memcontrol.c 149.6 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include <linux/pagemap.h>
40
#include <linux/smp.h>
41
#include <linux/page-flags.h>
42
#include <linux/backing-dev.h>
43 44
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
45
#include <linux/limits.h>
46
#include <linux/export.h>
47
#include <linux/mutex.h>
48
#include <linux/rbtree.h>
49
#include <linux/slab.h>
50
#include <linux/swap.h>
51
#include <linux/swapops.h>
52
#include <linux/spinlock.h>
53
#include <linux/eventfd.h>
54
#include <linux/poll.h>
55
#include <linux/sort.h>
56
#include <linux/fs.h>
57
#include <linux/seq_file.h>
58
#include <linux/vmpressure.h>
59
#include <linux/mm_inline.h>
60
#include <linux/swap_cgroup.h>
61
#include <linux/cpu.h>
62
#include <linux/oom.h>
63
#include <linux/lockdep.h>
64
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
65
#include "internal.h"
G
Glauber Costa 已提交
66
#include <net/sock.h>
M
Michal Hocko 已提交
67
#include <net/ip.h>
G
Glauber Costa 已提交
68
#include <net/tcp_memcontrol.h>
69
#include "slab.h"
B
Balbir Singh 已提交
70

71 72
#include <asm/uaccess.h>

73 74
#include <trace/events/vmscan.h>

75 76
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
77

78
#define MEM_CGROUP_RECLAIM_RETRIES	5
79
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
80

81
/* Whether the swap controller is active */
A
Andrew Morton 已提交
82
#ifdef CONFIG_MEMCG_SWAP
83 84
int do_swap_account __read_mostly;
#else
85
#define do_swap_account		0
86 87
#endif

88 89 90
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
91
	"rss_huge",
92
	"mapped_file",
93
	"writeback",
94 95 96 97 98 99 100 101 102 103
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

104 105 106 107 108 109 110 111
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

112 113 114 115 116 117 118 119
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
120
	MEM_CGROUP_TARGET_SOFTLIMIT,
121
	MEM_CGROUP_TARGET_NUMAINFO,
122 123
	MEM_CGROUP_NTARGETS,
};
124 125 126
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
127

128
struct mem_cgroup_stat_cpu {
129
	long count[MEM_CGROUP_STAT_NSTATS];
130
	unsigned long events[MEMCG_NR_EVENTS];
131
	unsigned long nr_page_events;
132
	unsigned long targets[MEM_CGROUP_NTARGETS];
133 134
};

135 136
struct reclaim_iter {
	struct mem_cgroup *position;
137 138 139 140
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

141 142 143 144
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
145
	struct lruvec		lruvec;
146
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
147

148
	struct reclaim_iter	iter[DEF_PRIORITY + 1];
149

150
	struct rb_node		tree_node;	/* RB tree node */
151
	unsigned long		usage_in_excess;/* Set to the value by which */
152 153
						/* the soft limit is exceeded*/
	bool			on_tree;
154
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
155
						/* use container_of	   */
156 157 158 159 160 161
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

182 183
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
184
	unsigned long threshold;
185 186
};

K
KAMEZAWA Hiroyuki 已提交
187
/* For threshold */
188
struct mem_cgroup_threshold_ary {
189
	/* An array index points to threshold just below or equal to usage. */
190
	int current_threshold;
191 192 193 194 195
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
196 197 198 199 200 201 202 203 204 205 206 207

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
208 209 210 211 212
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
213

214 215 216
/*
 * cgroup_event represents events which userspace want to receive.
 */
217
struct mem_cgroup_event {
218
	/*
219
	 * memcg which the event belongs to.
220
	 */
221
	struct mem_cgroup *memcg;
222 223 224 225 226 227 228 229
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
230 231 232 233 234
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
235
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
236
			      struct eventfd_ctx *eventfd, const char *args);
237 238 239 240 241
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
242
	void (*unregister_event)(struct mem_cgroup *memcg,
243
				 struct eventfd_ctx *eventfd);
244 245 246 247 248 249 250 251 252 253
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

254 255
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
256

B
Balbir Singh 已提交
257 258 259 260 261 262 263 264
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
265 266 267 268 269 270

	/* Accounted resources */
	struct page_counter memory;
	struct page_counter memsw;
	struct page_counter kmem;

271 272 273 274
	/* Normal memory consumption range */
	unsigned long low;
	unsigned long high;

275
	unsigned long soft_limit;
276

277 278 279
	/* vmpressure notifications */
	struct vmpressure vmpressure;

280 281 282
	/* css_online() has been completed */
	int initialized;

283 284 285 286
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
287 288 289

	bool		oom_lock;
	atomic_t	under_oom;
290
	atomic_t	oom_wakeups;
291

292
	int	swappiness;
293 294
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
295

296 297 298 299
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
300
	struct mem_cgroup_thresholds thresholds;
301

302
	/* thresholds for mem+swap usage. RCU-protected */
303
	struct mem_cgroup_thresholds memsw_thresholds;
304

K
KAMEZAWA Hiroyuki 已提交
305 306
	/* For oom notifier event fd */
	struct list_head oom_notify;
307

308 309 310 311
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
312
	unsigned long move_charge_at_immigrate;
313 314 315
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
316
	atomic_t		moving_account;
317
	/* taken only while moving_account > 0 */
318 319 320
	spinlock_t		move_lock;
	struct task_struct	*move_lock_task;
	unsigned long		move_lock_flags;
321
	/*
322
	 * percpu counter.
323
	 */
324
	struct mem_cgroup_stat_cpu __percpu *stat;
325 326 327 328 329 330
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
331

M
Michal Hocko 已提交
332
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
333
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
334
#endif
335
#if defined(CONFIG_MEMCG_KMEM)
336
        /* Index in the kmem_cache->memcg_params.memcg_caches array */
337
	int kmemcg_id;
338
	bool kmem_acct_activated;
339
	bool kmem_acct_active;
340
#endif
341 342 343 344 345 346 347

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
348

349 350 351 352
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

353 354
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
355 356
};

357
#ifdef CONFIG_MEMCG_KMEM
358
bool memcg_kmem_is_active(struct mem_cgroup *memcg)
359
{
360
	return memcg->kmem_acct_active;
361
}
362 363
#endif

364 365
/* Stuffs for move charges at task migration. */
/*
366
 * Types of charges to be moved.
367
 */
368 369 370
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
371

372 373
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
374
	spinlock_t	  lock; /* for from, to */
375 376
	struct mem_cgroup *from;
	struct mem_cgroup *to;
377
	unsigned long flags;
378
	unsigned long precharge;
379
	unsigned long moved_charge;
380
	unsigned long moved_swap;
381 382 383
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
384
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
385 386
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
387

388 389 390 391
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
392
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
393
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
394

395 396
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
397
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
398
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
399
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
400 401 402
	NR_CHARGE_TYPE,
};

403
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
404 405 406 407
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
408
	_KMEM,
G
Glauber Costa 已提交
409 410
};

411 412
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
413
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
414 415
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
416

417 418 419 420 421 422 423
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

424 425
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
426
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
427 428
}

429 430 431 432 433 434 435 436 437 438 439 440 441
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

442 443 444 445 446
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

447 448 449 450 451 452
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
453 454
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
455
	return memcg->css.id;
L
Li Zefan 已提交
456 457
}

458 459 460 461 462 463
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
 */
L
Li Zefan 已提交
464 465 466 467
static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

468
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
469 470 471
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
472
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
473
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
474 475 476

void sock_update_memcg(struct sock *sk)
{
477
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
478
		struct mem_cgroup *memcg;
479
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
480 481 482

		BUG_ON(!sk->sk_prot->proto_cgroup);

483 484 485 486 487 488 489 490 491 492
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
493
			css_get(&sk->sk_cgrp->memcg->css);
494 495 496
			return;
		}

G
Glauber Costa 已提交
497 498
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
499
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
500
		if (!mem_cgroup_is_root(memcg) &&
501 502
		    memcg_proto_active(cg_proto) &&
		    css_tryget_online(&memcg->css)) {
503
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
504 505 506 507 508 509 510 511
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
512
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
513 514 515
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
516
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
517 518
	}
}
G
Glauber Costa 已提交
519 520 521 522 523 524

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

525
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
526 527
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
528

529 530
#endif

531
#ifdef CONFIG_MEMCG_KMEM
532
/*
533
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
534 535 536 537 538
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
539
 *
540 541
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
542
 */
543 544
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
545

546 547 548 549 550 551 552 553 554 555 556 557 558
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

559 560 561 562 563 564
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
565
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
566 567
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
568
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
569 570 571
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
572
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
573

574 575 576 577 578 579
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
580
struct static_key memcg_kmem_enabled_key;
581
EXPORT_SYMBOL(memcg_kmem_enabled_key);
582 583 584

#endif /* CONFIG_MEMCG_KMEM */

585
static struct mem_cgroup_per_zone *
586
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
587
{
588 589 590
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

591
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
592 593
}

594
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
595
{
596
	return &memcg->css;
597 598
}

599
static struct mem_cgroup_per_zone *
600
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
601
{
602 603
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
604

605
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
606 607
}

608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

623 624
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
625
					 unsigned long new_usage_in_excess)
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

655 656
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
657 658 659 660 661 662 663
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

664 665
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
666
{
667 668 669
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
670
	__mem_cgroup_remove_exceeded(mz, mctz);
671
	spin_unlock_irqrestore(&mctz->lock, flags);
672 673
}

674 675 676
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
677
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
678 679 680 681 682 683 684
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
685 686 687

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
688
	unsigned long excess;
689 690 691
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

692
	mctz = soft_limit_tree_from_page(page);
693 694 695 696 697
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
698
		mz = mem_cgroup_page_zoneinfo(memcg, page);
699
		excess = soft_limit_excess(memcg);
700 701 702 703 704
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
705 706 707
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
708 709
			/* if on-tree, remove it */
			if (mz->on_tree)
710
				__mem_cgroup_remove_exceeded(mz, mctz);
711 712 713 714
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
715
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
716
			spin_unlock_irqrestore(&mctz->lock, flags);
717 718 719 720 721 722 723
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
724 725
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
726

727 728 729 730
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
731
			mem_cgroup_remove_exceeded(mz, mctz);
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
754
	__mem_cgroup_remove_exceeded(mz, mctz);
755
	if (!soft_limit_excess(mz->memcg) ||
756
	    !css_tryget_online(&mz->memcg->css))
757 758 759 760 761 762 763 764 765 766
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

767
	spin_lock_irq(&mctz->lock);
768
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
769
	spin_unlock_irq(&mctz->lock);
770 771 772
	return mz;
}

773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
792
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
793
				 enum mem_cgroup_stat_index idx)
794
{
795
	long val = 0;
796 797
	int cpu;

798 799
	get_online_cpus();
	for_each_online_cpu(cpu)
800
		val += per_cpu(memcg->stat->count[idx], cpu);
801
#ifdef CONFIG_HOTPLUG_CPU
802 803 804
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
805 806
#endif
	put_online_cpus();
807 808 809
	return val;
}

810
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
811 812 813 814 815
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

816
	get_online_cpus();
817
	for_each_online_cpu(cpu)
818
		val += per_cpu(memcg->stat->events[idx], cpu);
819
#ifdef CONFIG_HOTPLUG_CPU
820 821 822
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
823
#endif
824
	put_online_cpus();
825 826 827
	return val;
}

828
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
829
					 struct page *page,
830
					 int nr_pages)
831
{
832 833 834 835
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
836
	if (PageAnon(page))
837
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
838
				nr_pages);
839
	else
840
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
841
				nr_pages);
842

843 844 845 846
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

847 848
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
849
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
850
	else {
851
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
852 853
		nr_pages = -nr_pages; /* for event */
	}
854

855
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
856 857
}

858
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
859 860 861 862 863 864 865
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

866 867 868
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
869
{
870
	unsigned long nr = 0;
871 872
	int zid;

873
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
874

875 876 877 878 879 880 881 882 883 884 885 886
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
887
}
888

889
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
890
			unsigned int lru_mask)
891
{
892
	unsigned long nr = 0;
893
	int nid;
894

895
	for_each_node_state(nid, N_MEMORY)
896 897
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
898 899
}

900 901
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
902 903 904
{
	unsigned long val, next;

905
	val = __this_cpu_read(memcg->stat->nr_page_events);
906
	next = __this_cpu_read(memcg->stat->targets[target]);
907
	/* from time_after() in jiffies.h */
908 909 910 911 912
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
913 914 915
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
916 917 918 919 920 921 922 923
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
924
	}
925
	return false;
926 927 928 929 930 931
}

/*
 * Check events in order.
 *
 */
932
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
933 934
{
	/* threshold event is triggered in finer grain than soft limit */
935 936
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
937
		bool do_softlimit;
938
		bool do_numainfo __maybe_unused;
939

940 941
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
942 943 944 945
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
946
		mem_cgroup_threshold(memcg);
947 948
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
949
#if MAX_NUMNODES > 1
950
		if (unlikely(do_numainfo))
951
			atomic_inc(&memcg->numainfo_events);
952
#endif
953
	}
954 955
}

956
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
957
{
958 959 960 961 962 963 964 965
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

966
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
967 968
}

969
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
970
{
971
	struct mem_cgroup *memcg = NULL;
972

973 974
	rcu_read_lock();
	do {
975 976 977 978 979 980
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
981
			memcg = root_mem_cgroup;
982 983 984 985 986
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
987
	} while (!css_tryget_online(&memcg->css));
988
	rcu_read_unlock();
989
	return memcg;
990 991
}

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1009
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1010
				   struct mem_cgroup *prev,
1011
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1012
{
1013 1014
	struct reclaim_iter *uninitialized_var(iter);
	struct cgroup_subsys_state *css = NULL;
1015
	struct mem_cgroup *memcg = NULL;
1016
	struct mem_cgroup *pos = NULL;
1017

1018 1019
	if (mem_cgroup_disabled())
		return NULL;
1020

1021 1022
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1023

1024
	if (prev && !reclaim)
1025
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1026

1027 1028
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1029
			goto out;
1030
		return root;
1031
	}
K
KAMEZAWA Hiroyuki 已提交
1032

1033
	rcu_read_lock();
M
Michal Hocko 已提交
1034

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

		do {
1045
			pos = READ_ONCE(iter->position);
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
			/*
			 * A racing update may change the position and
			 * put the last reference, hence css_tryget(),
			 * or retry to see the updated position.
			 */
		} while (pos && !css_tryget(&pos->css));
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1069
		}
K
KAMEZAWA Hiroyuki 已提交
1070

1071 1072 1073 1074 1075 1076
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1077

1078 1079
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1080

1081
		if (css_tryget(css)) {
1082 1083 1084 1085 1086 1087 1088
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				break;
1089

1090
			css_put(css);
1091
		}
1092

1093
		memcg = NULL;
1094
	}
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114

	if (reclaim) {
		if (cmpxchg(&iter->position, pos, memcg) == pos) {
			if (memcg)
				css_get(&memcg->css);
			if (pos)
				css_put(&pos->css);
		}

		/*
		 * pairs with css_tryget when dereferencing iter->position
		 * above.
		 */
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1115
	}
1116

1117 1118
out_unlock:
	rcu_read_unlock();
1119
out:
1120 1121 1122
	if (prev && prev != root)
		css_put(&prev->css);

1123
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1124
}
K
KAMEZAWA Hiroyuki 已提交
1125

1126 1127 1128 1129 1130 1131 1132
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1133 1134 1135 1136 1137 1138
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1139

1140 1141 1142 1143 1144 1145
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1146
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1147
	     iter != NULL;				\
1148
	     iter = mem_cgroup_iter(root, iter, NULL))
1149

1150
#define for_each_mem_cgroup(iter)			\
1151
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1152
	     iter != NULL;				\
1153
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1154

1155
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1156
{
1157
	struct mem_cgroup *memcg;
1158 1159

	rcu_read_lock();
1160 1161
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1162 1163 1164 1165
		goto out;

	switch (idx) {
	case PGFAULT:
1166 1167 1168 1169
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1170 1171 1172 1173 1174 1175 1176
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1177
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1178

1179 1180 1181
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1182
 * @memcg: memcg of the wanted lruvec
1183 1184 1185 1186 1187 1188 1189 1190 1191
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1192
	struct lruvec *lruvec;
1193

1194 1195 1196 1197
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1198

1199
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1210 1211 1212
}

/**
1213
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1214
 * @page: the page
1215
 * @zone: zone of the page
1216 1217 1218 1219
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1220
 */
1221
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1222 1223
{
	struct mem_cgroup_per_zone *mz;
1224
	struct mem_cgroup *memcg;
1225
	struct lruvec *lruvec;
1226

1227 1228 1229 1230
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1231

1232
	memcg = page->mem_cgroup;
1233
	/*
1234
	 * Swapcache readahead pages are added to the LRU - and
1235
	 * possibly migrated - before they are charged.
1236
	 */
1237 1238
	if (!memcg)
		memcg = root_mem_cgroup;
1239

1240
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1251
}
1252

1253
/**
1254 1255 1256 1257
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1258
 *
1259 1260
 * This function must be called when a page is added to or removed from an
 * lru list.
1261
 */
1262 1263
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1264 1265
{
	struct mem_cgroup_per_zone *mz;
1266
	unsigned long *lru_size;
1267 1268 1269 1270

	if (mem_cgroup_disabled())
		return;

1271 1272 1273 1274
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1275
}
1276

1277
bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
1278
{
1279
	if (root == memcg)
1280
		return true;
1281
	if (!root->use_hierarchy)
1282
		return false;
1283
	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
1284 1285
}

1286
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1287
{
1288
	struct mem_cgroup *task_memcg;
1289
	struct task_struct *p;
1290
	bool ret;
1291

1292
	p = find_lock_task_mm(task);
1293
	if (p) {
1294
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1295 1296 1297 1298 1299 1300 1301
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1302
		rcu_read_lock();
1303 1304
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1305
		rcu_read_unlock();
1306
	}
1307 1308
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1309 1310 1311
	return ret;
}

1312
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1313
{
1314
	unsigned long inactive_ratio;
1315
	unsigned long inactive;
1316
	unsigned long active;
1317
	unsigned long gb;
1318

1319 1320
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1321

1322 1323 1324 1325 1326 1327
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1328
	return inactive * inactive_ratio < active;
1329 1330
}

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
{
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return true;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	memcg = mz->memcg;

	return !!(memcg->css.flags & CSS_ONLINE);
}

1345
#define mem_cgroup_from_counter(counter, member)	\
1346 1347
	container_of(counter, struct mem_cgroup, member)

1348
/**
1349
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1350
 * @memcg: the memory cgroup
1351
 *
1352
 * Returns the maximum amount of memory @mem can be charged with, in
1353
 * pages.
1354
 */
1355
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1356
{
1357 1358 1359
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1360

1361
	count = page_counter_read(&memcg->memory);
1362
	limit = READ_ONCE(memcg->memory.limit);
1363 1364 1365 1366 1367
	if (count < limit)
		margin = limit - count;

	if (do_swap_account) {
		count = page_counter_read(&memcg->memsw);
1368
		limit = READ_ONCE(memcg->memsw.limit);
1369 1370 1371 1372 1373
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1374 1375
}

1376
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1377 1378
{
	/* root ? */
1379
	if (mem_cgroup_disabled() || !memcg->css.parent)
K
KOSAKI Motohiro 已提交
1380 1381
		return vm_swappiness;

1382
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1383 1384
}

1385
/*
Q
Qiang Huang 已提交
1386
 * A routine for checking "mem" is under move_account() or not.
1387
 *
Q
Qiang Huang 已提交
1388 1389 1390
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1391
 */
1392
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1393
{
1394 1395
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1396
	bool ret = false;
1397 1398 1399 1400 1401 1402 1403 1404 1405
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1406

1407 1408
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1409 1410
unlock:
	spin_unlock(&mc.lock);
1411 1412 1413
	return ret;
}

1414
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1415 1416
{
	if (mc.moving_task && current != mc.moving_task) {
1417
		if (mem_cgroup_under_move(memcg)) {
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1430
#define K(x) ((x) << (PAGE_SHIFT-10))
1431
/**
1432
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1433 1434 1435 1436 1437 1438 1439 1440
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1441
	/* oom_info_lock ensures that parallel ooms do not interleave */
1442
	static DEFINE_MUTEX(oom_info_lock);
1443 1444
	struct mem_cgroup *iter;
	unsigned int i;
1445

1446
	mutex_lock(&oom_info_lock);
1447 1448
	rcu_read_lock();

1449 1450 1451 1452 1453 1454 1455 1456
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1457
	pr_cont_cgroup_path(memcg->css.cgroup);
1458
	pr_cont("\n");
1459 1460 1461

	rcu_read_unlock();

1462 1463 1464 1465 1466 1467 1468 1469 1470
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1471 1472

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1473 1474
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1490
	mutex_unlock(&oom_info_lock);
1491 1492
}

1493 1494 1495 1496
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1497
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1498 1499
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1500 1501
	struct mem_cgroup *iter;

1502
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1503
		num++;
1504 1505 1506
	return num;
}

D
David Rientjes 已提交
1507 1508 1509
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1510
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1511
{
1512
	unsigned long limit;
1513

1514
	limit = memcg->memory.limit;
1515
	if (mem_cgroup_swappiness(memcg)) {
1516
		unsigned long memsw_limit;
1517

1518 1519
		memsw_limit = memcg->memsw.limit;
		limit = min(limit + total_swap_pages, memsw_limit);
1520 1521
	}
	return limit;
D
David Rientjes 已提交
1522 1523
}

1524 1525
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1526 1527 1528 1529 1530 1531 1532
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1533 1534
	mutex_lock(&oom_lock);

1535
	/*
1536 1537 1538
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1539
	 */
1540
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1541
		mark_oom_victim(current);
1542
		goto unlock;
1543 1544
	}

1545
	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL, memcg);
1546
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1547
	for_each_mem_cgroup_tree(iter, memcg) {
1548
		struct css_task_iter it;
1549 1550
		struct task_struct *task;

1551 1552
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1565
				css_task_iter_end(&it);
1566 1567 1568
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
1569
				goto unlock;
1570 1571 1572 1573
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1586
		}
1587
		css_task_iter_end(&it);
1588 1589
	}

1590 1591 1592 1593 1594 1595 1596
	if (chosen) {
		points = chosen_points * 1000 / totalpages;
		oom_kill_process(chosen, gfp_mask, order, points, totalpages,
				 memcg, NULL, "Memory cgroup out of memory");
	}
unlock:
	mutex_unlock(&oom_lock);
1597 1598
}

1599 1600
#if MAX_NUMNODES > 1

1601 1602
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1603
 * @memcg: the target memcg
1604 1605 1606 1607 1608 1609 1610
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1611
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1612 1613
		int nid, bool noswap)
{
1614
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1615 1616 1617
		return true;
	if (noswap || !total_swap_pages)
		return false;
1618
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1619 1620 1621 1622
		return true;
	return false;

}
1623 1624 1625 1626 1627 1628 1629

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1630
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1631 1632
{
	int nid;
1633 1634 1635 1636
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1637
	if (!atomic_read(&memcg->numainfo_events))
1638
		return;
1639
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1640 1641 1642
		return;

	/* make a nodemask where this memcg uses memory from */
1643
	memcg->scan_nodes = node_states[N_MEMORY];
1644

1645
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1646

1647 1648
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1649
	}
1650

1651 1652
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1667
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1668 1669 1670
{
	int node;

1671 1672
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1673

1674
	node = next_node(node, memcg->scan_nodes);
1675
	if (node == MAX_NUMNODES)
1676
		node = first_node(memcg->scan_nodes);
1677 1678 1679 1680 1681 1682 1683 1684 1685
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1686
	memcg->last_scanned_node = node;
1687 1688 1689
	return node;
}
#else
1690
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1691 1692 1693 1694 1695
{
	return 0;
}
#endif

1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1711
	excess = soft_limit_excess(root_memcg);
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1740
		if (!soft_limit_excess(root_memcg))
1741
			break;
1742
	}
1743 1744
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1745 1746
}

1747 1748 1749 1750 1751 1752
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1753 1754
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1755 1756 1757 1758
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1759
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1760
{
1761
	struct mem_cgroup *iter, *failed = NULL;
1762

1763 1764
	spin_lock(&memcg_oom_lock);

1765
	for_each_mem_cgroup_tree(iter, memcg) {
1766
		if (iter->oom_lock) {
1767 1768 1769 1770 1771
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1772 1773
			mem_cgroup_iter_break(memcg, iter);
			break;
1774 1775
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1776
	}
K
KAMEZAWA Hiroyuki 已提交
1777

1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1789
		}
1790 1791
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1792 1793 1794 1795

	spin_unlock(&memcg_oom_lock);

	return !failed;
1796
}
1797

1798
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1799
{
K
KAMEZAWA Hiroyuki 已提交
1800 1801
	struct mem_cgroup *iter;

1802
	spin_lock(&memcg_oom_lock);
1803
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1804
	for_each_mem_cgroup_tree(iter, memcg)
1805
		iter->oom_lock = false;
1806
	spin_unlock(&memcg_oom_lock);
1807 1808
}

1809
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1810 1811 1812
{
	struct mem_cgroup *iter;

1813
	for_each_mem_cgroup_tree(iter, memcg)
1814 1815 1816
		atomic_inc(&iter->under_oom);
}

1817
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1818 1819 1820
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1821 1822 1823 1824 1825
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1826
	for_each_mem_cgroup_tree(iter, memcg)
1827
		atomic_add_unless(&iter->under_oom, -1, 0);
1828 1829
}

K
KAMEZAWA Hiroyuki 已提交
1830 1831
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1832
struct oom_wait_info {
1833
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1834 1835 1836 1837 1838 1839
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1840 1841
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1842 1843 1844
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1845
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1846

1847 1848
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1849 1850 1851 1852
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1853
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1854
{
1855
	atomic_inc(&memcg->oom_wakeups);
1856 1857
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1858 1859
}

1860
static void memcg_oom_recover(struct mem_cgroup *memcg)
1861
{
1862 1863
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1864 1865
}

1866
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1867
{
1868 1869
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
1870
	/*
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1883
	 */
1884 1885 1886 1887
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
1888 1889 1890 1891
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1892
 * @handle: actually kill/wait or just clean up the OOM state
1893
 *
1894 1895
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1896
 *
1897
 * Memcg supports userspace OOM handling where failed allocations must
1898 1899 1900 1901
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1902
 * the end of the page fault to complete the OOM handling.
1903 1904
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1905
 * completed, %false otherwise.
1906
 */
1907
bool mem_cgroup_oom_synchronize(bool handle)
1908
{
1909
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
1910
	struct oom_wait_info owait;
1911
	bool locked;
1912 1913 1914

	/* OOM is global, do not handle */
	if (!memcg)
1915
		return false;
1916

1917
	if (!handle || oom_killer_disabled)
1918
		goto cleanup;
1919 1920 1921 1922 1923 1924

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1925

1926
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
1940
		schedule();
1941 1942 1943 1944 1945
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1946 1947 1948 1949 1950 1951 1952 1953
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1954 1955
cleanup:
	current->memcg_oom.memcg = NULL;
1956
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1957
	return true;
1958 1959
}

1960 1961 1962
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
1963
 *
1964 1965 1966
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
1967
 *
1968
 *   memcg = mem_cgroup_begin_page_stat(page);
1969 1970
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
1971
 *   mem_cgroup_end_page_stat(memcg);
1972
 */
1973
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1974 1975
{
	struct mem_cgroup *memcg;
1976
	unsigned long flags;
1977

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page from being uncharged.
	 * E.g. end-writeback clearing PageWriteback(), which allows
	 * migration to go ahead and uncharge the page before the
	 * account transaction might be complete.
	 */
1990 1991 1992 1993
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;
1994
again:
1995
	memcg = page->mem_cgroup;
1996
	if (unlikely(!memcg))
1997 1998
		return NULL;

Q
Qiang Huang 已提交
1999
	if (atomic_read(&memcg->moving_account) <= 0)
2000
		return memcg;
2001

2002
	spin_lock_irqsave(&memcg->move_lock, flags);
2003
	if (memcg != page->mem_cgroup) {
2004
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2005 2006
		goto again;
	}
2007 2008 2009 2010 2011 2012 2013 2014

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
	 * the task who has the lock for mem_cgroup_end_page_stat().
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2015 2016

	return memcg;
2017 2018
}

2019 2020 2021 2022
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 */
2023
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
2024
{
2025 2026 2027 2028 2029 2030 2031 2032
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2033

2034
	rcu_read_unlock();
2035 2036
}

2037 2038 2039 2040 2041 2042 2043 2044 2045
/**
 * mem_cgroup_update_page_stat - update page state statistics
 * @memcg: memcg to account against
 * @idx: page state item to account
 * @val: number of pages (positive or negative)
 *
 * See mem_cgroup_begin_page_stat() for locking requirements.
 */
void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
S
Sha Zhengju 已提交
2046
				 enum mem_cgroup_stat_index idx, int val)
2047
{
2048
	VM_BUG_ON(!rcu_read_lock_held());
2049

2050 2051
	if (memcg)
		this_cpu_add(memcg->stat->count[idx], val);
2052
}
2053

2054 2055 2056 2057
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2058
#define CHARGE_BATCH	32U
2059 2060
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2061
	unsigned int nr_pages;
2062
	struct work_struct work;
2063
	unsigned long flags;
2064
#define FLUSHING_CACHED_CHARGE	0
2065 2066
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2067
static DEFINE_MUTEX(percpu_charge_mutex);
2068

2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2079
 */
2080
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2081 2082
{
	struct memcg_stock_pcp *stock;
2083
	bool ret = false;
2084

2085
	if (nr_pages > CHARGE_BATCH)
2086
		return ret;
2087

2088
	stock = &get_cpu_var(memcg_stock);
2089
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2090
		stock->nr_pages -= nr_pages;
2091 2092
		ret = true;
	}
2093 2094 2095 2096 2097
	put_cpu_var(memcg_stock);
	return ret;
}

/*
2098
 * Returns stocks cached in percpu and reset cached information.
2099 2100 2101 2102 2103
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2104
	if (stock->nr_pages) {
2105
		page_counter_uncharge(&old->memory, stock->nr_pages);
2106
		if (do_swap_account)
2107
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2108
		css_put_many(&old->css, stock->nr_pages);
2109
		stock->nr_pages = 0;
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
2120
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2121
	drain_stock(stock);
2122
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2123 2124 2125
}

/*
2126
 * Cache charges(val) to local per_cpu area.
2127
 * This will be consumed by consume_stock() function, later.
2128
 */
2129
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2130 2131 2132
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2133
	if (stock->cached != memcg) { /* reset if necessary */
2134
		drain_stock(stock);
2135
		stock->cached = memcg;
2136
	}
2137
	stock->nr_pages += nr_pages;
2138 2139 2140 2141
	put_cpu_var(memcg_stock);
}

/*
2142
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2143
 * of the hierarchy under it.
2144
 */
2145
static void drain_all_stock(struct mem_cgroup *root_memcg)
2146
{
2147
	int cpu, curcpu;
2148

2149 2150 2151
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2152 2153
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2154
	curcpu = get_cpu();
2155 2156
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2157
		struct mem_cgroup *memcg;
2158

2159 2160
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2161
			continue;
2162
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
2163
			continue;
2164 2165 2166 2167 2168 2169
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2170
	}
2171
	put_cpu();
A
Andrew Morton 已提交
2172
	put_online_cpus();
2173
	mutex_unlock(&percpu_charge_mutex);
2174 2175
}

2176 2177 2178 2179
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2180
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2181 2182 2183
{
	int i;

2184
	spin_lock(&memcg->pcp_counter_lock);
2185
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2186
		long x = per_cpu(memcg->stat->count[i], cpu);
2187

2188 2189
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2190
	}
2191
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2192
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2193

2194 2195
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2196
	}
2197
	spin_unlock(&memcg->pcp_counter_lock);
2198 2199
}

2200
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2201 2202 2203 2204 2205
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2206
	struct mem_cgroup *iter;
2207

2208
	if (action == CPU_ONLINE)
2209 2210
		return NOTIFY_OK;

2211
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2212
		return NOTIFY_OK;
2213

2214
	for_each_mem_cgroup(iter)
2215 2216
		mem_cgroup_drain_pcp_counter(iter, cpu);

2217 2218 2219 2220 2221
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2222 2223
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2224
{
2225
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2226
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2227
	struct mem_cgroup *mem_over_limit;
2228
	struct page_counter *counter;
2229
	unsigned long nr_reclaimed;
2230 2231
	bool may_swap = true;
	bool drained = false;
2232
	int ret = 0;
2233

2234 2235
	if (mem_cgroup_is_root(memcg))
		goto done;
2236
retry:
2237 2238
	if (consume_stock(memcg, nr_pages))
		goto done;
2239

2240
	if (!do_swap_account ||
2241 2242
	    !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2243
			goto done_restock;
2244
		if (do_swap_account)
2245 2246
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2247
	} else {
2248
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2249
		may_swap = false;
2250
	}
2251

2252 2253 2254 2255
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2256

2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
		goto bypass;

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2271 2272
	if (!(gfp_mask & __GFP_WAIT))
		goto nomem;
2273

2274 2275
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

2276 2277
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2278

2279
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2280
		goto retry;
2281

2282
	if (!drained) {
2283
		drain_all_stock(mem_over_limit);
2284 2285 2286 2287
		drained = true;
		goto retry;
	}

2288 2289
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2290 2291 2292 2293 2294 2295 2296 2297 2298
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2299
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2300 2301 2302 2303 2304 2305 2306 2307
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2308 2309 2310
	if (nr_retries--)
		goto retry;

2311 2312 2313
	if (gfp_mask & __GFP_NOFAIL)
		goto bypass;

2314 2315 2316
	if (fatal_signal_pending(current))
		goto bypass;

2317 2318
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2319
	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2320
nomem:
2321
	if (!(gfp_mask & __GFP_NOFAIL))
2322
		return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2323
bypass:
2324
	return -EINTR;
2325 2326

done_restock:
2327
	css_get_many(&memcg->css, batch);
2328 2329
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2330 2331
	if (!(gfp_mask & __GFP_WAIT))
		goto done;
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
	/*
	 * If the hierarchy is above the normal consumption range,
	 * make the charging task trim their excess contribution.
	 */
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
2342
done:
2343
	return ret;
2344
}
2345

2346
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2347
{
2348 2349 2350
	if (mem_cgroup_is_root(memcg))
		return;

2351
	page_counter_uncharge(&memcg->memory, nr_pages);
2352
	if (do_swap_account)
2353
		page_counter_uncharge(&memcg->memsw, nr_pages);
2354

2355
	css_put_many(&memcg->css, nr_pages);
2356 2357
}

2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
/*
 * try_get_mem_cgroup_from_page - look up page's memcg association
 * @page: the page
 *
 * Look up, get a css reference, and return the memcg that owns @page.
 *
 * The page must be locked to prevent racing with swap-in and page
 * cache charges.  If coming from an unlocked page table, the caller
 * must ensure the page is on the LRU or this can race with charging.
 */
2368
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2369
{
2370
	struct mem_cgroup *memcg;
2371
	unsigned short id;
2372 2373
	swp_entry_t ent;

2374
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2375

2376
	memcg = page->mem_cgroup;
2377 2378
	if (memcg) {
		if (!css_tryget_online(&memcg->css))
2379
			memcg = NULL;
2380
	} else if (PageSwapCache(page)) {
2381
		ent.val = page_private(page);
2382
		id = lookup_swap_cgroup_id(ent);
2383
		rcu_read_lock();
2384
		memcg = mem_cgroup_from_id(id);
2385
		if (memcg && !css_tryget_online(&memcg->css))
2386
			memcg = NULL;
2387
		rcu_read_unlock();
2388
	}
2389
	return memcg;
2390 2391
}

2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2423
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2424
			  bool lrucare)
2425
{
2426
	int isolated;
2427

2428
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2429 2430 2431 2432 2433

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2434 2435
	if (lrucare)
		lock_page_lru(page, &isolated);
2436

2437 2438
	/*
	 * Nobody should be changing or seriously looking at
2439
	 * page->mem_cgroup at this point:
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2451
	page->mem_cgroup = memcg;
2452

2453 2454
	if (lrucare)
		unlock_page_lru(page, isolated);
2455
}
2456

2457
#ifdef CONFIG_MEMCG_KMEM
2458 2459
int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
		      unsigned long nr_pages)
2460
{
2461
	struct page_counter *counter;
2462 2463
	int ret = 0;

2464 2465
	ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
	if (ret < 0)
2466 2467
		return ret;

2468
	ret = try_charge(memcg, gfp, nr_pages);
2469 2470
	if (ret == -EINTR)  {
		/*
2471 2472 2473 2474 2475 2476
		 * try_charge() chose to bypass to root due to OOM kill or
		 * fatal signal.  Since our only options are to either fail
		 * the allocation or charge it to this cgroup, do it as a
		 * temporary condition. But we can't fail. From a kmem/slab
		 * perspective, the cache has already been selected, by
		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2477 2478 2479
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
2480 2481 2482
		 * memcg_charge_kmem in a sane state, but was OOM-killed
		 * during try_charge() above. Tasks that were already dying
		 * when the allocation triggers should have been already
2483 2484
		 * directed to the root cgroup in memcontrol.h
		 */
2485
		page_counter_charge(&memcg->memory, nr_pages);
2486
		if (do_swap_account)
2487
			page_counter_charge(&memcg->memsw, nr_pages);
2488
		css_get_many(&memcg->css, nr_pages);
2489 2490
		ret = 0;
	} else if (ret)
2491
		page_counter_uncharge(&memcg->kmem, nr_pages);
2492 2493 2494 2495

	return ret;
}

2496
void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2497
{
2498
	page_counter_uncharge(&memcg->memory, nr_pages);
2499
	if (do_swap_account)
2500
		page_counter_uncharge(&memcg->memsw, nr_pages);
2501

2502
	page_counter_uncharge(&memcg->kmem, nr_pages);
2503

2504
	css_put_many(&memcg->css, nr_pages);
2505 2506
}

2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2517
static int memcg_alloc_cache_id(void)
2518
{
2519 2520 2521
	int id, size;
	int err;

2522
	id = ida_simple_get(&memcg_cache_ida,
2523 2524 2525
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2526

2527
	if (id < memcg_nr_cache_ids)
2528 2529 2530 2531 2532 2533
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2534
	down_write(&memcg_cache_ids_sem);
2535 2536

	size = 2 * (id + 1);
2537 2538 2539 2540 2541
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2542
	err = memcg_update_all_caches(size);
2543 2544
	if (!err)
		err = memcg_update_all_list_lrus(size);
2545 2546 2547 2548 2549
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2550
	if (err) {
2551
		ida_simple_remove(&memcg_cache_ida, id);
2552 2553 2554 2555 2556 2557 2558
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2559
	ida_simple_remove(&memcg_cache_ida, id);
2560 2561
}

2562
struct memcg_kmem_cache_create_work {
2563 2564 2565 2566 2567
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2568
static void memcg_kmem_cache_create_func(struct work_struct *w)
2569
{
2570 2571
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2572 2573
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2574

2575
	memcg_create_kmem_cache(memcg, cachep);
2576

2577
	css_put(&memcg->css);
2578 2579 2580 2581 2582 2583
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2584 2585
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2586
{
2587
	struct memcg_kmem_cache_create_work *cw;
2588

2589
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2590
	if (!cw)
2591
		return;
2592 2593

	css_get(&memcg->css);
2594 2595 2596

	cw->memcg = memcg;
	cw->cachep = cachep;
2597
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2598 2599 2600 2601

	schedule_work(&cw->work);
}

2602 2603
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2604 2605 2606 2607
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2608
	 * in __memcg_schedule_kmem_cache_create will recurse.
2609 2610 2611 2612 2613 2614 2615
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2616
	current->memcg_kmem_skip_account = 1;
2617
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2618
	current->memcg_kmem_skip_account = 0;
2619
}
2620

2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
2634
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2635 2636
{
	struct mem_cgroup *memcg;
2637
	struct kmem_cache *memcg_cachep;
2638
	int kmemcg_id;
2639

2640
	VM_BUG_ON(!is_root_cache(cachep));
2641

2642
	if (current->memcg_kmem_skip_account)
2643 2644
		return cachep;

2645
	memcg = get_mem_cgroup_from_mm(current->mm);
2646
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2647
	if (kmemcg_id < 0)
2648
		goto out;
2649

2650
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2651 2652
	if (likely(memcg_cachep))
		return memcg_cachep;
2653 2654 2655 2656 2657 2658 2659 2660 2661

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2662 2663 2664
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2665
	 */
2666
	memcg_schedule_kmem_cache_create(memcg, cachep);
2667
out:
2668
	css_put(&memcg->css);
2669
	return cachep;
2670 2671
}

2672 2673 2674
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
2675
		css_put(&cachep->memcg_params.memcg->css);
2676 2677
}

2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
2699

2700
	memcg = get_mem_cgroup_from_mm(current->mm);
2701

2702
	if (!memcg_kmem_is_active(memcg)) {
2703 2704 2705 2706
		css_put(&memcg->css);
		return true;
	}

2707
	ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
2722
		memcg_uncharge_kmem(memcg, 1 << order);
2723 2724
		return;
	}
2725
	page->mem_cgroup = memcg;
2726 2727 2728 2729
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
2730
	struct mem_cgroup *memcg = page->mem_cgroup;
2731 2732 2733 2734

	if (!memcg)
		return;

2735
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2736

2737
	memcg_uncharge_kmem(memcg, 1 << order);
2738
	page->mem_cgroup = NULL;
2739
}
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750

struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
{
	struct mem_cgroup *memcg = NULL;
	struct kmem_cache *cachep;
	struct page *page;

	page = virt_to_head_page(ptr);
	if (PageSlab(page)) {
		cachep = page->slab_cache;
		if (!is_root_cache(cachep))
2751
			memcg = cachep->memcg_params.memcg;
2752 2753 2754 2755 2756 2757
	} else
		/* page allocated by alloc_kmem_pages */
		memcg = page->mem_cgroup;

	return memcg;
}
2758 2759
#endif /* CONFIG_MEMCG_KMEM */

2760 2761 2762 2763
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2764 2765 2766
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2767
 */
2768
void mem_cgroup_split_huge_fixup(struct page *head)
2769
{
2770
	int i;
2771

2772 2773
	if (mem_cgroup_disabled())
		return;
2774

2775
	for (i = 1; i < HPAGE_PMD_NR; i++)
2776
		head[i].mem_cgroup = head->mem_cgroup;
2777

2778
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2779
		       HPAGE_PMD_NR);
2780
}
2781
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2782

A
Andrew Morton 已提交
2783
#ifdef CONFIG_MEMCG_SWAP
2784 2785
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2786
{
2787 2788
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2789
}
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2802
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2803 2804 2805
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2806
				struct mem_cgroup *from, struct mem_cgroup *to)
2807 2808 2809
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2810 2811
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2812 2813 2814

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2815
		mem_cgroup_swap_statistics(to, true);
2816 2817 2818 2819 2820 2821
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2822
				struct mem_cgroup *from, struct mem_cgroup *to)
2823 2824 2825
{
	return -EINVAL;
}
2826
#endif
K
KAMEZAWA Hiroyuki 已提交
2827

2828
static DEFINE_MUTEX(memcg_limit_mutex);
2829

2830
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2831
				   unsigned long limit)
2832
{
2833 2834 2835
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2836
	int retry_count;
2837
	int ret;
2838 2839 2840 2841 2842 2843

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2844 2845
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2846

2847
	oldusage = page_counter_read(&memcg->memory);
2848

2849
	do {
2850 2851 2852 2853
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2854 2855 2856 2857

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2858
			ret = -EINVAL;
2859 2860
			break;
		}
2861 2862 2863 2864
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2865 2866 2867 2868

		if (!ret)
			break;

2869 2870
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2871
		curusage = page_counter_read(&memcg->memory);
2872
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2873
		if (curusage >= oldusage)
2874 2875 2876
			retry_count--;
		else
			oldusage = curusage;
2877 2878
	} while (retry_count);

2879 2880
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2881

2882 2883 2884
	return ret;
}

L
Li Zefan 已提交
2885
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2886
					 unsigned long limit)
2887
{
2888 2889 2890
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2891
	int retry_count;
2892
	int ret;
2893

2894
	/* see mem_cgroup_resize_res_limit */
2895 2896 2897 2898 2899 2900
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2901 2902 2903 2904
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2905 2906 2907 2908

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2909 2910 2911
			ret = -EINVAL;
			break;
		}
2912 2913 2914 2915
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2916 2917 2918 2919

		if (!ret)
			break;

2920 2921
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2922
		curusage = page_counter_read(&memcg->memsw);
2923
		/* Usage is reduced ? */
2924
		if (curusage >= oldusage)
2925
			retry_count--;
2926 2927
		else
			oldusage = curusage;
2928 2929
	} while (retry_count);

2930 2931
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2932

2933 2934 2935
	return ret;
}

2936 2937 2938 2939 2940 2941 2942 2943 2944
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2945
	unsigned long excess;
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2970
		spin_lock_irq(&mctz->lock);
2971
		__mem_cgroup_remove_exceeded(mz, mctz);
2972 2973 2974 2975 2976 2977

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2978 2979 2980
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2981
		excess = soft_limit_excess(mz->memcg);
2982 2983 2984 2985 2986 2987 2988 2989 2990
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2991
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2992
		spin_unlock_irq(&mctz->lock);
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3010 3011 3012 3013 3014 3015
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
3016 3017
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3018 3019
	bool ret;

3020
	/*
3021 3022 3023 3024
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
3025
	 */
3026 3027 3028 3029 3030 3031
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3032 3033
}

3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

3044 3045
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3046
	/* try to free all pages in this cgroup */
3047
	while (nr_retries && page_counter_read(&memcg->memory)) {
3048
		int progress;
3049

3050 3051 3052
		if (signal_pending(current))
			return -EINTR;

3053 3054
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3055
		if (!progress) {
3056
			nr_retries--;
3057
			/* maybe some writeback is necessary */
3058
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3059
		}
3060 3061

	}
3062 3063

	return 0;
3064 3065
}

3066 3067 3068
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3069
{
3070
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3071

3072 3073
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3074
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3075 3076
}

3077 3078
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3079
{
3080
	return mem_cgroup_from_css(css)->use_hierarchy;
3081 3082
}

3083 3084
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3085 3086
{
	int retval = 0;
3087
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3088
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3089

3090
	mutex_lock(&memcg_create_mutex);
3091 3092 3093 3094

	if (memcg->use_hierarchy == val)
		goto out;

3095
	/*
3096
	 * If parent's use_hierarchy is set, we can't make any modifications
3097 3098 3099 3100 3101 3102
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3103
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3104
				(val == 1 || val == 0)) {
3105
		if (!memcg_has_children(memcg))
3106
			memcg->use_hierarchy = val;
3107 3108 3109 3110
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3111 3112

out:
3113
	mutex_unlock(&memcg_create_mutex);
3114 3115 3116 3117

	return retval;
}

3118 3119
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
{
	struct mem_cgroup *iter;
	long val = 0;

	/* Per-cpu values can be negative, use a signed accumulator */
	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
}

static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
{
	u64 val;

3137 3138 3139 3140 3141 3142
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
3143
		if (!swap)
3144
			val = page_counter_read(&memcg->memory);
3145
		else
3146
			val = page_counter_read(&memcg->memsw);
3147 3148 3149 3150
	}
	return val << PAGE_SHIFT;
}

3151 3152 3153 3154 3155 3156 3157
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3158

3159
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3160
			       struct cftype *cft)
B
Balbir Singh 已提交
3161
{
3162
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3163
	struct page_counter *counter;
3164

3165
	switch (MEMFILE_TYPE(cft->private)) {
3166
	case _MEM:
3167 3168
		counter = &memcg->memory;
		break;
3169
	case _MEMSWAP:
3170 3171
		counter = &memcg->memsw;
		break;
3172
	case _KMEM:
3173
		counter = &memcg->kmem;
3174
		break;
3175 3176 3177
	default:
		BUG();
	}
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
			return mem_cgroup_usage(memcg, false);
		if (counter == &memcg->memsw)
			return mem_cgroup_usage(memcg, true);
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3197
}
3198 3199

#ifdef CONFIG_MEMCG_KMEM
3200 3201
static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long nr_pages)
3202 3203 3204 3205
{
	int err = 0;
	int memcg_id;

3206
	BUG_ON(memcg->kmemcg_id >= 0);
3207
	BUG_ON(memcg->kmem_acct_activated);
3208
	BUG_ON(memcg->kmem_acct_active);
3209

3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
3222
	mutex_lock(&memcg_create_mutex);
3223 3224
	if (cgroup_has_tasks(memcg->css.cgroup) ||
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
3225 3226 3227 3228
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
3229

3230
	memcg_id = memcg_alloc_cache_id();
3231 3232 3233 3234 3235 3236
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
V
Vladimir Davydov 已提交
3237 3238
	 * We couldn't have accounted to this cgroup, because it hasn't got
	 * activated yet, so this should succeed.
3239
	 */
3240
	err = page_counter_limit(&memcg->kmem, nr_pages);
3241 3242 3243 3244
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
V
Vladimir Davydov 已提交
3245 3246
	 * A memory cgroup is considered kmem-active as soon as it gets
	 * kmemcg_id. Setting the id after enabling static branching will
3247 3248 3249
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3250
	memcg->kmemcg_id = memcg_id;
3251
	memcg->kmem_acct_activated = true;
3252
	memcg->kmem_acct_active = true;
3253
out:
3254 3255 3256 3257
	return err;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3258
				   unsigned long limit)
3259 3260 3261
{
	int ret;

3262
	mutex_lock(&memcg_limit_mutex);
3263
	if (!memcg_kmem_is_active(memcg))
3264
		ret = memcg_activate_kmem(memcg, limit);
3265
	else
3266 3267
		ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
3268 3269 3270
	return ret;
}

3271
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3272
{
3273
	int ret = 0;
3274
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3275

3276 3277
	if (!parent)
		return 0;
3278

3279
	mutex_lock(&memcg_limit_mutex);
3280
	/*
3281 3282
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
3283
	 */
3284
	if (memcg_kmem_is_active(parent))
3285 3286
		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
	mutex_unlock(&memcg_limit_mutex);
3287
	return ret;
3288
}
3289 3290
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3291
				   unsigned long limit)
3292 3293 3294
{
	return -EINVAL;
}
3295
#endif /* CONFIG_MEMCG_KMEM */
3296

3297 3298 3299 3300
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3301 3302
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3303
{
3304
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3305
	unsigned long nr_pages;
3306 3307
	int ret;

3308
	buf = strstrip(buf);
3309
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3310 3311
	if (ret)
		return ret;
3312

3313
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3314
	case RES_LIMIT:
3315 3316 3317 3318
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3319 3320 3321
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3322
			break;
3323 3324
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3325
			break;
3326 3327 3328 3329
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
		}
3330
		break;
3331 3332 3333
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3334 3335
		break;
	}
3336
	return ret ?: nbytes;
B
Balbir Singh 已提交
3337 3338
}

3339 3340
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3341
{
3342
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3343
	struct page_counter *counter;
3344

3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
	default:
		BUG();
	}
3358

3359
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3360
	case RES_MAX_USAGE:
3361
		page_counter_reset_watermark(counter);
3362 3363
		break;
	case RES_FAILCNT:
3364
		counter->failcnt = 0;
3365
		break;
3366 3367
	default:
		BUG();
3368
	}
3369

3370
	return nbytes;
3371 3372
}

3373
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3374 3375
					struct cftype *cft)
{
3376
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3377 3378
}

3379
#ifdef CONFIG_MMU
3380
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3381 3382
					struct cftype *cft, u64 val)
{
3383
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3384

3385
	if (val & ~MOVE_MASK)
3386
		return -EINVAL;
3387

3388
	/*
3389 3390 3391 3392
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3393
	 */
3394
	memcg->move_charge_at_immigrate = val;
3395 3396
	return 0;
}
3397
#else
3398
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3399 3400 3401 3402 3403
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3404

3405
#ifdef CONFIG_NUMA
3406
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3407
{
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3420
	int nid;
3421
	unsigned long nr;
3422
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3423

3424 3425 3426 3427 3428 3429 3430 3431 3432
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3433 3434
	}

3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3450 3451 3452 3453 3454 3455
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3456
static int memcg_stat_show(struct seq_file *m, void *v)
3457
{
3458
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3459
	unsigned long memory, memsw;
3460 3461
	struct mem_cgroup *mi;
	unsigned int i;
3462

3463 3464 3465 3466
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3467 3468
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3469
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3470
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3471
			continue;
3472 3473
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3474
	}
L
Lee Schermerhorn 已提交
3475

3476 3477 3478 3479 3480 3481 3482 3483
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3484
	/* Hierarchical information */
3485 3486 3487 3488
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3489
	}
3490 3491 3492 3493 3494
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
	if (do_swap_account)
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3495

3496 3497 3498
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

3499
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3500
			continue;
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3521
	}
K
KAMEZAWA Hiroyuki 已提交
3522

K
KOSAKI Motohiro 已提交
3523 3524 3525 3526
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3527
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3528 3529 3530 3531 3532
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3533
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3534
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3535

3536 3537 3538 3539
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3540
			}
3541 3542 3543 3544
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3545 3546 3547
	}
#endif

3548 3549 3550
	return 0;
}

3551 3552
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3553
{
3554
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3555

3556
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3557 3558
}

3559 3560
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3561
{
3562
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3563

3564
	if (val > 100)
K
KOSAKI Motohiro 已提交
3565 3566
		return -EINVAL;

3567
	if (css->parent)
3568 3569 3570
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3571

K
KOSAKI Motohiro 已提交
3572 3573 3574
	return 0;
}

3575 3576 3577
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3578
	unsigned long usage;
3579 3580 3581 3582
	int i;

	rcu_read_lock();
	if (!swap)
3583
		t = rcu_dereference(memcg->thresholds.primary);
3584
	else
3585
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3586 3587 3588 3589

	if (!t)
		goto unlock;

3590
	usage = mem_cgroup_usage(memcg, swap);
3591 3592

	/*
3593
	 * current_threshold points to threshold just below or equal to usage.
3594 3595 3596
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3597
	i = t->current_threshold;
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3621
	t->current_threshold = i - 1;
3622 3623 3624 3625 3626 3627
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3628 3629 3630 3631 3632 3633 3634
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3635 3636 3637 3638 3639 3640 3641
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3642 3643 3644 3645 3646 3647 3648
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3649 3650
}

3651
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3652 3653 3654
{
	struct mem_cgroup_eventfd_list *ev;

3655 3656
	spin_lock(&memcg_oom_lock);

3657
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3658
		eventfd_signal(ev->eventfd, 1);
3659 3660

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3661 3662 3663
	return 0;
}

3664
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3665
{
K
KAMEZAWA Hiroyuki 已提交
3666 3667
	struct mem_cgroup *iter;

3668
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3669
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3670 3671
}

3672
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3673
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3674
{
3675 3676
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3677 3678
	unsigned long threshold;
	unsigned long usage;
3679
	int i, size, ret;
3680

3681
	ret = page_counter_memparse(args, "-1", &threshold);
3682 3683 3684 3685
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3686

3687
	if (type == _MEM) {
3688
		thresholds = &memcg->thresholds;
3689
		usage = mem_cgroup_usage(memcg, false);
3690
	} else if (type == _MEMSWAP) {
3691
		thresholds = &memcg->memsw_thresholds;
3692
		usage = mem_cgroup_usage(memcg, true);
3693
	} else
3694 3695 3696
		BUG();

	/* Check if a threshold crossed before adding a new one */
3697
	if (thresholds->primary)
3698 3699
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3700
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3701 3702

	/* Allocate memory for new array of thresholds */
3703
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3704
			GFP_KERNEL);
3705
	if (!new) {
3706 3707 3708
		ret = -ENOMEM;
		goto unlock;
	}
3709
	new->size = size;
3710 3711

	/* Copy thresholds (if any) to new array */
3712 3713
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3714
				sizeof(struct mem_cgroup_threshold));
3715 3716
	}

3717
	/* Add new threshold */
3718 3719
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3720 3721

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3722
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3723 3724 3725
			compare_thresholds, NULL);

	/* Find current threshold */
3726
	new->current_threshold = -1;
3727
	for (i = 0; i < size; i++) {
3728
		if (new->entries[i].threshold <= usage) {
3729
			/*
3730 3731
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3732 3733
			 * it here.
			 */
3734
			++new->current_threshold;
3735 3736
		} else
			break;
3737 3738
	}

3739 3740 3741 3742 3743
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3744

3745
	/* To be sure that nobody uses thresholds */
3746 3747 3748 3749 3750 3751 3752 3753
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3754
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3755 3756
	struct eventfd_ctx *eventfd, const char *args)
{
3757
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3758 3759
}

3760
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3761 3762
	struct eventfd_ctx *eventfd, const char *args)
{
3763
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3764 3765
}

3766
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3767
	struct eventfd_ctx *eventfd, enum res_type type)
3768
{
3769 3770
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3771
	unsigned long usage;
3772
	int i, j, size;
3773 3774

	mutex_lock(&memcg->thresholds_lock);
3775 3776

	if (type == _MEM) {
3777
		thresholds = &memcg->thresholds;
3778
		usage = mem_cgroup_usage(memcg, false);
3779
	} else if (type == _MEMSWAP) {
3780
		thresholds = &memcg->memsw_thresholds;
3781
		usage = mem_cgroup_usage(memcg, true);
3782
	} else
3783 3784
		BUG();

3785 3786 3787
	if (!thresholds->primary)
		goto unlock;

3788 3789 3790 3791
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3792 3793 3794
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3795 3796 3797
			size++;
	}

3798
	new = thresholds->spare;
3799

3800 3801
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3802 3803
		kfree(new);
		new = NULL;
3804
		goto swap_buffers;
3805 3806
	}

3807
	new->size = size;
3808 3809

	/* Copy thresholds and find current threshold */
3810 3811 3812
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3813 3814
			continue;

3815
		new->entries[j] = thresholds->primary->entries[i];
3816
		if (new->entries[j].threshold <= usage) {
3817
			/*
3818
			 * new->current_threshold will not be used
3819 3820 3821
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3822
			++new->current_threshold;
3823 3824 3825 3826
		}
		j++;
	}

3827
swap_buffers:
3828 3829
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3830 3831 3832 3833 3834 3835
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

3836
	rcu_assign_pointer(thresholds->primary, new);
3837

3838
	/* To be sure that nobody uses thresholds */
3839
	synchronize_rcu();
3840
unlock:
3841 3842
	mutex_unlock(&memcg->thresholds_lock);
}
3843

3844
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3845 3846
	struct eventfd_ctx *eventfd)
{
3847
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3848 3849
}

3850
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3851 3852
	struct eventfd_ctx *eventfd)
{
3853
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3854 3855
}

3856
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3857
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3858 3859 3860 3861 3862 3863 3864
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3865
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3866 3867 3868 3869 3870

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3871
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
3872
		eventfd_signal(eventfd, 1);
3873
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3874 3875 3876 3877

	return 0;
}

3878
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3879
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3880 3881 3882
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3883
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3884

3885
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3886 3887 3888 3889 3890 3891
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3892
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3893 3894
}

3895
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3896
{
3897
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3898

3899 3900
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3901 3902 3903
	return 0;
}

3904
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3905 3906
	struct cftype *cft, u64 val)
{
3907
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3908 3909

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3910
	if (!css->parent || !((val == 0) || (val == 1)))
3911 3912
		return -EINVAL;

3913
	memcg->oom_kill_disable = val;
3914
	if (!val)
3915
		memcg_oom_recover(memcg);
3916

3917 3918 3919
	return 0;
}

A
Andrew Morton 已提交
3920
#ifdef CONFIG_MEMCG_KMEM
3921
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3922
{
3923 3924 3925 3926 3927
	int ret;

	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
3928

3929
	return mem_cgroup_sockets_init(memcg, ss);
3930
}
3931

3932 3933
static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
{
3934 3935 3936 3937
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949
	if (!memcg->kmem_acct_active)
		return;

	/*
	 * Clear the 'active' flag before clearing memcg_caches arrays entries.
	 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
	 * guarantees no cache will be created for this cgroup after we are
	 * done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_acct_active = false;

	memcg_deactivate_kmem_caches(memcg);
3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
3976 3977
}

3978
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
3979
{
3980 3981 3982 3983 3984
	if (memcg->kmem_acct_activated) {
		memcg_destroy_kmem_caches(memcg);
		static_key_slow_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
3985
	mem_cgroup_sockets_destroy(memcg);
3986
}
3987
#else
3988
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3989 3990 3991
{
	return 0;
}
G
Glauber Costa 已提交
3992

3993 3994 3995 3996
static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
{
}

3997 3998 3999
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}
4000 4001
#endif

4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4015 4016 4017 4018 4019
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4020
static void memcg_event_remove(struct work_struct *work)
4021
{
4022 4023
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4024
	struct mem_cgroup *memcg = event->memcg;
4025 4026 4027

	remove_wait_queue(event->wqh, &event->wait);

4028
	event->unregister_event(memcg, event->eventfd);
4029 4030 4031 4032 4033 4034

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4035
	css_put(&memcg->css);
4036 4037 4038 4039 4040 4041 4042
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4043 4044
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
4045
{
4046 4047
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4048
	struct mem_cgroup *memcg = event->memcg;
4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4061
		spin_lock(&memcg->event_list_lock);
4062 4063 4064 4065 4066 4067 4068 4069
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4070
		spin_unlock(&memcg->event_list_lock);
4071 4072 4073 4074 4075
	}

	return 0;
}

4076
static void memcg_event_ptable_queue_proc(struct file *file,
4077 4078
		wait_queue_head_t *wqh, poll_table *pt)
{
4079 4080
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4081 4082 4083 4084 4085 4086

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4087 4088
 * DO NOT USE IN NEW FILES.
 *
4089 4090 4091 4092 4093
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4094 4095
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4096
{
4097
	struct cgroup_subsys_state *css = of_css(of);
4098
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4099
	struct mem_cgroup_event *event;
4100 4101 4102 4103
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4104
	const char *name;
4105 4106 4107
	char *endp;
	int ret;

4108 4109 4110
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4111 4112
	if (*endp != ' ')
		return -EINVAL;
4113
	buf = endp + 1;
4114

4115
	cfd = simple_strtoul(buf, &endp, 10);
4116 4117
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4118
	buf = endp + 1;
4119 4120 4121 4122 4123

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4124
	event->memcg = memcg;
4125
	INIT_LIST_HEAD(&event->list);
4126 4127 4128
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4154 4155 4156 4157 4158
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4159 4160
	 *
	 * DO NOT ADD NEW FILES.
4161
	 */
A
Al Viro 已提交
4162
	name = cfile.file->f_path.dentry->d_name.name;
4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4174 4175
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4176 4177 4178 4179 4180
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4181
	/*
4182 4183 4184
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4185
	 */
A
Al Viro 已提交
4186
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4187
					       &memory_cgrp_subsys);
4188
	ret = -EINVAL;
4189
	if (IS_ERR(cfile_css))
4190
		goto out_put_cfile;
4191 4192
	if (cfile_css != css) {
		css_put(cfile_css);
4193
		goto out_put_cfile;
4194
	}
4195

4196
	ret = event->register_event(memcg, event->eventfd, buf);
4197 4198 4199 4200 4201
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

4202 4203 4204
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4205 4206 4207 4208

	fdput(cfile);
	fdput(efile);

4209
	return nbytes;
4210 4211

out_put_css:
4212
	css_put(css);
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4225
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4226
	{
4227
		.name = "usage_in_bytes",
4228
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4229
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4230
	},
4231 4232
	{
		.name = "max_usage_in_bytes",
4233
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4234
		.write = mem_cgroup_reset,
4235
		.read_u64 = mem_cgroup_read_u64,
4236
	},
B
Balbir Singh 已提交
4237
	{
4238
		.name = "limit_in_bytes",
4239
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4240
		.write = mem_cgroup_write,
4241
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4242
	},
4243 4244 4245
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4246
		.write = mem_cgroup_write,
4247
		.read_u64 = mem_cgroup_read_u64,
4248
	},
B
Balbir Singh 已提交
4249 4250
	{
		.name = "failcnt",
4251
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4252
		.write = mem_cgroup_reset,
4253
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4254
	},
4255 4256
	{
		.name = "stat",
4257
		.seq_show = memcg_stat_show,
4258
	},
4259 4260
	{
		.name = "force_empty",
4261
		.write = mem_cgroup_force_empty_write,
4262
	},
4263 4264 4265 4266 4267
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4268
	{
4269
		.name = "cgroup.event_control",		/* XXX: for compat */
4270
		.write = memcg_write_event_control,
4271 4272 4273
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
4274 4275 4276 4277 4278
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4279 4280 4281 4282 4283
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4284 4285
	{
		.name = "oom_control",
4286
		.seq_show = mem_cgroup_oom_control_read,
4287
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4288 4289
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4290 4291 4292
	{
		.name = "pressure_level",
	},
4293 4294 4295
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4296
		.seq_show = memcg_numa_stat_show,
4297 4298
	},
#endif
4299 4300 4301 4302
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4303
		.write = mem_cgroup_write,
4304
		.read_u64 = mem_cgroup_read_u64,
4305 4306 4307 4308
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4309
		.read_u64 = mem_cgroup_read_u64,
4310 4311 4312 4313
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4314
		.write = mem_cgroup_reset,
4315
		.read_u64 = mem_cgroup_read_u64,
4316 4317 4318 4319
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4320
		.write = mem_cgroup_reset,
4321
		.read_u64 = mem_cgroup_read_u64,
4322
	},
4323 4324 4325
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4326 4327 4328 4329
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4330 4331
	},
#endif
4332
#endif
4333
	{ },	/* terminate */
4334
};
4335

4336
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4337 4338
{
	struct mem_cgroup_per_node *pn;
4339
	struct mem_cgroup_per_zone *mz;
4340
	int zone, tmp = node;
4341 4342 4343 4344 4345 4346 4347 4348
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4349 4350
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4351
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4352 4353
	if (!pn)
		return 1;
4354 4355 4356

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4357
		lruvec_init(&mz->lruvec);
4358 4359
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4360
		mz->memcg = memcg;
4361
	}
4362
	memcg->nodeinfo[node] = pn;
4363 4364 4365
	return 0;
}

4366
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4367
{
4368
	kfree(memcg->nodeinfo[node]);
4369 4370
}

4371 4372
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4373
	struct mem_cgroup *memcg;
4374
	size_t size;
4375

4376 4377
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4378

4379
	memcg = kzalloc(size, GFP_KERNEL);
4380
	if (!memcg)
4381 4382
		return NULL;

4383 4384
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4385
		goto out_free;
4386 4387
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4388 4389

out_free:
4390
	kfree(memcg);
4391
	return NULL;
4392 4393
}

4394
/*
4395 4396 4397 4398 4399 4400 4401 4402
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
4403
 */
4404 4405

static void __mem_cgroup_free(struct mem_cgroup *memcg)
4406
{
4407
	int node;
4408

4409
	mem_cgroup_remove_from_trees(memcg);
4410 4411 4412 4413 4414

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);
4415
	kfree(memcg);
4416
}
4417

4418 4419 4420
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4421
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4422
{
4423
	if (!memcg->memory.parent)
4424
		return NULL;
4425
	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4426
}
G
Glauber Costa 已提交
4427
EXPORT_SYMBOL(parent_mem_cgroup);
4428

L
Li Zefan 已提交
4429
static struct cgroup_subsys_state * __ref
4430
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
4431
{
4432
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4433
	long error = -ENOMEM;
4434
	int node;
B
Balbir Singh 已提交
4435

4436 4437
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4438
		return ERR_PTR(error);
4439

B
Bob Liu 已提交
4440
	for_each_node(node)
4441
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4442
			goto free_out;
4443

4444
	/* root ? */
4445
	if (parent_css == NULL) {
4446
		root_mem_cgroup = memcg;
4447
		page_counter_init(&memcg->memory, NULL);
4448
		memcg->high = PAGE_COUNTER_MAX;
4449
		memcg->soft_limit = PAGE_COUNTER_MAX;
4450 4451
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4452
	}
4453

4454 4455 4456 4457 4458
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4459
	vmpressure_init(&memcg->vmpressure);
4460 4461
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
V
Vladimir Davydov 已提交
4462 4463 4464
#ifdef CONFIG_MEMCG_KMEM
	memcg->kmemcg_id = -1;
#endif
4465 4466 4467 4468 4469 4470 4471 4472 4473

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
4474
mem_cgroup_css_online(struct cgroup_subsys_state *css)
4475
{
4476
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4477
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4478
	int ret;
4479

4480
	if (css->id > MEM_CGROUP_ID_MAX)
4481 4482
		return -ENOSPC;

T
Tejun Heo 已提交
4483
	if (!parent)
4484 4485
		return 0;

4486
	mutex_lock(&memcg_create_mutex);
4487 4488 4489 4490 4491 4492

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
4493
		page_counter_init(&memcg->memory, &parent->memory);
4494
		memcg->high = PAGE_COUNTER_MAX;
4495
		memcg->soft_limit = PAGE_COUNTER_MAX;
4496 4497
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4498

4499
		/*
4500 4501
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
4502
		 */
4503
	} else {
4504
		page_counter_init(&memcg->memory, NULL);
4505
		memcg->high = PAGE_COUNTER_MAX;
4506
		memcg->soft_limit = PAGE_COUNTER_MAX;
4507 4508
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4509 4510 4511 4512 4513
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4514
		if (parent != root_mem_cgroup)
4515
			memory_cgrp_subsys.broken_hierarchy = true;
4516
	}
4517
	mutex_unlock(&memcg_create_mutex);
4518

4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
	if (ret)
		return ret;

	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
4531 4532
}

4533
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4534
{
4535
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4536
	struct mem_cgroup_event *event, *tmp;
4537 4538 4539 4540 4541 4542

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4543 4544
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4545 4546 4547
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4548
	spin_unlock(&memcg->event_list_lock);
4549

4550
	vmpressure_cleanup(&memcg->vmpressure);
4551 4552

	memcg_deactivate_kmem(memcg);
4553 4554
}

4555
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4556
{
4557
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4558

4559
	memcg_destroy_kmem(memcg);
4560
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4561 4562
}

4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4580 4581 4582
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4583 4584
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4585
	memcg->soft_limit = PAGE_COUNTER_MAX;
4586 4587
}

4588
#ifdef CONFIG_MMU
4589
/* Handlers for move charge at task migration. */
4590
static int mem_cgroup_do_precharge(unsigned long count)
4591
{
4592
	int ret;
4593 4594

	/* Try a single bulk charge without reclaim first */
4595
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4596
	if (!ret) {
4597 4598 4599
		mc.precharge += count;
		return ret;
	}
4600
	if (ret == -EINTR) {
4601
		cancel_charge(root_mem_cgroup, count);
4602 4603
		return ret;
	}
4604 4605

	/* Try charges one by one with reclaim */
4606
	while (count--) {
4607
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4608 4609 4610
		/*
		 * In case of failure, any residual charges against
		 * mc.to will be dropped by mem_cgroup_clear_mc()
4611 4612
		 * later on.  However, cancel any charges that are
		 * bypassed to root right away or they'll be lost.
4613
		 */
4614
		if (ret == -EINTR)
4615
			cancel_charge(root_mem_cgroup, 1);
4616 4617
		if (ret)
			return ret;
4618
		mc.precharge++;
4619
		cond_resched();
4620
	}
4621
	return 0;
4622 4623 4624
}

/**
4625
 * get_mctgt_type - get target type of moving charge
4626 4627 4628
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4629
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4630 4631 4632 4633 4634 4635
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4636 4637 4638
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4639 4640 4641 4642 4643
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4644
	swp_entry_t	ent;
4645 4646 4647
};

enum mc_target_type {
4648
	MC_TARGET_NONE = 0,
4649
	MC_TARGET_PAGE,
4650
	MC_TARGET_SWAP,
4651 4652
};

D
Daisuke Nishimura 已提交
4653 4654
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4655
{
D
Daisuke Nishimura 已提交
4656
	struct page *page = vm_normal_page(vma, addr, ptent);
4657

D
Daisuke Nishimura 已提交
4658 4659 4660
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4661
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4662
			return NULL;
4663 4664 4665 4666
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4667 4668 4669 4670 4671 4672
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4673
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4674 4675 4676 4677 4678 4679
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4680
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4681
		return NULL;
4682 4683 4684 4685
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4686
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
4687 4688 4689 4690 4691
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
4692 4693 4694 4695 4696 4697 4698
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4699

4700 4701 4702 4703 4704 4705 4706 4707 4708
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4709
	if (!(mc.flags & MOVE_FILE))
4710 4711 4712
		return NULL;

	mapping = vma->vm_file->f_mapping;
4713
	pgoff = linear_page_index(vma, addr);
4714 4715

	/* page is moved even if it's not RSS of this task(page-faulted). */
4716 4717
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4730
#endif
4731 4732 4733
	return page;
}

4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
 * @nr_pages: number of regular pages (>1 for huge pages)
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
 * - page is not on LRU (isolate_page() is useful.)
 * - compound_lock is held when nr_pages > 1
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
	int ret;

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
	if (nr_pages > 1 && !PageTransHuge(page))
		goto out;

	/*
	 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
	 * of its source page while we change it: page migration takes
	 * both pages off the LRU, but page cache replacement doesn't.
	 */
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

	spin_lock_irqsave(&from->move_lock, flags);

	if (!PageAnon(page) && page_mapped(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
	memcg_check_events(to, page);
	mem_cgroup_charge_statistics(from, page, -nr_pages);
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4820
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4821 4822 4823
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4824
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4825 4826 4827 4828 4829 4830
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4831
	else if (pte_none(ptent))
4832
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4833 4834

	if (!page && !ent.val)
4835
		return ret;
4836 4837
	if (page) {
		/*
4838
		 * Do only loose check w/o serialization.
4839
		 * mem_cgroup_move_account() checks the page is valid or
4840
		 * not under LRU exclusion.
4841
		 */
4842
		if (page->mem_cgroup == mc.from) {
4843 4844 4845 4846 4847 4848 4849
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4850 4851
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4852
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4853 4854 4855
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4856 4857 4858 4859
	}
	return ret;
}

4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4873
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4874
	if (!(mc.flags & MOVE_ANON))
4875
		return ret;
4876
	if (page->mem_cgroup == mc.from) {
4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4893 4894 4895 4896
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4897
	struct vm_area_struct *vma = walk->vma;
4898 4899 4900
	pte_t *pte;
	spinlock_t *ptl;

4901
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4902 4903
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4904
		spin_unlock(ptl);
4905
		return 0;
4906
	}
4907

4908 4909
	if (pmd_trans_unstable(pmd))
		return 0;
4910 4911
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4912
		if (get_mctgt_type(vma, addr, *pte, NULL))
4913 4914 4915 4916
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4917 4918 4919
	return 0;
}

4920 4921 4922 4923
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4924 4925 4926 4927
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4928
	down_read(&mm->mmap_sem);
4929
	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4930
	up_read(&mm->mmap_sem);
4931 4932 4933 4934 4935 4936 4937 4938 4939

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4940 4941 4942 4943 4944
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4945 4946
}

4947 4948
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4949
{
4950 4951 4952
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4953
	/* we must uncharge all the leftover precharges from mc.to */
4954
	if (mc.precharge) {
4955
		cancel_charge(mc.to, mc.precharge);
4956 4957 4958 4959 4960 4961 4962
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4963
		cancel_charge(mc.from, mc.moved_charge);
4964
		mc.moved_charge = 0;
4965
	}
4966 4967 4968
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4969
		if (!mem_cgroup_is_root(mc.from))
4970
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4971

4972
		/*
4973 4974
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4975
		 */
4976
		if (!mem_cgroup_is_root(mc.to))
4977 4978
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4979
		css_put_many(&mc.from->css, mc.moved_swap);
4980

L
Li Zefan 已提交
4981
		/* we've already done css_get(mc.to) */
4982 4983
		mc.moved_swap = 0;
	}
4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4997
	spin_lock(&mc.lock);
4998 4999
	mc.from = NULL;
	mc.to = NULL;
5000
	spin_unlock(&mc.lock);
5001 5002
}

5003
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5004
				 struct cgroup_taskset *tset)
5005
{
5006
	struct task_struct *p = cgroup_taskset_first(tset);
5007
	int ret = 0;
5008
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5009
	unsigned long move_flags;
5010

5011 5012 5013 5014 5015
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
5016
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5017
	if (move_flags) {
5018 5019 5020
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5021
		VM_BUG_ON(from == memcg);
5022 5023 5024 5025 5026

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5027 5028 5029 5030
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5031
			VM_BUG_ON(mc.moved_charge);
5032
			VM_BUG_ON(mc.moved_swap);
5033

5034
			spin_lock(&mc.lock);
5035
			mc.from = from;
5036
			mc.to = memcg;
5037
			mc.flags = move_flags;
5038
			spin_unlock(&mc.lock);
5039
			/* We set mc.moving_task later */
5040 5041 5042 5043

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5044 5045
		}
		mmput(mm);
5046 5047 5048 5049
	}
	return ret;
}

5050
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5051
				     struct cgroup_taskset *tset)
5052
{
5053 5054
	if (mc.to)
		mem_cgroup_clear_mc();
5055 5056
}

5057 5058 5059
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5060
{
5061
	int ret = 0;
5062
	struct vm_area_struct *vma = walk->vma;
5063 5064
	pte_t *pte;
	spinlock_t *ptl;
5065 5066 5067
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5068

5069 5070 5071 5072 5073 5074 5075 5076 5077 5078
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
5079
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5080
		if (mc.precharge < HPAGE_PMD_NR) {
5081
			spin_unlock(ptl);
5082 5083 5084 5085 5086 5087 5088
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5089
							     mc.from, mc.to)) {
5090 5091 5092 5093 5094 5095 5096
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
5097
		spin_unlock(ptl);
5098
		return 0;
5099 5100
	}

5101 5102
	if (pmd_trans_unstable(pmd))
		return 0;
5103 5104 5105 5106
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5107
		swp_entry_t ent;
5108 5109 5110 5111

		if (!mc.precharge)
			break;

5112
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5113 5114 5115 5116
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
5117
			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5118
				mc.precharge--;
5119 5120
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5121 5122
			}
			putback_lru_page(page);
5123
put:			/* get_mctgt_type() gets the page */
5124 5125
			put_page(page);
			break;
5126 5127
		case MC_TARGET_SWAP:
			ent = target.ent;
5128
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5129
				mc.precharge--;
5130 5131 5132
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5133
			break;
5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5148
		ret = mem_cgroup_do_precharge(1);
5149 5150 5151 5152 5153 5154 5155 5156 5157
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
5158 5159 5160 5161
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
		.mm = mm,
	};
5162 5163

	lru_add_drain_all();
5164 5165 5166 5167 5168 5169 5170
	/*
	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
	 * move_lock while we're moving its pages to another memcg.
	 * Then wait for already started RCU-only updates to finish.
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5184 5185 5186 5187 5188
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5189
	up_read(&mm->mmap_sem);
5190
	atomic_dec(&mc.from->moving_account);
5191 5192
}

5193
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5194
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5195
{
5196
	struct task_struct *p = cgroup_taskset_first(tset);
5197
	struct mm_struct *mm = get_task_mm(p);
5198 5199

	if (mm) {
5200 5201
		if (mc.to)
			mem_cgroup_move_charge(mm);
5202 5203
		mmput(mm);
	}
5204 5205
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5206
}
5207
#else	/* !CONFIG_MMU */
5208
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5209
				 struct cgroup_taskset *tset)
5210 5211 5212
{
	return 0;
}
5213
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5214
				     struct cgroup_taskset *tset)
5215 5216
{
}
5217
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5218
				 struct cgroup_taskset *tset)
5219 5220 5221
{
}
#endif
B
Balbir Singh 已提交
5222

5223 5224
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5225 5226
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5227
 */
5228
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5229 5230
{
	/*
5231
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5232 5233 5234
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5235
	if (cgroup_on_dfl(root_css->cgroup))
5236 5237 5238
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5239 5240
}

5241 5242 5243 5244 5245 5246 5247 5248 5249
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
	return mem_cgroup_usage(mem_cgroup_from_css(css), false);
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5250
	unsigned long low = READ_ONCE(memcg->low);
5251 5252

	if (low == PAGE_COUNTER_MAX)
5253
		seq_puts(m, "max\n");
5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5268
	err = page_counter_memparse(buf, "max", &low);
5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5280
	unsigned long high = READ_ONCE(memcg->high);
5281 5282

	if (high == PAGE_COUNTER_MAX)
5283
		seq_puts(m, "max\n");
5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
5298
	err = page_counter_memparse(buf, "max", &high);
5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309
	if (err)
		return err;

	memcg->high = high;

	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5310
	unsigned long max = READ_ONCE(memcg->memory.limit);
5311 5312

	if (max == PAGE_COUNTER_MAX)
5313
		seq_puts(m, "max\n");
5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
5328
	err = page_counter_memparse(buf, "max", &max);
5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381
	if (err)
		return err;

	err = mem_cgroup_resize_limit(memcg, max);
	if (err)
		return err;

	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

static struct cftype memory_files[] = {
	{
		.name = "current",
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_events_show,
	},
	{ }	/* terminate */
};

5382
struct cgroup_subsys memory_cgrp_subsys = {
5383
	.css_alloc = mem_cgroup_css_alloc,
5384
	.css_online = mem_cgroup_css_online,
5385 5386
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
5387
	.css_reset = mem_cgroup_css_reset,
5388 5389
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5390
	.attach = mem_cgroup_move_task,
5391
	.bind = mem_cgroup_bind,
5392 5393
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5394
	.early_init = 0,
B
Balbir Singh 已提交
5395
};
5396

5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431
/**
 * mem_cgroup_events - count memory events against a cgroup
 * @memcg: the memory cgroup
 * @idx: the event index
 * @nr: the number of events to account for
 */
void mem_cgroup_events(struct mem_cgroup *memcg,
		       enum mem_cgroup_events_index idx,
		       unsigned int nr)
{
	this_cpu_add(memcg->stat->events[idx], nr);
}

/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5432
	if (page_counter_read(&memcg->memory) >= memcg->low)
5433 5434 5435 5436 5437 5438 5439 5440
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5441
		if (page_counter_read(&memcg->memory) >= memcg->low)
5442 5443 5444 5445 5446
			return false;
	}
	return true;
}

5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5482
		if (page->mem_cgroup)
5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542
			goto out;
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (do_swap_account && PageSwapCache(page))
		memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);

	if (ret == -EINTR) {
		memcg = root_mem_cgroup;
		ret = 0;
	}
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5543 5544
	commit_charge(page, memcg, lrucare);

5545 5546 5547 5548 5549
	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

5550 5551 5552 5553
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594

	if (do_swap_account && PageSwapCache(page)) {
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

5595 5596 5597 5598
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5599
	unsigned long nr_pages = nr_anon + nr_file;
5600 5601
	unsigned long flags;

5602
	if (!mem_cgroup_is_root(memcg)) {
5603 5604 5605
		page_counter_uncharge(&memcg->memory, nr_pages);
		if (do_swap_account)
			page_counter_uncharge(&memcg->memsw, nr_pages);
5606 5607
		memcg_oom_recover(memcg);
	}
5608 5609 5610 5611 5612 5613

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5614
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5615 5616
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5617 5618

	if (!mem_cgroup_is_root(memcg))
5619
		css_put_many(&memcg->css, nr_pages);
5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5642
		if (!page->mem_cgroup)
5643 5644 5645 5646
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5647
		 * page->mem_cgroup at this point, we have fully
5648
		 * exclusive access to the page.
5649 5650
		 */

5651
		if (memcg != page->mem_cgroup) {
5652
			if (memcg) {
5653 5654 5655
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5656
			}
5657
			memcg = page->mem_cgroup;
5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5671
		page->mem_cgroup = NULL;
5672 5673 5674 5675 5676

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5677 5678
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5679 5680
}

5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5693
	/* Don't touch page->lru of any random page, pre-check: */
5694
	if (!page->mem_cgroup)
5695 5696
		return;

5697 5698 5699
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5700

5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5712

5713 5714
	if (!list_empty(page_list))
		uncharge_list(page_list);
5715 5716 5717 5718 5719 5720
}

/**
 * mem_cgroup_migrate - migrate a charge to another page
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
5721
 * @lrucare: either or both pages might be on the LRU already
5722 5723 5724 5725 5726 5727 5728 5729
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
			bool lrucare)
{
5730
	struct mem_cgroup *memcg;
5731 5732 5733 5734 5735 5736 5737
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5738 5739
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5740 5741 5742 5743 5744

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5745
	if (newpage->mem_cgroup)
5746 5747
		return;

5748 5749 5750 5751 5752 5753
	/*
	 * Swapcache readahead pages can get migrated before being
	 * charged, and migration from compaction can happen to an
	 * uncharged page when the PFN walker finds a page that
	 * reclaim just put back on the LRU but has not released yet.
	 */
5754
	memcg = oldpage->mem_cgroup;
5755
	if (!memcg)
5756 5757 5758 5759 5760
		return;

	if (lrucare)
		lock_page_lru(oldpage, &isolated);

5761
	oldpage->mem_cgroup = NULL;
5762 5763 5764 5765

	if (lrucare)
		unlock_page_lru(oldpage, isolated);

5766
	commit_charge(newpage, memcg, lrucare);
5767 5768
}

5769
/*
5770 5771 5772 5773 5774 5775
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5776 5777 5778
 */
static int __init mem_cgroup_init(void)
{
5779 5780
	int cpu, node;

5781
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;
		int zone;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			struct mem_cgroup_tree_per_zone *rtpz;

			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5804 5805 5806
	return 0;
}
subsys_initcall(mem_cgroup_init);
5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841

#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

	if (!do_swap_account)
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

5842
	/* Caller disabled preemption with mapping->tree_lock */
5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862
	mem_cgroup_charge_statistics(memcg, page, -1);
	memcg_check_events(memcg, page);
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

	if (!do_swap_account)
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
5863
	memcg = mem_cgroup_from_id(id);
5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928
	if (memcg) {
		if (!mem_cgroup_is_root(memcg))
			page_counter_uncharge(&memcg->memsw, 1);
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}

/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */