memcontrol.c 170.5 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/sched/mm.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
41
#include <linux/pagemap.h>
42
#include <linux/vm_event_item.h>
43
#include <linux/smp.h>
44
#include <linux/page-flags.h>
45
#include <linux/backing-dev.h>
46 47
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
48
#include <linux/limits.h>
49
#include <linux/export.h>
50
#include <linux/mutex.h>
51
#include <linux/rbtree.h>
52
#include <linux/slab.h>
53
#include <linux/swap.h>
54
#include <linux/swapops.h>
55
#include <linux/spinlock.h>
56
#include <linux/eventfd.h>
57
#include <linux/poll.h>
58
#include <linux/sort.h>
59
#include <linux/fs.h>
60
#include <linux/seq_file.h>
61
#include <linux/vmpressure.h>
62
#include <linux/mm_inline.h>
63
#include <linux/swap_cgroup.h>
64
#include <linux/cpu.h>
65
#include <linux/oom.h>
66
#include <linux/lockdep.h>
67
#include <linux/file.h>
68
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
69
#include "internal.h"
G
Glauber Costa 已提交
70
#include <net/sock.h>
M
Michal Hocko 已提交
71
#include <net/ip.h>
72
#include "slab.h"
B
Balbir Singh 已提交
73

74
#include <linux/uaccess.h>
75

76 77
#include <trace/events/vmscan.h>

78 79
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
80

81 82
struct mem_cgroup *root_mem_cgroup __read_mostly;

83
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
84

85 86 87
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

88 89 90
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

91
/* Whether the swap controller is active */
A
Andrew Morton 已提交
92
#ifdef CONFIG_MEMCG_SWAP
93 94
int do_swap_account __read_mostly;
#else
95
#define do_swap_account		0
96 97
#endif

98 99 100 101 102 103
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

104
static const char *const mem_cgroup_lru_names[] = {
105 106 107 108 109 110 111
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

112 113 114
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
115

116 117 118 119 120
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

121
struct mem_cgroup_tree_per_node {
122
	struct rb_root rb_root;
123
	struct rb_node *rb_rightmost;
124 125 126 127 128 129 130 131 132
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
133 134 135 136 137
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
138

139 140 141
/*
 * cgroup_event represents events which userspace want to receive.
 */
142
struct mem_cgroup_event {
143
	/*
144
	 * memcg which the event belongs to.
145
	 */
146
	struct mem_cgroup *memcg;
147 148 149 150 151 152 153 154
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
155 156 157 158 159
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
160
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
161
			      struct eventfd_ctx *eventfd, const char *args);
162 163 164 165 166
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
167
	void (*unregister_event)(struct mem_cgroup *memcg,
168
				 struct eventfd_ctx *eventfd);
169 170 171 172 173 174
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
175
	wait_queue_entry_t wait;
176 177 178
	struct work_struct remove;
};

179 180
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
181

182 183
/* Stuffs for move charges at task migration. */
/*
184
 * Types of charges to be moved.
185
 */
186 187 188
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
189

190 191
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
192
	spinlock_t	  lock; /* for from, to */
193
	struct mm_struct  *mm;
194 195
	struct mem_cgroup *from;
	struct mem_cgroup *to;
196
	unsigned long flags;
197
	unsigned long precharge;
198
	unsigned long moved_charge;
199
	unsigned long moved_swap;
200 201 202
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
203
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
204 205
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
206

207 208 209 210
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
211
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
212
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
213

214 215
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
216
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
217
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
218
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
219 220 221
	NR_CHARGE_TYPE,
};

222
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
223 224 225 226
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
227
	_KMEM,
V
Vladimir Davydov 已提交
228
	_TCP,
G
Glauber Costa 已提交
229 230
};

231 232
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
233
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
234 235
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
236

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(root, iter, NULL))

#define for_each_mem_cgroup(iter)			\
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(NULL, iter, NULL))

252 253 254 255 256 257
static inline bool should_force_charge(void)
{
	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
		(current->flags & PF_EXITING);
}

258 259 260 261 262 263 264 265 266 267 268 269 270
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

271
#ifdef CONFIG_MEMCG_KMEM
272
/*
273
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
274 275 276 277 278
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
279
 *
280 281
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
282
 */
283 284
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
285

286 287 288 289 290 291 292 293 294 295 296 297 298
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

299 300 301 302 303 304
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
305
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
306 307
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
308
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
309 310 311
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
312
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
313

314 315 316 317 318 319
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
320
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
321
EXPORT_SYMBOL(memcg_kmem_enabled_key);
322

323 324
struct workqueue_struct *memcg_kmem_cache_wq;

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
static int memcg_shrinker_map_size;
static DEFINE_MUTEX(memcg_shrinker_map_mutex);

static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
{
	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
}

static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
					 int size, int old_size)
{
	struct memcg_shrinker_map *new, *old;
	int nid;

	lockdep_assert_held(&memcg_shrinker_map_mutex);

	for_each_node(nid) {
		old = rcu_dereference_protected(
			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
		/* Not yet online memcg */
		if (!old)
			return 0;

		new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
		if (!new)
			return -ENOMEM;

		/* Set all old bits, clear all new bits */
		memset(new->map, (int)0xff, old_size);
		memset((void *)new->map + old_size, 0, size - old_size);

		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
	}

	return 0;
}

static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *pn;
	struct memcg_shrinker_map *map;
	int nid;

	if (mem_cgroup_is_root(memcg))
		return;

	for_each_node(nid) {
		pn = mem_cgroup_nodeinfo(memcg, nid);
		map = rcu_dereference_protected(pn->shrinker_map, true);
		if (map)
			kvfree(map);
		rcu_assign_pointer(pn->shrinker_map, NULL);
	}
}

static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	struct memcg_shrinker_map *map;
	int nid, size, ret = 0;

	if (mem_cgroup_is_root(memcg))
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	size = memcg_shrinker_map_size;
	for_each_node(nid) {
		map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
		if (!map) {
			memcg_free_shrinker_maps(memcg);
			ret = -ENOMEM;
			break;
		}
		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
	}
	mutex_unlock(&memcg_shrinker_map_mutex);

	return ret;
}

int memcg_expand_shrinker_maps(int new_id)
{
	int size, old_size, ret = 0;
	struct mem_cgroup *memcg;

	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
	old_size = memcg_shrinker_map_size;
	if (size <= old_size)
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	if (!root_mem_cgroup)
		goto unlock;

	for_each_mem_cgroup(memcg) {
		if (mem_cgroup_is_root(memcg))
			continue;
		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
		if (ret)
			goto unlock;
	}
unlock:
	if (!ret)
		memcg_shrinker_map_size = size;
	mutex_unlock(&memcg_shrinker_map_mutex);
	return ret;
}
432 433 434 435 436 437 438 439

void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
{
	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
		struct memcg_shrinker_map *map;

		rcu_read_lock();
		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
440 441
		/* Pairs with smp mb in shrink_slab() */
		smp_mb__before_atomic();
442 443 444 445 446
		set_bit(shrinker_id, map->map);
		rcu_read_unlock();
	}
}

447 448 449 450 451 452
#else /* CONFIG_MEMCG_KMEM */
static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	return 0;
}
static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
453
#endif /* CONFIG_MEMCG_KMEM */
454

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

472
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
473 474 475 476 477
		memcg = root_mem_cgroup;

	return &memcg->css;
}

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

506 507
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
508
{
509
	int nid = page_to_nid(page);
510

511
	return memcg->nodeinfo[nid];
512 513
}

514 515
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
516
{
517
	return soft_limit_tree.rb_tree_per_node[nid];
518 519
}

520
static struct mem_cgroup_tree_per_node *
521 522 523 524
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

525
	return soft_limit_tree.rb_tree_per_node[nid];
526 527
}

528 529
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
530
					 unsigned long new_usage_in_excess)
531 532 533
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
534
	struct mem_cgroup_per_node *mz_node;
535
	bool rightmost = true;
536 537 538 539 540 541 542 543 544

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
545
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
546
					tree_node);
547
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
548
			p = &(*p)->rb_left;
549 550 551
			rightmost = false;
		}

552 553 554 555 556 557 558
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
559 560 561 562

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

563 564 565 566 567
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

568 569
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
570 571 572
{
	if (!mz->on_tree)
		return;
573 574 575 576

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

577 578 579 580
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

581 582
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
583
{
584 585 586
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
587
	__mem_cgroup_remove_exceeded(mz, mctz);
588
	spin_unlock_irqrestore(&mctz->lock, flags);
589 590
}

591 592 593
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
594
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
595 596 597 598 599 600 601
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
602 603 604

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
605
	unsigned long excess;
606 607
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
608

609
	mctz = soft_limit_tree_from_page(page);
610 611
	if (!mctz)
		return;
612 613 614 615 616
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
617
		mz = mem_cgroup_page_nodeinfo(memcg, page);
618
		excess = soft_limit_excess(memcg);
619 620 621 622 623
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
624 625 626
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
627 628
			/* if on-tree, remove it */
			if (mz->on_tree)
629
				__mem_cgroup_remove_exceeded(mz, mctz);
630 631 632 633
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
634
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
635
			spin_unlock_irqrestore(&mctz->lock, flags);
636 637 638 639 640 641
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
642 643 644
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
645

646
	for_each_node(nid) {
647 648
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
649 650
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
651 652 653
	}
}

654 655
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
656
{
657
	struct mem_cgroup_per_node *mz;
658 659 660

retry:
	mz = NULL;
661
	if (!mctz->rb_rightmost)
662 663
		goto done;		/* Nothing to reclaim from */

664 665
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
666 667 668 669 670
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
671
	__mem_cgroup_remove_exceeded(mz, mctz);
672
	if (!soft_limit_excess(mz->memcg) ||
673
	    !css_tryget_online(&mz->memcg->css))
674 675 676 677 678
		goto retry;
done:
	return mz;
}

679 680
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
681
{
682
	struct mem_cgroup_per_node *mz;
683

684
	spin_lock_irq(&mctz->lock);
685
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
686
	spin_unlock_irq(&mctz->lock);
687 688 689
	return mz;
}

690
static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
691
				      int event)
692
{
693
	return atomic_long_read(&memcg->events[event]);
694 695
}

696
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
697
					 struct page *page,
698
					 bool compound, int nr_pages)
699
{
700 701 702 703
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
704
	if (PageAnon(page))
705
		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
706
	else {
707
		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
708
		if (PageSwapBacked(page))
709
			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
710
	}
711

712 713
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
714
		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
715
	}
716

717 718
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
719
		__count_memcg_events(memcg, PGPGIN, 1);
720
	else {
721
		__count_memcg_events(memcg, PGPGOUT, 1);
722 723
		nr_pages = -nr_pages; /* for event */
	}
724

725
	__this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
726 727
}

728
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
729
					   int nid, unsigned int lru_mask)
730
{
731
	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
732
	unsigned long nr = 0;
733
	enum lru_list lru;
734

735
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
736

737 738 739
	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
740
		nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
741 742
	}
	return nr;
743
}
744

745
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
746
			unsigned int lru_mask)
747
{
748
	unsigned long nr = 0;
749
	enum lru_list lru;
750

751 752 753 754 755
	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
		nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
	}
756
	return nr;
757 758
}

759 760
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
761 762 763
{
	unsigned long val, next;

764 765
	val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
	next = __this_cpu_read(memcg->stat_cpu->targets[target]);
766
	/* from time_after() in jiffies.h */
767
	if ((long)(next - val) < 0) {
768 769 770 771
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
772 773 774
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
775 776 777 778 779 780
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
781
		__this_cpu_write(memcg->stat_cpu->targets[target], next);
782
		return true;
783
	}
784
	return false;
785 786 787 788 789 790
}

/*
 * Check events in order.
 *
 */
791
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
792 793
{
	/* threshold event is triggered in finer grain than soft limit */
794 795
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
796
		bool do_softlimit;
797
		bool do_numainfo __maybe_unused;
798

799 800
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
801 802 803 804
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
805
		mem_cgroup_threshold(memcg);
806 807
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
808
#if MAX_NUMNODES > 1
809
		if (unlikely(do_numainfo))
810
			atomic_inc(&memcg->numainfo_events);
811
#endif
812
	}
813 814
}

815
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
816
{
817 818 819 820 821 822 823 824
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

825
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
826
}
M
Michal Hocko 已提交
827
EXPORT_SYMBOL(mem_cgroup_from_task);
828

829 830 831 832 833 834 835 836 837
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
 * returned.
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
838
{
839 840 841 842
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
843

844 845
	rcu_read_lock();
	do {
846 847 848 849 850 851
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
852
			memcg = root_mem_cgroup;
853 854 855 856 857
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
858
	} while (!css_tryget_online(&memcg->css));
859
	rcu_read_unlock();
860
	return memcg;
861
}
862 863
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
/**
 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
 * @page: page from which memcg should be extracted.
 *
 * Obtain a reference on page->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned.
 */
struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
{
	struct mem_cgroup *memcg = page->mem_cgroup;

	if (mem_cgroup_disabled())
		return NULL;

	rcu_read_lock();
	if (!memcg || !css_tryget_online(&memcg->css))
		memcg = root_mem_cgroup;
	rcu_read_unlock();
	return memcg;
}
EXPORT_SYMBOL(get_mem_cgroup_from_page);

886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
/**
 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
 */
static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
{
	if (unlikely(current->active_memcg)) {
		struct mem_cgroup *memcg = root_mem_cgroup;

		rcu_read_lock();
		if (css_tryget_online(&current->active_memcg->css))
			memcg = current->active_memcg;
		rcu_read_unlock();
		return memcg;
	}
	return get_mem_cgroup_from_mm(current->mm);
}
902

903 904 905 906 907 908 909 910 911 912 913 914 915
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
916
 * Reclaimers can specify a node and a priority level in @reclaim to
917
 * divide up the memcgs in the hierarchy among all concurrent
918
 * reclaimers operating on the same node and priority.
919
 */
920
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
921
				   struct mem_cgroup *prev,
922
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
923
{
M
Michal Hocko 已提交
924
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
925
	struct cgroup_subsys_state *css = NULL;
926
	struct mem_cgroup *memcg = NULL;
927
	struct mem_cgroup *pos = NULL;
928

929 930
	if (mem_cgroup_disabled())
		return NULL;
931

932 933
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
934

935
	if (prev && !reclaim)
936
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
937

938 939
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
940
			goto out;
941
		return root;
942
	}
K
KAMEZAWA Hiroyuki 已提交
943

944
	rcu_read_lock();
M
Michal Hocko 已提交
945

946
	if (reclaim) {
947
		struct mem_cgroup_per_node *mz;
948

949
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
950 951 952 953 954
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

955
		while (1) {
956
			pos = READ_ONCE(iter->position);
957 958
			if (!pos || css_tryget(&pos->css))
				break;
959
			/*
960 961 962 963 964 965
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
966
			 */
967 968
			(void)cmpxchg(&iter->position, pos, NULL);
		}
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
986
		}
K
KAMEZAWA Hiroyuki 已提交
987

988 989 990 991 992 993
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
994

995 996
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
997

998 999
		if (css_tryget(css))
			break;
1000

1001
		memcg = NULL;
1002
	}
1003 1004 1005

	if (reclaim) {
		/*
1006 1007 1008
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
1009
		 */
1010 1011
		(void)cmpxchg(&iter->position, pos, memcg);

1012 1013 1014 1015 1016 1017 1018
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1019
	}
1020

1021 1022
out_unlock:
	rcu_read_unlock();
1023
out:
1024 1025 1026
	if (prev && prev != root)
		css_put(&prev->css);

1027
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1028
}
K
KAMEZAWA Hiroyuki 已提交
1029

1030 1031 1032 1033 1034 1035 1036
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1037 1038 1039 1040 1041 1042
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1043

1044 1045 1046 1047
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
1048 1049
	struct mem_cgroup_per_node *mz;
	int nid;
1050 1051
	int i;

1052
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1053
		for_each_node(nid) {
1054 1055 1056 1057 1058
			mz = mem_cgroup_nodeinfo(memcg, nid);
			for (i = 0; i <= DEF_PRIORITY; i++) {
				iter = &mz->iter[i];
				cmpxchg(&iter->position,
					dead_memcg, NULL);
1059 1060 1061 1062 1063
			}
		}
	}
}

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

1089
		css_task_iter_start(&iter->css, 0, &it);
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

1101
/**
1102
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1103
 * @page: the page
1104
 * @pgdat: pgdat of the page
1105 1106 1107 1108
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1109
 */
M
Mel Gorman 已提交
1110
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
1111
{
1112
	struct mem_cgroup_per_node *mz;
1113
	struct mem_cgroup *memcg;
1114
	struct lruvec *lruvec;
1115

1116
	if (mem_cgroup_disabled()) {
M
Mel Gorman 已提交
1117
		lruvec = &pgdat->lruvec;
1118 1119
		goto out;
	}
1120

1121
	memcg = page->mem_cgroup;
1122
	/*
1123
	 * Swapcache readahead pages are added to the LRU - and
1124
	 * possibly migrated - before they are charged.
1125
	 */
1126 1127
	if (!memcg)
		memcg = root_mem_cgroup;
1128

1129
	mz = mem_cgroup_page_nodeinfo(memcg, page);
1130 1131 1132 1133 1134 1135 1136
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
1137 1138
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
1139
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1140
}
1141

1142
/**
1143 1144 1145
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1146
 * @zid: zone id of the accounted pages
1147
 * @nr_pages: positive when adding or negative when removing
1148
 *
1149 1150 1151
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1152
 */
1153
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1154
				int zid, int nr_pages)
1155
{
1156
	struct mem_cgroup_per_node *mz;
1157
	unsigned long *lru_size;
1158
	long size;
1159 1160 1161 1162

	if (mem_cgroup_disabled())
		return;

1163
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1164
	lru_size = &mz->lru_zone_size[zid][lru];
1165 1166 1167 1168 1169

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1170 1171 1172
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1173 1174 1175 1176 1177 1178
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1179
}
1180

1181
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1182
{
1183
	struct mem_cgroup *task_memcg;
1184
	struct task_struct *p;
1185
	bool ret;
1186

1187
	p = find_lock_task_mm(task);
1188
	if (p) {
1189
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1190 1191 1192 1193 1194 1195 1196
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1197
		rcu_read_lock();
1198 1199
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1200
		rcu_read_unlock();
1201
	}
1202 1203
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1204 1205 1206
	return ret;
}

1207
/**
1208
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1209
 * @memcg: the memory cgroup
1210
 *
1211
 * Returns the maximum amount of memory @mem can be charged with, in
1212
 * pages.
1213
 */
1214
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1215
{
1216 1217 1218
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1219

1220
	count = page_counter_read(&memcg->memory);
1221
	limit = READ_ONCE(memcg->memory.max);
1222 1223 1224
	if (count < limit)
		margin = limit - count;

1225
	if (do_memsw_account()) {
1226
		count = page_counter_read(&memcg->memsw);
1227
		limit = READ_ONCE(memcg->memsw.max);
1228 1229
		if (count <= limit)
			margin = min(margin, limit - count);
1230 1231
		else
			margin = 0;
1232 1233 1234
	}

	return margin;
1235 1236
}

1237
/*
Q
Qiang Huang 已提交
1238
 * A routine for checking "mem" is under move_account() or not.
1239
 *
Q
Qiang Huang 已提交
1240 1241 1242
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1243
 */
1244
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1245
{
1246 1247
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1248
	bool ret = false;
1249 1250 1251 1252 1253 1254 1255 1256 1257
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1258

1259 1260
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1261 1262
unlock:
	spin_unlock(&mc.lock);
1263 1264 1265
	return ret;
}

1266
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1267 1268
{
	if (mc.moving_task && current != mc.moving_task) {
1269
		if (mem_cgroup_under_move(memcg)) {
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1282
static const unsigned int memcg1_stats[] = {
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
	MEMCG_CACHE,
	MEMCG_RSS,
	MEMCG_RSS_HUGE,
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
	"rss_huge",
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

1304
#define K(x) ((x) << (PAGE_SHIFT-10))
1305
/**
1306 1307
 * mem_cgroup_print_oom_context: Print OOM information relevant to
 * memory controller.
1308 1309 1310 1311 1312 1313
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
1314
void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1315 1316 1317
{
	rcu_read_lock();

1318 1319 1320 1321 1322
	if (memcg) {
		pr_cont(",oom_memcg=");
		pr_cont_cgroup_path(memcg->css.cgroup);
	} else
		pr_cont(",global_oom");
1323
	if (p) {
1324
		pr_cont(",task_memcg=");
1325 1326
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	}
1327
	rcu_read_unlock();
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
}

/**
 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
 * memory controller.
 * @memcg: The memory cgroup that went over limit
 */
void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
	struct mem_cgroup *iter;
	unsigned int i;
1339

1340 1341
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1342
		K((u64)memcg->memory.max), memcg->memory.failcnt);
1343 1344
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
1345
		K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1346 1347
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
1348
		K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1349 1350

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1351 1352
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1353 1354
		pr_cont(":");

1355 1356
		for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
			if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1357
				continue;
1358
			pr_cont(" %s:%luKB", memcg1_stat_names[i],
1359
				K(memcg_page_state(iter, memcg1_stats[i])));
1360 1361 1362 1363 1364 1365 1366 1367
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1368 1369
}

D
David Rientjes 已提交
1370 1371 1372
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1373
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1374
{
1375
	unsigned long max;
1376

1377
	max = memcg->memory.max;
1378
	if (mem_cgroup_swappiness(memcg)) {
1379 1380
		unsigned long memsw_max;
		unsigned long swap_max;
1381

1382 1383 1384 1385
		memsw_max = memcg->memsw.max;
		swap_max = memcg->swap.max;
		swap_max = min(swap_max, (unsigned long)total_swap_pages);
		max = min(max + swap_max, memsw_max);
1386
	}
1387
	return max;
D
David Rientjes 已提交
1388 1389
}

1390
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1391
				     int order)
1392
{
1393 1394 1395
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1396
		.memcg = memcg,
1397 1398 1399
		.gfp_mask = gfp_mask,
		.order = order,
	};
1400
	bool ret;
1401

1402 1403 1404 1405 1406 1407 1408
	if (mutex_lock_killable(&oom_lock))
		return true;
	/*
	 * A few threads which were not waiting at mutex_lock_killable() can
	 * fail to bail out. Therefore, check again after holding oom_lock.
	 */
	ret = should_force_charge() || out_of_memory(&oc);
1409
	mutex_unlock(&oom_lock);
1410
	return ret;
1411 1412
}

1413 1414
#if MAX_NUMNODES > 1

1415 1416
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1417
 * @memcg: the target memcg
1418 1419 1420 1421 1422 1423 1424
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1425
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1426 1427
		int nid, bool noswap)
{
1428 1429 1430 1431
	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);

	if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
	    lruvec_page_state(lruvec, NR_ACTIVE_FILE))
1432 1433 1434
		return true;
	if (noswap || !total_swap_pages)
		return false;
1435 1436
	if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
	    lruvec_page_state(lruvec, NR_ACTIVE_ANON))
1437 1438 1439 1440
		return true;
	return false;

}
1441 1442 1443 1444 1445 1446 1447

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1448
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1449 1450
{
	int nid;
1451 1452 1453 1454
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1455
	if (!atomic_read(&memcg->numainfo_events))
1456
		return;
1457
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1458 1459 1460
		return;

	/* make a nodemask where this memcg uses memory from */
1461
	memcg->scan_nodes = node_states[N_MEMORY];
1462

1463
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1464

1465 1466
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1467
	}
1468

1469 1470
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1485
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1486 1487 1488
{
	int node;

1489 1490
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1491

1492
	node = next_node_in(node, memcg->scan_nodes);
1493
	/*
1494 1495 1496
	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
	 * last time it really checked all the LRUs due to rate limiting.
	 * Fallback to the current node in that case for simplicity.
1497 1498 1499 1500
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1501
	memcg->last_scanned_node = node;
1502 1503 1504
	return node;
}
#else
1505
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1506 1507 1508 1509 1510
{
	return 0;
}
#endif

1511
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1512
				   pg_data_t *pgdat,
1513 1514 1515 1516 1517 1518 1519 1520 1521
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1522
		.pgdat = pgdat,
1523 1524 1525
		.priority = 0,
	};

1526
	excess = soft_limit_excess(root_memcg);
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1552
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1553
					pgdat, &nr_scanned);
1554
		*total_scanned += nr_scanned;
1555
		if (!soft_limit_excess(root_memcg))
1556
			break;
1557
	}
1558 1559
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1560 1561
}

1562 1563 1564 1565 1566 1567
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1568 1569
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1570 1571 1572 1573
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1574
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1575
{
1576
	struct mem_cgroup *iter, *failed = NULL;
1577

1578 1579
	spin_lock(&memcg_oom_lock);

1580
	for_each_mem_cgroup_tree(iter, memcg) {
1581
		if (iter->oom_lock) {
1582 1583 1584 1585 1586
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1587 1588
			mem_cgroup_iter_break(memcg, iter);
			break;
1589 1590
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1591
	}
K
KAMEZAWA Hiroyuki 已提交
1592

1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1604
		}
1605 1606
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1607 1608 1609 1610

	spin_unlock(&memcg_oom_lock);

	return !failed;
1611
}
1612

1613
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1614
{
K
KAMEZAWA Hiroyuki 已提交
1615 1616
	struct mem_cgroup *iter;

1617
	spin_lock(&memcg_oom_lock);
1618
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1619
	for_each_mem_cgroup_tree(iter, memcg)
1620
		iter->oom_lock = false;
1621
	spin_unlock(&memcg_oom_lock);
1622 1623
}

1624
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1625 1626 1627
{
	struct mem_cgroup *iter;

1628
	spin_lock(&memcg_oom_lock);
1629
	for_each_mem_cgroup_tree(iter, memcg)
1630 1631
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1632 1633
}

1634
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1635 1636 1637
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1638 1639
	/*
	 * When a new child is created while the hierarchy is under oom,
1640
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1641
	 */
1642
	spin_lock(&memcg_oom_lock);
1643
	for_each_mem_cgroup_tree(iter, memcg)
1644 1645 1646
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1647 1648
}

K
KAMEZAWA Hiroyuki 已提交
1649 1650
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1651
struct oom_wait_info {
1652
	struct mem_cgroup *memcg;
1653
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1654 1655
};

1656
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1657 1658
	unsigned mode, int sync, void *arg)
{
1659 1660
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1661 1662 1663
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1664
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1665

1666 1667
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1668 1669 1670 1671
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1672
static void memcg_oom_recover(struct mem_cgroup *memcg)
1673
{
1674 1675 1676 1677 1678 1679 1680 1681 1682
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1683
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1684 1685
}

1686 1687 1688 1689 1690 1691 1692 1693
enum oom_status {
	OOM_SUCCESS,
	OOM_FAILED,
	OOM_ASYNC,
	OOM_SKIPPED
};

static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1694
{
1695 1696 1697
	enum oom_status ret;
	bool locked;

1698 1699 1700
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		return OOM_SKIPPED;

1701 1702
	memcg_memory_event(memcg, MEMCG_OOM);

K
KAMEZAWA Hiroyuki 已提交
1703
	/*
1704 1705 1706 1707
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1708 1709 1710 1711
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1712
	 *
1713 1714 1715 1716 1717 1718 1719
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
K
KAMEZAWA Hiroyuki 已提交
1720
	 */
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
	if (memcg->oom_kill_disable) {
		if (!current->in_user_fault)
			return OOM_SKIPPED;
		css_get(&memcg->css);
		current->memcg_in_oom = memcg;
		current->memcg_oom_gfp_mask = mask;
		current->memcg_oom_order = order;

		return OOM_ASYNC;
	}

1732 1733 1734 1735 1736 1737 1738 1739
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	mem_cgroup_unmark_under_oom(memcg);
1740
	if (mem_cgroup_out_of_memory(memcg, mask, order))
1741 1742 1743 1744 1745 1746
		ret = OOM_SUCCESS;
	else
		ret = OOM_FAILED;

	if (locked)
		mem_cgroup_oom_unlock(memcg);
1747

1748
	return ret;
1749 1750 1751 1752
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1753
 * @handle: actually kill/wait or just clean up the OOM state
1754
 *
1755 1756
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1757
 *
1758
 * Memcg supports userspace OOM handling where failed allocations must
1759 1760 1761 1762
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1763
 * the end of the page fault to complete the OOM handling.
1764 1765
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1766
 * completed, %false otherwise.
1767
 */
1768
bool mem_cgroup_oom_synchronize(bool handle)
1769
{
T
Tejun Heo 已提交
1770
	struct mem_cgroup *memcg = current->memcg_in_oom;
1771
	struct oom_wait_info owait;
1772
	bool locked;
1773 1774 1775

	/* OOM is global, do not handle */
	if (!memcg)
1776
		return false;
1777

1778
	if (!handle)
1779
		goto cleanup;
1780 1781 1782 1783 1784

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
1785
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
1786

1787
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1798 1799
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1800
	} else {
1801
		schedule();
1802 1803 1804 1805 1806
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1807 1808 1809 1810 1811 1812 1813 1814
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1815
cleanup:
T
Tejun Heo 已提交
1816
	current->memcg_in_oom = NULL;
1817
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1818
	return true;
1819 1820
}

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
/**
 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 * @victim: task to be killed by the OOM killer
 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 *
 * Returns a pointer to a memory cgroup, which has to be cleaned up
 * by killing all belonging OOM-killable tasks.
 *
 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 */
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
					    struct mem_cgroup *oom_domain)
{
	struct mem_cgroup *oom_group = NULL;
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return NULL;

	if (!oom_domain)
		oom_domain = root_mem_cgroup;

	rcu_read_lock();

	memcg = mem_cgroup_from_task(victim);
	if (memcg == root_mem_cgroup)
		goto out;

	/*
	 * Traverse the memory cgroup hierarchy from the victim task's
	 * cgroup up to the OOMing cgroup (or root) to find the
	 * highest-level memory cgroup with oom.group set.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		if (memcg->oom_group)
			oom_group = memcg;

		if (memcg == oom_domain)
			break;
	}

	if (oom_group)
		css_get(&oom_group->css);
out:
	rcu_read_unlock();

	return oom_group;
}

void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
	pr_info("Tasks in ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(" are going to be killed due to memory.oom.group set\n");
}

1877
/**
1878 1879
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1880
 *
1881
 * This function protects unlocked LRU pages from being moved to
1882 1883 1884 1885 1886
 * another cgroup.
 *
 * It ensures lifetime of the returned memcg. Caller is responsible
 * for the lifetime of the page; __unlock_page_memcg() is available
 * when @page might get freed inside the locked section.
1887
 */
1888
struct mem_cgroup *lock_page_memcg(struct page *page)
1889 1890
{
	struct mem_cgroup *memcg;
1891
	unsigned long flags;
1892

1893 1894 1895 1896
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
1897 1898 1899 1900 1901 1902 1903
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page itself from being freed. E.g. writeback
	 * doesn't hold a page reference and relies on PG_writeback to
	 * keep off truncation, migration and so forth.
         */
1904 1905 1906
	rcu_read_lock();

	if (mem_cgroup_disabled())
1907
		return NULL;
1908
again:
1909
	memcg = page->mem_cgroup;
1910
	if (unlikely(!memcg))
1911
		return NULL;
1912

Q
Qiang Huang 已提交
1913
	if (atomic_read(&memcg->moving_account) <= 0)
1914
		return memcg;
1915

1916
	spin_lock_irqsave(&memcg->move_lock, flags);
1917
	if (memcg != page->mem_cgroup) {
1918
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1919 1920
		goto again;
	}
1921 1922 1923 1924

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
1925
	 * the task who has the lock for unlock_page_memcg().
1926 1927 1928
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1929

1930
	return memcg;
1931
}
1932
EXPORT_SYMBOL(lock_page_memcg);
1933

1934
/**
1935 1936 1937 1938
 * __unlock_page_memcg - unlock and unpin a memcg
 * @memcg: the memcg
 *
 * Unlock and unpin a memcg returned by lock_page_memcg().
1939
 */
1940
void __unlock_page_memcg(struct mem_cgroup *memcg)
1941
{
1942 1943 1944 1945 1946 1947 1948 1949
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1950

1951
	rcu_read_unlock();
1952
}
1953 1954 1955 1956 1957 1958 1959 1960 1961

/**
 * unlock_page_memcg - unlock a page->mem_cgroup binding
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
	__unlock_page_memcg(page->mem_cgroup);
}
1962
EXPORT_SYMBOL(unlock_page_memcg);
1963

1964 1965
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1966
	unsigned int nr_pages;
1967
	struct work_struct work;
1968
	unsigned long flags;
1969
#define FLUSHING_CACHED_CHARGE	0
1970 1971
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1972
static DEFINE_MUTEX(percpu_charge_mutex);
1973

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1984
 */
1985
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1986 1987
{
	struct memcg_stock_pcp *stock;
1988
	unsigned long flags;
1989
	bool ret = false;
1990

1991
	if (nr_pages > MEMCG_CHARGE_BATCH)
1992
		return ret;
1993

1994 1995 1996
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
1997
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1998
		stock->nr_pages -= nr_pages;
1999 2000
		ret = true;
	}
2001 2002 2003

	local_irq_restore(flags);

2004 2005 2006 2007
	return ret;
}

/*
2008
 * Returns stocks cached in percpu and reset cached information.
2009 2010 2011 2012 2013
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2014
	if (stock->nr_pages) {
2015
		page_counter_uncharge(&old->memory, stock->nr_pages);
2016
		if (do_memsw_account())
2017
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2018
		css_put_many(&old->css, stock->nr_pages);
2019
		stock->nr_pages = 0;
2020 2021 2022 2023 2024 2025
	}
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
2026 2027 2028
	struct memcg_stock_pcp *stock;
	unsigned long flags;

2029 2030 2031 2032
	/*
	 * The only protection from memory hotplug vs. drain_stock races is
	 * that we always operate on local CPU stock here with IRQ disabled
	 */
2033 2034 2035
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2036
	drain_stock(stock);
2037
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2038 2039

	local_irq_restore(flags);
2040 2041 2042
}

/*
2043
 * Cache charges(val) to local per_cpu area.
2044
 * This will be consumed by consume_stock() function, later.
2045
 */
2046
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2047
{
2048 2049 2050 2051
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
2052

2053
	stock = this_cpu_ptr(&memcg_stock);
2054
	if (stock->cached != memcg) { /* reset if necessary */
2055
		drain_stock(stock);
2056
		stock->cached = memcg;
2057
	}
2058
	stock->nr_pages += nr_pages;
2059

2060
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2061 2062
		drain_stock(stock);

2063
	local_irq_restore(flags);
2064 2065 2066
}

/*
2067
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2068
 * of the hierarchy under it.
2069
 */
2070
static void drain_all_stock(struct mem_cgroup *root_memcg)
2071
{
2072
	int cpu, curcpu;
2073

2074 2075 2076
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2077 2078 2079 2080 2081 2082
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
2083
	curcpu = get_cpu();
2084 2085
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2086
		struct mem_cgroup *memcg;
2087

2088
		memcg = stock->cached;
2089
		if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
2090
			continue;
2091 2092
		if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
			css_put(&memcg->css);
2093
			continue;
2094
		}
2095 2096 2097 2098 2099 2100
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2101
		css_put(&memcg->css);
2102
	}
2103
	put_cpu();
2104
	mutex_unlock(&percpu_charge_mutex);
2105 2106
}

2107
static int memcg_hotplug_cpu_dead(unsigned int cpu)
2108 2109
{
	struct memcg_stock_pcp *stock;
2110
	struct mem_cgroup *memcg;
2111 2112 2113

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138

	for_each_mem_cgroup(memcg) {
		int i;

		for (i = 0; i < MEMCG_NR_STAT; i++) {
			int nid;
			long x;

			x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
			if (x)
				atomic_long_add(x, &memcg->stat[i]);

			if (i >= NR_VM_NODE_STAT_ITEMS)
				continue;

			for_each_node(nid) {
				struct mem_cgroup_per_node *pn;

				pn = mem_cgroup_nodeinfo(memcg, nid);
				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
				if (x)
					atomic_long_add(x, &pn->lruvec_stat[i]);
			}
		}

2139
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2140 2141 2142 2143 2144 2145 2146 2147
			long x;

			x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
			if (x)
				atomic_long_add(x, &memcg->events[i]);
		}
	}

2148
	return 0;
2149 2150
}

2151 2152 2153 2154 2155 2156 2157
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
2158
		memcg_memory_event(memcg, MEMCG_HIGH);
2159 2160 2161 2162 2163 2164 2165 2166 2167
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
2168
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2169 2170
}

2171 2172 2173 2174 2175 2176 2177
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2178
	struct mem_cgroup *memcg;
2179 2180 2181 2182

	if (likely(!nr_pages))
		return;

2183 2184
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
2185 2186 2187 2188
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

2189 2190
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2191
{
2192
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2193
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2194
	struct mem_cgroup *mem_over_limit;
2195
	struct page_counter *counter;
2196
	unsigned long nr_reclaimed;
2197 2198
	bool may_swap = true;
	bool drained = false;
2199 2200
	bool oomed = false;
	enum oom_status oom_status;
2201

2202
	if (mem_cgroup_is_root(memcg))
2203
		return 0;
2204
retry:
2205
	if (consume_stock(memcg, nr_pages))
2206
		return 0;
2207

2208
	if (!do_memsw_account() ||
2209 2210
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2211
			goto done_restock;
2212
		if (do_memsw_account())
2213 2214
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2215
	} else {
2216
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2217
		may_swap = false;
2218
	}
2219

2220 2221 2222 2223
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2224

2225 2226 2227 2228 2229 2230
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
2231
	if (unlikely(should_force_charge()))
2232
		goto force;
2233

2234 2235 2236 2237 2238 2239 2240 2241 2242
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2243 2244 2245
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2246
	if (!gfpflags_allow_blocking(gfp_mask))
2247
		goto nomem;
2248

2249
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2250

2251 2252
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2253

2254
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2255
		goto retry;
2256

2257
	if (!drained) {
2258
		drain_all_stock(mem_over_limit);
2259 2260 2261 2262
		drained = true;
		goto retry;
	}

2263 2264
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2265 2266 2267 2268 2269 2270 2271 2272 2273
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2274
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2275 2276 2277 2278 2279 2280 2281 2282
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2283 2284 2285
	if (nr_retries--)
		goto retry;

2286 2287 2288
	if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed)
		goto nomem;

2289
	if (gfp_mask & __GFP_NOFAIL)
2290
		goto force;
2291

2292
	if (fatal_signal_pending(current))
2293
		goto force;
2294

2295 2296 2297 2298 2299 2300
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2301
		       get_order(nr_pages * PAGE_SIZE));
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
	switch (oom_status) {
	case OOM_SUCCESS:
		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
		oomed = true;
		goto retry;
	case OOM_FAILED:
		goto force;
	default:
		goto nomem;
	}
2312
nomem:
2313
	if (!(gfp_mask & __GFP_NOFAIL))
2314
		return -ENOMEM;
2315 2316 2317 2318 2319 2320 2321
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2322
	if (do_memsw_account())
2323 2324 2325 2326
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2327 2328

done_restock:
2329
	css_get_many(&memcg->css, batch);
2330 2331
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2332

2333
	/*
2334 2335
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2336
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2337 2338 2339 2340
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2341 2342
	 */
	do {
2343
		if (page_counter_read(&memcg->memory) > memcg->high) {
2344 2345 2346 2347 2348
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2349
			current->memcg_nr_pages_over_high += batch;
2350 2351 2352
			set_notify_resume(current);
			break;
		}
2353
	} while ((memcg = parent_mem_cgroup(memcg)));
2354 2355

	return 0;
2356
}
2357

2358
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2359
{
2360 2361 2362
	if (mem_cgroup_is_root(memcg))
		return;

2363
	page_counter_uncharge(&memcg->memory, nr_pages);
2364
	if (do_memsw_account())
2365
		page_counter_uncharge(&memcg->memsw, nr_pages);
2366

2367
	css_put_many(&memcg->css, nr_pages);
2368 2369
}

2370 2371
static void lock_page_lru(struct page *page, int *isolated)
{
2372
	pg_data_t *pgdat = page_pgdat(page);
2373

2374
	spin_lock_irq(&pgdat->lru_lock);
2375 2376 2377
	if (PageLRU(page)) {
		struct lruvec *lruvec;

2378
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2379 2380 2381 2382 2383 2384 2385 2386 2387
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
2388
	pg_data_t *pgdat = page_pgdat(page);
2389 2390 2391 2392

	if (isolated) {
		struct lruvec *lruvec;

2393
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2394 2395 2396 2397
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
2398
	spin_unlock_irq(&pgdat->lru_lock);
2399 2400
}

2401
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2402
			  bool lrucare)
2403
{
2404
	int isolated;
2405

2406
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2407 2408 2409 2410 2411

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2412 2413
	if (lrucare)
		lock_page_lru(page, &isolated);
2414

2415 2416
	/*
	 * Nobody should be changing or seriously looking at
2417
	 * page->mem_cgroup at this point:
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2429
	page->mem_cgroup = memcg;
2430

2431 2432
	if (lrucare)
		unlock_page_lru(page, isolated);
2433
}
2434

2435
#ifdef CONFIG_MEMCG_KMEM
2436
static int memcg_alloc_cache_id(void)
2437
{
2438 2439 2440
	int id, size;
	int err;

2441
	id = ida_simple_get(&memcg_cache_ida,
2442 2443 2444
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2445

2446
	if (id < memcg_nr_cache_ids)
2447 2448 2449 2450 2451 2452
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2453
	down_write(&memcg_cache_ids_sem);
2454 2455

	size = 2 * (id + 1);
2456 2457 2458 2459 2460
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2461
	err = memcg_update_all_caches(size);
2462 2463
	if (!err)
		err = memcg_update_all_list_lrus(size);
2464 2465 2466 2467 2468
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2469
	if (err) {
2470
		ida_simple_remove(&memcg_cache_ida, id);
2471 2472 2473 2474 2475 2476 2477
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2478
	ida_simple_remove(&memcg_cache_ida, id);
2479 2480
}

2481
struct memcg_kmem_cache_create_work {
2482 2483 2484 2485 2486
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2487
static void memcg_kmem_cache_create_func(struct work_struct *w)
2488
{
2489 2490
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2491 2492
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2493

2494
	memcg_create_kmem_cache(memcg, cachep);
2495

2496
	css_put(&memcg->css);
2497 2498 2499 2500 2501 2502
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2503
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2504
					       struct kmem_cache *cachep)
2505
{
2506
	struct memcg_kmem_cache_create_work *cw;
2507

2508
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2509
	if (!cw)
2510
		return;
2511 2512

	css_get(&memcg->css);
2513 2514 2515

	cw->memcg = memcg;
	cw->cachep = cachep;
2516
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2517

2518
	queue_work(memcg_kmem_cache_wq, &cw->work);
2519 2520
}

2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
static inline bool memcg_kmem_bypass(void)
{
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;
	return false;
}

/**
 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
 * @cachep: the original global kmem cache
 *
2532 2533 2534
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
2535 2536 2537
 * If the cache does not exist yet, if we are the first user of it, we
 * create it asynchronously in a workqueue and let the current allocation
 * go through with the original cache.
2538
 *
2539 2540 2541 2542
 * This function takes a reference to the cache it returns to assure it
 * won't get destroyed while we are working with it. Once the caller is
 * done with it, memcg_kmem_put_cache() must be called to release the
 * reference.
2543
 */
2544
struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2545 2546
{
	struct mem_cgroup *memcg;
2547
	struct kmem_cache *memcg_cachep;
2548
	int kmemcg_id;
2549

2550
	VM_BUG_ON(!is_root_cache(cachep));
2551

2552
	if (memcg_kmem_bypass())
V
Vladimir Davydov 已提交
2553 2554
		return cachep;

2555
	memcg = get_mem_cgroup_from_current();
2556
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2557
	if (kmemcg_id < 0)
2558
		goto out;
2559

2560
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2561 2562
	if (likely(memcg_cachep))
		return memcg_cachep;
2563 2564 2565 2566 2567 2568 2569 2570 2571

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2572 2573 2574
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2575
	 */
2576
	memcg_schedule_kmem_cache_create(memcg, cachep);
2577
out:
2578
	css_put(&memcg->css);
2579
	return cachep;
2580 2581
}

2582 2583 2584 2585 2586
/**
 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
 * @cachep: the cache returned by memcg_kmem_get_cache
 */
void memcg_kmem_put_cache(struct kmem_cache *cachep)
2587 2588
{
	if (!is_root_cache(cachep))
2589
		css_put(&cachep->memcg_params.memcg->css);
2590 2591
}

2592
/**
2593
 * __memcg_kmem_charge_memcg: charge a kmem page
2594 2595 2596 2597 2598 2599 2600
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 * @memcg: memory cgroup to charge
 *
 * Returns 0 on success, an error code on failure.
 */
2601
int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2602
			    struct mem_cgroup *memcg)
2603
{
2604 2605
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2606 2607
	int ret;

2608
	ret = try_charge(memcg, gfp, nr_pages);
2609
	if (ret)
2610
		return ret;
2611 2612 2613 2614 2615

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2616 2617
	}

2618
	page->mem_cgroup = memcg;
2619

2620
	return 0;
2621 2622
}

2623
/**
2624
 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2625 2626 2627 2628 2629 2630
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
2631
int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2632
{
2633
	struct mem_cgroup *memcg;
2634
	int ret = 0;
2635

2636
	if (memcg_kmem_bypass())
2637 2638
		return 0;

2639
	memcg = get_mem_cgroup_from_current();
2640
	if (!mem_cgroup_is_root(memcg)) {
2641
		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2642 2643 2644
		if (!ret)
			__SetPageKmemcg(page);
	}
2645
	css_put(&memcg->css);
2646
	return ret;
2647
}
2648
/**
2649
 * __memcg_kmem_uncharge: uncharge a kmem page
2650 2651 2652
 * @page: page to uncharge
 * @order: allocation order
 */
2653
void __memcg_kmem_uncharge(struct page *page, int order)
2654
{
2655
	struct mem_cgroup *memcg = page->mem_cgroup;
2656
	unsigned int nr_pages = 1 << order;
2657 2658 2659 2660

	if (!memcg)
		return;

2661
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2662

2663 2664 2665
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

2666
	page_counter_uncharge(&memcg->memory, nr_pages);
2667
	if (do_memsw_account())
2668
		page_counter_uncharge(&memcg->memsw, nr_pages);
2669

2670
	page->mem_cgroup = NULL;
2671 2672 2673 2674 2675

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);

2676
	css_put_many(&memcg->css, nr_pages);
2677
}
2678
#endif /* CONFIG_MEMCG_KMEM */
2679

2680 2681 2682 2683
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2684
 * pgdat->lru_lock and migration entries setup in all page mappings.
2685
 */
2686
void mem_cgroup_split_huge_fixup(struct page *head)
2687
{
2688
	int i;
2689

2690 2691
	if (mem_cgroup_disabled())
		return;
2692

2693
	for (i = 1; i < HPAGE_PMD_NR; i++)
2694
		head[i].mem_cgroup = head->mem_cgroup;
2695

2696
	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2697
}
2698
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2699

A
Andrew Morton 已提交
2700
#ifdef CONFIG_MEMCG_SWAP
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2712
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2713 2714 2715
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2716
				struct mem_cgroup *from, struct mem_cgroup *to)
2717 2718 2719
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2720 2721
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2722 2723

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2724 2725
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
2726 2727 2728 2729 2730 2731
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2732
				struct mem_cgroup *from, struct mem_cgroup *to)
2733 2734 2735
{
	return -EINVAL;
}
2736
#endif
K
KAMEZAWA Hiroyuki 已提交
2737

2738
static DEFINE_MUTEX(memcg_max_mutex);
2739

2740 2741
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
2742
{
2743
	bool enlarge = false;
2744
	bool drained = false;
2745
	int ret;
2746 2747
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2748

2749
	do {
2750 2751 2752 2753
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2754

2755
		mutex_lock(&memcg_max_mutex);
2756 2757
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
2758
		 * break our basic invariant rule memory.max <= memsw.max.
2759
		 */
2760 2761
		limits_invariant = memsw ? max >= memcg->memory.max :
					   max <= memcg->memsw.max;
2762
		if (!limits_invariant) {
2763
			mutex_unlock(&memcg_max_mutex);
2764 2765 2766
			ret = -EINVAL;
			break;
		}
2767
		if (max > counter->max)
2768
			enlarge = true;
2769 2770
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
2771 2772 2773 2774

		if (!ret)
			break;

2775 2776 2777 2778 2779 2780
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

2781 2782 2783 2784 2785 2786
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
2787

2788 2789
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2790

2791 2792 2793
	return ret;
}

2794
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2795 2796 2797 2798
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
2799
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2800 2801
	unsigned long reclaimed;
	int loop = 0;
2802
	struct mem_cgroup_tree_per_node *mctz;
2803
	unsigned long excess;
2804 2805 2806 2807 2808
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

2809
	mctz = soft_limit_tree_node(pgdat->node_id);
2810 2811 2812 2813 2814 2815

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
2816
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2817 2818
		return 0;

2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
2833
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2834 2835 2836
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2837
		spin_lock_irq(&mctz->lock);
2838
		__mem_cgroup_remove_exceeded(mz, mctz);
2839 2840 2841 2842 2843 2844

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2845 2846 2847
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2848
		excess = soft_limit_excess(mz->memcg);
2849 2850 2851 2852 2853 2854 2855 2856 2857
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2858
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2859
		spin_unlock_irq(&mctz->lock);
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2877 2878 2879 2880 2881 2882
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2883 2884
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2885 2886 2887 2888 2889 2890
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2891 2892
}

2893
/*
2894
 * Reclaims as many pages from the given memcg as possible.
2895 2896 2897 2898 2899 2900 2901
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2902 2903
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2904 2905 2906

	drain_all_stock(memcg);

2907
	/* try to free all pages in this cgroup */
2908
	while (nr_retries && page_counter_read(&memcg->memory)) {
2909
		int progress;
2910

2911 2912 2913
		if (signal_pending(current))
			return -EINTR;

2914 2915
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2916
		if (!progress) {
2917
			nr_retries--;
2918
			/* maybe some writeback is necessary */
2919
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2920
		}
2921 2922

	}
2923 2924

	return 0;
2925 2926
}

2927 2928 2929
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2930
{
2931
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2932

2933 2934
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2935
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2936 2937
}

2938 2939
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2940
{
2941
	return mem_cgroup_from_css(css)->use_hierarchy;
2942 2943
}

2944 2945
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2946 2947
{
	int retval = 0;
2948
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2949
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2950

2951
	if (memcg->use_hierarchy == val)
2952
		return 0;
2953

2954
	/*
2955
	 * If parent's use_hierarchy is set, we can't make any modifications
2956 2957 2958 2959 2960 2961
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2962
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2963
				(val == 1 || val == 0)) {
2964
		if (!memcg_has_children(memcg))
2965
			memcg->use_hierarchy = val;
2966 2967 2968 2969
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2970

2971 2972 2973
	return retval;
}

2974 2975 2976 2977 2978 2979 2980 2981 2982
struct accumulated_stats {
	unsigned long stat[MEMCG_NR_STAT];
	unsigned long events[NR_VM_EVENT_ITEMS];
	unsigned long lru_pages[NR_LRU_LISTS];
	const unsigned int *stats_array;
	const unsigned int *events_array;
	int stats_size;
	int events_size;
};
2983

2984 2985
static void accumulate_memcg_tree(struct mem_cgroup *memcg,
				  struct accumulated_stats *acc)
2986
{
2987
	struct mem_cgroup *mi;
2988
	int i;
2989

2990 2991 2992 2993
	for_each_mem_cgroup_tree(mi, memcg) {
		for (i = 0; i < acc->stats_size; i++)
			acc->stat[i] += memcg_page_state(mi,
				acc->stats_array ? acc->stats_array[i] : i);
2994

2995 2996 2997 2998 2999 3000 3001
		for (i = 0; i < acc->events_size; i++)
			acc->events[i] += memcg_sum_events(mi,
				acc->events_array ? acc->events_array[i] : i);

		for (i = 0; i < NR_LRU_LISTS; i++)
			acc->lru_pages[i] +=
				mem_cgroup_nr_lru_pages(mi, BIT(i));
3002
	}
3003 3004
}

3005
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3006
{
3007
	unsigned long val = 0;
3008

3009
	if (mem_cgroup_is_root(memcg)) {
3010 3011 3012
		struct mem_cgroup *iter;

		for_each_mem_cgroup_tree(iter, memcg) {
3013 3014
			val += memcg_page_state(iter, MEMCG_CACHE);
			val += memcg_page_state(iter, MEMCG_RSS);
3015
			if (swap)
3016
				val += memcg_page_state(iter, MEMCG_SWAP);
3017
		}
3018
	} else {
3019
		if (!swap)
3020
			val = page_counter_read(&memcg->memory);
3021
		else
3022
			val = page_counter_read(&memcg->memsw);
3023
	}
3024
	return val;
3025 3026
}

3027 3028 3029 3030 3031 3032 3033
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3034

3035
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3036
			       struct cftype *cft)
B
Balbir Singh 已提交
3037
{
3038
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3039
	struct page_counter *counter;
3040

3041
	switch (MEMFILE_TYPE(cft->private)) {
3042
	case _MEM:
3043 3044
		counter = &memcg->memory;
		break;
3045
	case _MEMSWAP:
3046 3047
		counter = &memcg->memsw;
		break;
3048
	case _KMEM:
3049
		counter = &memcg->kmem;
3050
		break;
V
Vladimir Davydov 已提交
3051
	case _TCP:
3052
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3053
		break;
3054 3055 3056
	default:
		BUG();
	}
3057 3058 3059 3060

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
3061
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3062
		if (counter == &memcg->memsw)
3063
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3064 3065
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
3066
		return (u64)counter->max * PAGE_SIZE;
3067 3068 3069 3070 3071 3072 3073 3074 3075
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3076
}
3077

3078
#ifdef CONFIG_MEMCG_KMEM
3079
static int memcg_online_kmem(struct mem_cgroup *memcg)
3080 3081 3082
{
	int memcg_id;

3083 3084 3085
	if (cgroup_memory_nokmem)
		return 0;

3086
	BUG_ON(memcg->kmemcg_id >= 0);
3087
	BUG_ON(memcg->kmem_state);
3088

3089
	memcg_id = memcg_alloc_cache_id();
3090 3091
	if (memcg_id < 0)
		return memcg_id;
3092

3093
	static_branch_inc(&memcg_kmem_enabled_key);
3094
	/*
3095
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
3096
	 * kmemcg_id. Setting the id after enabling static branching will
3097 3098 3099
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3100
	memcg->kmemcg_id = memcg_id;
3101
	memcg->kmem_state = KMEM_ONLINE;
3102
	INIT_LIST_HEAD(&memcg->kmem_caches);
3103 3104

	return 0;
3105 3106
}

3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	memcg_deactivate_kmem_caches(memcg);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
3140
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3141 3142 3143 3144 3145 3146 3147
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
3148 3149
	rcu_read_unlock();

3150
	memcg_drain_all_list_lrus(kmemcg_id, parent);
3151 3152 3153 3154 3155 3156

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
3157 3158 3159 3160
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

3161 3162 3163 3164 3165 3166
	if (memcg->kmem_state == KMEM_ALLOCATED) {
		memcg_destroy_kmem_caches(memcg);
		static_branch_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
}
3167
#else
3168
static int memcg_online_kmem(struct mem_cgroup *memcg)
3169 3170 3171 3172 3173 3174 3175 3176 3177
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
3178
#endif /* CONFIG_MEMCG_KMEM */
3179

3180 3181
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
3182
{
3183
	int ret;
3184

3185 3186 3187
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
3188
	return ret;
3189
}
3190

3191
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
3192 3193 3194
{
	int ret;

3195
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3196

3197
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
3198 3199 3200
	if (ret)
		goto out;

3201
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3202 3203 3204
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3205 3206 3207
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
3208 3209 3210 3211 3212 3213
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3214
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
3215 3216 3217 3218
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3219
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3220 3221
	}
out:
3222
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3223 3224 3225
	return ret;
}

3226 3227 3228 3229
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3230 3231
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3232
{
3233
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3234
	unsigned long nr_pages;
3235 3236
	int ret;

3237
	buf = strstrip(buf);
3238
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3239 3240
	if (ret)
		return ret;
3241

3242
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3243
	case RES_LIMIT:
3244 3245 3246 3247
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3248 3249
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3250
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3251
			break;
3252
		case _MEMSWAP:
3253
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3254
			break;
3255
		case _KMEM:
3256
			ret = memcg_update_kmem_max(memcg, nr_pages);
3257
			break;
V
Vladimir Davydov 已提交
3258
		case _TCP:
3259
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
3260
			break;
3261
		}
3262
		break;
3263 3264 3265
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3266 3267
		break;
	}
3268
	return ret ?: nbytes;
B
Balbir Singh 已提交
3269 3270
}

3271 3272
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3273
{
3274
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3275
	struct page_counter *counter;
3276

3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3287
	case _TCP:
3288
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3289
		break;
3290 3291 3292
	default:
		BUG();
	}
3293

3294
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3295
	case RES_MAX_USAGE:
3296
		page_counter_reset_watermark(counter);
3297 3298
		break;
	case RES_FAILCNT:
3299
		counter->failcnt = 0;
3300
		break;
3301 3302
	default:
		BUG();
3303
	}
3304

3305
	return nbytes;
3306 3307
}

3308
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3309 3310
					struct cftype *cft)
{
3311
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3312 3313
}

3314
#ifdef CONFIG_MMU
3315
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3316 3317
					struct cftype *cft, u64 val)
{
3318
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3319

3320
	if (val & ~MOVE_MASK)
3321
		return -EINVAL;
3322

3323
	/*
3324 3325 3326 3327
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3328
	 */
3329
	memcg->move_charge_at_immigrate = val;
3330 3331
	return 0;
}
3332
#else
3333
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3334 3335 3336 3337 3338
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3339

3340
#ifdef CONFIG_NUMA
3341
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3342
{
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3355
	int nid;
3356
	unsigned long nr;
3357
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3358

3359 3360 3361 3362 3363 3364 3365 3366 3367
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3368 3369
	}

3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3385 3386 3387 3388 3389 3390
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3391
/* Universal VM events cgroup1 shows, original sort order */
3392
static const unsigned int memcg1_events[] = {
3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

static const char *const memcg1_event_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

3406
static int memcg_stat_show(struct seq_file *m, void *v)
3407
{
3408
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3409
	unsigned long memory, memsw;
3410 3411
	struct mem_cgroup *mi;
	unsigned int i;
3412
	struct accumulated_stats acc;
3413

3414
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3415 3416
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3417 3418
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3419
			continue;
3420
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3421
			   memcg_page_state(memcg, memcg1_stats[i]) *
3422
			   PAGE_SIZE);
3423
	}
L
Lee Schermerhorn 已提交
3424

3425 3426
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3427
			   memcg_sum_events(memcg, memcg1_events[i]));
3428 3429 3430 3431 3432

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3433
	/* Hierarchical information */
3434 3435
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3436 3437
		memory = min(memory, mi->memory.max);
		memsw = min(memsw, mi->memsw.max);
3438
	}
3439 3440
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3441
	if (do_memsw_account())
3442 3443
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3444

3445 3446 3447 3448 3449 3450
	memset(&acc, 0, sizeof(acc));
	acc.stats_size = ARRAY_SIZE(memcg1_stats);
	acc.stats_array = memcg1_stats;
	acc.events_size = ARRAY_SIZE(memcg1_events);
	acc.events_array = memcg1_events;
	accumulate_memcg_tree(memcg, &acc);
3451

3452
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3453
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3454
			continue;
3455 3456
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
			   (u64)acc.stat[i] * PAGE_SIZE);
3457 3458
	}

3459 3460 3461
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
			   (u64)acc.events[i]);
3462

3463 3464 3465
	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
			   (u64)acc.lru_pages[i] * PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
3466

K
KOSAKI Motohiro 已提交
3467 3468
#ifdef CONFIG_DEBUG_VM
	{
3469 3470
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
3471
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3472 3473 3474
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

3475 3476 3477
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
			rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3478

3479 3480 3481 3482 3483
			recent_rotated[0] += rstat->recent_rotated[0];
			recent_rotated[1] += rstat->recent_rotated[1];
			recent_scanned[0] += rstat->recent_scanned[0];
			recent_scanned[1] += rstat->recent_scanned[1];
		}
3484 3485 3486 3487
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3488 3489 3490
	}
#endif

3491 3492 3493
	return 0;
}

3494 3495
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3496
{
3497
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3498

3499
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3500 3501
}

3502 3503
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3504
{
3505
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3506

3507
	if (val > 100)
K
KOSAKI Motohiro 已提交
3508 3509
		return -EINVAL;

3510
	if (css->parent)
3511 3512 3513
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3514

K
KOSAKI Motohiro 已提交
3515 3516 3517
	return 0;
}

3518 3519 3520
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3521
	unsigned long usage;
3522 3523 3524 3525
	int i;

	rcu_read_lock();
	if (!swap)
3526
		t = rcu_dereference(memcg->thresholds.primary);
3527
	else
3528
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3529 3530 3531 3532

	if (!t)
		goto unlock;

3533
	usage = mem_cgroup_usage(memcg, swap);
3534 3535

	/*
3536
	 * current_threshold points to threshold just below or equal to usage.
3537 3538 3539
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3540
	i = t->current_threshold;
3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3564
	t->current_threshold = i - 1;
3565 3566 3567 3568 3569 3570
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3571 3572
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3573
		if (do_memsw_account())
3574 3575 3576 3577
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3578 3579 3580 3581 3582 3583 3584
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3585 3586 3587 3588 3589 3590 3591
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3592 3593
}

3594
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3595 3596 3597
{
	struct mem_cgroup_eventfd_list *ev;

3598 3599
	spin_lock(&memcg_oom_lock);

3600
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3601
		eventfd_signal(ev->eventfd, 1);
3602 3603

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3604 3605 3606
	return 0;
}

3607
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3608
{
K
KAMEZAWA Hiroyuki 已提交
3609 3610
	struct mem_cgroup *iter;

3611
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3612
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3613 3614
}

3615
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3616
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3617
{
3618 3619
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3620 3621
	unsigned long threshold;
	unsigned long usage;
3622
	int i, size, ret;
3623

3624
	ret = page_counter_memparse(args, "-1", &threshold);
3625 3626 3627 3628
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3629

3630
	if (type == _MEM) {
3631
		thresholds = &memcg->thresholds;
3632
		usage = mem_cgroup_usage(memcg, false);
3633
	} else if (type == _MEMSWAP) {
3634
		thresholds = &memcg->memsw_thresholds;
3635
		usage = mem_cgroup_usage(memcg, true);
3636
	} else
3637 3638 3639
		BUG();

	/* Check if a threshold crossed before adding a new one */
3640
	if (thresholds->primary)
3641 3642
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3643
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3644 3645

	/* Allocate memory for new array of thresholds */
3646
	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
3647
	if (!new) {
3648 3649 3650
		ret = -ENOMEM;
		goto unlock;
	}
3651
	new->size = size;
3652 3653

	/* Copy thresholds (if any) to new array */
3654 3655
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3656
				sizeof(struct mem_cgroup_threshold));
3657 3658
	}

3659
	/* Add new threshold */
3660 3661
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3662 3663

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3664
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3665 3666 3667
			compare_thresholds, NULL);

	/* Find current threshold */
3668
	new->current_threshold = -1;
3669
	for (i = 0; i < size; i++) {
3670
		if (new->entries[i].threshold <= usage) {
3671
			/*
3672 3673
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3674 3675
			 * it here.
			 */
3676
			++new->current_threshold;
3677 3678
		} else
			break;
3679 3680
	}

3681 3682 3683 3684 3685
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3686

3687
	/* To be sure that nobody uses thresholds */
3688 3689 3690 3691 3692 3693 3694 3695
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3696
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3697 3698
	struct eventfd_ctx *eventfd, const char *args)
{
3699
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3700 3701
}

3702
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3703 3704
	struct eventfd_ctx *eventfd, const char *args)
{
3705
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3706 3707
}

3708
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3709
	struct eventfd_ctx *eventfd, enum res_type type)
3710
{
3711 3712
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3713
	unsigned long usage;
3714
	int i, j, size;
3715 3716

	mutex_lock(&memcg->thresholds_lock);
3717 3718

	if (type == _MEM) {
3719
		thresholds = &memcg->thresholds;
3720
		usage = mem_cgroup_usage(memcg, false);
3721
	} else if (type == _MEMSWAP) {
3722
		thresholds = &memcg->memsw_thresholds;
3723
		usage = mem_cgroup_usage(memcg, true);
3724
	} else
3725 3726
		BUG();

3727 3728 3729
	if (!thresholds->primary)
		goto unlock;

3730 3731 3732 3733
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3734 3735 3736
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3737 3738 3739
			size++;
	}

3740
	new = thresholds->spare;
3741

3742 3743
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3744 3745
		kfree(new);
		new = NULL;
3746
		goto swap_buffers;
3747 3748
	}

3749
	new->size = size;
3750 3751

	/* Copy thresholds and find current threshold */
3752 3753 3754
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3755 3756
			continue;

3757
		new->entries[j] = thresholds->primary->entries[i];
3758
		if (new->entries[j].threshold <= usage) {
3759
			/*
3760
			 * new->current_threshold will not be used
3761 3762 3763
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3764
			++new->current_threshold;
3765 3766 3767 3768
		}
		j++;
	}

3769
swap_buffers:
3770 3771
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3772

3773
	rcu_assign_pointer(thresholds->primary, new);
3774

3775
	/* To be sure that nobody uses thresholds */
3776
	synchronize_rcu();
3777 3778 3779 3780 3781 3782

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
3783
unlock:
3784 3785
	mutex_unlock(&memcg->thresholds_lock);
}
3786

3787
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3788 3789
	struct eventfd_ctx *eventfd)
{
3790
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3791 3792
}

3793
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3794 3795
	struct eventfd_ctx *eventfd)
{
3796
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3797 3798
}

3799
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3800
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3801 3802 3803 3804 3805 3806 3807
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3808
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3809 3810 3811 3812 3813

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3814
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3815
		eventfd_signal(eventfd, 1);
3816
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3817 3818 3819 3820

	return 0;
}

3821
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3822
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3823 3824 3825
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3826
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3827

3828
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3829 3830 3831 3832 3833 3834
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3835
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3836 3837
}

3838
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3839
{
3840
	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3841

3842
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3843
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
R
Roman Gushchin 已提交
3844 3845
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3846 3847 3848
	return 0;
}

3849
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3850 3851
	struct cftype *cft, u64 val)
{
3852
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3853 3854

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3855
	if (!css->parent || !((val == 0) || (val == 1)))
3856 3857
		return -EINVAL;

3858
	memcg->oom_kill_disable = val;
3859
	if (!val)
3860
		memcg_oom_recover(memcg);
3861

3862 3863 3864
	return 0;
}

3865 3866
#ifdef CONFIG_CGROUP_WRITEBACK

T
Tejun Heo 已提交
3867 3868 3869 3870 3871 3872 3873 3874 3875 3876
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3877 3878 3879 3880 3881
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907
/*
 * idx can be of type enum memcg_stat_item or node_stat_item.
 * Keep in sync with memcg_exact_page().
 */
static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
{
	long x = atomic_long_read(&memcg->stat[idx]);
	int cpu;

	for_each_online_cpu(cpu)
		x += per_cpu_ptr(memcg->stat_cpu, cpu)->count[idx];
	if (x < 0)
		x = 0;
	return x;
}

3908 3909 3910
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3911 3912
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3913 3914 3915
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3916 3917 3918
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3919
 *
3920 3921 3922 3923 3924
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3925
 */
3926 3927 3928
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3929 3930 3931 3932
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

3933
	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
3934 3935

	/* this should eventually include NR_UNSTABLE_NFS */
3936
	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
3937 3938 3939
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3940 3941

	while ((parent = parent_mem_cgroup(memcg))) {
3942
		unsigned long ceiling = min(memcg->memory.max, memcg->high);
3943 3944
		unsigned long used = page_counter_read(&memcg->memory);

3945
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3946 3947 3948 3949
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3961 3962 3963 3964
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3965 3966
#endif	/* CONFIG_CGROUP_WRITEBACK */

3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3980 3981 3982 3983 3984
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3985
static void memcg_event_remove(struct work_struct *work)
3986
{
3987 3988
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3989
	struct mem_cgroup *memcg = event->memcg;
3990 3991 3992

	remove_wait_queue(event->wqh, &event->wait);

3993
	event->unregister_event(memcg, event->eventfd);
3994 3995 3996 3997 3998 3999

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4000
	css_put(&memcg->css);
4001 4002 4003
}

/*
4004
 * Gets called on EPOLLHUP on eventfd when user closes it.
4005 4006 4007
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4008
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4009
			    int sync, void *key)
4010
{
4011 4012
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4013
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
4014
	__poll_t flags = key_to_poll(key);
4015

4016
	if (flags & EPOLLHUP) {
4017 4018 4019 4020 4021 4022 4023 4024 4025
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4026
		spin_lock(&memcg->event_list_lock);
4027 4028 4029 4030 4031 4032 4033 4034
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4035
		spin_unlock(&memcg->event_list_lock);
4036 4037 4038 4039 4040
	}

	return 0;
}

4041
static void memcg_event_ptable_queue_proc(struct file *file,
4042 4043
		wait_queue_head_t *wqh, poll_table *pt)
{
4044 4045
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4046 4047 4048 4049 4050 4051

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4052 4053
 * DO NOT USE IN NEW FILES.
 *
4054 4055 4056 4057 4058
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4059 4060
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4061
{
4062
	struct cgroup_subsys_state *css = of_css(of);
4063
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4064
	struct mem_cgroup_event *event;
4065 4066 4067 4068
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4069
	const char *name;
4070 4071 4072
	char *endp;
	int ret;

4073 4074 4075
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4076 4077
	if (*endp != ' ')
		return -EINVAL;
4078
	buf = endp + 1;
4079

4080
	cfd = simple_strtoul(buf, &endp, 10);
4081 4082
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4083
	buf = endp + 1;
4084 4085 4086 4087 4088

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4089
	event->memcg = memcg;
4090
	INIT_LIST_HEAD(&event->list);
4091 4092 4093
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4119 4120 4121 4122 4123
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4124 4125
	 *
	 * DO NOT ADD NEW FILES.
4126
	 */
A
Al Viro 已提交
4127
	name = cfile.file->f_path.dentry->d_name.name;
4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4139 4140
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4141 4142 4143 4144 4145
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4146
	/*
4147 4148 4149
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4150
	 */
A
Al Viro 已提交
4151
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4152
					       &memory_cgrp_subsys);
4153
	ret = -EINVAL;
4154
	if (IS_ERR(cfile_css))
4155
		goto out_put_cfile;
4156 4157
	if (cfile_css != css) {
		css_put(cfile_css);
4158
		goto out_put_cfile;
4159
	}
4160

4161
	ret = event->register_event(memcg, event->eventfd, buf);
4162 4163 4164
	if (ret)
		goto out_put_css;

4165
	vfs_poll(efile.file, &event->pt);
4166

4167 4168 4169
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4170 4171 4172 4173

	fdput(cfile);
	fdput(efile);

4174
	return nbytes;
4175 4176

out_put_css:
4177
	css_put(css);
4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4190
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4191
	{
4192
		.name = "usage_in_bytes",
4193
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4194
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4195
	},
4196 4197
	{
		.name = "max_usage_in_bytes",
4198
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4199
		.write = mem_cgroup_reset,
4200
		.read_u64 = mem_cgroup_read_u64,
4201
	},
B
Balbir Singh 已提交
4202
	{
4203
		.name = "limit_in_bytes",
4204
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4205
		.write = mem_cgroup_write,
4206
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4207
	},
4208 4209 4210
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4211
		.write = mem_cgroup_write,
4212
		.read_u64 = mem_cgroup_read_u64,
4213
	},
B
Balbir Singh 已提交
4214 4215
	{
		.name = "failcnt",
4216
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4217
		.write = mem_cgroup_reset,
4218
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4219
	},
4220 4221
	{
		.name = "stat",
4222
		.seq_show = memcg_stat_show,
4223
	},
4224 4225
	{
		.name = "force_empty",
4226
		.write = mem_cgroup_force_empty_write,
4227
	},
4228 4229 4230 4231 4232
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4233
	{
4234
		.name = "cgroup.event_control",		/* XXX: for compat */
4235
		.write = memcg_write_event_control,
4236
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4237
	},
K
KOSAKI Motohiro 已提交
4238 4239 4240 4241 4242
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4243 4244 4245 4246 4247
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4248 4249
	{
		.name = "oom_control",
4250
		.seq_show = mem_cgroup_oom_control_read,
4251
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4252 4253
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4254 4255 4256
	{
		.name = "pressure_level",
	},
4257 4258 4259
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4260
		.seq_show = memcg_numa_stat_show,
4261 4262
	},
#endif
4263 4264 4265
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4266
		.write = mem_cgroup_write,
4267
		.read_u64 = mem_cgroup_read_u64,
4268 4269 4270 4271
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4272
		.read_u64 = mem_cgroup_read_u64,
4273 4274 4275 4276
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4277
		.write = mem_cgroup_reset,
4278
		.read_u64 = mem_cgroup_read_u64,
4279 4280 4281 4282
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4283
		.write = mem_cgroup_reset,
4284
		.read_u64 = mem_cgroup_read_u64,
4285
	},
Y
Yang Shi 已提交
4286
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4287 4288
	{
		.name = "kmem.slabinfo",
4289 4290 4291
		.seq_start = memcg_slab_start,
		.seq_next = memcg_slab_next,
		.seq_stop = memcg_slab_stop,
4292
		.seq_show = memcg_slab_show,
4293 4294
	},
#endif
V
Vladimir Davydov 已提交
4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4318
	{ },	/* terminate */
4319
};
4320

4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
 * However, there usually are many references to the oflline CSS after
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

4347 4348 4349 4350 4351 4352 4353 4354
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

4355
static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4356
{
4357
	refcount_add(n, &memcg->id.ref);
4358 4359
}

4360
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4361
{
4362
	if (refcount_sub_and_test(n, &memcg->id.ref)) {
4363
		mem_cgroup_id_remove(memcg);
4364 4365 4366 4367 4368 4369

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

4370 4371 4372 4373 4374 4375 4376 4377 4378 4379
static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
{
	mem_cgroup_id_get_many(memcg, 1);
}

static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

4392
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4393 4394
{
	struct mem_cgroup_per_node *pn;
4395
	int tmp = node;
4396 4397 4398 4399 4400 4401 4402 4403
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4404 4405
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4406
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4407 4408
	if (!pn)
		return 1;
4409

4410 4411
	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat_cpu) {
4412 4413 4414 4415
		kfree(pn);
		return 1;
	}

4416 4417 4418 4419 4420
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

4421
	memcg->nodeinfo[node] = pn;
4422 4423 4424
	return 0;
}

4425
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4426
{
4427 4428
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
4429 4430 4431
	if (!pn)
		return;

4432
	free_percpu(pn->lruvec_stat_cpu);
4433
	kfree(pn);
4434 4435
}

4436
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4437
{
4438
	int node;
4439

4440
	for_each_node(node)
4441
		free_mem_cgroup_per_node_info(memcg, node);
4442
	free_percpu(memcg->stat_cpu);
4443
	kfree(memcg);
4444
}
4445

4446 4447 4448 4449 4450 4451
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
	__mem_cgroup_free(memcg);
}

4452
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4453
{
4454
	struct mem_cgroup *memcg;
4455
	unsigned int size;
4456
	int node;
B
Balbir Singh 已提交
4457

4458 4459 4460 4461
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4462
	if (!memcg)
4463 4464
		return NULL;

4465 4466 4467 4468 4469 4470
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
	if (memcg->id.id < 0)
		goto fail;

4471 4472
	memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat_cpu)
4473
		goto fail;
4474

B
Bob Liu 已提交
4475
	for_each_node(node)
4476
		if (alloc_mem_cgroup_per_node_info(memcg, node))
4477
			goto fail;
4478

4479 4480
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4481

4482
	INIT_WORK(&memcg->high_work, high_work_func);
4483 4484 4485 4486
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4487
	vmpressure_init(&memcg->vmpressure);
4488 4489
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4490
	memcg->socket_pressure = jiffies;
4491
#ifdef CONFIG_MEMCG_KMEM
V
Vladimir Davydov 已提交
4492 4493
	memcg->kmemcg_id = -1;
#endif
4494 4495 4496
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4497
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4498 4499
	return memcg;
fail:
4500
	mem_cgroup_id_remove(memcg);
4501
	__mem_cgroup_free(memcg);
4502
	return NULL;
4503 4504
}

4505 4506
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4507
{
4508 4509 4510
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
4511

4512 4513 4514
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
4515

4516 4517 4518 4519 4520 4521 4522 4523
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
4524
		page_counter_init(&memcg->memory, &parent->memory);
4525
		page_counter_init(&memcg->swap, &parent->swap);
4526 4527
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4528
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4529
	} else {
4530
		page_counter_init(&memcg->memory, NULL);
4531
		page_counter_init(&memcg->swap, NULL);
4532 4533
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4534
		page_counter_init(&memcg->tcpmem, NULL);
4535 4536 4537 4538 4539
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4540
		if (parent != root_mem_cgroup)
4541
			memory_cgrp_subsys.broken_hierarchy = true;
4542
	}
4543

4544 4545 4546 4547 4548 4549
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

4550
	error = memcg_online_kmem(memcg);
4551 4552
	if (error)
		goto fail;
4553

4554
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4555
		static_branch_inc(&memcg_sockets_enabled_key);
4556

4557 4558
	return &memcg->css;
fail:
4559
	mem_cgroup_id_remove(memcg);
4560
	mem_cgroup_free(memcg);
4561
	return ERR_PTR(-ENOMEM);
4562 4563
}

4564
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4565
{
4566 4567
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4568 4569 4570 4571 4572 4573 4574 4575 4576 4577
	/*
	 * A memcg must be visible for memcg_expand_shrinker_maps()
	 * by the time the maps are allocated. So, we allocate maps
	 * here, when for_each_mem_cgroup() can't skip it.
	 */
	if (memcg_alloc_shrinker_maps(memcg)) {
		mem_cgroup_id_remove(memcg);
		return -ENOMEM;
	}

4578
	/* Online state pins memcg ID, memcg ID pins CSS */
4579
	refcount_set(&memcg->id.ref, 1);
4580
	css_get(css);
4581
	return 0;
B
Balbir Singh 已提交
4582 4583
}

4584
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4585
{
4586
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4587
	struct mem_cgroup_event *event, *tmp;
4588 4589 4590 4591 4592 4593

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4594 4595
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4596 4597 4598
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4599
	spin_unlock(&memcg->event_list_lock);
4600

R
Roman Gushchin 已提交
4601
	page_counter_set_min(&memcg->memory, 0);
4602
	page_counter_set_low(&memcg->memory, 0);
4603

4604
	memcg_offline_kmem(memcg);
4605
	wb_memcg_offline(memcg);
4606

4607 4608
	drain_all_stock(memcg);

4609
	mem_cgroup_id_put(memcg);
4610 4611
}

4612 4613 4614 4615 4616 4617 4618
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4619
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4620
{
4621
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4622

4623
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4624
		static_branch_dec(&memcg_sockets_enabled_key);
4625

4626
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
4627
		static_branch_dec(&memcg_sockets_enabled_key);
4628

4629 4630 4631
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
4632
	memcg_free_shrinker_maps(memcg);
4633
	memcg_free_kmem(memcg);
4634
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4635 4636
}

4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4654 4655 4656 4657 4658
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
R
Roman Gushchin 已提交
4659
	page_counter_set_min(&memcg->memory, 0);
4660
	page_counter_set_low(&memcg->memory, 0);
4661
	memcg->high = PAGE_COUNTER_MAX;
4662
	memcg->soft_limit = PAGE_COUNTER_MAX;
4663
	memcg_wb_domain_size_changed(memcg);
4664 4665
}

4666
#ifdef CONFIG_MMU
4667
/* Handlers for move charge at task migration. */
4668
static int mem_cgroup_do_precharge(unsigned long count)
4669
{
4670
	int ret;
4671

4672 4673
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4674
	if (!ret) {
4675 4676 4677
		mc.precharge += count;
		return ret;
	}
4678

4679
	/* Try charges one by one with reclaim, but do not retry */
4680
	while (count--) {
4681
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4682 4683
		if (ret)
			return ret;
4684
		mc.precharge++;
4685
		cond_resched();
4686
	}
4687
	return 0;
4688 4689 4690 4691
}

union mc_target {
	struct page	*page;
4692
	swp_entry_t	ent;
4693 4694 4695
};

enum mc_target_type {
4696
	MC_TARGET_NONE = 0,
4697
	MC_TARGET_PAGE,
4698
	MC_TARGET_SWAP,
4699
	MC_TARGET_DEVICE,
4700 4701
};

D
Daisuke Nishimura 已提交
4702 4703
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4704
{
4705
	struct page *page = _vm_normal_page(vma, addr, ptent, true);
4706

D
Daisuke Nishimura 已提交
4707 4708 4709
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4710
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4711
			return NULL;
4712 4713 4714 4715
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4716 4717 4718 4719 4720 4721
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4722
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
4723
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4724
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
4725 4726 4727 4728
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4729
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4730
		return NULL;
4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
		page = device_private_entry_to_page(ent);
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

4748 4749 4750 4751
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4752
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4753
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4754 4755 4756 4757
		entry->val = ent.val;

	return page;
}
4758 4759
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4760
			pte_t ptent, swp_entry_t *entry)
4761 4762 4763 4764
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4765

4766 4767 4768 4769 4770 4771 4772 4773 4774
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4775
	if (!(mc.flags & MOVE_FILE))
4776 4777 4778
		return NULL;

	mapping = vma->vm_file->f_mapping;
4779
	pgoff = linear_page_index(vma, addr);
4780 4781

	/* page is moved even if it's not RSS of this task(page-faulted). */
4782 4783
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4784 4785
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
4786
		if (xa_is_value(page)) {
4787
			swp_entry_t swp = radix_to_swp_entry(page);
4788
			if (do_memsw_account())
4789
				*entry = swp;
4790 4791
			page = find_get_page(swap_address_space(swp),
					     swp_offset(swp));
4792 4793 4794 4795 4796
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4797
#endif
4798 4799 4800
	return page;
}

4801 4802 4803
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
4804
 * @compound: charge the page as compound or small page
4805 4806 4807
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
4808
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4809 4810 4811 4812 4813
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
4814
				   bool compound,
4815 4816 4817 4818
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
4819
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4820
	int ret;
4821
	bool anon;
4822 4823 4824

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
4825
	VM_BUG_ON(compound && !PageTransHuge(page));
4826 4827

	/*
4828
	 * Prevent mem_cgroup_migrate() from looking at
4829
	 * page->mem_cgroup of its source page while we change it.
4830
	 */
4831
	ret = -EBUSY;
4832 4833 4834 4835 4836 4837 4838
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4839 4840
	anon = PageAnon(page);

4841 4842
	spin_lock_irqsave(&from->move_lock, flags);

4843
	if (!anon && page_mapped(page)) {
4844 4845
		__mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
		__mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
4846 4847
	}

4848 4849
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
4850
	 * mod_memcg_page_state will serialize updates to PageDirty.
4851 4852 4853 4854 4855 4856
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
4857 4858
			__mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
			__mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
4859 4860 4861
		}
	}

4862
	if (PageWriteback(page)) {
4863 4864
		__mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
		__mod_memcg_state(to, NR_WRITEBACK, nr_pages);
4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
4880
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4881
	memcg_check_events(to, page);
4882
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4883 4884 4885 4886 4887 4888 4889 4890
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4906 4907 4908 4909 4910
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PUBLIC
 *     or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
4911 4912
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
4913 4914 4915 4916
 *
 * Called with pte lock held.
 */

4917
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4918 4919 4920
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4921
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4922 4923 4924 4925 4926
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
4927
		page = mc_handle_swap_pte(vma, ptent, &ent);
4928
	else if (pte_none(ptent))
4929
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4930 4931

	if (!page && !ent.val)
4932
		return ret;
4933 4934
	if (page) {
		/*
4935
		 * Do only loose check w/o serialization.
4936
		 * mem_cgroup_move_account() checks the page is valid or
4937
		 * not under LRU exclusion.
4938
		 */
4939
		if (page->mem_cgroup == mc.from) {
4940
			ret = MC_TARGET_PAGE;
4941 4942
			if (is_device_private_page(page) ||
			    is_device_public_page(page))
4943
				ret = MC_TARGET_DEVICE;
4944 4945 4946 4947 4948 4949
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
4950 4951 4952 4953 4954
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
4955
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4956 4957 4958
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4959 4960 4961 4962
	}
	return ret;
}

4963 4964
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
4965 4966
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
4967 4968 4969 4970 4971 4972 4973 4974
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

4975 4976 4977 4978 4979
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
4980
	page = pmd_page(pmd);
4981
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4982
	if (!(mc.flags & MOVE_ANON))
4983
		return ret;
4984
	if (page->mem_cgroup == mc.from) {
4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5001 5002 5003 5004
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
5005
	struct vm_area_struct *vma = walk->vma;
5006 5007 5008
	pte_t *pte;
	spinlock_t *ptl;

5009 5010
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5011 5012 5013 5014 5015
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
		 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
		 * MEMORY_DEVICE_PRIVATE but this might change.
		 */
5016 5017
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5018
		spin_unlock(ptl);
5019
		return 0;
5020
	}
5021

5022 5023
	if (pmd_trans_unstable(pmd))
		return 0;
5024 5025
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5026
		if (get_mctgt_type(vma, addr, *pte, NULL))
5027 5028 5029 5030
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5031 5032 5033
	return 0;
}

5034 5035 5036 5037
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

5038 5039 5040 5041
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
5042
	down_read(&mm->mmap_sem);
5043 5044
	walk_page_range(0, mm->highest_vm_end,
			&mem_cgroup_count_precharge_walk);
5045
	up_read(&mm->mmap_sem);
5046 5047 5048 5049 5050 5051 5052 5053 5054

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5055 5056 5057 5058 5059
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5060 5061
}

5062 5063
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5064
{
5065 5066 5067
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5068
	/* we must uncharge all the leftover precharges from mc.to */
5069
	if (mc.precharge) {
5070
		cancel_charge(mc.to, mc.precharge);
5071 5072 5073 5074 5075 5076 5077
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5078
		cancel_charge(mc.from, mc.moved_charge);
5079
		mc.moved_charge = 0;
5080
	}
5081 5082 5083
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5084
		if (!mem_cgroup_is_root(mc.from))
5085
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5086

5087 5088
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

5089
		/*
5090 5091
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5092
		 */
5093
		if (!mem_cgroup_is_root(mc.to))
5094 5095
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5096 5097
		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
		css_put_many(&mc.to->css, mc.moved_swap);
5098

5099 5100
		mc.moved_swap = 0;
	}
5101 5102 5103 5104 5105 5106 5107
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
5108 5109
	struct mm_struct *mm = mc.mm;

5110 5111 5112 5113 5114 5115
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5116
	spin_lock(&mc.lock);
5117 5118
	mc.from = NULL;
	mc.to = NULL;
5119
	mc.mm = NULL;
5120
	spin_unlock(&mc.lock);
5121 5122

	mmput(mm);
5123 5124
}

5125
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5126
{
5127
	struct cgroup_subsys_state *css;
5128
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5129
	struct mem_cgroup *from;
5130
	struct task_struct *leader, *p;
5131
	struct mm_struct *mm;
5132
	unsigned long move_flags;
5133
	int ret = 0;
5134

5135 5136
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5137 5138
		return 0;

5139 5140 5141 5142 5143 5144 5145
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
5146
	cgroup_taskset_for_each_leader(leader, css, tset) {
5147 5148
		WARN_ON_ONCE(p);
		p = leader;
5149
		memcg = mem_cgroup_from_css(css);
5150 5151 5152 5153
	}
	if (!p)
		return 0;

5154 5155 5156 5157 5158 5159 5160 5161 5162
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
5179
		mc.mm = mm;
5180 5181 5182 5183 5184 5185 5186 5187 5188
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
5189 5190
	} else {
		mmput(mm);
5191 5192 5193 5194
	}
	return ret;
}

5195
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5196
{
5197 5198
	if (mc.to)
		mem_cgroup_clear_mc();
5199 5200
}

5201 5202 5203
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5204
{
5205
	int ret = 0;
5206
	struct vm_area_struct *vma = walk->vma;
5207 5208
	pte_t *pte;
	spinlock_t *ptl;
5209 5210 5211
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5212

5213 5214
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5215
		if (mc.precharge < HPAGE_PMD_NR) {
5216
			spin_unlock(ptl);
5217 5218 5219 5220 5221 5222
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
5223
				if (!mem_cgroup_move_account(page, true,
5224
							     mc.from, mc.to)) {
5225 5226 5227 5228 5229 5230
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
5231 5232 5233 5234 5235 5236 5237 5238
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
5239
		}
5240
		spin_unlock(ptl);
5241
		return 0;
5242 5243
	}

5244 5245
	if (pmd_trans_unstable(pmd))
		return 0;
5246 5247 5248 5249
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5250
		bool device = false;
5251
		swp_entry_t ent;
5252 5253 5254 5255

		if (!mc.precharge)
			break;

5256
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5257 5258 5259
		case MC_TARGET_DEVICE:
			device = true;
			/* fall through */
5260 5261
		case MC_TARGET_PAGE:
			page = target.page;
5262 5263 5264 5265 5266 5267 5268 5269
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
5270
			if (!device && isolate_lru_page(page))
5271
				goto put;
5272 5273
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
5274
				mc.precharge--;
5275 5276
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5277
			}
5278 5279
			if (!device)
				putback_lru_page(page);
5280
put:			/* get_mctgt_type() gets the page */
5281 5282
			put_page(page);
			break;
5283 5284
		case MC_TARGET_SWAP:
			ent = target.ent;
5285
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5286
				mc.precharge--;
5287 5288 5289
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5290
			break;
5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5305
		ret = mem_cgroup_do_precharge(1);
5306 5307 5308 5309 5310 5311 5312
		if (!ret)
			goto retry;
	}

	return ret;
}

5313
static void mem_cgroup_move_charge(void)
5314
{
5315 5316
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
5317
		.mm = mc.mm,
5318
	};
5319 5320

	lru_add_drain_all();
5321
	/*
5322 5323 5324
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
5325 5326 5327
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5328
retry:
5329
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5341 5342 5343 5344
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
5345 5346
	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);

5347
	up_read(&mc.mm->mmap_sem);
5348
	atomic_dec(&mc.from->moving_account);
5349 5350
}

5351
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
5352
{
5353 5354
	if (mc.to) {
		mem_cgroup_move_charge();
5355
		mem_cgroup_clear_mc();
5356
	}
B
Balbir Singh 已提交
5357
}
5358
#else	/* !CONFIG_MMU */
5359
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5360 5361 5362
{
	return 0;
}
5363
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5364 5365
{
}
5366
static void mem_cgroup_move_task(void)
5367 5368 5369
{
}
#endif
B
Balbir Singh 已提交
5370

5371 5372
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5373 5374
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5375
 */
5376
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5377 5378
{
	/*
5379
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5380 5381 5382
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5383
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5384 5385 5386
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5387 5388
}

5389 5390 5391 5392 5393 5394 5395 5396 5397 5398
static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
{
	if (value == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);

	return 0;
}

5399 5400 5401
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5402 5403 5404
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5405 5406
}

R
Roman Gushchin 已提交
5407 5408
static int memory_min_show(struct seq_file *m, void *v)
{
5409 5410
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
R
Roman Gushchin 已提交
5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

5430 5431
static int memory_low_show(struct seq_file *m, void *v)
{
5432 5433
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5434 5435 5436 5437 5438 5439 5440 5441 5442 5443
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5444
	err = page_counter_memparse(buf, "max", &low);
5445 5446 5447
	if (err)
		return err;

5448
	page_counter_set_low(&memcg->memory, low);
5449 5450 5451 5452 5453 5454

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
5455
	return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
5456 5457 5458 5459 5460 5461
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5462
	unsigned long nr_pages;
5463 5464 5465 5466
	unsigned long high;
	int err;

	buf = strstrip(buf);
5467
	err = page_counter_memparse(buf, "max", &high);
5468 5469 5470 5471 5472
	if (err)
		return err;

	memcg->high = high;

5473 5474 5475 5476 5477
	nr_pages = page_counter_read(&memcg->memory);
	if (nr_pages > high)
		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
					     GFP_KERNEL, true);

5478
	memcg_wb_domain_size_changed(memcg);
5479 5480 5481 5482 5483
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
5484 5485
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
5486 5487 5488 5489 5490 5491
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5492 5493
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
5494 5495 5496 5497
	unsigned long max;
	int err;

	buf = strstrip(buf);
5498
	err = page_counter_memparse(buf, "max", &max);
5499 5500 5501
	if (err)
		return err;

5502
	xchg(&memcg->memory.max, max);
5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

		if (signal_pending(current)) {
			err = -EINTR;
			break;
		}

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

5528
		memcg_memory_event(memcg, MEMCG_OOM);
5529 5530 5531
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
5532

5533
	memcg_wb_domain_size_changed(memcg);
5534 5535 5536 5537 5538
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
5539
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5540

5541 5542 5543 5544 5545 5546 5547 5548
	seq_printf(m, "low %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
R
Roman Gushchin 已提交
5549 5550
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
5551 5552 5553 5554

	return 0;
}

5555 5556
static int memory_stat_show(struct seq_file *m, void *v)
{
5557
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5558
	struct accumulated_stats acc;
5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571
	int i;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

5572 5573 5574 5575
	memset(&acc, 0, sizeof(acc));
	acc.stats_size = MEMCG_NR_STAT;
	acc.events_size = NR_VM_EVENT_ITEMS;
	accumulate_memcg_tree(memcg, &acc);
5576

5577
	seq_printf(m, "anon %llu\n",
5578
		   (u64)acc.stat[MEMCG_RSS] * PAGE_SIZE);
5579
	seq_printf(m, "file %llu\n",
5580
		   (u64)acc.stat[MEMCG_CACHE] * PAGE_SIZE);
5581
	seq_printf(m, "kernel_stack %llu\n",
5582
		   (u64)acc.stat[MEMCG_KERNEL_STACK_KB] * 1024);
5583
	seq_printf(m, "slab %llu\n",
5584 5585
		   (u64)(acc.stat[NR_SLAB_RECLAIMABLE] +
			 acc.stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5586
	seq_printf(m, "sock %llu\n",
5587
		   (u64)acc.stat[MEMCG_SOCK] * PAGE_SIZE);
5588

5589
	seq_printf(m, "shmem %llu\n",
5590
		   (u64)acc.stat[NR_SHMEM] * PAGE_SIZE);
5591
	seq_printf(m, "file_mapped %llu\n",
5592
		   (u64)acc.stat[NR_FILE_MAPPED] * PAGE_SIZE);
5593
	seq_printf(m, "file_dirty %llu\n",
5594
		   (u64)acc.stat[NR_FILE_DIRTY] * PAGE_SIZE);
5595
	seq_printf(m, "file_writeback %llu\n",
5596
		   (u64)acc.stat[NR_WRITEBACK] * PAGE_SIZE);
5597

5598 5599 5600 5601 5602 5603 5604 5605 5606
	/*
	 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
	 * with the NR_ANON_THP vm counter, but right now it's a pain in the
	 * arse because it requires migrating the work out of rmap to a place
	 * where the page->mem_cgroup is set up and stable.
	 */
	seq_printf(m, "anon_thp %llu\n",
		   (u64)acc.stat[MEMCG_RSS_HUGE] * PAGE_SIZE);

5607 5608 5609
	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i],
			   (u64)acc.lru_pages[i] * PAGE_SIZE);
5610

5611
	seq_printf(m, "slab_reclaimable %llu\n",
5612
		   (u64)acc.stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5613
	seq_printf(m, "slab_unreclaimable %llu\n",
5614
		   (u64)acc.stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5615

5616 5617
	/* Accumulated memory events */

5618 5619
	seq_printf(m, "pgfault %lu\n", acc.events[PGFAULT]);
	seq_printf(m, "pgmajfault %lu\n", acc.events[PGMAJFAULT]);
5620

5621 5622 5623 5624 5625 5626 5627
	seq_printf(m, "workingset_refault %lu\n",
		   acc.stat[WORKINGSET_REFAULT]);
	seq_printf(m, "workingset_activate %lu\n",
		   acc.stat[WORKINGSET_ACTIVATE]);
	seq_printf(m, "workingset_nodereclaim %lu\n",
		   acc.stat[WORKINGSET_NODERECLAIM]);

5628 5629 5630 5631 5632 5633 5634 5635 5636
	seq_printf(m, "pgrefill %lu\n", acc.events[PGREFILL]);
	seq_printf(m, "pgscan %lu\n", acc.events[PGSCAN_KSWAPD] +
		   acc.events[PGSCAN_DIRECT]);
	seq_printf(m, "pgsteal %lu\n", acc.events[PGSTEAL_KSWAPD] +
		   acc.events[PGSTEAL_DIRECT]);
	seq_printf(m, "pgactivate %lu\n", acc.events[PGACTIVATE]);
	seq_printf(m, "pgdeactivate %lu\n", acc.events[PGDEACTIVATE]);
	seq_printf(m, "pglazyfree %lu\n", acc.events[PGLAZYFREE]);
	seq_printf(m, "pglazyfreed %lu\n", acc.events[PGLAZYFREED]);
5637

5638 5639 5640 5641 5642 5643
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	seq_printf(m, "thp_fault_alloc %lu\n", acc.events[THP_FAULT_ALLOC]);
	seq_printf(m, "thp_collapse_alloc %lu\n",
		   acc.events[THP_COLLAPSE_ALLOC]);
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

5644 5645 5646
	return 0;
}

5647 5648
static int memory_oom_group_show(struct seq_file *m, void *v)
{
5649
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677

	seq_printf(m, "%d\n", memcg->oom_group);

	return 0;
}

static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
				      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	int ret, oom_group;

	buf = strstrip(buf);
	if (!buf)
		return -EINVAL;

	ret = kstrtoint(buf, 0, &oom_group);
	if (ret)
		return ret;

	if (oom_group != 0 && oom_group != 1)
		return -EINVAL;

	memcg->oom_group = oom_group;

	return nbytes;
}

5678 5679 5680
static struct cftype memory_files[] = {
	{
		.name = "current",
5681
		.flags = CFTYPE_NOT_ON_ROOT,
5682 5683
		.read_u64 = memory_current_read,
	},
R
Roman Gushchin 已提交
5684 5685 5686 5687 5688 5689
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5711
		.file_offset = offsetof(struct mem_cgroup, events_file),
5712 5713
		.seq_show = memory_events_show,
	},
5714 5715 5716 5717 5718
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
5719 5720 5721 5722 5723 5724
	{
		.name = "oom.group",
		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
		.seq_show = memory_oom_group_show,
		.write = memory_oom_group_write,
	},
5725 5726 5727
	{ }	/* terminate */
};

5728
struct cgroup_subsys memory_cgrp_subsys = {
5729
	.css_alloc = mem_cgroup_css_alloc,
5730
	.css_online = mem_cgroup_css_online,
5731
	.css_offline = mem_cgroup_css_offline,
5732
	.css_released = mem_cgroup_css_released,
5733
	.css_free = mem_cgroup_css_free,
5734
	.css_reset = mem_cgroup_css_reset,
5735 5736
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
5737
	.post_attach = mem_cgroup_move_task,
5738
	.bind = mem_cgroup_bind,
5739 5740
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5741
	.early_init = 0,
B
Balbir Singh 已提交
5742
};
5743

5744
/**
R
Roman Gushchin 已提交
5745
 * mem_cgroup_protected - check if memory consumption is in the normal range
5746
 * @root: the top ancestor of the sub-tree being checked
5747 5748
 * @memcg: the memory cgroup to check
 *
5749 5750
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
5751
 *
R
Roman Gushchin 已提交
5752 5753 5754 5755 5756
 * Returns one of the following:
 *   MEMCG_PROT_NONE: cgroup memory is not protected
 *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
 *     an unprotected supply of reclaimable memory from other cgroups.
 *   MEMCG_PROT_MIN: cgroup memory is protected
5757
 *
R
Roman Gushchin 已提交
5758
 * @root is exclusive; it is never protected when looked at directly
5759
 *
R
Roman Gushchin 已提交
5760 5761 5762
 * To provide a proper hierarchical behavior, effective memory.min/low values
 * are used. Below is the description of how effective memory.low is calculated.
 * Effective memory.min values is calculated in the same way.
5763
 *
5764 5765 5766 5767 5768 5769 5770
 * Effective memory.low is always equal or less than the original memory.low.
 * If there is no memory.low overcommittment (which is always true for
 * top-level memory cgroups), these two values are equal.
 * Otherwise, it's a part of parent's effective memory.low,
 * calculated as a cgroup's memory.low usage divided by sum of sibling's
 * memory.low usages, where memory.low usage is the size of actually
 * protected memory.
5771
 *
5772 5773 5774
 *                                             low_usage
 * elow = min( memory.low, parent->elow * ------------------ ),
 *                                        siblings_low_usage
5775
 *
5776 5777
 *             | memory.current, if memory.current < memory.low
 * low_usage = |
5778
 *	       | 0, otherwise.
5779
 *
5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806
 *
 * Such definition of the effective memory.low provides the expected
 * hierarchical behavior: parent's memory.low value is limiting
 * children, unprotected memory is reclaimed first and cgroups,
 * which are not using their guarantee do not affect actual memory
 * distribution.
 *
 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
 *
 *     A      A/memory.low = 2G, A/memory.current = 6G
 *    //\\
 *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
 *            C/memory.low = 1G  C/memory.current = 2G
 *            D/memory.low = 0   D/memory.current = 2G
 *            E/memory.low = 10G E/memory.current = 0
 *
 * and the memory pressure is applied, the following memory distribution
 * is expected (approximately):
 *
 *     A/memory.current = 2G
 *
 *     B/memory.current = 1.3G
 *     C/memory.current = 0.6G
 *     D/memory.current = 0
 *     E/memory.current = 0
 *
 * These calculations require constant tracking of the actual low usages
R
Roman Gushchin 已提交
5807 5808
 * (see propagate_protected_usage()), as well as recursive calculation of
 * effective memory.low values. But as we do call mem_cgroup_protected()
5809 5810 5811 5812
 * path for each memory cgroup top-down from the reclaim,
 * it's possible to optimize this part, and save calculated elow
 * for next usage. This part is intentionally racy, but it's ok,
 * as memory.low is a best-effort mechanism.
5813
 */
R
Roman Gushchin 已提交
5814 5815
enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
						struct mem_cgroup *memcg)
5816
{
5817
	struct mem_cgroup *parent;
R
Roman Gushchin 已提交
5818 5819 5820
	unsigned long emin, parent_emin;
	unsigned long elow, parent_elow;
	unsigned long usage;
5821

5822
	if (mem_cgroup_disabled())
R
Roman Gushchin 已提交
5823
		return MEMCG_PROT_NONE;
5824

5825 5826 5827
	if (!root)
		root = root_mem_cgroup;
	if (memcg == root)
R
Roman Gushchin 已提交
5828
		return MEMCG_PROT_NONE;
5829

5830
	usage = page_counter_read(&memcg->memory);
R
Roman Gushchin 已提交
5831 5832 5833 5834 5835
	if (!usage)
		return MEMCG_PROT_NONE;

	emin = memcg->memory.min;
	elow = memcg->memory.low;
5836

R
Roman Gushchin 已提交
5837
	parent = parent_mem_cgroup(memcg);
5838 5839 5840 5841
	/* No parent means a non-hierarchical mode on v1 memcg */
	if (!parent)
		return MEMCG_PROT_NONE;

5842 5843 5844
	if (parent == root)
		goto exit;

R
Roman Gushchin 已提交
5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858
	parent_emin = READ_ONCE(parent->memory.emin);
	emin = min(emin, parent_emin);
	if (emin && parent_emin) {
		unsigned long min_usage, siblings_min_usage;

		min_usage = min(usage, memcg->memory.min);
		siblings_min_usage = atomic_long_read(
			&parent->memory.children_min_usage);

		if (min_usage && siblings_min_usage)
			emin = min(emin, parent_emin * min_usage /
				   siblings_min_usage);
	}

5859 5860
	parent_elow = READ_ONCE(parent->memory.elow);
	elow = min(elow, parent_elow);
R
Roman Gushchin 已提交
5861 5862
	if (elow && parent_elow) {
		unsigned long low_usage, siblings_low_usage;
5863

R
Roman Gushchin 已提交
5864 5865 5866
		low_usage = min(usage, memcg->memory.low);
		siblings_low_usage = atomic_long_read(
			&parent->memory.children_low_usage);
5867

R
Roman Gushchin 已提交
5868 5869 5870 5871
		if (low_usage && siblings_low_usage)
			elow = min(elow, parent_elow * low_usage /
				   siblings_low_usage);
	}
5872 5873

exit:
R
Roman Gushchin 已提交
5874
	memcg->memory.emin = emin;
5875
	memcg->memory.elow = elow;
R
Roman Gushchin 已提交
5876 5877 5878 5879 5880 5881 5882

	if (usage <= emin)
		return MEMCG_PROT_MIN;
	else if (usage <= elow)
		return MEMCG_PROT_LOW;
	else
		return MEMCG_PROT_NONE;
5883 5884
}

5885 5886 5887 5888 5889 5890
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
5891
 * @compound: charge the page as compound or small page
5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5904 5905
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
5906 5907
{
	struct mem_cgroup *memcg = NULL;
5908
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5922
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5923
		if (compound_head(page)->mem_cgroup)
5924
			goto out;
5925

5926
		if (do_swap_account) {
5927 5928 5929 5930 5931 5932 5933 5934 5935
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961
int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
{
	struct mem_cgroup *memcg;
	int ret;

	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
	memcg = *memcgp;
	mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
	return ret;
}

5962 5963 5964 5965 5966
/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
5967
 * @compound: charge the page as compound or small page
5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5980
			      bool lrucare, bool compound)
5981
{
5982
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5997 5998 5999
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
6000
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6001 6002
	memcg_check_events(memcg, page);
	local_irq_enable();
6003

6004
	if (do_memsw_account() && PageSwapCache(page)) {
6005 6006 6007 6008 6009 6010
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
6011
		mem_cgroup_uncharge_swap(entry, nr_pages);
6012 6013 6014 6015 6016 6017 6018
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
6019
 * @compound: charge the page as compound or small page
6020 6021 6022
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
6023 6024
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
6025
{
6026
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052
struct uncharge_gather {
	struct mem_cgroup *memcg;
	unsigned long pgpgout;
	unsigned long nr_anon;
	unsigned long nr_file;
	unsigned long nr_kmem;
	unsigned long nr_huge;
	unsigned long nr_shmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6053
{
6054 6055 6056 6057 6058 6059
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6060 6061
	unsigned long flags;

6062 6063
	if (!mem_cgroup_is_root(ug->memcg)) {
		page_counter_uncharge(&ug->memcg->memory, nr_pages);
6064
		if (do_memsw_account())
6065 6066 6067 6068
			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
6069
	}
6070 6071

	local_irq_save(flags);
6072 6073 6074 6075 6076
	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6077
	__this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
6078
	memcg_check_events(ug->memcg, ug->dummy_page);
6079
	local_irq_restore(flags);
6080

6081 6082 6083 6084 6085 6086 6087
	if (!mem_cgroup_is_root(ug->memcg))
		css_put_many(&ug->memcg->css, nr_pages);
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
	VM_BUG_ON_PAGE(PageLRU(page), page);
6088 6089
	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
			!PageHWPoison(page) , page);
6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129

	if (!page->mem_cgroup)
		return;

	/*
	 * Nobody should be changing or seriously looking at
	 * page->mem_cgroup at this point, we have fully
	 * exclusive access to the page.
	 */

	if (ug->memcg != page->mem_cgroup) {
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
		ug->memcg = page->mem_cgroup;
	}

	if (!PageKmemcg(page)) {
		unsigned int nr_pages = 1;

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			ug->nr_huge += nr_pages;
		}
		if (PageAnon(page))
			ug->nr_anon += nr_pages;
		else {
			ug->nr_file += nr_pages;
			if (PageSwapBacked(page))
				ug->nr_shmem += nr_pages;
		}
		ug->pgpgout++;
	} else {
		ug->nr_kmem += 1 << compound_order(page);
		__ClearPageKmemcg(page);
	}

	ug->dummy_page = page;
	page->mem_cgroup = NULL;
6130 6131 6132 6133
}

static void uncharge_list(struct list_head *page_list)
{
6134
	struct uncharge_gather ug;
6135
	struct list_head *next;
6136 6137

	uncharge_gather_clear(&ug);
6138

6139 6140 6141 6142
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
6143 6144
	next = page_list->next;
	do {
6145 6146
		struct page *page;

6147 6148 6149
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

6150
		uncharge_page(page, &ug);
6151 6152
	} while (next != page_list);

6153 6154
	if (ug.memcg)
		uncharge_batch(&ug);
6155 6156
}

6157 6158 6159 6160 6161 6162 6163 6164 6165
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
6166 6167
	struct uncharge_gather ug;

6168 6169 6170
	if (mem_cgroup_disabled())
		return;

6171
	/* Don't touch page->lru of any random page, pre-check: */
6172
	if (!page->mem_cgroup)
6173 6174
		return;

6175 6176 6177
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
6178
}
6179

6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
6191

6192 6193
	if (!list_empty(page_list))
		uncharge_list(page_list);
6194 6195 6196
}

/**
6197 6198 6199
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
6200
 *
6201 6202
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
6203 6204 6205
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
6206
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6207
{
6208
	struct mem_cgroup *memcg;
6209 6210
	unsigned int nr_pages;
	bool compound;
6211
	unsigned long flags;
6212 6213 6214 6215

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6216 6217
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6218 6219 6220 6221 6222

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
6223
	if (newpage->mem_cgroup)
6224 6225
		return;

6226
	/* Swapcache readahead pages can get replaced before being charged */
6227
	memcg = oldpage->mem_cgroup;
6228
	if (!memcg)
6229 6230
		return;

6231 6232 6233 6234 6235 6236 6237 6238
	/* Force-charge the new page. The old one will be freed soon */
	compound = PageTransHuge(newpage);
	nr_pages = compound ? hpage_nr_pages(newpage) : 1;

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
6239

6240
	commit_charge(newpage, memcg, false);
6241

6242
	local_irq_save(flags);
6243 6244
	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
	memcg_check_events(memcg, newpage);
6245
	local_irq_restore(flags);
6246 6247
}

6248
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6249 6250
EXPORT_SYMBOL(memcg_sockets_enabled_key);

6251
void mem_cgroup_sk_alloc(struct sock *sk)
6252 6253 6254
{
	struct mem_cgroup *memcg;

6255 6256 6257
	if (!mem_cgroup_sockets_enabled)
		return;

6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271
	/*
	 * Socket cloning can throw us here with sk_memcg already
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		css_get(&sk->sk_memcg->css);
		return;
	}

6272 6273
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
6274 6275
	if (memcg == root_mem_cgroup)
		goto out;
6276
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6277 6278
		goto out;
	if (css_tryget_online(&memcg->css))
6279
		sk->sk_memcg = memcg;
6280
out:
6281 6282 6283
	rcu_read_unlock();
}

6284
void mem_cgroup_sk_free(struct sock *sk)
6285
{
6286 6287
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6300
	gfp_t gfp_mask = GFP_KERNEL;
6301

6302
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6303
		struct page_counter *fail;
6304

6305 6306
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
6307 6308
			return true;
		}
6309 6310
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
6311
		return false;
6312
	}
6313

6314 6315 6316 6317
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

6318
	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6319

6320 6321 6322 6323
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6324 6325 6326 6327 6328
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
6329 6330
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
6331 6332 6333
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6334
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6335
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6336 6337
		return;
	}
6338

6339
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6340

6341
	refill_stock(memcg, nr_pages);
6342 6343
}

6344 6345 6346 6347 6348 6349 6350 6351 6352
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
6353 6354
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
6355 6356 6357 6358
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
6359

6360
/*
6361 6362
 * subsys_initcall() for memory controller.
 *
6363 6364 6365 6366
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
6367 6368 6369
 */
static int __init mem_cgroup_init(void)
{
6370 6371
	int cpu, node;

6372
#ifdef CONFIG_MEMCG_KMEM
6373 6374
	/*
	 * Kmem cache creation is mostly done with the slab_mutex held,
6375 6376 6377
	 * so use a workqueue with limited concurrency to avoid stalling
	 * all worker threads in case lots of cgroups are created and
	 * destroyed simultaneously.
6378
	 */
6379 6380
	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
	BUG_ON(!memcg_kmem_cache_wq);
6381 6382
#endif

6383 6384
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

6396
		rtpn->rb_root = RB_ROOT;
6397
		rtpn->rb_rightmost = NULL;
6398
		spin_lock_init(&rtpn->lock);
6399 6400 6401
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

6402 6403 6404
	return 0;
}
subsys_initcall(mem_cgroup_init);
6405 6406

#ifdef CONFIG_MEMCG_SWAP
6407 6408
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
6409
	while (!refcount_inc_not_zero(&memcg->id.ref)) {
6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

6425 6426 6427 6428 6429 6430 6431 6432 6433
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
6434
	struct mem_cgroup *memcg, *swap_memcg;
6435
	unsigned int nr_entries;
6436 6437 6438 6439 6440
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

6441
	if (!do_memsw_account())
6442 6443 6444 6445 6446 6447 6448 6449
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

6450 6451 6452 6453 6454 6455
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
6456 6457 6458 6459 6460 6461
	nr_entries = hpage_nr_pages(page);
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
6462
	VM_BUG_ON_PAGE(oldid, page);
6463
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6464 6465 6466 6467

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
6468
		page_counter_uncharge(&memcg->memory, nr_entries);
6469

6470 6471
	if (memcg != swap_memcg) {
		if (!mem_cgroup_is_root(swap_memcg))
6472 6473
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
6474 6475
	}

6476 6477
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
6478
	 * i_pages lock which is taken with interrupts-off. It is
6479
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
6480
	 * only synchronisation we have for updating the per-CPU variables.
6481 6482
	 */
	VM_BUG_ON(!irqs_disabled());
6483 6484
	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
				     -nr_entries);
6485
	memcg_check_events(memcg, page);
6486 6487

	if (!mem_cgroup_is_root(memcg))
6488
		css_put_many(&memcg->css, nr_entries);
6489 6490
}

6491 6492
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
6493 6494 6495
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
6496
 * Try to charge @page's memcg for the swap space at @entry.
6497 6498 6499 6500 6501
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
6502
	unsigned int nr_pages = hpage_nr_pages(page);
6503
	struct page_counter *counter;
6504
	struct mem_cgroup *memcg;
6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

6516 6517
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6518
		return 0;
6519
	}
6520

6521 6522
	memcg = mem_cgroup_id_get_online(memcg);

6523
	if (!mem_cgroup_is_root(memcg) &&
6524
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6525 6526
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6527
		mem_cgroup_id_put(memcg);
6528
		return -ENOMEM;
6529
	}
6530

6531 6532 6533 6534
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6535
	VM_BUG_ON_PAGE(oldid, page);
6536
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6537 6538 6539 6540

	return 0;
}

6541
/**
6542
 * mem_cgroup_uncharge_swap - uncharge swap space
6543
 * @entry: swap entry to uncharge
6544
 * @nr_pages: the amount of swap space to uncharge
6545
 */
6546
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6547 6548 6549 6550
{
	struct mem_cgroup *memcg;
	unsigned short id;

6551
	if (!do_swap_account)
6552 6553
		return;

6554
	id = swap_cgroup_record(entry, 0, nr_pages);
6555
	rcu_read_lock();
6556
	memcg = mem_cgroup_from_id(id);
6557
	if (memcg) {
6558 6559
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6560
				page_counter_uncharge(&memcg->swap, nr_pages);
6561
			else
6562
				page_counter_uncharge(&memcg->memsw, nr_pages);
6563
		}
6564
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6565
		mem_cgroup_id_put_many(memcg, nr_pages);
6566 6567 6568 6569
	}
	rcu_read_unlock();
}

6570 6571 6572 6573 6574 6575 6576 6577
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
6578
				      READ_ONCE(memcg->swap.max) -
6579 6580 6581 6582
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6599
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6600 6601 6602 6603 6604
			return true;

	return false;
}

6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

6622 6623 6624 6625 6626 6627 6628 6629 6630 6631
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
6632 6633
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

6648
	xchg(&memcg->swap.max, max);
6649 6650 6651 6652

	return nbytes;
}

6653 6654
static int swap_events_show(struct seq_file *m, void *v)
{
6655
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6656 6657 6658 6659 6660 6661 6662 6663 6664

	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
6677 6678 6679 6680 6681 6682
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
6683 6684 6685
	{ }	/* terminate */
};

6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
6717 6718
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
6719 6720 6721 6722 6723 6724 6725 6726
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */