memcontrol.c 149.5 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include <linux/pagemap.h>
40
#include <linux/smp.h>
41
#include <linux/page-flags.h>
42
#include <linux/backing-dev.h>
43 44
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
45
#include <linux/limits.h>
46
#include <linux/export.h>
47
#include <linux/mutex.h>
48
#include <linux/rbtree.h>
49
#include <linux/slab.h>
50
#include <linux/swap.h>
51
#include <linux/swapops.h>
52
#include <linux/spinlock.h>
53
#include <linux/eventfd.h>
54
#include <linux/poll.h>
55
#include <linux/sort.h>
56
#include <linux/fs.h>
57
#include <linux/seq_file.h>
58
#include <linux/vmpressure.h>
59
#include <linux/mm_inline.h>
60
#include <linux/swap_cgroup.h>
61
#include <linux/cpu.h>
62
#include <linux/oom.h>
63
#include <linux/lockdep.h>
64
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
65
#include "internal.h"
G
Glauber Costa 已提交
66
#include <net/sock.h>
M
Michal Hocko 已提交
67
#include <net/ip.h>
G
Glauber Costa 已提交
68
#include <net/tcp_memcontrol.h>
69
#include "slab.h"
B
Balbir Singh 已提交
70

71 72
#include <asm/uaccess.h>

73 74
#include <trace/events/vmscan.h>

75 76
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
77

78
#define MEM_CGROUP_RECLAIM_RETRIES	5
79
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
80

81
/* Whether the swap controller is active */
A
Andrew Morton 已提交
82
#ifdef CONFIG_MEMCG_SWAP
83 84
int do_swap_account __read_mostly;
#else
85
#define do_swap_account		0
86 87
#endif

88 89 90
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
91
	"rss_huge",
92
	"mapped_file",
93
	"writeback",
94 95 96 97 98 99 100 101 102 103
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

104 105 106 107 108 109 110 111
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

112 113 114 115 116 117 118 119
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
120
	MEM_CGROUP_TARGET_SOFTLIMIT,
121
	MEM_CGROUP_TARGET_NUMAINFO,
122 123
	MEM_CGROUP_NTARGETS,
};
124 125 126
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
127

128
struct mem_cgroup_stat_cpu {
129
	long count[MEM_CGROUP_STAT_NSTATS];
130
	unsigned long events[MEMCG_NR_EVENTS];
131
	unsigned long nr_page_events;
132
	unsigned long targets[MEM_CGROUP_NTARGETS];
133 134
};

135 136
struct reclaim_iter {
	struct mem_cgroup *position;
137 138 139 140
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

141 142 143 144
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
145
	struct lruvec		lruvec;
146
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
147

148
	struct reclaim_iter	iter[DEF_PRIORITY + 1];
149

150
	struct rb_node		tree_node;	/* RB tree node */
151
	unsigned long		usage_in_excess;/* Set to the value by which */
152 153
						/* the soft limit is exceeded*/
	bool			on_tree;
154
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
155
						/* use container_of	   */
156 157 158 159 160 161
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

182 183
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
184
	unsigned long threshold;
185 186
};

K
KAMEZAWA Hiroyuki 已提交
187
/* For threshold */
188
struct mem_cgroup_threshold_ary {
189
	/* An array index points to threshold just below or equal to usage. */
190
	int current_threshold;
191 192 193 194 195
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
196 197 198 199 200 201 202 203 204 205 206 207

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
208 209 210 211 212
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
213

214 215 216
/*
 * cgroup_event represents events which userspace want to receive.
 */
217
struct mem_cgroup_event {
218
	/*
219
	 * memcg which the event belongs to.
220
	 */
221
	struct mem_cgroup *memcg;
222 223 224 225 226 227 228 229
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
230 231 232 233 234
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
235
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
236
			      struct eventfd_ctx *eventfd, const char *args);
237 238 239 240 241
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
242
	void (*unregister_event)(struct mem_cgroup *memcg,
243
				 struct eventfd_ctx *eventfd);
244 245 246 247 248 249 250 251 252 253
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

254 255
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
256

B
Balbir Singh 已提交
257 258 259 260 261 262 263 264
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
265 266 267 268 269 270

	/* Accounted resources */
	struct page_counter memory;
	struct page_counter memsw;
	struct page_counter kmem;

271 272 273 274
	/* Normal memory consumption range */
	unsigned long low;
	unsigned long high;

275
	unsigned long soft_limit;
276

277 278 279
	/* vmpressure notifications */
	struct vmpressure vmpressure;

280 281 282
	/* css_online() has been completed */
	int initialized;

283 284 285 286
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
287 288 289

	bool		oom_lock;
	atomic_t	under_oom;
290
	atomic_t	oom_wakeups;
291

292
	int	swappiness;
293 294
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
295

296 297 298 299
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
300
	struct mem_cgroup_thresholds thresholds;
301

302
	/* thresholds for mem+swap usage. RCU-protected */
303
	struct mem_cgroup_thresholds memsw_thresholds;
304

K
KAMEZAWA Hiroyuki 已提交
305 306
	/* For oom notifier event fd */
	struct list_head oom_notify;
307

308 309 310 311
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
312
	unsigned long move_charge_at_immigrate;
313 314 315
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
316
	atomic_t		moving_account;
317
	/* taken only while moving_account > 0 */
318 319 320
	spinlock_t		move_lock;
	struct task_struct	*move_lock_task;
	unsigned long		move_lock_flags;
321
	/*
322
	 * percpu counter.
323
	 */
324
	struct mem_cgroup_stat_cpu __percpu *stat;
325 326 327 328 329 330
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
331

M
Michal Hocko 已提交
332
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
333
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
334
#endif
335
#if defined(CONFIG_MEMCG_KMEM)
336
        /* Index in the kmem_cache->memcg_params.memcg_caches array */
337
	int kmemcg_id;
338
	bool kmem_acct_activated;
339
	bool kmem_acct_active;
340
#endif
341 342 343 344 345 346 347

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
348

349 350 351 352
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

353 354
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
355 356
};

357
#ifdef CONFIG_MEMCG_KMEM
358
bool memcg_kmem_is_active(struct mem_cgroup *memcg)
359
{
360
	return memcg->kmem_acct_active;
361
}
362 363
#endif

364 365
/* Stuffs for move charges at task migration. */
/*
366
 * Types of charges to be moved.
367
 */
368 369 370
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
371

372 373
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
374
	spinlock_t	  lock; /* for from, to */
375 376
	struct mem_cgroup *from;
	struct mem_cgroup *to;
377
	unsigned long flags;
378
	unsigned long precharge;
379
	unsigned long moved_charge;
380
	unsigned long moved_swap;
381 382 383
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
384
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
385 386
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
387

388 389 390 391
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
392
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
393
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
394

395 396
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
397
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
398
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
399
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
400 401 402
	NR_CHARGE_TYPE,
};

403
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
404 405 406 407
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
408
	_KMEM,
G
Glauber Costa 已提交
409 410
};

411 412
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
413
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
414 415
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
416

417 418 419 420 421 422 423
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

424 425
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
426
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
427 428
}

429 430 431 432 433 434 435 436 437 438 439 440 441
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

442 443 444 445 446
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

447 448 449 450 451 452
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
453 454
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
455
	return memcg->css.id;
L
Li Zefan 已提交
456 457
}

458 459 460 461 462 463
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
 */
L
Li Zefan 已提交
464 465 466 467
static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

468
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
469 470 471
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
472
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
473
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
474 475 476

void sock_update_memcg(struct sock *sk)
{
477
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
478
		struct mem_cgroup *memcg;
479
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
480 481 482

		BUG_ON(!sk->sk_prot->proto_cgroup);

483 484 485 486 487 488 489 490 491 492
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
493
			css_get(&sk->sk_cgrp->memcg->css);
494 495 496
			return;
		}

G
Glauber Costa 已提交
497 498
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
499
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
500
		if (!mem_cgroup_is_root(memcg) &&
501 502
		    memcg_proto_active(cg_proto) &&
		    css_tryget_online(&memcg->css)) {
503
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
504 505 506 507 508 509 510 511
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
512
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
513 514 515
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
516
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
517 518
	}
}
G
Glauber Costa 已提交
519 520 521 522 523 524

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

525
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
526 527
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
528

529 530
#endif

531
#ifdef CONFIG_MEMCG_KMEM
532
/*
533
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
534 535 536 537 538
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
539
 *
540 541
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
542
 */
543 544
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
545

546 547 548 549 550 551 552 553 554 555 556 557 558
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

559 560 561 562 563 564
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
565
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
566 567
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
568
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
569 570 571
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
572
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
573

574 575 576 577 578 579
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
580
struct static_key memcg_kmem_enabled_key;
581
EXPORT_SYMBOL(memcg_kmem_enabled_key);
582 583 584

#endif /* CONFIG_MEMCG_KMEM */

585
static struct mem_cgroup_per_zone *
586
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
587
{
588 589 590
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

591
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
592 593
}

594
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
595
{
596
	return &memcg->css;
597 598
}

599
static struct mem_cgroup_per_zone *
600
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
601
{
602 603
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
604

605
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
606 607
}

608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

623 624
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
625
					 unsigned long new_usage_in_excess)
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

655 656
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
657 658 659 660 661 662 663
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

664 665
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
666
{
667 668 669
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
670
	__mem_cgroup_remove_exceeded(mz, mctz);
671
	spin_unlock_irqrestore(&mctz->lock, flags);
672 673
}

674 675 676
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
677
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
678 679 680 681 682 683 684
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
685 686 687

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
688
	unsigned long excess;
689 690 691
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

692
	mctz = soft_limit_tree_from_page(page);
693 694 695 696 697
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
698
		mz = mem_cgroup_page_zoneinfo(memcg, page);
699
		excess = soft_limit_excess(memcg);
700 701 702 703 704
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
705 706 707
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
708 709
			/* if on-tree, remove it */
			if (mz->on_tree)
710
				__mem_cgroup_remove_exceeded(mz, mctz);
711 712 713 714
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
715
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
716
			spin_unlock_irqrestore(&mctz->lock, flags);
717 718 719 720 721 722 723
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
724 725
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
726

727 728 729 730
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
731
			mem_cgroup_remove_exceeded(mz, mctz);
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
754
	__mem_cgroup_remove_exceeded(mz, mctz);
755
	if (!soft_limit_excess(mz->memcg) ||
756
	    !css_tryget_online(&mz->memcg->css))
757 758 759 760 761 762 763 764 765 766
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

767
	spin_lock_irq(&mctz->lock);
768
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
769
	spin_unlock_irq(&mctz->lock);
770 771 772
	return mz;
}

773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
792
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
793
				 enum mem_cgroup_stat_index idx)
794
{
795
	long val = 0;
796 797
	int cpu;

798 799
	get_online_cpus();
	for_each_online_cpu(cpu)
800
		val += per_cpu(memcg->stat->count[idx], cpu);
801
#ifdef CONFIG_HOTPLUG_CPU
802 803 804
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
805 806
#endif
	put_online_cpus();
807 808 809
	return val;
}

810
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
811 812 813 814 815
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

816
	get_online_cpus();
817
	for_each_online_cpu(cpu)
818
		val += per_cpu(memcg->stat->events[idx], cpu);
819
#ifdef CONFIG_HOTPLUG_CPU
820 821 822
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
823
#endif
824
	put_online_cpus();
825 826 827
	return val;
}

828
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
829
					 struct page *page,
830
					 int nr_pages)
831
{
832 833 834 835
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
836
	if (PageAnon(page))
837
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
838
				nr_pages);
839
	else
840
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
841
				nr_pages);
842

843 844 845 846
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

847 848
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
849
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
850
	else {
851
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
852 853
		nr_pages = -nr_pages; /* for event */
	}
854

855
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
856 857
}

858
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
859 860 861 862 863 864 865
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

866 867 868
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
869
{
870
	unsigned long nr = 0;
871 872
	int zid;

873
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
874

875 876 877 878 879 880 881 882 883 884 885 886
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
887
}
888

889
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
890
			unsigned int lru_mask)
891
{
892
	unsigned long nr = 0;
893
	int nid;
894

895
	for_each_node_state(nid, N_MEMORY)
896 897
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
898 899
}

900 901
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
902 903 904
{
	unsigned long val, next;

905
	val = __this_cpu_read(memcg->stat->nr_page_events);
906
	next = __this_cpu_read(memcg->stat->targets[target]);
907
	/* from time_after() in jiffies.h */
908 909 910 911 912
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
913 914 915
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
916 917 918 919 920 921 922 923
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
924
	}
925
	return false;
926 927 928 929 930 931
}

/*
 * Check events in order.
 *
 */
932
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
933 934
{
	/* threshold event is triggered in finer grain than soft limit */
935 936
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
937
		bool do_softlimit;
938
		bool do_numainfo __maybe_unused;
939

940 941
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
942 943 944 945
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
946
		mem_cgroup_threshold(memcg);
947 948
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
949
#if MAX_NUMNODES > 1
950
		if (unlikely(do_numainfo))
951
			atomic_inc(&memcg->numainfo_events);
952
#endif
953
	}
954 955
}

956
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
957
{
958 959 960 961 962 963 964 965
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

966
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
967 968
}

969
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
970
{
971
	struct mem_cgroup *memcg = NULL;
972

973 974
	rcu_read_lock();
	do {
975 976 977 978 979 980
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
981
			memcg = root_mem_cgroup;
982 983 984 985 986
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
987
	} while (!css_tryget_online(&memcg->css));
988
	rcu_read_unlock();
989
	return memcg;
990 991
}

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1009
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1010
				   struct mem_cgroup *prev,
1011
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1012
{
1013 1014
	struct reclaim_iter *uninitialized_var(iter);
	struct cgroup_subsys_state *css = NULL;
1015
	struct mem_cgroup *memcg = NULL;
1016
	struct mem_cgroup *pos = NULL;
1017

1018 1019
	if (mem_cgroup_disabled())
		return NULL;
1020

1021 1022
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1023

1024
	if (prev && !reclaim)
1025
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1026

1027 1028
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1029
			goto out;
1030
		return root;
1031
	}
K
KAMEZAWA Hiroyuki 已提交
1032

1033
	rcu_read_lock();
M
Michal Hocko 已提交
1034

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

		do {
1045
			pos = READ_ONCE(iter->position);
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
			/*
			 * A racing update may change the position and
			 * put the last reference, hence css_tryget(),
			 * or retry to see the updated position.
			 */
		} while (pos && !css_tryget(&pos->css));
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1069
		}
K
KAMEZAWA Hiroyuki 已提交
1070

1071 1072 1073 1074 1075 1076
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1077

1078 1079
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1080

1081
		if (css_tryget(css)) {
1082 1083 1084 1085 1086 1087 1088
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				break;
1089

1090
			css_put(css);
1091
		}
1092

1093
		memcg = NULL;
1094
	}
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114

	if (reclaim) {
		if (cmpxchg(&iter->position, pos, memcg) == pos) {
			if (memcg)
				css_get(&memcg->css);
			if (pos)
				css_put(&pos->css);
		}

		/*
		 * pairs with css_tryget when dereferencing iter->position
		 * above.
		 */
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1115
	}
1116

1117 1118
out_unlock:
	rcu_read_unlock();
1119
out:
1120 1121 1122
	if (prev && prev != root)
		css_put(&prev->css);

1123
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1124
}
K
KAMEZAWA Hiroyuki 已提交
1125

1126 1127 1128 1129 1130 1131 1132
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1133 1134 1135 1136 1137 1138
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1139

1140 1141 1142 1143 1144 1145
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1146
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1147
	     iter != NULL;				\
1148
	     iter = mem_cgroup_iter(root, iter, NULL))
1149

1150
#define for_each_mem_cgroup(iter)			\
1151
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1152
	     iter != NULL;				\
1153
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1154

1155
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1156
{
1157
	struct mem_cgroup *memcg;
1158 1159

	rcu_read_lock();
1160 1161
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1162 1163 1164 1165
		goto out;

	switch (idx) {
	case PGFAULT:
1166 1167 1168 1169
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1170 1171 1172 1173 1174 1175 1176
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1177
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1178

1179 1180 1181
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1182
 * @memcg: memcg of the wanted lruvec
1183 1184 1185 1186 1187 1188 1189 1190 1191
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1192
	struct lruvec *lruvec;
1193

1194 1195 1196 1197
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1198

1199
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1210 1211 1212
}

/**
1213
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1214
 * @page: the page
1215
 * @zone: zone of the page
1216 1217 1218 1219
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1220
 */
1221
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1222 1223
{
	struct mem_cgroup_per_zone *mz;
1224
	struct mem_cgroup *memcg;
1225
	struct lruvec *lruvec;
1226

1227 1228 1229 1230
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1231

1232
	memcg = page->mem_cgroup;
1233
	/*
1234
	 * Swapcache readahead pages are added to the LRU - and
1235
	 * possibly migrated - before they are charged.
1236
	 */
1237 1238
	if (!memcg)
		memcg = root_mem_cgroup;
1239

1240
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1251
}
1252

1253
/**
1254 1255 1256 1257
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1258
 *
1259 1260
 * This function must be called when a page is added to or removed from an
 * lru list.
1261
 */
1262 1263
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1264 1265
{
	struct mem_cgroup_per_zone *mz;
1266
	unsigned long *lru_size;
1267 1268 1269 1270

	if (mem_cgroup_disabled())
		return;

1271 1272 1273 1274
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1275
}
1276

1277
bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
1278
{
1279
	if (root == memcg)
1280
		return true;
1281
	if (!root->use_hierarchy)
1282
		return false;
1283
	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
1284 1285
}

1286
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1287
{
1288
	struct mem_cgroup *task_memcg;
1289
	struct task_struct *p;
1290
	bool ret;
1291

1292
	p = find_lock_task_mm(task);
1293
	if (p) {
1294
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1295 1296 1297 1298 1299 1300 1301
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1302
		rcu_read_lock();
1303 1304
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1305
		rcu_read_unlock();
1306
	}
1307 1308
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1309 1310 1311
	return ret;
}

1312
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1313
{
1314
	unsigned long inactive_ratio;
1315
	unsigned long inactive;
1316
	unsigned long active;
1317
	unsigned long gb;
1318

1319 1320
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1321

1322 1323 1324 1325 1326 1327
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1328
	return inactive * inactive_ratio < active;
1329 1330
}

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
{
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return true;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	memcg = mz->memcg;

	return !!(memcg->css.flags & CSS_ONLINE);
}

1345
#define mem_cgroup_from_counter(counter, member)	\
1346 1347
	container_of(counter, struct mem_cgroup, member)

1348
/**
1349
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1350
 * @memcg: the memory cgroup
1351
 *
1352
 * Returns the maximum amount of memory @mem can be charged with, in
1353
 * pages.
1354
 */
1355
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1356
{
1357 1358 1359
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1360

1361
	count = page_counter_read(&memcg->memory);
1362
	limit = READ_ONCE(memcg->memory.limit);
1363 1364 1365 1366 1367
	if (count < limit)
		margin = limit - count;

	if (do_swap_account) {
		count = page_counter_read(&memcg->memsw);
1368
		limit = READ_ONCE(memcg->memsw.limit);
1369 1370 1371 1372 1373
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1374 1375
}

1376
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1377 1378
{
	/* root ? */
1379
	if (mem_cgroup_disabled() || !memcg->css.parent)
K
KOSAKI Motohiro 已提交
1380 1381
		return vm_swappiness;

1382
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1383 1384
}

1385
/*
Q
Qiang Huang 已提交
1386
 * A routine for checking "mem" is under move_account() or not.
1387
 *
Q
Qiang Huang 已提交
1388 1389 1390
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1391
 */
1392
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1393
{
1394 1395
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1396
	bool ret = false;
1397 1398 1399 1400 1401 1402 1403 1404 1405
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1406

1407 1408
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1409 1410
unlock:
	spin_unlock(&mc.lock);
1411 1412 1413
	return ret;
}

1414
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1415 1416
{
	if (mc.moving_task && current != mc.moving_task) {
1417
		if (mem_cgroup_under_move(memcg)) {
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1430
#define K(x) ((x) << (PAGE_SHIFT-10))
1431
/**
1432
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1433 1434 1435 1436 1437 1438 1439 1440
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1441
	/* oom_info_lock ensures that parallel ooms do not interleave */
1442
	static DEFINE_MUTEX(oom_info_lock);
1443 1444
	struct mem_cgroup *iter;
	unsigned int i;
1445

1446
	mutex_lock(&oom_info_lock);
1447 1448
	rcu_read_lock();

1449 1450 1451 1452 1453 1454 1455 1456
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1457
	pr_cont_cgroup_path(memcg->css.cgroup);
1458
	pr_cont("\n");
1459 1460 1461

	rcu_read_unlock();

1462 1463 1464 1465 1466 1467 1468 1469 1470
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1471 1472

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1473 1474
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1490
	mutex_unlock(&oom_info_lock);
1491 1492
}

1493 1494 1495 1496
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1497
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1498 1499
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1500 1501
	struct mem_cgroup *iter;

1502
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1503
		num++;
1504 1505 1506
	return num;
}

D
David Rientjes 已提交
1507 1508 1509
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1510
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1511
{
1512
	unsigned long limit;
1513

1514
	limit = memcg->memory.limit;
1515
	if (mem_cgroup_swappiness(memcg)) {
1516
		unsigned long memsw_limit;
1517

1518 1519
		memsw_limit = memcg->memsw.limit;
		limit = min(limit + total_swap_pages, memsw_limit);
1520 1521
	}
	return limit;
D
David Rientjes 已提交
1522 1523
}

1524 1525
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1526 1527 1528 1529 1530 1531 1532
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1533
	/*
1534 1535 1536
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1537
	 */
1538
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1539
		mark_oom_victim(current);
1540 1541 1542
		return;
	}

1543
	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL, memcg);
1544
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1545
	for_each_mem_cgroup_tree(iter, memcg) {
1546
		struct css_task_iter it;
1547 1548
		struct task_struct *task;

1549 1550
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1563
				css_task_iter_end(&it);
1564 1565 1566 1567 1568 1569 1570 1571
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1584
		}
1585
		css_task_iter_end(&it);
1586 1587 1588 1589 1590 1591 1592 1593 1594
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1595 1596
#if MAX_NUMNODES > 1

1597 1598
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1599
 * @memcg: the target memcg
1600 1601 1602 1603 1604 1605 1606
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1607
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1608 1609
		int nid, bool noswap)
{
1610
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1611 1612 1613
		return true;
	if (noswap || !total_swap_pages)
		return false;
1614
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1615 1616 1617 1618
		return true;
	return false;

}
1619 1620 1621 1622 1623 1624 1625

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1626
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1627 1628
{
	int nid;
1629 1630 1631 1632
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1633
	if (!atomic_read(&memcg->numainfo_events))
1634
		return;
1635
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1636 1637 1638
		return;

	/* make a nodemask where this memcg uses memory from */
1639
	memcg->scan_nodes = node_states[N_MEMORY];
1640

1641
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1642

1643 1644
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1645
	}
1646

1647 1648
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1663
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1664 1665 1666
{
	int node;

1667 1668
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1669

1670
	node = next_node(node, memcg->scan_nodes);
1671
	if (node == MAX_NUMNODES)
1672
		node = first_node(memcg->scan_nodes);
1673 1674 1675 1676 1677 1678 1679 1680 1681
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1682
	memcg->last_scanned_node = node;
1683 1684 1685
	return node;
}
#else
1686
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1687 1688 1689 1690 1691
{
	return 0;
}
#endif

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1707
	excess = soft_limit_excess(root_memcg);
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1736
		if (!soft_limit_excess(root_memcg))
1737
			break;
1738
	}
1739 1740
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1741 1742
}

1743 1744 1745 1746 1747 1748
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1749 1750
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1751 1752 1753 1754
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1755
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1756
{
1757
	struct mem_cgroup *iter, *failed = NULL;
1758

1759 1760
	spin_lock(&memcg_oom_lock);

1761
	for_each_mem_cgroup_tree(iter, memcg) {
1762
		if (iter->oom_lock) {
1763 1764 1765 1766 1767
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1768 1769
			mem_cgroup_iter_break(memcg, iter);
			break;
1770 1771
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1772
	}
K
KAMEZAWA Hiroyuki 已提交
1773

1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1785
		}
1786 1787
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1788 1789 1790 1791

	spin_unlock(&memcg_oom_lock);

	return !failed;
1792
}
1793

1794
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1795
{
K
KAMEZAWA Hiroyuki 已提交
1796 1797
	struct mem_cgroup *iter;

1798
	spin_lock(&memcg_oom_lock);
1799
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1800
	for_each_mem_cgroup_tree(iter, memcg)
1801
		iter->oom_lock = false;
1802
	spin_unlock(&memcg_oom_lock);
1803 1804
}

1805
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1806 1807 1808
{
	struct mem_cgroup *iter;

1809
	for_each_mem_cgroup_tree(iter, memcg)
1810 1811 1812
		atomic_inc(&iter->under_oom);
}

1813
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1814 1815 1816
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1817 1818 1819 1820 1821
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1822
	for_each_mem_cgroup_tree(iter, memcg)
1823
		atomic_add_unless(&iter->under_oom, -1, 0);
1824 1825
}

K
KAMEZAWA Hiroyuki 已提交
1826 1827
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1828
struct oom_wait_info {
1829
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1830 1831 1832 1833 1834 1835
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1836 1837
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1838 1839 1840
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1841
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1842

1843 1844
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1845 1846 1847 1848
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1849
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1850
{
1851
	atomic_inc(&memcg->oom_wakeups);
1852 1853
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1854 1855
}

1856
static void memcg_oom_recover(struct mem_cgroup *memcg)
1857
{
1858 1859
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1860 1861
}

1862
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1863
{
1864 1865
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
1866
	/*
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1879
	 */
1880 1881 1882 1883
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
1884 1885 1886 1887
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1888
 * @handle: actually kill/wait or just clean up the OOM state
1889
 *
1890 1891
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1892
 *
1893
 * Memcg supports userspace OOM handling where failed allocations must
1894 1895 1896 1897
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1898
 * the end of the page fault to complete the OOM handling.
1899 1900
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1901
 * completed, %false otherwise.
1902
 */
1903
bool mem_cgroup_oom_synchronize(bool handle)
1904
{
1905
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
1906
	struct oom_wait_info owait;
1907
	bool locked;
1908 1909 1910

	/* OOM is global, do not handle */
	if (!memcg)
1911
		return false;
1912

1913
	if (!handle || oom_killer_disabled)
1914
		goto cleanup;
1915 1916 1917 1918 1919 1920

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1921

1922
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
1936
		schedule();
1937 1938 1939 1940 1941
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1942 1943 1944 1945 1946 1947 1948 1949
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1950 1951
cleanup:
	current->memcg_oom.memcg = NULL;
1952
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1953
	return true;
1954 1955
}

1956 1957 1958
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
1959
 *
1960 1961 1962
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
1963
 *
1964
 *   memcg = mem_cgroup_begin_page_stat(page);
1965 1966
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
1967
 *   mem_cgroup_end_page_stat(memcg);
1968
 */
1969
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1970 1971
{
	struct mem_cgroup *memcg;
1972
	unsigned long flags;
1973

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page from being uncharged.
	 * E.g. end-writeback clearing PageWriteback(), which allows
	 * migration to go ahead and uncharge the page before the
	 * account transaction might be complete.
	 */
1986 1987 1988 1989
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;
1990
again:
1991
	memcg = page->mem_cgroup;
1992
	if (unlikely(!memcg))
1993 1994
		return NULL;

Q
Qiang Huang 已提交
1995
	if (atomic_read(&memcg->moving_account) <= 0)
1996
		return memcg;
1997

1998
	spin_lock_irqsave(&memcg->move_lock, flags);
1999
	if (memcg != page->mem_cgroup) {
2000
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2001 2002
		goto again;
	}
2003 2004 2005 2006 2007 2008 2009 2010

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
	 * the task who has the lock for mem_cgroup_end_page_stat().
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2011 2012

	return memcg;
2013 2014
}

2015 2016 2017 2018
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 */
2019
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
2020
{
2021 2022 2023 2024 2025 2026 2027 2028
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2029

2030
	rcu_read_unlock();
2031 2032
}

2033 2034 2035 2036 2037 2038 2039 2040 2041
/**
 * mem_cgroup_update_page_stat - update page state statistics
 * @memcg: memcg to account against
 * @idx: page state item to account
 * @val: number of pages (positive or negative)
 *
 * See mem_cgroup_begin_page_stat() for locking requirements.
 */
void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
S
Sha Zhengju 已提交
2042
				 enum mem_cgroup_stat_index idx, int val)
2043
{
2044
	VM_BUG_ON(!rcu_read_lock_held());
2045

2046 2047
	if (memcg)
		this_cpu_add(memcg->stat->count[idx], val);
2048
}
2049

2050 2051 2052 2053
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2054
#define CHARGE_BATCH	32U
2055 2056
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2057
	unsigned int nr_pages;
2058
	struct work_struct work;
2059
	unsigned long flags;
2060
#define FLUSHING_CACHED_CHARGE	0
2061 2062
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2063
static DEFINE_MUTEX(percpu_charge_mutex);
2064

2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2075
 */
2076
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2077 2078
{
	struct memcg_stock_pcp *stock;
2079
	bool ret = false;
2080

2081
	if (nr_pages > CHARGE_BATCH)
2082
		return ret;
2083

2084
	stock = &get_cpu_var(memcg_stock);
2085
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2086
		stock->nr_pages -= nr_pages;
2087 2088
		ret = true;
	}
2089 2090 2091 2092 2093
	put_cpu_var(memcg_stock);
	return ret;
}

/*
2094
 * Returns stocks cached in percpu and reset cached information.
2095 2096 2097 2098 2099
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2100
	if (stock->nr_pages) {
2101
		page_counter_uncharge(&old->memory, stock->nr_pages);
2102
		if (do_swap_account)
2103
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2104
		css_put_many(&old->css, stock->nr_pages);
2105
		stock->nr_pages = 0;
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
2116
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2117
	drain_stock(stock);
2118
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2119 2120 2121
}

/*
2122
 * Cache charges(val) to local per_cpu area.
2123
 * This will be consumed by consume_stock() function, later.
2124
 */
2125
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2126 2127 2128
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2129
	if (stock->cached != memcg) { /* reset if necessary */
2130
		drain_stock(stock);
2131
		stock->cached = memcg;
2132
	}
2133
	stock->nr_pages += nr_pages;
2134 2135 2136 2137
	put_cpu_var(memcg_stock);
}

/*
2138
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2139
 * of the hierarchy under it.
2140
 */
2141
static void drain_all_stock(struct mem_cgroup *root_memcg)
2142
{
2143
	int cpu, curcpu;
2144

2145 2146 2147
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2148 2149
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2150
	curcpu = get_cpu();
2151 2152
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2153
		struct mem_cgroup *memcg;
2154

2155 2156
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2157
			continue;
2158
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
2159
			continue;
2160 2161 2162 2163 2164 2165
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2166
	}
2167
	put_cpu();
A
Andrew Morton 已提交
2168
	put_online_cpus();
2169
	mutex_unlock(&percpu_charge_mutex);
2170 2171
}

2172 2173 2174 2175
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2176
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2177 2178 2179
{
	int i;

2180
	spin_lock(&memcg->pcp_counter_lock);
2181
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2182
		long x = per_cpu(memcg->stat->count[i], cpu);
2183

2184 2185
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2186
	}
2187
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2188
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2189

2190 2191
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2192
	}
2193
	spin_unlock(&memcg->pcp_counter_lock);
2194 2195
}

2196
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2197 2198 2199 2200 2201
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2202
	struct mem_cgroup *iter;
2203

2204
	if (action == CPU_ONLINE)
2205 2206
		return NOTIFY_OK;

2207
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2208
		return NOTIFY_OK;
2209

2210
	for_each_mem_cgroup(iter)
2211 2212
		mem_cgroup_drain_pcp_counter(iter, cpu);

2213 2214 2215 2216 2217
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2218 2219
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2220
{
2221
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2222
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2223
	struct mem_cgroup *mem_over_limit;
2224
	struct page_counter *counter;
2225
	unsigned long nr_reclaimed;
2226 2227
	bool may_swap = true;
	bool drained = false;
2228
	int ret = 0;
2229

2230 2231
	if (mem_cgroup_is_root(memcg))
		goto done;
2232
retry:
2233 2234
	if (consume_stock(memcg, nr_pages))
		goto done;
2235

2236
	if (!do_swap_account ||
2237 2238
	    !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2239
			goto done_restock;
2240
		if (do_swap_account)
2241 2242
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2243
	} else {
2244
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2245
		may_swap = false;
2246
	}
2247

2248 2249 2250 2251
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2252

2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
		goto bypass;

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2267 2268
	if (!(gfp_mask & __GFP_WAIT))
		goto nomem;
2269

2270 2271
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

2272 2273
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2274

2275
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2276
		goto retry;
2277

2278
	if (!drained) {
2279
		drain_all_stock(mem_over_limit);
2280 2281 2282 2283
		drained = true;
		goto retry;
	}

2284 2285
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2286 2287 2288 2289 2290 2291 2292 2293 2294
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2295
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2296 2297 2298 2299 2300 2301 2302 2303
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2304 2305 2306
	if (nr_retries--)
		goto retry;

2307 2308 2309
	if (gfp_mask & __GFP_NOFAIL)
		goto bypass;

2310 2311 2312
	if (fatal_signal_pending(current))
		goto bypass;

2313 2314
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2315
	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2316
nomem:
2317
	if (!(gfp_mask & __GFP_NOFAIL))
2318
		return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2319
bypass:
2320
	return -EINTR;
2321 2322

done_restock:
2323
	css_get_many(&memcg->css, batch);
2324 2325
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2326 2327
	if (!(gfp_mask & __GFP_WAIT))
		goto done;
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
	/*
	 * If the hierarchy is above the normal consumption range,
	 * make the charging task trim their excess contribution.
	 */
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
2338
done:
2339
	return ret;
2340
}
2341

2342
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2343
{
2344 2345 2346
	if (mem_cgroup_is_root(memcg))
		return;

2347
	page_counter_uncharge(&memcg->memory, nr_pages);
2348
	if (do_swap_account)
2349
		page_counter_uncharge(&memcg->memsw, nr_pages);
2350

2351
	css_put_many(&memcg->css, nr_pages);
2352 2353
}

2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
/*
 * try_get_mem_cgroup_from_page - look up page's memcg association
 * @page: the page
 *
 * Look up, get a css reference, and return the memcg that owns @page.
 *
 * The page must be locked to prevent racing with swap-in and page
 * cache charges.  If coming from an unlocked page table, the caller
 * must ensure the page is on the LRU or this can race with charging.
 */
2364
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2365
{
2366
	struct mem_cgroup *memcg;
2367
	unsigned short id;
2368 2369
	swp_entry_t ent;

2370
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2371

2372
	memcg = page->mem_cgroup;
2373 2374
	if (memcg) {
		if (!css_tryget_online(&memcg->css))
2375
			memcg = NULL;
2376
	} else if (PageSwapCache(page)) {
2377
		ent.val = page_private(page);
2378
		id = lookup_swap_cgroup_id(ent);
2379
		rcu_read_lock();
2380
		memcg = mem_cgroup_from_id(id);
2381
		if (memcg && !css_tryget_online(&memcg->css))
2382
			memcg = NULL;
2383
		rcu_read_unlock();
2384
	}
2385
	return memcg;
2386 2387
}

2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2419
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2420
			  bool lrucare)
2421
{
2422
	int isolated;
2423

2424
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2425 2426 2427 2428 2429

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2430 2431
	if (lrucare)
		lock_page_lru(page, &isolated);
2432

2433 2434
	/*
	 * Nobody should be changing or seriously looking at
2435
	 * page->mem_cgroup at this point:
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2447
	page->mem_cgroup = memcg;
2448

2449 2450
	if (lrucare)
		unlock_page_lru(page, isolated);
2451
}
2452

2453
#ifdef CONFIG_MEMCG_KMEM
2454 2455
int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
		      unsigned long nr_pages)
2456
{
2457
	struct page_counter *counter;
2458 2459
	int ret = 0;

2460 2461
	ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
	if (ret < 0)
2462 2463
		return ret;

2464
	ret = try_charge(memcg, gfp, nr_pages);
2465 2466
	if (ret == -EINTR)  {
		/*
2467 2468 2469 2470 2471 2472
		 * try_charge() chose to bypass to root due to OOM kill or
		 * fatal signal.  Since our only options are to either fail
		 * the allocation or charge it to this cgroup, do it as a
		 * temporary condition. But we can't fail. From a kmem/slab
		 * perspective, the cache has already been selected, by
		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2473 2474 2475
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
2476 2477 2478
		 * memcg_charge_kmem in a sane state, but was OOM-killed
		 * during try_charge() above. Tasks that were already dying
		 * when the allocation triggers should have been already
2479 2480
		 * directed to the root cgroup in memcontrol.h
		 */
2481
		page_counter_charge(&memcg->memory, nr_pages);
2482
		if (do_swap_account)
2483
			page_counter_charge(&memcg->memsw, nr_pages);
2484
		css_get_many(&memcg->css, nr_pages);
2485 2486
		ret = 0;
	} else if (ret)
2487
		page_counter_uncharge(&memcg->kmem, nr_pages);
2488 2489 2490 2491

	return ret;
}

2492
void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2493
{
2494
	page_counter_uncharge(&memcg->memory, nr_pages);
2495
	if (do_swap_account)
2496
		page_counter_uncharge(&memcg->memsw, nr_pages);
2497

2498
	page_counter_uncharge(&memcg->kmem, nr_pages);
2499

2500
	css_put_many(&memcg->css, nr_pages);
2501 2502
}

2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2513
static int memcg_alloc_cache_id(void)
2514
{
2515 2516 2517
	int id, size;
	int err;

2518
	id = ida_simple_get(&memcg_cache_ida,
2519 2520 2521
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2522

2523
	if (id < memcg_nr_cache_ids)
2524 2525 2526 2527 2528 2529
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2530
	down_write(&memcg_cache_ids_sem);
2531 2532

	size = 2 * (id + 1);
2533 2534 2535 2536 2537
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2538
	err = memcg_update_all_caches(size);
2539 2540
	if (!err)
		err = memcg_update_all_list_lrus(size);
2541 2542 2543 2544 2545
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2546
	if (err) {
2547
		ida_simple_remove(&memcg_cache_ida, id);
2548 2549 2550 2551 2552 2553 2554
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2555
	ida_simple_remove(&memcg_cache_ida, id);
2556 2557
}

2558
struct memcg_kmem_cache_create_work {
2559 2560 2561 2562 2563
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2564
static void memcg_kmem_cache_create_func(struct work_struct *w)
2565
{
2566 2567
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2568 2569
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2570

2571
	memcg_create_kmem_cache(memcg, cachep);
2572

2573
	css_put(&memcg->css);
2574 2575 2576 2577 2578 2579
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2580 2581
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2582
{
2583
	struct memcg_kmem_cache_create_work *cw;
2584

2585
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2586
	if (!cw)
2587
		return;
2588 2589

	css_get(&memcg->css);
2590 2591 2592

	cw->memcg = memcg;
	cw->cachep = cachep;
2593
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2594 2595 2596 2597

	schedule_work(&cw->work);
}

2598 2599
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2600 2601 2602 2603
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2604
	 * in __memcg_schedule_kmem_cache_create will recurse.
2605 2606 2607 2608 2609 2610 2611
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2612
	current->memcg_kmem_skip_account = 1;
2613
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2614
	current->memcg_kmem_skip_account = 0;
2615
}
2616

2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
2630
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2631 2632
{
	struct mem_cgroup *memcg;
2633
	struct kmem_cache *memcg_cachep;
2634
	int kmemcg_id;
2635

2636
	VM_BUG_ON(!is_root_cache(cachep));
2637

2638
	if (current->memcg_kmem_skip_account)
2639 2640
		return cachep;

2641
	memcg = get_mem_cgroup_from_mm(current->mm);
2642
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2643
	if (kmemcg_id < 0)
2644
		goto out;
2645

2646
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2647 2648
	if (likely(memcg_cachep))
		return memcg_cachep;
2649 2650 2651 2652 2653 2654 2655 2656 2657

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2658 2659 2660
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2661
	 */
2662
	memcg_schedule_kmem_cache_create(memcg, cachep);
2663
out:
2664
	css_put(&memcg->css);
2665
	return cachep;
2666 2667
}

2668 2669 2670
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
2671
		css_put(&cachep->memcg_params.memcg->css);
2672 2673
}

2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
2695

2696
	memcg = get_mem_cgroup_from_mm(current->mm);
2697

2698
	if (!memcg_kmem_is_active(memcg)) {
2699 2700 2701 2702
		css_put(&memcg->css);
		return true;
	}

2703
	ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
2718
		memcg_uncharge_kmem(memcg, 1 << order);
2719 2720
		return;
	}
2721
	page->mem_cgroup = memcg;
2722 2723 2724 2725
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
2726
	struct mem_cgroup *memcg = page->mem_cgroup;
2727 2728 2729 2730

	if (!memcg)
		return;

2731
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2732

2733
	memcg_uncharge_kmem(memcg, 1 << order);
2734
	page->mem_cgroup = NULL;
2735
}
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746

struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
{
	struct mem_cgroup *memcg = NULL;
	struct kmem_cache *cachep;
	struct page *page;

	page = virt_to_head_page(ptr);
	if (PageSlab(page)) {
		cachep = page->slab_cache;
		if (!is_root_cache(cachep))
2747
			memcg = cachep->memcg_params.memcg;
2748 2749 2750 2751 2752 2753
	} else
		/* page allocated by alloc_kmem_pages */
		memcg = page->mem_cgroup;

	return memcg;
}
2754 2755
#endif /* CONFIG_MEMCG_KMEM */

2756 2757 2758 2759
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2760 2761 2762
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2763
 */
2764
void mem_cgroup_split_huge_fixup(struct page *head)
2765
{
2766
	int i;
2767

2768 2769
	if (mem_cgroup_disabled())
		return;
2770

2771
	for (i = 1; i < HPAGE_PMD_NR; i++)
2772
		head[i].mem_cgroup = head->mem_cgroup;
2773

2774
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2775
		       HPAGE_PMD_NR);
2776
}
2777
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2778

A
Andrew Morton 已提交
2779
#ifdef CONFIG_MEMCG_SWAP
2780 2781
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2782
{
2783 2784
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2785
}
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2798
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2799 2800 2801
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2802
				struct mem_cgroup *from, struct mem_cgroup *to)
2803 2804 2805
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2806 2807
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2808 2809 2810

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2811
		mem_cgroup_swap_statistics(to, true);
2812 2813 2814 2815 2816 2817
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2818
				struct mem_cgroup *from, struct mem_cgroup *to)
2819 2820 2821
{
	return -EINVAL;
}
2822
#endif
K
KAMEZAWA Hiroyuki 已提交
2823

2824
static DEFINE_MUTEX(memcg_limit_mutex);
2825

2826
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2827
				   unsigned long limit)
2828
{
2829 2830 2831
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2832
	int retry_count;
2833
	int ret;
2834 2835 2836 2837 2838 2839

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2840 2841
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2842

2843
	oldusage = page_counter_read(&memcg->memory);
2844

2845
	do {
2846 2847 2848 2849
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2850 2851 2852 2853

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2854
			ret = -EINVAL;
2855 2856
			break;
		}
2857 2858 2859 2860
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2861 2862 2863 2864

		if (!ret)
			break;

2865 2866
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2867
		curusage = page_counter_read(&memcg->memory);
2868
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2869
		if (curusage >= oldusage)
2870 2871 2872
			retry_count--;
		else
			oldusage = curusage;
2873 2874
	} while (retry_count);

2875 2876
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2877

2878 2879 2880
	return ret;
}

L
Li Zefan 已提交
2881
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2882
					 unsigned long limit)
2883
{
2884 2885 2886
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2887
	int retry_count;
2888
	int ret;
2889

2890
	/* see mem_cgroup_resize_res_limit */
2891 2892 2893 2894 2895 2896
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2897 2898 2899 2900
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2901 2902 2903 2904

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2905 2906 2907
			ret = -EINVAL;
			break;
		}
2908 2909 2910 2911
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2912 2913 2914 2915

		if (!ret)
			break;

2916 2917
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2918
		curusage = page_counter_read(&memcg->memsw);
2919
		/* Usage is reduced ? */
2920
		if (curusage >= oldusage)
2921
			retry_count--;
2922 2923
		else
			oldusage = curusage;
2924 2925
	} while (retry_count);

2926 2927
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2928

2929 2930 2931
	return ret;
}

2932 2933 2934 2935 2936 2937 2938 2939 2940
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2941
	unsigned long excess;
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2966
		spin_lock_irq(&mctz->lock);
2967
		__mem_cgroup_remove_exceeded(mz, mctz);
2968 2969 2970 2971 2972 2973

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2974 2975 2976
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2977
		excess = soft_limit_excess(mz->memcg);
2978 2979 2980 2981 2982 2983 2984 2985 2986
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2987
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2988
		spin_unlock_irq(&mctz->lock);
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3006 3007 3008 3009 3010 3011
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
3012 3013
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3014 3015
	bool ret;

3016
	/*
3017 3018 3019 3020
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
3021
	 */
3022 3023 3024 3025 3026 3027
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3028 3029
}

3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

3040 3041
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3042
	/* try to free all pages in this cgroup */
3043
	while (nr_retries && page_counter_read(&memcg->memory)) {
3044
		int progress;
3045

3046 3047 3048
		if (signal_pending(current))
			return -EINTR;

3049 3050
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3051
		if (!progress) {
3052
			nr_retries--;
3053
			/* maybe some writeback is necessary */
3054
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3055
		}
3056 3057

	}
3058 3059

	return 0;
3060 3061
}

3062 3063 3064
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3065
{
3066
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3067

3068 3069
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3070
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3071 3072
}

3073 3074
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3075
{
3076
	return mem_cgroup_from_css(css)->use_hierarchy;
3077 3078
}

3079 3080
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3081 3082
{
	int retval = 0;
3083
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3084
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3085

3086
	mutex_lock(&memcg_create_mutex);
3087 3088 3089 3090

	if (memcg->use_hierarchy == val)
		goto out;

3091
	/*
3092
	 * If parent's use_hierarchy is set, we can't make any modifications
3093 3094 3095 3096 3097 3098
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3099
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3100
				(val == 1 || val == 0)) {
3101
		if (!memcg_has_children(memcg))
3102
			memcg->use_hierarchy = val;
3103 3104 3105 3106
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3107 3108

out:
3109
	mutex_unlock(&memcg_create_mutex);
3110 3111 3112 3113

	return retval;
}

3114 3115
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
{
	struct mem_cgroup *iter;
	long val = 0;

	/* Per-cpu values can be negative, use a signed accumulator */
	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
}

static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
{
	u64 val;

3133 3134 3135 3136 3137 3138
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
3139
		if (!swap)
3140
			val = page_counter_read(&memcg->memory);
3141
		else
3142
			val = page_counter_read(&memcg->memsw);
3143 3144 3145 3146
	}
	return val << PAGE_SHIFT;
}

3147 3148 3149 3150 3151 3152 3153
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3154

3155
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3156
			       struct cftype *cft)
B
Balbir Singh 已提交
3157
{
3158
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3159
	struct page_counter *counter;
3160

3161
	switch (MEMFILE_TYPE(cft->private)) {
3162
	case _MEM:
3163 3164
		counter = &memcg->memory;
		break;
3165
	case _MEMSWAP:
3166 3167
		counter = &memcg->memsw;
		break;
3168
	case _KMEM:
3169
		counter = &memcg->kmem;
3170
		break;
3171 3172 3173
	default:
		BUG();
	}
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
			return mem_cgroup_usage(memcg, false);
		if (counter == &memcg->memsw)
			return mem_cgroup_usage(memcg, true);
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3193
}
3194 3195

#ifdef CONFIG_MEMCG_KMEM
3196 3197
static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long nr_pages)
3198 3199 3200 3201
{
	int err = 0;
	int memcg_id;

3202
	BUG_ON(memcg->kmemcg_id >= 0);
3203
	BUG_ON(memcg->kmem_acct_activated);
3204
	BUG_ON(memcg->kmem_acct_active);
3205

3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
3218
	mutex_lock(&memcg_create_mutex);
3219 3220
	if (cgroup_has_tasks(memcg->css.cgroup) ||
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
3221 3222 3223 3224
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
3225

3226
	memcg_id = memcg_alloc_cache_id();
3227 3228 3229 3230 3231 3232
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
V
Vladimir Davydov 已提交
3233 3234
	 * We couldn't have accounted to this cgroup, because it hasn't got
	 * activated yet, so this should succeed.
3235
	 */
3236
	err = page_counter_limit(&memcg->kmem, nr_pages);
3237 3238 3239 3240
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
V
Vladimir Davydov 已提交
3241 3242
	 * A memory cgroup is considered kmem-active as soon as it gets
	 * kmemcg_id. Setting the id after enabling static branching will
3243 3244 3245
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3246
	memcg->kmemcg_id = memcg_id;
3247
	memcg->kmem_acct_activated = true;
3248
	memcg->kmem_acct_active = true;
3249
out:
3250 3251 3252 3253
	return err;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3254
				   unsigned long limit)
3255 3256 3257
{
	int ret;

3258
	mutex_lock(&memcg_limit_mutex);
3259
	if (!memcg_kmem_is_active(memcg))
3260
		ret = memcg_activate_kmem(memcg, limit);
3261
	else
3262 3263
		ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
3264 3265 3266
	return ret;
}

3267
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3268
{
3269
	int ret = 0;
3270
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3271

3272 3273
	if (!parent)
		return 0;
3274

3275
	mutex_lock(&memcg_limit_mutex);
3276
	/*
3277 3278
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
3279
	 */
3280
	if (memcg_kmem_is_active(parent))
3281 3282
		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
	mutex_unlock(&memcg_limit_mutex);
3283
	return ret;
3284
}
3285 3286
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3287
				   unsigned long limit)
3288 3289 3290
{
	return -EINVAL;
}
3291
#endif /* CONFIG_MEMCG_KMEM */
3292

3293 3294 3295 3296
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3297 3298
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3299
{
3300
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3301
	unsigned long nr_pages;
3302 3303
	int ret;

3304
	buf = strstrip(buf);
3305
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3306 3307
	if (ret)
		return ret;
3308

3309
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3310
	case RES_LIMIT:
3311 3312 3313 3314
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3315 3316 3317
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3318
			break;
3319 3320
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3321
			break;
3322 3323 3324 3325
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
		}
3326
		break;
3327 3328 3329
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3330 3331
		break;
	}
3332
	return ret ?: nbytes;
B
Balbir Singh 已提交
3333 3334
}

3335 3336
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3337
{
3338
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3339
	struct page_counter *counter;
3340

3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
	default:
		BUG();
	}
3354

3355
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3356
	case RES_MAX_USAGE:
3357
		page_counter_reset_watermark(counter);
3358 3359
		break;
	case RES_FAILCNT:
3360
		counter->failcnt = 0;
3361
		break;
3362 3363
	default:
		BUG();
3364
	}
3365

3366
	return nbytes;
3367 3368
}

3369
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3370 3371
					struct cftype *cft)
{
3372
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3373 3374
}

3375
#ifdef CONFIG_MMU
3376
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3377 3378
					struct cftype *cft, u64 val)
{
3379
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3380

3381
	if (val & ~MOVE_MASK)
3382
		return -EINVAL;
3383

3384
	/*
3385 3386 3387 3388
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3389
	 */
3390
	memcg->move_charge_at_immigrate = val;
3391 3392
	return 0;
}
3393
#else
3394
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3395 3396 3397 3398 3399
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3400

3401
#ifdef CONFIG_NUMA
3402
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3403
{
3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3416
	int nid;
3417
	unsigned long nr;
3418
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3419

3420 3421 3422 3423 3424 3425 3426 3427 3428
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3429 3430
	}

3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3446 3447 3448 3449 3450 3451
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3452
static int memcg_stat_show(struct seq_file *m, void *v)
3453
{
3454
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3455
	unsigned long memory, memsw;
3456 3457
	struct mem_cgroup *mi;
	unsigned int i;
3458

3459 3460 3461 3462
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3463 3464
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3465
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3466
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3467
			continue;
3468 3469
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3470
	}
L
Lee Schermerhorn 已提交
3471

3472 3473 3474 3475 3476 3477 3478 3479
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3480
	/* Hierarchical information */
3481 3482 3483 3484
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3485
	}
3486 3487 3488 3489 3490
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
	if (do_swap_account)
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3491

3492 3493 3494
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

3495
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3496
			continue;
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3517
	}
K
KAMEZAWA Hiroyuki 已提交
3518

K
KOSAKI Motohiro 已提交
3519 3520 3521 3522
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3523
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3524 3525 3526 3527 3528
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3529
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3530
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3531

3532 3533 3534 3535
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3536
			}
3537 3538 3539 3540
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3541 3542 3543
	}
#endif

3544 3545 3546
	return 0;
}

3547 3548
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3549
{
3550
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3551

3552
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3553 3554
}

3555 3556
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3557
{
3558
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3559

3560
	if (val > 100)
K
KOSAKI Motohiro 已提交
3561 3562
		return -EINVAL;

3563
	if (css->parent)
3564 3565 3566
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3567

K
KOSAKI Motohiro 已提交
3568 3569 3570
	return 0;
}

3571 3572 3573
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3574
	unsigned long usage;
3575 3576 3577 3578
	int i;

	rcu_read_lock();
	if (!swap)
3579
		t = rcu_dereference(memcg->thresholds.primary);
3580
	else
3581
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3582 3583 3584 3585

	if (!t)
		goto unlock;

3586
	usage = mem_cgroup_usage(memcg, swap);
3587 3588

	/*
3589
	 * current_threshold points to threshold just below or equal to usage.
3590 3591 3592
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3593
	i = t->current_threshold;
3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3617
	t->current_threshold = i - 1;
3618 3619 3620 3621 3622 3623
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3624 3625 3626 3627 3628 3629 3630
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3631 3632 3633 3634 3635 3636 3637
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3638 3639 3640 3641 3642 3643 3644
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3645 3646
}

3647
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3648 3649 3650
{
	struct mem_cgroup_eventfd_list *ev;

3651 3652
	spin_lock(&memcg_oom_lock);

3653
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3654
		eventfd_signal(ev->eventfd, 1);
3655 3656

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3657 3658 3659
	return 0;
}

3660
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3661
{
K
KAMEZAWA Hiroyuki 已提交
3662 3663
	struct mem_cgroup *iter;

3664
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3665
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3666 3667
}

3668
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3669
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3670
{
3671 3672
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3673 3674
	unsigned long threshold;
	unsigned long usage;
3675
	int i, size, ret;
3676

3677
	ret = page_counter_memparse(args, "-1", &threshold);
3678 3679 3680 3681
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3682

3683
	if (type == _MEM) {
3684
		thresholds = &memcg->thresholds;
3685
		usage = mem_cgroup_usage(memcg, false);
3686
	} else if (type == _MEMSWAP) {
3687
		thresholds = &memcg->memsw_thresholds;
3688
		usage = mem_cgroup_usage(memcg, true);
3689
	} else
3690 3691 3692
		BUG();

	/* Check if a threshold crossed before adding a new one */
3693
	if (thresholds->primary)
3694 3695
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3696
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3697 3698

	/* Allocate memory for new array of thresholds */
3699
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3700
			GFP_KERNEL);
3701
	if (!new) {
3702 3703 3704
		ret = -ENOMEM;
		goto unlock;
	}
3705
	new->size = size;
3706 3707

	/* Copy thresholds (if any) to new array */
3708 3709
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3710
				sizeof(struct mem_cgroup_threshold));
3711 3712
	}

3713
	/* Add new threshold */
3714 3715
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3716 3717

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3718
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3719 3720 3721
			compare_thresholds, NULL);

	/* Find current threshold */
3722
	new->current_threshold = -1;
3723
	for (i = 0; i < size; i++) {
3724
		if (new->entries[i].threshold <= usage) {
3725
			/*
3726 3727
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3728 3729
			 * it here.
			 */
3730
			++new->current_threshold;
3731 3732
		} else
			break;
3733 3734
	}

3735 3736 3737 3738 3739
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3740

3741
	/* To be sure that nobody uses thresholds */
3742 3743 3744 3745 3746 3747 3748 3749
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3750
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3751 3752
	struct eventfd_ctx *eventfd, const char *args)
{
3753
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3754 3755
}

3756
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3757 3758
	struct eventfd_ctx *eventfd, const char *args)
{
3759
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3760 3761
}

3762
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3763
	struct eventfd_ctx *eventfd, enum res_type type)
3764
{
3765 3766
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3767
	unsigned long usage;
3768
	int i, j, size;
3769 3770

	mutex_lock(&memcg->thresholds_lock);
3771 3772

	if (type == _MEM) {
3773
		thresholds = &memcg->thresholds;
3774
		usage = mem_cgroup_usage(memcg, false);
3775
	} else if (type == _MEMSWAP) {
3776
		thresholds = &memcg->memsw_thresholds;
3777
		usage = mem_cgroup_usage(memcg, true);
3778
	} else
3779 3780
		BUG();

3781 3782 3783
	if (!thresholds->primary)
		goto unlock;

3784 3785 3786 3787
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3788 3789 3790
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3791 3792 3793
			size++;
	}

3794
	new = thresholds->spare;
3795

3796 3797
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3798 3799
		kfree(new);
		new = NULL;
3800
		goto swap_buffers;
3801 3802
	}

3803
	new->size = size;
3804 3805

	/* Copy thresholds and find current threshold */
3806 3807 3808
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3809 3810
			continue;

3811
		new->entries[j] = thresholds->primary->entries[i];
3812
		if (new->entries[j].threshold <= usage) {
3813
			/*
3814
			 * new->current_threshold will not be used
3815 3816 3817
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3818
			++new->current_threshold;
3819 3820 3821 3822
		}
		j++;
	}

3823
swap_buffers:
3824 3825
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3826 3827 3828 3829 3830 3831
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

3832
	rcu_assign_pointer(thresholds->primary, new);
3833

3834
	/* To be sure that nobody uses thresholds */
3835
	synchronize_rcu();
3836
unlock:
3837 3838
	mutex_unlock(&memcg->thresholds_lock);
}
3839

3840
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3841 3842
	struct eventfd_ctx *eventfd)
{
3843
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3844 3845
}

3846
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3847 3848
	struct eventfd_ctx *eventfd)
{
3849
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3850 3851
}

3852
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3853
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3854 3855 3856 3857 3858 3859 3860
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3861
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3862 3863 3864 3865 3866

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3867
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
3868
		eventfd_signal(eventfd, 1);
3869
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3870 3871 3872 3873

	return 0;
}

3874
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3875
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3876 3877 3878
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3879
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3880

3881
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3882 3883 3884 3885 3886 3887
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3888
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3889 3890
}

3891
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3892
{
3893
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3894

3895 3896
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3897 3898 3899
	return 0;
}

3900
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3901 3902
	struct cftype *cft, u64 val)
{
3903
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3904 3905

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3906
	if (!css->parent || !((val == 0) || (val == 1)))
3907 3908
		return -EINVAL;

3909
	memcg->oom_kill_disable = val;
3910
	if (!val)
3911
		memcg_oom_recover(memcg);
3912

3913 3914 3915
	return 0;
}

A
Andrew Morton 已提交
3916
#ifdef CONFIG_MEMCG_KMEM
3917
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3918
{
3919 3920 3921 3922 3923
	int ret;

	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
3924

3925
	return mem_cgroup_sockets_init(memcg, ss);
3926
}
3927

3928 3929
static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
{
3930 3931 3932 3933
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
	if (!memcg->kmem_acct_active)
		return;

	/*
	 * Clear the 'active' flag before clearing memcg_caches arrays entries.
	 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
	 * guarantees no cache will be created for this cgroup after we are
	 * done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_acct_active = false;

	memcg_deactivate_kmem_caches(memcg);
3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
3972 3973
}

3974
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
3975
{
3976 3977 3978 3979 3980
	if (memcg->kmem_acct_activated) {
		memcg_destroy_kmem_caches(memcg);
		static_key_slow_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
3981
	mem_cgroup_sockets_destroy(memcg);
3982
}
3983
#else
3984
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3985 3986 3987
{
	return 0;
}
G
Glauber Costa 已提交
3988

3989 3990 3991 3992
static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
{
}

3993 3994 3995
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}
3996 3997
#endif

3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4011 4012 4013 4014 4015
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4016
static void memcg_event_remove(struct work_struct *work)
4017
{
4018 4019
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4020
	struct mem_cgroup *memcg = event->memcg;
4021 4022 4023

	remove_wait_queue(event->wqh, &event->wait);

4024
	event->unregister_event(memcg, event->eventfd);
4025 4026 4027 4028 4029 4030

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4031
	css_put(&memcg->css);
4032 4033 4034 4035 4036 4037 4038
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4039 4040
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
4041
{
4042 4043
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4044
	struct mem_cgroup *memcg = event->memcg;
4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4057
		spin_lock(&memcg->event_list_lock);
4058 4059 4060 4061 4062 4063 4064 4065
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4066
		spin_unlock(&memcg->event_list_lock);
4067 4068 4069 4070 4071
	}

	return 0;
}

4072
static void memcg_event_ptable_queue_proc(struct file *file,
4073 4074
		wait_queue_head_t *wqh, poll_table *pt)
{
4075 4076
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4077 4078 4079 4080 4081 4082

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4083 4084
 * DO NOT USE IN NEW FILES.
 *
4085 4086 4087 4088 4089
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4090 4091
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4092
{
4093
	struct cgroup_subsys_state *css = of_css(of);
4094
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4095
	struct mem_cgroup_event *event;
4096 4097 4098 4099
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4100
	const char *name;
4101 4102 4103
	char *endp;
	int ret;

4104 4105 4106
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4107 4108
	if (*endp != ' ')
		return -EINVAL;
4109
	buf = endp + 1;
4110

4111
	cfd = simple_strtoul(buf, &endp, 10);
4112 4113
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4114
	buf = endp + 1;
4115 4116 4117 4118 4119

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4120
	event->memcg = memcg;
4121
	INIT_LIST_HEAD(&event->list);
4122 4123 4124
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4150 4151 4152 4153 4154
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4155 4156
	 *
	 * DO NOT ADD NEW FILES.
4157
	 */
A
Al Viro 已提交
4158
	name = cfile.file->f_path.dentry->d_name.name;
4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4170 4171
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4172 4173 4174 4175 4176
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4177
	/*
4178 4179 4180
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4181
	 */
A
Al Viro 已提交
4182
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4183
					       &memory_cgrp_subsys);
4184
	ret = -EINVAL;
4185
	if (IS_ERR(cfile_css))
4186
		goto out_put_cfile;
4187 4188
	if (cfile_css != css) {
		css_put(cfile_css);
4189
		goto out_put_cfile;
4190
	}
4191

4192
	ret = event->register_event(memcg, event->eventfd, buf);
4193 4194 4195 4196 4197
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

4198 4199 4200
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4201 4202 4203 4204

	fdput(cfile);
	fdput(efile);

4205
	return nbytes;
4206 4207

out_put_css:
4208
	css_put(css);
4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4221
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4222
	{
4223
		.name = "usage_in_bytes",
4224
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4225
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4226
	},
4227 4228
	{
		.name = "max_usage_in_bytes",
4229
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4230
		.write = mem_cgroup_reset,
4231
		.read_u64 = mem_cgroup_read_u64,
4232
	},
B
Balbir Singh 已提交
4233
	{
4234
		.name = "limit_in_bytes",
4235
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4236
		.write = mem_cgroup_write,
4237
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4238
	},
4239 4240 4241
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4242
		.write = mem_cgroup_write,
4243
		.read_u64 = mem_cgroup_read_u64,
4244
	},
B
Balbir Singh 已提交
4245 4246
	{
		.name = "failcnt",
4247
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4248
		.write = mem_cgroup_reset,
4249
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4250
	},
4251 4252
	{
		.name = "stat",
4253
		.seq_show = memcg_stat_show,
4254
	},
4255 4256
	{
		.name = "force_empty",
4257
		.write = mem_cgroup_force_empty_write,
4258
	},
4259 4260 4261 4262 4263
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4264
	{
4265
		.name = "cgroup.event_control",		/* XXX: for compat */
4266
		.write = memcg_write_event_control,
4267 4268 4269
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
4270 4271 4272 4273 4274
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4275 4276 4277 4278 4279
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4280 4281
	{
		.name = "oom_control",
4282
		.seq_show = mem_cgroup_oom_control_read,
4283
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4284 4285
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4286 4287 4288
	{
		.name = "pressure_level",
	},
4289 4290 4291
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4292
		.seq_show = memcg_numa_stat_show,
4293 4294
	},
#endif
4295 4296 4297 4298
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4299
		.write = mem_cgroup_write,
4300
		.read_u64 = mem_cgroup_read_u64,
4301 4302 4303 4304
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4305
		.read_u64 = mem_cgroup_read_u64,
4306 4307 4308 4309
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4310
		.write = mem_cgroup_reset,
4311
		.read_u64 = mem_cgroup_read_u64,
4312 4313 4314 4315
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4316
		.write = mem_cgroup_reset,
4317
		.read_u64 = mem_cgroup_read_u64,
4318
	},
4319 4320 4321
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4322 4323 4324 4325
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4326 4327
	},
#endif
4328
#endif
4329
	{ },	/* terminate */
4330
};
4331

4332
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4333 4334
{
	struct mem_cgroup_per_node *pn;
4335
	struct mem_cgroup_per_zone *mz;
4336
	int zone, tmp = node;
4337 4338 4339 4340 4341 4342 4343 4344
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4345 4346
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4347
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4348 4349
	if (!pn)
		return 1;
4350 4351 4352

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4353
		lruvec_init(&mz->lruvec);
4354 4355
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4356
		mz->memcg = memcg;
4357
	}
4358
	memcg->nodeinfo[node] = pn;
4359 4360 4361
	return 0;
}

4362
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4363
{
4364
	kfree(memcg->nodeinfo[node]);
4365 4366
}

4367 4368
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4369
	struct mem_cgroup *memcg;
4370
	size_t size;
4371

4372 4373
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4374

4375
	memcg = kzalloc(size, GFP_KERNEL);
4376
	if (!memcg)
4377 4378
		return NULL;

4379 4380
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4381
		goto out_free;
4382 4383
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4384 4385

out_free:
4386
	kfree(memcg);
4387
	return NULL;
4388 4389
}

4390
/*
4391 4392 4393 4394 4395 4396 4397 4398
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
4399
 */
4400 4401

static void __mem_cgroup_free(struct mem_cgroup *memcg)
4402
{
4403
	int node;
4404

4405
	mem_cgroup_remove_from_trees(memcg);
4406 4407 4408 4409 4410

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);
4411
	kfree(memcg);
4412
}
4413

4414 4415 4416
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4417
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4418
{
4419
	if (!memcg->memory.parent)
4420
		return NULL;
4421
	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4422
}
G
Glauber Costa 已提交
4423
EXPORT_SYMBOL(parent_mem_cgroup);
4424

L
Li Zefan 已提交
4425
static struct cgroup_subsys_state * __ref
4426
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
4427
{
4428
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4429
	long error = -ENOMEM;
4430
	int node;
B
Balbir Singh 已提交
4431

4432 4433
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4434
		return ERR_PTR(error);
4435

B
Bob Liu 已提交
4436
	for_each_node(node)
4437
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4438
			goto free_out;
4439

4440
	/* root ? */
4441
	if (parent_css == NULL) {
4442
		root_mem_cgroup = memcg;
4443
		page_counter_init(&memcg->memory, NULL);
4444
		memcg->high = PAGE_COUNTER_MAX;
4445
		memcg->soft_limit = PAGE_COUNTER_MAX;
4446 4447
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4448
	}
4449

4450 4451 4452 4453 4454
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4455
	vmpressure_init(&memcg->vmpressure);
4456 4457
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
V
Vladimir Davydov 已提交
4458 4459 4460
#ifdef CONFIG_MEMCG_KMEM
	memcg->kmemcg_id = -1;
#endif
4461 4462 4463 4464 4465 4466 4467 4468 4469

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
4470
mem_cgroup_css_online(struct cgroup_subsys_state *css)
4471
{
4472
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4473
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4474
	int ret;
4475

4476
	if (css->id > MEM_CGROUP_ID_MAX)
4477 4478
		return -ENOSPC;

T
Tejun Heo 已提交
4479
	if (!parent)
4480 4481
		return 0;

4482
	mutex_lock(&memcg_create_mutex);
4483 4484 4485 4486 4487 4488

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
4489
		page_counter_init(&memcg->memory, &parent->memory);
4490
		memcg->high = PAGE_COUNTER_MAX;
4491
		memcg->soft_limit = PAGE_COUNTER_MAX;
4492 4493
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4494

4495
		/*
4496 4497
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
4498
		 */
4499
	} else {
4500
		page_counter_init(&memcg->memory, NULL);
4501
		memcg->high = PAGE_COUNTER_MAX;
4502
		memcg->soft_limit = PAGE_COUNTER_MAX;
4503 4504
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4505 4506 4507 4508 4509
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4510
		if (parent != root_mem_cgroup)
4511
			memory_cgrp_subsys.broken_hierarchy = true;
4512
	}
4513
	mutex_unlock(&memcg_create_mutex);
4514

4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
	if (ret)
		return ret;

	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
4527 4528
}

4529
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4530
{
4531
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4532
	struct mem_cgroup_event *event, *tmp;
4533 4534 4535 4536 4537 4538

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4539 4540
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4541 4542 4543
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4544
	spin_unlock(&memcg->event_list_lock);
4545

4546
	vmpressure_cleanup(&memcg->vmpressure);
4547 4548

	memcg_deactivate_kmem(memcg);
4549 4550
}

4551
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4552
{
4553
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4554

4555
	memcg_destroy_kmem(memcg);
4556
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4557 4558
}

4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4576 4577 4578
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4579 4580
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4581
	memcg->soft_limit = PAGE_COUNTER_MAX;
4582 4583
}

4584
#ifdef CONFIG_MMU
4585
/* Handlers for move charge at task migration. */
4586
static int mem_cgroup_do_precharge(unsigned long count)
4587
{
4588
	int ret;
4589 4590

	/* Try a single bulk charge without reclaim first */
4591
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4592
	if (!ret) {
4593 4594 4595
		mc.precharge += count;
		return ret;
	}
4596
	if (ret == -EINTR) {
4597
		cancel_charge(root_mem_cgroup, count);
4598 4599
		return ret;
	}
4600 4601

	/* Try charges one by one with reclaim */
4602
	while (count--) {
4603
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4604 4605 4606
		/*
		 * In case of failure, any residual charges against
		 * mc.to will be dropped by mem_cgroup_clear_mc()
4607 4608
		 * later on.  However, cancel any charges that are
		 * bypassed to root right away or they'll be lost.
4609
		 */
4610
		if (ret == -EINTR)
4611
			cancel_charge(root_mem_cgroup, 1);
4612 4613
		if (ret)
			return ret;
4614
		mc.precharge++;
4615
		cond_resched();
4616
	}
4617
	return 0;
4618 4619 4620
}

/**
4621
 * get_mctgt_type - get target type of moving charge
4622 4623 4624
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4625
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4626 4627 4628 4629 4630 4631
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4632 4633 4634
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4635 4636 4637 4638 4639
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4640
	swp_entry_t	ent;
4641 4642 4643
};

enum mc_target_type {
4644
	MC_TARGET_NONE = 0,
4645
	MC_TARGET_PAGE,
4646
	MC_TARGET_SWAP,
4647 4648
};

D
Daisuke Nishimura 已提交
4649 4650
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4651
{
D
Daisuke Nishimura 已提交
4652
	struct page *page = vm_normal_page(vma, addr, ptent);
4653

D
Daisuke Nishimura 已提交
4654 4655 4656
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4657
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4658
			return NULL;
4659 4660 4661 4662
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4663 4664 4665 4666 4667 4668
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4669
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4670 4671 4672 4673 4674 4675
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4676
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4677
		return NULL;
4678 4679 4680 4681
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4682
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
4683 4684 4685 4686 4687
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
4688 4689 4690 4691 4692 4693 4694
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4695

4696 4697 4698 4699 4700 4701 4702 4703 4704
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4705
	if (!(mc.flags & MOVE_FILE))
4706 4707 4708
		return NULL;

	mapping = vma->vm_file->f_mapping;
4709
	pgoff = linear_page_index(vma, addr);
4710 4711

	/* page is moved even if it's not RSS of this task(page-faulted). */
4712 4713
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4726
#endif
4727 4728 4729
	return page;
}

4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
 * @nr_pages: number of regular pages (>1 for huge pages)
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
 * - page is not on LRU (isolate_page() is useful.)
 * - compound_lock is held when nr_pages > 1
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
	int ret;

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
	if (nr_pages > 1 && !PageTransHuge(page))
		goto out;

	/*
	 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
	 * of its source page while we change it: page migration takes
	 * both pages off the LRU, but page cache replacement doesn't.
	 */
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

	spin_lock_irqsave(&from->move_lock, flags);

	if (!PageAnon(page) && page_mapped(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
	memcg_check_events(to, page);
	mem_cgroup_charge_statistics(from, page, -nr_pages);
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4816
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4817 4818 4819
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4820
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4821 4822 4823 4824 4825 4826
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4827
	else if (pte_none(ptent))
4828
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4829 4830

	if (!page && !ent.val)
4831
		return ret;
4832 4833
	if (page) {
		/*
4834
		 * Do only loose check w/o serialization.
4835
		 * mem_cgroup_move_account() checks the page is valid or
4836
		 * not under LRU exclusion.
4837
		 */
4838
		if (page->mem_cgroup == mc.from) {
4839 4840 4841 4842 4843 4844 4845
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4846 4847
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4848
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4849 4850 4851
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4852 4853 4854 4855
	}
	return ret;
}

4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4869
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4870
	if (!(mc.flags & MOVE_ANON))
4871
		return ret;
4872
	if (page->mem_cgroup == mc.from) {
4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4889 4890 4891 4892
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4893
	struct vm_area_struct *vma = walk->vma;
4894 4895 4896
	pte_t *pte;
	spinlock_t *ptl;

4897
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4898 4899
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4900
		spin_unlock(ptl);
4901
		return 0;
4902
	}
4903

4904 4905
	if (pmd_trans_unstable(pmd))
		return 0;
4906 4907
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4908
		if (get_mctgt_type(vma, addr, *pte, NULL))
4909 4910 4911 4912
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4913 4914 4915
	return 0;
}

4916 4917 4918 4919
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4920 4921 4922 4923
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4924
	down_read(&mm->mmap_sem);
4925
	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4926
	up_read(&mm->mmap_sem);
4927 4928 4929 4930 4931 4932 4933 4934 4935

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4936 4937 4938 4939 4940
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4941 4942
}

4943 4944
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4945
{
4946 4947 4948
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4949
	/* we must uncharge all the leftover precharges from mc.to */
4950
	if (mc.precharge) {
4951
		cancel_charge(mc.to, mc.precharge);
4952 4953 4954 4955 4956 4957 4958
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4959
		cancel_charge(mc.from, mc.moved_charge);
4960
		mc.moved_charge = 0;
4961
	}
4962 4963 4964
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4965
		if (!mem_cgroup_is_root(mc.from))
4966
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4967

4968
		/*
4969 4970
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4971
		 */
4972
		if (!mem_cgroup_is_root(mc.to))
4973 4974
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4975
		css_put_many(&mc.from->css, mc.moved_swap);
4976

L
Li Zefan 已提交
4977
		/* we've already done css_get(mc.to) */
4978 4979
		mc.moved_swap = 0;
	}
4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4993
	spin_lock(&mc.lock);
4994 4995
	mc.from = NULL;
	mc.to = NULL;
4996
	spin_unlock(&mc.lock);
4997 4998
}

4999
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5000
				 struct cgroup_taskset *tset)
5001
{
5002
	struct task_struct *p = cgroup_taskset_first(tset);
5003
	int ret = 0;
5004
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5005
	unsigned long move_flags;
5006

5007 5008 5009 5010 5011
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
5012
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5013
	if (move_flags) {
5014 5015 5016
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5017
		VM_BUG_ON(from == memcg);
5018 5019 5020 5021 5022

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5023 5024 5025 5026
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5027
			VM_BUG_ON(mc.moved_charge);
5028
			VM_BUG_ON(mc.moved_swap);
5029

5030
			spin_lock(&mc.lock);
5031
			mc.from = from;
5032
			mc.to = memcg;
5033
			mc.flags = move_flags;
5034
			spin_unlock(&mc.lock);
5035
			/* We set mc.moving_task later */
5036 5037 5038 5039

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5040 5041
		}
		mmput(mm);
5042 5043 5044 5045
	}
	return ret;
}

5046
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5047
				     struct cgroup_taskset *tset)
5048
{
5049 5050
	if (mc.to)
		mem_cgroup_clear_mc();
5051 5052
}

5053 5054 5055
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5056
{
5057
	int ret = 0;
5058
	struct vm_area_struct *vma = walk->vma;
5059 5060
	pte_t *pte;
	spinlock_t *ptl;
5061 5062 5063
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5064

5065 5066 5067 5068 5069 5070 5071 5072 5073 5074
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
5075
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5076
		if (mc.precharge < HPAGE_PMD_NR) {
5077
			spin_unlock(ptl);
5078 5079 5080 5081 5082 5083 5084
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5085
							     mc.from, mc.to)) {
5086 5087 5088 5089 5090 5091 5092
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
5093
		spin_unlock(ptl);
5094
		return 0;
5095 5096
	}

5097 5098
	if (pmd_trans_unstable(pmd))
		return 0;
5099 5100 5101 5102
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5103
		swp_entry_t ent;
5104 5105 5106 5107

		if (!mc.precharge)
			break;

5108
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5109 5110 5111 5112
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
5113
			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5114
				mc.precharge--;
5115 5116
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5117 5118
			}
			putback_lru_page(page);
5119
put:			/* get_mctgt_type() gets the page */
5120 5121
			put_page(page);
			break;
5122 5123
		case MC_TARGET_SWAP:
			ent = target.ent;
5124
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5125
				mc.precharge--;
5126 5127 5128
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5129
			break;
5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5144
		ret = mem_cgroup_do_precharge(1);
5145 5146 5147 5148 5149 5150 5151 5152 5153
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
5154 5155 5156 5157
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
		.mm = mm,
	};
5158 5159

	lru_add_drain_all();
5160 5161 5162 5163 5164 5165 5166
	/*
	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
	 * move_lock while we're moving its pages to another memcg.
	 * Then wait for already started RCU-only updates to finish.
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5180 5181 5182 5183 5184
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5185
	up_read(&mm->mmap_sem);
5186
	atomic_dec(&mc.from->moving_account);
5187 5188
}

5189
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5190
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5191
{
5192
	struct task_struct *p = cgroup_taskset_first(tset);
5193
	struct mm_struct *mm = get_task_mm(p);
5194 5195

	if (mm) {
5196 5197
		if (mc.to)
			mem_cgroup_move_charge(mm);
5198 5199
		mmput(mm);
	}
5200 5201
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5202
}
5203
#else	/* !CONFIG_MMU */
5204
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5205
				 struct cgroup_taskset *tset)
5206 5207 5208
{
	return 0;
}
5209
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5210
				     struct cgroup_taskset *tset)
5211 5212
{
}
5213
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5214
				 struct cgroup_taskset *tset)
5215 5216 5217
{
}
#endif
B
Balbir Singh 已提交
5218

5219 5220
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5221 5222
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5223
 */
5224
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5225 5226
{
	/*
5227
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5228 5229 5230
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5231
	if (cgroup_on_dfl(root_css->cgroup))
5232 5233 5234
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5235 5236
}

5237 5238 5239 5240 5241 5242 5243 5244 5245
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
	return mem_cgroup_usage(mem_cgroup_from_css(css), false);
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5246
	unsigned long low = READ_ONCE(memcg->low);
5247 5248

	if (low == PAGE_COUNTER_MAX)
5249
		seq_puts(m, "max\n");
5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5264
	err = page_counter_memparse(buf, "max", &low);
5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5276
	unsigned long high = READ_ONCE(memcg->high);
5277 5278

	if (high == PAGE_COUNTER_MAX)
5279
		seq_puts(m, "max\n");
5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
5294
	err = page_counter_memparse(buf, "max", &high);
5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305
	if (err)
		return err;

	memcg->high = high;

	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5306
	unsigned long max = READ_ONCE(memcg->memory.limit);
5307 5308

	if (max == PAGE_COUNTER_MAX)
5309
		seq_puts(m, "max\n");
5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
5324
	err = page_counter_memparse(buf, "max", &max);
5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377
	if (err)
		return err;

	err = mem_cgroup_resize_limit(memcg, max);
	if (err)
		return err;

	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

static struct cftype memory_files[] = {
	{
		.name = "current",
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_events_show,
	},
	{ }	/* terminate */
};

5378
struct cgroup_subsys memory_cgrp_subsys = {
5379
	.css_alloc = mem_cgroup_css_alloc,
5380
	.css_online = mem_cgroup_css_online,
5381 5382
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
5383
	.css_reset = mem_cgroup_css_reset,
5384 5385
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5386
	.attach = mem_cgroup_move_task,
5387
	.bind = mem_cgroup_bind,
5388 5389
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5390
	.early_init = 0,
B
Balbir Singh 已提交
5391
};
5392

5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427
/**
 * mem_cgroup_events - count memory events against a cgroup
 * @memcg: the memory cgroup
 * @idx: the event index
 * @nr: the number of events to account for
 */
void mem_cgroup_events(struct mem_cgroup *memcg,
		       enum mem_cgroup_events_index idx,
		       unsigned int nr)
{
	this_cpu_add(memcg->stat->events[idx], nr);
}

/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5428
	if (page_counter_read(&memcg->memory) >= memcg->low)
5429 5430 5431 5432 5433 5434 5435 5436
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5437
		if (page_counter_read(&memcg->memory) >= memcg->low)
5438 5439 5440 5441 5442
			return false;
	}
	return true;
}

5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5478
		if (page->mem_cgroup)
5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538
			goto out;
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (do_swap_account && PageSwapCache(page))
		memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);

	if (ret == -EINTR) {
		memcg = root_mem_cgroup;
		ret = 0;
	}
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5539 5540
	commit_charge(page, memcg, lrucare);

5541 5542 5543 5544 5545
	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

5546 5547 5548 5549
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590

	if (do_swap_account && PageSwapCache(page)) {
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

5591 5592 5593 5594
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5595
	unsigned long nr_pages = nr_anon + nr_file;
5596 5597
	unsigned long flags;

5598
	if (!mem_cgroup_is_root(memcg)) {
5599 5600 5601
		page_counter_uncharge(&memcg->memory, nr_pages);
		if (do_swap_account)
			page_counter_uncharge(&memcg->memsw, nr_pages);
5602 5603
		memcg_oom_recover(memcg);
	}
5604 5605 5606 5607 5608 5609

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5610
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5611 5612
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5613 5614

	if (!mem_cgroup_is_root(memcg))
5615
		css_put_many(&memcg->css, nr_pages);
5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5638
		if (!page->mem_cgroup)
5639 5640 5641 5642
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5643
		 * page->mem_cgroup at this point, we have fully
5644
		 * exclusive access to the page.
5645 5646
		 */

5647
		if (memcg != page->mem_cgroup) {
5648
			if (memcg) {
5649 5650 5651
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5652
			}
5653
			memcg = page->mem_cgroup;
5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5667
		page->mem_cgroup = NULL;
5668 5669 5670 5671 5672

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5673 5674
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5675 5676
}

5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5689
	/* Don't touch page->lru of any random page, pre-check: */
5690
	if (!page->mem_cgroup)
5691 5692
		return;

5693 5694 5695
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5696

5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5708

5709 5710
	if (!list_empty(page_list))
		uncharge_list(page_list);
5711 5712 5713 5714 5715 5716
}

/**
 * mem_cgroup_migrate - migrate a charge to another page
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
5717
 * @lrucare: either or both pages might be on the LRU already
5718 5719 5720 5721 5722 5723 5724 5725
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
			bool lrucare)
{
5726
	struct mem_cgroup *memcg;
5727 5728 5729 5730 5731 5732 5733
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5734 5735
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5736 5737 5738 5739 5740

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5741
	if (newpage->mem_cgroup)
5742 5743
		return;

5744 5745 5746 5747 5748 5749
	/*
	 * Swapcache readahead pages can get migrated before being
	 * charged, and migration from compaction can happen to an
	 * uncharged page when the PFN walker finds a page that
	 * reclaim just put back on the LRU but has not released yet.
	 */
5750
	memcg = oldpage->mem_cgroup;
5751
	if (!memcg)
5752 5753 5754 5755 5756
		return;

	if (lrucare)
		lock_page_lru(oldpage, &isolated);

5757
	oldpage->mem_cgroup = NULL;
5758 5759 5760 5761

	if (lrucare)
		unlock_page_lru(oldpage, isolated);

5762
	commit_charge(newpage, memcg, lrucare);
5763 5764
}

5765
/*
5766 5767 5768 5769 5770 5771
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5772 5773 5774
 */
static int __init mem_cgroup_init(void)
{
5775 5776
	int cpu, node;

5777
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;
		int zone;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			struct mem_cgroup_tree_per_zone *rtpz;

			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5800 5801 5802
	return 0;
}
subsys_initcall(mem_cgroup_init);
5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837

#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

	if (!do_swap_account)
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

5838
	/* Caller disabled preemption with mapping->tree_lock */
5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858
	mem_cgroup_charge_statistics(memcg, page, -1);
	memcg_check_events(memcg, page);
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

	if (!do_swap_account)
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
5859
	memcg = mem_cgroup_from_id(id);
5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924
	if (memcg) {
		if (!mem_cgroup_is_root(memcg))
			page_counter_uncharge(&memcg->memsw, 1);
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}

/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */