memcontrol.c 164.9 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/sched/mm.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
41
#include <linux/pagemap.h>
42
#include <linux/smp.h>
43
#include <linux/page-flags.h>
44
#include <linux/backing-dev.h>
45 46
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
47
#include <linux/limits.h>
48
#include <linux/export.h>
49
#include <linux/mutex.h>
50
#include <linux/rbtree.h>
51
#include <linux/slab.h>
52
#include <linux/swap.h>
53
#include <linux/swapops.h>
54
#include <linux/spinlock.h>
55
#include <linux/eventfd.h>
56
#include <linux/poll.h>
57
#include <linux/sort.h>
58
#include <linux/fs.h>
59
#include <linux/seq_file.h>
60
#include <linux/vmpressure.h>
61
#include <linux/mm_inline.h>
62
#include <linux/swap_cgroup.h>
63
#include <linux/cpu.h>
64
#include <linux/oom.h>
65
#include <linux/lockdep.h>
66
#include <linux/file.h>
67
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
68
#include "internal.h"
G
Glauber Costa 已提交
69
#include <net/sock.h>
M
Michal Hocko 已提交
70
#include <net/ip.h>
71
#include "slab.h"
B
Balbir Singh 已提交
72

73
#include <linux/uaccess.h>
74

75 76
#include <trace/events/vmscan.h>

77 78
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
79

80 81
struct mem_cgroup *root_mem_cgroup __read_mostly;

82
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
83

84 85 86
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

87 88 89
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

90
/* Whether the swap controller is active */
A
Andrew Morton 已提交
91
#ifdef CONFIG_MEMCG_SWAP
92 93
int do_swap_account __read_mostly;
#else
94
#define do_swap_account		0
95 96
#endif

97 98 99 100 101 102
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

103
static const char *const mem_cgroup_lru_names[] = {
104 105 106 107 108 109 110
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

111 112 113
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
114

115 116 117 118 119
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

120
struct mem_cgroup_tree_per_node {
121
	struct rb_root rb_root;
122
	struct rb_node *rb_rightmost;
123 124 125 126 127 128 129 130 131
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
132 133 134 135 136
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
137

138 139 140
/*
 * cgroup_event represents events which userspace want to receive.
 */
141
struct mem_cgroup_event {
142
	/*
143
	 * memcg which the event belongs to.
144
	 */
145
	struct mem_cgroup *memcg;
146 147 148 149 150 151 152 153
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
154 155 156 157 158
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
159
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
160
			      struct eventfd_ctx *eventfd, const char *args);
161 162 163 164 165
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
166
	void (*unregister_event)(struct mem_cgroup *memcg,
167
				 struct eventfd_ctx *eventfd);
168 169 170 171 172 173
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
174
	wait_queue_entry_t wait;
175 176 177
	struct work_struct remove;
};

178 179
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
180

181 182
/* Stuffs for move charges at task migration. */
/*
183
 * Types of charges to be moved.
184
 */
185 186 187
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
188

189 190
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
191
	spinlock_t	  lock; /* for from, to */
192
	struct mm_struct  *mm;
193 194
	struct mem_cgroup *from;
	struct mem_cgroup *to;
195
	unsigned long flags;
196
	unsigned long precharge;
197
	unsigned long moved_charge;
198
	unsigned long moved_swap;
199 200 201
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
202
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
203 204
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
205

206 207 208 209
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
210
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
211
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
212

213 214
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
215
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
216
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
217
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
218 219 220
	NR_CHARGE_TYPE,
};

221
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
222 223 224 225
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
226
	_KMEM,
V
Vladimir Davydov 已提交
227
	_TCP,
G
Glauber Costa 已提交
228 229
};

230 231
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
232
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
233 234
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
235

236 237 238 239 240 241 242 243 244 245 246 247 248
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

249 250 251 252 253
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

254
#ifdef CONFIG_MEMCG_KMEM
255
/*
256
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
257 258 259 260 261
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
262
 *
263 264
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
265
 */
266 267
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
268

269 270 271 272 273 274 275 276 277 278 279 280 281
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

282 283 284 285 286 287
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
288
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
289 290
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
291
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
292 293 294
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
295
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
296

297 298 299 300 301 302
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
303
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
304
EXPORT_SYMBOL(memcg_kmem_enabled_key);
305

306 307
struct workqueue_struct *memcg_kmem_cache_wq;

308
#endif /* CONFIG_MEMCG_KMEM */
309

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

327
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
328 329 330 331 332
		memcg = root_mem_cgroup;

	return &memcg->css;
}

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

361 362
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
363
{
364
	int nid = page_to_nid(page);
365

366
	return memcg->nodeinfo[nid];
367 368
}

369 370
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
371
{
372
	return soft_limit_tree.rb_tree_per_node[nid];
373 374
}

375
static struct mem_cgroup_tree_per_node *
376 377 378 379
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

380
	return soft_limit_tree.rb_tree_per_node[nid];
381 382
}

383 384
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
385
					 unsigned long new_usage_in_excess)
386 387 388
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
389
	struct mem_cgroup_per_node *mz_node;
390
	bool rightmost = true;
391 392 393 394 395 396 397 398 399

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
400
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
401
					tree_node);
402
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
403
			p = &(*p)->rb_left;
404 405 406
			rightmost = false;
		}

407 408 409 410 411 412 413
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
414 415 416 417

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

418 419 420 421 422
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

423 424
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
425 426 427
{
	if (!mz->on_tree)
		return;
428 429 430 431

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

432 433 434 435
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

436 437
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
438
{
439 440 441
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
442
	__mem_cgroup_remove_exceeded(mz, mctz);
443
	spin_unlock_irqrestore(&mctz->lock, flags);
444 445
}

446 447 448
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
449
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
450 451 452 453 454 455 456
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
457 458 459

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
460
	unsigned long excess;
461 462
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
463

464
	mctz = soft_limit_tree_from_page(page);
465 466
	if (!mctz)
		return;
467 468 469 470 471
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
472
		mz = mem_cgroup_page_nodeinfo(memcg, page);
473
		excess = soft_limit_excess(memcg);
474 475 476 477 478
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
479 480 481
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
482 483
			/* if on-tree, remove it */
			if (mz->on_tree)
484
				__mem_cgroup_remove_exceeded(mz, mctz);
485 486 487 488
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
489
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
490
			spin_unlock_irqrestore(&mctz->lock, flags);
491 492 493 494 495 496
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
497 498 499
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
500

501
	for_each_node(nid) {
502 503
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
504 505
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
506 507 508
	}
}

509 510
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
511
{
512
	struct mem_cgroup_per_node *mz;
513 514 515

retry:
	mz = NULL;
516
	if (!mctz->rb_rightmost)
517 518
		goto done;		/* Nothing to reclaim from */

519 520
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
521 522 523 524 525
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
526
	__mem_cgroup_remove_exceeded(mz, mctz);
527
	if (!soft_limit_excess(mz->memcg) ||
528
	    !css_tryget_online(&mz->memcg->css))
529 530 531 532 533
		goto retry;
done:
	return mz;
}

534 535
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
536
{
537
	struct mem_cgroup_per_node *mz;
538

539
	spin_lock_irq(&mctz->lock);
540
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
541
	spin_unlock_irq(&mctz->lock);
542 543 544
	return mz;
}

545
static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
546
				      int event)
547
{
548
	return atomic_long_read(&memcg->events[event]);
549 550
}

551
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
552
					 struct page *page,
553
					 bool compound, int nr_pages)
554
{
555 556 557 558
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
559
	if (PageAnon(page))
560
		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
561
	else {
562
		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
563
		if (PageSwapBacked(page))
564
			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
565
	}
566

567 568
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
569
		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
570
	}
571

572 573
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
574
		__count_memcg_events(memcg, PGPGIN, 1);
575
	else {
576
		__count_memcg_events(memcg, PGPGOUT, 1);
577 578
		nr_pages = -nr_pages; /* for event */
	}
579

580
	__this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
581 582
}

583 584
unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
					   int nid, unsigned int lru_mask)
585
{
586
	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
587
	unsigned long nr = 0;
588
	enum lru_list lru;
589

590
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
591

592 593 594
	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
595
		nr += mem_cgroup_get_lru_size(lruvec, lru);
596 597
	}
	return nr;
598
}
599

600
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
601
			unsigned int lru_mask)
602
{
603
	unsigned long nr = 0;
604
	int nid;
605

606
	for_each_node_state(nid, N_MEMORY)
607 608
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
609 610
}

611 612
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
613 614 615
{
	unsigned long val, next;

616 617
	val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
	next = __this_cpu_read(memcg->stat_cpu->targets[target]);
618
	/* from time_after() in jiffies.h */
619
	if ((long)(next - val) < 0) {
620 621 622 623
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
624 625 626
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
627 628 629 630 631 632
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
633
		__this_cpu_write(memcg->stat_cpu->targets[target], next);
634
		return true;
635
	}
636
	return false;
637 638 639 640 641 642
}

/*
 * Check events in order.
 *
 */
643
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
644 645
{
	/* threshold event is triggered in finer grain than soft limit */
646 647
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
648
		bool do_softlimit;
649
		bool do_numainfo __maybe_unused;
650

651 652
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
653 654 655 656
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
657
		mem_cgroup_threshold(memcg);
658 659
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
660
#if MAX_NUMNODES > 1
661
		if (unlikely(do_numainfo))
662
			atomic_inc(&memcg->numainfo_events);
663
#endif
664
	}
665 666
}

667
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
668
{
669 670 671 672 673 674 675 676
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

677
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
678
}
M
Michal Hocko 已提交
679
EXPORT_SYMBOL(mem_cgroup_from_task);
680

681 682 683 684 685 686 687 688 689
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
 * returned.
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
690
{
691 692 693 694
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
695

696 697
	rcu_read_lock();
	do {
698 699 700 701 702 703
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
704
			memcg = root_mem_cgroup;
705 706 707 708 709
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
710
	} while (!css_tryget_online(&memcg->css));
711
	rcu_read_unlock();
712
	return memcg;
713
}
714 715
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
/**
 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
 * @page: page from which memcg should be extracted.
 *
 * Obtain a reference on page->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned.
 */
struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
{
	struct mem_cgroup *memcg = page->mem_cgroup;

	if (mem_cgroup_disabled())
		return NULL;

	rcu_read_lock();
	if (!memcg || !css_tryget_online(&memcg->css))
		memcg = root_mem_cgroup;
	rcu_read_unlock();
	return memcg;
}
EXPORT_SYMBOL(get_mem_cgroup_from_page);

738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
/**
 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
 */
static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
{
	if (unlikely(current->active_memcg)) {
		struct mem_cgroup *memcg = root_mem_cgroup;

		rcu_read_lock();
		if (css_tryget_online(&current->active_memcg->css))
			memcg = current->active_memcg;
		rcu_read_unlock();
		return memcg;
	}
	return get_mem_cgroup_from_mm(current->mm);
}
754

755 756 757 758 759 760 761 762 763 764 765 766 767
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
768
 * Reclaimers can specify a node and a priority level in @reclaim to
769
 * divide up the memcgs in the hierarchy among all concurrent
770
 * reclaimers operating on the same node and priority.
771
 */
772
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
773
				   struct mem_cgroup *prev,
774
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
775
{
M
Michal Hocko 已提交
776
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
777
	struct cgroup_subsys_state *css = NULL;
778
	struct mem_cgroup *memcg = NULL;
779
	struct mem_cgroup *pos = NULL;
780

781 782
	if (mem_cgroup_disabled())
		return NULL;
783

784 785
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
786

787
	if (prev && !reclaim)
788
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
789

790 791
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
792
			goto out;
793
		return root;
794
	}
K
KAMEZAWA Hiroyuki 已提交
795

796
	rcu_read_lock();
M
Michal Hocko 已提交
797

798
	if (reclaim) {
799
		struct mem_cgroup_per_node *mz;
800

801
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
802 803 804 805 806
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

807
		while (1) {
808
			pos = READ_ONCE(iter->position);
809 810
			if (!pos || css_tryget(&pos->css))
				break;
811
			/*
812 813 814 815 816 817
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
818
			 */
819 820
			(void)cmpxchg(&iter->position, pos, NULL);
		}
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
838
		}
K
KAMEZAWA Hiroyuki 已提交
839

840 841 842 843 844 845
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
846

847 848
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
849

850 851
		if (css_tryget(css))
			break;
852

853
		memcg = NULL;
854
	}
855 856 857

	if (reclaim) {
		/*
858 859 860
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
861
		 */
862 863
		(void)cmpxchg(&iter->position, pos, memcg);

864 865 866 867 868 869 870
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
871
	}
872

873 874
out_unlock:
	rcu_read_unlock();
875
out:
876 877 878
	if (prev && prev != root)
		css_put(&prev->css);

879
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
880
}
K
KAMEZAWA Hiroyuki 已提交
881

882 883 884 885 886 887 888
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
889 890 891 892 893 894
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
895

896 897 898 899
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
900 901
	struct mem_cgroup_per_node *mz;
	int nid;
902 903
	int i;

904
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
905
		for_each_node(nid) {
906 907 908 909 910
			mz = mem_cgroup_nodeinfo(memcg, nid);
			for (i = 0; i <= DEF_PRIORITY; i++) {
				iter = &mz->iter[i];
				cmpxchg(&iter->position,
					dead_memcg, NULL);
911 912 913 914 915
			}
		}
	}
}

916 917 918 919 920 921
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
922
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
923
	     iter != NULL;				\
924
	     iter = mem_cgroup_iter(root, iter, NULL))
925

926
#define for_each_mem_cgroup(iter)			\
927
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
928
	     iter != NULL;				\
929
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
930

931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

956
		css_task_iter_start(&iter->css, 0, &it);
957 958 959 960 961 962 963 964 965 966 967
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

968
/**
969
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
970
 * @page: the page
971
 * @pgdat: pgdat of the page
972 973 974 975
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
976
 */
M
Mel Gorman 已提交
977
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
978
{
979
	struct mem_cgroup_per_node *mz;
980
	struct mem_cgroup *memcg;
981
	struct lruvec *lruvec;
982

983
	if (mem_cgroup_disabled()) {
M
Mel Gorman 已提交
984
		lruvec = &pgdat->lruvec;
985 986
		goto out;
	}
987

988
	memcg = page->mem_cgroup;
989
	/*
990
	 * Swapcache readahead pages are added to the LRU - and
991
	 * possibly migrated - before they are charged.
992
	 */
993 994
	if (!memcg)
		memcg = root_mem_cgroup;
995

996
	mz = mem_cgroup_page_nodeinfo(memcg, page);
997 998 999 1000 1001 1002 1003
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
1004 1005
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
1006
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1007
}
1008

1009
/**
1010 1011 1012
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1013
 * @zid: zone id of the accounted pages
1014
 * @nr_pages: positive when adding or negative when removing
1015
 *
1016 1017 1018
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1019
 */
1020
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1021
				int zid, int nr_pages)
1022
{
1023
	struct mem_cgroup_per_node *mz;
1024
	unsigned long *lru_size;
1025
	long size;
1026 1027 1028 1029

	if (mem_cgroup_disabled())
		return;

1030
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1031
	lru_size = &mz->lru_zone_size[zid][lru];
1032 1033 1034 1035 1036

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1037 1038 1039
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1040 1041 1042 1043 1044 1045
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1046
}
1047

1048
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1049
{
1050
	struct mem_cgroup *task_memcg;
1051
	struct task_struct *p;
1052
	bool ret;
1053

1054
	p = find_lock_task_mm(task);
1055
	if (p) {
1056
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1057 1058 1059 1060 1061 1062 1063
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1064
		rcu_read_lock();
1065 1066
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1067
		rcu_read_unlock();
1068
	}
1069 1070
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1071 1072 1073
	return ret;
}

1074
/**
1075
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1076
 * @memcg: the memory cgroup
1077
 *
1078
 * Returns the maximum amount of memory @mem can be charged with, in
1079
 * pages.
1080
 */
1081
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1082
{
1083 1084 1085
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1086

1087
	count = page_counter_read(&memcg->memory);
1088
	limit = READ_ONCE(memcg->memory.max);
1089 1090 1091
	if (count < limit)
		margin = limit - count;

1092
	if (do_memsw_account()) {
1093
		count = page_counter_read(&memcg->memsw);
1094
		limit = READ_ONCE(memcg->memsw.max);
1095 1096
		if (count <= limit)
			margin = min(margin, limit - count);
1097 1098
		else
			margin = 0;
1099 1100 1101
	}

	return margin;
1102 1103
}

1104
/*
Q
Qiang Huang 已提交
1105
 * A routine for checking "mem" is under move_account() or not.
1106
 *
Q
Qiang Huang 已提交
1107 1108 1109
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1110
 */
1111
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1112
{
1113 1114
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1115
	bool ret = false;
1116 1117 1118 1119 1120 1121 1122 1123 1124
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1125

1126 1127
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1128 1129
unlock:
	spin_unlock(&mc.lock);
1130 1131 1132
	return ret;
}

1133
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1134 1135
{
	if (mc.moving_task && current != mc.moving_task) {
1136
		if (mem_cgroup_under_move(memcg)) {
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1149
static const unsigned int memcg1_stats[] = {
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
	MEMCG_CACHE,
	MEMCG_RSS,
	MEMCG_RSS_HUGE,
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
	"rss_huge",
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

1171
#define K(x) ((x) << (PAGE_SHIFT-10))
1172
/**
1173
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1174 1175 1176 1177 1178 1179 1180 1181
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
1182 1183
	struct mem_cgroup *iter;
	unsigned int i;
1184 1185 1186

	rcu_read_lock();

1187 1188 1189 1190 1191 1192 1193 1194
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1195
	pr_cont_cgroup_path(memcg->css.cgroup);
1196
	pr_cont("\n");
1197 1198 1199

	rcu_read_unlock();

1200 1201
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1202
		K((u64)memcg->memory.max), memcg->memory.failcnt);
1203 1204
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
1205
		K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1206 1207
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
1208
		K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1209 1210

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1211 1212
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1213 1214
		pr_cont(":");

1215 1216
		for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
			if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1217
				continue;
1218
			pr_cont(" %s:%luKB", memcg1_stat_names[i],
1219
				K(memcg_page_state(iter, memcg1_stats[i])));
1220 1221 1222 1223 1224 1225 1226 1227
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1228 1229
}

D
David Rientjes 已提交
1230 1231 1232
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1233
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1234
{
1235
	unsigned long max;
1236

1237
	max = memcg->memory.max;
1238
	if (mem_cgroup_swappiness(memcg)) {
1239 1240
		unsigned long memsw_max;
		unsigned long swap_max;
1241

1242 1243 1244 1245
		memsw_max = memcg->memsw.max;
		swap_max = memcg->swap.max;
		swap_max = min(swap_max, (unsigned long)total_swap_pages);
		max = min(max + swap_max, memsw_max);
1246
	}
1247
	return max;
D
David Rientjes 已提交
1248 1249
}

1250
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1251
				     int order)
1252
{
1253 1254 1255
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1256
		.memcg = memcg,
1257 1258 1259
		.gfp_mask = gfp_mask,
		.order = order,
	};
1260
	bool ret;
1261

1262
	mutex_lock(&oom_lock);
1263
	ret = out_of_memory(&oc);
1264
	mutex_unlock(&oom_lock);
1265
	return ret;
1266 1267
}

1268 1269
#if MAX_NUMNODES > 1

1270 1271
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1272
 * @memcg: the target memcg
1273 1274 1275 1276 1277 1278 1279
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1280
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1281 1282
		int nid, bool noswap)
{
1283
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1284 1285 1286
		return true;
	if (noswap || !total_swap_pages)
		return false;
1287
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1288 1289 1290 1291
		return true;
	return false;

}
1292 1293 1294 1295 1296 1297 1298

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1299
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1300 1301
{
	int nid;
1302 1303 1304 1305
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1306
	if (!atomic_read(&memcg->numainfo_events))
1307
		return;
1308
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1309 1310 1311
		return;

	/* make a nodemask where this memcg uses memory from */
1312
	memcg->scan_nodes = node_states[N_MEMORY];
1313

1314
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1315

1316 1317
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1318
	}
1319

1320 1321
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1336
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1337 1338 1339
{
	int node;

1340 1341
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1342

1343
	node = next_node_in(node, memcg->scan_nodes);
1344
	/*
1345 1346 1347
	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
	 * last time it really checked all the LRUs due to rate limiting.
	 * Fallback to the current node in that case for simplicity.
1348 1349 1350 1351
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1352
	memcg->last_scanned_node = node;
1353 1354 1355
	return node;
}
#else
1356
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1357 1358 1359 1360 1361
{
	return 0;
}
#endif

1362
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1363
				   pg_data_t *pgdat,
1364 1365 1366 1367 1368 1369 1370 1371 1372
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1373
		.pgdat = pgdat,
1374 1375 1376
		.priority = 0,
	};

1377
	excess = soft_limit_excess(root_memcg);
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1403
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1404
					pgdat, &nr_scanned);
1405
		*total_scanned += nr_scanned;
1406
		if (!soft_limit_excess(root_memcg))
1407
			break;
1408
	}
1409 1410
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1411 1412
}

1413 1414 1415 1416 1417 1418
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1419 1420
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1421 1422 1423 1424
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1425
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1426
{
1427
	struct mem_cgroup *iter, *failed = NULL;
1428

1429 1430
	spin_lock(&memcg_oom_lock);

1431
	for_each_mem_cgroup_tree(iter, memcg) {
1432
		if (iter->oom_lock) {
1433 1434 1435 1436 1437
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1438 1439
			mem_cgroup_iter_break(memcg, iter);
			break;
1440 1441
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1442
	}
K
KAMEZAWA Hiroyuki 已提交
1443

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1455
		}
1456 1457
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1458 1459 1460 1461

	spin_unlock(&memcg_oom_lock);

	return !failed;
1462
}
1463

1464
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1465
{
K
KAMEZAWA Hiroyuki 已提交
1466 1467
	struct mem_cgroup *iter;

1468
	spin_lock(&memcg_oom_lock);
1469
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1470
	for_each_mem_cgroup_tree(iter, memcg)
1471
		iter->oom_lock = false;
1472
	spin_unlock(&memcg_oom_lock);
1473 1474
}

1475
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1476 1477 1478
{
	struct mem_cgroup *iter;

1479
	spin_lock(&memcg_oom_lock);
1480
	for_each_mem_cgroup_tree(iter, memcg)
1481 1482
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1483 1484
}

1485
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1486 1487 1488
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1489 1490
	/*
	 * When a new child is created while the hierarchy is under oom,
1491
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1492
	 */
1493
	spin_lock(&memcg_oom_lock);
1494
	for_each_mem_cgroup_tree(iter, memcg)
1495 1496 1497
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1498 1499
}

K
KAMEZAWA Hiroyuki 已提交
1500 1501
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1502
struct oom_wait_info {
1503
	struct mem_cgroup *memcg;
1504
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1505 1506
};

1507
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1508 1509
	unsigned mode, int sync, void *arg)
{
1510 1511
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1512 1513 1514
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1515
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1516

1517 1518
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1519 1520 1521 1522
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1523
static void memcg_oom_recover(struct mem_cgroup *memcg)
1524
{
1525 1526 1527 1528 1529 1530 1531 1532 1533
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1534
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1535 1536
}

1537 1538 1539 1540 1541 1542 1543 1544
enum oom_status {
	OOM_SUCCESS,
	OOM_FAILED,
	OOM_ASYNC,
	OOM_SKIPPED
};

static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1545
{
1546 1547 1548
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		return OOM_SKIPPED;

K
KAMEZAWA Hiroyuki 已提交
1549
	/*
1550 1551 1552 1553
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1554 1555 1556 1557
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1558
	 *
1559 1560 1561 1562 1563 1564 1565
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
K
KAMEZAWA Hiroyuki 已提交
1566
	 */
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
	if (memcg->oom_kill_disable) {
		if (!current->in_user_fault)
			return OOM_SKIPPED;
		css_get(&memcg->css);
		current->memcg_in_oom = memcg;
		current->memcg_oom_gfp_mask = mask;
		current->memcg_oom_order = order;

		return OOM_ASYNC;
	}

	if (mem_cgroup_out_of_memory(memcg, mask, order))
		return OOM_SUCCESS;

	WARN(1,"Memory cgroup charge failed because of no reclaimable memory! "
		"This looks like a misconfiguration or a kernel bug.");
	return OOM_FAILED;
1584 1585 1586 1587
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1588
 * @handle: actually kill/wait or just clean up the OOM state
1589
 *
1590 1591
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1592
 *
1593
 * Memcg supports userspace OOM handling where failed allocations must
1594 1595 1596 1597
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1598
 * the end of the page fault to complete the OOM handling.
1599 1600
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1601
 * completed, %false otherwise.
1602
 */
1603
bool mem_cgroup_oom_synchronize(bool handle)
1604
{
T
Tejun Heo 已提交
1605
	struct mem_cgroup *memcg = current->memcg_in_oom;
1606
	struct oom_wait_info owait;
1607
	bool locked;
1608 1609 1610

	/* OOM is global, do not handle */
	if (!memcg)
1611
		return false;
1612

1613
	if (!handle)
1614
		goto cleanup;
1615 1616 1617 1618 1619

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
1620
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
1621

1622
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1633 1634
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1635
	} else {
1636
		schedule();
1637 1638 1639 1640 1641
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1642 1643 1644 1645 1646 1647 1648 1649
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1650
cleanup:
T
Tejun Heo 已提交
1651
	current->memcg_in_oom = NULL;
1652
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1653
	return true;
1654 1655
}

1656
/**
1657 1658
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1659
 *
1660
 * This function protects unlocked LRU pages from being moved to
1661 1662 1663 1664 1665
 * another cgroup.
 *
 * It ensures lifetime of the returned memcg. Caller is responsible
 * for the lifetime of the page; __unlock_page_memcg() is available
 * when @page might get freed inside the locked section.
1666
 */
1667
struct mem_cgroup *lock_page_memcg(struct page *page)
1668 1669
{
	struct mem_cgroup *memcg;
1670
	unsigned long flags;
1671

1672 1673 1674 1675
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
1676 1677 1678 1679 1680 1681 1682
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page itself from being freed. E.g. writeback
	 * doesn't hold a page reference and relies on PG_writeback to
	 * keep off truncation, migration and so forth.
         */
1683 1684 1685
	rcu_read_lock();

	if (mem_cgroup_disabled())
1686
		return NULL;
1687
again:
1688
	memcg = page->mem_cgroup;
1689
	if (unlikely(!memcg))
1690
		return NULL;
1691

Q
Qiang Huang 已提交
1692
	if (atomic_read(&memcg->moving_account) <= 0)
1693
		return memcg;
1694

1695
	spin_lock_irqsave(&memcg->move_lock, flags);
1696
	if (memcg != page->mem_cgroup) {
1697
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1698 1699
		goto again;
	}
1700 1701 1702 1703

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
1704
	 * the task who has the lock for unlock_page_memcg().
1705 1706 1707
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1708

1709
	return memcg;
1710
}
1711
EXPORT_SYMBOL(lock_page_memcg);
1712

1713
/**
1714 1715 1716 1717
 * __unlock_page_memcg - unlock and unpin a memcg
 * @memcg: the memcg
 *
 * Unlock and unpin a memcg returned by lock_page_memcg().
1718
 */
1719
void __unlock_page_memcg(struct mem_cgroup *memcg)
1720
{
1721 1722 1723 1724 1725 1726 1727 1728
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1729

1730
	rcu_read_unlock();
1731
}
1732 1733 1734 1735 1736 1737 1738 1739 1740

/**
 * unlock_page_memcg - unlock a page->mem_cgroup binding
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
	__unlock_page_memcg(page->mem_cgroup);
}
1741
EXPORT_SYMBOL(unlock_page_memcg);
1742

1743 1744
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1745
	unsigned int nr_pages;
1746
	struct work_struct work;
1747
	unsigned long flags;
1748
#define FLUSHING_CACHED_CHARGE	0
1749 1750
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1751
static DEFINE_MUTEX(percpu_charge_mutex);
1752

1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1763
 */
1764
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1765 1766
{
	struct memcg_stock_pcp *stock;
1767
	unsigned long flags;
1768
	bool ret = false;
1769

1770
	if (nr_pages > MEMCG_CHARGE_BATCH)
1771
		return ret;
1772

1773 1774 1775
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
1776
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1777
		stock->nr_pages -= nr_pages;
1778 1779
		ret = true;
	}
1780 1781 1782

	local_irq_restore(flags);

1783 1784 1785 1786
	return ret;
}

/*
1787
 * Returns stocks cached in percpu and reset cached information.
1788 1789 1790 1791 1792
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1793
	if (stock->nr_pages) {
1794
		page_counter_uncharge(&old->memory, stock->nr_pages);
1795
		if (do_memsw_account())
1796
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1797
		css_put_many(&old->css, stock->nr_pages);
1798
		stock->nr_pages = 0;
1799 1800 1801 1802 1803 1804
	}
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
1805 1806 1807
	struct memcg_stock_pcp *stock;
	unsigned long flags;

1808 1809 1810 1811
	/*
	 * The only protection from memory hotplug vs. drain_stock races is
	 * that we always operate on local CPU stock here with IRQ disabled
	 */
1812 1813 1814
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
1815
	drain_stock(stock);
1816
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1817 1818

	local_irq_restore(flags);
1819 1820 1821
}

/*
1822
 * Cache charges(val) to local per_cpu area.
1823
 * This will be consumed by consume_stock() function, later.
1824
 */
1825
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1826
{
1827 1828 1829 1830
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
1831

1832
	stock = this_cpu_ptr(&memcg_stock);
1833
	if (stock->cached != memcg) { /* reset if necessary */
1834
		drain_stock(stock);
1835
		stock->cached = memcg;
1836
	}
1837
	stock->nr_pages += nr_pages;
1838

1839
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
1840 1841
		drain_stock(stock);

1842
	local_irq_restore(flags);
1843 1844 1845
}

/*
1846
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1847
 * of the hierarchy under it.
1848
 */
1849
static void drain_all_stock(struct mem_cgroup *root_memcg)
1850
{
1851
	int cpu, curcpu;
1852

1853 1854 1855
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1856 1857 1858 1859 1860 1861
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
1862
	curcpu = get_cpu();
1863 1864
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1865
		struct mem_cgroup *memcg;
1866

1867
		memcg = stock->cached;
1868
		if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
1869
			continue;
1870 1871
		if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
			css_put(&memcg->css);
1872
			continue;
1873
		}
1874 1875 1876 1877 1878 1879
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1880
		css_put(&memcg->css);
1881
	}
1882
	put_cpu();
1883
	mutex_unlock(&percpu_charge_mutex);
1884 1885
}

1886
static int memcg_hotplug_cpu_dead(unsigned int cpu)
1887 1888
{
	struct memcg_stock_pcp *stock;
1889
	struct mem_cgroup *memcg;
1890 1891 1892

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917

	for_each_mem_cgroup(memcg) {
		int i;

		for (i = 0; i < MEMCG_NR_STAT; i++) {
			int nid;
			long x;

			x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
			if (x)
				atomic_long_add(x, &memcg->stat[i]);

			if (i >= NR_VM_NODE_STAT_ITEMS)
				continue;

			for_each_node(nid) {
				struct mem_cgroup_per_node *pn;

				pn = mem_cgroup_nodeinfo(memcg, nid);
				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
				if (x)
					atomic_long_add(x, &pn->lruvec_stat[i]);
			}
		}

1918
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
1919 1920 1921 1922 1923 1924 1925 1926
			long x;

			x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
			if (x)
				atomic_long_add(x, &memcg->events[i]);
		}
	}

1927
	return 0;
1928 1929
}

1930 1931 1932 1933 1934 1935 1936
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
1937
		memcg_memory_event(memcg, MEMCG_HIGH);
1938 1939 1940 1941 1942 1943 1944 1945 1946
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
1947
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
1948 1949
}

1950 1951 1952 1953 1954 1955 1956
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1957
	struct mem_cgroup *memcg;
1958 1959 1960 1961

	if (likely(!nr_pages))
		return;

1962 1963
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1964 1965 1966 1967
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

1968 1969
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
1970
{
1971
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
1972
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1973
	struct mem_cgroup *mem_over_limit;
1974
	struct page_counter *counter;
1975
	unsigned long nr_reclaimed;
1976 1977
	bool may_swap = true;
	bool drained = false;
1978 1979
	bool oomed = false;
	enum oom_status oom_status;
1980

1981
	if (mem_cgroup_is_root(memcg))
1982
		return 0;
1983
retry:
1984
	if (consume_stock(memcg, nr_pages))
1985
		return 0;
1986

1987
	if (!do_memsw_account() ||
1988 1989
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1990
			goto done_restock;
1991
		if (do_memsw_account())
1992 1993
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1994
	} else {
1995
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1996
		may_swap = false;
1997
	}
1998

1999 2000 2001 2002
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2003

2004 2005 2006 2007 2008 2009
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
2010
	if (unlikely(tsk_is_oom_victim(current) ||
2011 2012
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
2013
		goto force;
2014

2015 2016 2017 2018 2019 2020 2021 2022 2023
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2024 2025 2026
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2027
	if (!gfpflags_allow_blocking(gfp_mask))
2028
		goto nomem;
2029

2030
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2031

2032 2033
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2034

2035
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2036
		goto retry;
2037

2038
	if (!drained) {
2039
		drain_all_stock(mem_over_limit);
2040 2041 2042 2043
		drained = true;
		goto retry;
	}

2044 2045
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2046 2047 2048 2049 2050 2051 2052 2053 2054
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2055
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2056 2057 2058 2059 2060 2061 2062 2063
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2064 2065 2066
	if (nr_retries--)
		goto retry;

2067 2068 2069
	if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed)
		goto nomem;

2070
	if (gfp_mask & __GFP_NOFAIL)
2071
		goto force;
2072

2073
	if (fatal_signal_pending(current))
2074
		goto force;
2075

2076
	memcg_memory_event(mem_over_limit, MEMCG_OOM);
2077

2078 2079 2080 2081 2082 2083
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2084
		       get_order(nr_pages * PAGE_SIZE));
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
	switch (oom_status) {
	case OOM_SUCCESS:
		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
		oomed = true;
		goto retry;
	case OOM_FAILED:
		goto force;
	default:
		goto nomem;
	}
2095
nomem:
2096
	if (!(gfp_mask & __GFP_NOFAIL))
2097
		return -ENOMEM;
2098 2099 2100 2101 2102 2103 2104
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2105
	if (do_memsw_account())
2106 2107 2108 2109
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2110 2111

done_restock:
2112
	css_get_many(&memcg->css, batch);
2113 2114
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2115

2116
	/*
2117 2118
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2119
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2120 2121 2122 2123
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2124 2125
	 */
	do {
2126
		if (page_counter_read(&memcg->memory) > memcg->high) {
2127 2128 2129 2130 2131
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2132
			current->memcg_nr_pages_over_high += batch;
2133 2134 2135
			set_notify_resume(current);
			break;
		}
2136
	} while ((memcg = parent_mem_cgroup(memcg)));
2137 2138

	return 0;
2139
}
2140

2141
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2142
{
2143 2144 2145
	if (mem_cgroup_is_root(memcg))
		return;

2146
	page_counter_uncharge(&memcg->memory, nr_pages);
2147
	if (do_memsw_account())
2148
		page_counter_uncharge(&memcg->memsw, nr_pages);
2149

2150
	css_put_many(&memcg->css, nr_pages);
2151 2152
}

2153 2154 2155 2156
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

2157
	spin_lock_irq(zone_lru_lock(zone));
2158 2159 2160
	if (PageLRU(page)) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2161
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2176
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2177 2178 2179 2180
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
2181
	spin_unlock_irq(zone_lru_lock(zone));
2182 2183
}

2184
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2185
			  bool lrucare)
2186
{
2187
	int isolated;
2188

2189
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2190 2191 2192 2193 2194

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2195 2196
	if (lrucare)
		lock_page_lru(page, &isolated);
2197

2198 2199
	/*
	 * Nobody should be changing or seriously looking at
2200
	 * page->mem_cgroup at this point:
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2212
	page->mem_cgroup = memcg;
2213

2214 2215
	if (lrucare)
		unlock_page_lru(page, isolated);
2216
}
2217

2218
#ifdef CONFIG_MEMCG_KMEM
2219
static int memcg_alloc_cache_id(void)
2220
{
2221 2222 2223
	int id, size;
	int err;

2224
	id = ida_simple_get(&memcg_cache_ida,
2225 2226 2227
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2228

2229
	if (id < memcg_nr_cache_ids)
2230 2231 2232 2233 2234 2235
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2236
	down_write(&memcg_cache_ids_sem);
2237 2238

	size = 2 * (id + 1);
2239 2240 2241 2242 2243
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2244
	err = memcg_update_all_caches(size);
2245 2246
	if (!err)
		err = memcg_update_all_list_lrus(size);
2247 2248 2249 2250 2251
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2252
	if (err) {
2253
		ida_simple_remove(&memcg_cache_ida, id);
2254 2255 2256 2257 2258 2259 2260
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2261
	ida_simple_remove(&memcg_cache_ida, id);
2262 2263
}

2264
struct memcg_kmem_cache_create_work {
2265 2266 2267 2268 2269
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2270
static void memcg_kmem_cache_create_func(struct work_struct *w)
2271
{
2272 2273
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2274 2275
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2276

2277
	memcg_create_kmem_cache(memcg, cachep);
2278

2279
	css_put(&memcg->css);
2280 2281 2282 2283 2284 2285
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2286 2287
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2288
{
2289
	struct memcg_kmem_cache_create_work *cw;
2290

2291
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2292
	if (!cw)
2293
		return;
2294 2295

	css_get(&memcg->css);
2296 2297 2298

	cw->memcg = memcg;
	cw->cachep = cachep;
2299
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2300

2301
	queue_work(memcg_kmem_cache_wq, &cw->work);
2302 2303
}

2304 2305
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2306 2307 2308 2309
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2310
	 * in __memcg_schedule_kmem_cache_create will recurse.
2311 2312 2313 2314 2315 2316 2317
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2318
	current->memcg_kmem_skip_account = 1;
2319
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2320
	current->memcg_kmem_skip_account = 0;
2321
}
2322

2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
static inline bool memcg_kmem_bypass(void)
{
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;
	return false;
}

/**
 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
 * @cachep: the original global kmem cache
 *
2334 2335 2336
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
2337 2338 2339
 * If the cache does not exist yet, if we are the first user of it, we
 * create it asynchronously in a workqueue and let the current allocation
 * go through with the original cache.
2340
 *
2341 2342 2343 2344
 * This function takes a reference to the cache it returns to assure it
 * won't get destroyed while we are working with it. Once the caller is
 * done with it, memcg_kmem_put_cache() must be called to release the
 * reference.
2345
 */
2346
struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2347 2348
{
	struct mem_cgroup *memcg;
2349
	struct kmem_cache *memcg_cachep;
2350
	int kmemcg_id;
2351

2352
	VM_BUG_ON(!is_root_cache(cachep));
2353

2354
	if (memcg_kmem_bypass())
V
Vladimir Davydov 已提交
2355 2356
		return cachep;

2357
	if (current->memcg_kmem_skip_account)
2358 2359
		return cachep;

2360
	memcg = get_mem_cgroup_from_current();
2361
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2362
	if (kmemcg_id < 0)
2363
		goto out;
2364

2365
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2366 2367
	if (likely(memcg_cachep))
		return memcg_cachep;
2368 2369 2370 2371 2372 2373 2374 2375 2376

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2377 2378 2379
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2380
	 */
2381
	memcg_schedule_kmem_cache_create(memcg, cachep);
2382
out:
2383
	css_put(&memcg->css);
2384
	return cachep;
2385 2386
}

2387 2388 2389 2390 2391
/**
 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
 * @cachep: the cache returned by memcg_kmem_get_cache
 */
void memcg_kmem_put_cache(struct kmem_cache *cachep)
2392 2393
{
	if (!is_root_cache(cachep))
2394
		css_put(&cachep->memcg_params.memcg->css);
2395 2396
}

2397
/**
2398
 * memcg_kmem_charge_memcg: charge a kmem page
2399 2400 2401 2402 2403 2404 2405 2406 2407
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 * @memcg: memory cgroup to charge
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			    struct mem_cgroup *memcg)
2408
{
2409 2410
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2411 2412
	int ret;

2413
	ret = try_charge(memcg, gfp, nr_pages);
2414
	if (ret)
2415
		return ret;
2416 2417 2418 2419 2420

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2421 2422
	}

2423
	page->mem_cgroup = memcg;
2424

2425
	return 0;
2426 2427
}

2428 2429 2430 2431 2432 2433 2434 2435 2436
/**
 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2437
{
2438
	struct mem_cgroup *memcg;
2439
	int ret = 0;
2440

2441 2442 2443
	if (memcg_kmem_bypass())
		return 0;

2444
	memcg = get_mem_cgroup_from_current();
2445
	if (!mem_cgroup_is_root(memcg)) {
2446
		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2447 2448 2449
		if (!ret)
			__SetPageKmemcg(page);
	}
2450
	css_put(&memcg->css);
2451
	return ret;
2452
}
2453 2454 2455 2456 2457 2458
/**
 * memcg_kmem_uncharge: uncharge a kmem page
 * @page: page to uncharge
 * @order: allocation order
 */
void memcg_kmem_uncharge(struct page *page, int order)
2459
{
2460
	struct mem_cgroup *memcg = page->mem_cgroup;
2461
	unsigned int nr_pages = 1 << order;
2462 2463 2464 2465

	if (!memcg)
		return;

2466
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2467

2468 2469 2470
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

2471
	page_counter_uncharge(&memcg->memory, nr_pages);
2472
	if (do_memsw_account())
2473
		page_counter_uncharge(&memcg->memsw, nr_pages);
2474

2475
	page->mem_cgroup = NULL;
2476 2477 2478 2479 2480

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);

2481
	css_put_many(&memcg->css, nr_pages);
2482
}
2483
#endif /* CONFIG_MEMCG_KMEM */
2484

2485 2486 2487 2488
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2489
 * zone_lru_lock and migration entries setup in all page mappings.
2490
 */
2491
void mem_cgroup_split_huge_fixup(struct page *head)
2492
{
2493
	int i;
2494

2495 2496
	if (mem_cgroup_disabled())
		return;
2497

2498
	for (i = 1; i < HPAGE_PMD_NR; i++)
2499
		head[i].mem_cgroup = head->mem_cgroup;
2500

2501
	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2502
}
2503
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2504

A
Andrew Morton 已提交
2505
#ifdef CONFIG_MEMCG_SWAP
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2517
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2518 2519 2520
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2521
				struct mem_cgroup *from, struct mem_cgroup *to)
2522 2523 2524
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2525 2526
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2527 2528

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2529 2530
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
2531 2532 2533 2534 2535 2536
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2537
				struct mem_cgroup *from, struct mem_cgroup *to)
2538 2539 2540
{
	return -EINVAL;
}
2541
#endif
K
KAMEZAWA Hiroyuki 已提交
2542

2543
static DEFINE_MUTEX(memcg_max_mutex);
2544

2545 2546
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
2547
{
2548
	bool enlarge = false;
2549
	bool drained = false;
2550
	int ret;
2551 2552
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2553

2554
	do {
2555 2556 2557 2558
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2559

2560
		mutex_lock(&memcg_max_mutex);
2561 2562
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
2563
		 * break our basic invariant rule memory.max <= memsw.max.
2564
		 */
2565 2566
		limits_invariant = memsw ? max >= memcg->memory.max :
					   max <= memcg->memsw.max;
2567
		if (!limits_invariant) {
2568
			mutex_unlock(&memcg_max_mutex);
2569 2570 2571
			ret = -EINVAL;
			break;
		}
2572
		if (max > counter->max)
2573
			enlarge = true;
2574 2575
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
2576 2577 2578 2579

		if (!ret)
			break;

2580 2581 2582 2583 2584 2585
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

2586 2587 2588 2589 2590 2591
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
2592

2593 2594
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2595

2596 2597 2598
	return ret;
}

2599
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2600 2601 2602 2603
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
2604
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2605 2606
	unsigned long reclaimed;
	int loop = 0;
2607
	struct mem_cgroup_tree_per_node *mctz;
2608
	unsigned long excess;
2609 2610 2611 2612 2613
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

2614
	mctz = soft_limit_tree_node(pgdat->node_id);
2615 2616 2617 2618 2619 2620

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
2621
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2622 2623
		return 0;

2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
2638
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2639 2640 2641
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2642
		spin_lock_irq(&mctz->lock);
2643
		__mem_cgroup_remove_exceeded(mz, mctz);
2644 2645 2646 2647 2648 2649

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2650 2651 2652
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2653
		excess = soft_limit_excess(mz->memcg);
2654 2655 2656 2657 2658 2659 2660 2661 2662
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2663
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2664
		spin_unlock_irq(&mctz->lock);
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2682 2683 2684 2685 2686 2687
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2688 2689
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2690 2691 2692 2693 2694 2695
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2696 2697
}

2698
/*
2699
 * Reclaims as many pages from the given memcg as possible.
2700 2701 2702 2703 2704 2705 2706
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2707 2708
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2709 2710 2711

	drain_all_stock(memcg);

2712
	/* try to free all pages in this cgroup */
2713
	while (nr_retries && page_counter_read(&memcg->memory)) {
2714
		int progress;
2715

2716 2717 2718
		if (signal_pending(current))
			return -EINTR;

2719 2720
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2721
		if (!progress) {
2722
			nr_retries--;
2723
			/* maybe some writeback is necessary */
2724
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2725
		}
2726 2727

	}
2728 2729

	return 0;
2730 2731
}

2732 2733 2734
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2735
{
2736
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2737

2738 2739
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2740
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2741 2742
}

2743 2744
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2745
{
2746
	return mem_cgroup_from_css(css)->use_hierarchy;
2747 2748
}

2749 2750
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2751 2752
{
	int retval = 0;
2753
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2754
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2755

2756
	if (memcg->use_hierarchy == val)
2757
		return 0;
2758

2759
	/*
2760
	 * If parent's use_hierarchy is set, we can't make any modifications
2761 2762 2763 2764 2765 2766
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2767
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2768
				(val == 1 || val == 0)) {
2769
		if (!memcg_has_children(memcg))
2770
			memcg->use_hierarchy = val;
2771 2772 2773 2774
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2775

2776 2777 2778
	return retval;
}

2779
static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2780 2781
{
	struct mem_cgroup *iter;
2782
	int i;
2783

2784
	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2785

2786 2787
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_STAT; i++)
2788
			stat[i] += memcg_page_state(iter, i);
2789
	}
2790 2791
}

2792
static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2793 2794
{
	struct mem_cgroup *iter;
2795
	int i;
2796

2797
	memset(events, 0, sizeof(*events) * NR_VM_EVENT_ITEMS);
2798

2799
	for_each_mem_cgroup_tree(iter, memcg) {
2800
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
2801
			events[i] += memcg_sum_events(iter, i);
2802
	}
2803 2804
}

2805
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2806
{
2807
	unsigned long val = 0;
2808

2809
	if (mem_cgroup_is_root(memcg)) {
2810 2811 2812
		struct mem_cgroup *iter;

		for_each_mem_cgroup_tree(iter, memcg) {
2813 2814
			val += memcg_page_state(iter, MEMCG_CACHE);
			val += memcg_page_state(iter, MEMCG_RSS);
2815
			if (swap)
2816
				val += memcg_page_state(iter, MEMCG_SWAP);
2817
		}
2818
	} else {
2819
		if (!swap)
2820
			val = page_counter_read(&memcg->memory);
2821
		else
2822
			val = page_counter_read(&memcg->memsw);
2823
	}
2824
	return val;
2825 2826
}

2827 2828 2829 2830 2831 2832 2833
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2834

2835
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2836
			       struct cftype *cft)
B
Balbir Singh 已提交
2837
{
2838
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2839
	struct page_counter *counter;
2840

2841
	switch (MEMFILE_TYPE(cft->private)) {
2842
	case _MEM:
2843 2844
		counter = &memcg->memory;
		break;
2845
	case _MEMSWAP:
2846 2847
		counter = &memcg->memsw;
		break;
2848
	case _KMEM:
2849
		counter = &memcg->kmem;
2850
		break;
V
Vladimir Davydov 已提交
2851
	case _TCP:
2852
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
2853
		break;
2854 2855 2856
	default:
		BUG();
	}
2857 2858 2859 2860

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
2861
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2862
		if (counter == &memcg->memsw)
2863
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2864 2865
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
2866
		return (u64)counter->max * PAGE_SIZE;
2867 2868 2869 2870 2871 2872 2873 2874 2875
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2876
}
2877

2878
#ifdef CONFIG_MEMCG_KMEM
2879
static int memcg_online_kmem(struct mem_cgroup *memcg)
2880 2881 2882
{
	int memcg_id;

2883 2884 2885
	if (cgroup_memory_nokmem)
		return 0;

2886
	BUG_ON(memcg->kmemcg_id >= 0);
2887
	BUG_ON(memcg->kmem_state);
2888

2889
	memcg_id = memcg_alloc_cache_id();
2890 2891
	if (memcg_id < 0)
		return memcg_id;
2892

2893
	static_branch_inc(&memcg_kmem_enabled_key);
2894
	/*
2895
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
2896
	 * kmemcg_id. Setting the id after enabling static branching will
2897 2898 2899
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2900
	memcg->kmemcg_id = memcg_id;
2901
	memcg->kmem_state = KMEM_ONLINE;
2902
	INIT_LIST_HEAD(&memcg->kmem_caches);
2903 2904

	return 0;
2905 2906
}

2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	memcg_deactivate_kmem_caches(memcg);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
2940
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2941 2942 2943 2944 2945 2946 2947
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
2948 2949
	rcu_read_unlock();

2950 2951 2952 2953 2954 2955 2956
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
2957 2958 2959 2960
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

2961 2962 2963 2964 2965 2966
	if (memcg->kmem_state == KMEM_ALLOCATED) {
		memcg_destroy_kmem_caches(memcg);
		static_branch_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
}
2967
#else
2968
static int memcg_online_kmem(struct mem_cgroup *memcg)
2969 2970 2971 2972 2973 2974 2975 2976 2977
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
2978
#endif /* CONFIG_MEMCG_KMEM */
2979

2980 2981
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
2982
{
2983
	int ret;
2984

2985 2986 2987
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
2988
	return ret;
2989
}
2990

2991
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
2992 2993 2994
{
	int ret;

2995
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
2996

2997
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
2998 2999 3000
	if (ret)
		goto out;

3001
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3002 3003 3004
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3005 3006 3007
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
3008 3009 3010 3011 3012 3013
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3014
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
3015 3016 3017 3018
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3019
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3020 3021
	}
out:
3022
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3023 3024 3025
	return ret;
}

3026 3027 3028 3029
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3030 3031
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3032
{
3033
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3034
	unsigned long nr_pages;
3035 3036
	int ret;

3037
	buf = strstrip(buf);
3038
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3039 3040
	if (ret)
		return ret;
3041

3042
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3043
	case RES_LIMIT:
3044 3045 3046 3047
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3048 3049
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3050
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3051
			break;
3052
		case _MEMSWAP:
3053
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3054
			break;
3055
		case _KMEM:
3056
			ret = memcg_update_kmem_max(memcg, nr_pages);
3057
			break;
V
Vladimir Davydov 已提交
3058
		case _TCP:
3059
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
3060
			break;
3061
		}
3062
		break;
3063 3064 3065
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3066 3067
		break;
	}
3068
	return ret ?: nbytes;
B
Balbir Singh 已提交
3069 3070
}

3071 3072
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3073
{
3074
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3075
	struct page_counter *counter;
3076

3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3087
	case _TCP:
3088
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3089
		break;
3090 3091 3092
	default:
		BUG();
	}
3093

3094
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3095
	case RES_MAX_USAGE:
3096
		page_counter_reset_watermark(counter);
3097 3098
		break;
	case RES_FAILCNT:
3099
		counter->failcnt = 0;
3100
		break;
3101 3102
	default:
		BUG();
3103
	}
3104

3105
	return nbytes;
3106 3107
}

3108
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3109 3110
					struct cftype *cft)
{
3111
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3112 3113
}

3114
#ifdef CONFIG_MMU
3115
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3116 3117
					struct cftype *cft, u64 val)
{
3118
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3119

3120
	if (val & ~MOVE_MASK)
3121
		return -EINVAL;
3122

3123
	/*
3124 3125 3126 3127
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3128
	 */
3129
	memcg->move_charge_at_immigrate = val;
3130 3131
	return 0;
}
3132
#else
3133
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3134 3135 3136 3137 3138
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3139

3140
#ifdef CONFIG_NUMA
3141
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3142
{
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3155
	int nid;
3156
	unsigned long nr;
3157
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3158

3159 3160 3161 3162 3163 3164 3165 3166 3167
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3168 3169
	}

3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3185 3186 3187 3188 3189 3190
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3191
/* Universal VM events cgroup1 shows, original sort order */
3192
static const unsigned int memcg1_events[] = {
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

static const char *const memcg1_event_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

3206
static int memcg_stat_show(struct seq_file *m, void *v)
3207
{
3208
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3209
	unsigned long memory, memsw;
3210 3211
	struct mem_cgroup *mi;
	unsigned int i;
3212

3213
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3214 3215
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3216 3217
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3218
			continue;
3219
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3220
			   memcg_page_state(memcg, memcg1_stats[i]) *
3221
			   PAGE_SIZE);
3222
	}
L
Lee Schermerhorn 已提交
3223

3224 3225
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3226
			   memcg_sum_events(memcg, memcg1_events[i]));
3227 3228 3229 3230 3231

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3232
	/* Hierarchical information */
3233 3234
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3235 3236
		memory = min(memory, mi->memory.max);
		memsw = min(memsw, mi->memsw.max);
3237
	}
3238 3239
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3240
	if (do_memsw_account())
3241 3242
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3243

3244
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3245
		unsigned long long val = 0;
3246

3247
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3248
			continue;
3249
		for_each_mem_cgroup_tree(mi, memcg)
3250
			val += memcg_page_state(mi, memcg1_stats[i]) *
3251 3252
			PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
3253 3254
	}

3255
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
3256 3257 3258
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
3259
			val += memcg_sum_events(mi, memcg1_events[i]);
3260
		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
3261 3262 3263 3264 3265 3266 3267 3268
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3269
	}
K
KAMEZAWA Hiroyuki 已提交
3270

K
KOSAKI Motohiro 已提交
3271 3272
#ifdef CONFIG_DEBUG_VM
	{
3273 3274
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
3275
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3276 3277 3278
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

3279 3280 3281
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
			rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3282

3283 3284 3285 3286 3287
			recent_rotated[0] += rstat->recent_rotated[0];
			recent_rotated[1] += rstat->recent_rotated[1];
			recent_scanned[0] += rstat->recent_scanned[0];
			recent_scanned[1] += rstat->recent_scanned[1];
		}
3288 3289 3290 3291
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3292 3293 3294
	}
#endif

3295 3296 3297
	return 0;
}

3298 3299
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3300
{
3301
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3302

3303
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3304 3305
}

3306 3307
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3308
{
3309
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3310

3311
	if (val > 100)
K
KOSAKI Motohiro 已提交
3312 3313
		return -EINVAL;

3314
	if (css->parent)
3315 3316 3317
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3318

K
KOSAKI Motohiro 已提交
3319 3320 3321
	return 0;
}

3322 3323 3324
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3325
	unsigned long usage;
3326 3327 3328 3329
	int i;

	rcu_read_lock();
	if (!swap)
3330
		t = rcu_dereference(memcg->thresholds.primary);
3331
	else
3332
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3333 3334 3335 3336

	if (!t)
		goto unlock;

3337
	usage = mem_cgroup_usage(memcg, swap);
3338 3339

	/*
3340
	 * current_threshold points to threshold just below or equal to usage.
3341 3342 3343
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3344
	i = t->current_threshold;
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3368
	t->current_threshold = i - 1;
3369 3370 3371 3372 3373 3374
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3375 3376
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3377
		if (do_memsw_account())
3378 3379 3380 3381
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3382 3383 3384 3385 3386 3387 3388
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3389 3390 3391 3392 3393 3394 3395
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3396 3397
}

3398
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3399 3400 3401
{
	struct mem_cgroup_eventfd_list *ev;

3402 3403
	spin_lock(&memcg_oom_lock);

3404
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3405
		eventfd_signal(ev->eventfd, 1);
3406 3407

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3408 3409 3410
	return 0;
}

3411
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3412
{
K
KAMEZAWA Hiroyuki 已提交
3413 3414
	struct mem_cgroup *iter;

3415
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3416
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3417 3418
}

3419
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3420
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3421
{
3422 3423
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3424 3425
	unsigned long threshold;
	unsigned long usage;
3426
	int i, size, ret;
3427

3428
	ret = page_counter_memparse(args, "-1", &threshold);
3429 3430 3431 3432
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3433

3434
	if (type == _MEM) {
3435
		thresholds = &memcg->thresholds;
3436
		usage = mem_cgroup_usage(memcg, false);
3437
	} else if (type == _MEMSWAP) {
3438
		thresholds = &memcg->memsw_thresholds;
3439
		usage = mem_cgroup_usage(memcg, true);
3440
	} else
3441 3442 3443
		BUG();

	/* Check if a threshold crossed before adding a new one */
3444
	if (thresholds->primary)
3445 3446
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3447
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3448 3449

	/* Allocate memory for new array of thresholds */
3450
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3451
			GFP_KERNEL);
3452
	if (!new) {
3453 3454 3455
		ret = -ENOMEM;
		goto unlock;
	}
3456
	new->size = size;
3457 3458

	/* Copy thresholds (if any) to new array */
3459 3460
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3461
				sizeof(struct mem_cgroup_threshold));
3462 3463
	}

3464
	/* Add new threshold */
3465 3466
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3467 3468

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3469
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3470 3471 3472
			compare_thresholds, NULL);

	/* Find current threshold */
3473
	new->current_threshold = -1;
3474
	for (i = 0; i < size; i++) {
3475
		if (new->entries[i].threshold <= usage) {
3476
			/*
3477 3478
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3479 3480
			 * it here.
			 */
3481
			++new->current_threshold;
3482 3483
		} else
			break;
3484 3485
	}

3486 3487 3488 3489 3490
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3491

3492
	/* To be sure that nobody uses thresholds */
3493 3494 3495 3496 3497 3498 3499 3500
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3501
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3502 3503
	struct eventfd_ctx *eventfd, const char *args)
{
3504
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3505 3506
}

3507
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3508 3509
	struct eventfd_ctx *eventfd, const char *args)
{
3510
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3511 3512
}

3513
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3514
	struct eventfd_ctx *eventfd, enum res_type type)
3515
{
3516 3517
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3518
	unsigned long usage;
3519
	int i, j, size;
3520 3521

	mutex_lock(&memcg->thresholds_lock);
3522 3523

	if (type == _MEM) {
3524
		thresholds = &memcg->thresholds;
3525
		usage = mem_cgroup_usage(memcg, false);
3526
	} else if (type == _MEMSWAP) {
3527
		thresholds = &memcg->memsw_thresholds;
3528
		usage = mem_cgroup_usage(memcg, true);
3529
	} else
3530 3531
		BUG();

3532 3533 3534
	if (!thresholds->primary)
		goto unlock;

3535 3536 3537 3538
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3539 3540 3541
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3542 3543 3544
			size++;
	}

3545
	new = thresholds->spare;
3546

3547 3548
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3549 3550
		kfree(new);
		new = NULL;
3551
		goto swap_buffers;
3552 3553
	}

3554
	new->size = size;
3555 3556

	/* Copy thresholds and find current threshold */
3557 3558 3559
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3560 3561
			continue;

3562
		new->entries[j] = thresholds->primary->entries[i];
3563
		if (new->entries[j].threshold <= usage) {
3564
			/*
3565
			 * new->current_threshold will not be used
3566 3567 3568
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3569
			++new->current_threshold;
3570 3571 3572 3573
		}
		j++;
	}

3574
swap_buffers:
3575 3576
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3577

3578
	rcu_assign_pointer(thresholds->primary, new);
3579

3580
	/* To be sure that nobody uses thresholds */
3581
	synchronize_rcu();
3582 3583 3584 3585 3586 3587

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
3588
unlock:
3589 3590
	mutex_unlock(&memcg->thresholds_lock);
}
3591

3592
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3593 3594
	struct eventfd_ctx *eventfd)
{
3595
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3596 3597
}

3598
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3599 3600
	struct eventfd_ctx *eventfd)
{
3601
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3602 3603
}

3604
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3605
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3606 3607 3608 3609 3610 3611 3612
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3613
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3614 3615 3616 3617 3618

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3619
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3620
		eventfd_signal(eventfd, 1);
3621
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3622 3623 3624 3625

	return 0;
}

3626
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3627
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3628 3629 3630
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3631
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3632

3633
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3634 3635 3636 3637 3638 3639
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3640
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3641 3642
}

3643
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3644
{
3645
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3646

3647
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3648
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
R
Roman Gushchin 已提交
3649 3650
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3651 3652 3653
	return 0;
}

3654
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3655 3656
	struct cftype *cft, u64 val)
{
3657
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3658 3659

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3660
	if (!css->parent || !((val == 0) || (val == 1)))
3661 3662
		return -EINVAL;

3663
	memcg->oom_kill_disable = val;
3664
	if (!val)
3665
		memcg_oom_recover(memcg);
3666

3667 3668 3669
	return 0;
}

3670 3671
#ifdef CONFIG_CGROUP_WRITEBACK

T
Tejun Heo 已提交
3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3682 3683 3684 3685 3686
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3687 3688 3689 3690 3691 3692 3693 3694 3695 3696
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3697 3698 3699
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3700 3701
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3702 3703 3704
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3705 3706 3707
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3708
 *
3709 3710 3711 3712 3713
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3714
 */
3715 3716 3717
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3718 3719 3720 3721
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

3722
	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3723 3724

	/* this should eventually include NR_UNSTABLE_NFS */
3725
	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3726 3727 3728
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3729 3730

	while ((parent = parent_mem_cgroup(memcg))) {
3731
		unsigned long ceiling = min(memcg->memory.max, memcg->high);
3732 3733
		unsigned long used = page_counter_read(&memcg->memory);

3734
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3735 3736 3737 3738
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3750 3751 3752 3753
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3754 3755
#endif	/* CONFIG_CGROUP_WRITEBACK */

3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3769 3770 3771 3772 3773
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3774
static void memcg_event_remove(struct work_struct *work)
3775
{
3776 3777
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3778
	struct mem_cgroup *memcg = event->memcg;
3779 3780 3781

	remove_wait_queue(event->wqh, &event->wait);

3782
	event->unregister_event(memcg, event->eventfd);
3783 3784 3785 3786 3787 3788

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3789
	css_put(&memcg->css);
3790 3791 3792
}

/*
3793
 * Gets called on EPOLLHUP on eventfd when user closes it.
3794 3795 3796
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3797
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3798
			    int sync, void *key)
3799
{
3800 3801
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3802
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
3803
	__poll_t flags = key_to_poll(key);
3804

3805
	if (flags & EPOLLHUP) {
3806 3807 3808 3809 3810 3811 3812 3813 3814
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3815
		spin_lock(&memcg->event_list_lock);
3816 3817 3818 3819 3820 3821 3822 3823
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3824
		spin_unlock(&memcg->event_list_lock);
3825 3826 3827 3828 3829
	}

	return 0;
}

3830
static void memcg_event_ptable_queue_proc(struct file *file,
3831 3832
		wait_queue_head_t *wqh, poll_table *pt)
{
3833 3834
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3835 3836 3837 3838 3839 3840

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3841 3842
 * DO NOT USE IN NEW FILES.
 *
3843 3844 3845 3846 3847
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3848 3849
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3850
{
3851
	struct cgroup_subsys_state *css = of_css(of);
3852
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3853
	struct mem_cgroup_event *event;
3854 3855 3856 3857
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3858
	const char *name;
3859 3860 3861
	char *endp;
	int ret;

3862 3863 3864
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3865 3866
	if (*endp != ' ')
		return -EINVAL;
3867
	buf = endp + 1;
3868

3869
	cfd = simple_strtoul(buf, &endp, 10);
3870 3871
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3872
	buf = endp + 1;
3873 3874 3875 3876 3877

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3878
	event->memcg = memcg;
3879
	INIT_LIST_HEAD(&event->list);
3880 3881 3882
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3908 3909 3910 3911 3912
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3913 3914
	 *
	 * DO NOT ADD NEW FILES.
3915
	 */
A
Al Viro 已提交
3916
	name = cfile.file->f_path.dentry->d_name.name;
3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3928 3929
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3930 3931 3932 3933 3934
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3935
	/*
3936 3937 3938
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
3939
	 */
A
Al Viro 已提交
3940
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3941
					       &memory_cgrp_subsys);
3942
	ret = -EINVAL;
3943
	if (IS_ERR(cfile_css))
3944
		goto out_put_cfile;
3945 3946
	if (cfile_css != css) {
		css_put(cfile_css);
3947
		goto out_put_cfile;
3948
	}
3949

3950
	ret = event->register_event(memcg, event->eventfd, buf);
3951 3952 3953
	if (ret)
		goto out_put_css;

3954
	vfs_poll(efile.file, &event->pt);
3955

3956 3957 3958
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
3959 3960 3961 3962

	fdput(cfile);
	fdput(efile);

3963
	return nbytes;
3964 3965

out_put_css:
3966
	css_put(css);
3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

3979
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
3980
	{
3981
		.name = "usage_in_bytes",
3982
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3983
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3984
	},
3985 3986
	{
		.name = "max_usage_in_bytes",
3987
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3988
		.write = mem_cgroup_reset,
3989
		.read_u64 = mem_cgroup_read_u64,
3990
	},
B
Balbir Singh 已提交
3991
	{
3992
		.name = "limit_in_bytes",
3993
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3994
		.write = mem_cgroup_write,
3995
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3996
	},
3997 3998 3999
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4000
		.write = mem_cgroup_write,
4001
		.read_u64 = mem_cgroup_read_u64,
4002
	},
B
Balbir Singh 已提交
4003 4004
	{
		.name = "failcnt",
4005
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4006
		.write = mem_cgroup_reset,
4007
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4008
	},
4009 4010
	{
		.name = "stat",
4011
		.seq_show = memcg_stat_show,
4012
	},
4013 4014
	{
		.name = "force_empty",
4015
		.write = mem_cgroup_force_empty_write,
4016
	},
4017 4018 4019 4020 4021
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4022
	{
4023
		.name = "cgroup.event_control",		/* XXX: for compat */
4024
		.write = memcg_write_event_control,
4025
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4026
	},
K
KOSAKI Motohiro 已提交
4027 4028 4029 4030 4031
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4032 4033 4034 4035 4036
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4037 4038
	{
		.name = "oom_control",
4039
		.seq_show = mem_cgroup_oom_control_read,
4040
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4041 4042
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4043 4044 4045
	{
		.name = "pressure_level",
	},
4046 4047 4048
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4049
		.seq_show = memcg_numa_stat_show,
4050 4051
	},
#endif
4052 4053 4054
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4055
		.write = mem_cgroup_write,
4056
		.read_u64 = mem_cgroup_read_u64,
4057 4058 4059 4060
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4061
		.read_u64 = mem_cgroup_read_u64,
4062 4063 4064 4065
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4066
		.write = mem_cgroup_reset,
4067
		.read_u64 = mem_cgroup_read_u64,
4068 4069 4070 4071
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4072
		.write = mem_cgroup_reset,
4073
		.read_u64 = mem_cgroup_read_u64,
4074
	},
Y
Yang Shi 已提交
4075
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4076 4077
	{
		.name = "kmem.slabinfo",
4078 4079 4080
		.seq_start = memcg_slab_start,
		.seq_next = memcg_slab_next,
		.seq_stop = memcg_slab_stop,
4081
		.seq_show = memcg_slab_show,
4082 4083
	},
#endif
V
Vladimir Davydov 已提交
4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4107
	{ },	/* terminate */
4108
};
4109

4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
 * However, there usually are many references to the oflline CSS after
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

4136 4137 4138 4139 4140 4141 4142 4143
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

4144
static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4145
{
4146
	VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4147
	atomic_add(n, &memcg->id.ref);
4148 4149
}

4150
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4151
{
4152
	VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4153
	if (atomic_sub_and_test(n, &memcg->id.ref)) {
4154
		mem_cgroup_id_remove(memcg);
4155 4156 4157 4158 4159 4160

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
{
	mem_cgroup_id_get_many(memcg, 1);
}

static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

4183
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4184 4185
{
	struct mem_cgroup_per_node *pn;
4186
	int tmp = node;
4187 4188 4189 4190 4191 4192 4193 4194
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4195 4196
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4197
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4198 4199
	if (!pn)
		return 1;
4200

4201 4202
	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat_cpu) {
4203 4204 4205 4206
		kfree(pn);
		return 1;
	}

4207 4208 4209 4210 4211
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

4212
	memcg->nodeinfo[node] = pn;
4213 4214 4215
	return 0;
}

4216
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4217
{
4218 4219
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
4220 4221 4222
	if (!pn)
		return;

4223
	free_percpu(pn->lruvec_stat_cpu);
4224
	kfree(pn);
4225 4226
}

4227
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4228
{
4229
	int node;
4230

4231
	for_each_node(node)
4232
		free_mem_cgroup_per_node_info(memcg, node);
4233
	free_percpu(memcg->stat_cpu);
4234
	kfree(memcg);
4235
}
4236

4237 4238 4239 4240 4241 4242
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
	__mem_cgroup_free(memcg);
}

4243
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4244
{
4245
	struct mem_cgroup *memcg;
4246
	size_t size;
4247
	int node;
B
Balbir Singh 已提交
4248

4249 4250 4251 4252
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4253
	if (!memcg)
4254 4255
		return NULL;

4256 4257 4258 4259 4260 4261
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
	if (memcg->id.id < 0)
		goto fail;

4262 4263
	memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat_cpu)
4264
		goto fail;
4265

B
Bob Liu 已提交
4266
	for_each_node(node)
4267
		if (alloc_mem_cgroup_per_node_info(memcg, node))
4268
			goto fail;
4269

4270 4271
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4272

4273
	INIT_WORK(&memcg->high_work, high_work_func);
4274 4275 4276 4277
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4278
	vmpressure_init(&memcg->vmpressure);
4279 4280
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4281
	memcg->socket_pressure = jiffies;
4282
#ifdef CONFIG_MEMCG_KMEM
V
Vladimir Davydov 已提交
4283 4284
	memcg->kmemcg_id = -1;
#endif
4285 4286 4287
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4288
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4289 4290
	return memcg;
fail:
4291
	mem_cgroup_id_remove(memcg);
4292
	__mem_cgroup_free(memcg);
4293
	return NULL;
4294 4295
}

4296 4297
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4298
{
4299 4300 4301
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
4302

4303 4304 4305
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
4306

4307 4308 4309 4310 4311 4312 4313 4314
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
4315
		page_counter_init(&memcg->memory, &parent->memory);
4316
		page_counter_init(&memcg->swap, &parent->swap);
4317 4318
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4319
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4320
	} else {
4321
		page_counter_init(&memcg->memory, NULL);
4322
		page_counter_init(&memcg->swap, NULL);
4323 4324
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4325
		page_counter_init(&memcg->tcpmem, NULL);
4326 4327 4328 4329 4330
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4331
		if (parent != root_mem_cgroup)
4332
			memory_cgrp_subsys.broken_hierarchy = true;
4333
	}
4334

4335 4336 4337 4338 4339 4340
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

4341
	error = memcg_online_kmem(memcg);
4342 4343
	if (error)
		goto fail;
4344

4345
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4346
		static_branch_inc(&memcg_sockets_enabled_key);
4347

4348 4349
	return &memcg->css;
fail:
4350
	mem_cgroup_id_remove(memcg);
4351
	mem_cgroup_free(memcg);
4352
	return ERR_PTR(-ENOMEM);
4353 4354
}

4355
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4356
{
4357 4358
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4359
	/* Online state pins memcg ID, memcg ID pins CSS */
4360
	atomic_set(&memcg->id.ref, 1);
4361
	css_get(css);
4362
	return 0;
B
Balbir Singh 已提交
4363 4364
}

4365
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4366
{
4367
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4368
	struct mem_cgroup_event *event, *tmp;
4369 4370 4371 4372 4373 4374

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4375 4376
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4377 4378 4379
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4380
	spin_unlock(&memcg->event_list_lock);
4381

R
Roman Gushchin 已提交
4382
	page_counter_set_min(&memcg->memory, 0);
4383
	page_counter_set_low(&memcg->memory, 0);
4384

4385
	memcg_offline_kmem(memcg);
4386
	wb_memcg_offline(memcg);
4387 4388

	mem_cgroup_id_put(memcg);
4389 4390
}

4391 4392 4393 4394 4395 4396 4397
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4398
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4399
{
4400
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4401

4402
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4403
		static_branch_dec(&memcg_sockets_enabled_key);
4404

4405
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
4406
		static_branch_dec(&memcg_sockets_enabled_key);
4407

4408 4409 4410
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
4411
	memcg_free_kmem(memcg);
4412
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4413 4414
}

4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4432 4433 4434 4435 4436
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
R
Roman Gushchin 已提交
4437
	page_counter_set_min(&memcg->memory, 0);
4438
	page_counter_set_low(&memcg->memory, 0);
4439
	memcg->high = PAGE_COUNTER_MAX;
4440
	memcg->soft_limit = PAGE_COUNTER_MAX;
4441
	memcg_wb_domain_size_changed(memcg);
4442 4443
}

4444
#ifdef CONFIG_MMU
4445
/* Handlers for move charge at task migration. */
4446
static int mem_cgroup_do_precharge(unsigned long count)
4447
{
4448
	int ret;
4449

4450 4451
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4452
	if (!ret) {
4453 4454 4455
		mc.precharge += count;
		return ret;
	}
4456

4457
	/* Try charges one by one with reclaim, but do not retry */
4458
	while (count--) {
4459
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4460 4461
		if (ret)
			return ret;
4462
		mc.precharge++;
4463
		cond_resched();
4464
	}
4465
	return 0;
4466 4467 4468 4469
}

union mc_target {
	struct page	*page;
4470
	swp_entry_t	ent;
4471 4472 4473
};

enum mc_target_type {
4474
	MC_TARGET_NONE = 0,
4475
	MC_TARGET_PAGE,
4476
	MC_TARGET_SWAP,
4477
	MC_TARGET_DEVICE,
4478 4479
};

D
Daisuke Nishimura 已提交
4480 4481
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4482
{
4483
	struct page *page = _vm_normal_page(vma, addr, ptent, true);
4484

D
Daisuke Nishimura 已提交
4485 4486 4487
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4488
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4489
			return NULL;
4490 4491 4492 4493
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4494 4495 4496 4497 4498 4499
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4500
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
4501
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4502
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
4503 4504 4505 4506
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4507
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4508
		return NULL;
4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
		page = device_private_entry_to_page(ent);
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

4526 4527 4528 4529
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4530
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4531
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4532 4533 4534 4535
		entry->val = ent.val;

	return page;
}
4536 4537
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4538
			pte_t ptent, swp_entry_t *entry)
4539 4540 4541 4542
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4543

4544 4545 4546 4547 4548 4549 4550 4551 4552
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4553
	if (!(mc.flags & MOVE_FILE))
4554 4555 4556
		return NULL;

	mapping = vma->vm_file->f_mapping;
4557
	pgoff = linear_page_index(vma, addr);
4558 4559

	/* page is moved even if it's not RSS of this task(page-faulted). */
4560 4561
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4562 4563 4564 4565
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
4566
			if (do_memsw_account())
4567
				*entry = swp;
4568 4569
			page = find_get_page(swap_address_space(swp),
					     swp_offset(swp));
4570 4571 4572 4573 4574
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4575
#endif
4576 4577 4578
	return page;
}

4579 4580 4581
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
4582
 * @compound: charge the page as compound or small page
4583 4584 4585
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
4586
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4587 4588 4589 4590 4591
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
4592
				   bool compound,
4593 4594 4595 4596
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
4597
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4598
	int ret;
4599
	bool anon;
4600 4601 4602

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
4603
	VM_BUG_ON(compound && !PageTransHuge(page));
4604 4605

	/*
4606
	 * Prevent mem_cgroup_migrate() from looking at
4607
	 * page->mem_cgroup of its source page while we change it.
4608
	 */
4609
	ret = -EBUSY;
4610 4611 4612 4613 4614 4615 4616
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4617 4618
	anon = PageAnon(page);

4619 4620
	spin_lock_irqsave(&from->move_lock, flags);

4621
	if (!anon && page_mapped(page)) {
4622 4623
		__mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
		__mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
4624 4625
	}

4626 4627
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
4628
	 * mod_memcg_page_state will serialize updates to PageDirty.
4629 4630 4631 4632 4633 4634
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
4635 4636
			__mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
			__mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
4637 4638 4639
		}
	}

4640
	if (PageWriteback(page)) {
4641 4642
		__mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
		__mod_memcg_state(to, NR_WRITEBACK, nr_pages);
4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
4658
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4659
	memcg_check_events(to, page);
4660
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4661 4662 4663 4664 4665 4666 4667 4668
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4684 4685 4686 4687 4688
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PUBLIC
 *     or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
4689 4690
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
4691 4692 4693 4694
 *
 * Called with pte lock held.
 */

4695
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4696 4697 4698
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4699
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4700 4701 4702 4703 4704
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
4705
		page = mc_handle_swap_pte(vma, ptent, &ent);
4706
	else if (pte_none(ptent))
4707
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4708 4709

	if (!page && !ent.val)
4710
		return ret;
4711 4712
	if (page) {
		/*
4713
		 * Do only loose check w/o serialization.
4714
		 * mem_cgroup_move_account() checks the page is valid or
4715
		 * not under LRU exclusion.
4716
		 */
4717
		if (page->mem_cgroup == mc.from) {
4718
			ret = MC_TARGET_PAGE;
4719 4720
			if (is_device_private_page(page) ||
			    is_device_public_page(page))
4721
				ret = MC_TARGET_DEVICE;
4722 4723 4724 4725 4726 4727
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
4728 4729 4730 4731 4732
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
4733
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4734 4735 4736
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4737 4738 4739 4740
	}
	return ret;
}

4741 4742
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
4743 4744
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
4745 4746 4747 4748 4749 4750 4751 4752
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

4753 4754 4755 4756 4757
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
4758
	page = pmd_page(pmd);
4759
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4760
	if (!(mc.flags & MOVE_ANON))
4761
		return ret;
4762
	if (page->mem_cgroup == mc.from) {
4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4779 4780 4781 4782
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4783
	struct vm_area_struct *vma = walk->vma;
4784 4785 4786
	pte_t *pte;
	spinlock_t *ptl;

4787 4788
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4789 4790 4791 4792 4793
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
		 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
		 * MEMORY_DEVICE_PRIVATE but this might change.
		 */
4794 4795
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4796
		spin_unlock(ptl);
4797
		return 0;
4798
	}
4799

4800 4801
	if (pmd_trans_unstable(pmd))
		return 0;
4802 4803
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4804
		if (get_mctgt_type(vma, addr, *pte, NULL))
4805 4806 4807 4808
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4809 4810 4811
	return 0;
}

4812 4813 4814 4815
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4816 4817 4818 4819
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4820
	down_read(&mm->mmap_sem);
4821 4822
	walk_page_range(0, mm->highest_vm_end,
			&mem_cgroup_count_precharge_walk);
4823
	up_read(&mm->mmap_sem);
4824 4825 4826 4827 4828 4829 4830 4831 4832

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4833 4834 4835 4836 4837
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4838 4839
}

4840 4841
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4842
{
4843 4844 4845
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4846
	/* we must uncharge all the leftover precharges from mc.to */
4847
	if (mc.precharge) {
4848
		cancel_charge(mc.to, mc.precharge);
4849 4850 4851 4852 4853 4854 4855
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4856
		cancel_charge(mc.from, mc.moved_charge);
4857
		mc.moved_charge = 0;
4858
	}
4859 4860 4861
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4862
		if (!mem_cgroup_is_root(mc.from))
4863
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4864

4865 4866
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

4867
		/*
4868 4869
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4870
		 */
4871
		if (!mem_cgroup_is_root(mc.to))
4872 4873
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4874 4875
		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
		css_put_many(&mc.to->css, mc.moved_swap);
4876

4877 4878
		mc.moved_swap = 0;
	}
4879 4880 4881 4882 4883 4884 4885
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
4886 4887
	struct mm_struct *mm = mc.mm;

4888 4889 4890 4891 4892 4893
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4894
	spin_lock(&mc.lock);
4895 4896
	mc.from = NULL;
	mc.to = NULL;
4897
	mc.mm = NULL;
4898
	spin_unlock(&mc.lock);
4899 4900

	mmput(mm);
4901 4902
}

4903
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4904
{
4905
	struct cgroup_subsys_state *css;
4906
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4907
	struct mem_cgroup *from;
4908
	struct task_struct *leader, *p;
4909
	struct mm_struct *mm;
4910
	unsigned long move_flags;
4911
	int ret = 0;
4912

4913 4914
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4915 4916
		return 0;

4917 4918 4919 4920 4921 4922 4923
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
4924
	cgroup_taskset_for_each_leader(leader, css, tset) {
4925 4926
		WARN_ON_ONCE(p);
		p = leader;
4927
		memcg = mem_cgroup_from_css(css);
4928 4929 4930 4931
	}
	if (!p)
		return 0;

4932 4933 4934 4935 4936 4937 4938 4939 4940
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
4957
		mc.mm = mm;
4958 4959 4960 4961 4962 4963 4964 4965 4966
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
4967 4968
	} else {
		mmput(mm);
4969 4970 4971 4972
	}
	return ret;
}

4973
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4974
{
4975 4976
	if (mc.to)
		mem_cgroup_clear_mc();
4977 4978
}

4979 4980 4981
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4982
{
4983
	int ret = 0;
4984
	struct vm_area_struct *vma = walk->vma;
4985 4986
	pte_t *pte;
	spinlock_t *ptl;
4987 4988 4989
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4990

4991 4992
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4993
		if (mc.precharge < HPAGE_PMD_NR) {
4994
			spin_unlock(ptl);
4995 4996 4997 4998 4999 5000
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
5001
				if (!mem_cgroup_move_account(page, true,
5002
							     mc.from, mc.to)) {
5003 5004 5005 5006 5007 5008
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
5009 5010 5011 5012 5013 5014 5015 5016
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
5017
		}
5018
		spin_unlock(ptl);
5019
		return 0;
5020 5021
	}

5022 5023
	if (pmd_trans_unstable(pmd))
		return 0;
5024 5025 5026 5027
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5028
		bool device = false;
5029
		swp_entry_t ent;
5030 5031 5032 5033

		if (!mc.precharge)
			break;

5034
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5035 5036 5037
		case MC_TARGET_DEVICE:
			device = true;
			/* fall through */
5038 5039
		case MC_TARGET_PAGE:
			page = target.page;
5040 5041 5042 5043 5044 5045 5046 5047
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
5048
			if (!device && isolate_lru_page(page))
5049
				goto put;
5050 5051
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
5052
				mc.precharge--;
5053 5054
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5055
			}
5056 5057
			if (!device)
				putback_lru_page(page);
5058
put:			/* get_mctgt_type() gets the page */
5059 5060
			put_page(page);
			break;
5061 5062
		case MC_TARGET_SWAP:
			ent = target.ent;
5063
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5064
				mc.precharge--;
5065 5066 5067
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5068
			break;
5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5083
		ret = mem_cgroup_do_precharge(1);
5084 5085 5086 5087 5088 5089 5090
		if (!ret)
			goto retry;
	}

	return ret;
}

5091
static void mem_cgroup_move_charge(void)
5092
{
5093 5094
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
5095
		.mm = mc.mm,
5096
	};
5097 5098

	lru_add_drain_all();
5099
	/*
5100 5101 5102
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
5103 5104 5105
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5106
retry:
5107
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5119 5120 5121 5122
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
5123 5124
	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);

5125
	up_read(&mc.mm->mmap_sem);
5126
	atomic_dec(&mc.from->moving_account);
5127 5128
}

5129
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
5130
{
5131 5132
	if (mc.to) {
		mem_cgroup_move_charge();
5133
		mem_cgroup_clear_mc();
5134
	}
B
Balbir Singh 已提交
5135
}
5136
#else	/* !CONFIG_MMU */
5137
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5138 5139 5140
{
	return 0;
}
5141
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5142 5143
{
}
5144
static void mem_cgroup_move_task(void)
5145 5146 5147
{
}
#endif
B
Balbir Singh 已提交
5148

5149 5150
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5151 5152
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5153
 */
5154
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5155 5156
{
	/*
5157
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5158 5159 5160
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5161
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5162 5163 5164
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5165 5166
}

5167 5168 5169
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5170 5171 5172
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5173 5174
}

R
Roman Gushchin 已提交
5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204
static int memory_min_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long min = READ_ONCE(memcg->memory.min);

	if (min == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)min * PAGE_SIZE);

	return 0;
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

5205 5206 5207
static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5208
	unsigned long low = READ_ONCE(memcg->memory.low);
5209 5210

	if (low == PAGE_COUNTER_MAX)
5211
		seq_puts(m, "max\n");
5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5226
	err = page_counter_memparse(buf, "max", &low);
5227 5228 5229
	if (err)
		return err;

5230
	page_counter_set_low(&memcg->memory, low);
5231 5232 5233 5234 5235 5236 5237

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5238
	unsigned long high = READ_ONCE(memcg->high);
5239 5240

	if (high == PAGE_COUNTER_MAX)
5241
		seq_puts(m, "max\n");
5242 5243 5244 5245 5246 5247 5248 5249 5250 5251
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5252
	unsigned long nr_pages;
5253 5254 5255 5256
	unsigned long high;
	int err;

	buf = strstrip(buf);
5257
	err = page_counter_memparse(buf, "max", &high);
5258 5259 5260 5261 5262
	if (err)
		return err;

	memcg->high = high;

5263 5264 5265 5266 5267
	nr_pages = page_counter_read(&memcg->memory);
	if (nr_pages > high)
		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
					     GFP_KERNEL, true);

5268
	memcg_wb_domain_size_changed(memcg);
5269 5270 5271 5272 5273 5274
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5275
	unsigned long max = READ_ONCE(memcg->memory.max);
5276 5277

	if (max == PAGE_COUNTER_MAX)
5278
		seq_puts(m, "max\n");
5279 5280 5281 5282 5283 5284 5285 5286 5287 5288
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5289 5290
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
5291 5292 5293 5294
	unsigned long max;
	int err;

	buf = strstrip(buf);
5295
	err = page_counter_memparse(buf, "max", &max);
5296 5297 5298
	if (err)
		return err;

5299
	xchg(&memcg->memory.max, max);
5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

		if (signal_pending(current)) {
			err = -EINTR;
			break;
		}

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

5325
		memcg_memory_event(memcg, MEMCG_OOM);
5326 5327 5328
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
5329

5330
	memcg_wb_domain_size_changed(memcg);
5331 5332 5333 5334 5335 5336 5337
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

5338 5339 5340 5341 5342 5343 5344 5345
	seq_printf(m, "low %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
R
Roman Gushchin 已提交
5346 5347
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
5348 5349 5350 5351

	return 0;
}

5352 5353 5354
static int memory_stat_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5355
	unsigned long stat[MEMCG_NR_STAT];
5356
	unsigned long events[NR_VM_EVENT_ITEMS];
5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369
	int i;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

5370 5371 5372
	tree_stat(memcg, stat);
	tree_events(memcg, events);

5373
	seq_printf(m, "anon %llu\n",
5374
		   (u64)stat[MEMCG_RSS] * PAGE_SIZE);
5375
	seq_printf(m, "file %llu\n",
5376
		   (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
5377
	seq_printf(m, "kernel_stack %llu\n",
5378
		   (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5379
	seq_printf(m, "slab %llu\n",
5380 5381
		   (u64)(stat[NR_SLAB_RECLAIMABLE] +
			 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5382
	seq_printf(m, "sock %llu\n",
5383
		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5384

5385
	seq_printf(m, "shmem %llu\n",
5386
		   (u64)stat[NR_SHMEM] * PAGE_SIZE);
5387
	seq_printf(m, "file_mapped %llu\n",
5388
		   (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
5389
	seq_printf(m, "file_dirty %llu\n",
5390
		   (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
5391
	seq_printf(m, "file_writeback %llu\n",
5392
		   (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403

	for (i = 0; i < NR_LRU_LISTS; i++) {
		struct mem_cgroup *mi;
		unsigned long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
		seq_printf(m, "%s %llu\n",
			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
	}

5404
	seq_printf(m, "slab_reclaimable %llu\n",
5405
		   (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5406
	seq_printf(m, "slab_unreclaimable %llu\n",
5407
		   (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5408

5409 5410
	/* Accumulated memory events */

5411 5412
	seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
	seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
5413

5414 5415 5416 5417 5418 5419 5420 5421 5422 5423
	seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
	seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
		   events[PGSCAN_DIRECT]);
	seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
		   events[PGSTEAL_DIRECT]);
	seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
	seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
	seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
	seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);

5424
	seq_printf(m, "workingset_refault %lu\n",
5425
		   stat[WORKINGSET_REFAULT]);
5426
	seq_printf(m, "workingset_activate %lu\n",
5427
		   stat[WORKINGSET_ACTIVATE]);
5428
	seq_printf(m, "workingset_nodereclaim %lu\n",
5429
		   stat[WORKINGSET_NODERECLAIM]);
5430

5431 5432 5433
	return 0;
}

5434 5435 5436
static struct cftype memory_files[] = {
	{
		.name = "current",
5437
		.flags = CFTYPE_NOT_ON_ROOT,
5438 5439
		.read_u64 = memory_current_read,
	},
R
Roman Gushchin 已提交
5440 5441 5442 5443 5444 5445
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5467
		.file_offset = offsetof(struct mem_cgroup, events_file),
5468 5469
		.seq_show = memory_events_show,
	},
5470 5471 5472 5473 5474
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
5475 5476 5477
	{ }	/* terminate */
};

5478
struct cgroup_subsys memory_cgrp_subsys = {
5479
	.css_alloc = mem_cgroup_css_alloc,
5480
	.css_online = mem_cgroup_css_online,
5481
	.css_offline = mem_cgroup_css_offline,
5482
	.css_released = mem_cgroup_css_released,
5483
	.css_free = mem_cgroup_css_free,
5484
	.css_reset = mem_cgroup_css_reset,
5485 5486
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
5487
	.post_attach = mem_cgroup_move_task,
5488
	.bind = mem_cgroup_bind,
5489 5490
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5491
	.early_init = 0,
B
Balbir Singh 已提交
5492
};
5493

5494
/**
R
Roman Gushchin 已提交
5495
 * mem_cgroup_protected - check if memory consumption is in the normal range
5496
 * @root: the top ancestor of the sub-tree being checked
5497 5498
 * @memcg: the memory cgroup to check
 *
5499 5500
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
5501
 *
R
Roman Gushchin 已提交
5502 5503 5504 5505 5506
 * Returns one of the following:
 *   MEMCG_PROT_NONE: cgroup memory is not protected
 *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
 *     an unprotected supply of reclaimable memory from other cgroups.
 *   MEMCG_PROT_MIN: cgroup memory is protected
5507
 *
R
Roman Gushchin 已提交
5508
 * @root is exclusive; it is never protected when looked at directly
5509
 *
R
Roman Gushchin 已提交
5510 5511 5512
 * To provide a proper hierarchical behavior, effective memory.min/low values
 * are used. Below is the description of how effective memory.low is calculated.
 * Effective memory.min values is calculated in the same way.
5513
 *
5514 5515 5516 5517 5518 5519 5520
 * Effective memory.low is always equal or less than the original memory.low.
 * If there is no memory.low overcommittment (which is always true for
 * top-level memory cgroups), these two values are equal.
 * Otherwise, it's a part of parent's effective memory.low,
 * calculated as a cgroup's memory.low usage divided by sum of sibling's
 * memory.low usages, where memory.low usage is the size of actually
 * protected memory.
5521
 *
5522 5523 5524
 *                                             low_usage
 * elow = min( memory.low, parent->elow * ------------------ ),
 *                                        siblings_low_usage
5525
 *
5526 5527 5528
 *             | memory.current, if memory.current < memory.low
 * low_usage = |
	       | 0, otherwise.
5529
 *
5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556
 *
 * Such definition of the effective memory.low provides the expected
 * hierarchical behavior: parent's memory.low value is limiting
 * children, unprotected memory is reclaimed first and cgroups,
 * which are not using their guarantee do not affect actual memory
 * distribution.
 *
 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
 *
 *     A      A/memory.low = 2G, A/memory.current = 6G
 *    //\\
 *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
 *            C/memory.low = 1G  C/memory.current = 2G
 *            D/memory.low = 0   D/memory.current = 2G
 *            E/memory.low = 10G E/memory.current = 0
 *
 * and the memory pressure is applied, the following memory distribution
 * is expected (approximately):
 *
 *     A/memory.current = 2G
 *
 *     B/memory.current = 1.3G
 *     C/memory.current = 0.6G
 *     D/memory.current = 0
 *     E/memory.current = 0
 *
 * These calculations require constant tracking of the actual low usages
R
Roman Gushchin 已提交
5557 5558
 * (see propagate_protected_usage()), as well as recursive calculation of
 * effective memory.low values. But as we do call mem_cgroup_protected()
5559 5560 5561 5562
 * path for each memory cgroup top-down from the reclaim,
 * it's possible to optimize this part, and save calculated elow
 * for next usage. This part is intentionally racy, but it's ok,
 * as memory.low is a best-effort mechanism.
5563
 */
R
Roman Gushchin 已提交
5564 5565
enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
						struct mem_cgroup *memcg)
5566
{
5567
	struct mem_cgroup *parent;
R
Roman Gushchin 已提交
5568 5569 5570
	unsigned long emin, parent_emin;
	unsigned long elow, parent_elow;
	unsigned long usage;
5571

5572
	if (mem_cgroup_disabled())
R
Roman Gushchin 已提交
5573
		return MEMCG_PROT_NONE;
5574

5575 5576 5577
	if (!root)
		root = root_mem_cgroup;
	if (memcg == root)
R
Roman Gushchin 已提交
5578
		return MEMCG_PROT_NONE;
5579

5580
	usage = page_counter_read(&memcg->memory);
R
Roman Gushchin 已提交
5581 5582 5583 5584 5585
	if (!usage)
		return MEMCG_PROT_NONE;

	emin = memcg->memory.min;
	elow = memcg->memory.low;
5586

R
Roman Gushchin 已提交
5587
	parent = parent_mem_cgroup(memcg);
5588 5589 5590 5591
	/* No parent means a non-hierarchical mode on v1 memcg */
	if (!parent)
		return MEMCG_PROT_NONE;

5592 5593 5594
	if (parent == root)
		goto exit;

R
Roman Gushchin 已提交
5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608
	parent_emin = READ_ONCE(parent->memory.emin);
	emin = min(emin, parent_emin);
	if (emin && parent_emin) {
		unsigned long min_usage, siblings_min_usage;

		min_usage = min(usage, memcg->memory.min);
		siblings_min_usage = atomic_long_read(
			&parent->memory.children_min_usage);

		if (min_usage && siblings_min_usage)
			emin = min(emin, parent_emin * min_usage /
				   siblings_min_usage);
	}

5609 5610
	parent_elow = READ_ONCE(parent->memory.elow);
	elow = min(elow, parent_elow);
R
Roman Gushchin 已提交
5611 5612
	if (elow && parent_elow) {
		unsigned long low_usage, siblings_low_usage;
5613

R
Roman Gushchin 已提交
5614 5615 5616
		low_usage = min(usage, memcg->memory.low);
		siblings_low_usage = atomic_long_read(
			&parent->memory.children_low_usage);
5617

R
Roman Gushchin 已提交
5618 5619 5620 5621
		if (low_usage && siblings_low_usage)
			elow = min(elow, parent_elow * low_usage /
				   siblings_low_usage);
	}
5622 5623

exit:
R
Roman Gushchin 已提交
5624
	memcg->memory.emin = emin;
5625
	memcg->memory.elow = elow;
R
Roman Gushchin 已提交
5626 5627 5628 5629 5630 5631 5632

	if (usage <= emin)
		return MEMCG_PROT_MIN;
	else if (usage <= elow)
		return MEMCG_PROT_LOW;
	else
		return MEMCG_PROT_NONE;
5633 5634
}

5635 5636 5637 5638 5639 5640
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
5641
 * @compound: charge the page as compound or small page
5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5654 5655
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
5656 5657
{
	struct mem_cgroup *memcg = NULL;
5658
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5672
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5673
		if (compound_head(page)->mem_cgroup)
5674
			goto out;
5675

5676
		if (do_swap_account) {
5677 5678 5679 5680 5681 5682 5683 5684 5685
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711
int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
{
	struct mem_cgroup *memcg;
	int ret;

	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
	memcg = *memcgp;
	mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
	return ret;
}

5712 5713 5714 5715 5716
/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
5717
 * @compound: charge the page as compound or small page
5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5730
			      bool lrucare, bool compound)
5731
{
5732
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5747 5748 5749
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
5750
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5751 5752
	memcg_check_events(memcg, page);
	local_irq_enable();
5753

5754
	if (do_memsw_account() && PageSwapCache(page)) {
5755 5756 5757 5758 5759 5760
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
5761
		mem_cgroup_uncharge_swap(entry, nr_pages);
5762 5763 5764 5765 5766 5767 5768
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
5769
 * @compound: charge the page as compound or small page
5770 5771 5772
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
5773 5774
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
5775
{
5776
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802
struct uncharge_gather {
	struct mem_cgroup *memcg;
	unsigned long pgpgout;
	unsigned long nr_anon;
	unsigned long nr_file;
	unsigned long nr_kmem;
	unsigned long nr_huge;
	unsigned long nr_shmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
5803
{
5804 5805 5806 5807 5808 5809
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
5810 5811
	unsigned long flags;

5812 5813
	if (!mem_cgroup_is_root(ug->memcg)) {
		page_counter_uncharge(&ug->memcg->memory, nr_pages);
5814
		if (do_memsw_account())
5815 5816 5817 5818
			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
5819
	}
5820 5821

	local_irq_save(flags);
5822 5823 5824 5825 5826
	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
5827
	__this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
5828
	memcg_check_events(ug->memcg, ug->dummy_page);
5829
	local_irq_restore(flags);
5830

5831 5832 5833 5834 5835 5836 5837
	if (!mem_cgroup_is_root(ug->memcg))
		css_put_many(&ug->memcg->css, nr_pages);
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
	VM_BUG_ON_PAGE(PageLRU(page), page);
5838 5839
	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
			!PageHWPoison(page) , page);
5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879

	if (!page->mem_cgroup)
		return;

	/*
	 * Nobody should be changing or seriously looking at
	 * page->mem_cgroup at this point, we have fully
	 * exclusive access to the page.
	 */

	if (ug->memcg != page->mem_cgroup) {
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
		ug->memcg = page->mem_cgroup;
	}

	if (!PageKmemcg(page)) {
		unsigned int nr_pages = 1;

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			ug->nr_huge += nr_pages;
		}
		if (PageAnon(page))
			ug->nr_anon += nr_pages;
		else {
			ug->nr_file += nr_pages;
			if (PageSwapBacked(page))
				ug->nr_shmem += nr_pages;
		}
		ug->pgpgout++;
	} else {
		ug->nr_kmem += 1 << compound_order(page);
		__ClearPageKmemcg(page);
	}

	ug->dummy_page = page;
	page->mem_cgroup = NULL;
5880 5881 5882 5883
}

static void uncharge_list(struct list_head *page_list)
{
5884
	struct uncharge_gather ug;
5885
	struct list_head *next;
5886 5887

	uncharge_gather_clear(&ug);
5888

5889 5890 5891 5892
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
5893 5894
	next = page_list->next;
	do {
5895 5896
		struct page *page;

5897 5898 5899
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

5900
		uncharge_page(page, &ug);
5901 5902
	} while (next != page_list);

5903 5904
	if (ug.memcg)
		uncharge_batch(&ug);
5905 5906
}

5907 5908 5909 5910 5911 5912 5913 5914 5915
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
5916 5917
	struct uncharge_gather ug;

5918 5919 5920
	if (mem_cgroup_disabled())
		return;

5921
	/* Don't touch page->lru of any random page, pre-check: */
5922
	if (!page->mem_cgroup)
5923 5924
		return;

5925 5926 5927
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
5928
}
5929

5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5941

5942 5943
	if (!list_empty(page_list))
		uncharge_list(page_list);
5944 5945 5946
}

/**
5947 5948 5949
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
5950
 *
5951 5952
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
5953 5954 5955
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
5956
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5957
{
5958
	struct mem_cgroup *memcg;
5959 5960
	unsigned int nr_pages;
	bool compound;
5961
	unsigned long flags;
5962 5963 5964 5965

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5966 5967
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5968 5969 5970 5971 5972

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5973
	if (newpage->mem_cgroup)
5974 5975
		return;

5976
	/* Swapcache readahead pages can get replaced before being charged */
5977
	memcg = oldpage->mem_cgroup;
5978
	if (!memcg)
5979 5980
		return;

5981 5982 5983 5984 5985 5986 5987 5988
	/* Force-charge the new page. The old one will be freed soon */
	compound = PageTransHuge(newpage);
	nr_pages = compound ? hpage_nr_pages(newpage) : 1;

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
5989

5990
	commit_charge(newpage, memcg, false);
5991

5992
	local_irq_save(flags);
5993 5994
	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
	memcg_check_events(memcg, newpage);
5995
	local_irq_restore(flags);
5996 5997
}

5998
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5999 6000
EXPORT_SYMBOL(memcg_sockets_enabled_key);

6001
void mem_cgroup_sk_alloc(struct sock *sk)
6002 6003 6004
{
	struct mem_cgroup *memcg;

6005 6006 6007
	if (!mem_cgroup_sockets_enabled)
		return;

6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021
	/*
	 * Socket cloning can throw us here with sk_memcg already
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		css_get(&sk->sk_memcg->css);
		return;
	}

6022 6023
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
6024 6025
	if (memcg == root_mem_cgroup)
		goto out;
6026
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6027 6028
		goto out;
	if (css_tryget_online(&memcg->css))
6029
		sk->sk_memcg = memcg;
6030
out:
6031 6032 6033
	rcu_read_unlock();
}

6034
void mem_cgroup_sk_free(struct sock *sk)
6035
{
6036 6037
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6050
	gfp_t gfp_mask = GFP_KERNEL;
6051

6052
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6053
		struct page_counter *fail;
6054

6055 6056
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
6057 6058
			return true;
		}
6059 6060
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
6061
		return false;
6062
	}
6063

6064 6065 6066 6067
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

6068
	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6069

6070 6071 6072 6073
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6074 6075 6076 6077 6078
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
6079 6080
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
6081 6082 6083
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6084
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6085
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6086 6087
		return;
	}
6088

6089
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6090

6091
	refill_stock(memcg, nr_pages);
6092 6093
}

6094 6095 6096 6097 6098 6099 6100 6101 6102
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
6103 6104
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
6105 6106 6107 6108
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
6109

6110
/*
6111 6112
 * subsys_initcall() for memory controller.
 *
6113 6114 6115 6116
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
6117 6118 6119
 */
static int __init mem_cgroup_init(void)
{
6120 6121
	int cpu, node;

6122
#ifdef CONFIG_MEMCG_KMEM
6123 6124
	/*
	 * Kmem cache creation is mostly done with the slab_mutex held,
6125 6126 6127
	 * so use a workqueue with limited concurrency to avoid stalling
	 * all worker threads in case lots of cgroups are created and
	 * destroyed simultaneously.
6128
	 */
6129 6130
	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
	BUG_ON(!memcg_kmem_cache_wq);
6131 6132
#endif

6133 6134
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

6146
		rtpn->rb_root = RB_ROOT;
6147
		rtpn->rb_rightmost = NULL;
6148
		spin_lock_init(&rtpn->lock);
6149 6150 6151
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

6152 6153 6154
	return 0;
}
subsys_initcall(mem_cgroup_init);
6155 6156

#ifdef CONFIG_MEMCG_SWAP
6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
	while (!atomic_inc_not_zero(&memcg->id.ref)) {
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

6175 6176 6177 6178 6179 6180 6181 6182 6183
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
6184
	struct mem_cgroup *memcg, *swap_memcg;
6185
	unsigned int nr_entries;
6186 6187 6188 6189 6190
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

6191
	if (!do_memsw_account())
6192 6193 6194 6195 6196 6197 6198 6199
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

6200 6201 6202 6203 6204 6205
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
6206 6207 6208 6209 6210 6211
	nr_entries = hpage_nr_pages(page);
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
6212
	VM_BUG_ON_PAGE(oldid, page);
6213
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6214 6215 6216 6217

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
6218
		page_counter_uncharge(&memcg->memory, nr_entries);
6219

6220 6221
	if (memcg != swap_memcg) {
		if (!mem_cgroup_is_root(swap_memcg))
6222 6223
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
6224 6225
	}

6226 6227
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
6228
	 * i_pages lock which is taken with interrupts-off. It is
6229
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
6230
	 * only synchronisation we have for updating the per-CPU variables.
6231 6232
	 */
	VM_BUG_ON(!irqs_disabled());
6233 6234
	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
				     -nr_entries);
6235
	memcg_check_events(memcg, page);
6236 6237

	if (!mem_cgroup_is_root(memcg))
6238
		css_put_many(&memcg->css, nr_entries);
6239 6240
}

6241 6242
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
6243 6244 6245
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
6246
 * Try to charge @page's memcg for the swap space at @entry.
6247 6248 6249 6250 6251
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
6252
	unsigned int nr_pages = hpage_nr_pages(page);
6253
	struct page_counter *counter;
6254
	struct mem_cgroup *memcg;
6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

6266 6267
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6268
		return 0;
6269
	}
6270

6271 6272
	memcg = mem_cgroup_id_get_online(memcg);

6273
	if (!mem_cgroup_is_root(memcg) &&
6274
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6275 6276
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6277
		mem_cgroup_id_put(memcg);
6278
		return -ENOMEM;
6279
	}
6280

6281 6282 6283 6284
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6285
	VM_BUG_ON_PAGE(oldid, page);
6286
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6287 6288 6289 6290

	return 0;
}

6291
/**
6292
 * mem_cgroup_uncharge_swap - uncharge swap space
6293
 * @entry: swap entry to uncharge
6294
 * @nr_pages: the amount of swap space to uncharge
6295
 */
6296
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6297 6298 6299 6300
{
	struct mem_cgroup *memcg;
	unsigned short id;

6301
	if (!do_swap_account)
6302 6303
		return;

6304
	id = swap_cgroup_record(entry, 0, nr_pages);
6305
	rcu_read_lock();
6306
	memcg = mem_cgroup_from_id(id);
6307
	if (memcg) {
6308 6309
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6310
				page_counter_uncharge(&memcg->swap, nr_pages);
6311
			else
6312
				page_counter_uncharge(&memcg->memsw, nr_pages);
6313
		}
6314
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6315
		mem_cgroup_id_put_many(memcg, nr_pages);
6316 6317 6318 6319
	}
	rcu_read_unlock();
}

6320 6321 6322 6323 6324 6325 6326 6327
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
6328
				      READ_ONCE(memcg->swap.max) -
6329 6330 6331 6332
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6349
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6350 6351 6352 6353 6354
			return true;

	return false;
}

6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6383
	unsigned long max = READ_ONCE(memcg->swap.max);
6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

6405
	xchg(&memcg->swap.max, max);
6406 6407 6408 6409

	return nbytes;
}

6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421
static int swap_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
6434 6435 6436 6437 6438 6439
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
6440 6441 6442
	{ }	/* terminate */
};

6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
6474 6475
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
6476 6477 6478 6479 6480 6481 6482 6483
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */