memcontrol.c 189.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
B
Balbir Singh 已提交
2 3 4 5 6
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
7 8 9
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
10 11 12 13
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
14 15 16 17
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
B
Balbir Singh 已提交
23 24
 */

25
#include <linux/page_counter.h>
B
Balbir Singh 已提交
26 27
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
28
#include <linux/pagewalk.h>
29
#include <linux/sched/mm.h>
30
#include <linux/shmem_fs.h>
31
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
32
#include <linux/pagemap.h>
33
#include <linux/vm_event_item.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/swap_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
59
#include <linux/tracehook.h>
60
#include <linux/psi.h>
61
#include <linux/seq_buf.h>
K
KAMEZAWA Hiroyuki 已提交
62
#include "internal.h"
G
Glauber Costa 已提交
63
#include <net/sock.h>
M
Michal Hocko 已提交
64
#include <net/ip.h>
65
#include "slab.h"
B
Balbir Singh 已提交
66

67
#include <linux/uaccess.h>
68

69 70
#include <trace/events/vmscan.h>

71 72
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
73

74 75
struct mem_cgroup *root_mem_cgroup __read_mostly;

76 77 78
/* Active memory cgroup to use from an interrupt context */
DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);

79 80 81
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

82 83 84
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

85
/* Whether the swap controller is active */
A
Andrew Morton 已提交
86
#ifdef CONFIG_MEMCG_SWAP
87
bool cgroup_memory_noswap __read_mostly;
88
#else
89
#define cgroup_memory_noswap		1
90
#endif
91

92 93 94 95
#ifdef CONFIG_CGROUP_WRITEBACK
static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
#endif

96 97 98
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
99
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
100 101
}

102 103
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
104

105 106 107 108 109
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

110
struct mem_cgroup_tree_per_node {
111
	struct rb_root rb_root;
112
	struct rb_node *rb_rightmost;
113 114 115 116 117 118 119 120 121
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
122 123 124 125 126
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
127

128 129 130
/*
 * cgroup_event represents events which userspace want to receive.
 */
131
struct mem_cgroup_event {
132
	/*
133
	 * memcg which the event belongs to.
134
	 */
135
	struct mem_cgroup *memcg;
136 137 138 139 140 141 142 143
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
144 145 146 147 148
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
149
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
150
			      struct eventfd_ctx *eventfd, const char *args);
151 152 153 154 155
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
156
	void (*unregister_event)(struct mem_cgroup *memcg,
157
				 struct eventfd_ctx *eventfd);
158 159 160 161 162 163
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
164
	wait_queue_entry_t wait;
165 166 167
	struct work_struct remove;
};

168 169
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
170

171 172
/* Stuffs for move charges at task migration. */
/*
173
 * Types of charges to be moved.
174
 */
175 176 177
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
178

179 180
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
181
	spinlock_t	  lock; /* for from, to */
182
	struct mm_struct  *mm;
183 184
	struct mem_cgroup *from;
	struct mem_cgroup *to;
185
	unsigned long flags;
186
	unsigned long precharge;
187
	unsigned long moved_charge;
188
	unsigned long moved_swap;
189 190 191
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
192
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
193 194
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
195

196 197 198 199
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
200
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
201
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
202

203
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
204 205 206 207
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
208
	_KMEM,
V
Vladimir Davydov 已提交
209
	_TCP,
G
Glauber Costa 已提交
210 211
};

212 213
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
214
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
215 216
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
217

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(root, iter, NULL))

#define for_each_mem_cgroup(iter)			\
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(NULL, iter, NULL))

233 234 235 236 237 238
static inline bool should_force_charge(void)
{
	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
		(current->flags & PF_EXITING);
}

239 240 241 242 243 244 245 246 247 248 249 250 251
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

252
#ifdef CONFIG_MEMCG_KMEM
R
Roman Gushchin 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
extern spinlock_t css_set_lock;

static void obj_cgroup_release(struct percpu_ref *ref)
{
	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
	struct mem_cgroup *memcg;
	unsigned int nr_bytes;
	unsigned int nr_pages;
	unsigned long flags;

	/*
	 * At this point all allocated objects are freed, and
	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
	 *
	 * The following sequence can lead to it:
	 * 1) CPU0: objcg == stock->cached_objcg
	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
	 *          PAGE_SIZE bytes are charged
	 * 3) CPU1: a process from another memcg is allocating something,
	 *          the stock if flushed,
	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
	 * 5) CPU0: we do release this object,
	 *          92 bytes are added to stock->nr_bytes
	 * 6) CPU0: stock is flushed,
	 *          92 bytes are added to objcg->nr_charged_bytes
	 *
	 * In the result, nr_charged_bytes == PAGE_SIZE.
	 * This page will be uncharged in obj_cgroup_release().
	 */
	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
	nr_pages = nr_bytes >> PAGE_SHIFT;

	spin_lock_irqsave(&css_set_lock, flags);
	memcg = obj_cgroup_memcg(objcg);
	if (nr_pages)
		__memcg_kmem_uncharge(memcg, nr_pages);
	list_del(&objcg->list);
	mem_cgroup_put(memcg);
	spin_unlock_irqrestore(&css_set_lock, flags);

	percpu_ref_exit(ref);
	kfree_rcu(objcg, rcu);
}

static struct obj_cgroup *obj_cgroup_alloc(void)
{
	struct obj_cgroup *objcg;
	int ret;

	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
	if (!objcg)
		return NULL;

	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
			      GFP_KERNEL);
	if (ret) {
		kfree(objcg);
		return NULL;
	}
	INIT_LIST_HEAD(&objcg->list);
	return objcg;
}

static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
				  struct mem_cgroup *parent)
{
	struct obj_cgroup *objcg, *iter;

	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);

	spin_lock_irq(&css_set_lock);

	/* Move active objcg to the parent's list */
	xchg(&objcg->memcg, parent);
	css_get(&parent->css);
	list_add(&objcg->list, &parent->objcg_list);

	/* Move already reparented objcgs to the parent's list */
	list_for_each_entry(iter, &memcg->objcg_list, list) {
		css_get(&parent->css);
		xchg(&iter->memcg, parent);
		css_put(&memcg->css);
	}
	list_splice(&memcg->objcg_list, &parent->objcg_list);

	spin_unlock_irq(&css_set_lock);

	percpu_ref_kill(&objcg->refcnt);
}

345
/*
346
 * This will be used as a shrinker list's index.
L
Li Zefan 已提交
347 348 349 350 351
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
352
 *
353 354
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
355
 */
356 357
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
358

359 360 361 362 363 364 365 366 367 368 369 370 371
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

372 373 374 375 376 377
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
378
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
379 380
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
381
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
382 383 384
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
385
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
386

387 388
/*
 * A lot of the calls to the cache allocation functions are expected to be
389
 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
390 391 392
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
393
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
394
EXPORT_SYMBOL(memcg_kmem_enabled_key);
395
#endif
396

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
static int memcg_shrinker_map_size;
static DEFINE_MUTEX(memcg_shrinker_map_mutex);

static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
{
	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
}

static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
					 int size, int old_size)
{
	struct memcg_shrinker_map *new, *old;
	int nid;

	lockdep_assert_held(&memcg_shrinker_map_mutex);

	for_each_node(nid) {
		old = rcu_dereference_protected(
			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
		/* Not yet online memcg */
		if (!old)
			return 0;

420
		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
		if (!new)
			return -ENOMEM;

		/* Set all old bits, clear all new bits */
		memset(new->map, (int)0xff, old_size);
		memset((void *)new->map + old_size, 0, size - old_size);

		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
	}

	return 0;
}

static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *pn;
	struct memcg_shrinker_map *map;
	int nid;

	if (mem_cgroup_is_root(memcg))
		return;

	for_each_node(nid) {
		pn = mem_cgroup_nodeinfo(memcg, nid);
		map = rcu_dereference_protected(pn->shrinker_map, true);
		if (map)
			kvfree(map);
		rcu_assign_pointer(pn->shrinker_map, NULL);
	}
}

static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	struct memcg_shrinker_map *map;
	int nid, size, ret = 0;

	if (mem_cgroup_is_root(memcg))
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	size = memcg_shrinker_map_size;
	for_each_node(nid) {
464
		map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
		if (!map) {
			memcg_free_shrinker_maps(memcg);
			ret = -ENOMEM;
			break;
		}
		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
	}
	mutex_unlock(&memcg_shrinker_map_mutex);

	return ret;
}

int memcg_expand_shrinker_maps(int new_id)
{
	int size, old_size, ret = 0;
	struct mem_cgroup *memcg;

	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
	old_size = memcg_shrinker_map_size;
	if (size <= old_size)
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	if (!root_mem_cgroup)
		goto unlock;

	for_each_mem_cgroup(memcg) {
		if (mem_cgroup_is_root(memcg))
			continue;
		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
495 496
		if (ret) {
			mem_cgroup_iter_break(NULL, memcg);
497
			goto unlock;
498
		}
499 500 501 502 503 504 505
	}
unlock:
	if (!ret)
		memcg_shrinker_map_size = size;
	mutex_unlock(&memcg_shrinker_map_mutex);
	return ret;
}
506 507 508 509 510 511 512 513

void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
{
	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
		struct memcg_shrinker_map *map;

		rcu_read_lock();
		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
514 515
		/* Pairs with smp mb in shrink_slab() */
		smp_mb__before_atomic();
516 517 518 519 520
		set_bit(shrinker_id, map->map);
		rcu_read_unlock();
	}
}

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

538
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
539 540 541 542 543
		memcg = root_mem_cgroup;

	return &memcg->css;
}

544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
563
	memcg = page->mem_cgroup;
564

565 566 567 568 569 570 571 572
	/*
	 * The lowest bit set means that memcg isn't a valid
	 * memcg pointer, but a obj_cgroups pointer.
	 * In this case the page is shared and doesn't belong
	 * to any specific memory cgroup.
	 */
	if ((unsigned long) memcg & 0x1UL)
		memcg = NULL;
573

574 575 576 577 578 579 580 581
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

582 583
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
584
{
585
	int nid = page_to_nid(page);
586

587
	return memcg->nodeinfo[nid];
588 589
}

590 591
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
592
{
593
	return soft_limit_tree.rb_tree_per_node[nid];
594 595
}

596
static struct mem_cgroup_tree_per_node *
597 598 599 600
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

601
	return soft_limit_tree.rb_tree_per_node[nid];
602 603
}

604 605
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
606
					 unsigned long new_usage_in_excess)
607 608 609
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
610
	struct mem_cgroup_per_node *mz_node;
611
	bool rightmost = true;
612 613 614 615 616 617 618 619 620

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
621
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
622
					tree_node);
623
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
624
			p = &(*p)->rb_left;
625
			rightmost = false;
626
		} else {
627
			p = &(*p)->rb_right;
628
		}
629
	}
630 631 632 633

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

634 635 636 637 638
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

639 640
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
641 642 643
{
	if (!mz->on_tree)
		return;
644 645 646 647

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

648 649 650 651
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

652 653
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
654
{
655 656 657
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
658
	__mem_cgroup_remove_exceeded(mz, mctz);
659
	spin_unlock_irqrestore(&mctz->lock, flags);
660 661
}

662 663 664
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
665
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
666 667 668 669 670 671 672
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
673 674 675

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
676
	unsigned long excess;
677 678
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
679

680
	mctz = soft_limit_tree_from_page(page);
681 682
	if (!mctz)
		return;
683 684 685 686 687
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
688
		mz = mem_cgroup_page_nodeinfo(memcg, page);
689
		excess = soft_limit_excess(memcg);
690 691 692 693 694
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
695 696 697
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
698 699
			/* if on-tree, remove it */
			if (mz->on_tree)
700
				__mem_cgroup_remove_exceeded(mz, mctz);
701 702 703 704
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
705
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
706
			spin_unlock_irqrestore(&mctz->lock, flags);
707 708 709 710 711 712
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
713 714 715
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
716

717
	for_each_node(nid) {
718 719
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
720 721
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
722 723 724
	}
}

725 726
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
727
{
728
	struct mem_cgroup_per_node *mz;
729 730 731

retry:
	mz = NULL;
732
	if (!mctz->rb_rightmost)
733 734
		goto done;		/* Nothing to reclaim from */

735 736
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
737 738 739 740 741
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
742
	__mem_cgroup_remove_exceeded(mz, mctz);
743
	if (!soft_limit_excess(mz->memcg) ||
S
Shakeel Butt 已提交
744
	    !css_tryget(&mz->memcg->css))
745 746 747 748 749
		goto retry;
done:
	return mz;
}

750 751
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
752
{
753
	struct mem_cgroup_per_node *mz;
754

755
	spin_lock_irq(&mctz->lock);
756
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
757
	spin_unlock_irq(&mctz->lock);
758 759 760
	return mz;
}

761 762 763 764 765 766 767 768
/**
 * __mod_memcg_state - update cgroup memory statistics
 * @memcg: the memory cgroup
 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 * @val: delta to add to the counter, can be negative
 */
void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
{
769
	long x, threshold = MEMCG_CHARGE_BATCH;
770 771 772 773

	if (mem_cgroup_disabled())
		return;

774
	if (memcg_stat_item_in_bytes(idx))
775 776
		threshold <<= PAGE_SHIFT;

777
	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
778
	if (unlikely(abs(x) > threshold)) {
779 780
		struct mem_cgroup *mi;

781 782 783 784 785
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
786 787
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmstats[idx]);
788 789 790 791 792
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
}

793 794 795 796 797 798 799 800 801 802 803
static struct mem_cgroup_per_node *
parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
{
	struct mem_cgroup *parent;

	parent = parent_mem_cgroup(pn->memcg);
	if (!parent)
		return NULL;
	return mem_cgroup_nodeinfo(parent, nid);
}

804 805
void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			      int val)
806 807
{
	struct mem_cgroup_per_node *pn;
808
	struct mem_cgroup *memcg;
809
	long x, threshold = MEMCG_CHARGE_BATCH;
810 811

	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
812
	memcg = pn->memcg;
813 814

	/* Update memcg */
815
	__mod_memcg_state(memcg, idx, val);
816

817 818 819
	/* Update lruvec */
	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);

820 821 822
	if (vmstat_item_in_bytes(idx))
		threshold <<= PAGE_SHIFT;

823
	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
824
	if (unlikely(abs(x) > threshold)) {
825
		pg_data_t *pgdat = lruvec_pgdat(lruvec);
826 827 828 829
		struct mem_cgroup_per_node *pi;

		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
			atomic_long_add(x, &pi->lruvec_stat[idx]);
830 831 832 833 834
		x = 0;
	}
	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
}

835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
/**
 * __mod_lruvec_state - update lruvec memory statistics
 * @lruvec: the lruvec
 * @idx: the stat item
 * @val: delta to add to the counter, can be negative
 *
 * The lruvec is the intersection of the NUMA node and a cgroup. This
 * function updates the all three counters that are affected by a
 * change of state at this level: per-node, per-cgroup, per-lruvec.
 */
void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			int val)
{
	/* Update node */
	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);

	/* Update memcg and lruvec */
	if (!mem_cgroup_disabled())
		__mod_memcg_lruvec_state(lruvec, idx, val);
}

856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
			     int val)
{
	struct page *head = compound_head(page); /* rmap on tail pages */
	pg_data_t *pgdat = page_pgdat(page);
	struct lruvec *lruvec;

	/* Untracked pages have no memcg, no lruvec. Update only the node */
	if (!head->mem_cgroup) {
		__mod_node_page_state(pgdat, idx, val);
		return;
	}

	lruvec = mem_cgroup_lruvec(head->mem_cgroup, pgdat);
	__mod_lruvec_state(lruvec, idx, val);
}
872
EXPORT_SYMBOL(__mod_lruvec_page_state);
873

874
void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
875
{
876
	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
877 878 879 880
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;

	rcu_read_lock();
881
	memcg = mem_cgroup_from_obj(p);
882

883 884 885 886 887 888 889
	/*
	 * Untracked pages have no memcg, no lruvec. Update only the
	 * node. If we reparent the slab objects to the root memcg,
	 * when we free the slab object, we need to update the per-memcg
	 * vmstats to keep it correct for the root memcg.
	 */
	if (!memcg) {
890 891
		__mod_node_page_state(pgdat, idx, val);
	} else {
892
		lruvec = mem_cgroup_lruvec(memcg, pgdat);
893 894 895 896 897
		__mod_lruvec_state(lruvec, idx, val);
	}
	rcu_read_unlock();
}

898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
/**
 * __count_memcg_events - account VM events in a cgroup
 * @memcg: the memory cgroup
 * @idx: the event item
 * @count: the number of events that occured
 */
void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
			  unsigned long count)
{
	unsigned long x;

	if (mem_cgroup_disabled())
		return;

	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
914 915
		struct mem_cgroup *mi;

916 917 918 919 920
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->events[idx], x);
921 922
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmevents[idx]);
923 924 925 926 927
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
}

928
static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
929
{
930
	return atomic_long_read(&memcg->vmevents[event]);
931 932
}

933 934
static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
{
935 936 937 938 939 940
	long x = 0;
	int cpu;

	for_each_possible_cpu(cpu)
		x += per_cpu(memcg->vmstats_local->events[event], cpu);
	return x;
941 942
}

943
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
944
					 struct page *page,
945
					 int nr_pages)
946
{
947 948
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
949
		__count_memcg_events(memcg, PGPGIN, 1);
950
	else {
951
		__count_memcg_events(memcg, PGPGOUT, 1);
952 953
		nr_pages = -nr_pages; /* for event */
	}
954

955
	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
956 957
}

958 959
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
960 961 962
{
	unsigned long val, next;

963 964
	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
965
	/* from time_after() in jiffies.h */
966
	if ((long)(next - val) < 0) {
967 968 969 970
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
971 972 973
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
974 975 976
		default:
			break;
		}
977
		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
978
		return true;
979
	}
980
	return false;
981 982 983 984 985 986
}

/*
 * Check events in order.
 *
 */
987
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
988 989
{
	/* threshold event is triggered in finer grain than soft limit */
990 991
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
992
		bool do_softlimit;
993

994 995
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
996
		mem_cgroup_threshold(memcg);
997 998
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
999
	}
1000 1001
}

1002
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1003
{
1004 1005 1006 1007 1008 1009 1010 1011
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1012
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1013
}
M
Michal Hocko 已提交
1014
EXPORT_SYMBOL(mem_cgroup_from_task);
1015

1016 1017 1018 1019 1020 1021 1022 1023 1024
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
 * returned.
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1025
{
1026 1027 1028 1029
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
1030

1031 1032
	rcu_read_lock();
	do {
1033 1034 1035 1036 1037 1038
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1039
			memcg = root_mem_cgroup;
1040 1041 1042 1043 1044
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1045
	} while (!css_tryget(&memcg->css));
1046
	rcu_read_unlock();
1047
	return memcg;
1048
}
1049 1050
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
/**
 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
 * @page: page from which memcg should be extracted.
 *
 * Obtain a reference on page->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned.
 */
struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
{
	struct mem_cgroup *memcg = page->mem_cgroup;

	if (mem_cgroup_disabled())
		return NULL;

	rcu_read_lock();
S
Shakeel Butt 已提交
1066 1067
	/* Page should not get uncharged and freed memcg under us. */
	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1068 1069 1070 1071 1072 1073
		memcg = root_mem_cgroup;
	rcu_read_unlock();
	return memcg;
}
EXPORT_SYMBOL(get_mem_cgroup_from_page);

1074
static __always_inline struct mem_cgroup *active_memcg(void)
1075
{
1076 1077 1078 1079 1080
	if (in_interrupt())
		return this_cpu_read(int_active_memcg);
	else
		return current->active_memcg;
}
1081

1082 1083 1084
static __always_inline struct mem_cgroup *get_active_memcg(void)
{
	struct mem_cgroup *memcg;
1085

1086 1087 1088
	rcu_read_lock();
	memcg = active_memcg();
	if (memcg) {
S
Shakeel Butt 已提交
1089
		/* current->active_memcg must hold a ref. */
1090
		if (WARN_ON_ONCE(!css_tryget(&memcg->css)))
S
Shakeel Butt 已提交
1091 1092
			memcg = root_mem_cgroup;
		else
1093 1094
			memcg = current->active_memcg;
	}
1095 1096 1097 1098 1099
	rcu_read_unlock();

	return memcg;
}

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
static __always_inline bool memcg_kmem_bypass(void)
{
	/* Allow remote memcg charging from any context. */
	if (unlikely(active_memcg()))
		return false;

	/* Memcg to charge can't be determined. */
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;

	return false;
}

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
/**
 * If active memcg is set, do not fallback to current->mm->memcg.
 */
static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
{
	if (memcg_kmem_bypass())
		return NULL;

	if (unlikely(active_memcg()))
		return get_active_memcg();

1124 1125
	return get_mem_cgroup_from_mm(current->mm);
}
1126

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
1140 1141 1142
 * Reclaimers can specify a node in @reclaim to divide up the memcgs
 * in the hierarchy among all concurrent reclaimers operating on the
 * same node.
1143
 */
1144
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1145
				   struct mem_cgroup *prev,
1146
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1147
{
1148
	struct mem_cgroup_reclaim_iter *iter;
1149
	struct cgroup_subsys_state *css = NULL;
1150
	struct mem_cgroup *memcg = NULL;
1151
	struct mem_cgroup *pos = NULL;
1152

1153 1154
	if (mem_cgroup_disabled())
		return NULL;
1155

1156 1157
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1158

1159
	if (prev && !reclaim)
1160
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1161

1162
	rcu_read_lock();
M
Michal Hocko 已提交
1163

1164
	if (reclaim) {
1165
		struct mem_cgroup_per_node *mz;
1166

1167
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1168
		iter = &mz->iter;
1169 1170 1171 1172

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

1173
		while (1) {
1174
			pos = READ_ONCE(iter->position);
1175 1176
			if (!pos || css_tryget(&pos->css))
				break;
1177
			/*
1178 1179 1180 1181 1182 1183
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
1184
			 */
1185 1186
			(void)cmpxchg(&iter->position, pos, NULL);
		}
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1204
		}
K
KAMEZAWA Hiroyuki 已提交
1205

1206 1207 1208 1209 1210 1211
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1212

1213 1214
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1215

1216 1217
		if (css_tryget(css))
			break;
1218

1219
		memcg = NULL;
1220
	}
1221 1222 1223

	if (reclaim) {
		/*
1224 1225 1226
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
1227
		 */
1228 1229
		(void)cmpxchg(&iter->position, pos, memcg);

1230 1231 1232 1233 1234 1235 1236
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1237
	}
1238

1239 1240
out_unlock:
	rcu_read_unlock();
1241 1242 1243
	if (prev && prev != root)
		css_put(&prev->css);

1244
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1245
}
K
KAMEZAWA Hiroyuki 已提交
1246

1247 1248 1249 1250 1251 1252 1253
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1254 1255 1256 1257 1258 1259
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1260

1261 1262
static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
					struct mem_cgroup *dead_memcg)
1263 1264
{
	struct mem_cgroup_reclaim_iter *iter;
1265 1266
	struct mem_cgroup_per_node *mz;
	int nid;
1267

1268 1269
	for_each_node(nid) {
		mz = mem_cgroup_nodeinfo(from, nid);
1270 1271
		iter = &mz->iter;
		cmpxchg(&iter->position, dead_memcg, NULL);
1272 1273 1274
	}
}

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup *last;

	do {
		__invalidate_reclaim_iterators(memcg, dead_memcg);
		last = memcg;
	} while ((memcg = parent_mem_cgroup(memcg)));

	/*
	 * When cgruop1 non-hierarchy mode is used,
	 * parent_mem_cgroup() does not walk all the way up to the
	 * cgroup root (root_mem_cgroup). So we have to handle
	 * dead_memcg from cgroup root separately.
	 */
	if (last != root_mem_cgroup)
		__invalidate_reclaim_iterators(root_mem_cgroup,
						dead_memcg);
}

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

1321
		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

1333
/**
1334
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1335
 * @page: the page
1336
 * @pgdat: pgdat of the page
1337
 *
1338
 * This function relies on page's memcg being stable - see the
1339
 * access rules in commit_charge().
1340
 */
M
Mel Gorman 已提交
1341
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
1342
{
1343
	struct mem_cgroup_per_node *mz;
1344
	struct mem_cgroup *memcg;
1345
	struct lruvec *lruvec;
1346

1347
	if (mem_cgroup_disabled()) {
1348
		lruvec = &pgdat->__lruvec;
1349 1350
		goto out;
	}
1351

1352
	memcg = page->mem_cgroup;
1353
	/*
1354
	 * Swapcache readahead pages are added to the LRU - and
1355
	 * possibly migrated - before they are charged.
1356
	 */
1357 1358
	if (!memcg)
		memcg = root_mem_cgroup;
1359

1360
	mz = mem_cgroup_page_nodeinfo(memcg, page);
1361 1362 1363 1364 1365 1366 1367
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
1368 1369
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
1370
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1371
}
1372

1373
/**
1374 1375 1376
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1377
 * @zid: zone id of the accounted pages
1378
 * @nr_pages: positive when adding or negative when removing
1379
 *
1380 1381 1382
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1383
 */
1384
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1385
				int zid, int nr_pages)
1386
{
1387
	struct mem_cgroup_per_node *mz;
1388
	unsigned long *lru_size;
1389
	long size;
1390 1391 1392 1393

	if (mem_cgroup_disabled())
		return;

1394
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1395
	lru_size = &mz->lru_zone_size[zid][lru];
1396 1397 1398 1399 1400

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1401 1402 1403
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1404 1405 1406 1407 1408 1409
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1410
}
1411

1412
/**
1413
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1414
 * @memcg: the memory cgroup
1415
 *
1416
 * Returns the maximum amount of memory @mem can be charged with, in
1417
 * pages.
1418
 */
1419
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1420
{
1421 1422 1423
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1424

1425
	count = page_counter_read(&memcg->memory);
1426
	limit = READ_ONCE(memcg->memory.max);
1427 1428 1429
	if (count < limit)
		margin = limit - count;

1430
	if (do_memsw_account()) {
1431
		count = page_counter_read(&memcg->memsw);
1432
		limit = READ_ONCE(memcg->memsw.max);
1433
		if (count < limit)
1434
			margin = min(margin, limit - count);
1435 1436
		else
			margin = 0;
1437 1438 1439
	}

	return margin;
1440 1441
}

1442
/*
Q
Qiang Huang 已提交
1443
 * A routine for checking "mem" is under move_account() or not.
1444
 *
Q
Qiang Huang 已提交
1445 1446 1447
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1448
 */
1449
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1450
{
1451 1452
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1453
	bool ret = false;
1454 1455 1456 1457 1458 1459 1460 1461 1462
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1463

1464 1465
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1466 1467
unlock:
	spin_unlock(&mc.lock);
1468 1469 1470
	return ret;
}

1471
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1472 1473
{
	if (mc.moving_task && current != mc.moving_task) {
1474
		if (mem_cgroup_under_move(memcg)) {
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
struct memory_stat {
	const char *name;
	unsigned int ratio;
	unsigned int idx;
};

static struct memory_stat memory_stats[] = {
	{ "anon", PAGE_SIZE, NR_ANON_MAPPED },
	{ "file", PAGE_SIZE, NR_FILE_PAGES },
	{ "kernel_stack", 1024, NR_KERNEL_STACK_KB },
1497
	{ "pagetables", PAGE_SIZE, NR_PAGETABLE },
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
	{ "percpu", 1, MEMCG_PERCPU_B },
	{ "sock", PAGE_SIZE, MEMCG_SOCK },
	{ "shmem", PAGE_SIZE, NR_SHMEM },
	{ "file_mapped", PAGE_SIZE, NR_FILE_MAPPED },
	{ "file_dirty", PAGE_SIZE, NR_FILE_DIRTY },
	{ "file_writeback", PAGE_SIZE, NR_WRITEBACK },
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	/*
	 * The ratio will be initialized in memory_stats_init(). Because
	 * on some architectures, the macro of HPAGE_PMD_SIZE is not
	 * constant(e.g. powerpc).
	 */
	{ "anon_thp", 0, NR_ANON_THPS },
1511 1512
	{ "file_thp", 0, NR_FILE_THPS },
	{ "shmem_thp", 0, NR_SHMEM_THPS },
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
#endif
	{ "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON },
	{ "active_anon", PAGE_SIZE, NR_ACTIVE_ANON },
	{ "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE },
	{ "active_file", PAGE_SIZE, NR_ACTIVE_FILE },
	{ "unevictable", PAGE_SIZE, NR_UNEVICTABLE },

	/*
	 * Note: The slab_reclaimable and slab_unreclaimable must be
	 * together and slab_reclaimable must be in front.
	 */
	{ "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B },
	{ "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B },

	/* The memory events */
	{ "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON },
	{ "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE },
	{ "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON },
	{ "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE },
	{ "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON },
	{ "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE },
	{ "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM },
};

static int __init memory_stats_init(void)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1543 1544 1545
		if (memory_stats[i].idx == NR_ANON_THPS ||
		    memory_stats[i].idx == NR_FILE_THPS ||
		    memory_stats[i].idx == NR_SHMEM_THPS)
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
			memory_stats[i].ratio = HPAGE_PMD_SIZE;
#endif
		VM_BUG_ON(!memory_stats[i].ratio);
		VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT);
	}

	return 0;
}
pure_initcall(memory_stats_init);

1556 1557 1558 1559
static char *memory_stat_format(struct mem_cgroup *memcg)
{
	struct seq_buf s;
	int i;
1560

1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
	if (!s.buffer)
		return NULL;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

1576 1577
	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
		u64 size;
1578

1579 1580 1581
		size = memcg_page_state(memcg, memory_stats[i].idx);
		size *= memory_stats[i].ratio;
		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1582

1583 1584 1585 1586 1587 1588
		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
			size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
			       memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B);
			seq_buf_printf(&s, "slab %llu\n", size);
		}
	}
1589 1590 1591

	/* Accumulated memory events */

1592 1593 1594 1595 1596 1597
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
		       memcg_events(memcg, PGFAULT));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
		       memcg_events(memcg, PGMAJFAULT));
	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
		       memcg_events(memcg, PGREFILL));
1598 1599 1600 1601 1602 1603
	seq_buf_printf(&s, "pgscan %lu\n",
		       memcg_events(memcg, PGSCAN_KSWAPD) +
		       memcg_events(memcg, PGSCAN_DIRECT));
	seq_buf_printf(&s, "pgsteal %lu\n",
		       memcg_events(memcg, PGSTEAL_KSWAPD) +
		       memcg_events(memcg, PGSTEAL_DIRECT));
1604 1605 1606 1607 1608 1609 1610 1611
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
		       memcg_events(memcg, PGACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
		       memcg_events(memcg, PGDEACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
		       memcg_events(memcg, PGLAZYFREE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
		       memcg_events(memcg, PGLAZYFREED));
1612 1613

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1614
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1615
		       memcg_events(memcg, THP_FAULT_ALLOC));
1616
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1617 1618 1619 1620 1621 1622 1623 1624
		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

	/* The above should easily fit into one page */
	WARN_ON_ONCE(seq_buf_has_overflowed(&s));

	return s.buffer;
}
1625

1626
#define K(x) ((x) << (PAGE_SHIFT-10))
1627
/**
1628 1629
 * mem_cgroup_print_oom_context: Print OOM information relevant to
 * memory controller.
1630 1631 1632 1633 1634 1635
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
1636
void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1637 1638 1639
{
	rcu_read_lock();

1640 1641 1642 1643 1644
	if (memcg) {
		pr_cont(",oom_memcg=");
		pr_cont_cgroup_path(memcg->css.cgroup);
	} else
		pr_cont(",global_oom");
1645
	if (p) {
1646
		pr_cont(",task_memcg=");
1647 1648
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	}
1649
	rcu_read_unlock();
1650 1651 1652 1653 1654 1655 1656 1657 1658
}

/**
 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
 * memory controller.
 * @memcg: The memory cgroup that went over limit
 */
void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
1659
	char *buf;
1660

1661 1662
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1663
		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1664 1665 1666
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->swap)),
1667
			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1668 1669 1670 1671 1672 1673 1674
	else {
		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->memsw)),
			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->kmem)),
			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1675
	}
1676 1677 1678 1679 1680 1681 1682 1683 1684

	pr_info("Memory cgroup stats for ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(":");
	buf = memory_stat_format(memcg);
	if (!buf)
		return;
	pr_info("%s", buf);
	kfree(buf);
1685 1686
}

D
David Rientjes 已提交
1687 1688 1689
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1690
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1691
{
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
	unsigned long max = READ_ONCE(memcg->memory.max);

	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
		if (mem_cgroup_swappiness(memcg))
			max += min(READ_ONCE(memcg->swap.max),
				   (unsigned long)total_swap_pages);
	} else { /* v1 */
		if (mem_cgroup_swappiness(memcg)) {
			/* Calculate swap excess capacity from memsw limit */
			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;

			max += min(swap, (unsigned long)total_swap_pages);
		}
1705
	}
1706
	return max;
D
David Rientjes 已提交
1707 1708
}

1709 1710 1711 1712 1713
unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
{
	return page_counter_read(&memcg->memory);
}

1714
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1715
				     int order)
1716
{
1717 1718 1719
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1720
		.memcg = memcg,
1721 1722 1723
		.gfp_mask = gfp_mask,
		.order = order,
	};
1724
	bool ret = true;
1725

1726 1727
	if (mutex_lock_killable(&oom_lock))
		return true;
1728 1729 1730 1731

	if (mem_cgroup_margin(memcg) >= (1 << order))
		goto unlock;

1732 1733 1734 1735 1736
	/*
	 * A few threads which were not waiting at mutex_lock_killable() can
	 * fail to bail out. Therefore, check again after holding oom_lock.
	 */
	ret = should_force_charge() || out_of_memory(&oc);
1737 1738

unlock:
1739
	mutex_unlock(&oom_lock);
1740
	return ret;
1741 1742
}

1743
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1744
				   pg_data_t *pgdat,
1745 1746 1747 1748 1749 1750 1751 1752 1753
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1754
		.pgdat = pgdat,
1755 1756
	};

1757
	excess = soft_limit_excess(root_memcg);
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1783
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1784
					pgdat, &nr_scanned);
1785
		*total_scanned += nr_scanned;
1786
		if (!soft_limit_excess(root_memcg))
1787
			break;
1788
	}
1789 1790
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1791 1792
}

1793 1794 1795 1796 1797 1798
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1799 1800
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1801 1802 1803 1804
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1805
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1806
{
1807
	struct mem_cgroup *iter, *failed = NULL;
1808

1809 1810
	spin_lock(&memcg_oom_lock);

1811
	for_each_mem_cgroup_tree(iter, memcg) {
1812
		if (iter->oom_lock) {
1813 1814 1815 1816 1817
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1818 1819
			mem_cgroup_iter_break(memcg, iter);
			break;
1820 1821
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1822
	}
K
KAMEZAWA Hiroyuki 已提交
1823

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1835
		}
1836 1837
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1838 1839 1840 1841

	spin_unlock(&memcg_oom_lock);

	return !failed;
1842
}
1843

1844
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1845
{
K
KAMEZAWA Hiroyuki 已提交
1846 1847
	struct mem_cgroup *iter;

1848
	spin_lock(&memcg_oom_lock);
1849
	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1850
	for_each_mem_cgroup_tree(iter, memcg)
1851
		iter->oom_lock = false;
1852
	spin_unlock(&memcg_oom_lock);
1853 1854
}

1855
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1856 1857 1858
{
	struct mem_cgroup *iter;

1859
	spin_lock(&memcg_oom_lock);
1860
	for_each_mem_cgroup_tree(iter, memcg)
1861 1862
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1863 1864
}

1865
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1866 1867 1868
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1869
	/*
1870 1871
	 * Be careful about under_oom underflows becase a child memcg
	 * could have been added after mem_cgroup_mark_under_oom.
K
KAMEZAWA Hiroyuki 已提交
1872
	 */
1873
	spin_lock(&memcg_oom_lock);
1874
	for_each_mem_cgroup_tree(iter, memcg)
1875 1876 1877
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1878 1879
}

K
KAMEZAWA Hiroyuki 已提交
1880 1881
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1882
struct oom_wait_info {
1883
	struct mem_cgroup *memcg;
1884
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1885 1886
};

1887
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1888 1889
	unsigned mode, int sync, void *arg)
{
1890 1891
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1892 1893 1894
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1895
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1896

1897 1898
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1899 1900 1901 1902
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1903
static void memcg_oom_recover(struct mem_cgroup *memcg)
1904
{
1905 1906 1907 1908 1909 1910 1911 1912 1913
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1914
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1915 1916
}

1917 1918 1919 1920 1921 1922 1923 1924
enum oom_status {
	OOM_SUCCESS,
	OOM_FAILED,
	OOM_ASYNC,
	OOM_SKIPPED
};

static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1925
{
1926 1927 1928
	enum oom_status ret;
	bool locked;

1929 1930 1931
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		return OOM_SKIPPED;

1932 1933
	memcg_memory_event(memcg, MEMCG_OOM);

K
KAMEZAWA Hiroyuki 已提交
1934
	/*
1935 1936 1937 1938
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1939 1940 1941 1942
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1943
	 *
1944 1945 1946 1947 1948 1949 1950
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
K
KAMEZAWA Hiroyuki 已提交
1951
	 */
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
	if (memcg->oom_kill_disable) {
		if (!current->in_user_fault)
			return OOM_SKIPPED;
		css_get(&memcg->css);
		current->memcg_in_oom = memcg;
		current->memcg_oom_gfp_mask = mask;
		current->memcg_oom_order = order;

		return OOM_ASYNC;
	}

1963 1964 1965 1966 1967 1968 1969 1970
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	mem_cgroup_unmark_under_oom(memcg);
1971
	if (mem_cgroup_out_of_memory(memcg, mask, order))
1972 1973 1974 1975 1976 1977
		ret = OOM_SUCCESS;
	else
		ret = OOM_FAILED;

	if (locked)
		mem_cgroup_oom_unlock(memcg);
1978

1979
	return ret;
1980 1981 1982 1983
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1984
 * @handle: actually kill/wait or just clean up the OOM state
1985
 *
1986 1987
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1988
 *
1989
 * Memcg supports userspace OOM handling where failed allocations must
1990 1991 1992 1993
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1994
 * the end of the page fault to complete the OOM handling.
1995 1996
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1997
 * completed, %false otherwise.
1998
 */
1999
bool mem_cgroup_oom_synchronize(bool handle)
2000
{
T
Tejun Heo 已提交
2001
	struct mem_cgroup *memcg = current->memcg_in_oom;
2002
	struct oom_wait_info owait;
2003
	bool locked;
2004 2005 2006

	/* OOM is global, do not handle */
	if (!memcg)
2007
		return false;
2008

2009
	if (!handle)
2010
		goto cleanup;
2011 2012 2013 2014 2015

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
2016
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
2017

2018
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
2029 2030
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
2031
	} else {
2032
		schedule();
2033 2034 2035 2036 2037
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
2038 2039 2040 2041 2042 2043 2044 2045
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2046
cleanup:
T
Tejun Heo 已提交
2047
	current->memcg_in_oom = NULL;
2048
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2049
	return true;
2050 2051
}

2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
/**
 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 * @victim: task to be killed by the OOM killer
 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 *
 * Returns a pointer to a memory cgroup, which has to be cleaned up
 * by killing all belonging OOM-killable tasks.
 *
 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 */
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
					    struct mem_cgroup *oom_domain)
{
	struct mem_cgroup *oom_group = NULL;
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return NULL;

	if (!oom_domain)
		oom_domain = root_mem_cgroup;

	rcu_read_lock();

	memcg = mem_cgroup_from_task(victim);
	if (memcg == root_mem_cgroup)
		goto out;

2080 2081 2082 2083 2084 2085 2086 2087
	/*
	 * If the victim task has been asynchronously moved to a different
	 * memory cgroup, we might end up killing tasks outside oom_domain.
	 * In this case it's better to ignore memory.group.oom.
	 */
	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
		goto out;

2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
	/*
	 * Traverse the memory cgroup hierarchy from the victim task's
	 * cgroup up to the OOMing cgroup (or root) to find the
	 * highest-level memory cgroup with oom.group set.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		if (memcg->oom_group)
			oom_group = memcg;

		if (memcg == oom_domain)
			break;
	}

	if (oom_group)
		css_get(&oom_group->css);
out:
	rcu_read_unlock();

	return oom_group;
}

void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
	pr_info("Tasks in ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(" are going to be killed due to memory.oom.group set\n");
}

2116
/**
2117 2118
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
2119
 *
2120
 * This function protects unlocked LRU pages from being moved to
2121 2122 2123 2124 2125
 * another cgroup.
 *
 * It ensures lifetime of the returned memcg. Caller is responsible
 * for the lifetime of the page; __unlock_page_memcg() is available
 * when @page might get freed inside the locked section.
2126
 */
2127
struct mem_cgroup *lock_page_memcg(struct page *page)
2128
{
2129
	struct page *head = compound_head(page); /* rmap on tail pages */
2130
	struct mem_cgroup *memcg;
2131
	unsigned long flags;
2132

2133 2134 2135 2136
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
2137 2138 2139 2140 2141 2142 2143
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page itself from being freed. E.g. writeback
	 * doesn't hold a page reference and relies on PG_writeback to
	 * keep off truncation, migration and so forth.
         */
2144 2145 2146
	rcu_read_lock();

	if (mem_cgroup_disabled())
2147
		return NULL;
2148
again:
2149
	memcg = head->mem_cgroup;
2150
	if (unlikely(!memcg))
2151
		return NULL;
2152

Q
Qiang Huang 已提交
2153
	if (atomic_read(&memcg->moving_account) <= 0)
2154
		return memcg;
2155

2156
	spin_lock_irqsave(&memcg->move_lock, flags);
2157
	if (memcg != head->mem_cgroup) {
2158
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2159 2160
		goto again;
	}
2161 2162 2163 2164

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
2165
	 * the task who has the lock for unlock_page_memcg().
2166 2167 2168
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2169

2170
	return memcg;
2171
}
2172
EXPORT_SYMBOL(lock_page_memcg);
2173

2174
/**
2175 2176 2177 2178
 * __unlock_page_memcg - unlock and unpin a memcg
 * @memcg: the memcg
 *
 * Unlock and unpin a memcg returned by lock_page_memcg().
2179
 */
2180
void __unlock_page_memcg(struct mem_cgroup *memcg)
2181
{
2182 2183 2184 2185 2186 2187 2188 2189
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2190

2191
	rcu_read_unlock();
2192
}
2193 2194 2195 2196 2197 2198 2199

/**
 * unlock_page_memcg - unlock a page->mem_cgroup binding
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
2200 2201 2202
	struct page *head = compound_head(page);

	__unlock_page_memcg(head->mem_cgroup);
2203
}
2204
EXPORT_SYMBOL(unlock_page_memcg);
2205

2206 2207
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2208
	unsigned int nr_pages;
R
Roman Gushchin 已提交
2209 2210 2211 2212 2213 2214

#ifdef CONFIG_MEMCG_KMEM
	struct obj_cgroup *cached_objcg;
	unsigned int nr_bytes;
#endif

2215
	struct work_struct work;
2216
	unsigned long flags;
2217
#define FLUSHING_CACHED_CHARGE	0
2218 2219
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2220
static DEFINE_MUTEX(percpu_charge_mutex);
2221

R
Roman Gushchin 已提交
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
#ifdef CONFIG_MEMCG_KMEM
static void drain_obj_stock(struct memcg_stock_pcp *stock);
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg);

#else
static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
{
}
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	return false;
}
#endif

2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2248
 */
2249
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2250 2251
{
	struct memcg_stock_pcp *stock;
2252
	unsigned long flags;
2253
	bool ret = false;
2254

2255
	if (nr_pages > MEMCG_CHARGE_BATCH)
2256
		return ret;
2257

2258 2259 2260
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2261
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2262
		stock->nr_pages -= nr_pages;
2263 2264
		ret = true;
	}
2265 2266 2267

	local_irq_restore(flags);

2268 2269 2270 2271
	return ret;
}

/*
2272
 * Returns stocks cached in percpu and reset cached information.
2273 2274 2275 2276 2277
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2278 2279 2280
	if (!old)
		return;

2281
	if (stock->nr_pages) {
2282
		page_counter_uncharge(&old->memory, stock->nr_pages);
2283
		if (do_memsw_account())
2284
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2285
		stock->nr_pages = 0;
2286
	}
2287 2288

	css_put(&old->css);
2289 2290 2291 2292 2293
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
2294 2295 2296
	struct memcg_stock_pcp *stock;
	unsigned long flags;

2297 2298 2299 2300
	/*
	 * The only protection from memory hotplug vs. drain_stock races is
	 * that we always operate on local CPU stock here with IRQ disabled
	 */
2301 2302 2303
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
R
Roman Gushchin 已提交
2304
	drain_obj_stock(stock);
2305
	drain_stock(stock);
2306
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2307 2308

	local_irq_restore(flags);
2309 2310 2311
}

/*
2312
 * Cache charges(val) to local per_cpu area.
2313
 * This will be consumed by consume_stock() function, later.
2314
 */
2315
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2316
{
2317 2318 2319 2320
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
2321

2322
	stock = this_cpu_ptr(&memcg_stock);
2323
	if (stock->cached != memcg) { /* reset if necessary */
2324
		drain_stock(stock);
2325
		css_get(&memcg->css);
2326
		stock->cached = memcg;
2327
	}
2328
	stock->nr_pages += nr_pages;
2329

2330
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2331 2332
		drain_stock(stock);

2333
	local_irq_restore(flags);
2334 2335 2336
}

/*
2337
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2338
 * of the hierarchy under it.
2339
 */
2340
static void drain_all_stock(struct mem_cgroup *root_memcg)
2341
{
2342
	int cpu, curcpu;
2343

2344 2345 2346
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2347 2348 2349 2350 2351 2352
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
2353
	curcpu = get_cpu();
2354 2355
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2356
		struct mem_cgroup *memcg;
2357
		bool flush = false;
2358

2359
		rcu_read_lock();
2360
		memcg = stock->cached;
2361 2362 2363
		if (memcg && stock->nr_pages &&
		    mem_cgroup_is_descendant(memcg, root_memcg))
			flush = true;
R
Roman Gushchin 已提交
2364 2365
		if (obj_stock_flush_required(stock, root_memcg))
			flush = true;
2366 2367 2368 2369
		rcu_read_unlock();

		if (flush &&
		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2370 2371 2372 2373 2374
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2375
	}
2376
	put_cpu();
2377
	mutex_unlock(&percpu_charge_mutex);
2378 2379
}

2380
static int memcg_hotplug_cpu_dead(unsigned int cpu)
2381 2382
{
	struct memcg_stock_pcp *stock;
2383
	struct mem_cgroup *memcg, *mi;
2384 2385 2386

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
2387 2388 2389 2390 2391 2392 2393 2394

	for_each_mem_cgroup(memcg) {
		int i;

		for (i = 0; i < MEMCG_NR_STAT; i++) {
			int nid;
			long x;

2395
			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2396
			if (x)
2397 2398
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmstats[i]);
2399 2400 2401 2402 2403 2404 2405 2406 2407

			if (i >= NR_VM_NODE_STAT_ITEMS)
				continue;

			for_each_node(nid) {
				struct mem_cgroup_per_node *pn;

				pn = mem_cgroup_nodeinfo(memcg, nid);
				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2408
				if (x)
2409 2410 2411
					do {
						atomic_long_add(x, &pn->lruvec_stat[i]);
					} while ((pn = parent_nodeinfo(pn, nid)));
2412 2413 2414
			}
		}

2415
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2416 2417
			long x;

2418
			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2419
			if (x)
2420 2421
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmevents[i]);
2422 2423 2424
		}
	}

2425
	return 0;
2426 2427
}

2428 2429 2430
static unsigned long reclaim_high(struct mem_cgroup *memcg,
				  unsigned int nr_pages,
				  gfp_t gfp_mask)
2431
{
2432 2433
	unsigned long nr_reclaimed = 0;

2434
	do {
2435 2436
		unsigned long pflags;

2437 2438
		if (page_counter_read(&memcg->memory) <=
		    READ_ONCE(memcg->memory.high))
2439
			continue;
2440

2441
		memcg_memory_event(memcg, MEMCG_HIGH);
2442 2443

		psi_memstall_enter(&pflags);
2444 2445
		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
							     gfp_mask, true);
2446
		psi_memstall_leave(&pflags);
2447 2448
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));
2449 2450

	return nr_reclaimed;
2451 2452 2453 2454 2455 2456 2457
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
2458
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2459 2460
}

2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
/*
 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
 * enough to still cause a significant slowdown in most cases, while still
 * allowing diagnostics and tracing to proceed without becoming stuck.
 */
#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)

/*
 * When calculating the delay, we use these either side of the exponentiation to
 * maintain precision and scale to a reasonable number of jiffies (see the table
 * below.
 *
 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
 *   overage ratio to a delay.
2475
 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
 *   to produce a reasonable delay curve.
 *
 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
 * reasonable delay curve compared to precision-adjusted overage, not
 * penalising heavily at first, but still making sure that growth beyond the
 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
 * example, with a high of 100 megabytes:
 *
 *  +-------+------------------------+
 *  | usage | time to allocate in ms |
 *  +-------+------------------------+
 *  | 100M  |                      0 |
 *  | 101M  |                      6 |
 *  | 102M  |                     25 |
 *  | 103M  |                     57 |
 *  | 104M  |                    102 |
 *  | 105M  |                    159 |
 *  | 106M  |                    230 |
 *  | 107M  |                    313 |
 *  | 108M  |                    409 |
 *  | 109M  |                    518 |
 *  | 110M  |                    639 |
 *  | 111M  |                    774 |
 *  | 112M  |                    921 |
 *  | 113M  |                   1081 |
 *  | 114M  |                   1254 |
 *  | 115M  |                   1439 |
 *  | 116M  |                   1638 |
 *  | 117M  |                   1849 |
 *  | 118M  |                   2000 |
 *  | 119M  |                   2000 |
 *  | 120M  |                   2000 |
 *  +-------+------------------------+
 */
 #define MEMCG_DELAY_PRECISION_SHIFT 20
 #define MEMCG_DELAY_SCALING_SHIFT 14

2514
static u64 calculate_overage(unsigned long usage, unsigned long high)
2515
{
2516
	u64 overage;
2517

2518 2519
	if (usage <= high)
		return 0;
2520

2521 2522 2523 2524 2525
	/*
	 * Prevent division by 0 in overage calculation by acting as if
	 * it was a threshold of 1 page
	 */
	high = max(high, 1UL);
2526

2527 2528 2529 2530
	overage = usage - high;
	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
	return div64_u64(overage, high);
}
2531

2532 2533 2534
static u64 mem_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;
2535

2536 2537
	do {
		overage = calculate_overage(page_counter_read(&memcg->memory),
2538
					    READ_ONCE(memcg->memory.high));
2539
		max_overage = max(overage, max_overage);
2540 2541 2542
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

2543 2544 2545
	return max_overage;
}

2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
static u64 swap_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;

	do {
		overage = calculate_overage(page_counter_read(&memcg->swap),
					    READ_ONCE(memcg->swap.high));
		if (overage)
			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
		max_overage = max(overage, max_overage);
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

	return max_overage;
}

2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
/*
 * Get the number of jiffies that we should penalise a mischievous cgroup which
 * is exceeding its memory.high by checking both it and its ancestors.
 */
static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
					  unsigned int nr_pages,
					  u64 max_overage)
{
	unsigned long penalty_jiffies;

2572 2573
	if (!max_overage)
		return 0;
2574 2575 2576 2577 2578 2579 2580 2581 2582

	/*
	 * We use overage compared to memory.high to calculate the number of
	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
	 * fairly lenient on small overages, and increasingly harsh when the
	 * memcg in question makes it clear that it has no intention of stopping
	 * its crazy behaviour, so we exponentially increase the delay based on
	 * overage amount.
	 */
2583 2584 2585
	penalty_jiffies = max_overage * max_overage * HZ;
	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2586 2587 2588 2589 2590 2591 2592 2593 2594

	/*
	 * Factor in the task's own contribution to the overage, such that four
	 * N-sized allocations are throttled approximately the same as one
	 * 4N-sized allocation.
	 *
	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
	 * larger the current charge patch is than that.
	 */
2595
	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
}

/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned long penalty_jiffies;
	unsigned long pflags;
2606
	unsigned long nr_reclaimed;
2607
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2608
	int nr_retries = MAX_RECLAIM_RETRIES;
2609
	struct mem_cgroup *memcg;
2610
	bool in_retry = false;
2611 2612 2613 2614 2615 2616 2617

	if (likely(!nr_pages))
		return;

	memcg = get_mem_cgroup_from_mm(current->mm);
	current->memcg_nr_pages_over_high = 0;

2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
retry_reclaim:
	/*
	 * The allocating task should reclaim at least the batch size, but for
	 * subsequent retries we only want to do what's necessary to prevent oom
	 * or breaching resource isolation.
	 *
	 * This is distinct from memory.max or page allocator behaviour because
	 * memory.high is currently batched, whereas memory.max and the page
	 * allocator run every time an allocation is made.
	 */
	nr_reclaimed = reclaim_high(memcg,
				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
				    GFP_KERNEL);

2632 2633 2634 2635
	/*
	 * memory.high is breached and reclaim is unable to keep up. Throttle
	 * allocators proactively to slow down excessive growth.
	 */
2636 2637
	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
					       mem_find_max_overage(memcg));
2638

2639 2640 2641
	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
						swap_find_max_overage(memcg));

2642 2643 2644 2645 2646 2647 2648
	/*
	 * Clamp the max delay per usermode return so as to still keep the
	 * application moving forwards and also permit diagnostics, albeit
	 * extremely slowly.
	 */
	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);

2649 2650 2651 2652 2653 2654 2655 2656 2657
	/*
	 * Don't sleep if the amount of jiffies this memcg owes us is so low
	 * that it's not even worth doing, in an attempt to be nice to those who
	 * go only a small amount over their memory.high value and maybe haven't
	 * been aggressively reclaimed enough yet.
	 */
	if (penalty_jiffies <= HZ / 100)
		goto out;

2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
	/*
	 * If reclaim is making forward progress but we're still over
	 * memory.high, we want to encourage that rather than doing allocator
	 * throttling.
	 */
	if (nr_reclaimed || nr_retries--) {
		in_retry = true;
		goto retry_reclaim;
	}

2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
	/*
	 * If we exit early, we're guaranteed to die (since
	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
	 * need to account for any ill-begotten jiffies to pay them off later.
	 */
	psi_memstall_enter(&pflags);
	schedule_timeout_killable(penalty_jiffies);
	psi_memstall_leave(&pflags);

out:
	css_put(&memcg->css);
2679 2680
}

2681 2682
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2683
{
2684
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2685
	int nr_retries = MAX_RECLAIM_RETRIES;
2686
	struct mem_cgroup *mem_over_limit;
2687
	struct page_counter *counter;
2688
	enum oom_status oom_status;
2689
	unsigned long nr_reclaimed;
2690 2691
	bool may_swap = true;
	bool drained = false;
2692
	unsigned long pflags;
2693

2694
	if (mem_cgroup_is_root(memcg))
2695
		return 0;
2696
retry:
2697
	if (consume_stock(memcg, nr_pages))
2698
		return 0;
2699

2700
	if (!do_memsw_account() ||
2701 2702
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2703
			goto done_restock;
2704
		if (do_memsw_account())
2705 2706
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2707
	} else {
2708
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2709
		may_swap = false;
2710
	}
2711

2712 2713 2714 2715
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2716

2717 2718 2719 2720 2721 2722 2723 2724 2725
	/*
	 * Memcg doesn't have a dedicated reserve for atomic
	 * allocations. But like the global atomic pool, we need to
	 * put the burden of reclaim on regular allocation requests
	 * and let these go through as privileged allocations.
	 */
	if (gfp_mask & __GFP_ATOMIC)
		goto force;

2726 2727 2728 2729 2730 2731
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
2732
	if (unlikely(should_force_charge()))
2733
		goto force;
2734

2735 2736 2737 2738 2739 2740 2741 2742 2743
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2744 2745 2746
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2747
	if (!gfpflags_allow_blocking(gfp_mask))
2748
		goto nomem;
2749

2750
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2751

2752
	psi_memstall_enter(&pflags);
2753 2754
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2755
	psi_memstall_leave(&pflags);
2756

2757
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2758
		goto retry;
2759

2760
	if (!drained) {
2761
		drain_all_stock(mem_over_limit);
2762 2763 2764 2765
		drained = true;
		goto retry;
	}

2766 2767
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2768 2769 2770 2771 2772 2773 2774 2775 2776
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2777
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2778 2779 2780 2781 2782 2783 2784 2785
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2786 2787 2788
	if (nr_retries--)
		goto retry;

2789
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2790 2791
		goto nomem;

2792
	if (gfp_mask & __GFP_NOFAIL)
2793
		goto force;
2794

2795
	if (fatal_signal_pending(current))
2796
		goto force;
2797

2798 2799 2800 2801 2802 2803
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2804
		       get_order(nr_pages * PAGE_SIZE));
2805 2806
	switch (oom_status) {
	case OOM_SUCCESS:
2807
		nr_retries = MAX_RECLAIM_RETRIES;
2808 2809 2810 2811 2812 2813
		goto retry;
	case OOM_FAILED:
		goto force;
	default:
		goto nomem;
	}
2814
nomem:
2815
	if (!(gfp_mask & __GFP_NOFAIL))
2816
		return -ENOMEM;
2817 2818 2819 2820 2821 2822 2823
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2824
	if (do_memsw_account())
2825 2826 2827
		page_counter_charge(&memcg->memsw, nr_pages);

	return 0;
2828 2829 2830 2831

done_restock:
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2832

2833
	/*
2834 2835
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2836
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2837 2838 2839 2840
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2841 2842
	 */
	do {
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
		bool mem_high, swap_high;

		mem_high = page_counter_read(&memcg->memory) >
			READ_ONCE(memcg->memory.high);
		swap_high = page_counter_read(&memcg->swap) >
			READ_ONCE(memcg->swap.high);

		/* Don't bother a random interrupted task */
		if (in_interrupt()) {
			if (mem_high) {
2853 2854 2855
				schedule_work(&memcg->high_work);
				break;
			}
2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
			continue;
		}

		if (mem_high || swap_high) {
			/*
			 * The allocating tasks in this cgroup will need to do
			 * reclaim or be throttled to prevent further growth
			 * of the memory or swap footprints.
			 *
			 * Target some best-effort fairness between the tasks,
			 * and distribute reclaim work and delay penalties
			 * based on how much each task is actually allocating.
			 */
V
Vladimir Davydov 已提交
2869
			current->memcg_nr_pages_over_high += batch;
2870 2871 2872
			set_notify_resume(current);
			break;
		}
2873
	} while ((memcg = parent_mem_cgroup(memcg)));
2874 2875

	return 0;
2876
}
2877

2878
#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2879
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2880
{
2881 2882 2883
	if (mem_cgroup_is_root(memcg))
		return;

2884
	page_counter_uncharge(&memcg->memory, nr_pages);
2885
	if (do_memsw_account())
2886
		page_counter_uncharge(&memcg->memsw, nr_pages);
2887
}
2888
#endif
2889

2890
static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2891
{
2892
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2893
	/*
2894
	 * Any of the following ensures page's memcg stability:
2895
	 *
2896 2897 2898 2899
	 * - the page lock
	 * - LRU isolation
	 * - lock_page_memcg()
	 * - exclusive reference
2900
	 */
2901
	page->mem_cgroup = memcg;
2902
}
2903

2904
#ifdef CONFIG_MEMCG_KMEM
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
				 gfp_t gfp)
{
	unsigned int objects = objs_per_slab_page(s, page);
	void *vec;

	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
			   page_to_nid(page));
	if (!vec)
		return -ENOMEM;

	if (cmpxchg(&page->obj_cgroups, NULL,
		    (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
		kfree(vec);
	else
		kmemleak_not_leak(vec);

	return 0;
}

2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
/*
 * Returns a pointer to the memory cgroup to which the kernel object is charged.
 *
 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
 * cgroup_mutex, etc.
 */
struct mem_cgroup *mem_cgroup_from_obj(void *p)
{
	struct page *page;

	if (mem_cgroup_disabled())
		return NULL;

	page = virt_to_head_page(p);

2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
	/*
	 * If page->mem_cgroup is set, it's either a simple mem_cgroup pointer
	 * or a pointer to obj_cgroup vector. In the latter case the lowest
	 * bit of the pointer is set.
	 * The page->mem_cgroup pointer can be asynchronously changed
	 * from NULL to (obj_cgroup_vec | 0x1UL), but can't be changed
	 * from a valid memcg pointer to objcg vector or back.
	 */
	if (!page->mem_cgroup)
		return NULL;

2951
	/*
2952 2953 2954
	 * Slab objects are accounted individually, not per-page.
	 * Memcg membership data for each individual object is saved in
	 * the page->obj_cgroups.
2955
	 */
2956 2957 2958 2959 2960 2961
	if (page_has_obj_cgroups(page)) {
		struct obj_cgroup *objcg;
		unsigned int off;

		off = obj_to_index(page->slab_cache, page, p);
		objcg = page_obj_cgroups(page)[off];
2962 2963 2964 2965
		if (objcg)
			return obj_cgroup_memcg(objcg);

		return NULL;
2966
	}
2967 2968 2969 2970 2971

	/* All other pages use page->mem_cgroup */
	return page->mem_cgroup;
}

R
Roman Gushchin 已提交
2972 2973 2974 2975 2976
__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
{
	struct obj_cgroup *objcg = NULL;
	struct mem_cgroup *memcg;

2977 2978 2979
	if (memcg_kmem_bypass())
		return NULL;

R
Roman Gushchin 已提交
2980
	rcu_read_lock();
2981 2982
	if (unlikely(active_memcg()))
		memcg = active_memcg();
R
Roman Gushchin 已提交
2983 2984 2985 2986 2987 2988 2989
	else
		memcg = mem_cgroup_from_task(current);

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		objcg = rcu_dereference(memcg->objcg);
		if (objcg && obj_cgroup_tryget(objcg))
			break;
2990
		objcg = NULL;
R
Roman Gushchin 已提交
2991 2992 2993 2994 2995 2996
	}
	rcu_read_unlock();

	return objcg;
}

2997
static int memcg_alloc_cache_id(void)
2998
{
2999 3000 3001
	int id, size;
	int err;

3002
	id = ida_simple_get(&memcg_cache_ida,
3003 3004 3005
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
3006

3007
	if (id < memcg_nr_cache_ids)
3008 3009 3010 3011 3012 3013
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
3014
	down_write(&memcg_cache_ids_sem);
3015 3016

	size = 2 * (id + 1);
3017 3018 3019 3020 3021
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

3022
	err = memcg_update_all_list_lrus(size);
3023 3024 3025 3026 3027
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

3028
	if (err) {
3029
		ida_simple_remove(&memcg_cache_ida, id);
3030 3031 3032 3033 3034 3035 3036
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
3037
	ida_simple_remove(&memcg_cache_ida, id);
3038 3039
}

3040
/**
3041
 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
3042
 * @memcg: memory cgroup to charge
3043
 * @gfp: reclaim mode
3044
 * @nr_pages: number of pages to charge
3045 3046 3047
 *
 * Returns 0 on success, an error code on failure.
 */
3048 3049
int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
			unsigned int nr_pages)
3050
{
3051
	struct page_counter *counter;
3052 3053
	int ret;

3054
	ret = try_charge(memcg, gfp, nr_pages);
3055
	if (ret)
3056
		return ret;
3057 3058 3059

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069

		/*
		 * Enforce __GFP_NOFAIL allocation because callers are not
		 * prepared to see failures and likely do not have any failure
		 * handling code.
		 */
		if (gfp & __GFP_NOFAIL) {
			page_counter_charge(&memcg->kmem, nr_pages);
			return 0;
		}
3070 3071
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
3072
	}
3073
	return 0;
3074 3075
}

3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
/**
 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
 */
void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
{
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

	page_counter_uncharge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_uncharge(&memcg->memsw, nr_pages);
}

3091
/**
3092
 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3093 3094 3095 3096 3097 3098
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
3099
int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3100
{
3101
	struct mem_cgroup *memcg;
3102
	int ret = 0;
3103

3104
	memcg = get_mem_cgroup_from_current();
3105
	if (memcg && !mem_cgroup_is_root(memcg)) {
3106
		ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3107 3108
		if (!ret) {
			page->mem_cgroup = memcg;
3109
			__SetPageKmemcg(page);
3110
			return 0;
3111
		}
3112
		css_put(&memcg->css);
3113
	}
3114
	return ret;
3115
}
3116

3117
/**
3118
 * __memcg_kmem_uncharge_page: uncharge a kmem page
3119 3120 3121
 * @page: page to uncharge
 * @order: allocation order
 */
3122
void __memcg_kmem_uncharge_page(struct page *page, int order)
3123
{
3124
	struct mem_cgroup *memcg = page->mem_cgroup;
3125
	unsigned int nr_pages = 1 << order;
3126 3127 3128 3129

	if (!memcg)
		return;

3130
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3131
	__memcg_kmem_uncharge(memcg, nr_pages);
3132
	page->mem_cgroup = NULL;
3133
	css_put(&memcg->css);
3134 3135 3136 3137

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);
3138
}
R
Roman Gushchin 已提交
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249

static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
{
	struct memcg_stock_pcp *stock;
	unsigned long flags;
	bool ret = false;

	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
		stock->nr_bytes -= nr_bytes;
		ret = true;
	}

	local_irq_restore(flags);

	return ret;
}

static void drain_obj_stock(struct memcg_stock_pcp *stock)
{
	struct obj_cgroup *old = stock->cached_objcg;

	if (!old)
		return;

	if (stock->nr_bytes) {
		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);

		if (nr_pages) {
			rcu_read_lock();
			__memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
			rcu_read_unlock();
		}

		/*
		 * The leftover is flushed to the centralized per-memcg value.
		 * On the next attempt to refill obj stock it will be moved
		 * to a per-cpu stock (probably, on an other CPU), see
		 * refill_obj_stock().
		 *
		 * How often it's flushed is a trade-off between the memory
		 * limit enforcement accuracy and potential CPU contention,
		 * so it might be changed in the future.
		 */
		atomic_add(nr_bytes, &old->nr_charged_bytes);
		stock->nr_bytes = 0;
	}

	obj_cgroup_put(old);
	stock->cached_objcg = NULL;
}

static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	struct mem_cgroup *memcg;

	if (stock->cached_objcg) {
		memcg = obj_cgroup_memcg(stock->cached_objcg);
		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
			return true;
	}

	return false;
}

static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
{
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
	if (stock->cached_objcg != objcg) { /* reset if necessary */
		drain_obj_stock(stock);
		obj_cgroup_get(objcg);
		stock->cached_objcg = objcg;
		stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
	}
	stock->nr_bytes += nr_bytes;

	if (stock->nr_bytes > PAGE_SIZE)
		drain_obj_stock(stock);

	local_irq_restore(flags);
}

int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
{
	struct mem_cgroup *memcg;
	unsigned int nr_pages, nr_bytes;
	int ret;

	if (consume_obj_stock(objcg, size))
		return 0;

	/*
	 * In theory, memcg->nr_charged_bytes can have enough
	 * pre-charged bytes to satisfy the allocation. However,
	 * flushing memcg->nr_charged_bytes requires two atomic
	 * operations, and memcg->nr_charged_bytes can't be big,
	 * so it's better to ignore it and try grab some new pages.
	 * memcg->nr_charged_bytes will be flushed in
	 * refill_obj_stock(), called from this function or
	 * independently later.
	 */
	rcu_read_lock();
3250
retry:
R
Roman Gushchin 已提交
3251
	memcg = obj_cgroup_memcg(objcg);
3252 3253
	if (unlikely(!css_tryget(&memcg->css)))
		goto retry;
R
Roman Gushchin 已提交
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
	rcu_read_unlock();

	nr_pages = size >> PAGE_SHIFT;
	nr_bytes = size & (PAGE_SIZE - 1);

	if (nr_bytes)
		nr_pages += 1;

	ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
	if (!ret && nr_bytes)
		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);

	css_put(&memcg->css);
	return ret;
}

void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
{
	refill_obj_stock(objcg, size);
}

3275
#endif /* CONFIG_MEMCG_KMEM */
3276

3277 3278 3279 3280
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
3281
 * pgdat->lru_lock and migration entries setup in all page mappings.
3282
 */
3283
void mem_cgroup_split_huge_fixup(struct page *head)
3284
{
3285
	struct mem_cgroup *memcg = head->mem_cgroup;
3286
	int i;
3287

3288 3289
	if (mem_cgroup_disabled())
		return;
3290

3291 3292 3293 3294
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		css_get(&memcg->css);
		head[i].mem_cgroup = memcg;
	}
3295
}
3296
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3297

A
Andrew Morton 已提交
3298
#ifdef CONFIG_MEMCG_SWAP
3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
3310
 * The caller must have charged to @to, IOW, called page_counter_charge() about
3311 3312 3313
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3314
				struct mem_cgroup *from, struct mem_cgroup *to)
3315 3316 3317
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
3318 3319
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3320 3321

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3322 3323
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
3324 3325 3326 3327 3328 3329
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3330
				struct mem_cgroup *from, struct mem_cgroup *to)
3331 3332 3333
{
	return -EINVAL;
}
3334
#endif
K
KAMEZAWA Hiroyuki 已提交
3335

3336
static DEFINE_MUTEX(memcg_max_mutex);
3337

3338 3339
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
3340
{
3341
	bool enlarge = false;
3342
	bool drained = false;
3343
	int ret;
3344 3345
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3346

3347
	do {
3348 3349 3350 3351
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3352

3353
		mutex_lock(&memcg_max_mutex);
3354 3355
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
3356
		 * break our basic invariant rule memory.max <= memsw.max.
3357
		 */
3358
		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3359
					   max <= memcg->memsw.max;
3360
		if (!limits_invariant) {
3361
			mutex_unlock(&memcg_max_mutex);
3362 3363 3364
			ret = -EINVAL;
			break;
		}
3365
		if (max > counter->max)
3366
			enlarge = true;
3367 3368
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
3369 3370 3371 3372

		if (!ret)
			break;

3373 3374 3375 3376 3377 3378
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

3379 3380 3381 3382 3383 3384
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
3385

3386 3387
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3388

3389 3390 3391
	return ret;
}

3392
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3393 3394 3395 3396
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
3397
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3398 3399
	unsigned long reclaimed;
	int loop = 0;
3400
	struct mem_cgroup_tree_per_node *mctz;
3401
	unsigned long excess;
3402 3403 3404 3405 3406
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

3407
	mctz = soft_limit_tree_node(pgdat->node_id);
3408 3409 3410 3411 3412 3413

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
3414
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3415 3416
		return 0;

3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
3431
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3432 3433 3434
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3435
		spin_lock_irq(&mctz->lock);
3436
		__mem_cgroup_remove_exceeded(mz, mctz);
3437 3438 3439 3440 3441 3442

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3443 3444 3445
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3446
		excess = soft_limit_excess(mz->memcg);
3447 3448 3449 3450 3451 3452 3453 3454 3455
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3456
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3457
		spin_unlock_irq(&mctz->lock);
3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3475
/*
3476
 * Reclaims as many pages from the given memcg as possible.
3477 3478 3479 3480 3481
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
3482
	int nr_retries = MAX_RECLAIM_RETRIES;
3483

3484 3485
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3486 3487 3488

	drain_all_stock(memcg);

3489
	/* try to free all pages in this cgroup */
3490
	while (nr_retries && page_counter_read(&memcg->memory)) {
3491
		int progress;
3492

3493 3494 3495
		if (signal_pending(current))
			return -EINTR;

3496 3497
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3498
		if (!progress) {
3499
			nr_retries--;
3500
			/* maybe some writeback is necessary */
3501
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3502
		}
3503 3504

	}
3505 3506

	return 0;
3507 3508
}

3509 3510 3511
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3512
{
3513
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3514

3515 3516
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3517
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3518 3519
}

3520 3521
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3522
{
3523
	return 1;
3524 3525
}

3526 3527
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3528
{
3529
	if (val == 1)
3530
		return 0;
3531

3532 3533 3534
	pr_warn_once("Non-hierarchical mode is deprecated. "
		     "Please report your usecase to linux-mm@kvack.org if you "
		     "depend on this functionality.\n");
3535

3536
	return -EINVAL;
3537 3538
}

3539
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3540
{
3541
	unsigned long val;
3542

3543
	if (mem_cgroup_is_root(memcg)) {
3544
		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3545
			memcg_page_state(memcg, NR_ANON_MAPPED);
3546 3547
		if (swap)
			val += memcg_page_state(memcg, MEMCG_SWAP);
3548
	} else {
3549
		if (!swap)
3550
			val = page_counter_read(&memcg->memory);
3551
		else
3552
			val = page_counter_read(&memcg->memsw);
3553
	}
3554
	return val;
3555 3556
}

3557 3558 3559 3560 3561 3562 3563
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3564

3565
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3566
			       struct cftype *cft)
B
Balbir Singh 已提交
3567
{
3568
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3569
	struct page_counter *counter;
3570

3571
	switch (MEMFILE_TYPE(cft->private)) {
3572
	case _MEM:
3573 3574
		counter = &memcg->memory;
		break;
3575
	case _MEMSWAP:
3576 3577
		counter = &memcg->memsw;
		break;
3578
	case _KMEM:
3579
		counter = &memcg->kmem;
3580
		break;
V
Vladimir Davydov 已提交
3581
	case _TCP:
3582
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3583
		break;
3584 3585 3586
	default:
		BUG();
	}
3587 3588 3589 3590

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
3591
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3592
		if (counter == &memcg->memsw)
3593
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3594 3595
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
3596
		return (u64)counter->max * PAGE_SIZE;
3597 3598 3599 3600 3601 3602 3603 3604 3605
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3606
}
3607

3608
static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3609
{
3610
	unsigned long stat[MEMCG_NR_STAT] = {0};
3611 3612 3613 3614
	struct mem_cgroup *mi;
	int node, cpu, i;

	for_each_online_cpu(cpu)
3615
		for (i = 0; i < MEMCG_NR_STAT; i++)
3616
			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3617 3618

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3619
		for (i = 0; i < MEMCG_NR_STAT; i++)
3620 3621 3622 3623 3624 3625
			atomic_long_add(stat[i], &mi->vmstats[i]);

	for_each_node(node) {
		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
		struct mem_cgroup_per_node *pi;

3626
		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3627 3628 3629
			stat[i] = 0;

		for_each_online_cpu(cpu)
3630
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3631 3632
				stat[i] += per_cpu(
					pn->lruvec_stat_cpu->count[i], cpu);
3633 3634

		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3635
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3636 3637 3638 3639
				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
	}
}

3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
{
	unsigned long events[NR_VM_EVENT_ITEMS];
	struct mem_cgroup *mi;
	int cpu, i;

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
		events[i] = 0;

	for_each_online_cpu(cpu)
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3651 3652
			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
					     cpu);
3653 3654 3655 3656 3657 3658

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
			atomic_long_add(events[i], &mi->vmevents[i]);
}

3659
#ifdef CONFIG_MEMCG_KMEM
3660
static int memcg_online_kmem(struct mem_cgroup *memcg)
3661
{
R
Roman Gushchin 已提交
3662
	struct obj_cgroup *objcg;
3663 3664
	int memcg_id;

3665 3666 3667
	if (cgroup_memory_nokmem)
		return 0;

3668
	BUG_ON(memcg->kmemcg_id >= 0);
3669
	BUG_ON(memcg->kmem_state);
3670

3671
	memcg_id = memcg_alloc_cache_id();
3672 3673
	if (memcg_id < 0)
		return memcg_id;
3674

R
Roman Gushchin 已提交
3675 3676 3677 3678 3679 3680 3681 3682
	objcg = obj_cgroup_alloc();
	if (!objcg) {
		memcg_free_cache_id(memcg_id);
		return -ENOMEM;
	}
	objcg->memcg = memcg;
	rcu_assign_pointer(memcg->objcg, objcg);

3683 3684
	static_branch_enable(&memcg_kmem_enabled_key);

V
Vladimir Davydov 已提交
3685
	memcg->kmemcg_id = memcg_id;
3686
	memcg->kmem_state = KMEM_ONLINE;
3687 3688

	return 0;
3689 3690
}

3691 3692 3693 3694 3695 3696 3697 3698
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
3699

3700 3701 3702 3703 3704 3705
	memcg->kmem_state = KMEM_ALLOCATED;

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

R
Roman Gushchin 已提交
3706
	memcg_reparent_objcgs(memcg, parent);
3707 3708 3709 3710

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

3711 3712 3713 3714 3715 3716 3717 3718
	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
3719
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3720 3721 3722 3723 3724
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
	}
3725 3726
	rcu_read_unlock();

3727
	memcg_drain_all_list_lrus(kmemcg_id, parent);
3728 3729 3730 3731 3732 3733

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
3734 3735 3736
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);
3737
}
3738
#else
3739
static int memcg_online_kmem(struct mem_cgroup *memcg)
3740 3741 3742 3743 3744 3745 3746 3747 3748
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
3749
#endif /* CONFIG_MEMCG_KMEM */
3750

3751 3752
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
3753
{
3754
	int ret;
3755

3756 3757 3758
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
3759
	return ret;
3760
}
3761

3762
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
3763 3764 3765
{
	int ret;

3766
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3767

3768
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
3769 3770 3771
	if (ret)
		goto out;

3772
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3773 3774 3775
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3776 3777 3778
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
3779 3780 3781 3782 3783 3784
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3785
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
3786 3787 3788 3789
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3790
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3791 3792
	}
out:
3793
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3794 3795 3796
	return ret;
}

3797 3798 3799 3800
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3801 3802
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3803
{
3804
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3805
	unsigned long nr_pages;
3806 3807
	int ret;

3808
	buf = strstrip(buf);
3809
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3810 3811
	if (ret)
		return ret;
3812

3813
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3814
	case RES_LIMIT:
3815 3816 3817 3818
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3819 3820
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3821
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3822
			break;
3823
		case _MEMSWAP:
3824
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3825
			break;
3826
		case _KMEM:
3827 3828 3829
			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
				     "Please report your usecase to linux-mm@kvack.org if you "
				     "depend on this functionality.\n");
3830
			ret = memcg_update_kmem_max(memcg, nr_pages);
3831
			break;
V
Vladimir Davydov 已提交
3832
		case _TCP:
3833
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
3834
			break;
3835
		}
3836
		break;
3837 3838 3839
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3840 3841
		break;
	}
3842
	return ret ?: nbytes;
B
Balbir Singh 已提交
3843 3844
}

3845 3846
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3847
{
3848
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3849
	struct page_counter *counter;
3850

3851 3852 3853 3854 3855 3856 3857 3858 3859 3860
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3861
	case _TCP:
3862
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3863
		break;
3864 3865 3866
	default:
		BUG();
	}
3867

3868
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3869
	case RES_MAX_USAGE:
3870
		page_counter_reset_watermark(counter);
3871 3872
		break;
	case RES_FAILCNT:
3873
		counter->failcnt = 0;
3874
		break;
3875 3876
	default:
		BUG();
3877
	}
3878

3879
	return nbytes;
3880 3881
}

3882
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3883 3884
					struct cftype *cft)
{
3885
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3886 3887
}

3888
#ifdef CONFIG_MMU
3889
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3890 3891
					struct cftype *cft, u64 val)
{
3892
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3893

3894
	if (val & ~MOVE_MASK)
3895
		return -EINVAL;
3896

3897
	/*
3898 3899 3900 3901
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3902
	 */
3903
	memcg->move_charge_at_immigrate = val;
3904 3905
	return 0;
}
3906
#else
3907
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3908 3909 3910 3911 3912
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3913

3914
#ifdef CONFIG_NUMA
3915 3916 3917 3918 3919 3920

#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)

static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3921
				int nid, unsigned int lru_mask, bool tree)
3922
{
3923
	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3924 3925 3926 3927 3928 3929 3930 3931
	unsigned long nr = 0;
	enum lru_list lru;

	VM_BUG_ON((unsigned)nid >= nr_node_ids);

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3932 3933 3934 3935
		if (tree)
			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
		else
			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3936 3937 3938 3939 3940
	}
	return nr;
}

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3941 3942
					     unsigned int lru_mask,
					     bool tree)
3943 3944 3945 3946 3947 3948 3949
{
	unsigned long nr = 0;
	enum lru_list lru;

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3950 3951 3952 3953
		if (tree)
			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
		else
			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3954 3955 3956 3957
	}
	return nr;
}

3958
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3959
{
3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3972
	int nid;
3973
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3974

3975
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3976 3977 3978 3979 3980 3981 3982
		seq_printf(m, "%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   false));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, false));
3983
		seq_putc(m, '\n');
3984 3985
	}

3986
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3987 3988 3989 3990 3991 3992 3993 3994

		seq_printf(m, "hierarchical_%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   true));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, true));
3995
		seq_putc(m, '\n');
3996 3997 3998 3999 4000 4001
	}

	return 0;
}
#endif /* CONFIG_NUMA */

4002
static const unsigned int memcg1_stats[] = {
4003
	NR_FILE_PAGES,
4004
	NR_ANON_MAPPED,
4005 4006 4007
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	NR_ANON_THPS,
#endif
4008 4009 4010 4011 4012 4013 4014 4015 4016 4017
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
4018
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4019
	"rss_huge",
4020
#endif
4021 4022 4023 4024 4025 4026 4027
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

4028
/* Universal VM events cgroup1 shows, original sort order */
4029
static const unsigned int memcg1_events[] = {
4030 4031 4032 4033 4034 4035
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

4036
static int memcg_stat_show(struct seq_file *m, void *v)
4037
{
4038
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4039
	unsigned long memory, memsw;
4040 4041
	struct mem_cgroup *mi;
	unsigned int i;
4042

4043
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4044

4045
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4046 4047
		unsigned long nr;

4048
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4049
			continue;
4050 4051 4052 4053 4054 4055
		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
		if (memcg1_stats[i] == NR_ANON_THPS)
			nr *= HPAGE_PMD_NR;
#endif
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4056
	}
L
Lee Schermerhorn 已提交
4057

4058
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4059
		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4060
			   memcg_events_local(memcg, memcg1_events[i]));
4061 4062

	for (i = 0; i < NR_LRU_LISTS; i++)
4063
		seq_printf(m, "%s %lu\n", lru_list_name(i),
4064
			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4065
			   PAGE_SIZE);
4066

K
KAMEZAWA Hiroyuki 已提交
4067
	/* Hierarchical information */
4068 4069
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4070 4071
		memory = min(memory, READ_ONCE(mi->memory.max));
		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4072
	}
4073 4074
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
4075
	if (do_memsw_account())
4076 4077
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
4078

4079
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4080 4081
		unsigned long nr;

4082
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4083
			continue;
4084 4085 4086 4087 4088
		nr = memcg_page_state(memcg, memcg1_stats[i]);
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
		if (memcg1_stats[i] == NR_ANON_THPS)
			nr *= HPAGE_PMD_NR;
#endif
4089
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4090
						(u64)nr * PAGE_SIZE);
4091 4092
	}

4093
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4094 4095
		seq_printf(m, "total_%s %llu\n",
			   vm_event_name(memcg1_events[i]),
4096
			   (u64)memcg_events(memcg, memcg1_events[i]));
4097

4098
	for (i = 0; i < NR_LRU_LISTS; i++)
4099
		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4100 4101
			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			   PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
4102

K
KOSAKI Motohiro 已提交
4103 4104
#ifdef CONFIG_DEBUG_VM
	{
4105 4106
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
4107 4108
		unsigned long anon_cost = 0;
		unsigned long file_cost = 0;
K
KOSAKI Motohiro 已提交
4109

4110 4111
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
K
KOSAKI Motohiro 已提交
4112

4113 4114
			anon_cost += mz->lruvec.anon_cost;
			file_cost += mz->lruvec.file_cost;
4115
		}
4116 4117
		seq_printf(m, "anon_cost %lu\n", anon_cost);
		seq_printf(m, "file_cost %lu\n", file_cost);
K
KOSAKI Motohiro 已提交
4118 4119 4120
	}
#endif

4121 4122 4123
	return 0;
}

4124 4125
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
4126
{
4127
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4128

4129
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4130 4131
}

4132 4133
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
4134
{
4135
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4136

4137
	if (val > 100)
K
KOSAKI Motohiro 已提交
4138 4139
		return -EINVAL;

4140
	if (css->parent)
4141 4142 4143
		memcg->swappiness = val;
	else
		vm_swappiness = val;
4144

K
KOSAKI Motohiro 已提交
4145 4146 4147
	return 0;
}

4148 4149 4150
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
4151
	unsigned long usage;
4152 4153 4154 4155
	int i;

	rcu_read_lock();
	if (!swap)
4156
		t = rcu_dereference(memcg->thresholds.primary);
4157
	else
4158
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4159 4160 4161 4162

	if (!t)
		goto unlock;

4163
	usage = mem_cgroup_usage(memcg, swap);
4164 4165

	/*
4166
	 * current_threshold points to threshold just below or equal to usage.
4167 4168 4169
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4170
	i = t->current_threshold;
4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4194
	t->current_threshold = i - 1;
4195 4196 4197 4198 4199 4200
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4201 4202
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
4203
		if (do_memsw_account())
4204 4205 4206 4207
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4208 4209 4210 4211 4212 4213 4214
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

4215 4216 4217 4218 4219 4220 4221
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
4222 4223
}

4224
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4225 4226 4227
{
	struct mem_cgroup_eventfd_list *ev;

4228 4229
	spin_lock(&memcg_oom_lock);

4230
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4231
		eventfd_signal(ev->eventfd, 1);
4232 4233

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4234 4235 4236
	return 0;
}

4237
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4238
{
K
KAMEZAWA Hiroyuki 已提交
4239 4240
	struct mem_cgroup *iter;

4241
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4242
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4243 4244
}

4245
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4246
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4247
{
4248 4249
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4250 4251
	unsigned long threshold;
	unsigned long usage;
4252
	int i, size, ret;
4253

4254
	ret = page_counter_memparse(args, "-1", &threshold);
4255 4256 4257 4258
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4259

4260
	if (type == _MEM) {
4261
		thresholds = &memcg->thresholds;
4262
		usage = mem_cgroup_usage(memcg, false);
4263
	} else if (type == _MEMSWAP) {
4264
		thresholds = &memcg->memsw_thresholds;
4265
		usage = mem_cgroup_usage(memcg, true);
4266
	} else
4267 4268 4269
		BUG();

	/* Check if a threshold crossed before adding a new one */
4270
	if (thresholds->primary)
4271 4272
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4273
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4274 4275

	/* Allocate memory for new array of thresholds */
4276
	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4277
	if (!new) {
4278 4279 4280
		ret = -ENOMEM;
		goto unlock;
	}
4281
	new->size = size;
4282 4283

	/* Copy thresholds (if any) to new array */
4284 4285 4286
	if (thresholds->primary)
		memcpy(new->entries, thresholds->primary->entries,
		       flex_array_size(new, entries, size - 1));
4287

4288
	/* Add new threshold */
4289 4290
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4291 4292

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4293
	sort(new->entries, size, sizeof(*new->entries),
4294 4295 4296
			compare_thresholds, NULL);

	/* Find current threshold */
4297
	new->current_threshold = -1;
4298
	for (i = 0; i < size; i++) {
4299
		if (new->entries[i].threshold <= usage) {
4300
			/*
4301 4302
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4303 4304
			 * it here.
			 */
4305
			++new->current_threshold;
4306 4307
		} else
			break;
4308 4309
	}

4310 4311 4312 4313 4314
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4315

4316
	/* To be sure that nobody uses thresholds */
4317 4318 4319 4320 4321 4322 4323 4324
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4325
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4326 4327
	struct eventfd_ctx *eventfd, const char *args)
{
4328
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4329 4330
}

4331
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4332 4333
	struct eventfd_ctx *eventfd, const char *args)
{
4334
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4335 4336
}

4337
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4338
	struct eventfd_ctx *eventfd, enum res_type type)
4339
{
4340 4341
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4342
	unsigned long usage;
4343
	int i, j, size, entries;
4344 4345

	mutex_lock(&memcg->thresholds_lock);
4346 4347

	if (type == _MEM) {
4348
		thresholds = &memcg->thresholds;
4349
		usage = mem_cgroup_usage(memcg, false);
4350
	} else if (type == _MEMSWAP) {
4351
		thresholds = &memcg->memsw_thresholds;
4352
		usage = mem_cgroup_usage(memcg, true);
4353
	} else
4354 4355
		BUG();

4356 4357 4358
	if (!thresholds->primary)
		goto unlock;

4359 4360 4361 4362
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4363
	size = entries = 0;
4364 4365
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4366
			size++;
4367 4368
		else
			entries++;
4369 4370
	}

4371
	new = thresholds->spare;
4372

4373 4374 4375 4376
	/* If no items related to eventfd have been cleared, nothing to do */
	if (!entries)
		goto unlock;

4377 4378
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4379 4380
		kfree(new);
		new = NULL;
4381
		goto swap_buffers;
4382 4383
	}

4384
	new->size = size;
4385 4386

	/* Copy thresholds and find current threshold */
4387 4388 4389
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4390 4391
			continue;

4392
		new->entries[j] = thresholds->primary->entries[i];
4393
		if (new->entries[j].threshold <= usage) {
4394
			/*
4395
			 * new->current_threshold will not be used
4396 4397 4398
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4399
			++new->current_threshold;
4400 4401 4402 4403
		}
		j++;
	}

4404
swap_buffers:
4405 4406
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4407

4408
	rcu_assign_pointer(thresholds->primary, new);
4409

4410
	/* To be sure that nobody uses thresholds */
4411
	synchronize_rcu();
4412 4413 4414 4415 4416 4417

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
4418
unlock:
4419 4420
	mutex_unlock(&memcg->thresholds_lock);
}
4421

4422
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4423 4424
	struct eventfd_ctx *eventfd)
{
4425
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4426 4427
}

4428
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4429 4430
	struct eventfd_ctx *eventfd)
{
4431
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4432 4433
}

4434
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4435
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4436 4437 4438 4439 4440 4441 4442
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4443
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4444 4445 4446 4447 4448

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4449
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
4450
		eventfd_signal(eventfd, 1);
4451
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4452 4453 4454 4455

	return 0;
}

4456
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4457
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4458 4459 4460
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4461
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4462

4463
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4464 4465 4466 4467 4468 4469
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4470
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4471 4472
}

4473
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4474
{
4475
	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4476

4477
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4478
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
R
Roman Gushchin 已提交
4479 4480
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4481 4482 4483
	return 0;
}

4484
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4485 4486
	struct cftype *cft, u64 val)
{
4487
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4488 4489

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4490
	if (!css->parent || !((val == 0) || (val == 1)))
4491 4492
		return -EINVAL;

4493
	memcg->oom_kill_disable = val;
4494
	if (!val)
4495
		memcg_oom_recover(memcg);
4496

4497 4498 4499
	return 0;
}

4500 4501
#ifdef CONFIG_CGROUP_WRITEBACK

4502 4503
#include <trace/events/writeback.h>

T
Tejun Heo 已提交
4504 4505 4506 4507 4508 4509 4510 4511 4512 4513
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

4514 4515 4516 4517 4518
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
4519 4520 4521 4522 4523 4524 4525 4526 4527 4528
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

4529 4530 4531 4532 4533 4534
/*
 * idx can be of type enum memcg_stat_item or node_stat_item.
 * Keep in sync with memcg_exact_page().
 */
static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
{
4535
	long x = atomic_long_read(&memcg->vmstats[idx]);
4536 4537 4538
	int cpu;

	for_each_online_cpu(cpu)
4539
		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4540 4541 4542 4543 4544
	if (x < 0)
		x = 0;
	return x;
}

4545 4546 4547
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
4548 4549
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
4550 4551 4552
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
4553 4554 4555
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
4556
 *
4557 4558 4559 4560 4561
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
4562
 */
4563 4564 4565
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
4566 4567 4568 4569
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

4570
	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4571

4572
	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4573 4574
	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4575
	*pheadroom = PAGE_COUNTER_MAX;
4576 4577

	while ((parent = parent_mem_cgroup(memcg))) {
4578
		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4579
					    READ_ONCE(memcg->memory.high));
4580 4581
		unsigned long used = page_counter_read(&memcg->memory);

4582
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4583 4584 4585 4586
		memcg = parent;
	}
}

4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640
/*
 * Foreign dirty flushing
 *
 * There's an inherent mismatch between memcg and writeback.  The former
 * trackes ownership per-page while the latter per-inode.  This was a
 * deliberate design decision because honoring per-page ownership in the
 * writeback path is complicated, may lead to higher CPU and IO overheads
 * and deemed unnecessary given that write-sharing an inode across
 * different cgroups isn't a common use-case.
 *
 * Combined with inode majority-writer ownership switching, this works well
 * enough in most cases but there are some pathological cases.  For
 * example, let's say there are two cgroups A and B which keep writing to
 * different but confined parts of the same inode.  B owns the inode and
 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
 * triggering background writeback.  A will be slowed down without a way to
 * make writeback of the dirty pages happen.
 *
 * Conditions like the above can lead to a cgroup getting repatedly and
 * severely throttled after making some progress after each
 * dirty_expire_interval while the underyling IO device is almost
 * completely idle.
 *
 * Solving this problem completely requires matching the ownership tracking
 * granularities between memcg and writeback in either direction.  However,
 * the more egregious behaviors can be avoided by simply remembering the
 * most recent foreign dirtying events and initiating remote flushes on
 * them when local writeback isn't enough to keep the memory clean enough.
 *
 * The following two functions implement such mechanism.  When a foreign
 * page - a page whose memcg and writeback ownerships don't match - is
 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
 * decides that the memcg needs to sleep due to high dirty ratio, it calls
 * mem_cgroup_flush_foreign() which queues writeback on the recorded
 * foreign bdi_writebacks which haven't expired.  Both the numbers of
 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
 * limited to MEMCG_CGWB_FRN_CNT.
 *
 * The mechanism only remembers IDs and doesn't hold any object references.
 * As being wrong occasionally doesn't matter, updates and accesses to the
 * records are lockless and racy.
 */
void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
					     struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = page->mem_cgroup;
	struct memcg_cgwb_frn *frn;
	u64 now = get_jiffies_64();
	u64 oldest_at = now;
	int oldest = -1;
	int i;

4641 4642
	trace_track_foreign_dirty(page, wb);

4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
	/*
	 * Pick the slot to use.  If there is already a slot for @wb, keep
	 * using it.  If not replace the oldest one which isn't being
	 * written out.
	 */
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		frn = &memcg->cgwb_frn[i];
		if (frn->bdi_id == wb->bdi->id &&
		    frn->memcg_id == wb->memcg_css->id)
			break;
		if (time_before64(frn->at, oldest_at) &&
		    atomic_read(&frn->done.cnt) == 1) {
			oldest = i;
			oldest_at = frn->at;
		}
	}

	if (i < MEMCG_CGWB_FRN_CNT) {
		/*
		 * Re-using an existing one.  Update timestamp lazily to
		 * avoid making the cacheline hot.  We want them to be
		 * reasonably up-to-date and significantly shorter than
		 * dirty_expire_interval as that's what expires the record.
		 * Use the shorter of 1s and dirty_expire_interval / 8.
		 */
		unsigned long update_intv =
			min_t(unsigned long, HZ,
			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);

		if (time_before64(frn->at, now - update_intv))
			frn->at = now;
	} else if (oldest >= 0) {
		/* replace the oldest free one */
		frn = &memcg->cgwb_frn[oldest];
		frn->bdi_id = wb->bdi->id;
		frn->memcg_id = wb->memcg_css->id;
		frn->at = now;
	}
}

/* issue foreign writeback flushes for recorded foreign dirtying events */
void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
	u64 now = jiffies_64;
	int i;

	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];

		/*
		 * If the record is older than dirty_expire_interval,
		 * writeback on it has already started.  No need to kick it
		 * off again.  Also, don't start a new one if there's
		 * already one in flight.
		 */
		if (time_after64(frn->at, now - intv) &&
		    atomic_read(&frn->done.cnt) == 1) {
			frn->at = 0;
4703
			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4704 4705 4706 4707 4708 4709 4710
			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
					       WB_REASON_FOREIGN_FLUSH,
					       &frn->done);
		}
	}
}

T
Tejun Heo 已提交
4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

4722 4723 4724 4725
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

4726 4727
#endif	/* CONFIG_CGROUP_WRITEBACK */

4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4741 4742 4743 4744 4745
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4746
static void memcg_event_remove(struct work_struct *work)
4747
{
4748 4749
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4750
	struct mem_cgroup *memcg = event->memcg;
4751 4752 4753

	remove_wait_queue(event->wqh, &event->wait);

4754
	event->unregister_event(memcg, event->eventfd);
4755 4756 4757 4758 4759 4760

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4761
	css_put(&memcg->css);
4762 4763 4764
}

/*
4765
 * Gets called on EPOLLHUP on eventfd when user closes it.
4766 4767 4768
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4769
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4770
			    int sync, void *key)
4771
{
4772 4773
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4774
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
4775
	__poll_t flags = key_to_poll(key);
4776

4777
	if (flags & EPOLLHUP) {
4778 4779 4780 4781 4782 4783 4784 4785 4786
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4787
		spin_lock(&memcg->event_list_lock);
4788 4789 4790 4791 4792 4793 4794 4795
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4796
		spin_unlock(&memcg->event_list_lock);
4797 4798 4799 4800 4801
	}

	return 0;
}

4802
static void memcg_event_ptable_queue_proc(struct file *file,
4803 4804
		wait_queue_head_t *wqh, poll_table *pt)
{
4805 4806
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4807 4808 4809 4810 4811 4812

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4813 4814
 * DO NOT USE IN NEW FILES.
 *
4815 4816 4817 4818 4819
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4820 4821
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4822
{
4823
	struct cgroup_subsys_state *css = of_css(of);
4824
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4825
	struct mem_cgroup_event *event;
4826 4827 4828 4829
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4830
	const char *name;
4831 4832 4833
	char *endp;
	int ret;

4834 4835 4836
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4837 4838
	if (*endp != ' ')
		return -EINVAL;
4839
	buf = endp + 1;
4840

4841
	cfd = simple_strtoul(buf, &endp, 10);
4842 4843
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4844
	buf = endp + 1;
4845 4846 4847 4848 4849

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4850
	event->memcg = memcg;
4851
	INIT_LIST_HEAD(&event->list);
4852 4853 4854
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4880 4881 4882 4883 4884
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4885 4886
	 *
	 * DO NOT ADD NEW FILES.
4887
	 */
A
Al Viro 已提交
4888
	name = cfile.file->f_path.dentry->d_name.name;
4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4900 4901
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4902 4903 4904 4905 4906
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4907
	/*
4908 4909 4910
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4911
	 */
A
Al Viro 已提交
4912
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4913
					       &memory_cgrp_subsys);
4914
	ret = -EINVAL;
4915
	if (IS_ERR(cfile_css))
4916
		goto out_put_cfile;
4917 4918
	if (cfile_css != css) {
		css_put(cfile_css);
4919
		goto out_put_cfile;
4920
	}
4921

4922
	ret = event->register_event(memcg, event->eventfd, buf);
4923 4924 4925
	if (ret)
		goto out_put_css;

4926
	vfs_poll(efile.file, &event->pt);
4927

4928 4929 4930
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4931 4932 4933 4934

	fdput(cfile);
	fdput(efile);

4935
	return nbytes;
4936 4937

out_put_css:
4938
	css_put(css);
4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4951
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4952
	{
4953
		.name = "usage_in_bytes",
4954
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4955
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4956
	},
4957 4958
	{
		.name = "max_usage_in_bytes",
4959
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4960
		.write = mem_cgroup_reset,
4961
		.read_u64 = mem_cgroup_read_u64,
4962
	},
B
Balbir Singh 已提交
4963
	{
4964
		.name = "limit_in_bytes",
4965
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4966
		.write = mem_cgroup_write,
4967
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4968
	},
4969 4970 4971
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4972
		.write = mem_cgroup_write,
4973
		.read_u64 = mem_cgroup_read_u64,
4974
	},
B
Balbir Singh 已提交
4975 4976
	{
		.name = "failcnt",
4977
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4978
		.write = mem_cgroup_reset,
4979
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4980
	},
4981 4982
	{
		.name = "stat",
4983
		.seq_show = memcg_stat_show,
4984
	},
4985 4986
	{
		.name = "force_empty",
4987
		.write = mem_cgroup_force_empty_write,
4988
	},
4989 4990 4991 4992 4993
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4994
	{
4995
		.name = "cgroup.event_control",		/* XXX: for compat */
4996
		.write = memcg_write_event_control,
4997
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4998
	},
K
KOSAKI Motohiro 已提交
4999 5000 5001 5002 5003
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
5004 5005 5006 5007 5008
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
5009 5010
	{
		.name = "oom_control",
5011
		.seq_show = mem_cgroup_oom_control_read,
5012
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
5013 5014
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
5015 5016 5017
	{
		.name = "pressure_level",
	},
5018 5019 5020
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
5021
		.seq_show = memcg_numa_stat_show,
5022 5023
	},
#endif
5024 5025 5026
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5027
		.write = mem_cgroup_write,
5028
		.read_u64 = mem_cgroup_read_u64,
5029 5030 5031 5032
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5033
		.read_u64 = mem_cgroup_read_u64,
5034 5035 5036 5037
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5038
		.write = mem_cgroup_reset,
5039
		.read_u64 = mem_cgroup_read_u64,
5040 5041 5042 5043
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5044
		.write = mem_cgroup_reset,
5045
		.read_u64 = mem_cgroup_read_u64,
5046
	},
5047 5048
#if defined(CONFIG_MEMCG_KMEM) && \
	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5049 5050
	{
		.name = "kmem.slabinfo",
5051
		.seq_show = memcg_slab_show,
5052 5053
	},
#endif
V
Vladimir Davydov 已提交
5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
5077
	{ },	/* terminate */
5078
};
5079

5080 5081 5082 5083 5084 5085 5086 5087
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
5088
 * However, there usually are many references to the offline CSS after
5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

5106 5107 5108 5109 5110 5111 5112 5113
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

5114 5115
static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
						  unsigned int n)
5116
{
5117
	refcount_add(n, &memcg->id.ref);
5118 5119
}

5120
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5121
{
5122
	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5123
		mem_cgroup_id_remove(memcg);
5124 5125 5126 5127 5128 5129

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

5130 5131 5132 5133 5134
static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

5147
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5148 5149
{
	struct mem_cgroup_per_node *pn;
5150
	int tmp = node;
5151 5152 5153 5154 5155 5156 5157 5158
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5159 5160
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5161
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5162 5163
	if (!pn)
		return 1;
5164

5165 5166
	pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
						 GFP_KERNEL_ACCOUNT);
5167 5168 5169 5170 5171
	if (!pn->lruvec_stat_local) {
		kfree(pn);
		return 1;
	}

5172 5173
	pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
					       GFP_KERNEL_ACCOUNT);
5174
	if (!pn->lruvec_stat_cpu) {
5175
		free_percpu(pn->lruvec_stat_local);
5176 5177 5178 5179
		kfree(pn);
		return 1;
	}

5180 5181 5182 5183 5184
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

5185
	memcg->nodeinfo[node] = pn;
5186 5187 5188
	return 0;
}

5189
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5190
{
5191 5192
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
5193 5194 5195
	if (!pn)
		return;

5196
	free_percpu(pn->lruvec_stat_cpu);
5197
	free_percpu(pn->lruvec_stat_local);
5198
	kfree(pn);
5199 5200
}

5201
static void __mem_cgroup_free(struct mem_cgroup *memcg)
5202
{
5203
	int node;
5204

5205
	for_each_node(node)
5206
		free_mem_cgroup_per_node_info(memcg, node);
5207
	free_percpu(memcg->vmstats_percpu);
5208
	free_percpu(memcg->vmstats_local);
5209
	kfree(memcg);
5210
}
5211

5212 5213 5214
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
5215 5216 5217 5218
	/*
	 * Flush percpu vmstats and vmevents to guarantee the value correctness
	 * on parent's and all ancestor levels.
	 */
5219
	memcg_flush_percpu_vmstats(memcg);
5220
	memcg_flush_percpu_vmevents(memcg);
5221 5222 5223
	__mem_cgroup_free(memcg);
}

5224
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
5225
{
5226
	struct mem_cgroup *memcg;
5227
	unsigned int size;
5228
	int node;
5229
	int __maybe_unused i;
5230
	long error = -ENOMEM;
B
Balbir Singh 已提交
5231

5232 5233 5234 5235
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
5236
	if (!memcg)
5237
		return ERR_PTR(error);
5238

5239 5240 5241
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
5242 5243
	if (memcg->id.id < 0) {
		error = memcg->id.id;
5244
		goto fail;
5245
	}
5246

5247 5248
	memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
						GFP_KERNEL_ACCOUNT);
5249 5250 5251
	if (!memcg->vmstats_local)
		goto fail;

5252 5253
	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
						 GFP_KERNEL_ACCOUNT);
5254
	if (!memcg->vmstats_percpu)
5255
		goto fail;
5256

B
Bob Liu 已提交
5257
	for_each_node(node)
5258
		if (alloc_mem_cgroup_per_node_info(memcg, node))
5259
			goto fail;
5260

5261 5262
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
5263

5264
	INIT_WORK(&memcg->high_work, high_work_func);
5265 5266 5267
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5268
	vmpressure_init(&memcg->vmpressure);
5269 5270
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
5271
	memcg->socket_pressure = jiffies;
5272
#ifdef CONFIG_MEMCG_KMEM
V
Vladimir Davydov 已提交
5273
	memcg->kmemcg_id = -1;
R
Roman Gushchin 已提交
5274
	INIT_LIST_HEAD(&memcg->objcg_list);
V
Vladimir Davydov 已提交
5275
#endif
5276 5277
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
5278 5279 5280
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		memcg->cgwb_frn[i].done =
			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5281 5282 5283 5284 5285
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
	memcg->deferred_split_queue.split_queue_len = 0;
5286
#endif
5287
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5288 5289
	return memcg;
fail:
5290
	mem_cgroup_id_remove(memcg);
5291
	__mem_cgroup_free(memcg);
5292
	return ERR_PTR(error);
5293 5294
}

5295 5296
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5297
{
5298
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5299
	struct mem_cgroup *memcg, *old_memcg;
5300
	long error = -ENOMEM;
5301

5302
	old_memcg = set_active_memcg(parent);
5303
	memcg = mem_cgroup_alloc();
5304
	set_active_memcg(old_memcg);
5305 5306
	if (IS_ERR(memcg))
		return ERR_CAST(memcg);
5307

5308
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5309
	memcg->soft_limit = PAGE_COUNTER_MAX;
5310
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5311 5312 5313
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
5314

5315
		page_counter_init(&memcg->memory, &parent->memory);
5316
		page_counter_init(&memcg->swap, &parent->swap);
5317
		page_counter_init(&memcg->kmem, &parent->kmem);
5318
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5319
	} else {
5320 5321 5322 5323
		page_counter_init(&memcg->memory, NULL);
		page_counter_init(&memcg->swap, NULL);
		page_counter_init(&memcg->kmem, NULL);
		page_counter_init(&memcg->tcpmem, NULL);
5324

5325 5326 5327 5328
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

5329
	/* The following stuff does not apply to the root */
5330
	error = memcg_online_kmem(memcg);
5331 5332
	if (error)
		goto fail;
5333

5334
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5335
		static_branch_inc(&memcg_sockets_enabled_key);
5336

5337 5338
	return &memcg->css;
fail:
5339
	mem_cgroup_id_remove(memcg);
5340
	mem_cgroup_free(memcg);
5341
	return ERR_PTR(error);
5342 5343
}

5344
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5345
{
5346 5347
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5348 5349 5350 5351 5352 5353 5354 5355 5356 5357
	/*
	 * A memcg must be visible for memcg_expand_shrinker_maps()
	 * by the time the maps are allocated. So, we allocate maps
	 * here, when for_each_mem_cgroup() can't skip it.
	 */
	if (memcg_alloc_shrinker_maps(memcg)) {
		mem_cgroup_id_remove(memcg);
		return -ENOMEM;
	}

5358
	/* Online state pins memcg ID, memcg ID pins CSS */
5359
	refcount_set(&memcg->id.ref, 1);
5360
	css_get(css);
5361
	return 0;
B
Balbir Singh 已提交
5362 5363
}

5364
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5365
{
5366
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5367
	struct mem_cgroup_event *event, *tmp;
5368 5369 5370 5371 5372 5373

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
5374 5375
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5376 5377 5378
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
5379
	spin_unlock(&memcg->event_list_lock);
5380

R
Roman Gushchin 已提交
5381
	page_counter_set_min(&memcg->memory, 0);
5382
	page_counter_set_low(&memcg->memory, 0);
5383

5384
	memcg_offline_kmem(memcg);
5385
	wb_memcg_offline(memcg);
5386

5387 5388
	drain_all_stock(memcg);

5389
	mem_cgroup_id_put(memcg);
5390 5391
}

5392 5393 5394 5395 5396 5397 5398
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

5399
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
5400
{
5401
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5402
	int __maybe_unused i;
5403

5404 5405 5406 5407
#ifdef CONFIG_CGROUP_WRITEBACK
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
#endif
5408
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5409
		static_branch_dec(&memcg_sockets_enabled_key);
5410

5411
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
5412
		static_branch_dec(&memcg_sockets_enabled_key);
5413

5414 5415 5416
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
5417
	memcg_free_shrinker_maps(memcg);
5418
	memcg_free_kmem(memcg);
5419
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
5420 5421
}

5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5439 5440 5441 5442
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
R
Roman Gushchin 已提交
5443
	page_counter_set_min(&memcg->memory, 0);
5444
	page_counter_set_low(&memcg->memory, 0);
5445
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5446
	memcg->soft_limit = PAGE_COUNTER_MAX;
5447
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5448
	memcg_wb_domain_size_changed(memcg);
5449 5450
}

5451
#ifdef CONFIG_MMU
5452
/* Handlers for move charge at task migration. */
5453
static int mem_cgroup_do_precharge(unsigned long count)
5454
{
5455
	int ret;
5456

5457 5458
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5459
	if (!ret) {
5460 5461 5462
		mc.precharge += count;
		return ret;
	}
5463

5464
	/* Try charges one by one with reclaim, but do not retry */
5465
	while (count--) {
5466
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5467 5468
		if (ret)
			return ret;
5469
		mc.precharge++;
5470
		cond_resched();
5471
	}
5472
	return 0;
5473 5474 5475 5476
}

union mc_target {
	struct page	*page;
5477
	swp_entry_t	ent;
5478 5479 5480
};

enum mc_target_type {
5481
	MC_TARGET_NONE = 0,
5482
	MC_TARGET_PAGE,
5483
	MC_TARGET_SWAP,
5484
	MC_TARGET_DEVICE,
5485 5486
};

D
Daisuke Nishimura 已提交
5487 5488
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5489
{
5490
	struct page *page = vm_normal_page(vma, addr, ptent);
5491

D
Daisuke Nishimura 已提交
5492 5493 5494
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
5495
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5496
			return NULL;
5497 5498 5499 5500
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
5501 5502 5503 5504 5505 5506
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5507
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
5508
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5509
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
5510 5511 5512 5513
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

5514
	if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5515
		return NULL;
5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
		page = device_private_entry_to_page(ent);
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

5533 5534 5535
	if (non_swap_entry(ent))
		return NULL;

5536 5537 5538 5539
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5540
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5541
	entry->val = ent.val;
D
Daisuke Nishimura 已提交
5542 5543 5544

	return page;
}
5545 5546
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5547
			pte_t ptent, swp_entry_t *entry)
5548 5549 5550 5551
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5552

5553 5554 5555 5556 5557
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	if (!vma->vm_file) /* anonymous vma */
		return NULL;
5558
	if (!(mc.flags & MOVE_FILE))
5559 5560 5561
		return NULL;

	/* page is moved even if it's not RSS of this task(page-faulted). */
5562
	/* shmem/tmpfs may report page out on swap: account for that too. */
5563 5564
	return find_get_incore_page(vma->vm_file->f_mapping,
			linear_page_index(vma, addr));
5565 5566
}

5567 5568 5569
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
5570
 * @compound: charge the page as compound or small page
5571 5572 5573
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
5574
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5575 5576 5577 5578 5579
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
5580
				   bool compound,
5581 5582 5583
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
5584 5585
	struct lruvec *from_vec, *to_vec;
	struct pglist_data *pgdat;
5586
	unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5587 5588 5589 5590
	int ret;

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
5591
	VM_BUG_ON(compound && !PageTransHuge(page));
5592 5593

	/*
5594
	 * Prevent mem_cgroup_migrate() from looking at
5595
	 * page->mem_cgroup of its source page while we change it.
5596
	 */
5597
	ret = -EBUSY;
5598 5599 5600 5601 5602 5603 5604
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

5605
	pgdat = page_pgdat(page);
5606 5607
	from_vec = mem_cgroup_lruvec(from, pgdat);
	to_vec = mem_cgroup_lruvec(to, pgdat);
5608

5609
	lock_page_memcg(page);
5610

5611 5612 5613 5614
	if (PageAnon(page)) {
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5615 5616 5617 5618 5619 5620 5621
			if (PageTransHuge(page)) {
				__mod_lruvec_state(from_vec, NR_ANON_THPS,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_ANON_THPS,
						   nr_pages);
			}

5622 5623
		}
	} else {
5624 5625 5626 5627 5628 5629 5630 5631
		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);

		if (PageSwapBacked(page)) {
			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
		}

5632 5633 5634 5635
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
		}
5636

5637 5638
		if (PageDirty(page)) {
			struct address_space *mapping = page_mapping(page);
5639

5640
			if (mapping_can_writeback(mapping)) {
5641 5642 5643 5644 5645
				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
						   nr_pages);
			}
5646 5647 5648
		}
	}

5649
	if (PageWriteback(page)) {
5650 5651
		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5652 5653 5654
	}

	/*
5655 5656
	 * All state has been migrated, let's switch to the new memcg.
	 *
5657
	 * It is safe to change page->mem_cgroup here because the page
5658 5659 5660 5661 5662 5663 5664 5665
	 * is referenced, charged, isolated, and locked: we can't race
	 * with (un)charging, migration, LRU putback, or anything else
	 * that would rely on a stable page->mem_cgroup.
	 *
	 * Note that lock_page_memcg is a memcg lock, not a page lock,
	 * to save space. As soon as we switch page->mem_cgroup to a
	 * new memcg that isn't locked, the above state can change
	 * concurrently again. Make sure we're truly done with it.
5666
	 */
5667
	smp_mb();
5668

5669 5670 5671 5672
	css_get(&to->css);
	css_put(&from->css);

	page->mem_cgroup = to;
5673

5674
	__unlock_page_memcg(from);
5675 5676 5677 5678

	ret = 0;

	local_irq_disable();
5679
	mem_cgroup_charge_statistics(to, page, nr_pages);
5680
	memcg_check_events(to, page);
5681
	mem_cgroup_charge_statistics(from, page, -nr_pages);
5682 5683 5684 5685 5686 5687 5688 5689
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5705 5706
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
 *     (so ZONE_DEVICE page and thus not on the lru).
5707 5708 5709
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
5710 5711
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5712 5713 5714 5715
 *
 * Called with pte lock held.
 */

5716
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5717 5718 5719
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
5720
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5721 5722 5723 5724 5725
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
5726
		page = mc_handle_swap_pte(vma, ptent, &ent);
5727
	else if (pte_none(ptent))
5728
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5729 5730

	if (!page && !ent.val)
5731
		return ret;
5732 5733
	if (page) {
		/*
5734
		 * Do only loose check w/o serialization.
5735
		 * mem_cgroup_move_account() checks the page is valid or
5736
		 * not under LRU exclusion.
5737
		 */
5738
		if (page->mem_cgroup == mc.from) {
5739
			ret = MC_TARGET_PAGE;
5740
			if (is_device_private_page(page))
5741
				ret = MC_TARGET_DEVICE;
5742 5743 5744 5745 5746 5747
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
5748 5749 5750 5751 5752
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
5753
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5754 5755 5756
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5757 5758 5759 5760
	}
	return ret;
}

5761 5762
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
5763 5764
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
5765 5766 5767 5768 5769 5770 5771 5772
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

5773 5774 5775 5776 5777
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
5778
	page = pmd_page(pmd);
5779
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5780
	if (!(mc.flags & MOVE_ANON))
5781
		return ret;
5782
	if (page->mem_cgroup == mc.from) {
5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5799 5800 5801 5802
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
5803
	struct vm_area_struct *vma = walk->vma;
5804 5805 5806
	pte_t *pte;
	spinlock_t *ptl;

5807 5808
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5809 5810
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5811 5812
		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
		 * this might change.
5813
		 */
5814 5815
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5816
		spin_unlock(ptl);
5817
		return 0;
5818
	}
5819

5820 5821
	if (pmd_trans_unstable(pmd))
		return 0;
5822 5823
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5824
		if (get_mctgt_type(vma, addr, *pte, NULL))
5825 5826 5827 5828
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5829 5830 5831
	return 0;
}

5832 5833 5834 5835
static const struct mm_walk_ops precharge_walk_ops = {
	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
};

5836 5837 5838 5839
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

5840
	mmap_read_lock(mm);
5841
	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5842
	mmap_read_unlock(mm);
5843 5844 5845 5846 5847 5848 5849 5850 5851

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5852 5853 5854 5855 5856
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5857 5858
}

5859 5860
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5861
{
5862 5863 5864
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5865
	/* we must uncharge all the leftover precharges from mc.to */
5866
	if (mc.precharge) {
5867
		cancel_charge(mc.to, mc.precharge);
5868 5869 5870 5871 5872 5873 5874
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5875
		cancel_charge(mc.from, mc.moved_charge);
5876
		mc.moved_charge = 0;
5877
	}
5878 5879 5880
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5881
		if (!mem_cgroup_is_root(mc.from))
5882
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5883

5884 5885
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

5886
		/*
5887 5888
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5889
		 */
5890
		if (!mem_cgroup_is_root(mc.to))
5891 5892
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5893 5894
		mc.moved_swap = 0;
	}
5895 5896 5897 5898 5899 5900 5901
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
5902 5903
	struct mm_struct *mm = mc.mm;

5904 5905 5906 5907 5908 5909
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5910
	spin_lock(&mc.lock);
5911 5912
	mc.from = NULL;
	mc.to = NULL;
5913
	mc.mm = NULL;
5914
	spin_unlock(&mc.lock);
5915 5916

	mmput(mm);
5917 5918
}

5919
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5920
{
5921
	struct cgroup_subsys_state *css;
5922
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5923
	struct mem_cgroup *from;
5924
	struct task_struct *leader, *p;
5925
	struct mm_struct *mm;
5926
	unsigned long move_flags;
5927
	int ret = 0;
5928

5929 5930
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5931 5932
		return 0;

5933 5934 5935 5936 5937 5938 5939
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
5940
	cgroup_taskset_for_each_leader(leader, css, tset) {
5941 5942
		WARN_ON_ONCE(p);
		p = leader;
5943
		memcg = mem_cgroup_from_css(css);
5944 5945 5946 5947
	}
	if (!p)
		return 0;

5948 5949 5950 5951 5952 5953 5954 5955 5956
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
5973
		mc.mm = mm;
5974 5975 5976 5977 5978 5979 5980 5981 5982
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
5983 5984
	} else {
		mmput(mm);
5985 5986 5987 5988
	}
	return ret;
}

5989
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5990
{
5991 5992
	if (mc.to)
		mem_cgroup_clear_mc();
5993 5994
}

5995 5996 5997
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5998
{
5999
	int ret = 0;
6000
	struct vm_area_struct *vma = walk->vma;
6001 6002
	pte_t *pte;
	spinlock_t *ptl;
6003 6004 6005
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
6006

6007 6008
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
6009
		if (mc.precharge < HPAGE_PMD_NR) {
6010
			spin_unlock(ptl);
6011 6012 6013 6014 6015 6016
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
6017
				if (!mem_cgroup_move_account(page, true,
6018
							     mc.from, mc.to)) {
6019 6020 6021 6022 6023 6024
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
6025 6026 6027 6028 6029 6030 6031 6032
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
6033
		}
6034
		spin_unlock(ptl);
6035
		return 0;
6036 6037
	}

6038 6039
	if (pmd_trans_unstable(pmd))
		return 0;
6040 6041 6042 6043
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6044
		bool device = false;
6045
		swp_entry_t ent;
6046 6047 6048 6049

		if (!mc.precharge)
			break;

6050
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6051 6052
		case MC_TARGET_DEVICE:
			device = true;
J
Joe Perches 已提交
6053
			fallthrough;
6054 6055
		case MC_TARGET_PAGE:
			page = target.page;
6056 6057 6058 6059 6060 6061 6062 6063
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
6064
			if (!device && isolate_lru_page(page))
6065
				goto put;
6066 6067
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
6068
				mc.precharge--;
6069 6070
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6071
			}
6072 6073
			if (!device)
				putback_lru_page(page);
6074
put:			/* get_mctgt_type() gets the page */
6075 6076
			put_page(page);
			break;
6077 6078
		case MC_TARGET_SWAP:
			ent = target.ent;
6079
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6080
				mc.precharge--;
6081 6082
				mem_cgroup_id_get_many(mc.to, 1);
				/* we fixup other refcnts and charges later. */
6083 6084
				mc.moved_swap++;
			}
6085
			break;
6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6100
		ret = mem_cgroup_do_precharge(1);
6101 6102 6103 6104 6105 6106 6107
		if (!ret)
			goto retry;
	}

	return ret;
}

6108 6109 6110 6111
static const struct mm_walk_ops charge_walk_ops = {
	.pmd_entry	= mem_cgroup_move_charge_pte_range,
};

6112
static void mem_cgroup_move_charge(void)
6113 6114
{
	lru_add_drain_all();
6115
	/*
6116 6117 6118
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
6119 6120 6121
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
6122
retry:
6123
	if (unlikely(!mmap_read_trylock(mc.mm))) {
6124
		/*
6125
		 * Someone who are holding the mmap_lock might be waiting in
6126 6127 6128 6129 6130 6131 6132 6133 6134
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6135 6136 6137 6138
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
6139 6140
	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
			NULL);
6141

6142
	mmap_read_unlock(mc.mm);
6143
	atomic_dec(&mc.from->moving_account);
6144 6145
}

6146
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
6147
{
6148 6149
	if (mc.to) {
		mem_cgroup_move_charge();
6150
		mem_cgroup_clear_mc();
6151
	}
B
Balbir Singh 已提交
6152
}
6153
#else	/* !CONFIG_MMU */
6154
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6155 6156 6157
{
	return 0;
}
6158
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6159 6160
{
}
6161
static void mem_cgroup_move_task(void)
6162 6163 6164
{
}
#endif
B
Balbir Singh 已提交
6165

6166 6167 6168 6169 6170 6171 6172 6173 6174 6175
static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
{
	if (value == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);

	return 0;
}

6176 6177 6178
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
6179 6180 6181
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6182 6183
}

R
Roman Gushchin 已提交
6184 6185
static int memory_min_show(struct seq_file *m, void *v)
{
6186 6187
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
R
Roman Gushchin 已提交
6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

6207 6208
static int memory_low_show(struct seq_file *m, void *v)
{
6209 6210
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6211 6212 6213 6214 6215 6216 6217 6218 6219 6220
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
6221
	err = page_counter_memparse(buf, "max", &low);
6222 6223 6224
	if (err)
		return err;

6225
	page_counter_set_low(&memcg->memory, low);
6226 6227 6228 6229 6230 6231

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
6232 6233
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6234 6235 6236 6237 6238 6239
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6240
	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6241
	bool drained = false;
6242 6243 6244 6245
	unsigned long high;
	int err;

	buf = strstrip(buf);
6246
	err = page_counter_memparse(buf, "max", &high);
6247 6248 6249
	if (err)
		return err;

6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271
	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);
		unsigned long reclaimed;

		if (nr_pages <= high)
			break;

		if (signal_pending(current))
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
							 GFP_KERNEL, true);

		if (!reclaimed && !nr_retries--)
			break;
	}
6272

6273 6274
	page_counter_set_high(&memcg->memory, high);

6275 6276
	memcg_wb_domain_size_changed(memcg);

6277 6278 6279 6280 6281
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
6282 6283
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6284 6285 6286 6287 6288 6289
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6290
	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6291
	bool drained = false;
6292 6293 6294 6295
	unsigned long max;
	int err;

	buf = strstrip(buf);
6296
	err = page_counter_memparse(buf, "max", &max);
6297 6298 6299
	if (err)
		return err;

6300
	xchg(&memcg->memory.max, max);
6301 6302 6303 6304 6305 6306 6307

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

6308
		if (signal_pending(current))
6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

6324
		memcg_memory_event(memcg, MEMCG_OOM);
6325 6326 6327
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
6328

6329
	memcg_wb_domain_size_changed(memcg);
6330 6331 6332
	return nbytes;
}

6333 6334 6335 6336 6337 6338 6339 6340 6341 6342
static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
{
	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&events[MEMCG_OOM_KILL]));
}

6343 6344
static int memory_events_show(struct seq_file *m, void *v)
{
6345
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6346

6347 6348 6349 6350 6351 6352 6353
	__memory_events_show(m, memcg->memory_events);
	return 0;
}

static int memory_events_local_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6354

6355
	__memory_events_show(m, memcg->memory_events_local);
6356 6357 6358
	return 0;
}

6359 6360
static int memory_stat_show(struct seq_file *m, void *v)
{
6361
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6362
	char *buf;
6363

6364 6365 6366 6367 6368
	buf = memory_stat_format(memcg);
	if (!buf)
		return -ENOMEM;
	seq_puts(m, buf);
	kfree(buf);
6369 6370 6371
	return 0;
}

6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400
#ifdef CONFIG_NUMA
static int memory_numa_stat_show(struct seq_file *m, void *v)
{
	int i;
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);

	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
		int nid;

		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
			continue;

		seq_printf(m, "%s", memory_stats[i].name);
		for_each_node_state(nid, N_MEMORY) {
			u64 size;
			struct lruvec *lruvec;

			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
			size = lruvec_page_state(lruvec, memory_stats[i].idx);
			size *= memory_stats[i].ratio;
			seq_printf(m, " N%d=%llu", nid, size);
		}
		seq_putc(m, '\n');
	}

	return 0;
}
#endif

6401 6402
static int memory_oom_group_show(struct seq_file *m, void *v)
{
6403
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431

	seq_printf(m, "%d\n", memcg->oom_group);

	return 0;
}

static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
				      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	int ret, oom_group;

	buf = strstrip(buf);
	if (!buf)
		return -EINVAL;

	ret = kstrtoint(buf, 0, &oom_group);
	if (ret)
		return ret;

	if (oom_group != 0 && oom_group != 1)
		return -EINVAL;

	memcg->oom_group = oom_group;

	return nbytes;
}

6432 6433 6434
static struct cftype memory_files[] = {
	{
		.name = "current",
6435
		.flags = CFTYPE_NOT_ON_ROOT,
6436 6437
		.read_u64 = memory_current_read,
	},
R
Roman Gushchin 已提交
6438 6439 6440 6441 6442 6443
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
6465
		.file_offset = offsetof(struct mem_cgroup, events_file),
6466 6467
		.seq_show = memory_events_show,
	},
6468 6469 6470 6471 6472 6473
	{
		.name = "events.local",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, events_local_file),
		.seq_show = memory_events_local_show,
	},
6474 6475 6476 6477
	{
		.name = "stat",
		.seq_show = memory_stat_show,
	},
6478 6479 6480 6481 6482 6483
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.seq_show = memory_numa_stat_show,
	},
#endif
6484 6485 6486 6487 6488 6489
	{
		.name = "oom.group",
		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
		.seq_show = memory_oom_group_show,
		.write = memory_oom_group_write,
	},
6490 6491 6492
	{ }	/* terminate */
};

6493
struct cgroup_subsys memory_cgrp_subsys = {
6494
	.css_alloc = mem_cgroup_css_alloc,
6495
	.css_online = mem_cgroup_css_online,
6496
	.css_offline = mem_cgroup_css_offline,
6497
	.css_released = mem_cgroup_css_released,
6498
	.css_free = mem_cgroup_css_free,
6499
	.css_reset = mem_cgroup_css_reset,
6500 6501
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
6502
	.post_attach = mem_cgroup_move_task,
6503 6504
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
6505
	.early_init = 0,
B
Balbir Singh 已提交
6506
};
6507

6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537
/*
 * This function calculates an individual cgroup's effective
 * protection which is derived from its own memory.min/low, its
 * parent's and siblings' settings, as well as the actual memory
 * distribution in the tree.
 *
 * The following rules apply to the effective protection values:
 *
 * 1. At the first level of reclaim, effective protection is equal to
 *    the declared protection in memory.min and memory.low.
 *
 * 2. To enable safe delegation of the protection configuration, at
 *    subsequent levels the effective protection is capped to the
 *    parent's effective protection.
 *
 * 3. To make complex and dynamic subtrees easier to configure, the
 *    user is allowed to overcommit the declared protection at a given
 *    level. If that is the case, the parent's effective protection is
 *    distributed to the children in proportion to how much protection
 *    they have declared and how much of it they are utilizing.
 *
 *    This makes distribution proportional, but also work-conserving:
 *    if one cgroup claims much more protection than it uses memory,
 *    the unused remainder is available to its siblings.
 *
 * 4. Conversely, when the declared protection is undercommitted at a
 *    given level, the distribution of the larger parental protection
 *    budget is NOT proportional. A cgroup's protection from a sibling
 *    is capped to its own memory.min/low setting.
 *
6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549
 * 5. However, to allow protecting recursive subtrees from each other
 *    without having to declare each individual cgroup's fixed share
 *    of the ancestor's claim to protection, any unutilized -
 *    "floating" - protection from up the tree is distributed in
 *    proportion to each cgroup's *usage*. This makes the protection
 *    neutral wrt sibling cgroups and lets them compete freely over
 *    the shared parental protection budget, but it protects the
 *    subtree as a whole from neighboring subtrees.
 *
 * Note that 4. and 5. are not in conflict: 4. is about protecting
 * against immediate siblings whereas 5. is about protecting against
 * neighboring subtrees.
6550 6551
 */
static unsigned long effective_protection(unsigned long usage,
6552
					  unsigned long parent_usage,
6553 6554 6555 6556 6557
					  unsigned long setting,
					  unsigned long parent_effective,
					  unsigned long siblings_protected)
{
	unsigned long protected;
6558
	unsigned long ep;
6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588

	protected = min(usage, setting);
	/*
	 * If all cgroups at this level combined claim and use more
	 * protection then what the parent affords them, distribute
	 * shares in proportion to utilization.
	 *
	 * We are using actual utilization rather than the statically
	 * claimed protection in order to be work-conserving: claimed
	 * but unused protection is available to siblings that would
	 * otherwise get a smaller chunk than what they claimed.
	 */
	if (siblings_protected > parent_effective)
		return protected * parent_effective / siblings_protected;

	/*
	 * Ok, utilized protection of all children is within what the
	 * parent affords them, so we know whatever this child claims
	 * and utilizes is effectively protected.
	 *
	 * If there is unprotected usage beyond this value, reclaim
	 * will apply pressure in proportion to that amount.
	 *
	 * If there is unutilized protection, the cgroup will be fully
	 * shielded from reclaim, but we do return a smaller value for
	 * protection than what the group could enjoy in theory. This
	 * is okay. With the overcommit distribution above, effective
	 * protection is always dependent on how memory is actually
	 * consumed among the siblings anyway.
	 */
6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601
	ep = protected;

	/*
	 * If the children aren't claiming (all of) the protection
	 * afforded to them by the parent, distribute the remainder in
	 * proportion to the (unprotected) memory of each cgroup. That
	 * way, cgroups that aren't explicitly prioritized wrt each
	 * other compete freely over the allowance, but they are
	 * collectively protected from neighboring trees.
	 *
	 * We're using unprotected memory for the weight so that if
	 * some cgroups DO claim explicit protection, we don't protect
	 * the same bytes twice.
6602 6603 6604 6605
	 *
	 * Check both usage and parent_usage against the respective
	 * protected values. One should imply the other, but they
	 * aren't read atomically - make sure the division is sane.
6606 6607 6608
	 */
	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
		return ep;
6609 6610 6611
	if (parent_effective > siblings_protected &&
	    parent_usage > siblings_protected &&
	    usage > protected) {
6612 6613 6614 6615 6616 6617 6618 6619 6620 6621
		unsigned long unclaimed;

		unclaimed = parent_effective - siblings_protected;
		unclaimed *= usage - protected;
		unclaimed /= parent_usage - siblings_protected;

		ep += unclaimed;
	}

	return ep;
6622 6623
}

6624
/**
R
Roman Gushchin 已提交
6625
 * mem_cgroup_protected - check if memory consumption is in the normal range
6626
 * @root: the top ancestor of the sub-tree being checked
6627 6628
 * @memcg: the memory cgroup to check
 *
6629 6630
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
6631
 */
6632 6633
void mem_cgroup_calculate_protection(struct mem_cgroup *root,
				     struct mem_cgroup *memcg)
6634
{
6635
	unsigned long usage, parent_usage;
6636 6637
	struct mem_cgroup *parent;

6638
	if (mem_cgroup_disabled())
6639
		return;
6640

6641 6642
	if (!root)
		root = root_mem_cgroup;
6643 6644 6645 6646 6647 6648 6649 6650

	/*
	 * Effective values of the reclaim targets are ignored so they
	 * can be stale. Have a look at mem_cgroup_protection for more
	 * details.
	 * TODO: calculation should be more robust so that we do not need
	 * that special casing.
	 */
6651
	if (memcg == root)
6652
		return;
6653

6654
	usage = page_counter_read(&memcg->memory);
R
Roman Gushchin 已提交
6655
	if (!usage)
6656
		return;
R
Roman Gushchin 已提交
6657 6658

	parent = parent_mem_cgroup(memcg);
6659 6660
	/* No parent means a non-hierarchical mode on v1 memcg */
	if (!parent)
6661
		return;
6662

6663
	if (parent == root) {
6664
		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6665
		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6666
		return;
R
Roman Gushchin 已提交
6667 6668
	}

6669 6670
	parent_usage = page_counter_read(&parent->memory);

6671
	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6672 6673
			READ_ONCE(memcg->memory.min),
			READ_ONCE(parent->memory.emin),
6674
			atomic_long_read(&parent->memory.children_min_usage)));
6675

6676
	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6677 6678
			READ_ONCE(memcg->memory.low),
			READ_ONCE(parent->memory.elow),
6679
			atomic_long_read(&parent->memory.children_low_usage)));
6680 6681
}

6682
/**
6683
 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6684 6685 6686 6687 6688 6689 6690
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
6691
 * Returns 0 on success. Otherwise, an error code is returned.
6692
 */
6693
int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6694
{
6695
	unsigned int nr_pages = thp_nr_pages(page);
6696 6697 6698 6699 6700 6701 6702
	struct mem_cgroup *memcg = NULL;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
6703 6704 6705
		swp_entry_t ent = { .val = page_private(page), };
		unsigned short id;

6706 6707 6708
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
6709 6710
		 * already charged pages, too.  page->mem_cgroup is protected
		 * by the page lock, which serializes swap cache removal, which
6711 6712
		 * in turn serializes uncharging.
		 */
6713
		VM_BUG_ON_PAGE(!PageLocked(page), page);
6714
		if (compound_head(page)->mem_cgroup)
6715
			goto out;
6716

6717 6718 6719 6720 6721 6722
		id = lookup_swap_cgroup_id(ent);
		rcu_read_lock();
		memcg = mem_cgroup_from_id(id);
		if (memcg && !css_tryget_online(&memcg->css))
			memcg = NULL;
		rcu_read_unlock();
6723 6724 6725 6726 6727 6728
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);
6729 6730
	if (ret)
		goto out_put;
6731

6732
	css_get(&memcg->css);
6733
	commit_charge(page, memcg);
6734 6735

	local_irq_disable();
6736
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6737 6738
	memcg_check_events(memcg, page);
	local_irq_enable();
6739

6740
	if (PageSwapCache(page)) {
6741 6742 6743 6744 6745 6746
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
6747
		mem_cgroup_uncharge_swap(entry, nr_pages);
6748 6749
	}

6750 6751 6752 6753
out_put:
	css_put(&memcg->css);
out:
	return ret;
6754 6755
}

6756 6757
struct uncharge_gather {
	struct mem_cgroup *memcg;
6758
	unsigned long nr_pages;
6759 6760 6761 6762 6763 6764
	unsigned long pgpgout;
	unsigned long nr_kmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6765
{
6766 6767 6768 6769 6770
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
6771 6772
	unsigned long flags;

6773
	if (!mem_cgroup_is_root(ug->memcg)) {
6774
		page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6775
		if (do_memsw_account())
6776
			page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6777 6778 6779
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
6780
	}
6781 6782

	local_irq_save(flags);
6783
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6784
	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6785
	memcg_check_events(ug->memcg, ug->dummy_page);
6786
	local_irq_restore(flags);
6787 6788 6789

	/* drop reference from uncharge_page */
	css_put(&ug->memcg->css);
6790 6791 6792 6793
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
6794 6795
	unsigned long nr_pages;

6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812
	VM_BUG_ON_PAGE(PageLRU(page), page);

	if (!page->mem_cgroup)
		return;

	/*
	 * Nobody should be changing or seriously looking at
	 * page->mem_cgroup at this point, we have fully
	 * exclusive access to the page.
	 */

	if (ug->memcg != page->mem_cgroup) {
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
		ug->memcg = page->mem_cgroup;
6813 6814 6815

		/* pairs with css_put in uncharge_batch */
		css_get(&ug->memcg->css);
6816 6817
	}

6818 6819
	nr_pages = compound_nr(page);
	ug->nr_pages += nr_pages;
6820

6821
	if (!PageKmemcg(page)) {
6822 6823
		ug->pgpgout++;
	} else {
6824
		ug->nr_kmem += nr_pages;
6825 6826 6827 6828 6829
		__ClearPageKmemcg(page);
	}

	ug->dummy_page = page;
	page->mem_cgroup = NULL;
6830
	css_put(&ug->memcg->css);
6831 6832 6833 6834
}

static void uncharge_list(struct list_head *page_list)
{
6835
	struct uncharge_gather ug;
6836
	struct list_head *next;
6837 6838

	uncharge_gather_clear(&ug);
6839

6840 6841 6842 6843
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
6844 6845
	next = page_list->next;
	do {
6846 6847
		struct page *page;

6848 6849 6850
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

6851
		uncharge_page(page, &ug);
6852 6853
	} while (next != page_list);

6854 6855
	if (ug.memcg)
		uncharge_batch(&ug);
6856 6857
}

6858 6859 6860 6861
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
6862
 * Uncharge a page previously charged with mem_cgroup_charge().
6863 6864 6865
 */
void mem_cgroup_uncharge(struct page *page)
{
6866 6867
	struct uncharge_gather ug;

6868 6869 6870
	if (mem_cgroup_disabled())
		return;

6871
	/* Don't touch page->lru of any random page, pre-check: */
6872
	if (!page->mem_cgroup)
6873 6874
		return;

6875 6876 6877
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
6878
}
6879

6880 6881 6882 6883 6884
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
6885
 * mem_cgroup_charge().
6886 6887 6888 6889 6890
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
6891

6892 6893
	if (!list_empty(page_list))
		uncharge_list(page_list);
6894 6895 6896
}

/**
6897 6898 6899
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
6900
 *
6901 6902
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
6903 6904 6905
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
6906
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6907
{
6908
	struct mem_cgroup *memcg;
6909
	unsigned int nr_pages;
6910
	unsigned long flags;
6911 6912 6913 6914

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6915 6916
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6917 6918 6919 6920 6921

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
6922
	if (newpage->mem_cgroup)
6923 6924
		return;

6925
	memcg = oldpage->mem_cgroup;
6926
	if (!memcg)
6927 6928
		return;

6929
	/* Force-charge the new page. The old one will be freed soon */
6930
	nr_pages = thp_nr_pages(newpage);
6931 6932 6933 6934

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
6935

6936
	css_get(&memcg->css);
6937
	commit_charge(newpage, memcg);
6938

6939
	local_irq_save(flags);
6940
	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6941
	memcg_check_events(memcg, newpage);
6942
	local_irq_restore(flags);
6943 6944
}

6945
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6946 6947
EXPORT_SYMBOL(memcg_sockets_enabled_key);

6948
void mem_cgroup_sk_alloc(struct sock *sk)
6949 6950 6951
{
	struct mem_cgroup *memcg;

6952 6953 6954
	if (!mem_cgroup_sockets_enabled)
		return;

6955 6956 6957 6958
	/* Do not associate the sock with unrelated interrupted task's memcg. */
	if (in_interrupt())
		return;

6959 6960
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
6961 6962
	if (memcg == root_mem_cgroup)
		goto out;
6963
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6964
		goto out;
S
Shakeel Butt 已提交
6965
	if (css_tryget(&memcg->css))
6966
		sk->sk_memcg = memcg;
6967
out:
6968 6969 6970
	rcu_read_unlock();
}

6971
void mem_cgroup_sk_free(struct sock *sk)
6972
{
6973 6974
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6987
	gfp_t gfp_mask = GFP_KERNEL;
6988

6989
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6990
		struct page_counter *fail;
6991

6992 6993
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
6994 6995
			return true;
		}
6996 6997
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
6998
		return false;
6999
	}
7000

7001 7002 7003 7004
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

7005
	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7006

7007 7008 7009 7010
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7011 7012 7013 7014 7015
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
7016 7017
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
7018 7019 7020
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
7021
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7022
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7023 7024
		return;
	}
7025

7026
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7027

7028
	refill_stock(memcg, nr_pages);
7029 7030
}

7031 7032 7033 7034 7035 7036 7037 7038 7039
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
7040 7041
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
7042 7043 7044 7045
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
7046

7047
/*
7048 7049
 * subsys_initcall() for memory controller.
 *
7050 7051 7052 7053
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
7054 7055 7056
 */
static int __init mem_cgroup_init(void)
{
7057 7058
	int cpu, node;

7059 7060
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

7072
		rtpn->rb_root = RB_ROOT;
7073
		rtpn->rb_rightmost = NULL;
7074
		spin_lock_init(&rtpn->lock);
7075 7076 7077
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

7078 7079 7080
	return 0;
}
subsys_initcall(mem_cgroup_init);
7081 7082

#ifdef CONFIG_MEMCG_SWAP
7083 7084
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
7085
	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

7101 7102 7103 7104 7105 7106 7107 7108 7109
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
7110
	struct mem_cgroup *memcg, *swap_memcg;
7111
	unsigned int nr_entries;
7112 7113 7114 7115 7116
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

7117
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7118 7119 7120 7121 7122 7123 7124 7125
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

7126 7127 7128 7129 7130 7131
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
7132
	nr_entries = thp_nr_pages(page);
7133 7134 7135 7136 7137
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
7138
	VM_BUG_ON_PAGE(oldid, page);
7139
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7140 7141 7142 7143

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
7144
		page_counter_uncharge(&memcg->memory, nr_entries);
7145

7146
	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7147
		if (!mem_cgroup_is_root(swap_memcg))
7148 7149
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
7150 7151
	}

7152 7153
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
7154
	 * i_pages lock which is taken with interrupts-off. It is
7155
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
7156
	 * only synchronisation we have for updating the per-CPU variables.
7157 7158
	 */
	VM_BUG_ON(!irqs_disabled());
7159
	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7160
	memcg_check_events(memcg, page);
7161

7162
	css_put(&memcg->css);
7163 7164
}

7165 7166
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
7167 7168 7169
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
7170
 * Try to charge @page's memcg for the swap space at @entry.
7171 7172 7173 7174 7175
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
7176
	unsigned int nr_pages = thp_nr_pages(page);
7177
	struct page_counter *counter;
7178
	struct mem_cgroup *memcg;
7179 7180
	unsigned short oldid;

7181
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7182 7183 7184 7185 7186 7187 7188 7189
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

7190 7191
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7192
		return 0;
7193
	}
7194

7195 7196
	memcg = mem_cgroup_id_get_online(memcg);

7197
	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7198
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7199 7200
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7201
		mem_cgroup_id_put(memcg);
7202
		return -ENOMEM;
7203
	}
7204

7205 7206 7207 7208
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7209
	VM_BUG_ON_PAGE(oldid, page);
7210
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7211 7212 7213 7214

	return 0;
}

7215
/**
7216
 * mem_cgroup_uncharge_swap - uncharge swap space
7217
 * @entry: swap entry to uncharge
7218
 * @nr_pages: the amount of swap space to uncharge
7219
 */
7220
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7221 7222 7223 7224
{
	struct mem_cgroup *memcg;
	unsigned short id;

7225
	id = swap_cgroup_record(entry, 0, nr_pages);
7226
	rcu_read_lock();
7227
	memcg = mem_cgroup_from_id(id);
7228
	if (memcg) {
7229
		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7230
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7231
				page_counter_uncharge(&memcg->swap, nr_pages);
7232
			else
7233
				page_counter_uncharge(&memcg->memsw, nr_pages);
7234
		}
7235
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7236
		mem_cgroup_id_put_many(memcg, nr_pages);
7237 7238 7239 7240
	}
	rcu_read_unlock();
}

7241 7242 7243 7244
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

7245
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7246 7247 7248
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
7249
				      READ_ONCE(memcg->swap.max) -
7250 7251 7252 7253
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

7254 7255 7256 7257 7258 7259 7260 7261
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
7262
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7263 7264 7265 7266 7267 7268
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

7269 7270 7271 7272 7273
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		unsigned long usage = page_counter_read(&memcg->swap);

		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
		    usage * 2 >= READ_ONCE(memcg->swap.max))
7274
			return true;
7275
	}
7276 7277 7278 7279

	return false;
}

7280
static int __init setup_swap_account(char *s)
7281 7282
{
	if (!strcmp(s, "1"))
7283
		cgroup_memory_noswap = false;
7284
	else if (!strcmp(s, "0"))
7285
		cgroup_memory_noswap = true;
7286 7287
	return 1;
}
7288
__setup("swapaccount=", setup_swap_account);
7289

7290 7291 7292 7293 7294 7295 7296 7297
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320
static int swap_high_show(struct seq_file *m, void *v)
{
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
}

static ssize_t swap_high_write(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &high);
	if (err)
		return err;

	page_counter_set_high(&memcg->swap, high);

	return nbytes;
}

7321 7322
static int swap_max_show(struct seq_file *m, void *v)
{
7323 7324
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

7339
	xchg(&memcg->swap.max, max);
7340 7341 7342 7343

	return nbytes;
}

7344 7345
static int swap_events_show(struct seq_file *m, void *v)
{
7346
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7347

7348 7349
	seq_printf(m, "high %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7350 7351 7352 7353 7354 7355 7356 7357
	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

7358 7359 7360 7361 7362 7363
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
7364 7365 7366 7367 7368 7369
	{
		.name = "swap.high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_high_show,
		.write = swap_high_write,
	},
7370 7371 7372 7373 7374 7375
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
7376 7377 7378 7379 7380 7381
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
7382 7383 7384
	{ }	/* terminate */
};

7385
static struct cftype memsw_files[] = {
7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

7412 7413 7414 7415 7416 7417 7418
/*
 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
 * boot parameter. This may result in premature OOPS inside
 * mem_cgroup_get_nr_swap_pages() function in corner cases.
 */
7419 7420
static int __init mem_cgroup_swap_init(void)
{
7421 7422 7423 7424 7425
	/* No memory control -> no swap control */
	if (mem_cgroup_disabled())
		cgroup_memory_noswap = true;

	if (cgroup_memory_noswap)
7426 7427 7428 7429 7430
		return 0;

	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));

7431 7432
	return 0;
}
7433
core_initcall(mem_cgroup_swap_init);
7434 7435

#endif /* CONFIG_MEMCG_SWAP */