memcontrol.c 190.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
B
Balbir Singh 已提交
2 3 4 5 6
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
7 8 9
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
10 11 12 13
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
14 15 16 17
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 24 25
 *
 * Per memcg lru locking
 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
B
Balbir Singh 已提交
26 27
 */

28
#include <linux/page_counter.h>
B
Balbir Singh 已提交
29 30
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/pagewalk.h>
32
#include <linux/sched/mm.h>
33
#include <linux/shmem_fs.h>
34
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
35
#include <linux/pagemap.h>
36
#include <linux/vm_event_item.h>
37
#include <linux/smp.h>
38
#include <linux/page-flags.h>
39
#include <linux/backing-dev.h>
40 41
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
42
#include <linux/limits.h>
43
#include <linux/export.h>
44
#include <linux/mutex.h>
45
#include <linux/rbtree.h>
46
#include <linux/slab.h>
47
#include <linux/swap.h>
48
#include <linux/swapops.h>
49
#include <linux/spinlock.h>
50
#include <linux/eventfd.h>
51
#include <linux/poll.h>
52
#include <linux/sort.h>
53
#include <linux/fs.h>
54
#include <linux/seq_file.h>
55
#include <linux/vmpressure.h>
56
#include <linux/mm_inline.h>
57
#include <linux/swap_cgroup.h>
58
#include <linux/cpu.h>
59
#include <linux/oom.h>
60
#include <linux/lockdep.h>
61
#include <linux/file.h>
62
#include <linux/tracehook.h>
63
#include <linux/psi.h>
64
#include <linux/seq_buf.h>
K
KAMEZAWA Hiroyuki 已提交
65
#include "internal.h"
G
Glauber Costa 已提交
66
#include <net/sock.h>
M
Michal Hocko 已提交
67
#include <net/ip.h>
68
#include "slab.h"
B
Balbir Singh 已提交
69

70
#include <linux/uaccess.h>
71

72 73
#include <trace/events/vmscan.h>

74 75
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
76

77 78
struct mem_cgroup *root_mem_cgroup __read_mostly;

79 80 81
/* Active memory cgroup to use from an interrupt context */
DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);

82 83 84
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

85 86 87
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

88
/* Whether the swap controller is active */
A
Andrew Morton 已提交
89
#ifdef CONFIG_MEMCG_SWAP
90
bool cgroup_memory_noswap __read_mostly;
91
#else
92
#define cgroup_memory_noswap		1
93
#endif
94

95 96 97 98
#ifdef CONFIG_CGROUP_WRITEBACK
static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
#endif

99 100 101
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
102
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
103 104
}

105 106
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
107

108 109 110 111 112
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

113
struct mem_cgroup_tree_per_node {
114
	struct rb_root rb_root;
115
	struct rb_node *rb_rightmost;
116 117 118 119 120 121 122 123 124
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
125 126 127 128 129
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
130

131 132 133
/*
 * cgroup_event represents events which userspace want to receive.
 */
134
struct mem_cgroup_event {
135
	/*
136
	 * memcg which the event belongs to.
137
	 */
138
	struct mem_cgroup *memcg;
139 140 141 142 143 144 145 146
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
147 148 149 150 151
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
152
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
153
			      struct eventfd_ctx *eventfd, const char *args);
154 155 156 157 158
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
159
	void (*unregister_event)(struct mem_cgroup *memcg,
160
				 struct eventfd_ctx *eventfd);
161 162 163 164 165 166
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
167
	wait_queue_entry_t wait;
168 169 170
	struct work_struct remove;
};

171 172
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173

174 175
/* Stuffs for move charges at task migration. */
/*
176
 * Types of charges to be moved.
177
 */
178 179 180
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
181

182 183
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
184
	spinlock_t	  lock; /* for from, to */
185
	struct mm_struct  *mm;
186 187
	struct mem_cgroup *from;
	struct mem_cgroup *to;
188
	unsigned long flags;
189
	unsigned long precharge;
190
	unsigned long moved_charge;
191
	unsigned long moved_swap;
192 193 194
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
195
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196 197
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
198

199 200 201 202
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
203
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
204
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
205

206
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
207 208 209 210
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
211
	_KMEM,
V
Vladimir Davydov 已提交
212
	_TCP,
G
Glauber Costa 已提交
213 214
};

215 216
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
217
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
218 219
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
220

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(root, iter, NULL))

#define for_each_mem_cgroup(iter)			\
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(NULL, iter, NULL))

236 237 238 239 240 241
static inline bool should_force_charge(void)
{
	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
		(current->flags & PF_EXITING);
}

242 243 244 245 246 247 248 249 250 251 252 253 254
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

255
#ifdef CONFIG_MEMCG_KMEM
R
Roman Gushchin 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
extern spinlock_t css_set_lock;

static void obj_cgroup_release(struct percpu_ref *ref)
{
	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
	struct mem_cgroup *memcg;
	unsigned int nr_bytes;
	unsigned int nr_pages;
	unsigned long flags;

	/*
	 * At this point all allocated objects are freed, and
	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
	 *
	 * The following sequence can lead to it:
	 * 1) CPU0: objcg == stock->cached_objcg
	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
	 *          PAGE_SIZE bytes are charged
	 * 3) CPU1: a process from another memcg is allocating something,
	 *          the stock if flushed,
	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
	 * 5) CPU0: we do release this object,
	 *          92 bytes are added to stock->nr_bytes
	 * 6) CPU0: stock is flushed,
	 *          92 bytes are added to objcg->nr_charged_bytes
	 *
	 * In the result, nr_charged_bytes == PAGE_SIZE.
	 * This page will be uncharged in obj_cgroup_release().
	 */
	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
	nr_pages = nr_bytes >> PAGE_SHIFT;

	spin_lock_irqsave(&css_set_lock, flags);
	memcg = obj_cgroup_memcg(objcg);
	if (nr_pages)
		__memcg_kmem_uncharge(memcg, nr_pages);
	list_del(&objcg->list);
	mem_cgroup_put(memcg);
	spin_unlock_irqrestore(&css_set_lock, flags);

	percpu_ref_exit(ref);
	kfree_rcu(objcg, rcu);
}

static struct obj_cgroup *obj_cgroup_alloc(void)
{
	struct obj_cgroup *objcg;
	int ret;

	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
	if (!objcg)
		return NULL;

	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
			      GFP_KERNEL);
	if (ret) {
		kfree(objcg);
		return NULL;
	}
	INIT_LIST_HEAD(&objcg->list);
	return objcg;
}

static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
				  struct mem_cgroup *parent)
{
	struct obj_cgroup *objcg, *iter;

	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);

	spin_lock_irq(&css_set_lock);

	/* Move active objcg to the parent's list */
	xchg(&objcg->memcg, parent);
	css_get(&parent->css);
	list_add(&objcg->list, &parent->objcg_list);

	/* Move already reparented objcgs to the parent's list */
	list_for_each_entry(iter, &memcg->objcg_list, list) {
		css_get(&parent->css);
		xchg(&iter->memcg, parent);
		css_put(&memcg->css);
	}
	list_splice(&memcg->objcg_list, &parent->objcg_list);

	spin_unlock_irq(&css_set_lock);

	percpu_ref_kill(&objcg->refcnt);
}

348
/*
349
 * This will be used as a shrinker list's index.
L
Li Zefan 已提交
350 351 352 353 354
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
355
 *
356 357
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
358
 */
359 360
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
361

362 363 364 365 366 367 368 369 370 371 372 373 374
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

375 376 377 378 379 380
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
381
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
382 383
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
384
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
385 386 387
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
388
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
389

390 391
/*
 * A lot of the calls to the cache allocation functions are expected to be
392
 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
393 394 395
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
396
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
397
EXPORT_SYMBOL(memcg_kmem_enabled_key);
398
#endif
399

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
static int memcg_shrinker_map_size;
static DEFINE_MUTEX(memcg_shrinker_map_mutex);

static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
{
	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
}

static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
					 int size, int old_size)
{
	struct memcg_shrinker_map *new, *old;
	int nid;

	lockdep_assert_held(&memcg_shrinker_map_mutex);

	for_each_node(nid) {
		old = rcu_dereference_protected(
			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
		/* Not yet online memcg */
		if (!old)
			return 0;

423
		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
		if (!new)
			return -ENOMEM;

		/* Set all old bits, clear all new bits */
		memset(new->map, (int)0xff, old_size);
		memset((void *)new->map + old_size, 0, size - old_size);

		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
	}

	return 0;
}

static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *pn;
	struct memcg_shrinker_map *map;
	int nid;

	if (mem_cgroup_is_root(memcg))
		return;

	for_each_node(nid) {
		pn = mem_cgroup_nodeinfo(memcg, nid);
		map = rcu_dereference_protected(pn->shrinker_map, true);
		if (map)
			kvfree(map);
		rcu_assign_pointer(pn->shrinker_map, NULL);
	}
}

static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	struct memcg_shrinker_map *map;
	int nid, size, ret = 0;

	if (mem_cgroup_is_root(memcg))
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	size = memcg_shrinker_map_size;
	for_each_node(nid) {
467
		map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
		if (!map) {
			memcg_free_shrinker_maps(memcg);
			ret = -ENOMEM;
			break;
		}
		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
	}
	mutex_unlock(&memcg_shrinker_map_mutex);

	return ret;
}

int memcg_expand_shrinker_maps(int new_id)
{
	int size, old_size, ret = 0;
	struct mem_cgroup *memcg;

	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
	old_size = memcg_shrinker_map_size;
	if (size <= old_size)
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	if (!root_mem_cgroup)
		goto unlock;

	for_each_mem_cgroup(memcg) {
		if (mem_cgroup_is_root(memcg))
			continue;
		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
498 499
		if (ret) {
			mem_cgroup_iter_break(NULL, memcg);
500
			goto unlock;
501
		}
502 503 504 505 506 507 508
	}
unlock:
	if (!ret)
		memcg_shrinker_map_size = size;
	mutex_unlock(&memcg_shrinker_map_mutex);
	return ret;
}
509 510 511 512 513 514 515 516

void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
{
	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
		struct memcg_shrinker_map *map;

		rcu_read_lock();
		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
517 518
		/* Pairs with smp mb in shrink_slab() */
		smp_mb__before_atomic();
519 520 521 522 523
		set_bit(shrinker_id, map->map);
		rcu_read_unlock();
	}
}

524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

539
	memcg = page_memcg(page);
540

541
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
542 543 544 545 546
		memcg = root_mem_cgroup;

	return &memcg->css;
}

547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
566
	memcg = page_memcg_check(page);
567

568 569 570 571 572 573 574 575
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

576 577
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
578
{
579
	int nid = page_to_nid(page);
580

581
	return memcg->nodeinfo[nid];
582 583
}

584 585
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
586
{
587
	return soft_limit_tree.rb_tree_per_node[nid];
588 589
}

590
static struct mem_cgroup_tree_per_node *
591 592 593 594
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

595
	return soft_limit_tree.rb_tree_per_node[nid];
596 597
}

598 599
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
600
					 unsigned long new_usage_in_excess)
601 602 603
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
604
	struct mem_cgroup_per_node *mz_node;
605
	bool rightmost = true;
606 607 608 609 610 611 612 613 614

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
615
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
616
					tree_node);
617
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
618
			p = &(*p)->rb_left;
619
			rightmost = false;
620
		} else {
621
			p = &(*p)->rb_right;
622
		}
623
	}
624 625 626 627

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

628 629 630 631 632
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

633 634
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
635 636 637
{
	if (!mz->on_tree)
		return;
638 639 640 641

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

642 643 644 645
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

646 647
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
648
{
649 650 651
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
652
	__mem_cgroup_remove_exceeded(mz, mctz);
653
	spin_unlock_irqrestore(&mctz->lock, flags);
654 655
}

656 657 658
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
659
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
660 661 662 663 664 665 666
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
667 668 669

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
670
	unsigned long excess;
671 672
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
673

674
	mctz = soft_limit_tree_from_page(page);
675 676
	if (!mctz)
		return;
677 678 679 680 681
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
682
		mz = mem_cgroup_page_nodeinfo(memcg, page);
683
		excess = soft_limit_excess(memcg);
684 685 686 687 688
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
689 690 691
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
692 693
			/* if on-tree, remove it */
			if (mz->on_tree)
694
				__mem_cgroup_remove_exceeded(mz, mctz);
695 696 697 698
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
699
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
700
			spin_unlock_irqrestore(&mctz->lock, flags);
701 702 703 704 705 706
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
707 708 709
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
710

711
	for_each_node(nid) {
712 713
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
714 715
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
716 717 718
	}
}

719 720
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
721
{
722
	struct mem_cgroup_per_node *mz;
723 724 725

retry:
	mz = NULL;
726
	if (!mctz->rb_rightmost)
727 728
		goto done;		/* Nothing to reclaim from */

729 730
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
731 732 733 734 735
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
736
	__mem_cgroup_remove_exceeded(mz, mctz);
737
	if (!soft_limit_excess(mz->memcg) ||
S
Shakeel Butt 已提交
738
	    !css_tryget(&mz->memcg->css))
739 740 741 742 743
		goto retry;
done:
	return mz;
}

744 745
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
746
{
747
	struct mem_cgroup_per_node *mz;
748

749
	spin_lock_irq(&mctz->lock);
750
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
751
	spin_unlock_irq(&mctz->lock);
752 753 754
	return mz;
}

755 756 757 758 759 760 761 762
/**
 * __mod_memcg_state - update cgroup memory statistics
 * @memcg: the memory cgroup
 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 * @val: delta to add to the counter, can be negative
 */
void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
{
763
	long x, threshold = MEMCG_CHARGE_BATCH;
764 765 766 767

	if (mem_cgroup_disabled())
		return;

768
	if (memcg_stat_item_in_bytes(idx))
769 770
		threshold <<= PAGE_SHIFT;

771
	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
772
	if (unlikely(abs(x) > threshold)) {
773 774
		struct mem_cgroup *mi;

775 776 777 778 779
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
780 781
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmstats[idx]);
782 783 784 785 786
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
}

787 788 789 790 791 792 793 794 795 796 797
static struct mem_cgroup_per_node *
parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
{
	struct mem_cgroup *parent;

	parent = parent_mem_cgroup(pn->memcg);
	if (!parent)
		return NULL;
	return mem_cgroup_nodeinfo(parent, nid);
}

798 799
void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			      int val)
800 801
{
	struct mem_cgroup_per_node *pn;
802
	struct mem_cgroup *memcg;
803
	long x, threshold = MEMCG_CHARGE_BATCH;
804 805

	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
806
	memcg = pn->memcg;
807 808

	/* Update memcg */
809
	__mod_memcg_state(memcg, idx, val);
810

811 812 813
	/* Update lruvec */
	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);

814 815 816
	if (vmstat_item_in_bytes(idx))
		threshold <<= PAGE_SHIFT;

817
	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
818
	if (unlikely(abs(x) > threshold)) {
819
		pg_data_t *pgdat = lruvec_pgdat(lruvec);
820 821 822 823
		struct mem_cgroup_per_node *pi;

		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
			atomic_long_add(x, &pi->lruvec_stat[idx]);
824 825 826 827 828
		x = 0;
	}
	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
}

829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
/**
 * __mod_lruvec_state - update lruvec memory statistics
 * @lruvec: the lruvec
 * @idx: the stat item
 * @val: delta to add to the counter, can be negative
 *
 * The lruvec is the intersection of the NUMA node and a cgroup. This
 * function updates the all three counters that are affected by a
 * change of state at this level: per-node, per-cgroup, per-lruvec.
 */
void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			int val)
{
	/* Update node */
	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);

	/* Update memcg and lruvec */
	if (!mem_cgroup_disabled())
		__mod_memcg_lruvec_state(lruvec, idx, val);
}

850 851 852 853
void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
			     int val)
{
	struct page *head = compound_head(page); /* rmap on tail pages */
854
	struct mem_cgroup *memcg = page_memcg(head);
855 856 857 858
	pg_data_t *pgdat = page_pgdat(page);
	struct lruvec *lruvec;

	/* Untracked pages have no memcg, no lruvec. Update only the node */
859
	if (!memcg) {
860 861 862 863
		__mod_node_page_state(pgdat, idx, val);
		return;
	}

864
	lruvec = mem_cgroup_lruvec(memcg, pgdat);
865 866
	__mod_lruvec_state(lruvec, idx, val);
}
867
EXPORT_SYMBOL(__mod_lruvec_page_state);
868

869
void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
870
{
871
	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
872 873 874 875
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;

	rcu_read_lock();
876
	memcg = mem_cgroup_from_obj(p);
877

878 879 880 881 882 883 884
	/*
	 * Untracked pages have no memcg, no lruvec. Update only the
	 * node. If we reparent the slab objects to the root memcg,
	 * when we free the slab object, we need to update the per-memcg
	 * vmstats to keep it correct for the root memcg.
	 */
	if (!memcg) {
885 886
		__mod_node_page_state(pgdat, idx, val);
	} else {
887
		lruvec = mem_cgroup_lruvec(memcg, pgdat);
888 889 890 891 892
		__mod_lruvec_state(lruvec, idx, val);
	}
	rcu_read_unlock();
}

893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
/**
 * __count_memcg_events - account VM events in a cgroup
 * @memcg: the memory cgroup
 * @idx: the event item
 * @count: the number of events that occured
 */
void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
			  unsigned long count)
{
	unsigned long x;

	if (mem_cgroup_disabled())
		return;

	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
909 910
		struct mem_cgroup *mi;

911 912 913 914 915
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->events[idx], x);
916 917
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmevents[idx]);
918 919 920 921 922
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
}

923
static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
924
{
925
	return atomic_long_read(&memcg->vmevents[event]);
926 927
}

928 929
static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
{
930 931 932 933 934 935
	long x = 0;
	int cpu;

	for_each_possible_cpu(cpu)
		x += per_cpu(memcg->vmstats_local->events[event], cpu);
	return x;
936 937
}

938
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
939
					 struct page *page,
940
					 int nr_pages)
941
{
942 943
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
944
		__count_memcg_events(memcg, PGPGIN, 1);
945
	else {
946
		__count_memcg_events(memcg, PGPGOUT, 1);
947 948
		nr_pages = -nr_pages; /* for event */
	}
949

950
	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
951 952
}

953 954
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
955 956 957
{
	unsigned long val, next;

958 959
	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
960
	/* from time_after() in jiffies.h */
961
	if ((long)(next - val) < 0) {
962 963 964 965
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
966 967 968
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
969 970 971
		default:
			break;
		}
972
		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
973
		return true;
974
	}
975
	return false;
976 977 978 979 980 981
}

/*
 * Check events in order.
 *
 */
982
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
983 984
{
	/* threshold event is triggered in finer grain than soft limit */
985 986
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
987
		bool do_softlimit;
988

989 990
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
991
		mem_cgroup_threshold(memcg);
992 993
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
994
	}
995 996
}

997
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
998
{
999 1000 1001 1002 1003 1004 1005 1006
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1007
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1008
}
M
Michal Hocko 已提交
1009
EXPORT_SYMBOL(mem_cgroup_from_task);
1010

1011 1012 1013 1014 1015 1016 1017 1018 1019
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
 * returned.
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1020
{
1021 1022 1023 1024
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
1025

1026 1027
	rcu_read_lock();
	do {
1028 1029 1030 1031 1032 1033
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1034
			memcg = root_mem_cgroup;
1035 1036 1037 1038 1039
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1040
	} while (!css_tryget(&memcg->css));
1041
	rcu_read_unlock();
1042
	return memcg;
1043
}
1044 1045
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

1046 1047 1048 1049 1050 1051 1052 1053 1054
/**
 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
 * @page: page from which memcg should be extracted.
 *
 * Obtain a reference on page->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned.
 */
struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
{
1055
	struct mem_cgroup *memcg = page_memcg(page);
1056 1057 1058 1059 1060

	if (mem_cgroup_disabled())
		return NULL;

	rcu_read_lock();
S
Shakeel Butt 已提交
1061 1062
	/* Page should not get uncharged and freed memcg under us. */
	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1063 1064 1065 1066 1067 1068
		memcg = root_mem_cgroup;
	rcu_read_unlock();
	return memcg;
}
EXPORT_SYMBOL(get_mem_cgroup_from_page);

1069
static __always_inline struct mem_cgroup *active_memcg(void)
1070
{
1071 1072 1073 1074 1075
	if (in_interrupt())
		return this_cpu_read(int_active_memcg);
	else
		return current->active_memcg;
}
1076

1077 1078 1079
static __always_inline struct mem_cgroup *get_active_memcg(void)
{
	struct mem_cgroup *memcg;
1080

1081 1082 1083
	rcu_read_lock();
	memcg = active_memcg();
	if (memcg) {
S
Shakeel Butt 已提交
1084
		/* current->active_memcg must hold a ref. */
1085
		if (WARN_ON_ONCE(!css_tryget(&memcg->css)))
S
Shakeel Butt 已提交
1086 1087
			memcg = root_mem_cgroup;
		else
1088 1089
			memcg = current->active_memcg;
	}
1090 1091 1092 1093 1094
	rcu_read_unlock();

	return memcg;
}

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
static __always_inline bool memcg_kmem_bypass(void)
{
	/* Allow remote memcg charging from any context. */
	if (unlikely(active_memcg()))
		return false;

	/* Memcg to charge can't be determined. */
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;

	return false;
}

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
/**
 * If active memcg is set, do not fallback to current->mm->memcg.
 */
static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
{
	if (memcg_kmem_bypass())
		return NULL;

	if (unlikely(active_memcg()))
		return get_active_memcg();

1119 1120
	return get_mem_cgroup_from_mm(current->mm);
}
1121

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
1135 1136 1137
 * Reclaimers can specify a node in @reclaim to divide up the memcgs
 * in the hierarchy among all concurrent reclaimers operating on the
 * same node.
1138
 */
1139
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1140
				   struct mem_cgroup *prev,
1141
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1142
{
1143
	struct mem_cgroup_reclaim_iter *iter;
1144
	struct cgroup_subsys_state *css = NULL;
1145
	struct mem_cgroup *memcg = NULL;
1146
	struct mem_cgroup *pos = NULL;
1147

1148 1149
	if (mem_cgroup_disabled())
		return NULL;
1150

1151 1152
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1153

1154
	if (prev && !reclaim)
1155
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1156

1157
	rcu_read_lock();
M
Michal Hocko 已提交
1158

1159
	if (reclaim) {
1160
		struct mem_cgroup_per_node *mz;
1161

1162
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1163
		iter = &mz->iter;
1164 1165 1166 1167

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

1168
		while (1) {
1169
			pos = READ_ONCE(iter->position);
1170 1171
			if (!pos || css_tryget(&pos->css))
				break;
1172
			/*
1173 1174 1175 1176 1177 1178
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
1179
			 */
1180 1181
			(void)cmpxchg(&iter->position, pos, NULL);
		}
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1199
		}
K
KAMEZAWA Hiroyuki 已提交
1200

1201 1202 1203 1204 1205 1206
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1207

1208 1209
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1210

1211 1212
		if (css_tryget(css))
			break;
1213

1214
		memcg = NULL;
1215
	}
1216 1217 1218

	if (reclaim) {
		/*
1219 1220 1221
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
1222
		 */
1223 1224
		(void)cmpxchg(&iter->position, pos, memcg);

1225 1226 1227 1228 1229 1230 1231
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1232
	}
1233

1234 1235
out_unlock:
	rcu_read_unlock();
1236 1237 1238
	if (prev && prev != root)
		css_put(&prev->css);

1239
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1240
}
K
KAMEZAWA Hiroyuki 已提交
1241

1242 1243 1244 1245 1246 1247 1248
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1249 1250 1251 1252 1253 1254
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1255

1256 1257
static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
					struct mem_cgroup *dead_memcg)
1258 1259
{
	struct mem_cgroup_reclaim_iter *iter;
1260 1261
	struct mem_cgroup_per_node *mz;
	int nid;
1262

1263 1264
	for_each_node(nid) {
		mz = mem_cgroup_nodeinfo(from, nid);
1265 1266
		iter = &mz->iter;
		cmpxchg(&iter->position, dead_memcg, NULL);
1267 1268 1269
	}
}

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup *last;

	do {
		__invalidate_reclaim_iterators(memcg, dead_memcg);
		last = memcg;
	} while ((memcg = parent_mem_cgroup(memcg)));

	/*
	 * When cgruop1 non-hierarchy mode is used,
	 * parent_mem_cgroup() does not walk all the way up to the
	 * cgroup root (root_mem_cgroup). So we have to handle
	 * dead_memcg from cgroup root separately.
	 */
	if (last != root_mem_cgroup)
		__invalidate_reclaim_iterators(root_mem_cgroup,
						dead_memcg);
}

1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

1316
		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
#ifdef CONFIG_DEBUG_VM
void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
{
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return;

	memcg = page_memcg(page);

	if (!memcg)
		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
	else
		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
}
#endif

/**
 * lock_page_lruvec - lock and return lruvec for a given page.
 * @page: the page
 *
 * This series functions should be used in either conditions:
 * PageLRU is cleared or unset
 * or page->_refcount is zero
 * or page is locked.
 */
struct lruvec *lock_page_lruvec(struct page *page)
{
	struct lruvec *lruvec;
	struct pglist_data *pgdat = page_pgdat(page);

	rcu_read_lock();
	lruvec = mem_cgroup_page_lruvec(page, pgdat);
	spin_lock(&lruvec->lru_lock);
	rcu_read_unlock();

	lruvec_memcg_debug(lruvec, page);

	return lruvec;
}

struct lruvec *lock_page_lruvec_irq(struct page *page)
{
	struct lruvec *lruvec;
	struct pglist_data *pgdat = page_pgdat(page);

	rcu_read_lock();
	lruvec = mem_cgroup_page_lruvec(page, pgdat);
	spin_lock_irq(&lruvec->lru_lock);
	rcu_read_unlock();

	lruvec_memcg_debug(lruvec, page);

	return lruvec;
}

struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
{
	struct lruvec *lruvec;
	struct pglist_data *pgdat = page_pgdat(page);

	rcu_read_lock();
	lruvec = mem_cgroup_page_lruvec(page, pgdat);
	spin_lock_irqsave(&lruvec->lru_lock, *flags);
	rcu_read_unlock();

	lruvec_memcg_debug(lruvec, page);

	return lruvec;
}

1399
/**
1400 1401 1402
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1403
 * @zid: zone id of the accounted pages
1404
 * @nr_pages: positive when adding or negative when removing
1405
 *
1406 1407 1408
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1409
 */
1410
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1411
				int zid, int nr_pages)
1412
{
1413
	struct mem_cgroup_per_node *mz;
1414
	unsigned long *lru_size;
1415
	long size;
1416 1417 1418 1419

	if (mem_cgroup_disabled())
		return;

1420
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1421
	lru_size = &mz->lru_zone_size[zid][lru];
1422 1423 1424 1425 1426

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1427 1428 1429
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1430 1431 1432 1433 1434 1435
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1436
}
1437

1438
/**
1439
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1440
 * @memcg: the memory cgroup
1441
 *
1442
 * Returns the maximum amount of memory @mem can be charged with, in
1443
 * pages.
1444
 */
1445
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1446
{
1447 1448 1449
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1450

1451
	count = page_counter_read(&memcg->memory);
1452
	limit = READ_ONCE(memcg->memory.max);
1453 1454 1455
	if (count < limit)
		margin = limit - count;

1456
	if (do_memsw_account()) {
1457
		count = page_counter_read(&memcg->memsw);
1458
		limit = READ_ONCE(memcg->memsw.max);
1459
		if (count < limit)
1460
			margin = min(margin, limit - count);
1461 1462
		else
			margin = 0;
1463 1464 1465
	}

	return margin;
1466 1467
}

1468
/*
Q
Qiang Huang 已提交
1469
 * A routine for checking "mem" is under move_account() or not.
1470
 *
Q
Qiang Huang 已提交
1471 1472 1473
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1474
 */
1475
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1476
{
1477 1478
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1479
	bool ret = false;
1480 1481 1482 1483 1484 1485 1486 1487 1488
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1489

1490 1491
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1492 1493
unlock:
	spin_unlock(&mc.lock);
1494 1495 1496
	return ret;
}

1497
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1498 1499
{
	if (mc.moving_task && current != mc.moving_task) {
1500
		if (mem_cgroup_under_move(memcg)) {
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
struct memory_stat {
	const char *name;
	unsigned int ratio;
	unsigned int idx;
};

static struct memory_stat memory_stats[] = {
	{ "anon", PAGE_SIZE, NR_ANON_MAPPED },
	{ "file", PAGE_SIZE, NR_FILE_PAGES },
	{ "kernel_stack", 1024, NR_KERNEL_STACK_KB },
1523
	{ "pagetables", PAGE_SIZE, NR_PAGETABLE },
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
	{ "percpu", 1, MEMCG_PERCPU_B },
	{ "sock", PAGE_SIZE, MEMCG_SOCK },
	{ "shmem", PAGE_SIZE, NR_SHMEM },
	{ "file_mapped", PAGE_SIZE, NR_FILE_MAPPED },
	{ "file_dirty", PAGE_SIZE, NR_FILE_DIRTY },
	{ "file_writeback", PAGE_SIZE, NR_WRITEBACK },
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	/*
	 * The ratio will be initialized in memory_stats_init(). Because
	 * on some architectures, the macro of HPAGE_PMD_SIZE is not
	 * constant(e.g. powerpc).
	 */
	{ "anon_thp", 0, NR_ANON_THPS },
1537 1538
	{ "file_thp", 0, NR_FILE_THPS },
	{ "shmem_thp", 0, NR_SHMEM_THPS },
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
#endif
	{ "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON },
	{ "active_anon", PAGE_SIZE, NR_ACTIVE_ANON },
	{ "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE },
	{ "active_file", PAGE_SIZE, NR_ACTIVE_FILE },
	{ "unevictable", PAGE_SIZE, NR_UNEVICTABLE },

	/*
	 * Note: The slab_reclaimable and slab_unreclaimable must be
	 * together and slab_reclaimable must be in front.
	 */
	{ "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B },
	{ "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B },

	/* The memory events */
	{ "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON },
	{ "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE },
	{ "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON },
	{ "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE },
	{ "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON },
	{ "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE },
	{ "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM },
};

static int __init memory_stats_init(void)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1569 1570 1571
		if (memory_stats[i].idx == NR_ANON_THPS ||
		    memory_stats[i].idx == NR_FILE_THPS ||
		    memory_stats[i].idx == NR_SHMEM_THPS)
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
			memory_stats[i].ratio = HPAGE_PMD_SIZE;
#endif
		VM_BUG_ON(!memory_stats[i].ratio);
		VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT);
	}

	return 0;
}
pure_initcall(memory_stats_init);

1582 1583 1584 1585
static char *memory_stat_format(struct mem_cgroup *memcg)
{
	struct seq_buf s;
	int i;
1586

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
	if (!s.buffer)
		return NULL;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

1602 1603
	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
		u64 size;
1604

1605 1606 1607
		size = memcg_page_state(memcg, memory_stats[i].idx);
		size *= memory_stats[i].ratio;
		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1608

1609 1610 1611 1612 1613 1614
		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
			size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
			       memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B);
			seq_buf_printf(&s, "slab %llu\n", size);
		}
	}
1615 1616 1617

	/* Accumulated memory events */

1618 1619 1620 1621 1622 1623
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
		       memcg_events(memcg, PGFAULT));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
		       memcg_events(memcg, PGMAJFAULT));
	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
		       memcg_events(memcg, PGREFILL));
1624 1625 1626 1627 1628 1629
	seq_buf_printf(&s, "pgscan %lu\n",
		       memcg_events(memcg, PGSCAN_KSWAPD) +
		       memcg_events(memcg, PGSCAN_DIRECT));
	seq_buf_printf(&s, "pgsteal %lu\n",
		       memcg_events(memcg, PGSTEAL_KSWAPD) +
		       memcg_events(memcg, PGSTEAL_DIRECT));
1630 1631 1632 1633 1634 1635 1636 1637
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
		       memcg_events(memcg, PGACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
		       memcg_events(memcg, PGDEACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
		       memcg_events(memcg, PGLAZYFREE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
		       memcg_events(memcg, PGLAZYFREED));
1638 1639

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1640
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1641
		       memcg_events(memcg, THP_FAULT_ALLOC));
1642
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1643 1644 1645 1646 1647 1648 1649 1650
		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

	/* The above should easily fit into one page */
	WARN_ON_ONCE(seq_buf_has_overflowed(&s));

	return s.buffer;
}
1651

1652
#define K(x) ((x) << (PAGE_SHIFT-10))
1653
/**
1654 1655
 * mem_cgroup_print_oom_context: Print OOM information relevant to
 * memory controller.
1656 1657 1658 1659 1660 1661
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
1662
void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1663 1664 1665
{
	rcu_read_lock();

1666 1667 1668 1669 1670
	if (memcg) {
		pr_cont(",oom_memcg=");
		pr_cont_cgroup_path(memcg->css.cgroup);
	} else
		pr_cont(",global_oom");
1671
	if (p) {
1672
		pr_cont(",task_memcg=");
1673 1674
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	}
1675
	rcu_read_unlock();
1676 1677 1678 1679 1680 1681 1682 1683 1684
}

/**
 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
 * memory controller.
 * @memcg: The memory cgroup that went over limit
 */
void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
1685
	char *buf;
1686

1687 1688
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1689
		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1690 1691 1692
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->swap)),
1693
			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1694 1695 1696 1697 1698 1699 1700
	else {
		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->memsw)),
			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->kmem)),
			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1701
	}
1702 1703 1704 1705 1706 1707 1708 1709 1710

	pr_info("Memory cgroup stats for ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(":");
	buf = memory_stat_format(memcg);
	if (!buf)
		return;
	pr_info("%s", buf);
	kfree(buf);
1711 1712
}

D
David Rientjes 已提交
1713 1714 1715
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1716
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1717
{
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
	unsigned long max = READ_ONCE(memcg->memory.max);

	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
		if (mem_cgroup_swappiness(memcg))
			max += min(READ_ONCE(memcg->swap.max),
				   (unsigned long)total_swap_pages);
	} else { /* v1 */
		if (mem_cgroup_swappiness(memcg)) {
			/* Calculate swap excess capacity from memsw limit */
			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;

			max += min(swap, (unsigned long)total_swap_pages);
		}
1731
	}
1732
	return max;
D
David Rientjes 已提交
1733 1734
}

1735 1736 1737 1738 1739
unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
{
	return page_counter_read(&memcg->memory);
}

1740
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1741
				     int order)
1742
{
1743 1744 1745
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1746
		.memcg = memcg,
1747 1748 1749
		.gfp_mask = gfp_mask,
		.order = order,
	};
1750
	bool ret = true;
1751

1752 1753
	if (mutex_lock_killable(&oom_lock))
		return true;
1754 1755 1756 1757

	if (mem_cgroup_margin(memcg) >= (1 << order))
		goto unlock;

1758 1759 1760 1761 1762
	/*
	 * A few threads which were not waiting at mutex_lock_killable() can
	 * fail to bail out. Therefore, check again after holding oom_lock.
	 */
	ret = should_force_charge() || out_of_memory(&oc);
1763 1764

unlock:
1765
	mutex_unlock(&oom_lock);
1766
	return ret;
1767 1768
}

1769
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1770
				   pg_data_t *pgdat,
1771 1772 1773 1774 1775 1776 1777 1778 1779
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1780
		.pgdat = pgdat,
1781 1782
	};

1783
	excess = soft_limit_excess(root_memcg);
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1809
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1810
					pgdat, &nr_scanned);
1811
		*total_scanned += nr_scanned;
1812
		if (!soft_limit_excess(root_memcg))
1813
			break;
1814
	}
1815 1816
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1817 1818
}

1819 1820 1821 1822 1823 1824
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1825 1826
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1827 1828 1829 1830
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1831
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1832
{
1833
	struct mem_cgroup *iter, *failed = NULL;
1834

1835 1836
	spin_lock(&memcg_oom_lock);

1837
	for_each_mem_cgroup_tree(iter, memcg) {
1838
		if (iter->oom_lock) {
1839 1840 1841 1842 1843
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1844 1845
			mem_cgroup_iter_break(memcg, iter);
			break;
1846 1847
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1848
	}
K
KAMEZAWA Hiroyuki 已提交
1849

1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1861
		}
1862 1863
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1864 1865 1866 1867

	spin_unlock(&memcg_oom_lock);

	return !failed;
1868
}
1869

1870
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1871
{
K
KAMEZAWA Hiroyuki 已提交
1872 1873
	struct mem_cgroup *iter;

1874
	spin_lock(&memcg_oom_lock);
1875
	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1876
	for_each_mem_cgroup_tree(iter, memcg)
1877
		iter->oom_lock = false;
1878
	spin_unlock(&memcg_oom_lock);
1879 1880
}

1881
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1882 1883 1884
{
	struct mem_cgroup *iter;

1885
	spin_lock(&memcg_oom_lock);
1886
	for_each_mem_cgroup_tree(iter, memcg)
1887 1888
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1889 1890
}

1891
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1892 1893 1894
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1895
	/*
1896 1897
	 * Be careful about under_oom underflows becase a child memcg
	 * could have been added after mem_cgroup_mark_under_oom.
K
KAMEZAWA Hiroyuki 已提交
1898
	 */
1899
	spin_lock(&memcg_oom_lock);
1900
	for_each_mem_cgroup_tree(iter, memcg)
1901 1902 1903
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1904 1905
}

K
KAMEZAWA Hiroyuki 已提交
1906 1907
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1908
struct oom_wait_info {
1909
	struct mem_cgroup *memcg;
1910
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1911 1912
};

1913
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1914 1915
	unsigned mode, int sync, void *arg)
{
1916 1917
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1918 1919 1920
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1921
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1922

1923 1924
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1925 1926 1927 1928
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1929
static void memcg_oom_recover(struct mem_cgroup *memcg)
1930
{
1931 1932 1933 1934 1935 1936 1937 1938 1939
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1940
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1941 1942
}

1943 1944 1945 1946 1947 1948 1949 1950
enum oom_status {
	OOM_SUCCESS,
	OOM_FAILED,
	OOM_ASYNC,
	OOM_SKIPPED
};

static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1951
{
1952 1953 1954
	enum oom_status ret;
	bool locked;

1955 1956 1957
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		return OOM_SKIPPED;

1958 1959
	memcg_memory_event(memcg, MEMCG_OOM);

K
KAMEZAWA Hiroyuki 已提交
1960
	/*
1961 1962 1963 1964
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1965 1966 1967 1968
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1969
	 *
1970 1971 1972 1973 1974 1975 1976
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
K
KAMEZAWA Hiroyuki 已提交
1977
	 */
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
	if (memcg->oom_kill_disable) {
		if (!current->in_user_fault)
			return OOM_SKIPPED;
		css_get(&memcg->css);
		current->memcg_in_oom = memcg;
		current->memcg_oom_gfp_mask = mask;
		current->memcg_oom_order = order;

		return OOM_ASYNC;
	}

1989 1990 1991 1992 1993 1994 1995 1996
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	mem_cgroup_unmark_under_oom(memcg);
1997
	if (mem_cgroup_out_of_memory(memcg, mask, order))
1998 1999 2000 2001 2002 2003
		ret = OOM_SUCCESS;
	else
		ret = OOM_FAILED;

	if (locked)
		mem_cgroup_oom_unlock(memcg);
2004

2005
	return ret;
2006 2007 2008 2009
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2010
 * @handle: actually kill/wait or just clean up the OOM state
2011
 *
2012 2013
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
2014
 *
2015
 * Memcg supports userspace OOM handling where failed allocations must
2016 2017 2018 2019
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
2020
 * the end of the page fault to complete the OOM handling.
2021 2022
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
2023
 * completed, %false otherwise.
2024
 */
2025
bool mem_cgroup_oom_synchronize(bool handle)
2026
{
T
Tejun Heo 已提交
2027
	struct mem_cgroup *memcg = current->memcg_in_oom;
2028
	struct oom_wait_info owait;
2029
	bool locked;
2030 2031 2032

	/* OOM is global, do not handle */
	if (!memcg)
2033
		return false;
2034

2035
	if (!handle)
2036
		goto cleanup;
2037 2038 2039 2040 2041

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
2042
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
2043

2044
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
2055 2056
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
2057
	} else {
2058
		schedule();
2059 2060 2061 2062 2063
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
2064 2065 2066 2067 2068 2069 2070 2071
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2072
cleanup:
T
Tejun Heo 已提交
2073
	current->memcg_in_oom = NULL;
2074
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2075
	return true;
2076 2077
}

2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
/**
 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 * @victim: task to be killed by the OOM killer
 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 *
 * Returns a pointer to a memory cgroup, which has to be cleaned up
 * by killing all belonging OOM-killable tasks.
 *
 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 */
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
					    struct mem_cgroup *oom_domain)
{
	struct mem_cgroup *oom_group = NULL;
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return NULL;

	if (!oom_domain)
		oom_domain = root_mem_cgroup;

	rcu_read_lock();

	memcg = mem_cgroup_from_task(victim);
	if (memcg == root_mem_cgroup)
		goto out;

2106 2107 2108 2109 2110 2111 2112 2113
	/*
	 * If the victim task has been asynchronously moved to a different
	 * memory cgroup, we might end up killing tasks outside oom_domain.
	 * In this case it's better to ignore memory.group.oom.
	 */
	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
		goto out;

2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
	/*
	 * Traverse the memory cgroup hierarchy from the victim task's
	 * cgroup up to the OOMing cgroup (or root) to find the
	 * highest-level memory cgroup with oom.group set.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		if (memcg->oom_group)
			oom_group = memcg;

		if (memcg == oom_domain)
			break;
	}

	if (oom_group)
		css_get(&oom_group->css);
out:
	rcu_read_unlock();

	return oom_group;
}

void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
	pr_info("Tasks in ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(" are going to be killed due to memory.oom.group set\n");
}

2142
/**
2143
 * lock_page_memcg - lock a page and memcg binding
2144
 * @page: the page
2145
 *
2146
 * This function protects unlocked LRU pages from being moved to
2147 2148 2149 2150 2151
 * another cgroup.
 *
 * It ensures lifetime of the returned memcg. Caller is responsible
 * for the lifetime of the page; __unlock_page_memcg() is available
 * when @page might get freed inside the locked section.
2152
 */
2153
struct mem_cgroup *lock_page_memcg(struct page *page)
2154
{
2155
	struct page *head = compound_head(page); /* rmap on tail pages */
2156
	struct mem_cgroup *memcg;
2157
	unsigned long flags;
2158

2159 2160 2161 2162
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
2163 2164 2165 2166 2167 2168 2169
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page itself from being freed. E.g. writeback
	 * doesn't hold a page reference and relies on PG_writeback to
	 * keep off truncation, migration and so forth.
         */
2170 2171 2172
	rcu_read_lock();

	if (mem_cgroup_disabled())
2173
		return NULL;
2174
again:
2175
	memcg = page_memcg(head);
2176
	if (unlikely(!memcg))
2177
		return NULL;
2178

2179 2180 2181 2182 2183 2184
#ifdef CONFIG_PROVE_LOCKING
	local_irq_save(flags);
	might_lock(&memcg->move_lock);
	local_irq_restore(flags);
#endif

Q
Qiang Huang 已提交
2185
	if (atomic_read(&memcg->moving_account) <= 0)
2186
		return memcg;
2187

2188
	spin_lock_irqsave(&memcg->move_lock, flags);
2189
	if (memcg != page_memcg(head)) {
2190
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2191 2192
		goto again;
	}
2193 2194 2195 2196

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
2197
	 * the task who has the lock for unlock_page_memcg().
2198 2199 2200
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2201

2202
	return memcg;
2203
}
2204
EXPORT_SYMBOL(lock_page_memcg);
2205

2206
/**
2207 2208 2209 2210
 * __unlock_page_memcg - unlock and unpin a memcg
 * @memcg: the memcg
 *
 * Unlock and unpin a memcg returned by lock_page_memcg().
2211
 */
2212
void __unlock_page_memcg(struct mem_cgroup *memcg)
2213
{
2214 2215 2216 2217 2218 2219 2220 2221
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2222

2223
	rcu_read_unlock();
2224
}
2225 2226

/**
2227
 * unlock_page_memcg - unlock a page and memcg binding
2228 2229 2230 2231
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
2232 2233
	struct page *head = compound_head(page);

2234
	__unlock_page_memcg(page_memcg(head));
2235
}
2236
EXPORT_SYMBOL(unlock_page_memcg);
2237

2238 2239
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2240
	unsigned int nr_pages;
R
Roman Gushchin 已提交
2241 2242 2243 2244 2245 2246

#ifdef CONFIG_MEMCG_KMEM
	struct obj_cgroup *cached_objcg;
	unsigned int nr_bytes;
#endif

2247
	struct work_struct work;
2248
	unsigned long flags;
2249
#define FLUSHING_CACHED_CHARGE	0
2250 2251
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2252
static DEFINE_MUTEX(percpu_charge_mutex);
2253

R
Roman Gushchin 已提交
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
#ifdef CONFIG_MEMCG_KMEM
static void drain_obj_stock(struct memcg_stock_pcp *stock);
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg);

#else
static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
{
}
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	return false;
}
#endif

2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2280
 */
2281
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2282 2283
{
	struct memcg_stock_pcp *stock;
2284
	unsigned long flags;
2285
	bool ret = false;
2286

2287
	if (nr_pages > MEMCG_CHARGE_BATCH)
2288
		return ret;
2289

2290 2291 2292
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2293
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2294
		stock->nr_pages -= nr_pages;
2295 2296
		ret = true;
	}
2297 2298 2299

	local_irq_restore(flags);

2300 2301 2302 2303
	return ret;
}

/*
2304
 * Returns stocks cached in percpu and reset cached information.
2305 2306 2307 2308 2309
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2310 2311 2312
	if (!old)
		return;

2313
	if (stock->nr_pages) {
2314
		page_counter_uncharge(&old->memory, stock->nr_pages);
2315
		if (do_memsw_account())
2316
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2317
		stock->nr_pages = 0;
2318
	}
2319 2320

	css_put(&old->css);
2321 2322 2323 2324 2325
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
2326 2327 2328
	struct memcg_stock_pcp *stock;
	unsigned long flags;

2329 2330 2331 2332
	/*
	 * The only protection from memory hotplug vs. drain_stock races is
	 * that we always operate on local CPU stock here with IRQ disabled
	 */
2333 2334 2335
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
R
Roman Gushchin 已提交
2336
	drain_obj_stock(stock);
2337
	drain_stock(stock);
2338
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2339 2340

	local_irq_restore(flags);
2341 2342 2343
}

/*
2344
 * Cache charges(val) to local per_cpu area.
2345
 * This will be consumed by consume_stock() function, later.
2346
 */
2347
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2348
{
2349 2350 2351 2352
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
2353

2354
	stock = this_cpu_ptr(&memcg_stock);
2355
	if (stock->cached != memcg) { /* reset if necessary */
2356
		drain_stock(stock);
2357
		css_get(&memcg->css);
2358
		stock->cached = memcg;
2359
	}
2360
	stock->nr_pages += nr_pages;
2361

2362
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2363 2364
		drain_stock(stock);

2365
	local_irq_restore(flags);
2366 2367 2368
}

/*
2369
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2370
 * of the hierarchy under it.
2371
 */
2372
static void drain_all_stock(struct mem_cgroup *root_memcg)
2373
{
2374
	int cpu, curcpu;
2375

2376 2377 2378
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2379 2380 2381 2382 2383 2384
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
2385
	curcpu = get_cpu();
2386 2387
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2388
		struct mem_cgroup *memcg;
2389
		bool flush = false;
2390

2391
		rcu_read_lock();
2392
		memcg = stock->cached;
2393 2394 2395
		if (memcg && stock->nr_pages &&
		    mem_cgroup_is_descendant(memcg, root_memcg))
			flush = true;
R
Roman Gushchin 已提交
2396 2397
		if (obj_stock_flush_required(stock, root_memcg))
			flush = true;
2398 2399 2400 2401
		rcu_read_unlock();

		if (flush &&
		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2402 2403 2404 2405 2406
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2407
	}
2408
	put_cpu();
2409
	mutex_unlock(&percpu_charge_mutex);
2410 2411
}

2412
static int memcg_hotplug_cpu_dead(unsigned int cpu)
2413 2414
{
	struct memcg_stock_pcp *stock;
2415
	struct mem_cgroup *memcg, *mi;
2416 2417 2418

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
2419 2420 2421 2422 2423 2424 2425 2426

	for_each_mem_cgroup(memcg) {
		int i;

		for (i = 0; i < MEMCG_NR_STAT; i++) {
			int nid;
			long x;

2427
			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2428
			if (x)
2429 2430
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmstats[i]);
2431 2432 2433 2434 2435 2436 2437 2438 2439

			if (i >= NR_VM_NODE_STAT_ITEMS)
				continue;

			for_each_node(nid) {
				struct mem_cgroup_per_node *pn;

				pn = mem_cgroup_nodeinfo(memcg, nid);
				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2440
				if (x)
2441 2442 2443
					do {
						atomic_long_add(x, &pn->lruvec_stat[i]);
					} while ((pn = parent_nodeinfo(pn, nid)));
2444 2445 2446
			}
		}

2447
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2448 2449
			long x;

2450
			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2451
			if (x)
2452 2453
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmevents[i]);
2454 2455 2456
		}
	}

2457
	return 0;
2458 2459
}

2460 2461 2462
static unsigned long reclaim_high(struct mem_cgroup *memcg,
				  unsigned int nr_pages,
				  gfp_t gfp_mask)
2463
{
2464 2465
	unsigned long nr_reclaimed = 0;

2466
	do {
2467 2468
		unsigned long pflags;

2469 2470
		if (page_counter_read(&memcg->memory) <=
		    READ_ONCE(memcg->memory.high))
2471
			continue;
2472

2473
		memcg_memory_event(memcg, MEMCG_HIGH);
2474 2475

		psi_memstall_enter(&pflags);
2476 2477
		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
							     gfp_mask, true);
2478
		psi_memstall_leave(&pflags);
2479 2480
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));
2481 2482

	return nr_reclaimed;
2483 2484 2485 2486 2487 2488 2489
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
2490
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2491 2492
}

2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
/*
 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
 * enough to still cause a significant slowdown in most cases, while still
 * allowing diagnostics and tracing to proceed without becoming stuck.
 */
#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)

/*
 * When calculating the delay, we use these either side of the exponentiation to
 * maintain precision and scale to a reasonable number of jiffies (see the table
 * below.
 *
 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
 *   overage ratio to a delay.
2507
 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
 *   to produce a reasonable delay curve.
 *
 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
 * reasonable delay curve compared to precision-adjusted overage, not
 * penalising heavily at first, but still making sure that growth beyond the
 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
 * example, with a high of 100 megabytes:
 *
 *  +-------+------------------------+
 *  | usage | time to allocate in ms |
 *  +-------+------------------------+
 *  | 100M  |                      0 |
 *  | 101M  |                      6 |
 *  | 102M  |                     25 |
 *  | 103M  |                     57 |
 *  | 104M  |                    102 |
 *  | 105M  |                    159 |
 *  | 106M  |                    230 |
 *  | 107M  |                    313 |
 *  | 108M  |                    409 |
 *  | 109M  |                    518 |
 *  | 110M  |                    639 |
 *  | 111M  |                    774 |
 *  | 112M  |                    921 |
 *  | 113M  |                   1081 |
 *  | 114M  |                   1254 |
 *  | 115M  |                   1439 |
 *  | 116M  |                   1638 |
 *  | 117M  |                   1849 |
 *  | 118M  |                   2000 |
 *  | 119M  |                   2000 |
 *  | 120M  |                   2000 |
 *  +-------+------------------------+
 */
 #define MEMCG_DELAY_PRECISION_SHIFT 20
 #define MEMCG_DELAY_SCALING_SHIFT 14

2546
static u64 calculate_overage(unsigned long usage, unsigned long high)
2547
{
2548
	u64 overage;
2549

2550 2551
	if (usage <= high)
		return 0;
2552

2553 2554 2555 2556 2557
	/*
	 * Prevent division by 0 in overage calculation by acting as if
	 * it was a threshold of 1 page
	 */
	high = max(high, 1UL);
2558

2559 2560 2561 2562
	overage = usage - high;
	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
	return div64_u64(overage, high);
}
2563

2564 2565 2566
static u64 mem_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;
2567

2568 2569
	do {
		overage = calculate_overage(page_counter_read(&memcg->memory),
2570
					    READ_ONCE(memcg->memory.high));
2571
		max_overage = max(overage, max_overage);
2572 2573 2574
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

2575 2576 2577
	return max_overage;
}

2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
static u64 swap_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;

	do {
		overage = calculate_overage(page_counter_read(&memcg->swap),
					    READ_ONCE(memcg->swap.high));
		if (overage)
			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
		max_overage = max(overage, max_overage);
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

	return max_overage;
}

2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
/*
 * Get the number of jiffies that we should penalise a mischievous cgroup which
 * is exceeding its memory.high by checking both it and its ancestors.
 */
static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
					  unsigned int nr_pages,
					  u64 max_overage)
{
	unsigned long penalty_jiffies;

2604 2605
	if (!max_overage)
		return 0;
2606 2607 2608 2609 2610 2611 2612 2613 2614

	/*
	 * We use overage compared to memory.high to calculate the number of
	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
	 * fairly lenient on small overages, and increasingly harsh when the
	 * memcg in question makes it clear that it has no intention of stopping
	 * its crazy behaviour, so we exponentially increase the delay based on
	 * overage amount.
	 */
2615 2616 2617
	penalty_jiffies = max_overage * max_overage * HZ;
	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2618 2619 2620 2621 2622 2623 2624 2625 2626

	/*
	 * Factor in the task's own contribution to the overage, such that four
	 * N-sized allocations are throttled approximately the same as one
	 * 4N-sized allocation.
	 *
	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
	 * larger the current charge patch is than that.
	 */
2627
	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
}

/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned long penalty_jiffies;
	unsigned long pflags;
2638
	unsigned long nr_reclaimed;
2639
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2640
	int nr_retries = MAX_RECLAIM_RETRIES;
2641
	struct mem_cgroup *memcg;
2642
	bool in_retry = false;
2643 2644 2645 2646 2647 2648 2649

	if (likely(!nr_pages))
		return;

	memcg = get_mem_cgroup_from_mm(current->mm);
	current->memcg_nr_pages_over_high = 0;

2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
retry_reclaim:
	/*
	 * The allocating task should reclaim at least the batch size, but for
	 * subsequent retries we only want to do what's necessary to prevent oom
	 * or breaching resource isolation.
	 *
	 * This is distinct from memory.max or page allocator behaviour because
	 * memory.high is currently batched, whereas memory.max and the page
	 * allocator run every time an allocation is made.
	 */
	nr_reclaimed = reclaim_high(memcg,
				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
				    GFP_KERNEL);

2664 2665 2666 2667
	/*
	 * memory.high is breached and reclaim is unable to keep up. Throttle
	 * allocators proactively to slow down excessive growth.
	 */
2668 2669
	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
					       mem_find_max_overage(memcg));
2670

2671 2672 2673
	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
						swap_find_max_overage(memcg));

2674 2675 2676 2677 2678 2679 2680
	/*
	 * Clamp the max delay per usermode return so as to still keep the
	 * application moving forwards and also permit diagnostics, albeit
	 * extremely slowly.
	 */
	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);

2681 2682 2683 2684 2685 2686 2687 2688 2689
	/*
	 * Don't sleep if the amount of jiffies this memcg owes us is so low
	 * that it's not even worth doing, in an attempt to be nice to those who
	 * go only a small amount over their memory.high value and maybe haven't
	 * been aggressively reclaimed enough yet.
	 */
	if (penalty_jiffies <= HZ / 100)
		goto out;

2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
	/*
	 * If reclaim is making forward progress but we're still over
	 * memory.high, we want to encourage that rather than doing allocator
	 * throttling.
	 */
	if (nr_reclaimed || nr_retries--) {
		in_retry = true;
		goto retry_reclaim;
	}

2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
	/*
	 * If we exit early, we're guaranteed to die (since
	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
	 * need to account for any ill-begotten jiffies to pay them off later.
	 */
	psi_memstall_enter(&pflags);
	schedule_timeout_killable(penalty_jiffies);
	psi_memstall_leave(&pflags);

out:
	css_put(&memcg->css);
2711 2712
}

2713 2714
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2715
{
2716
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2717
	int nr_retries = MAX_RECLAIM_RETRIES;
2718
	struct mem_cgroup *mem_over_limit;
2719
	struct page_counter *counter;
2720
	enum oom_status oom_status;
2721
	unsigned long nr_reclaimed;
2722 2723
	bool may_swap = true;
	bool drained = false;
2724
	unsigned long pflags;
2725

2726
	if (mem_cgroup_is_root(memcg))
2727
		return 0;
2728
retry:
2729
	if (consume_stock(memcg, nr_pages))
2730
		return 0;
2731

2732
	if (!do_memsw_account() ||
2733 2734
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2735
			goto done_restock;
2736
		if (do_memsw_account())
2737 2738
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2739
	} else {
2740
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2741
		may_swap = false;
2742
	}
2743

2744 2745 2746 2747
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2748

2749 2750 2751 2752 2753 2754 2755 2756 2757
	/*
	 * Memcg doesn't have a dedicated reserve for atomic
	 * allocations. But like the global atomic pool, we need to
	 * put the burden of reclaim on regular allocation requests
	 * and let these go through as privileged allocations.
	 */
	if (gfp_mask & __GFP_ATOMIC)
		goto force;

2758 2759 2760 2761 2762 2763
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
2764
	if (unlikely(should_force_charge()))
2765
		goto force;
2766

2767 2768 2769 2770 2771 2772 2773 2774 2775
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2776 2777 2778
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2779
	if (!gfpflags_allow_blocking(gfp_mask))
2780
		goto nomem;
2781

2782
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2783

2784
	psi_memstall_enter(&pflags);
2785 2786
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2787
	psi_memstall_leave(&pflags);
2788

2789
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2790
		goto retry;
2791

2792
	if (!drained) {
2793
		drain_all_stock(mem_over_limit);
2794 2795 2796 2797
		drained = true;
		goto retry;
	}

2798 2799
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2800 2801 2802 2803 2804 2805 2806 2807 2808
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2809
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2810 2811 2812 2813 2814 2815 2816 2817
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2818 2819 2820
	if (nr_retries--)
		goto retry;

2821
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2822 2823
		goto nomem;

2824
	if (gfp_mask & __GFP_NOFAIL)
2825
		goto force;
2826

2827
	if (fatal_signal_pending(current))
2828
		goto force;
2829

2830 2831 2832 2833 2834 2835
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2836
		       get_order(nr_pages * PAGE_SIZE));
2837 2838
	switch (oom_status) {
	case OOM_SUCCESS:
2839
		nr_retries = MAX_RECLAIM_RETRIES;
2840 2841 2842 2843 2844 2845
		goto retry;
	case OOM_FAILED:
		goto force;
	default:
		goto nomem;
	}
2846
nomem:
2847
	if (!(gfp_mask & __GFP_NOFAIL))
2848
		return -ENOMEM;
2849 2850 2851 2852 2853 2854 2855
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2856
	if (do_memsw_account())
2857 2858 2859
		page_counter_charge(&memcg->memsw, nr_pages);

	return 0;
2860 2861 2862 2863

done_restock:
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2864

2865
	/*
2866 2867
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2868
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2869 2870 2871 2872
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2873 2874
	 */
	do {
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
		bool mem_high, swap_high;

		mem_high = page_counter_read(&memcg->memory) >
			READ_ONCE(memcg->memory.high);
		swap_high = page_counter_read(&memcg->swap) >
			READ_ONCE(memcg->swap.high);

		/* Don't bother a random interrupted task */
		if (in_interrupt()) {
			if (mem_high) {
2885 2886 2887
				schedule_work(&memcg->high_work);
				break;
			}
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
			continue;
		}

		if (mem_high || swap_high) {
			/*
			 * The allocating tasks in this cgroup will need to do
			 * reclaim or be throttled to prevent further growth
			 * of the memory or swap footprints.
			 *
			 * Target some best-effort fairness between the tasks,
			 * and distribute reclaim work and delay penalties
			 * based on how much each task is actually allocating.
			 */
V
Vladimir Davydov 已提交
2901
			current->memcg_nr_pages_over_high += batch;
2902 2903 2904
			set_notify_resume(current);
			break;
		}
2905
	} while ((memcg = parent_mem_cgroup(memcg)));
2906 2907

	return 0;
2908
}
2909

2910
#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2911
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2912
{
2913 2914 2915
	if (mem_cgroup_is_root(memcg))
		return;

2916
	page_counter_uncharge(&memcg->memory, nr_pages);
2917
	if (do_memsw_account())
2918
		page_counter_uncharge(&memcg->memsw, nr_pages);
2919
}
2920
#endif
2921

2922
static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2923
{
2924
	VM_BUG_ON_PAGE(page_memcg(page), page);
2925
	/*
2926
	 * Any of the following ensures page's memcg stability:
2927
	 *
2928 2929 2930 2931
	 * - the page lock
	 * - LRU isolation
	 * - lock_page_memcg()
	 * - exclusive reference
2932
	 */
2933
	page->memcg_data = (unsigned long)memcg;
2934
}
2935

2936
#ifdef CONFIG_MEMCG_KMEM
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
				 gfp_t gfp)
{
	unsigned int objects = objs_per_slab_page(s, page);
	void *vec;

	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
			   page_to_nid(page));
	if (!vec)
		return -ENOMEM;

2948
	if (!set_page_objcgs(page, vec))
2949 2950 2951 2952 2953 2954 2955
		kfree(vec);
	else
		kmemleak_not_leak(vec);

	return 0;
}

2956 2957 2958
/*
 * Returns a pointer to the memory cgroup to which the kernel object is charged.
 *
2959 2960 2961 2962 2963 2964
 * A passed kernel object can be a slab object or a generic kernel page, so
 * different mechanisms for getting the memory cgroup pointer should be used.
 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
 * can not know for sure how the kernel object is implemented.
 * mem_cgroup_from_obj() can be safely used in such cases.
 *
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
 * cgroup_mutex, etc.
 */
struct mem_cgroup *mem_cgroup_from_obj(void *p)
{
	struct page *page;

	if (mem_cgroup_disabled())
		return NULL;

	page = virt_to_head_page(p);

	/*
2978 2979 2980
	 * Slab objects are accounted individually, not per-page.
	 * Memcg membership data for each individual object is saved in
	 * the page->obj_cgroups.
2981
	 */
2982
	if (page_objcgs_check(page)) {
2983 2984 2985 2986
		struct obj_cgroup *objcg;
		unsigned int off;

		off = obj_to_index(page->slab_cache, page, p);
2987
		objcg = page_objcgs(page)[off];
2988 2989 2990 2991
		if (objcg)
			return obj_cgroup_memcg(objcg);

		return NULL;
2992
	}
2993

2994 2995 2996 2997 2998 2999 3000 3001
	/*
	 * page_memcg_check() is used here, because page_has_obj_cgroups()
	 * check above could fail because the object cgroups vector wasn't set
	 * at that moment, but it can be set concurrently.
	 * page_memcg_check(page) will guarantee that a proper memory
	 * cgroup pointer or NULL will be returned.
	 */
	return page_memcg_check(page);
3002 3003
}

R
Roman Gushchin 已提交
3004 3005 3006 3007 3008
__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
{
	struct obj_cgroup *objcg = NULL;
	struct mem_cgroup *memcg;

3009 3010 3011
	if (memcg_kmem_bypass())
		return NULL;

R
Roman Gushchin 已提交
3012
	rcu_read_lock();
3013 3014
	if (unlikely(active_memcg()))
		memcg = active_memcg();
R
Roman Gushchin 已提交
3015 3016 3017 3018 3019 3020 3021
	else
		memcg = mem_cgroup_from_task(current);

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		objcg = rcu_dereference(memcg->objcg);
		if (objcg && obj_cgroup_tryget(objcg))
			break;
3022
		objcg = NULL;
R
Roman Gushchin 已提交
3023 3024 3025 3026 3027 3028
	}
	rcu_read_unlock();

	return objcg;
}

3029
static int memcg_alloc_cache_id(void)
3030
{
3031 3032 3033
	int id, size;
	int err;

3034
	id = ida_simple_get(&memcg_cache_ida,
3035 3036 3037
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
3038

3039
	if (id < memcg_nr_cache_ids)
3040 3041 3042 3043 3044 3045
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
3046
	down_write(&memcg_cache_ids_sem);
3047 3048

	size = 2 * (id + 1);
3049 3050 3051 3052 3053
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

3054
	err = memcg_update_all_list_lrus(size);
3055 3056 3057 3058 3059
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

3060
	if (err) {
3061
		ida_simple_remove(&memcg_cache_ida, id);
3062 3063 3064 3065 3066 3067 3068
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
3069
	ida_simple_remove(&memcg_cache_ida, id);
3070 3071
}

3072
/**
3073
 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
3074
 * @memcg: memory cgroup to charge
3075
 * @gfp: reclaim mode
3076
 * @nr_pages: number of pages to charge
3077 3078 3079
 *
 * Returns 0 on success, an error code on failure.
 */
3080 3081
int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
			unsigned int nr_pages)
3082
{
3083
	struct page_counter *counter;
3084 3085
	int ret;

3086
	ret = try_charge(memcg, gfp, nr_pages);
3087
	if (ret)
3088
		return ret;
3089 3090 3091

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3092 3093 3094 3095 3096 3097 3098 3099 3100 3101

		/*
		 * Enforce __GFP_NOFAIL allocation because callers are not
		 * prepared to see failures and likely do not have any failure
		 * handling code.
		 */
		if (gfp & __GFP_NOFAIL) {
			page_counter_charge(&memcg->kmem, nr_pages);
			return 0;
		}
3102 3103
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
3104
	}
3105
	return 0;
3106 3107
}

3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
/**
 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
 */
void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
{
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

3118
	refill_stock(memcg, nr_pages);
3119 3120
}

3121
/**
3122
 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3123 3124 3125 3126 3127 3128
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
3129
int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3130
{
3131
	struct mem_cgroup *memcg;
3132
	int ret = 0;
3133

3134
	memcg = get_mem_cgroup_from_current();
3135
	if (memcg && !mem_cgroup_is_root(memcg)) {
3136
		ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3137
		if (!ret) {
3138 3139
			page->memcg_data = (unsigned long)memcg |
				MEMCG_DATA_KMEM;
3140
			return 0;
3141
		}
3142
		css_put(&memcg->css);
3143
	}
3144
	return ret;
3145
}
3146

3147
/**
3148
 * __memcg_kmem_uncharge_page: uncharge a kmem page
3149 3150 3151
 * @page: page to uncharge
 * @order: allocation order
 */
3152
void __memcg_kmem_uncharge_page(struct page *page, int order)
3153
{
3154
	struct mem_cgroup *memcg = page_memcg(page);
3155
	unsigned int nr_pages = 1 << order;
3156 3157 3158 3159

	if (!memcg)
		return;

3160
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3161
	__memcg_kmem_uncharge(memcg, nr_pages);
3162
	page->memcg_data = 0;
3163
	css_put(&memcg->css);
3164
}
R
Roman Gushchin 已提交
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275

static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
{
	struct memcg_stock_pcp *stock;
	unsigned long flags;
	bool ret = false;

	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
		stock->nr_bytes -= nr_bytes;
		ret = true;
	}

	local_irq_restore(flags);

	return ret;
}

static void drain_obj_stock(struct memcg_stock_pcp *stock)
{
	struct obj_cgroup *old = stock->cached_objcg;

	if (!old)
		return;

	if (stock->nr_bytes) {
		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);

		if (nr_pages) {
			rcu_read_lock();
			__memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
			rcu_read_unlock();
		}

		/*
		 * The leftover is flushed to the centralized per-memcg value.
		 * On the next attempt to refill obj stock it will be moved
		 * to a per-cpu stock (probably, on an other CPU), see
		 * refill_obj_stock().
		 *
		 * How often it's flushed is a trade-off between the memory
		 * limit enforcement accuracy and potential CPU contention,
		 * so it might be changed in the future.
		 */
		atomic_add(nr_bytes, &old->nr_charged_bytes);
		stock->nr_bytes = 0;
	}

	obj_cgroup_put(old);
	stock->cached_objcg = NULL;
}

static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	struct mem_cgroup *memcg;

	if (stock->cached_objcg) {
		memcg = obj_cgroup_memcg(stock->cached_objcg);
		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
			return true;
	}

	return false;
}

static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
{
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
	if (stock->cached_objcg != objcg) { /* reset if necessary */
		drain_obj_stock(stock);
		obj_cgroup_get(objcg);
		stock->cached_objcg = objcg;
		stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
	}
	stock->nr_bytes += nr_bytes;

	if (stock->nr_bytes > PAGE_SIZE)
		drain_obj_stock(stock);

	local_irq_restore(flags);
}

int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
{
	struct mem_cgroup *memcg;
	unsigned int nr_pages, nr_bytes;
	int ret;

	if (consume_obj_stock(objcg, size))
		return 0;

	/*
	 * In theory, memcg->nr_charged_bytes can have enough
	 * pre-charged bytes to satisfy the allocation. However,
	 * flushing memcg->nr_charged_bytes requires two atomic
	 * operations, and memcg->nr_charged_bytes can't be big,
	 * so it's better to ignore it and try grab some new pages.
	 * memcg->nr_charged_bytes will be flushed in
	 * refill_obj_stock(), called from this function or
	 * independently later.
	 */
	rcu_read_lock();
3276
retry:
R
Roman Gushchin 已提交
3277
	memcg = obj_cgroup_memcg(objcg);
3278 3279
	if (unlikely(!css_tryget(&memcg->css)))
		goto retry;
R
Roman Gushchin 已提交
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
	rcu_read_unlock();

	nr_pages = size >> PAGE_SHIFT;
	nr_bytes = size & (PAGE_SIZE - 1);

	if (nr_bytes)
		nr_pages += 1;

	ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
	if (!ret && nr_bytes)
		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);

	css_put(&memcg->css);
	return ret;
}

void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
{
	refill_obj_stock(objcg, size);
}

3301
#endif /* CONFIG_MEMCG_KMEM */
3302

3303 3304
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
3305
 * Because page_memcg(head) is not set on compound tails, set it now.
3306
 */
3307
void mem_cgroup_split_huge_fixup(struct page *head)
3308
{
3309
	struct mem_cgroup *memcg = page_memcg(head);
3310
	int i;
3311

3312 3313
	if (mem_cgroup_disabled())
		return;
3314

3315 3316
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		css_get(&memcg->css);
3317
		head[i].memcg_data = (unsigned long)memcg;
3318
	}
3319
}
3320
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3321

A
Andrew Morton 已提交
3322
#ifdef CONFIG_MEMCG_SWAP
3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
3334
 * The caller must have charged to @to, IOW, called page_counter_charge() about
3335 3336 3337
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3338
				struct mem_cgroup *from, struct mem_cgroup *to)
3339 3340 3341
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
3342 3343
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3344 3345

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3346 3347
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
3348 3349 3350 3351 3352 3353
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3354
				struct mem_cgroup *from, struct mem_cgroup *to)
3355 3356 3357
{
	return -EINVAL;
}
3358
#endif
K
KAMEZAWA Hiroyuki 已提交
3359

3360
static DEFINE_MUTEX(memcg_max_mutex);
3361

3362 3363
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
3364
{
3365
	bool enlarge = false;
3366
	bool drained = false;
3367
	int ret;
3368 3369
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3370

3371
	do {
3372 3373 3374 3375
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3376

3377
		mutex_lock(&memcg_max_mutex);
3378 3379
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
3380
		 * break our basic invariant rule memory.max <= memsw.max.
3381
		 */
3382
		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3383
					   max <= memcg->memsw.max;
3384
		if (!limits_invariant) {
3385
			mutex_unlock(&memcg_max_mutex);
3386 3387 3388
			ret = -EINVAL;
			break;
		}
3389
		if (max > counter->max)
3390
			enlarge = true;
3391 3392
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
3393 3394 3395 3396

		if (!ret)
			break;

3397 3398 3399 3400 3401 3402
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

3403 3404 3405 3406 3407 3408
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
3409

3410 3411
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3412

3413 3414 3415
	return ret;
}

3416
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3417 3418 3419 3420
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
3421
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3422 3423
	unsigned long reclaimed;
	int loop = 0;
3424
	struct mem_cgroup_tree_per_node *mctz;
3425
	unsigned long excess;
3426 3427 3428 3429 3430
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

3431
	mctz = soft_limit_tree_node(pgdat->node_id);
3432 3433 3434 3435 3436 3437

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
3438
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3439 3440
		return 0;

3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
3455
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3456 3457 3458
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3459
		spin_lock_irq(&mctz->lock);
3460
		__mem_cgroup_remove_exceeded(mz, mctz);
3461 3462 3463 3464 3465 3466

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3467 3468 3469
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3470
		excess = soft_limit_excess(mz->memcg);
3471 3472 3473 3474 3475 3476 3477 3478 3479
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3480
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3481
		spin_unlock_irq(&mctz->lock);
3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3499
/*
3500
 * Reclaims as many pages from the given memcg as possible.
3501 3502 3503 3504 3505
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
3506
	int nr_retries = MAX_RECLAIM_RETRIES;
3507

3508 3509
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3510 3511 3512

	drain_all_stock(memcg);

3513
	/* try to free all pages in this cgroup */
3514
	while (nr_retries && page_counter_read(&memcg->memory)) {
3515
		int progress;
3516

3517 3518 3519
		if (signal_pending(current))
			return -EINTR;

3520 3521
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3522
		if (!progress) {
3523
			nr_retries--;
3524
			/* maybe some writeback is necessary */
3525
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3526
		}
3527 3528

	}
3529 3530

	return 0;
3531 3532
}

3533 3534 3535
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3536
{
3537
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3538

3539 3540
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3541
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3542 3543
}

3544 3545
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3546
{
3547
	return 1;
3548 3549
}

3550 3551
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3552
{
3553
	if (val == 1)
3554
		return 0;
3555

3556 3557 3558
	pr_warn_once("Non-hierarchical mode is deprecated. "
		     "Please report your usecase to linux-mm@kvack.org if you "
		     "depend on this functionality.\n");
3559

3560
	return -EINVAL;
3561 3562
}

3563
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3564
{
3565
	unsigned long val;
3566

3567
	if (mem_cgroup_is_root(memcg)) {
3568
		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3569
			memcg_page_state(memcg, NR_ANON_MAPPED);
3570 3571
		if (swap)
			val += memcg_page_state(memcg, MEMCG_SWAP);
3572
	} else {
3573
		if (!swap)
3574
			val = page_counter_read(&memcg->memory);
3575
		else
3576
			val = page_counter_read(&memcg->memsw);
3577
	}
3578
	return val;
3579 3580
}

3581 3582 3583 3584 3585 3586 3587
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3588

3589
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3590
			       struct cftype *cft)
B
Balbir Singh 已提交
3591
{
3592
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3593
	struct page_counter *counter;
3594

3595
	switch (MEMFILE_TYPE(cft->private)) {
3596
	case _MEM:
3597 3598
		counter = &memcg->memory;
		break;
3599
	case _MEMSWAP:
3600 3601
		counter = &memcg->memsw;
		break;
3602
	case _KMEM:
3603
		counter = &memcg->kmem;
3604
		break;
V
Vladimir Davydov 已提交
3605
	case _TCP:
3606
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3607
		break;
3608 3609 3610
	default:
		BUG();
	}
3611 3612 3613 3614

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
3615
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3616
		if (counter == &memcg->memsw)
3617
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3618 3619
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
3620
		return (u64)counter->max * PAGE_SIZE;
3621 3622 3623 3624 3625 3626 3627 3628 3629
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3630
}
3631

3632
static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3633
{
3634
	unsigned long stat[MEMCG_NR_STAT] = {0};
3635 3636 3637 3638
	struct mem_cgroup *mi;
	int node, cpu, i;

	for_each_online_cpu(cpu)
3639
		for (i = 0; i < MEMCG_NR_STAT; i++)
3640
			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3641 3642

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3643
		for (i = 0; i < MEMCG_NR_STAT; i++)
3644 3645 3646 3647 3648 3649
			atomic_long_add(stat[i], &mi->vmstats[i]);

	for_each_node(node) {
		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
		struct mem_cgroup_per_node *pi;

3650
		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3651 3652 3653
			stat[i] = 0;

		for_each_online_cpu(cpu)
3654
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3655 3656
				stat[i] += per_cpu(
					pn->lruvec_stat_cpu->count[i], cpu);
3657 3658

		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3659
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3660 3661 3662 3663
				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
	}
}

3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
{
	unsigned long events[NR_VM_EVENT_ITEMS];
	struct mem_cgroup *mi;
	int cpu, i;

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
		events[i] = 0;

	for_each_online_cpu(cpu)
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3675 3676
			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
					     cpu);
3677 3678 3679 3680 3681 3682

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
			atomic_long_add(events[i], &mi->vmevents[i]);
}

3683
#ifdef CONFIG_MEMCG_KMEM
3684
static int memcg_online_kmem(struct mem_cgroup *memcg)
3685
{
R
Roman Gushchin 已提交
3686
	struct obj_cgroup *objcg;
3687 3688
	int memcg_id;

3689 3690 3691
	if (cgroup_memory_nokmem)
		return 0;

3692
	BUG_ON(memcg->kmemcg_id >= 0);
3693
	BUG_ON(memcg->kmem_state);
3694

3695
	memcg_id = memcg_alloc_cache_id();
3696 3697
	if (memcg_id < 0)
		return memcg_id;
3698

R
Roman Gushchin 已提交
3699 3700 3701 3702 3703 3704 3705 3706
	objcg = obj_cgroup_alloc();
	if (!objcg) {
		memcg_free_cache_id(memcg_id);
		return -ENOMEM;
	}
	objcg->memcg = memcg;
	rcu_assign_pointer(memcg->objcg, objcg);

3707 3708
	static_branch_enable(&memcg_kmem_enabled_key);

V
Vladimir Davydov 已提交
3709
	memcg->kmemcg_id = memcg_id;
3710
	memcg->kmem_state = KMEM_ONLINE;
3711 3712

	return 0;
3713 3714
}

3715 3716 3717 3718 3719 3720 3721 3722
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
3723

3724 3725 3726 3727 3728 3729
	memcg->kmem_state = KMEM_ALLOCATED;

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

R
Roman Gushchin 已提交
3730
	memcg_reparent_objcgs(memcg, parent);
3731 3732 3733 3734

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

3735 3736 3737 3738 3739 3740 3741 3742
	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
3743
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3744 3745 3746 3747 3748
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
	}
3749 3750
	rcu_read_unlock();

3751
	memcg_drain_all_list_lrus(kmemcg_id, parent);
3752 3753 3754 3755 3756 3757

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
3758 3759 3760
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);
3761
}
3762
#else
3763
static int memcg_online_kmem(struct mem_cgroup *memcg)
3764 3765 3766 3767 3768 3769 3770 3771 3772
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
3773
#endif /* CONFIG_MEMCG_KMEM */
3774

3775 3776
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
3777
{
3778
	int ret;
3779

3780 3781 3782
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
3783
	return ret;
3784
}
3785

3786
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
3787 3788 3789
{
	int ret;

3790
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3791

3792
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
3793 3794 3795
	if (ret)
		goto out;

3796
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3797 3798 3799
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3800 3801 3802
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
3803 3804 3805 3806 3807 3808
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3809
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
3810 3811 3812 3813
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3814
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3815 3816
	}
out:
3817
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3818 3819 3820
	return ret;
}

3821 3822 3823 3824
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3825 3826
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3827
{
3828
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3829
	unsigned long nr_pages;
3830 3831
	int ret;

3832
	buf = strstrip(buf);
3833
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3834 3835
	if (ret)
		return ret;
3836

3837
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3838
	case RES_LIMIT:
3839 3840 3841 3842
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3843 3844
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3845
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3846
			break;
3847
		case _MEMSWAP:
3848
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3849
			break;
3850
		case _KMEM:
3851 3852 3853
			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
				     "Please report your usecase to linux-mm@kvack.org if you "
				     "depend on this functionality.\n");
3854
			ret = memcg_update_kmem_max(memcg, nr_pages);
3855
			break;
V
Vladimir Davydov 已提交
3856
		case _TCP:
3857
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
3858
			break;
3859
		}
3860
		break;
3861 3862 3863
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3864 3865
		break;
	}
3866
	return ret ?: nbytes;
B
Balbir Singh 已提交
3867 3868
}

3869 3870
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3871
{
3872
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3873
	struct page_counter *counter;
3874

3875 3876 3877 3878 3879 3880 3881 3882 3883 3884
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3885
	case _TCP:
3886
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3887
		break;
3888 3889 3890
	default:
		BUG();
	}
3891

3892
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3893
	case RES_MAX_USAGE:
3894
		page_counter_reset_watermark(counter);
3895 3896
		break;
	case RES_FAILCNT:
3897
		counter->failcnt = 0;
3898
		break;
3899 3900
	default:
		BUG();
3901
	}
3902

3903
	return nbytes;
3904 3905
}

3906
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3907 3908
					struct cftype *cft)
{
3909
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3910 3911
}

3912
#ifdef CONFIG_MMU
3913
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3914 3915
					struct cftype *cft, u64 val)
{
3916
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3917

3918
	if (val & ~MOVE_MASK)
3919
		return -EINVAL;
3920

3921
	/*
3922 3923 3924 3925
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3926
	 */
3927
	memcg->move_charge_at_immigrate = val;
3928 3929
	return 0;
}
3930
#else
3931
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3932 3933 3934 3935 3936
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3937

3938
#ifdef CONFIG_NUMA
3939 3940 3941 3942 3943 3944

#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)

static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3945
				int nid, unsigned int lru_mask, bool tree)
3946
{
3947
	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3948 3949 3950 3951 3952 3953 3954 3955
	unsigned long nr = 0;
	enum lru_list lru;

	VM_BUG_ON((unsigned)nid >= nr_node_ids);

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3956 3957 3958 3959
		if (tree)
			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
		else
			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3960 3961 3962 3963 3964
	}
	return nr;
}

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3965 3966
					     unsigned int lru_mask,
					     bool tree)
3967 3968 3969 3970 3971 3972 3973
{
	unsigned long nr = 0;
	enum lru_list lru;

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3974 3975 3976 3977
		if (tree)
			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
		else
			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3978 3979 3980 3981
	}
	return nr;
}

3982
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3983
{
3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3996
	int nid;
3997
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3998

3999
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4000 4001 4002 4003 4004 4005 4006
		seq_printf(m, "%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   false));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, false));
4007
		seq_putc(m, '\n');
4008 4009
	}

4010
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4011 4012 4013 4014 4015 4016 4017 4018

		seq_printf(m, "hierarchical_%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   true));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, true));
4019
		seq_putc(m, '\n');
4020 4021 4022 4023 4024 4025
	}

	return 0;
}
#endif /* CONFIG_NUMA */

4026
static const unsigned int memcg1_stats[] = {
4027
	NR_FILE_PAGES,
4028
	NR_ANON_MAPPED,
4029 4030 4031
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	NR_ANON_THPS,
#endif
4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
4042
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4043
	"rss_huge",
4044
#endif
4045 4046 4047 4048 4049 4050 4051
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

4052
/* Universal VM events cgroup1 shows, original sort order */
4053
static const unsigned int memcg1_events[] = {
4054 4055 4056 4057 4058 4059
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

4060
static int memcg_stat_show(struct seq_file *m, void *v)
4061
{
4062
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4063
	unsigned long memory, memsw;
4064 4065
	struct mem_cgroup *mi;
	unsigned int i;
4066

4067
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4068

4069
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4070 4071
		unsigned long nr;

4072
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4073
			continue;
4074 4075 4076 4077 4078 4079
		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
		if (memcg1_stats[i] == NR_ANON_THPS)
			nr *= HPAGE_PMD_NR;
#endif
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4080
	}
L
Lee Schermerhorn 已提交
4081

4082
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4083
		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4084
			   memcg_events_local(memcg, memcg1_events[i]));
4085 4086

	for (i = 0; i < NR_LRU_LISTS; i++)
4087
		seq_printf(m, "%s %lu\n", lru_list_name(i),
4088
			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4089
			   PAGE_SIZE);
4090

K
KAMEZAWA Hiroyuki 已提交
4091
	/* Hierarchical information */
4092 4093
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4094 4095
		memory = min(memory, READ_ONCE(mi->memory.max));
		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4096
	}
4097 4098
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
4099
	if (do_memsw_account())
4100 4101
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
4102

4103
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4104 4105
		unsigned long nr;

4106
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4107
			continue;
4108 4109 4110 4111 4112
		nr = memcg_page_state(memcg, memcg1_stats[i]);
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
		if (memcg1_stats[i] == NR_ANON_THPS)
			nr *= HPAGE_PMD_NR;
#endif
4113
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4114
						(u64)nr * PAGE_SIZE);
4115 4116
	}

4117
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4118 4119
		seq_printf(m, "total_%s %llu\n",
			   vm_event_name(memcg1_events[i]),
4120
			   (u64)memcg_events(memcg, memcg1_events[i]));
4121

4122
	for (i = 0; i < NR_LRU_LISTS; i++)
4123
		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4124 4125
			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			   PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
4126

K
KOSAKI Motohiro 已提交
4127 4128
#ifdef CONFIG_DEBUG_VM
	{
4129 4130
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
4131 4132
		unsigned long anon_cost = 0;
		unsigned long file_cost = 0;
K
KOSAKI Motohiro 已提交
4133

4134 4135
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
K
KOSAKI Motohiro 已提交
4136

4137 4138
			anon_cost += mz->lruvec.anon_cost;
			file_cost += mz->lruvec.file_cost;
4139
		}
4140 4141
		seq_printf(m, "anon_cost %lu\n", anon_cost);
		seq_printf(m, "file_cost %lu\n", file_cost);
K
KOSAKI Motohiro 已提交
4142 4143 4144
	}
#endif

4145 4146 4147
	return 0;
}

4148 4149
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
4150
{
4151
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4152

4153
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4154 4155
}

4156 4157
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
4158
{
4159
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4160

4161
	if (val > 100)
K
KOSAKI Motohiro 已提交
4162 4163
		return -EINVAL;

4164
	if (css->parent)
4165 4166 4167
		memcg->swappiness = val;
	else
		vm_swappiness = val;
4168

K
KOSAKI Motohiro 已提交
4169 4170 4171
	return 0;
}

4172 4173 4174
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
4175
	unsigned long usage;
4176 4177 4178 4179
	int i;

	rcu_read_lock();
	if (!swap)
4180
		t = rcu_dereference(memcg->thresholds.primary);
4181
	else
4182
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4183 4184 4185 4186

	if (!t)
		goto unlock;

4187
	usage = mem_cgroup_usage(memcg, swap);
4188 4189

	/*
4190
	 * current_threshold points to threshold just below or equal to usage.
4191 4192 4193
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4194
	i = t->current_threshold;
4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4218
	t->current_threshold = i - 1;
4219 4220 4221 4222 4223 4224
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4225 4226
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
4227
		if (do_memsw_account())
4228 4229 4230 4231
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4232 4233 4234 4235 4236 4237 4238
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

4239 4240 4241 4242 4243 4244 4245
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
4246 4247
}

4248
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4249 4250 4251
{
	struct mem_cgroup_eventfd_list *ev;

4252 4253
	spin_lock(&memcg_oom_lock);

4254
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4255
		eventfd_signal(ev->eventfd, 1);
4256 4257

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4258 4259 4260
	return 0;
}

4261
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4262
{
K
KAMEZAWA Hiroyuki 已提交
4263 4264
	struct mem_cgroup *iter;

4265
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4266
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4267 4268
}

4269
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4270
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4271
{
4272 4273
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4274 4275
	unsigned long threshold;
	unsigned long usage;
4276
	int i, size, ret;
4277

4278
	ret = page_counter_memparse(args, "-1", &threshold);
4279 4280 4281 4282
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4283

4284
	if (type == _MEM) {
4285
		thresholds = &memcg->thresholds;
4286
		usage = mem_cgroup_usage(memcg, false);
4287
	} else if (type == _MEMSWAP) {
4288
		thresholds = &memcg->memsw_thresholds;
4289
		usage = mem_cgroup_usage(memcg, true);
4290
	} else
4291 4292 4293
		BUG();

	/* Check if a threshold crossed before adding a new one */
4294
	if (thresholds->primary)
4295 4296
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4297
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4298 4299

	/* Allocate memory for new array of thresholds */
4300
	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4301
	if (!new) {
4302 4303 4304
		ret = -ENOMEM;
		goto unlock;
	}
4305
	new->size = size;
4306 4307

	/* Copy thresholds (if any) to new array */
4308 4309 4310
	if (thresholds->primary)
		memcpy(new->entries, thresholds->primary->entries,
		       flex_array_size(new, entries, size - 1));
4311

4312
	/* Add new threshold */
4313 4314
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4315 4316

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4317
	sort(new->entries, size, sizeof(*new->entries),
4318 4319 4320
			compare_thresholds, NULL);

	/* Find current threshold */
4321
	new->current_threshold = -1;
4322
	for (i = 0; i < size; i++) {
4323
		if (new->entries[i].threshold <= usage) {
4324
			/*
4325 4326
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4327 4328
			 * it here.
			 */
4329
			++new->current_threshold;
4330 4331
		} else
			break;
4332 4333
	}

4334 4335 4336 4337 4338
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4339

4340
	/* To be sure that nobody uses thresholds */
4341 4342 4343 4344 4345 4346 4347 4348
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4349
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4350 4351
	struct eventfd_ctx *eventfd, const char *args)
{
4352
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4353 4354
}

4355
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4356 4357
	struct eventfd_ctx *eventfd, const char *args)
{
4358
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4359 4360
}

4361
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4362
	struct eventfd_ctx *eventfd, enum res_type type)
4363
{
4364 4365
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4366
	unsigned long usage;
4367
	int i, j, size, entries;
4368 4369

	mutex_lock(&memcg->thresholds_lock);
4370 4371

	if (type == _MEM) {
4372
		thresholds = &memcg->thresholds;
4373
		usage = mem_cgroup_usage(memcg, false);
4374
	} else if (type == _MEMSWAP) {
4375
		thresholds = &memcg->memsw_thresholds;
4376
		usage = mem_cgroup_usage(memcg, true);
4377
	} else
4378 4379
		BUG();

4380 4381 4382
	if (!thresholds->primary)
		goto unlock;

4383 4384 4385 4386
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4387
	size = entries = 0;
4388 4389
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4390
			size++;
4391 4392
		else
			entries++;
4393 4394
	}

4395
	new = thresholds->spare;
4396

4397 4398 4399 4400
	/* If no items related to eventfd have been cleared, nothing to do */
	if (!entries)
		goto unlock;

4401 4402
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4403 4404
		kfree(new);
		new = NULL;
4405
		goto swap_buffers;
4406 4407
	}

4408
	new->size = size;
4409 4410

	/* Copy thresholds and find current threshold */
4411 4412 4413
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4414 4415
			continue;

4416
		new->entries[j] = thresholds->primary->entries[i];
4417
		if (new->entries[j].threshold <= usage) {
4418
			/*
4419
			 * new->current_threshold will not be used
4420 4421 4422
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4423
			++new->current_threshold;
4424 4425 4426 4427
		}
		j++;
	}

4428
swap_buffers:
4429 4430
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4431

4432
	rcu_assign_pointer(thresholds->primary, new);
4433

4434
	/* To be sure that nobody uses thresholds */
4435
	synchronize_rcu();
4436 4437 4438 4439 4440 4441

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
4442
unlock:
4443 4444
	mutex_unlock(&memcg->thresholds_lock);
}
4445

4446
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4447 4448
	struct eventfd_ctx *eventfd)
{
4449
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4450 4451
}

4452
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4453 4454
	struct eventfd_ctx *eventfd)
{
4455
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4456 4457
}

4458
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4459
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4460 4461 4462 4463 4464 4465 4466
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4467
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4468 4469 4470 4471 4472

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4473
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
4474
		eventfd_signal(eventfd, 1);
4475
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4476 4477 4478 4479

	return 0;
}

4480
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4481
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4482 4483 4484
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4485
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4486

4487
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4488 4489 4490 4491 4492 4493
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4494
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4495 4496
}

4497
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4498
{
4499
	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4500

4501
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4502
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
R
Roman Gushchin 已提交
4503 4504
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4505 4506 4507
	return 0;
}

4508
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4509 4510
	struct cftype *cft, u64 val)
{
4511
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4512 4513

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4514
	if (!css->parent || !((val == 0) || (val == 1)))
4515 4516
		return -EINVAL;

4517
	memcg->oom_kill_disable = val;
4518
	if (!val)
4519
		memcg_oom_recover(memcg);
4520

4521 4522 4523
	return 0;
}

4524 4525
#ifdef CONFIG_CGROUP_WRITEBACK

4526 4527
#include <trace/events/writeback.h>

T
Tejun Heo 已提交
4528 4529 4530 4531 4532 4533 4534 4535 4536 4537
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

4538 4539 4540 4541 4542
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
4543 4544 4545 4546 4547 4548 4549 4550 4551 4552
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

4553 4554 4555 4556 4557 4558
/*
 * idx can be of type enum memcg_stat_item or node_stat_item.
 * Keep in sync with memcg_exact_page().
 */
static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
{
4559
	long x = atomic_long_read(&memcg->vmstats[idx]);
4560 4561 4562
	int cpu;

	for_each_online_cpu(cpu)
4563
		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4564 4565 4566 4567 4568
	if (x < 0)
		x = 0;
	return x;
}

4569 4570 4571
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
4572 4573
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
4574 4575 4576
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
4577 4578 4579
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
4580
 *
4581 4582 4583 4584 4585
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
4586
 */
4587 4588 4589
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
4590 4591 4592 4593
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

4594
	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4595

4596
	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4597 4598
	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4599
	*pheadroom = PAGE_COUNTER_MAX;
4600 4601

	while ((parent = parent_mem_cgroup(memcg))) {
4602
		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4603
					    READ_ONCE(memcg->memory.high));
4604 4605
		unsigned long used = page_counter_read(&memcg->memory);

4606
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4607 4608 4609 4610
		memcg = parent;
	}
}

4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
/*
 * Foreign dirty flushing
 *
 * There's an inherent mismatch between memcg and writeback.  The former
 * trackes ownership per-page while the latter per-inode.  This was a
 * deliberate design decision because honoring per-page ownership in the
 * writeback path is complicated, may lead to higher CPU and IO overheads
 * and deemed unnecessary given that write-sharing an inode across
 * different cgroups isn't a common use-case.
 *
 * Combined with inode majority-writer ownership switching, this works well
 * enough in most cases but there are some pathological cases.  For
 * example, let's say there are two cgroups A and B which keep writing to
 * different but confined parts of the same inode.  B owns the inode and
 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
 * triggering background writeback.  A will be slowed down without a way to
 * make writeback of the dirty pages happen.
 *
 * Conditions like the above can lead to a cgroup getting repatedly and
 * severely throttled after making some progress after each
 * dirty_expire_interval while the underyling IO device is almost
 * completely idle.
 *
 * Solving this problem completely requires matching the ownership tracking
 * granularities between memcg and writeback in either direction.  However,
 * the more egregious behaviors can be avoided by simply remembering the
 * most recent foreign dirtying events and initiating remote flushes on
 * them when local writeback isn't enough to keep the memory clean enough.
 *
 * The following two functions implement such mechanism.  When a foreign
 * page - a page whose memcg and writeback ownerships don't match - is
 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
 * decides that the memcg needs to sleep due to high dirty ratio, it calls
 * mem_cgroup_flush_foreign() which queues writeback on the recorded
 * foreign bdi_writebacks which haven't expired.  Both the numbers of
 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
 * limited to MEMCG_CGWB_FRN_CNT.
 *
 * The mechanism only remembers IDs and doesn't hold any object references.
 * As being wrong occasionally doesn't matter, updates and accesses to the
 * records are lockless and racy.
 */
void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
					     struct bdi_writeback *wb)
{
4658
	struct mem_cgroup *memcg = page_memcg(page);
4659 4660 4661 4662 4663 4664
	struct memcg_cgwb_frn *frn;
	u64 now = get_jiffies_64();
	u64 oldest_at = now;
	int oldest = -1;
	int i;

4665 4666
	trace_track_foreign_dirty(page, wb);

4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726
	/*
	 * Pick the slot to use.  If there is already a slot for @wb, keep
	 * using it.  If not replace the oldest one which isn't being
	 * written out.
	 */
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		frn = &memcg->cgwb_frn[i];
		if (frn->bdi_id == wb->bdi->id &&
		    frn->memcg_id == wb->memcg_css->id)
			break;
		if (time_before64(frn->at, oldest_at) &&
		    atomic_read(&frn->done.cnt) == 1) {
			oldest = i;
			oldest_at = frn->at;
		}
	}

	if (i < MEMCG_CGWB_FRN_CNT) {
		/*
		 * Re-using an existing one.  Update timestamp lazily to
		 * avoid making the cacheline hot.  We want them to be
		 * reasonably up-to-date and significantly shorter than
		 * dirty_expire_interval as that's what expires the record.
		 * Use the shorter of 1s and dirty_expire_interval / 8.
		 */
		unsigned long update_intv =
			min_t(unsigned long, HZ,
			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);

		if (time_before64(frn->at, now - update_intv))
			frn->at = now;
	} else if (oldest >= 0) {
		/* replace the oldest free one */
		frn = &memcg->cgwb_frn[oldest];
		frn->bdi_id = wb->bdi->id;
		frn->memcg_id = wb->memcg_css->id;
		frn->at = now;
	}
}

/* issue foreign writeback flushes for recorded foreign dirtying events */
void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
	u64 now = jiffies_64;
	int i;

	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];

		/*
		 * If the record is older than dirty_expire_interval,
		 * writeback on it has already started.  No need to kick it
		 * off again.  Also, don't start a new one if there's
		 * already one in flight.
		 */
		if (time_after64(frn->at, now - intv) &&
		    atomic_read(&frn->done.cnt) == 1) {
			frn->at = 0;
4727
			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4728 4729 4730 4731 4732 4733 4734
			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
					       WB_REASON_FOREIGN_FLUSH,
					       &frn->done);
		}
	}
}

T
Tejun Heo 已提交
4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

4746 4747 4748 4749
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

4750 4751
#endif	/* CONFIG_CGROUP_WRITEBACK */

4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4765 4766 4767 4768 4769
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4770
static void memcg_event_remove(struct work_struct *work)
4771
{
4772 4773
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4774
	struct mem_cgroup *memcg = event->memcg;
4775 4776 4777

	remove_wait_queue(event->wqh, &event->wait);

4778
	event->unregister_event(memcg, event->eventfd);
4779 4780 4781 4782 4783 4784

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4785
	css_put(&memcg->css);
4786 4787 4788
}

/*
4789
 * Gets called on EPOLLHUP on eventfd when user closes it.
4790 4791 4792
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4793
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4794
			    int sync, void *key)
4795
{
4796 4797
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4798
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
4799
	__poll_t flags = key_to_poll(key);
4800

4801
	if (flags & EPOLLHUP) {
4802 4803 4804 4805 4806 4807 4808 4809 4810
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4811
		spin_lock(&memcg->event_list_lock);
4812 4813 4814 4815 4816 4817 4818 4819
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4820
		spin_unlock(&memcg->event_list_lock);
4821 4822 4823 4824 4825
	}

	return 0;
}

4826
static void memcg_event_ptable_queue_proc(struct file *file,
4827 4828
		wait_queue_head_t *wqh, poll_table *pt)
{
4829 4830
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4831 4832 4833 4834 4835 4836

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4837 4838
 * DO NOT USE IN NEW FILES.
 *
4839 4840 4841 4842 4843
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4844 4845
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4846
{
4847
	struct cgroup_subsys_state *css = of_css(of);
4848
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4849
	struct mem_cgroup_event *event;
4850 4851 4852 4853
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4854
	const char *name;
4855 4856 4857
	char *endp;
	int ret;

4858 4859 4860
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4861 4862
	if (*endp != ' ')
		return -EINVAL;
4863
	buf = endp + 1;
4864

4865
	cfd = simple_strtoul(buf, &endp, 10);
4866 4867
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4868
	buf = endp + 1;
4869 4870 4871 4872 4873

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4874
	event->memcg = memcg;
4875
	INIT_LIST_HEAD(&event->list);
4876 4877 4878
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
4900
	ret = file_permission(cfile.file, MAY_READ);
4901 4902 4903
	if (ret < 0)
		goto out_put_cfile;

4904 4905 4906 4907 4908
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4909 4910
	 *
	 * DO NOT ADD NEW FILES.
4911
	 */
A
Al Viro 已提交
4912
	name = cfile.file->f_path.dentry->d_name.name;
4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4924 4925
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4926 4927 4928 4929 4930
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4931
	/*
4932 4933 4934
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4935
	 */
A
Al Viro 已提交
4936
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4937
					       &memory_cgrp_subsys);
4938
	ret = -EINVAL;
4939
	if (IS_ERR(cfile_css))
4940
		goto out_put_cfile;
4941 4942
	if (cfile_css != css) {
		css_put(cfile_css);
4943
		goto out_put_cfile;
4944
	}
4945

4946
	ret = event->register_event(memcg, event->eventfd, buf);
4947 4948 4949
	if (ret)
		goto out_put_css;

4950
	vfs_poll(efile.file, &event->pt);
4951

4952 4953 4954
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4955 4956 4957 4958

	fdput(cfile);
	fdput(efile);

4959
	return nbytes;
4960 4961

out_put_css:
4962
	css_put(css);
4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4975
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4976
	{
4977
		.name = "usage_in_bytes",
4978
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4979
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4980
	},
4981 4982
	{
		.name = "max_usage_in_bytes",
4983
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4984
		.write = mem_cgroup_reset,
4985
		.read_u64 = mem_cgroup_read_u64,
4986
	},
B
Balbir Singh 已提交
4987
	{
4988
		.name = "limit_in_bytes",
4989
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4990
		.write = mem_cgroup_write,
4991
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4992
	},
4993 4994 4995
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4996
		.write = mem_cgroup_write,
4997
		.read_u64 = mem_cgroup_read_u64,
4998
	},
B
Balbir Singh 已提交
4999 5000
	{
		.name = "failcnt",
5001
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5002
		.write = mem_cgroup_reset,
5003
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
5004
	},
5005 5006
	{
		.name = "stat",
5007
		.seq_show = memcg_stat_show,
5008
	},
5009 5010
	{
		.name = "force_empty",
5011
		.write = mem_cgroup_force_empty_write,
5012
	},
5013 5014 5015 5016 5017
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
5018
	{
5019
		.name = "cgroup.event_control",		/* XXX: for compat */
5020
		.write = memcg_write_event_control,
5021
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5022
	},
K
KOSAKI Motohiro 已提交
5023 5024 5025 5026 5027
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5028 5029 5030 5031 5032
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5033 5034
	{
		.name = "oom_control",
5035
		.seq_show = mem_cgroup_oom_control_read,
5036
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5037 5038
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5039 5040 5041
	{
		.name = "pressure_level",
	},
5042 5043 5044
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5045
		.seq_show = memcg_numa_stat_show,
5046 5047
	},
#endif
5048 5049 5050
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5051
		.write = mem_cgroup_write,
5052
		.read_u64 = mem_cgroup_read_u64,
5053 5054 5055 5056
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5057
		.read_u64 = mem_cgroup_read_u64,
5058 5059 5060 5061
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5062
		.write = mem_cgroup_reset,
5063
		.read_u64 = mem_cgroup_read_u64,
5064 5065 5066 5067
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5068
		.write = mem_cgroup_reset,
5069
		.read_u64 = mem_cgroup_read_u64,
5070
	},
5071 5072
#if defined(CONFIG_MEMCG_KMEM) && \
	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5073 5074
	{
		.name = "kmem.slabinfo",
5075
		.seq_show = memcg_slab_show,
5076 5077
	},
#endif
V
Vladimir Davydov 已提交
5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
5101
	{ },	/* terminate */
5102
};
5103

5104 5105 5106 5107 5108 5109 5110 5111
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
5112
 * However, there usually are many references to the offline CSS after
5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

5130 5131 5132 5133 5134 5135 5136 5137
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

5138 5139
static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
						  unsigned int n)
5140
{
5141
	refcount_add(n, &memcg->id.ref);
5142 5143
}

5144
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5145
{
5146
	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5147
		mem_cgroup_id_remove(memcg);
5148 5149 5150 5151 5152 5153

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

5154 5155 5156 5157 5158
static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

5171
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5172 5173
{
	struct mem_cgroup_per_node *pn;
5174
	int tmp = node;
5175 5176 5177 5178 5179 5180 5181 5182
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5183 5184
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5185
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5186 5187
	if (!pn)
		return 1;
5188

5189 5190
	pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
						 GFP_KERNEL_ACCOUNT);
5191 5192 5193 5194 5195
	if (!pn->lruvec_stat_local) {
		kfree(pn);
		return 1;
	}

5196 5197
	pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
					       GFP_KERNEL_ACCOUNT);
5198
	if (!pn->lruvec_stat_cpu) {
5199
		free_percpu(pn->lruvec_stat_local);
5200 5201 5202 5203
		kfree(pn);
		return 1;
	}

5204 5205 5206 5207 5208
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

5209
	memcg->nodeinfo[node] = pn;
5210 5211 5212
	return 0;
}

5213
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5214
{
5215 5216
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
5217 5218 5219
	if (!pn)
		return;

5220
	free_percpu(pn->lruvec_stat_cpu);
5221
	free_percpu(pn->lruvec_stat_local);
5222
	kfree(pn);
5223 5224
}

5225
static void __mem_cgroup_free(struct mem_cgroup *memcg)
5226
{
5227
	int node;
5228

5229
	for_each_node(node)
5230
		free_mem_cgroup_per_node_info(memcg, node);
5231
	free_percpu(memcg->vmstats_percpu);
5232
	free_percpu(memcg->vmstats_local);
5233
	kfree(memcg);
5234
}
5235

5236 5237 5238
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
5239 5240 5241 5242
	/*
	 * Flush percpu vmstats and vmevents to guarantee the value correctness
	 * on parent's and all ancestor levels.
	 */
5243
	memcg_flush_percpu_vmstats(memcg);
5244
	memcg_flush_percpu_vmevents(memcg);
5245 5246 5247
	__mem_cgroup_free(memcg);
}

5248
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
5249
{
5250
	struct mem_cgroup *memcg;
5251
	unsigned int size;
5252
	int node;
5253
	int __maybe_unused i;
5254
	long error = -ENOMEM;
B
Balbir Singh 已提交
5255

5256 5257 5258 5259
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
5260
	if (!memcg)
5261
		return ERR_PTR(error);
5262

5263 5264 5265
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
5266 5267
	if (memcg->id.id < 0) {
		error = memcg->id.id;
5268
		goto fail;
5269
	}
5270

5271 5272
	memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
						GFP_KERNEL_ACCOUNT);
5273 5274 5275
	if (!memcg->vmstats_local)
		goto fail;

5276 5277
	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
						 GFP_KERNEL_ACCOUNT);
5278
	if (!memcg->vmstats_percpu)
5279
		goto fail;
5280

B
Bob Liu 已提交
5281
	for_each_node(node)
5282
		if (alloc_mem_cgroup_per_node_info(memcg, node))
5283
			goto fail;
5284

5285 5286
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
5287

5288
	INIT_WORK(&memcg->high_work, high_work_func);
5289 5290 5291
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5292
	vmpressure_init(&memcg->vmpressure);
5293 5294
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
5295
	memcg->socket_pressure = jiffies;
5296
#ifdef CONFIG_MEMCG_KMEM
V
Vladimir Davydov 已提交
5297
	memcg->kmemcg_id = -1;
R
Roman Gushchin 已提交
5298
	INIT_LIST_HEAD(&memcg->objcg_list);
V
Vladimir Davydov 已提交
5299
#endif
5300 5301
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
5302 5303 5304
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		memcg->cgwb_frn[i].done =
			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5305 5306 5307 5308 5309
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
	memcg->deferred_split_queue.split_queue_len = 0;
5310
#endif
5311
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5312 5313
	return memcg;
fail:
5314
	mem_cgroup_id_remove(memcg);
5315
	__mem_cgroup_free(memcg);
5316
	return ERR_PTR(error);
5317 5318
}

5319 5320
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5321
{
5322
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5323
	struct mem_cgroup *memcg, *old_memcg;
5324
	long error = -ENOMEM;
5325

5326
	old_memcg = set_active_memcg(parent);
5327
	memcg = mem_cgroup_alloc();
5328
	set_active_memcg(old_memcg);
5329 5330
	if (IS_ERR(memcg))
		return ERR_CAST(memcg);
5331

5332
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5333
	memcg->soft_limit = PAGE_COUNTER_MAX;
5334
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5335 5336 5337
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
5338

5339
		page_counter_init(&memcg->memory, &parent->memory);
5340
		page_counter_init(&memcg->swap, &parent->swap);
5341
		page_counter_init(&memcg->kmem, &parent->kmem);
5342
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5343
	} else {
5344 5345 5346 5347
		page_counter_init(&memcg->memory, NULL);
		page_counter_init(&memcg->swap, NULL);
		page_counter_init(&memcg->kmem, NULL);
		page_counter_init(&memcg->tcpmem, NULL);
5348

5349 5350 5351 5352
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

5353
	/* The following stuff does not apply to the root */
5354
	error = memcg_online_kmem(memcg);
5355 5356
	if (error)
		goto fail;
5357

5358
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5359
		static_branch_inc(&memcg_sockets_enabled_key);
5360

5361 5362
	return &memcg->css;
fail:
5363
	mem_cgroup_id_remove(memcg);
5364
	mem_cgroup_free(memcg);
5365
	return ERR_PTR(error);
5366 5367
}

5368
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5369
{
5370 5371
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5372 5373 5374 5375 5376 5377 5378 5379 5380 5381
	/*
	 * A memcg must be visible for memcg_expand_shrinker_maps()
	 * by the time the maps are allocated. So, we allocate maps
	 * here, when for_each_mem_cgroup() can't skip it.
	 */
	if (memcg_alloc_shrinker_maps(memcg)) {
		mem_cgroup_id_remove(memcg);
		return -ENOMEM;
	}

5382
	/* Online state pins memcg ID, memcg ID pins CSS */
5383
	refcount_set(&memcg->id.ref, 1);
5384
	css_get(css);
5385
	return 0;
B
Balbir Singh 已提交
5386 5387
}

5388
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5389
{
5390
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5391
	struct mem_cgroup_event *event, *tmp;
5392 5393 5394 5395 5396 5397

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
5398 5399
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5400 5401 5402
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
5403
	spin_unlock(&memcg->event_list_lock);
5404

R
Roman Gushchin 已提交
5405
	page_counter_set_min(&memcg->memory, 0);
5406
	page_counter_set_low(&memcg->memory, 0);
5407

5408
	memcg_offline_kmem(memcg);
5409
	wb_memcg_offline(memcg);
5410

5411 5412
	drain_all_stock(memcg);

5413
	mem_cgroup_id_put(memcg);
5414 5415
}

5416 5417 5418 5419 5420 5421 5422
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

5423
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
5424
{
5425
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5426
	int __maybe_unused i;
5427

5428 5429 5430 5431
#ifdef CONFIG_CGROUP_WRITEBACK
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
#endif
5432
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5433
		static_branch_dec(&memcg_sockets_enabled_key);
5434

5435
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
5436
		static_branch_dec(&memcg_sockets_enabled_key);
5437

5438 5439 5440
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
5441
	memcg_free_shrinker_maps(memcg);
5442
	memcg_free_kmem(memcg);
5443
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
5444 5445
}

5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5463 5464 5465 5466
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
R
Roman Gushchin 已提交
5467
	page_counter_set_min(&memcg->memory, 0);
5468
	page_counter_set_low(&memcg->memory, 0);
5469
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5470
	memcg->soft_limit = PAGE_COUNTER_MAX;
5471
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5472
	memcg_wb_domain_size_changed(memcg);
5473 5474
}

5475
#ifdef CONFIG_MMU
5476
/* Handlers for move charge at task migration. */
5477
static int mem_cgroup_do_precharge(unsigned long count)
5478
{
5479
	int ret;
5480

5481 5482
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5483
	if (!ret) {
5484 5485 5486
		mc.precharge += count;
		return ret;
	}
5487

5488
	/* Try charges one by one with reclaim, but do not retry */
5489
	while (count--) {
5490
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5491 5492
		if (ret)
			return ret;
5493
		mc.precharge++;
5494
		cond_resched();
5495
	}
5496
	return 0;
5497 5498 5499 5500
}

union mc_target {
	struct page	*page;
5501
	swp_entry_t	ent;
5502 5503 5504
};

enum mc_target_type {
5505
	MC_TARGET_NONE = 0,
5506
	MC_TARGET_PAGE,
5507
	MC_TARGET_SWAP,
5508
	MC_TARGET_DEVICE,
5509 5510
};

D
Daisuke Nishimura 已提交
5511 5512
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5513
{
5514
	struct page *page = vm_normal_page(vma, addr, ptent);
5515

D
Daisuke Nishimura 已提交
5516 5517 5518
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
5519
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5520
			return NULL;
5521 5522 5523 5524
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
5525 5526 5527 5528 5529 5530
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5531
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
5532
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5533
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
5534 5535 5536 5537
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

5538
	if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5539
		return NULL;
5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
		page = device_private_entry_to_page(ent);
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

5557 5558 5559
	if (non_swap_entry(ent))
		return NULL;

5560 5561 5562 5563
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5564
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5565
	entry->val = ent.val;
D
Daisuke Nishimura 已提交
5566 5567 5568

	return page;
}
5569 5570
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5571
			pte_t ptent, swp_entry_t *entry)
5572 5573 5574 5575
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5576

5577 5578 5579 5580 5581
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	if (!vma->vm_file) /* anonymous vma */
		return NULL;
5582
	if (!(mc.flags & MOVE_FILE))
5583 5584 5585
		return NULL;

	/* page is moved even if it's not RSS of this task(page-faulted). */
5586
	/* shmem/tmpfs may report page out on swap: account for that too. */
5587 5588
	return find_get_incore_page(vma->vm_file->f_mapping,
			linear_page_index(vma, addr));
5589 5590
}

5591 5592 5593
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
5594
 * @compound: charge the page as compound or small page
5595 5596 5597
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
5598
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5599 5600 5601 5602 5603
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
5604
				   bool compound,
5605 5606 5607
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
5608 5609
	struct lruvec *from_vec, *to_vec;
	struct pglist_data *pgdat;
5610
	unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5611 5612 5613 5614
	int ret;

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
5615
	VM_BUG_ON(compound && !PageTransHuge(page));
5616 5617

	/*
5618
	 * Prevent mem_cgroup_migrate() from looking at
5619
	 * page's memory cgroup of its source page while we change it.
5620
	 */
5621
	ret = -EBUSY;
5622 5623 5624 5625
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
5626
	if (page_memcg(page) != from)
5627 5628
		goto out_unlock;

5629
	pgdat = page_pgdat(page);
5630 5631
	from_vec = mem_cgroup_lruvec(from, pgdat);
	to_vec = mem_cgroup_lruvec(to, pgdat);
5632

5633
	lock_page_memcg(page);
5634

5635 5636 5637 5638
	if (PageAnon(page)) {
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5639 5640 5641 5642 5643 5644 5645
			if (PageTransHuge(page)) {
				__mod_lruvec_state(from_vec, NR_ANON_THPS,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_ANON_THPS,
						   nr_pages);
			}

5646 5647
		}
	} else {
5648 5649 5650 5651 5652 5653 5654 5655
		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);

		if (PageSwapBacked(page)) {
			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
		}

5656 5657 5658 5659
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
		}
5660

5661 5662
		if (PageDirty(page)) {
			struct address_space *mapping = page_mapping(page);
5663

5664
			if (mapping_can_writeback(mapping)) {
5665 5666 5667 5668 5669
				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
						   nr_pages);
			}
5670 5671 5672
		}
	}

5673
	if (PageWriteback(page)) {
5674 5675
		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5676 5677 5678
	}

	/*
5679 5680
	 * All state has been migrated, let's switch to the new memcg.
	 *
5681
	 * It is safe to change page's memcg here because the page
5682 5683
	 * is referenced, charged, isolated, and locked: we can't race
	 * with (un)charging, migration, LRU putback, or anything else
5684
	 * that would rely on a stable page's memory cgroup.
5685 5686
	 *
	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5687
	 * to save space. As soon as we switch page's memory cgroup to a
5688 5689
	 * new memcg that isn't locked, the above state can change
	 * concurrently again. Make sure we're truly done with it.
5690
	 */
5691
	smp_mb();
5692

5693 5694 5695
	css_get(&to->css);
	css_put(&from->css);

5696
	page->memcg_data = (unsigned long)to;
5697

5698
	__unlock_page_memcg(from);
5699 5700 5701 5702

	ret = 0;

	local_irq_disable();
5703
	mem_cgroup_charge_statistics(to, page, nr_pages);
5704
	memcg_check_events(to, page);
5705
	mem_cgroup_charge_statistics(from, page, -nr_pages);
5706 5707 5708 5709 5710 5711 5712 5713
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5729 5730
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
 *     (so ZONE_DEVICE page and thus not on the lru).
5731 5732 5733
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
5734 5735
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5736 5737 5738 5739
 *
 * Called with pte lock held.
 */

5740
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5741 5742 5743
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
5744
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5745 5746 5747 5748 5749
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
5750
		page = mc_handle_swap_pte(vma, ptent, &ent);
5751
	else if (pte_none(ptent))
5752
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5753 5754

	if (!page && !ent.val)
5755
		return ret;
5756 5757
	if (page) {
		/*
5758
		 * Do only loose check w/o serialization.
5759
		 * mem_cgroup_move_account() checks the page is valid or
5760
		 * not under LRU exclusion.
5761
		 */
5762
		if (page_memcg(page) == mc.from) {
5763
			ret = MC_TARGET_PAGE;
5764
			if (is_device_private_page(page))
5765
				ret = MC_TARGET_DEVICE;
5766 5767 5768 5769 5770 5771
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
5772 5773 5774 5775 5776
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
5777
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5778 5779 5780
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5781 5782 5783 5784
	}
	return ret;
}

5785 5786
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
5787 5788
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
5789 5790 5791 5792 5793 5794 5795 5796
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

5797 5798 5799 5800 5801
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
5802
	page = pmd_page(pmd);
5803
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5804
	if (!(mc.flags & MOVE_ANON))
5805
		return ret;
5806
	if (page_memcg(page) == mc.from) {
5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5823 5824 5825 5826
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
5827
	struct vm_area_struct *vma = walk->vma;
5828 5829 5830
	pte_t *pte;
	spinlock_t *ptl;

5831 5832
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5833 5834
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5835 5836
		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
		 * this might change.
5837
		 */
5838 5839
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5840
		spin_unlock(ptl);
5841
		return 0;
5842
	}
5843

5844 5845
	if (pmd_trans_unstable(pmd))
		return 0;
5846 5847
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5848
		if (get_mctgt_type(vma, addr, *pte, NULL))
5849 5850 5851 5852
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5853 5854 5855
	return 0;
}

5856 5857 5858 5859
static const struct mm_walk_ops precharge_walk_ops = {
	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
};

5860 5861 5862 5863
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

5864
	mmap_read_lock(mm);
5865
	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5866
	mmap_read_unlock(mm);
5867 5868 5869 5870 5871 5872 5873 5874 5875

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5876 5877 5878 5879 5880
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5881 5882
}

5883 5884
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5885
{
5886 5887 5888
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5889
	/* we must uncharge all the leftover precharges from mc.to */
5890
	if (mc.precharge) {
5891
		cancel_charge(mc.to, mc.precharge);
5892 5893 5894 5895 5896 5897 5898
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5899
		cancel_charge(mc.from, mc.moved_charge);
5900
		mc.moved_charge = 0;
5901
	}
5902 5903 5904
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5905
		if (!mem_cgroup_is_root(mc.from))
5906
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5907

5908 5909
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

5910
		/*
5911 5912
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5913
		 */
5914
		if (!mem_cgroup_is_root(mc.to))
5915 5916
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5917 5918
		mc.moved_swap = 0;
	}
5919 5920 5921 5922 5923 5924 5925
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
5926 5927
	struct mm_struct *mm = mc.mm;

5928 5929 5930 5931 5932 5933
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5934
	spin_lock(&mc.lock);
5935 5936
	mc.from = NULL;
	mc.to = NULL;
5937
	mc.mm = NULL;
5938
	spin_unlock(&mc.lock);
5939 5940

	mmput(mm);
5941 5942
}

5943
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5944
{
5945
	struct cgroup_subsys_state *css;
5946
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5947
	struct mem_cgroup *from;
5948
	struct task_struct *leader, *p;
5949
	struct mm_struct *mm;
5950
	unsigned long move_flags;
5951
	int ret = 0;
5952

5953 5954
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5955 5956
		return 0;

5957 5958 5959 5960 5961 5962 5963
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
5964
	cgroup_taskset_for_each_leader(leader, css, tset) {
5965 5966
		WARN_ON_ONCE(p);
		p = leader;
5967
		memcg = mem_cgroup_from_css(css);
5968 5969 5970 5971
	}
	if (!p)
		return 0;

5972 5973 5974 5975 5976 5977 5978 5979 5980
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
5997
		mc.mm = mm;
5998 5999 6000 6001 6002 6003 6004 6005 6006
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
6007 6008
	} else {
		mmput(mm);
6009 6010 6011 6012
	}
	return ret;
}

6013
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6014
{
6015 6016
	if (mc.to)
		mem_cgroup_clear_mc();
6017 6018
}

6019 6020 6021
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6022
{
6023
	int ret = 0;
6024
	struct vm_area_struct *vma = walk->vma;
6025 6026
	pte_t *pte;
	spinlock_t *ptl;
6027 6028 6029
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
6030

6031 6032
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
6033
		if (mc.precharge < HPAGE_PMD_NR) {
6034
			spin_unlock(ptl);
6035 6036 6037 6038 6039 6040
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
6041
				if (!mem_cgroup_move_account(page, true,
6042
							     mc.from, mc.to)) {
6043 6044 6045 6046 6047 6048
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
6049 6050 6051 6052 6053 6054 6055 6056
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
6057
		}
6058
		spin_unlock(ptl);
6059
		return 0;
6060 6061
	}

6062 6063
	if (pmd_trans_unstable(pmd))
		return 0;
6064 6065 6066 6067
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6068
		bool device = false;
6069
		swp_entry_t ent;
6070 6071 6072 6073

		if (!mc.precharge)
			break;

6074
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6075 6076
		case MC_TARGET_DEVICE:
			device = true;
J
Joe Perches 已提交
6077
			fallthrough;
6078 6079
		case MC_TARGET_PAGE:
			page = target.page;
6080 6081 6082 6083 6084 6085 6086 6087
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
6088
			if (!device && isolate_lru_page(page))
6089
				goto put;
6090 6091
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
6092
				mc.precharge--;
6093 6094
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6095
			}
6096 6097
			if (!device)
				putback_lru_page(page);
6098
put:			/* get_mctgt_type() gets the page */
6099 6100
			put_page(page);
			break;
6101 6102
		case MC_TARGET_SWAP:
			ent = target.ent;
6103
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6104
				mc.precharge--;
6105 6106
				mem_cgroup_id_get_many(mc.to, 1);
				/* we fixup other refcnts and charges later. */
6107 6108
				mc.moved_swap++;
			}
6109
			break;
6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6124
		ret = mem_cgroup_do_precharge(1);
6125 6126 6127 6128 6129 6130 6131
		if (!ret)
			goto retry;
	}

	return ret;
}

6132 6133 6134 6135
static const struct mm_walk_ops charge_walk_ops = {
	.pmd_entry	= mem_cgroup_move_charge_pte_range,
};

6136
static void mem_cgroup_move_charge(void)
6137 6138
{
	lru_add_drain_all();
6139
	/*
6140 6141 6142
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
6143 6144 6145
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
6146
retry:
6147
	if (unlikely(!mmap_read_trylock(mc.mm))) {
6148
		/*
6149
		 * Someone who are holding the mmap_lock might be waiting in
6150 6151 6152 6153 6154 6155 6156 6157 6158
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6159 6160 6161 6162
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
6163 6164
	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
			NULL);
6165

6166
	mmap_read_unlock(mc.mm);
6167
	atomic_dec(&mc.from->moving_account);
6168 6169
}

6170
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
6171
{
6172 6173
	if (mc.to) {
		mem_cgroup_move_charge();
6174
		mem_cgroup_clear_mc();
6175
	}
B
Balbir Singh 已提交
6176
}
6177
#else	/* !CONFIG_MMU */
6178
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6179 6180 6181
{
	return 0;
}
6182
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6183 6184
{
}
6185
static void mem_cgroup_move_task(void)
6186 6187 6188
{
}
#endif
B
Balbir Singh 已提交
6189

6190 6191 6192 6193 6194 6195 6196 6197 6198 6199
static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
{
	if (value == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);

	return 0;
}

6200 6201 6202
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
6203 6204 6205
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6206 6207
}

R
Roman Gushchin 已提交
6208 6209
static int memory_min_show(struct seq_file *m, void *v)
{
6210 6211
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
R
Roman Gushchin 已提交
6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

6231 6232
static int memory_low_show(struct seq_file *m, void *v)
{
6233 6234
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6235 6236 6237 6238 6239 6240 6241 6242 6243 6244
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
6245
	err = page_counter_memparse(buf, "max", &low);
6246 6247 6248
	if (err)
		return err;

6249
	page_counter_set_low(&memcg->memory, low);
6250 6251 6252 6253 6254 6255

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
6256 6257
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6258 6259 6260 6261 6262 6263
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6264
	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6265
	bool drained = false;
6266 6267 6268 6269
	unsigned long high;
	int err;

	buf = strstrip(buf);
6270
	err = page_counter_memparse(buf, "max", &high);
6271 6272 6273
	if (err)
		return err;

6274 6275
	page_counter_set_high(&memcg->memory, high);

6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297
	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);
		unsigned long reclaimed;

		if (nr_pages <= high)
			break;

		if (signal_pending(current))
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
							 GFP_KERNEL, true);

		if (!reclaimed && !nr_retries--)
			break;
	}
6298

6299
	memcg_wb_domain_size_changed(memcg);
6300 6301 6302 6303 6304
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
6305 6306
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6307 6308 6309 6310 6311 6312
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6313
	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6314
	bool drained = false;
6315 6316 6317 6318
	unsigned long max;
	int err;

	buf = strstrip(buf);
6319
	err = page_counter_memparse(buf, "max", &max);
6320 6321 6322
	if (err)
		return err;

6323
	xchg(&memcg->memory.max, max);
6324 6325 6326 6327 6328 6329 6330

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

6331
		if (signal_pending(current))
6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

6347
		memcg_memory_event(memcg, MEMCG_OOM);
6348 6349 6350
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
6351

6352
	memcg_wb_domain_size_changed(memcg);
6353 6354 6355
	return nbytes;
}

6356 6357 6358 6359 6360 6361 6362 6363 6364 6365
static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
{
	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&events[MEMCG_OOM_KILL]));
}

6366 6367
static int memory_events_show(struct seq_file *m, void *v)
{
6368
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6369

6370 6371 6372 6373 6374 6375 6376
	__memory_events_show(m, memcg->memory_events);
	return 0;
}

static int memory_events_local_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6377

6378
	__memory_events_show(m, memcg->memory_events_local);
6379 6380 6381
	return 0;
}

6382 6383
static int memory_stat_show(struct seq_file *m, void *v)
{
6384
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6385
	char *buf;
6386

6387 6388 6389 6390 6391
	buf = memory_stat_format(memcg);
	if (!buf)
		return -ENOMEM;
	seq_puts(m, buf);
	kfree(buf);
6392 6393 6394
	return 0;
}

6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423
#ifdef CONFIG_NUMA
static int memory_numa_stat_show(struct seq_file *m, void *v)
{
	int i;
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);

	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
		int nid;

		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
			continue;

		seq_printf(m, "%s", memory_stats[i].name);
		for_each_node_state(nid, N_MEMORY) {
			u64 size;
			struct lruvec *lruvec;

			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
			size = lruvec_page_state(lruvec, memory_stats[i].idx);
			size *= memory_stats[i].ratio;
			seq_printf(m, " N%d=%llu", nid, size);
		}
		seq_putc(m, '\n');
	}

	return 0;
}
#endif

6424 6425
static int memory_oom_group_show(struct seq_file *m, void *v)
{
6426
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454

	seq_printf(m, "%d\n", memcg->oom_group);

	return 0;
}

static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
				      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	int ret, oom_group;

	buf = strstrip(buf);
	if (!buf)
		return -EINVAL;

	ret = kstrtoint(buf, 0, &oom_group);
	if (ret)
		return ret;

	if (oom_group != 0 && oom_group != 1)
		return -EINVAL;

	memcg->oom_group = oom_group;

	return nbytes;
}

6455 6456 6457
static struct cftype memory_files[] = {
	{
		.name = "current",
6458
		.flags = CFTYPE_NOT_ON_ROOT,
6459 6460
		.read_u64 = memory_current_read,
	},
R
Roman Gushchin 已提交
6461 6462 6463 6464 6465 6466
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
6488
		.file_offset = offsetof(struct mem_cgroup, events_file),
6489 6490
		.seq_show = memory_events_show,
	},
6491 6492 6493 6494 6495 6496
	{
		.name = "events.local",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, events_local_file),
		.seq_show = memory_events_local_show,
	},
6497 6498 6499 6500
	{
		.name = "stat",
		.seq_show = memory_stat_show,
	},
6501 6502 6503 6504 6505 6506
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.seq_show = memory_numa_stat_show,
	},
#endif
6507 6508 6509 6510 6511 6512
	{
		.name = "oom.group",
		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
		.seq_show = memory_oom_group_show,
		.write = memory_oom_group_write,
	},
6513 6514 6515
	{ }	/* terminate */
};

6516
struct cgroup_subsys memory_cgrp_subsys = {
6517
	.css_alloc = mem_cgroup_css_alloc,
6518
	.css_online = mem_cgroup_css_online,
6519
	.css_offline = mem_cgroup_css_offline,
6520
	.css_released = mem_cgroup_css_released,
6521
	.css_free = mem_cgroup_css_free,
6522
	.css_reset = mem_cgroup_css_reset,
6523 6524
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
6525
	.post_attach = mem_cgroup_move_task,
6526 6527
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
6528
	.early_init = 0,
B
Balbir Singh 已提交
6529
};
6530

6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560
/*
 * This function calculates an individual cgroup's effective
 * protection which is derived from its own memory.min/low, its
 * parent's and siblings' settings, as well as the actual memory
 * distribution in the tree.
 *
 * The following rules apply to the effective protection values:
 *
 * 1. At the first level of reclaim, effective protection is equal to
 *    the declared protection in memory.min and memory.low.
 *
 * 2. To enable safe delegation of the protection configuration, at
 *    subsequent levels the effective protection is capped to the
 *    parent's effective protection.
 *
 * 3. To make complex and dynamic subtrees easier to configure, the
 *    user is allowed to overcommit the declared protection at a given
 *    level. If that is the case, the parent's effective protection is
 *    distributed to the children in proportion to how much protection
 *    they have declared and how much of it they are utilizing.
 *
 *    This makes distribution proportional, but also work-conserving:
 *    if one cgroup claims much more protection than it uses memory,
 *    the unused remainder is available to its siblings.
 *
 * 4. Conversely, when the declared protection is undercommitted at a
 *    given level, the distribution of the larger parental protection
 *    budget is NOT proportional. A cgroup's protection from a sibling
 *    is capped to its own memory.min/low setting.
 *
6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572
 * 5. However, to allow protecting recursive subtrees from each other
 *    without having to declare each individual cgroup's fixed share
 *    of the ancestor's claim to protection, any unutilized -
 *    "floating" - protection from up the tree is distributed in
 *    proportion to each cgroup's *usage*. This makes the protection
 *    neutral wrt sibling cgroups and lets them compete freely over
 *    the shared parental protection budget, but it protects the
 *    subtree as a whole from neighboring subtrees.
 *
 * Note that 4. and 5. are not in conflict: 4. is about protecting
 * against immediate siblings whereas 5. is about protecting against
 * neighboring subtrees.
6573 6574
 */
static unsigned long effective_protection(unsigned long usage,
6575
					  unsigned long parent_usage,
6576 6577 6578 6579 6580
					  unsigned long setting,
					  unsigned long parent_effective,
					  unsigned long siblings_protected)
{
	unsigned long protected;
6581
	unsigned long ep;
6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611

	protected = min(usage, setting);
	/*
	 * If all cgroups at this level combined claim and use more
	 * protection then what the parent affords them, distribute
	 * shares in proportion to utilization.
	 *
	 * We are using actual utilization rather than the statically
	 * claimed protection in order to be work-conserving: claimed
	 * but unused protection is available to siblings that would
	 * otherwise get a smaller chunk than what they claimed.
	 */
	if (siblings_protected > parent_effective)
		return protected * parent_effective / siblings_protected;

	/*
	 * Ok, utilized protection of all children is within what the
	 * parent affords them, so we know whatever this child claims
	 * and utilizes is effectively protected.
	 *
	 * If there is unprotected usage beyond this value, reclaim
	 * will apply pressure in proportion to that amount.
	 *
	 * If there is unutilized protection, the cgroup will be fully
	 * shielded from reclaim, but we do return a smaller value for
	 * protection than what the group could enjoy in theory. This
	 * is okay. With the overcommit distribution above, effective
	 * protection is always dependent on how memory is actually
	 * consumed among the siblings anyway.
	 */
6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624
	ep = protected;

	/*
	 * If the children aren't claiming (all of) the protection
	 * afforded to them by the parent, distribute the remainder in
	 * proportion to the (unprotected) memory of each cgroup. That
	 * way, cgroups that aren't explicitly prioritized wrt each
	 * other compete freely over the allowance, but they are
	 * collectively protected from neighboring trees.
	 *
	 * We're using unprotected memory for the weight so that if
	 * some cgroups DO claim explicit protection, we don't protect
	 * the same bytes twice.
6625 6626 6627 6628
	 *
	 * Check both usage and parent_usage against the respective
	 * protected values. One should imply the other, but they
	 * aren't read atomically - make sure the division is sane.
6629 6630 6631
	 */
	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
		return ep;
6632 6633 6634
	if (parent_effective > siblings_protected &&
	    parent_usage > siblings_protected &&
	    usage > protected) {
6635 6636 6637 6638 6639 6640 6641 6642 6643 6644
		unsigned long unclaimed;

		unclaimed = parent_effective - siblings_protected;
		unclaimed *= usage - protected;
		unclaimed /= parent_usage - siblings_protected;

		ep += unclaimed;
	}

	return ep;
6645 6646
}

6647
/**
R
Roman Gushchin 已提交
6648
 * mem_cgroup_protected - check if memory consumption is in the normal range
6649
 * @root: the top ancestor of the sub-tree being checked
6650 6651
 * @memcg: the memory cgroup to check
 *
6652 6653
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
6654
 */
6655 6656
void mem_cgroup_calculate_protection(struct mem_cgroup *root,
				     struct mem_cgroup *memcg)
6657
{
6658
	unsigned long usage, parent_usage;
6659 6660
	struct mem_cgroup *parent;

6661
	if (mem_cgroup_disabled())
6662
		return;
6663

6664 6665
	if (!root)
		root = root_mem_cgroup;
6666 6667 6668 6669 6670 6671 6672 6673

	/*
	 * Effective values of the reclaim targets are ignored so they
	 * can be stale. Have a look at mem_cgroup_protection for more
	 * details.
	 * TODO: calculation should be more robust so that we do not need
	 * that special casing.
	 */
6674
	if (memcg == root)
6675
		return;
6676

6677
	usage = page_counter_read(&memcg->memory);
R
Roman Gushchin 已提交
6678
	if (!usage)
6679
		return;
R
Roman Gushchin 已提交
6680 6681

	parent = parent_mem_cgroup(memcg);
6682 6683
	/* No parent means a non-hierarchical mode on v1 memcg */
	if (!parent)
6684
		return;
6685

6686
	if (parent == root) {
6687
		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6688
		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6689
		return;
R
Roman Gushchin 已提交
6690 6691
	}

6692 6693
	parent_usage = page_counter_read(&parent->memory);

6694
	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6695 6696
			READ_ONCE(memcg->memory.min),
			READ_ONCE(parent->memory.emin),
6697
			atomic_long_read(&parent->memory.children_min_usage)));
6698

6699
	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6700 6701
			READ_ONCE(memcg->memory.low),
			READ_ONCE(parent->memory.elow),
6702
			atomic_long_read(&parent->memory.children_low_usage)));
6703 6704
}

6705
/**
6706
 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6707 6708 6709 6710 6711 6712 6713
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
6714
 * Returns 0 on success. Otherwise, an error code is returned.
6715
 */
6716
int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6717
{
6718
	unsigned int nr_pages = thp_nr_pages(page);
6719 6720 6721 6722 6723 6724 6725
	struct mem_cgroup *memcg = NULL;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
6726 6727 6728
		swp_entry_t ent = { .val = page_private(page), };
		unsigned short id;

6729 6730 6731
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
6732 6733 6734
		 * already charged pages, too.  page and memcg binding is
		 * protected by the page lock, which serializes swap cache
		 * removal, which in turn serializes uncharging.
6735
		 */
6736
		VM_BUG_ON_PAGE(!PageLocked(page), page);
6737
		if (page_memcg(compound_head(page)))
6738
			goto out;
6739

6740 6741 6742 6743 6744 6745
		id = lookup_swap_cgroup_id(ent);
		rcu_read_lock();
		memcg = mem_cgroup_from_id(id);
		if (memcg && !css_tryget_online(&memcg->css))
			memcg = NULL;
		rcu_read_unlock();
6746 6747 6748 6749 6750 6751
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);
6752 6753
	if (ret)
		goto out_put;
6754

6755
	css_get(&memcg->css);
6756
	commit_charge(page, memcg);
6757 6758

	local_irq_disable();
6759
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6760 6761
	memcg_check_events(memcg, page);
	local_irq_enable();
6762

6763
	if (PageSwapCache(page)) {
6764 6765 6766 6767 6768 6769
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
6770
		mem_cgroup_uncharge_swap(entry, nr_pages);
6771 6772
	}

6773 6774 6775 6776
out_put:
	css_put(&memcg->css);
out:
	return ret;
6777 6778
}

6779 6780
struct uncharge_gather {
	struct mem_cgroup *memcg;
6781
	unsigned long nr_pages;
6782 6783 6784 6785 6786 6787
	unsigned long pgpgout;
	unsigned long nr_kmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6788
{
6789 6790 6791 6792 6793
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
6794 6795
	unsigned long flags;

6796
	if (!mem_cgroup_is_root(ug->memcg)) {
6797
		page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6798
		if (do_memsw_account())
6799
			page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6800 6801 6802
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
6803
	}
6804 6805

	local_irq_save(flags);
6806
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6807
	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6808
	memcg_check_events(ug->memcg, ug->dummy_page);
6809
	local_irq_restore(flags);
6810 6811 6812

	/* drop reference from uncharge_page */
	css_put(&ug->memcg->css);
6813 6814 6815 6816
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
6817 6818
	unsigned long nr_pages;

6819 6820
	VM_BUG_ON_PAGE(PageLRU(page), page);

6821
	if (!page_memcg(page))
6822 6823 6824 6825
		return;

	/*
	 * Nobody should be changing or seriously looking at
6826
	 * page_memcg(page) at this point, we have fully
6827 6828 6829
	 * exclusive access to the page.
	 */

6830
	if (ug->memcg != page_memcg(page)) {
6831 6832 6833 6834
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
6835
		ug->memcg = page_memcg(page);
6836 6837 6838

		/* pairs with css_put in uncharge_batch */
		css_get(&ug->memcg->css);
6839 6840
	}

6841 6842
	nr_pages = compound_nr(page);
	ug->nr_pages += nr_pages;
6843

6844
	if (PageMemcgKmem(page))
6845
		ug->nr_kmem += nr_pages;
6846 6847
	else
		ug->pgpgout++;
6848 6849

	ug->dummy_page = page;
6850
	page->memcg_data = 0;
6851
	css_put(&ug->memcg->css);
6852 6853 6854 6855
}

static void uncharge_list(struct list_head *page_list)
{
6856
	struct uncharge_gather ug;
6857
	struct list_head *next;
6858 6859

	uncharge_gather_clear(&ug);
6860

6861 6862 6863 6864
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
6865 6866
	next = page_list->next;
	do {
6867 6868
		struct page *page;

6869 6870 6871
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

6872
		uncharge_page(page, &ug);
6873 6874
	} while (next != page_list);

6875 6876
	if (ug.memcg)
		uncharge_batch(&ug);
6877 6878
}

6879 6880 6881 6882
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
6883
 * Uncharge a page previously charged with mem_cgroup_charge().
6884 6885 6886
 */
void mem_cgroup_uncharge(struct page *page)
{
6887 6888
	struct uncharge_gather ug;

6889 6890 6891
	if (mem_cgroup_disabled())
		return;

6892
	/* Don't touch page->lru of any random page, pre-check: */
6893
	if (!page_memcg(page))
6894 6895
		return;

6896 6897 6898
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
6899
}
6900

6901 6902 6903 6904 6905
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
6906
 * mem_cgroup_charge().
6907 6908 6909 6910 6911
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
6912

6913 6914
	if (!list_empty(page_list))
		uncharge_list(page_list);
6915 6916 6917
}

/**
6918 6919 6920
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
6921
 *
6922 6923
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
6924 6925 6926
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
6927
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6928
{
6929
	struct mem_cgroup *memcg;
6930
	unsigned int nr_pages;
6931
	unsigned long flags;
6932 6933 6934 6935

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6936 6937
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6938 6939 6940 6941 6942

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
6943
	if (page_memcg(newpage))
6944 6945
		return;

6946
	memcg = page_memcg(oldpage);
6947
	VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
6948
	if (!memcg)
6949 6950
		return;

6951
	/* Force-charge the new page. The old one will be freed soon */
6952
	nr_pages = thp_nr_pages(newpage);
6953 6954 6955 6956

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
6957

6958
	css_get(&memcg->css);
6959
	commit_charge(newpage, memcg);
6960

6961
	local_irq_save(flags);
6962
	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6963
	memcg_check_events(memcg, newpage);
6964
	local_irq_restore(flags);
6965 6966
}

6967
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6968 6969
EXPORT_SYMBOL(memcg_sockets_enabled_key);

6970
void mem_cgroup_sk_alloc(struct sock *sk)
6971 6972 6973
{
	struct mem_cgroup *memcg;

6974 6975 6976
	if (!mem_cgroup_sockets_enabled)
		return;

6977 6978 6979 6980
	/* Do not associate the sock with unrelated interrupted task's memcg. */
	if (in_interrupt())
		return;

6981 6982
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
6983 6984
	if (memcg == root_mem_cgroup)
		goto out;
6985
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6986
		goto out;
S
Shakeel Butt 已提交
6987
	if (css_tryget(&memcg->css))
6988
		sk->sk_memcg = memcg;
6989
out:
6990 6991 6992
	rcu_read_unlock();
}

6993
void mem_cgroup_sk_free(struct sock *sk)
6994
{
6995 6996
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
7009
	gfp_t gfp_mask = GFP_KERNEL;
7010

7011
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7012
		struct page_counter *fail;
7013

7014 7015
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
7016 7017
			return true;
		}
7018 7019
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
7020
		return false;
7021
	}
7022

7023 7024 7025 7026
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

7027
	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7028

7029 7030 7031 7032
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7033 7034 7035 7036 7037
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
7038 7039
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
7040 7041 7042
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
7043
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7044
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7045 7046
		return;
	}
7047

7048
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7049

7050
	refill_stock(memcg, nr_pages);
7051 7052
}

7053 7054 7055 7056 7057 7058 7059 7060 7061
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
7062 7063
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
7064 7065 7066 7067
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
7068

7069
/*
7070 7071
 * subsys_initcall() for memory controller.
 *
7072 7073 7074 7075
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
7076 7077 7078
 */
static int __init mem_cgroup_init(void)
{
7079 7080
	int cpu, node;

7081 7082
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

7094
		rtpn->rb_root = RB_ROOT;
7095
		rtpn->rb_rightmost = NULL;
7096
		spin_lock_init(&rtpn->lock);
7097 7098 7099
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

7100 7101 7102
	return 0;
}
subsys_initcall(mem_cgroup_init);
7103 7104

#ifdef CONFIG_MEMCG_SWAP
7105 7106
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
7107
	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

7123 7124 7125 7126 7127 7128 7129 7130 7131
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
7132
	struct mem_cgroup *memcg, *swap_memcg;
7133
	unsigned int nr_entries;
7134 7135 7136 7137 7138
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

7139 7140 7141
	if (mem_cgroup_disabled())
		return;

7142
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7143 7144
		return;

7145
	memcg = page_memcg(page);
7146

7147
	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7148 7149 7150
	if (!memcg)
		return;

7151 7152 7153 7154 7155 7156
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
7157
	nr_entries = thp_nr_pages(page);
7158 7159 7160 7161 7162
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
7163
	VM_BUG_ON_PAGE(oldid, page);
7164
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7165

7166
	page->memcg_data = 0;
7167 7168

	if (!mem_cgroup_is_root(memcg))
7169
		page_counter_uncharge(&memcg->memory, nr_entries);
7170

7171
	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7172
		if (!mem_cgroup_is_root(swap_memcg))
7173 7174
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
7175 7176
	}

7177 7178
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
7179
	 * i_pages lock which is taken with interrupts-off. It is
7180
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
7181
	 * only synchronisation we have for updating the per-CPU variables.
7182 7183
	 */
	VM_BUG_ON(!irqs_disabled());
7184
	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7185
	memcg_check_events(memcg, page);
7186

7187
	css_put(&memcg->css);
7188 7189
}

7190 7191
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
7192 7193 7194
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
7195
 * Try to charge @page's memcg for the swap space at @entry.
7196 7197 7198 7199 7200
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
7201
	unsigned int nr_pages = thp_nr_pages(page);
7202
	struct page_counter *counter;
7203
	struct mem_cgroup *memcg;
7204 7205
	unsigned short oldid;

7206 7207 7208
	if (mem_cgroup_disabled())
		return 0;

7209
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7210 7211
		return 0;

7212
	memcg = page_memcg(page);
7213

7214
	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7215 7216 7217
	if (!memcg)
		return 0;

7218 7219
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7220
		return 0;
7221
	}
7222

7223 7224
	memcg = mem_cgroup_id_get_online(memcg);

7225
	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7226
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7227 7228
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7229
		mem_cgroup_id_put(memcg);
7230
		return -ENOMEM;
7231
	}
7232

7233 7234 7235 7236
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7237
	VM_BUG_ON_PAGE(oldid, page);
7238
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7239 7240 7241 7242

	return 0;
}

7243
/**
7244
 * mem_cgroup_uncharge_swap - uncharge swap space
7245
 * @entry: swap entry to uncharge
7246
 * @nr_pages: the amount of swap space to uncharge
7247
 */
7248
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7249 7250 7251 7252
{
	struct mem_cgroup *memcg;
	unsigned short id;

7253
	id = swap_cgroup_record(entry, 0, nr_pages);
7254
	rcu_read_lock();
7255
	memcg = mem_cgroup_from_id(id);
7256
	if (memcg) {
7257
		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7258
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7259
				page_counter_uncharge(&memcg->swap, nr_pages);
7260
			else
7261
				page_counter_uncharge(&memcg->memsw, nr_pages);
7262
		}
7263
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7264
		mem_cgroup_id_put_many(memcg, nr_pages);
7265 7266 7267 7268
	}
	rcu_read_unlock();
}

7269 7270 7271 7272
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

7273
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7274 7275 7276
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
7277
				      READ_ONCE(memcg->swap.max) -
7278 7279 7280 7281
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

7282 7283 7284 7285 7286 7287 7288 7289
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
7290
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7291 7292
		return false;

7293
	memcg = page_memcg(page);
7294 7295 7296
	if (!memcg)
		return false;

7297 7298 7299 7300 7301
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		unsigned long usage = page_counter_read(&memcg->swap);

		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
		    usage * 2 >= READ_ONCE(memcg->swap.max))
7302
			return true;
7303
	}
7304 7305 7306 7307

	return false;
}

7308
static int __init setup_swap_account(char *s)
7309 7310
{
	if (!strcmp(s, "1"))
7311
		cgroup_memory_noswap = false;
7312
	else if (!strcmp(s, "0"))
7313
		cgroup_memory_noswap = true;
7314 7315
	return 1;
}
7316
__setup("swapaccount=", setup_swap_account);
7317

7318 7319 7320 7321 7322 7323 7324 7325
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348
static int swap_high_show(struct seq_file *m, void *v)
{
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
}

static ssize_t swap_high_write(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &high);
	if (err)
		return err;

	page_counter_set_high(&memcg->swap, high);

	return nbytes;
}

7349 7350
static int swap_max_show(struct seq_file *m, void *v)
{
7351 7352
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

7367
	xchg(&memcg->swap.max, max);
7368 7369 7370 7371

	return nbytes;
}

7372 7373
static int swap_events_show(struct seq_file *m, void *v)
{
7374
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7375

7376 7377
	seq_printf(m, "high %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7378 7379 7380 7381 7382 7383 7384 7385
	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

7386 7387 7388 7389 7390 7391
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
7392 7393 7394 7395 7396 7397
	{
		.name = "swap.high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_high_show,
		.write = swap_high_write,
	},
7398 7399 7400 7401 7402 7403
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
7404 7405 7406 7407 7408 7409
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
7410 7411 7412
	{ }	/* terminate */
};

7413
static struct cftype memsw_files[] = {
7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

7440 7441 7442 7443 7444 7445 7446
/*
 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
 * boot parameter. This may result in premature OOPS inside
 * mem_cgroup_get_nr_swap_pages() function in corner cases.
 */
7447 7448
static int __init mem_cgroup_swap_init(void)
{
7449 7450 7451 7452 7453
	/* No memory control -> no swap control */
	if (mem_cgroup_disabled())
		cgroup_memory_noswap = true;

	if (cgroup_memory_noswap)
7454 7455 7456 7457 7458
		return 0;

	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));

7459 7460
	return 0;
}
7461
core_initcall(mem_cgroup_swap_init);
7462 7463

#endif /* CONFIG_MEMCG_SWAP */