;
4892
	struct vm_area_struct *vma = walk->vma;
4893 4894
	pte_t *pte;
	spinlock_t *ptl;
4895 4896 4897
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4898

4899 4900
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4901
		if (mc.precharge < HPAGE_PMD_NR) {
4902
			spin_unlock(ptl);
4903 4904 4905 4906 4907 4908
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
4909
				if (!mem_cgroup_move_account(page, true,
4910
							     mc.from, mc.to)) {
4911 4912 4913 4914 4915 4916 4917
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
4918
		spin_unlock(ptl);
4919
		return 0;
4920 4921
	}

4922 4923
	if (pmd_trans_unstable(pmd))
		return 0;
4924 4925 4926 4927
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
4928
		swp_entry_t ent;
4929 4930 4931 4932

		if (!mc.precharge)
			break;

4933
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4934 4935
		case MC_TARGET_PAGE:
			page = target.page;
4936 4937 4938 4939 4940 4941 4942 4943
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
4944 4945
			if (isolate_lru_page(page))
				goto put;
4946 4947
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
4948
				mc.precharge--;
4949 4950
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4951 4952
			}
			putback_lru_page(page);
4953
put:			/* get_mctgt_type() gets the page */
4954 4955
			put_page(page);
			break;
4956 4957
		case MC_TARGET_SWAP:
			ent = target.ent;
4958
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4959
				mc.precharge--;
4960 4961 4962
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4963
			break;
4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4978
		ret = mem_cgroup_do_precharge(1);
4979 4980 4981 4982 4983 4984 4985
		if (!ret)
			goto retry;
	}

	return ret;
}

4986
static void mem_cgroup_move_charge(void)
4987
{
4988 4989
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
4990
		.mm = mc.mm,
4991
	};
4992 4993

	lru_add_drain_all();
4994
	/*
4995 4996 4997
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
4998 4999 5000
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5001
retry:
5002
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5014 5015 5016 5017 5018
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5019
	up_read(&mc.mm->mmap_sem);
5020
	atomic_dec(&mc.from->moving_account);
5021 5022
}

5023
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
5024
{
5025 5026
	if (mc.to) {
		mem_cgroup_move_charge();
5027
		mem_cgroup_clear_mc();
5028
	}
B
Balbir Singh 已提交
5029
}
5030
#else	/* !CONFIG_MMU */
5031
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5032 5033 5034
{
	return 0;
}
5035
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5036 5037
{
}
5038
static void mem_cgroup_move_task(void)
5039 5040 5041
{
}
#endif
B
Balbir Singh 已提交
5042

5043 5044
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5045 5046
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5047
 */
5048
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5049 5050
{
	/*
5051
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5052 5053 5054
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5055
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5056 5057 5058
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5059 5060
}

5061 5062 5063
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5064 5065 5066
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5067 5068 5069 5070 5071
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5072
	unsigned long low = READ_ONCE(memcg->low);
5073 5074

	if (low == PAGE_COUNTER_MAX)
5075
		seq_puts(m, "max\n");
5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5090
	err = page_counter_memparse(buf, "max", &low);
5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5102
	unsigned long high = READ_ONCE(memcg->high);
5103 5104

	if (high == PAGE_COUNTER_MAX)
5105
		seq_puts(m, "max\n");
5106 5107 5108 5109 5110 5111 5112 5113 5114 5115
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5116
	unsigned long nr_pages;
5117 5118 5119 5120
	unsigned long high;
	int err;

	buf = strstrip(buf);
5121
	err = page_counter_memparse(buf, "max", &high);
5122 5123 5124 5125 5126
	if (err)
		return err;

	memcg->high = high;

5127 5128 5129 5130 5131
	nr_pages = page_counter_read(&memcg->memory);
	if (nr_pages > high)
		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
					     GFP_KERNEL, true);

5132
	memcg_wb_domain_size_changed(memcg);
5133 5134 5135 5136 5137 5138
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5139
	unsigned long max = READ_ONCE(memcg->memory.limit);
5140 5141

	if (max == PAGE_COUNTER_MAX)
5142
		seq_puts(m, "max\n");
5143 5144 5145 5146 5147 5148 5149 5150 5151 5152
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5153 5154
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
5155 5156 5157 5158
	unsigned long max;
	int err;

	buf = strstrip(buf);
5159
	err = page_counter_memparse(buf, "max", &max);
5160 5161 5162
	if (err)
		return err;

5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192
	xchg(&memcg->memory.limit, max);

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

		if (signal_pending(current)) {
			err = -EINTR;
			break;
		}

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

		mem_cgroup_events(memcg, MEMCG_OOM, 1);
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
5193

5194
	memcg_wb_domain_size_changed(memcg);
5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

5210 5211 5212
static int memory_stat_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5213 5214
	unsigned long stat[MEMCG_NR_STAT];
	unsigned long events[MEMCG_NR_EVENTS];
5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227
	int i;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

5228 5229 5230
	tree_stat(memcg, stat);
	tree_events(memcg, events);

5231
	seq_printf(m, "anon %llu\n",
5232
		   (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5233
	seq_printf(m, "file %llu\n",
5234
		   (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5235 5236
	seq_printf(m, "kernel_stack %llu\n",
		   (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5237 5238 5239
	seq_printf(m, "slab %llu\n",
		   (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
			 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5240
	seq_printf(m, "sock %llu\n",
5241
		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5242 5243

	seq_printf(m, "file_mapped %llu\n",
5244
		   (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5245
	seq_printf(m, "file_dirty %llu\n",
5246
		   (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5247
	seq_printf(m, "file_writeback %llu\n",
5248
		   (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259

	for (i = 0; i < NR_LRU_LISTS; i++) {
		struct mem_cgroup *mi;
		unsigned long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
		seq_printf(m, "%s %llu\n",
			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
	}

5260 5261 5262 5263 5264
	seq_printf(m, "slab_reclaimable %llu\n",
		   (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
	seq_printf(m, "slab_unreclaimable %llu\n",
		   (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);

5265 5266 5267
	/* Accumulated memory events */

	seq_printf(m, "pgfault %lu\n",
5268
		   events[MEM_CGROUP_EVENTS_PGFAULT]);
5269
	seq_printf(m, "pgmajfault %lu\n",
5270
		   events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5271 5272 5273 5274

	return 0;
}

5275 5276 5277
static struct cftype memory_files[] = {
	{
		.name = "current",
5278
		.flags = CFTYPE_NOT_ON_ROOT,
5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5302
		.file_offset = offsetof(struct mem_cgroup, events_file),
5303 5304
		.seq_show = memory_events_show,
	},
5305 5306 5307 5308 5309
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
5310 5311 5312
	{ }	/* terminate */
};

5313
struct cgroup_subsys memory_cgrp_subsys = {
5314
	.css_alloc = mem_cgroup_css_alloc,
5315
	.css_online = mem_cgroup_css_online,
5316
	.css_offline = mem_cgroup_css_offline,
5317
	.css_released = mem_cgroup_css_released,
5318
	.css_free = mem_cgroup_css_free,
5319
	.css_reset = mem_cgroup_css_reset,
5320 5321
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
5322
	.post_attach = mem_cgroup_move_task,
5323
	.bind = mem_cgroup_bind,
5324 5325
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5326
	.early_init = 0,
B
Balbir Singh 已提交
5327
};
5328

5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350
/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5351
	if (page_counter_read(&memcg->memory) >= memcg->low)
5352 5353 5354 5355 5356 5357 5358 5359
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5360
		if (page_counter_read(&memcg->memory) >= memcg->low)
5361 5362 5363 5364 5365
			return false;
	}
	return true;
}

5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5384 5385
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
5386 5387
{
	struct mem_cgroup *memcg = NULL;
5388
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5402
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5403
		if (page->mem_cgroup)
5404
			goto out;
5405

5406
		if (do_swap_account) {
5407 5408 5409 5410 5411 5412 5413 5414 5415
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5446
			      bool lrucare, bool compound)
5447
{
5448
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5463 5464 5465
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
5466
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5467 5468
	memcg_check_events(memcg, page);
	local_irq_enable();
5469

5470
	if (do_memsw_account() && PageSwapCache(page)) {
5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
5488 5489
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
5490
{
5491
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

5506 5507
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
5508 5509
			   unsigned long nr_huge, unsigned long nr_kmem,
			   struct page *dummy_page)
5510
{
5511
	unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5512 5513
	unsigned long flags;

5514
	if (!mem_cgroup_is_root(memcg)) {
5515
		page_counter_uncharge(&memcg->memory, nr_pages);
5516
		if (do_memsw_account())
5517
			page_counter_uncharge(&memcg->memsw, nr_pages);
5518 5519
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
			page_counter_uncharge(&memcg->kmem, nr_kmem);
5520 5521
		memcg_oom_recover(memcg);
	}
5522 5523 5524 5525 5526 5527

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5528
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5529 5530
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5531 5532

	if (!mem_cgroup_is_root(memcg))
5533
		css_put_many(&memcg->css, nr_pages);
5534 5535 5536 5537 5538 5539 5540 5541
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
5542
	unsigned long nr_kmem = 0;
5543 5544 5545 5546
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

5547 5548 5549 5550
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
5551 5552 5553 5554 5555 5556 5557 5558
	next = page_list->next;
	do {
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5559
		if (!page->mem_cgroup)
5560 5561 5562 5563
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5564
		 * page->mem_cgroup at this point, we have fully
5565
		 * exclusive access to the page.
5566 5567
		 */

5568
		if (memcg != page->mem_cgroup) {
5569
			if (memcg) {
5570
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5571 5572 5573
					       nr_huge, nr_kmem, page);
				pgpgout = nr_anon = nr_file =
					nr_huge = nr_kmem = 0;
5574
			}
5575
			memcg = page->mem_cgroup;
5576 5577
		}

5578 5579
		if (!PageKmemcg(page)) {
			unsigned int nr_pages = 1;
5580

5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591
			if (PageTransHuge(page)) {
				nr_pages <<= compound_order(page);
				nr_huge += nr_pages;
			}
			if (PageAnon(page))
				nr_anon += nr_pages;
			else
				nr_file += nr_pages;
			pgpgout++;
		} else
			nr_kmem += 1 << compound_order(page);
5592

5593
		page->mem_cgroup = NULL;
5594 5595 5596
	} while (next != page_list);

	if (memcg)
5597
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5598
			       nr_huge, nr_kmem, page);
5599 5600
}

5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5613
	/* Don't touch page->lru of any random page, pre-check: */
5614
	if (!page->mem_cgroup)
5615 5616
		return;

5617 5618 5619
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5620

5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5632

5633 5634
	if (!list_empty(page_list))
		uncharge_list(page_list);
5635 5636 5637
}

/**
5638 5639 5640
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
5641
 *
5642 5643
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
5644 5645 5646
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
5647
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5648
{
5649
	struct mem_cgroup *memcg;
5650 5651
	unsigned int nr_pages;
	bool compound;
5652
	unsigned long flags;
5653 5654 5655 5656

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5657 5658
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5659 5660 5661 5662 5663

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5664
	if (newpage->mem_cgroup)
5665 5666
		return;

5667
	/* Swapcache readahead pages can get replaced before being charged */
5668
	memcg = oldpage->mem_cgroup;
5669
	if (!memcg)
5670 5671
		return;

5672 5673 5674 5675 5676 5677 5678 5679
	/* Force-charge the new page. The old one will be freed soon */
	compound = PageTransHuge(newpage);
	nr_pages = compound ? hpage_nr_pages(newpage) : 1;

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
5680

5681
	commit_charge(newpage, memcg, false);
5682

5683
	local_irq_save(flags);
5684 5685
	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
	memcg_check_events(memcg, newpage);
5686
	local_irq_restore(flags);
5687 5688
}

5689
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711
EXPORT_SYMBOL(memcg_sockets_enabled_key);

void sock_update_memcg(struct sock *sk)
{
	struct mem_cgroup *memcg;

	/* Socket cloning can throw us here with sk_cgrp already
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
		css_get(&sk->sk_memcg->css);
		return;
	}

	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
5712 5713
	if (memcg == root_mem_cgroup)
		goto out;
5714
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5715 5716
		goto out;
	if (css_tryget_online(&memcg->css))
5717
		sk->sk_memcg = memcg;
5718
out:
5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738
	rcu_read_unlock();
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
	WARN_ON(!sk->sk_memcg);
	css_put(&sk->sk_memcg->css);
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5739
	gfp_t gfp_mask = GFP_KERNEL;
5740

5741
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5742
		struct page_counter *fail;
5743

5744 5745
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
5746 5747
			return true;
		}
5748 5749
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
5750
		return false;
5751
	}
5752

5753 5754 5755 5756
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

5757 5758
	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);

5759 5760 5761 5762
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5763 5764 5765 5766 5767 5768 5769 5770 5771 5772
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
 * @memcg - memcg to uncharge
 * @nr_pages - number of pages to uncharge
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5773
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5774
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5775 5776
		return;
	}
5777

5778 5779
	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);

5780 5781
	page_counter_uncharge(&memcg->memory, nr_pages);
	css_put_many(&memcg->css, nr_pages);
5782 5783
}

5784 5785 5786 5787 5788 5789 5790 5791 5792
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
5793 5794
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
5795 5796 5797 5798
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
5799

5800
/*
5801 5802 5803 5804 5805 5806
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5807 5808 5809
 */
static int __init mem_cgroup_init(void)
{
5810 5811
	int cpu, node;

5812
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;
		int zone;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			struct mem_cgroup_tree_per_zone *rtpz;

			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5835 5836 5837
	return 0;
}
subsys_initcall(mem_cgroup_init);
5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854

#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

5855
	if (!do_memsw_account())
5856 5857 5858 5859 5860 5861 5862 5863
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

5864
	mem_cgroup_id_get(memcg);
5865 5866 5867 5868 5869 5870 5871 5872 5873
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

5874 5875 5876 5877 5878 5879 5880
	/*
	 * Interrupts should be disabled here because the caller holds the
	 * mapping->tree_lock lock which is taken with interrupts-off. It is
	 * important here to have the interrupts disabled because it is the
	 * only synchronisation we have for udpating the per-CPU variables.
	 */
	VM_BUG_ON(!irqs_disabled());
5881
	mem_cgroup_charge_statistics(memcg, page, false, -1);
5882
	memcg_check_events(memcg, page);
5883 5884 5885

	if (!mem_cgroup_is_root(memcg))
		css_put(&memcg->css);
5886 5887
}

5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915
/*
 * mem_cgroup_try_charge_swap - try charging a swap entry
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
 * Try to charge @entry to the memcg that @page belongs to.
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	struct page_counter *counter;
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

	if (!mem_cgroup_is_root(memcg) &&
	    !page_counter_try_charge(&memcg->swap, 1, &counter))
		return -ENOMEM;

5916
	mem_cgroup_id_get(memcg);
5917 5918 5919 5920 5921 5922 5923
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	return 0;
}

5924 5925 5926 5927
/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
5928
 * Drop the swap charge associated with @entry.
5929 5930 5931 5932 5933 5934
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

5935
	if (!do_swap_account)
5936 5937 5938 5939
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
5940
	memcg = mem_cgroup_from_id(id);
5941
	if (memcg) {
5942 5943 5944 5945 5946 5947
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
				page_counter_uncharge(&memcg->swap, 1);
			else
				page_counter_uncharge(&memcg->memsw, 1);
		}
5948
		mem_cgroup_swap_statistics(memcg, false);
5949
		mem_cgroup_id_put(memcg);
5950 5951 5952 5953
	}
	rcu_read_unlock();
}

5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
				      READ_ONCE(memcg->swap.limit) -
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
			return true;

	return false;
}

5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long max = READ_ONCE(memcg->swap.limit);

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

	mutex_lock(&memcg_limit_mutex);
	err = page_counter_limit(&memcg->swap, max);
	mutex_unlock(&memcg_limit_mutex);
	if (err)
		return err;

	return nbytes;
}

static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
	{ }	/* terminate */
};

6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
6094 6095
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
6096 6097 6098 6099 6100 6101 6102 6103
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */