memcontrol.c 177.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
B
Balbir Singh 已提交
2 3 4 5 6
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
7 8 9
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
10 11 12 13
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
14 15 16 17
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
B
Balbir Singh 已提交
23 24
 */

25
#include <linux/page_counter.h>
B
Balbir Singh 已提交
26 27
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
28
#include <linux/mm.h>
29
#include <linux/sched/mm.h>
30
#include <linux/shmem_fs.h>
31
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
32
#include <linux/pagemap.h>
33
#include <linux/vm_event_item.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/swap_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
59
#include <linux/tracehook.h>
60
#include <linux/seq_buf.h>
K
KAMEZAWA Hiroyuki 已提交
61
#include "internal.h"
G
Glauber Costa 已提交
62
#include <net/sock.h>
M
Michal Hocko 已提交
63
#include <net/ip.h>
64
#include "slab.h"
B
Balbir Singh 已提交
65

66
#include <linux/uaccess.h>
67

68 69
#include <trace/events/vmscan.h>

70 71
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
72

73 74
struct mem_cgroup *root_mem_cgroup __read_mostly;

75
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
76

77 78 79
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

80 81 82
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

83
/* Whether the swap controller is active */
A
Andrew Morton 已提交
84
#ifdef CONFIG_MEMCG_SWAP
85 86
int do_swap_account __read_mostly;
#else
87
#define do_swap_account		0
88 89
#endif

90 91 92 93 94 95
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

96
static const char *const mem_cgroup_lru_names[] = {
97 98 99 100 101 102 103
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

104 105 106
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
107

108 109 110 111 112
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

113
struct mem_cgroup_tree_per_node {
114
	struct rb_root rb_root;
115
	struct rb_node *rb_rightmost;
116 117 118 119 120 121 122 123 124
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
125 126 127 128 129
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
130

131 132 133
/*
 * cgroup_event represents events which userspace want to receive.
 */
134
struct mem_cgroup_event {
135
	/*
136
	 * memcg which the event belongs to.
137
	 */
138
	struct mem_cgroup *memcg;
139 140 141 142 143 144 145 146
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
147 148 149 150 151
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
152
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
153
			      struct eventfd_ctx *eventfd, const char *args);
154 155 156 157 158
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
159
	void (*unregister_event)(struct mem_cgroup *memcg,
160
				 struct eventfd_ctx *eventfd);
161 162 163 164 165 166
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
167
	wait_queue_entry_t wait;
168 169 170
	struct work_struct remove;
};

171 172
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173

174 175
/* Stuffs for move charges at task migration. */
/*
176
 * Types of charges to be moved.
177
 */
178 179 180
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
181

182 183
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
184
	spinlock_t	  lock; /* for from, to */
185
	struct mm_struct  *mm;
186 187
	struct mem_cgroup *from;
	struct mem_cgroup *to;
188
	unsigned long flags;
189
	unsigned long precharge;
190
	unsigned long moved_charge;
191
	unsigned long moved_swap;
192 193 194
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
195
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196 197
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
198

199 200 201 202
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
203
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
204
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
205

206 207
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
208
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
209
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
210
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
211 212 213
	NR_CHARGE_TYPE,
};

214
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
215 216 217 218
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
219
	_KMEM,
V
Vladimir Davydov 已提交
220
	_TCP,
G
Glauber Costa 已提交
221 222
};

223 224
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
225
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
226 227
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
228

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(root, iter, NULL))

#define for_each_mem_cgroup(iter)			\
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(NULL, iter, NULL))

244 245 246 247 248 249
static inline bool should_force_charge(void)
{
	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
		(current->flags & PF_EXITING);
}

250 251 252 253 254 255 256 257 258 259 260 261 262
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

263
#ifdef CONFIG_MEMCG_KMEM
264
/*
265
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
266 267 268 269 270
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
271
 *
272 273
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
274
 */
275 276
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
277

278 279 280 281 282 283 284 285 286 287 288 289 290
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

291 292 293 294 295 296
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
297
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
298 299
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
300
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
301 302 303
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
304
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
305

306 307 308 309 310 311
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
312
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
313
EXPORT_SYMBOL(memcg_kmem_enabled_key);
314

315 316
struct workqueue_struct *memcg_kmem_cache_wq;

317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
static int memcg_shrinker_map_size;
static DEFINE_MUTEX(memcg_shrinker_map_mutex);

static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
{
	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
}

static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
					 int size, int old_size)
{
	struct memcg_shrinker_map *new, *old;
	int nid;

	lockdep_assert_held(&memcg_shrinker_map_mutex);

	for_each_node(nid) {
		old = rcu_dereference_protected(
			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
		/* Not yet online memcg */
		if (!old)
			return 0;

		new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
		if (!new)
			return -ENOMEM;

		/* Set all old bits, clear all new bits */
		memset(new->map, (int)0xff, old_size);
		memset((void *)new->map + old_size, 0, size - old_size);

		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
	}

	return 0;
}

static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *pn;
	struct memcg_shrinker_map *map;
	int nid;

	if (mem_cgroup_is_root(memcg))
		return;

	for_each_node(nid) {
		pn = mem_cgroup_nodeinfo(memcg, nid);
		map = rcu_dereference_protected(pn->shrinker_map, true);
		if (map)
			kvfree(map);
		rcu_assign_pointer(pn->shrinker_map, NULL);
	}
}

static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	struct memcg_shrinker_map *map;
	int nid, size, ret = 0;

	if (mem_cgroup_is_root(memcg))
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	size = memcg_shrinker_map_size;
	for_each_node(nid) {
		map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
		if (!map) {
			memcg_free_shrinker_maps(memcg);
			ret = -ENOMEM;
			break;
		}
		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
	}
	mutex_unlock(&memcg_shrinker_map_mutex);

	return ret;
}

int memcg_expand_shrinker_maps(int new_id)
{
	int size, old_size, ret = 0;
	struct mem_cgroup *memcg;

	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
	old_size = memcg_shrinker_map_size;
	if (size <= old_size)
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	if (!root_mem_cgroup)
		goto unlock;

	for_each_mem_cgroup(memcg) {
		if (mem_cgroup_is_root(memcg))
			continue;
		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
		if (ret)
			goto unlock;
	}
unlock:
	if (!ret)
		memcg_shrinker_map_size = size;
	mutex_unlock(&memcg_shrinker_map_mutex);
	return ret;
}
424 425 426 427 428 429 430 431

void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
{
	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
		struct memcg_shrinker_map *map;

		rcu_read_lock();
		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
432 433
		/* Pairs with smp mb in shrink_slab() */
		smp_mb__before_atomic();
434 435 436 437 438
		set_bit(shrinker_id, map->map);
		rcu_read_unlock();
	}
}

439 440 441 442 443 444
#else /* CONFIG_MEMCG_KMEM */
static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	return 0;
}
static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
445
#endif /* CONFIG_MEMCG_KMEM */
446

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

464
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
465 466 467 468 469
		memcg = root_mem_cgroup;

	return &memcg->css;
}

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
489 490 491 492
	if (PageHead(page) && PageSlab(page))
		memcg = memcg_from_slab_page(page);
	else
		memcg = READ_ONCE(page->mem_cgroup);
493 494 495 496 497 498 499 500
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

501 502
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
503
{
504
	int nid = page_to_nid(page);
505

506
	return memcg->nodeinfo[nid];
507 508
}

509 510
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
511
{
512
	return soft_limit_tree.rb_tree_per_node[nid];
513 514
}

515
static struct mem_cgroup_tree_per_node *
516 517 518 519
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

520
	return soft_limit_tree.rb_tree_per_node[nid];
521 522
}

523 524
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
525
					 unsigned long new_usage_in_excess)
526 527 528
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
529
	struct mem_cgroup_per_node *mz_node;
530
	bool rightmost = true;
531 532 533 534 535 536 537 538 539

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
540
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
541
					tree_node);
542
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
543
			p = &(*p)->rb_left;
544 545 546
			rightmost = false;
		}

547 548 549 550 551 552 553
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
554 555 556 557

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

558 559 560 561 562
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

563 564
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
565 566 567
{
	if (!mz->on_tree)
		return;
568 569 570 571

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

572 573 574 575
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

576 577
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
578
{
579 580 581
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
582
	__mem_cgroup_remove_exceeded(mz, mctz);
583
	spin_unlock_irqrestore(&mctz->lock, flags);
584 585
}

586 587 588
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
589
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
590 591 592 593 594 595 596
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
597 598 599

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
600
	unsigned long excess;
601 602
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
603

604
	mctz = soft_limit_tree_from_page(page);
605 606
	if (!mctz)
		return;
607 608 609 610 611
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
612
		mz = mem_cgroup_page_nodeinfo(memcg, page);
613
		excess = soft_limit_excess(memcg);
614 615 616 617 618
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
619 620 621
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
622 623
			/* if on-tree, remove it */
			if (mz->on_tree)
624
				__mem_cgroup_remove_exceeded(mz, mctz);
625 626 627 628
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
629
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
630
			spin_unlock_irqrestore(&mctz->lock, flags);
631 632 633 634 635 636
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
637 638 639
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
640

641
	for_each_node(nid) {
642 643
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
644 645
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
646 647 648
	}
}

649 650
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
651
{
652
	struct mem_cgroup_per_node *mz;
653 654 655

retry:
	mz = NULL;
656
	if (!mctz->rb_rightmost)
657 658
		goto done;		/* Nothing to reclaim from */

659 660
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
661 662 663 664 665
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
666
	__mem_cgroup_remove_exceeded(mz, mctz);
667
	if (!soft_limit_excess(mz->memcg) ||
668
	    !css_tryget_online(&mz->memcg->css))
669 670 671 672 673
		goto retry;
done:
	return mz;
}

674 675
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
676
{
677
	struct mem_cgroup_per_node *mz;
678

679
	spin_lock_irq(&mctz->lock);
680
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
681
	spin_unlock_irq(&mctz->lock);
682 683 684
	return mz;
}

685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
/**
 * __mod_memcg_state - update cgroup memory statistics
 * @memcg: the memory cgroup
 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 * @val: delta to add to the counter, can be negative
 */
void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
{
	long x;

	if (mem_cgroup_disabled())
		return;

	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
700 701
		struct mem_cgroup *mi;

702 703 704 705 706
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
707 708
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmstats[idx]);
709 710 711 712 713
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
}

714 715 716 717 718 719 720 721 722 723 724
static struct mem_cgroup_per_node *
parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
{
	struct mem_cgroup *parent;

	parent = parent_mem_cgroup(pn->memcg);
	if (!parent)
		return NULL;
	return mem_cgroup_nodeinfo(parent, nid);
}

725 726 727 728 729 730 731 732 733 734 735 736 737
/**
 * __mod_lruvec_state - update lruvec memory statistics
 * @lruvec: the lruvec
 * @idx: the stat item
 * @val: delta to add to the counter, can be negative
 *
 * The lruvec is the intersection of the NUMA node and a cgroup. This
 * function updates the all three counters that are affected by a
 * change of state at this level: per-node, per-cgroup, per-lruvec.
 */
void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			int val)
{
738
	pg_data_t *pgdat = lruvec_pgdat(lruvec);
739
	struct mem_cgroup_per_node *pn;
740
	struct mem_cgroup *memcg;
741 742 743
	long x;

	/* Update node */
744
	__mod_node_page_state(pgdat, idx, val);
745 746 747 748 749

	if (mem_cgroup_disabled())
		return;

	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
750
	memcg = pn->memcg;
751 752

	/* Update memcg */
753
	__mod_memcg_state(memcg, idx, val);
754 755 756

	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
757 758
		struct mem_cgroup_per_node *pi;

759 760 761 762 763
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(pn->lruvec_stat_local->count[idx], x);
764 765
		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
			atomic_long_add(x, &pi->lruvec_stat[idx]);
766 767 768 769 770
		x = 0;
	}
	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
}

771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
{
	struct page *page = virt_to_head_page(p);
	pg_data_t *pgdat = page_pgdat(page);
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;

	rcu_read_lock();
	memcg = memcg_from_slab_page(page);

	/* Untracked pages have no memcg, no lruvec. Update only the node */
	if (!memcg || memcg == root_mem_cgroup) {
		__mod_node_page_state(pgdat, idx, val);
	} else {
		lruvec = mem_cgroup_lruvec(pgdat, memcg);
		__mod_lruvec_state(lruvec, idx, val);
	}
	rcu_read_unlock();
}

791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
/**
 * __count_memcg_events - account VM events in a cgroup
 * @memcg: the memory cgroup
 * @idx: the event item
 * @count: the number of events that occured
 */
void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
			  unsigned long count)
{
	unsigned long x;

	if (mem_cgroup_disabled())
		return;

	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
807 808
		struct mem_cgroup *mi;

809 810 811 812 813
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->events[idx], x);
814 815
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmevents[idx]);
816 817 818 819 820
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
}

821
static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
822
{
823
	return atomic_long_read(&memcg->vmevents[event]);
824 825
}

826 827
static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
{
828 829 830 831 832 833
	long x = 0;
	int cpu;

	for_each_possible_cpu(cpu)
		x += per_cpu(memcg->vmstats_local->events[event], cpu);
	return x;
834 835
}

836
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
837
					 struct page *page,
838
					 bool compound, int nr_pages)
839
{
840 841 842 843
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
844
	if (PageAnon(page))
845
		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
846
	else {
847
		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
848
		if (PageSwapBacked(page))
849
			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
850
	}
851

852 853
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
854
		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
855
	}
856

857 858
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
859
		__count_memcg_events(memcg, PGPGIN, 1);
860
	else {
861
		__count_memcg_events(memcg, PGPGOUT, 1);
862 863
		nr_pages = -nr_pages; /* for event */
	}
864

865
	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
866 867
}

868 869
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
870 871 872
{
	unsigned long val, next;

873 874
	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
875
	/* from time_after() in jiffies.h */
876
	if ((long)(next - val) < 0) {
877 878 879 880
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
881 882 883
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
884 885 886 887 888 889
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
890
		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
891
		return true;
892
	}
893
	return false;
894 895 896 897 898 899
}

/*
 * Check events in order.
 *
 */
900
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
901 902
{
	/* threshold event is triggered in finer grain than soft limit */
903 904
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
905
		bool do_softlimit;
906
		bool do_numainfo __maybe_unused;
907

908 909
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
910 911 912 913
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
914
		mem_cgroup_threshold(memcg);
915 916
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
917
#if MAX_NUMNODES > 1
918
		if (unlikely(do_numainfo))
919
			atomic_inc(&memcg->numainfo_events);
920
#endif
921
	}
922 923
}

924
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
925
{
926 927 928 929 930 931 932 933
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

934
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
935
}
M
Michal Hocko 已提交
936
EXPORT_SYMBOL(mem_cgroup_from_task);
937

938 939 940 941 942 943 944 945 946
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
 * returned.
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
947
{
948 949 950 951
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
952

953 954
	rcu_read_lock();
	do {
955 956 957 958 959 960
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
961
			memcg = root_mem_cgroup;
962 963 964 965 966
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
967
	} while (!css_tryget_online(&memcg->css));
968
	rcu_read_unlock();
969
	return memcg;
970
}
971 972
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
/**
 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
 * @page: page from which memcg should be extracted.
 *
 * Obtain a reference on page->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned.
 */
struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
{
	struct mem_cgroup *memcg = page->mem_cgroup;

	if (mem_cgroup_disabled())
		return NULL;

	rcu_read_lock();
	if (!memcg || !css_tryget_online(&memcg->css))
		memcg = root_mem_cgroup;
	rcu_read_unlock();
	return memcg;
}
EXPORT_SYMBOL(get_mem_cgroup_from_page);

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
/**
 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
 */
static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
{
	if (unlikely(current->active_memcg)) {
		struct mem_cgroup *memcg = root_mem_cgroup;

		rcu_read_lock();
		if (css_tryget_online(&current->active_memcg->css))
			memcg = current->active_memcg;
		rcu_read_unlock();
		return memcg;
	}
	return get_mem_cgroup_from_mm(current->mm);
}
1011

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
1025
 * Reclaimers can specify a node and a priority level in @reclaim to
1026
 * divide up the memcgs in the hierarchy among all concurrent
1027
 * reclaimers operating on the same node and priority.
1028
 */
1029
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1030
				   struct mem_cgroup *prev,
1031
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1032
{
M
Michal Hocko 已提交
1033
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1034
	struct cgroup_subsys_state *css = NULL;
1035
	struct mem_cgroup *memcg = NULL;
1036
	struct mem_cgroup *pos = NULL;
1037

1038 1039
	if (mem_cgroup_disabled())
		return NULL;
1040

1041 1042
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1043

1044
	if (prev && !reclaim)
1045
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1046

1047 1048
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1049
			goto out;
1050
		return root;
1051
	}
K
KAMEZAWA Hiroyuki 已提交
1052

1053
	rcu_read_lock();
M
Michal Hocko 已提交
1054

1055
	if (reclaim) {
1056
		struct mem_cgroup_per_node *mz;
1057

1058
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1059 1060 1061 1062 1063
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

1064
		while (1) {
1065
			pos = READ_ONCE(iter->position);
1066 1067
			if (!pos || css_tryget(&pos->css))
				break;
1068
			/*
1069 1070 1071 1072 1073 1074
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
1075
			 */
1076 1077
			(void)cmpxchg(&iter->position, pos, NULL);
		}
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1095
		}
K
KAMEZAWA Hiroyuki 已提交
1096

1097 1098 1099 1100 1101 1102
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1103

1104 1105
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1106

1107 1108
		if (css_tryget(css))
			break;
1109

1110
		memcg = NULL;
1111
	}
1112 1113 1114

	if (reclaim) {
		/*
1115 1116 1117
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
1118
		 */
1119 1120
		(void)cmpxchg(&iter->position, pos, memcg);

1121 1122 1123 1124 1125 1126 1127
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1128
	}
1129

1130 1131
out_unlock:
	rcu_read_unlock();
1132
out:
1133 1134 1135
	if (prev && prev != root)
		css_put(&prev->css);

1136
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1137
}
K
KAMEZAWA Hiroyuki 已提交
1138

1139 1140 1141 1142 1143 1144 1145
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1146 1147 1148 1149 1150 1151
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1152

1153 1154
static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
					struct mem_cgroup *dead_memcg)
1155 1156
{
	struct mem_cgroup_reclaim_iter *iter;
1157 1158
	struct mem_cgroup_per_node *mz;
	int nid;
1159 1160
	int i;

1161 1162 1163 1164 1165 1166
	for_each_node(nid) {
		mz = mem_cgroup_nodeinfo(from, nid);
		for (i = 0; i <= DEF_PRIORITY; i++) {
			iter = &mz->iter[i];
			cmpxchg(&iter->position,
				dead_memcg, NULL);
1167 1168 1169 1170
		}
	}
}

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup *last;

	do {
		__invalidate_reclaim_iterators(memcg, dead_memcg);
		last = memcg;
	} while ((memcg = parent_mem_cgroup(memcg)));

	/*
	 * When cgruop1 non-hierarchy mode is used,
	 * parent_mem_cgroup() does not walk all the way up to the
	 * cgroup root (root_mem_cgroup). So we have to handle
	 * dead_memcg from cgroup root separately.
	 */
	if (last != root_mem_cgroup)
		__invalidate_reclaim_iterators(root_mem_cgroup,
						dead_memcg);
}

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

1217
		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

1229
/**
1230
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1231
 * @page: the page
1232
 * @pgdat: pgdat of the page
1233 1234 1235 1236
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1237
 */
M
Mel Gorman 已提交
1238
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
1239
{
1240
	struct mem_cgroup_per_node *mz;
1241
	struct mem_cgroup *memcg;
1242
	struct lruvec *lruvec;
1243

1244
	if (mem_cgroup_disabled()) {
M
Mel Gorman 已提交
1245
		lruvec = &pgdat->lruvec;
1246 1247
		goto out;
	}
1248

1249
	memcg = page->mem_cgroup;
1250
	/*
1251
	 * Swapcache readahead pages are added to the LRU - and
1252
	 * possibly migrated - before they are charged.
1253
	 */
1254 1255
	if (!memcg)
		memcg = root_mem_cgroup;
1256

1257
	mz = mem_cgroup_page_nodeinfo(memcg, page);
1258 1259 1260 1261 1262 1263 1264
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
1265 1266
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
1267
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1268
}
1269

1270
/**
1271 1272 1273
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1274
 * @zid: zone id of the accounted pages
1275
 * @nr_pages: positive when adding or negative when removing
1276
 *
1277 1278 1279
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1280
 */
1281
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1282
				int zid, int nr_pages)
1283
{
1284
	struct mem_cgroup_per_node *mz;
1285
	unsigned long *lru_size;
1286
	long size;
1287 1288 1289 1290

	if (mem_cgroup_disabled())
		return;

1291
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1292
	lru_size = &mz->lru_zone_size[zid][lru];
1293 1294 1295 1296 1297

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1298 1299 1300
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1301 1302 1303 1304 1305 1306
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1307
}
1308

1309
/**
1310
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1311
 * @memcg: the memory cgroup
1312
 *
1313
 * Returns the maximum amount of memory @mem can be charged with, in
1314
 * pages.
1315
 */
1316
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1317
{
1318 1319 1320
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1321

1322
	count = page_counter_read(&memcg->memory);
1323
	limit = READ_ONCE(memcg->memory.max);
1324 1325 1326
	if (count < limit)
		margin = limit - count;

1327
	if (do_memsw_account()) {
1328
		count = page_counter_read(&memcg->memsw);
1329
		limit = READ_ONCE(memcg->memsw.max);
1330 1331
		if (count <= limit)
			margin = min(margin, limit - count);
1332 1333
		else
			margin = 0;
1334 1335 1336
	}

	return margin;
1337 1338
}

1339
/*
Q
Qiang Huang 已提交
1340
 * A routine for checking "mem" is under move_account() or not.
1341
 *
Q
Qiang Huang 已提交
1342 1343 1344
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1345
 */
1346
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1347
{
1348 1349
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1350
	bool ret = false;
1351 1352 1353 1354 1355 1356 1357 1358 1359
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1360

1361 1362
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1363 1364
unlock:
	spin_unlock(&mc.lock);
1365 1366 1367
	return ret;
}

1368
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1369 1370
{
	if (mc.moving_task && current != mc.moving_task) {
1371
		if (mem_cgroup_under_move(memcg)) {
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1384 1385 1386 1387
static char *memory_stat_format(struct mem_cgroup *memcg)
{
	struct seq_buf s;
	int i;
1388

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
	if (!s.buffer)
		return NULL;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

	seq_buf_printf(&s, "anon %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_RSS) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_CACHE) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "kernel_stack %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
		       1024);
	seq_buf_printf(&s, "slab %llu\n",
		       (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
			     memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "sock %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_SOCK) *
		       PAGE_SIZE);

	seq_buf_printf(&s, "shmem %llu\n",
		       (u64)memcg_page_state(memcg, NR_SHMEM) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_mapped %llu\n",
		       (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_dirty %llu\n",
		       (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_writeback %llu\n",
		       (u64)memcg_page_state(memcg, NR_WRITEBACK) *
		       PAGE_SIZE);

	/*
	 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
	 * with the NR_ANON_THP vm counter, but right now it's a pain in the
	 * arse because it requires migrating the work out of rmap to a place
	 * where the page->mem_cgroup is set up and stable.
	 */
	seq_buf_printf(&s, "anon_thp %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
		       PAGE_SIZE);

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i],
			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			       PAGE_SIZE);

	seq_buf_printf(&s, "slab_reclaimable %llu\n",
		       (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "slab_unreclaimable %llu\n",
		       (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
		       PAGE_SIZE);

	/* Accumulated memory events */

	seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
	seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));

	seq_buf_printf(&s, "workingset_refault %lu\n",
		       memcg_page_state(memcg, WORKINGSET_REFAULT));
	seq_buf_printf(&s, "workingset_activate %lu\n",
		       memcg_page_state(memcg, WORKINGSET_ACTIVATE));
	seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
		       memcg_page_state(memcg, WORKINGSET_NODERECLAIM));

	seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
	seq_buf_printf(&s, "pgscan %lu\n",
		       memcg_events(memcg, PGSCAN_KSWAPD) +
		       memcg_events(memcg, PGSCAN_DIRECT));
	seq_buf_printf(&s, "pgsteal %lu\n",
		       memcg_events(memcg, PGSTEAL_KSWAPD) +
		       memcg_events(memcg, PGSTEAL_DIRECT));
	seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
	seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
	seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
	seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	seq_buf_printf(&s, "thp_fault_alloc %lu\n",
		       memcg_events(memcg, THP_FAULT_ALLOC));
	seq_buf_printf(&s, "thp_collapse_alloc %lu\n",
		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

	/* The above should easily fit into one page */
	WARN_ON_ONCE(seq_buf_has_overflowed(&s));

	return s.buffer;
}
1492

1493
#define K(x) ((x) << (PAGE_SHIFT-10))
1494
/**
1495 1496
 * mem_cgroup_print_oom_context: Print OOM information relevant to
 * memory controller.
1497 1498 1499 1500 1501 1502
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
1503
void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1504 1505 1506
{
	rcu_read_lock();

1507 1508 1509 1510 1511
	if (memcg) {
		pr_cont(",oom_memcg=");
		pr_cont_cgroup_path(memcg->css.cgroup);
	} else
		pr_cont(",global_oom");
1512
	if (p) {
1513
		pr_cont(",task_memcg=");
1514 1515
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	}
1516
	rcu_read_unlock();
1517 1518 1519 1520 1521 1522 1523 1524 1525
}

/**
 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
 * memory controller.
 * @memcg: The memory cgroup that went over limit
 */
void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
1526
	char *buf;
1527

1528 1529
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1530
		K((u64)memcg->memory.max), memcg->memory.failcnt);
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->swap)),
			K((u64)memcg->swap.max), memcg->swap.failcnt);
	else {
		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->memsw)),
			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->kmem)),
			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1542
	}
1543 1544 1545 1546 1547 1548 1549 1550 1551

	pr_info("Memory cgroup stats for ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(":");
	buf = memory_stat_format(memcg);
	if (!buf)
		return;
	pr_info("%s", buf);
	kfree(buf);
1552 1553
}

D
David Rientjes 已提交
1554 1555 1556
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1557
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1558
{
1559
	unsigned long max;
1560

1561
	max = memcg->memory.max;
1562
	if (mem_cgroup_swappiness(memcg)) {
1563 1564
		unsigned long memsw_max;
		unsigned long swap_max;
1565

1566 1567 1568 1569
		memsw_max = memcg->memsw.max;
		swap_max = memcg->swap.max;
		swap_max = min(swap_max, (unsigned long)total_swap_pages);
		max = min(max + swap_max, memsw_max);
1570
	}
1571
	return max;
D
David Rientjes 已提交
1572 1573
}

1574
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1575
				     int order)
1576
{
1577 1578 1579
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1580
		.memcg = memcg,
1581 1582 1583
		.gfp_mask = gfp_mask,
		.order = order,
	};
1584
	bool ret;
1585

1586 1587 1588 1589 1590 1591 1592
	if (mutex_lock_killable(&oom_lock))
		return true;
	/*
	 * A few threads which were not waiting at mutex_lock_killable() can
	 * fail to bail out. Therefore, check again after holding oom_lock.
	 */
	ret = should_force_charge() || out_of_memory(&oc);
1593
	mutex_unlock(&oom_lock);
1594
	return ret;
1595 1596
}

1597 1598
#if MAX_NUMNODES > 1

1599 1600
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1601
 * @memcg: the target memcg
1602 1603 1604 1605 1606 1607 1608
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1609
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1610 1611
		int nid, bool noswap)
{
1612 1613
	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);

1614 1615
	if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
	    lruvec_page_state(lruvec, NR_ACTIVE_FILE))
1616 1617 1618
		return true;
	if (noswap || !total_swap_pages)
		return false;
1619 1620
	if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
	    lruvec_page_state(lruvec, NR_ACTIVE_ANON))
1621 1622 1623 1624
		return true;
	return false;

}
1625 1626 1627 1628 1629 1630 1631

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1632
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1633 1634
{
	int nid;
1635 1636 1637 1638
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1639
	if (!atomic_read(&memcg->numainfo_events))
1640
		return;
1641
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1642 1643 1644
		return;

	/* make a nodemask where this memcg uses memory from */
1645
	memcg->scan_nodes = node_states[N_MEMORY];
1646

1647
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1648

1649 1650
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1651
	}
1652

1653 1654
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1669
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1670 1671 1672
{
	int node;

1673 1674
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1675

1676
	node = next_node_in(node, memcg->scan_nodes);
1677
	/*
1678 1679 1680
	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
	 * last time it really checked all the LRUs due to rate limiting.
	 * Fallback to the current node in that case for simplicity.
1681 1682 1683 1684
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1685
	memcg->last_scanned_node = node;
1686 1687 1688
	return node;
}
#else
1689
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1690 1691 1692 1693 1694
{
	return 0;
}
#endif

1695
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1696
				   pg_data_t *pgdat,
1697 1698 1699 1700 1701 1702 1703 1704 1705
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1706
		.pgdat = pgdat,
1707 1708 1709
		.priority = 0,
	};

1710
	excess = soft_limit_excess(root_memcg);
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1736
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1737
					pgdat, &nr_scanned);
1738
		*total_scanned += nr_scanned;
1739
		if (!soft_limit_excess(root_memcg))
1740
			break;
1741
	}
1742 1743
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1744 1745
}

1746 1747 1748 1749 1750 1751
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1752 1753
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1754 1755 1756 1757
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1758
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1759
{
1760
	struct mem_cgroup *iter, *failed = NULL;
1761

1762 1763
	spin_lock(&memcg_oom_lock);

1764
	for_each_mem_cgroup_tree(iter, memcg) {
1765
		if (iter->oom_lock) {
1766 1767 1768 1769 1770
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1771 1772
			mem_cgroup_iter_break(memcg, iter);
			break;
1773 1774
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1775
	}
K
KAMEZAWA Hiroyuki 已提交
1776

1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1788
		}
1789 1790
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1791 1792 1793 1794

	spin_unlock(&memcg_oom_lock);

	return !failed;
1795
}
1796

1797
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1798
{
K
KAMEZAWA Hiroyuki 已提交
1799 1800
	struct mem_cgroup *iter;

1801
	spin_lock(&memcg_oom_lock);
1802
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1803
	for_each_mem_cgroup_tree(iter, memcg)
1804
		iter->oom_lock = false;
1805
	spin_unlock(&memcg_oom_lock);
1806 1807
}

1808
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1809 1810 1811
{
	struct mem_cgroup *iter;

1812
	spin_lock(&memcg_oom_lock);
1813
	for_each_mem_cgroup_tree(iter, memcg)
1814 1815
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1816 1817
}

1818
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1819 1820 1821
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1822 1823
	/*
	 * When a new child is created while the hierarchy is under oom,
1824
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1825
	 */
1826
	spin_lock(&memcg_oom_lock);
1827
	for_each_mem_cgroup_tree(iter, memcg)
1828 1829 1830
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1831 1832
}

K
KAMEZAWA Hiroyuki 已提交
1833 1834
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1835
struct oom_wait_info {
1836
	struct mem_cgroup *memcg;
1837
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1838 1839
};

1840
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1841 1842
	unsigned mode, int sync, void *arg)
{
1843 1844
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1845 1846 1847
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1848
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1849

1850 1851
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1852 1853 1854 1855
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1856
static void memcg_oom_recover(struct mem_cgroup *memcg)
1857
{
1858 1859 1860 1861 1862 1863 1864 1865 1866
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1867
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1868 1869
}

1870 1871 1872 1873 1874 1875 1876 1877
enum oom_status {
	OOM_SUCCESS,
	OOM_FAILED,
	OOM_ASYNC,
	OOM_SKIPPED
};

static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1878
{
1879 1880 1881
	enum oom_status ret;
	bool locked;

1882 1883 1884
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		return OOM_SKIPPED;

1885 1886
	memcg_memory_event(memcg, MEMCG_OOM);

K
KAMEZAWA Hiroyuki 已提交
1887
	/*
1888 1889 1890 1891
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1892 1893 1894 1895
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1896
	 *
1897 1898 1899 1900 1901 1902 1903
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
K
KAMEZAWA Hiroyuki 已提交
1904
	 */
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
	if (memcg->oom_kill_disable) {
		if (!current->in_user_fault)
			return OOM_SKIPPED;
		css_get(&memcg->css);
		current->memcg_in_oom = memcg;
		current->memcg_oom_gfp_mask = mask;
		current->memcg_oom_order = order;

		return OOM_ASYNC;
	}

1916 1917 1918 1919 1920 1921 1922 1923
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	mem_cgroup_unmark_under_oom(memcg);
1924
	if (mem_cgroup_out_of_memory(memcg, mask, order))
1925 1926 1927 1928 1929 1930
		ret = OOM_SUCCESS;
	else
		ret = OOM_FAILED;

	if (locked)
		mem_cgroup_oom_unlock(memcg);
1931

1932
	return ret;
1933 1934 1935 1936
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1937
 * @handle: actually kill/wait or just clean up the OOM state
1938
 *
1939 1940
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1941
 *
1942
 * Memcg supports userspace OOM handling where failed allocations must
1943 1944 1945 1946
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1947
 * the end of the page fault to complete the OOM handling.
1948 1949
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1950
 * completed, %false otherwise.
1951
 */
1952
bool mem_cgroup_oom_synchronize(bool handle)
1953
{
T
Tejun Heo 已提交
1954
	struct mem_cgroup *memcg = current->memcg_in_oom;
1955
	struct oom_wait_info owait;
1956
	bool locked;
1957 1958 1959

	/* OOM is global, do not handle */
	if (!memcg)
1960
		return false;
1961

1962
	if (!handle)
1963
		goto cleanup;
1964 1965 1966 1967 1968

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
1969
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
1970

1971
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1982 1983
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1984
	} else {
1985
		schedule();
1986 1987 1988 1989 1990
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1991 1992 1993 1994 1995 1996 1997 1998
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1999
cleanup:
T
Tejun Heo 已提交
2000
	current->memcg_in_oom = NULL;
2001
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2002
	return true;
2003 2004
}

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
/**
 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 * @victim: task to be killed by the OOM killer
 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 *
 * Returns a pointer to a memory cgroup, which has to be cleaned up
 * by killing all belonging OOM-killable tasks.
 *
 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 */
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
					    struct mem_cgroup *oom_domain)
{
	struct mem_cgroup *oom_group = NULL;
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return NULL;

	if (!oom_domain)
		oom_domain = root_mem_cgroup;

	rcu_read_lock();

	memcg = mem_cgroup_from_task(victim);
	if (memcg == root_mem_cgroup)
		goto out;

	/*
	 * Traverse the memory cgroup hierarchy from the victim task's
	 * cgroup up to the OOMing cgroup (or root) to find the
	 * highest-level memory cgroup with oom.group set.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		if (memcg->oom_group)
			oom_group = memcg;

		if (memcg == oom_domain)
			break;
	}

	if (oom_group)
		css_get(&oom_group->css);
out:
	rcu_read_unlock();

	return oom_group;
}

void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
	pr_info("Tasks in ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(" are going to be killed due to memory.oom.group set\n");
}

2061
/**
2062 2063
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
2064
 *
2065
 * This function protects unlocked LRU pages from being moved to
2066 2067 2068 2069 2070
 * another cgroup.
 *
 * It ensures lifetime of the returned memcg. Caller is responsible
 * for the lifetime of the page; __unlock_page_memcg() is available
 * when @page might get freed inside the locked section.
2071
 */
2072
struct mem_cgroup *lock_page_memcg(struct page *page)
2073 2074
{
	struct mem_cgroup *memcg;
2075
	unsigned long flags;
2076

2077 2078 2079 2080
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
2081 2082 2083 2084 2085 2086 2087
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page itself from being freed. E.g. writeback
	 * doesn't hold a page reference and relies on PG_writeback to
	 * keep off truncation, migration and so forth.
         */
2088 2089 2090
	rcu_read_lock();

	if (mem_cgroup_disabled())
2091
		return NULL;
2092
again:
2093
	memcg = page->mem_cgroup;
2094
	if (unlikely(!memcg))
2095
		return NULL;
2096

Q
Qiang Huang 已提交
2097
	if (atomic_read(&memcg->moving_account) <= 0)
2098
		return memcg;
2099

2100
	spin_lock_irqsave(&memcg->move_lock, flags);
2101
	if (memcg != page->mem_cgroup) {
2102
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2103 2104
		goto again;
	}
2105 2106 2107 2108

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
2109
	 * the task who has the lock for unlock_page_memcg().
2110 2111 2112
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2113

2114
	return memcg;
2115
}
2116
EXPORT_SYMBOL(lock_page_memcg);
2117

2118
/**
2119 2120 2121 2122
 * __unlock_page_memcg - unlock and unpin a memcg
 * @memcg: the memcg
 *
 * Unlock and unpin a memcg returned by lock_page_memcg().
2123
 */
2124
void __unlock_page_memcg(struct mem_cgroup *memcg)
2125
{
2126 2127 2128 2129 2130 2131 2132 2133
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2134

2135
	rcu_read_unlock();
2136
}
2137 2138 2139 2140 2141 2142 2143 2144 2145

/**
 * unlock_page_memcg - unlock a page->mem_cgroup binding
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
	__unlock_page_memcg(page->mem_cgroup);
}
2146
EXPORT_SYMBOL(unlock_page_memcg);
2147

2148 2149
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2150
	unsigned int nr_pages;
2151
	struct work_struct work;
2152
	unsigned long flags;
2153
#define FLUSHING_CACHED_CHARGE	0
2154 2155
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2156
static DEFINE_MUTEX(percpu_charge_mutex);
2157

2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2168
 */
2169
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2170 2171
{
	struct memcg_stock_pcp *stock;
2172
	unsigned long flags;
2173
	bool ret = false;
2174

2175
	if (nr_pages > MEMCG_CHARGE_BATCH)
2176
		return ret;
2177

2178 2179 2180
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2181
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2182
		stock->nr_pages -= nr_pages;
2183 2184
		ret = true;
	}
2185 2186 2187

	local_irq_restore(flags);

2188 2189 2190 2191
	return ret;
}

/*
2192
 * Returns stocks cached in percpu and reset cached information.
2193 2194 2195 2196 2197
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2198
	if (stock->nr_pages) {
2199
		page_counter_uncharge(&old->memory, stock->nr_pages);
2200
		if (do_memsw_account())
2201
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2202
		css_put_many(&old->css, stock->nr_pages);
2203
		stock->nr_pages = 0;
2204 2205 2206 2207 2208 2209
	}
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
2210 2211 2212
	struct memcg_stock_pcp *stock;
	unsigned long flags;

2213 2214 2215 2216
	/*
	 * The only protection from memory hotplug vs. drain_stock races is
	 * that we always operate on local CPU stock here with IRQ disabled
	 */
2217 2218 2219
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2220
	drain_stock(stock);
2221
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2222 2223

	local_irq_restore(flags);
2224 2225 2226
}

/*
2227
 * Cache charges(val) to local per_cpu area.
2228
 * This will be consumed by consume_stock() function, later.
2229
 */
2230
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2231
{
2232 2233 2234 2235
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
2236

2237
	stock = this_cpu_ptr(&memcg_stock);
2238
	if (stock->cached != memcg) { /* reset if necessary */
2239
		drain_stock(stock);
2240
		stock->cached = memcg;
2241
	}
2242
	stock->nr_pages += nr_pages;
2243

2244
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2245 2246
		drain_stock(stock);

2247
	local_irq_restore(flags);
2248 2249 2250
}

/*
2251
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2252
 * of the hierarchy under it.
2253
 */
2254
static void drain_all_stock(struct mem_cgroup *root_memcg)
2255
{
2256
	int cpu, curcpu;
2257

2258 2259 2260
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2261 2262 2263 2264 2265 2266
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
2267
	curcpu = get_cpu();
2268 2269
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2270
		struct mem_cgroup *memcg;
2271

2272
		memcg = stock->cached;
2273
		if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
2274
			continue;
2275 2276
		if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
			css_put(&memcg->css);
2277
			continue;
2278
		}
2279 2280 2281 2282 2283 2284
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2285
		css_put(&memcg->css);
2286
	}
2287
	put_cpu();
2288
	mutex_unlock(&percpu_charge_mutex);
2289 2290
}

2291
static int memcg_hotplug_cpu_dead(unsigned int cpu)
2292 2293
{
	struct memcg_stock_pcp *stock;
2294
	struct mem_cgroup *memcg, *mi;
2295 2296 2297

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
2298 2299 2300 2301 2302 2303 2304 2305

	for_each_mem_cgroup(memcg) {
		int i;

		for (i = 0; i < MEMCG_NR_STAT; i++) {
			int nid;
			long x;

2306
			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2307
			if (x)
2308 2309
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmstats[i]);
2310 2311 2312 2313 2314 2315 2316 2317 2318

			if (i >= NR_VM_NODE_STAT_ITEMS)
				continue;

			for_each_node(nid) {
				struct mem_cgroup_per_node *pn;

				pn = mem_cgroup_nodeinfo(memcg, nid);
				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2319
				if (x)
2320 2321 2322
					do {
						atomic_long_add(x, &pn->lruvec_stat[i]);
					} while ((pn = parent_nodeinfo(pn, nid)));
2323 2324 2325
			}
		}

2326
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2327 2328
			long x;

2329
			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2330
			if (x)
2331 2332
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmevents[i]);
2333 2334 2335
		}
	}

2336
	return 0;
2337 2338
}

2339 2340 2341 2342 2343 2344 2345
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
2346
		memcg_memory_event(memcg, MEMCG_HIGH);
2347 2348 2349 2350 2351 2352 2353 2354 2355
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
2356
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2357 2358
}

2359 2360 2361 2362 2363 2364 2365
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2366
	struct mem_cgroup *memcg;
2367 2368 2369 2370

	if (likely(!nr_pages))
		return;

2371 2372
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
2373 2374 2375 2376
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

2377 2378
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2379
{
2380
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2381
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2382
	struct mem_cgroup *mem_over_limit;
2383
	struct page_counter *counter;
2384
	unsigned long nr_reclaimed;
2385 2386
	bool may_swap = true;
	bool drained = false;
2387
	enum oom_status oom_status;
2388

2389
	if (mem_cgroup_is_root(memcg))
2390
		return 0;
2391
retry:
2392
	if (consume_stock(memcg, nr_pages))
2393
		return 0;
2394

2395
	if (!do_memsw_account() ||
2396 2397
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2398
			goto done_restock;
2399
		if (do_memsw_account())
2400 2401
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2402
	} else {
2403
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2404
		may_swap = false;
2405
	}
2406

2407 2408 2409 2410
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2411

2412 2413 2414 2415 2416 2417
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
2418
	if (unlikely(should_force_charge()))
2419
		goto force;
2420

2421 2422 2423 2424 2425 2426 2427 2428 2429
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2430 2431 2432
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2433
	if (!gfpflags_allow_blocking(gfp_mask))
2434
		goto nomem;
2435

2436
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2437

2438 2439
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2440

2441
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2442
		goto retry;
2443

2444
	if (!drained) {
2445
		drain_all_stock(mem_over_limit);
2446 2447 2448 2449
		drained = true;
		goto retry;
	}

2450 2451
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2452 2453 2454 2455 2456 2457 2458 2459 2460
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2461
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2462 2463 2464 2465 2466 2467 2468 2469
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2470 2471 2472
	if (nr_retries--)
		goto retry;

2473
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2474 2475
		goto nomem;

2476
	if (gfp_mask & __GFP_NOFAIL)
2477
		goto force;
2478

2479
	if (fatal_signal_pending(current))
2480
		goto force;
2481

2482 2483 2484 2485 2486 2487
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2488
		       get_order(nr_pages * PAGE_SIZE));
2489 2490 2491 2492 2493 2494 2495 2496 2497
	switch (oom_status) {
	case OOM_SUCCESS:
		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
		goto retry;
	case OOM_FAILED:
		goto force;
	default:
		goto nomem;
	}
2498
nomem:
2499
	if (!(gfp_mask & __GFP_NOFAIL))
2500
		return -ENOMEM;
2501 2502 2503 2504 2505 2506 2507
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2508
	if (do_memsw_account())
2509 2510 2511 2512
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2513 2514

done_restock:
2515
	css_get_many(&memcg->css, batch);
2516 2517
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2518

2519
	/*
2520 2521
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2522
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2523 2524 2525 2526
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2527 2528
	 */
	do {
2529
		if (page_counter_read(&memcg->memory) > memcg->high) {
2530 2531 2532 2533 2534
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2535
			current->memcg_nr_pages_over_high += batch;
2536 2537 2538
			set_notify_resume(current);
			break;
		}
2539
	} while ((memcg = parent_mem_cgroup(memcg)));
2540 2541

	return 0;
2542
}
2543

2544
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2545
{
2546 2547 2548
	if (mem_cgroup_is_root(memcg))
		return;

2549
	page_counter_uncharge(&memcg->memory, nr_pages);
2550
	if (do_memsw_account())
2551
		page_counter_uncharge(&memcg->memsw, nr_pages);
2552

2553
	css_put_many(&memcg->css, nr_pages);
2554 2555
}

2556 2557
static void lock_page_lru(struct page *page, int *isolated)
{
2558
	pg_data_t *pgdat = page_pgdat(page);
2559

2560
	spin_lock_irq(&pgdat->lru_lock);
2561 2562 2563
	if (PageLRU(page)) {
		struct lruvec *lruvec;

2564
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2565 2566 2567 2568 2569 2570 2571 2572 2573
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
2574
	pg_data_t *pgdat = page_pgdat(page);
2575 2576 2577 2578

	if (isolated) {
		struct lruvec *lruvec;

2579
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2580 2581 2582 2583
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
2584
	spin_unlock_irq(&pgdat->lru_lock);
2585 2586
}

2587
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2588
			  bool lrucare)
2589
{
2590
	int isolated;
2591

2592
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2593 2594 2595 2596 2597

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2598 2599
	if (lrucare)
		lock_page_lru(page, &isolated);
2600

2601 2602
	/*
	 * Nobody should be changing or seriously looking at
2603
	 * page->mem_cgroup at this point:
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2615
	page->mem_cgroup = memcg;
2616

2617 2618
	if (lrucare)
		unlock_page_lru(page, isolated);
2619
}
2620

2621
#ifdef CONFIG_MEMCG_KMEM
2622
static int memcg_alloc_cache_id(void)
2623
{
2624 2625 2626
	int id, size;
	int err;

2627
	id = ida_simple_get(&memcg_cache_ida,
2628 2629 2630
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2631

2632
	if (id < memcg_nr_cache_ids)
2633 2634 2635 2636 2637 2638
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2639
	down_write(&memcg_cache_ids_sem);
2640 2641

	size = 2 * (id + 1);
2642 2643 2644 2645 2646
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2647
	err = memcg_update_all_caches(size);
2648 2649
	if (!err)
		err = memcg_update_all_list_lrus(size);
2650 2651 2652 2653 2654
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2655
	if (err) {
2656
		ida_simple_remove(&memcg_cache_ida, id);
2657 2658 2659 2660 2661 2662 2663
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2664
	ida_simple_remove(&memcg_cache_ida, id);
2665 2666
}

2667
struct memcg_kmem_cache_create_work {
2668 2669 2670 2671 2672
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2673
static void memcg_kmem_cache_create_func(struct work_struct *w)
2674
{
2675 2676
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2677 2678
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2679

2680
	memcg_create_kmem_cache(memcg, cachep);
2681

2682
	css_put(&memcg->css);
2683 2684 2685 2686 2687 2688
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2689
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2690
					       struct kmem_cache *cachep)
2691
{
2692
	struct memcg_kmem_cache_create_work *cw;
2693

2694 2695 2696
	if (!css_tryget_online(&memcg->css))
		return;

2697
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2698
	if (!cw)
2699
		return;
2700

2701 2702
	cw->memcg = memcg;
	cw->cachep = cachep;
2703
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2704

2705
	queue_work(memcg_kmem_cache_wq, &cw->work);
2706 2707
}

2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
static inline bool memcg_kmem_bypass(void)
{
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;
	return false;
}

/**
 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
 * @cachep: the original global kmem cache
 *
2719 2720 2721
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
2722 2723 2724
 * If the cache does not exist yet, if we are the first user of it, we
 * create it asynchronously in a workqueue and let the current allocation
 * go through with the original cache.
2725
 *
2726 2727 2728 2729
 * This function takes a reference to the cache it returns to assure it
 * won't get destroyed while we are working with it. Once the caller is
 * done with it, memcg_kmem_put_cache() must be called to release the
 * reference.
2730
 */
2731
struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2732 2733
{
	struct mem_cgroup *memcg;
2734
	struct kmem_cache *memcg_cachep;
2735
	struct memcg_cache_array *arr;
2736
	int kmemcg_id;
2737

2738
	VM_BUG_ON(!is_root_cache(cachep));
2739

2740
	if (memcg_kmem_bypass())
V
Vladimir Davydov 已提交
2741 2742
		return cachep;

2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
	rcu_read_lock();

	if (unlikely(current->active_memcg))
		memcg = current->active_memcg;
	else
		memcg = mem_cgroup_from_task(current);

	if (!memcg || memcg == root_mem_cgroup)
		goto out_unlock;

2753
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2754
	if (kmemcg_id < 0)
2755
		goto out_unlock;
2756

2757 2758 2759 2760 2761 2762 2763 2764
	arr = rcu_dereference(cachep->memcg_params.memcg_caches);

	/*
	 * Make sure we will access the up-to-date value. The code updating
	 * memcg_caches issues a write barrier to match the data dependency
	 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
	 */
	memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2765 2766 2767 2768 2769 2770 2771 2772 2773

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2774 2775 2776
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2777 2778 2779 2780 2781 2782 2783
	 *
	 * If the memcg is dying or memcg_cache is about to be released,
	 * don't bother creating new kmem_caches. Because memcg_cachep
	 * is ZEROed as the fist step of kmem offlining, we don't need
	 * percpu_ref_tryget_live() here. css_tryget_online() check in
	 * memcg_schedule_kmem_cache_create() will prevent us from
	 * creation of a new kmem_cache.
2784
	 */
2785 2786 2787 2788 2789 2790
	if (unlikely(!memcg_cachep))
		memcg_schedule_kmem_cache_create(memcg, cachep);
	else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
		cachep = memcg_cachep;
out_unlock:
	rcu_read_unlock();
2791
	return cachep;
2792 2793
}

2794 2795 2796 2797 2798
/**
 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
 * @cachep: the cache returned by memcg_kmem_get_cache
 */
void memcg_kmem_put_cache(struct kmem_cache *cachep)
2799 2800
{
	if (!is_root_cache(cachep))
2801
		percpu_ref_put(&cachep->memcg_params.refcnt);
2802 2803
}

2804
/**
2805
 * __memcg_kmem_charge_memcg: charge a kmem page
2806 2807 2808 2809 2810 2811 2812
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 * @memcg: memory cgroup to charge
 *
 * Returns 0 on success, an error code on failure.
 */
2813
int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2814
			    struct mem_cgroup *memcg)
2815
{
2816 2817
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2818 2819
	int ret;

2820
	ret = try_charge(memcg, gfp, nr_pages);
2821
	if (ret)
2822
		return ret;
2823 2824 2825 2826 2827

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2828
	}
2829
	return 0;
2830 2831
}

2832
/**
2833
 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2834 2835 2836 2837 2838 2839
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
2840
int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2841
{
2842
	struct mem_cgroup *memcg;
2843
	int ret = 0;
2844

2845
	if (memcg_kmem_bypass())
2846 2847
		return 0;

2848
	memcg = get_mem_cgroup_from_current();
2849
	if (!mem_cgroup_is_root(memcg)) {
2850
		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2851 2852
		if (!ret) {
			page->mem_cgroup = memcg;
2853
			__SetPageKmemcg(page);
2854
		}
2855
	}
2856
	css_put(&memcg->css);
2857
	return ret;
2858
}
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874

/**
 * __memcg_kmem_uncharge_memcg: uncharge a kmem page
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
 */
void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
				 unsigned int nr_pages)
{
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

	page_counter_uncharge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_uncharge(&memcg->memsw, nr_pages);
}
2875
/**
2876
 * __memcg_kmem_uncharge: uncharge a kmem page
2877 2878 2879
 * @page: page to uncharge
 * @order: allocation order
 */
2880
void __memcg_kmem_uncharge(struct page *page, int order)
2881
{
2882
	struct mem_cgroup *memcg = page->mem_cgroup;
2883
	unsigned int nr_pages = 1 << order;
2884 2885 2886 2887

	if (!memcg)
		return;

2888
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2889
	__memcg_kmem_uncharge_memcg(memcg, nr_pages);
2890
	page->mem_cgroup = NULL;
2891 2892 2893 2894 2895

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);

2896
	css_put_many(&memcg->css, nr_pages);
2897
}
2898
#endif /* CONFIG_MEMCG_KMEM */
2899

2900 2901 2902 2903
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2904
 * pgdat->lru_lock and migration entries setup in all page mappings.
2905
 */
2906
void mem_cgroup_split_huge_fixup(struct page *head)
2907
{
2908
	int i;
2909

2910 2911
	if (mem_cgroup_disabled())
		return;
2912

2913
	for (i = 1; i < HPAGE_PMD_NR; i++)
2914
		head[i].mem_cgroup = head->mem_cgroup;
2915

2916
	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2917
}
2918
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2919

A
Andrew Morton 已提交
2920
#ifdef CONFIG_MEMCG_SWAP
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2932
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2933 2934 2935
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2936
				struct mem_cgroup *from, struct mem_cgroup *to)
2937 2938 2939
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2940 2941
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2942 2943

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2944 2945
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
2946 2947 2948 2949 2950 2951
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2952
				struct mem_cgroup *from, struct mem_cgroup *to)
2953 2954 2955
{
	return -EINVAL;
}
2956
#endif
K
KAMEZAWA Hiroyuki 已提交
2957

2958
static DEFINE_MUTEX(memcg_max_mutex);
2959

2960 2961
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
2962
{
2963
	bool enlarge = false;
2964
	bool drained = false;
2965
	int ret;
2966 2967
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2968

2969
	do {
2970 2971 2972 2973
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2974

2975
		mutex_lock(&memcg_max_mutex);
2976 2977
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
2978
		 * break our basic invariant rule memory.max <= memsw.max.
2979
		 */
2980 2981
		limits_invariant = memsw ? max >= memcg->memory.max :
					   max <= memcg->memsw.max;
2982
		if (!limits_invariant) {
2983
			mutex_unlock(&memcg_max_mutex);
2984 2985 2986
			ret = -EINVAL;
			break;
		}
2987
		if (max > counter->max)
2988
			enlarge = true;
2989 2990
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
2991 2992 2993 2994

		if (!ret)
			break;

2995 2996 2997 2998 2999 3000
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

3001 3002 3003 3004 3005 3006
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
3007

3008 3009
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3010

3011 3012 3013
	return ret;
}

3014
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3015 3016 3017 3018
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
3019
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3020 3021
	unsigned long reclaimed;
	int loop = 0;
3022
	struct mem_cgroup_tree_per_node *mctz;
3023
	unsigned long excess;
3024 3025 3026 3027 3028
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

3029
	mctz = soft_limit_tree_node(pgdat->node_id);
3030 3031 3032 3033 3034 3035

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
3036
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3037 3038
		return 0;

3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
3053
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3054 3055 3056
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3057
		spin_lock_irq(&mctz->lock);
3058
		__mem_cgroup_remove_exceeded(mz, mctz);
3059 3060 3061 3062 3063 3064

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3065 3066 3067
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3068
		excess = soft_limit_excess(mz->memcg);
3069 3070 3071 3072 3073 3074 3075 3076 3077
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3078
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3079
		spin_unlock_irq(&mctz->lock);
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3097 3098 3099 3100 3101 3102
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
3103 3104
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3105 3106 3107 3108 3109 3110
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3111 3112
}

3113
/*
3114
 * Reclaims as many pages from the given memcg as possible.
3115 3116 3117 3118 3119 3120 3121
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

3122 3123
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3124 3125 3126

	drain_all_stock(memcg);

3127
	/* try to free all pages in this cgroup */
3128
	while (nr_retries && page_counter_read(&memcg->memory)) {
3129
		int progress;
3130

3131 3132 3133
		if (signal_pending(current))
			return -EINTR;

3134 3135
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3136
		if (!progress) {
3137
			nr_retries--;
3138
			/* maybe some writeback is necessary */
3139
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3140
		}
3141 3142

	}
3143 3144

	return 0;
3145 3146
}

3147 3148 3149
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3150
{
3151
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3152

3153 3154
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3155
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3156 3157
}

3158 3159
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3160
{
3161
	return mem_cgroup_from_css(css)->use_hierarchy;
3162 3163
}

3164 3165
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3166 3167
{
	int retval = 0;
3168
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3169
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3170

3171
	if (memcg->use_hierarchy == val)
3172
		return 0;
3173

3174
	/*
3175
	 * If parent's use_hierarchy is set, we can't make any modifications
3176 3177 3178 3179 3180 3181
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3182
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3183
				(val == 1 || val == 0)) {
3184
		if (!memcg_has_children(memcg))
3185
			memcg->use_hierarchy = val;
3186 3187 3188 3189
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3190

3191 3192 3193
	return retval;
}

3194
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3195
{
3196
	unsigned long val;
3197

3198
	if (mem_cgroup_is_root(memcg)) {
3199 3200 3201 3202
		val = memcg_page_state(memcg, MEMCG_CACHE) +
			memcg_page_state(memcg, MEMCG_RSS);
		if (swap)
			val += memcg_page_state(memcg, MEMCG_SWAP);
3203
	} else {
3204
		if (!swap)
3205
			val = page_counter_read(&memcg->memory);
3206
		else
3207
			val = page_counter_read(&memcg->memsw);
3208
	}
3209
	return val;
3210 3211
}

3212 3213 3214 3215 3216 3217 3218
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3219

3220
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3221
			       struct cftype *cft)
B
Balbir Singh 已提交
3222
{
3223
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3224
	struct page_counter *counter;
3225

3226
	switch (MEMFILE_TYPE(cft->private)) {
3227
	case _MEM:
3228 3229
		counter = &memcg->memory;
		break;
3230
	case _MEMSWAP:
3231 3232
		counter = &memcg->memsw;
		break;
3233
	case _KMEM:
3234
		counter = &memcg->kmem;
3235
		break;
V
Vladimir Davydov 已提交
3236
	case _TCP:
3237
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3238
		break;
3239 3240 3241
	default:
		BUG();
	}
3242 3243 3244 3245

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
3246
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3247
		if (counter == &memcg->memsw)
3248
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3249 3250
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
3251
		return (u64)counter->max * PAGE_SIZE;
3252 3253 3254 3255 3256 3257 3258 3259 3260
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3261
}
3262

3263
static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg, bool slab_only)
3264 3265 3266 3267
{
	unsigned long stat[MEMCG_NR_STAT];
	struct mem_cgroup *mi;
	int node, cpu, i;
3268
	int min_idx, max_idx;
3269

3270 3271 3272 3273 3274 3275 3276 3277 3278
	if (slab_only) {
		min_idx = NR_SLAB_RECLAIMABLE;
		max_idx = NR_SLAB_UNRECLAIMABLE;
	} else {
		min_idx = 0;
		max_idx = MEMCG_NR_STAT;
	}

	for (i = min_idx; i < max_idx; i++)
3279 3280 3281
		stat[i] = 0;

	for_each_online_cpu(cpu)
3282
		for (i = min_idx; i < max_idx; i++)
3283 3284 3285
			stat[i] += raw_cpu_read(memcg->vmstats_percpu->stat[i]);

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3286
		for (i = min_idx; i < max_idx; i++)
3287 3288
			atomic_long_add(stat[i], &mi->vmstats[i]);

3289 3290 3291
	if (!slab_only)
		max_idx = NR_VM_NODE_STAT_ITEMS;

3292 3293 3294 3295
	for_each_node(node) {
		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
		struct mem_cgroup_per_node *pi;

3296
		for (i = min_idx; i < max_idx; i++)
3297 3298 3299
			stat[i] = 0;

		for_each_online_cpu(cpu)
3300
			for (i = min_idx; i < max_idx; i++)
3301 3302 3303 3304
				stat[i] += raw_cpu_read(
					pn->lruvec_stat_cpu->count[i]);

		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3305
			for (i = min_idx; i < max_idx; i++)
3306 3307 3308 3309
				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
	}
}

3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
{
	unsigned long events[NR_VM_EVENT_ITEMS];
	struct mem_cgroup *mi;
	int cpu, i;

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
		events[i] = 0;

	for_each_online_cpu(cpu)
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
			events[i] += raw_cpu_read(
				memcg->vmstats_percpu->events[i]);

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
			atomic_long_add(events[i], &mi->vmevents[i]);
}

3329
#ifdef CONFIG_MEMCG_KMEM
3330
static int memcg_online_kmem(struct mem_cgroup *memcg)
3331 3332 3333
{
	int memcg_id;

3334 3335 3336
	if (cgroup_memory_nokmem)
		return 0;

3337
	BUG_ON(memcg->kmemcg_id >= 0);
3338
	BUG_ON(memcg->kmem_state);
3339

3340
	memcg_id = memcg_alloc_cache_id();
3341 3342
	if (memcg_id < 0)
		return memcg_id;
3343

3344
	static_branch_inc(&memcg_kmem_enabled_key);
3345
	/*
3346
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
3347
	 * kmemcg_id. Setting the id after enabling static branching will
3348 3349 3350
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3351
	memcg->kmemcg_id = memcg_id;
3352
	memcg->kmem_state = KMEM_ONLINE;
3353
	INIT_LIST_HEAD(&memcg->kmem_caches);
3354 3355

	return 0;
3356 3357
}

3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

3378 3379 3380 3381 3382 3383
	/*
	 * Deactivate and reparent kmem_caches. Then flush percpu
	 * slab statistics to have precise values at the parent and
	 * all ancestor levels. It's required to keep slab stats
	 * accurate after the reparenting of kmem_caches.
	 */
3384
	memcg_deactivate_kmem_caches(memcg, parent);
3385
	memcg_flush_percpu_vmstats(memcg, true);
3386 3387 3388 3389

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

3390 3391 3392 3393 3394 3395 3396 3397
	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
3398
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3399 3400 3401 3402 3403 3404 3405
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
3406 3407
	rcu_read_unlock();

3408
	memcg_drain_all_list_lrus(kmemcg_id, parent);
3409 3410 3411 3412 3413 3414

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
3415 3416 3417 3418
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

3419
	if (memcg->kmem_state == KMEM_ALLOCATED) {
3420
		WARN_ON(!list_empty(&memcg->kmem_caches));
3421 3422 3423
		static_branch_dec(&memcg_kmem_enabled_key);
	}
}
3424
#else
3425
static int memcg_online_kmem(struct mem_cgroup *memcg)
3426 3427 3428 3429 3430 3431 3432 3433 3434
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
3435
#endif /* CONFIG_MEMCG_KMEM */
3436

3437 3438
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
3439
{
3440
	int ret;
3441

3442 3443 3444
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
3445
	return ret;
3446
}
3447

3448
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
3449 3450 3451
{
	int ret;

3452
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3453

3454
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
3455 3456 3457
	if (ret)
		goto out;

3458
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3459 3460 3461
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3462 3463 3464
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
3465 3466 3467 3468 3469 3470
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3471
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
3472 3473 3474 3475
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3476
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3477 3478
	}
out:
3479
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3480 3481 3482
	return ret;
}

3483 3484 3485 3486
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3487 3488
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3489
{
3490
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3491
	unsigned long nr_pages;
3492 3493
	int ret;

3494
	buf = strstrip(buf);
3495
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3496 3497
	if (ret)
		return ret;
3498

3499
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3500
	case RES_LIMIT:
3501 3502 3503 3504
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3505 3506
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3507
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3508
			break;
3509
		case _MEMSWAP:
3510
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3511
			break;
3512
		case _KMEM:
3513
			ret = memcg_update_kmem_max(memcg, nr_pages);
3514
			break;
V
Vladimir Davydov 已提交
3515
		case _TCP:
3516
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
3517
			break;
3518
		}
3519
		break;
3520 3521 3522
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3523 3524
		break;
	}
3525
	return ret ?: nbytes;
B
Balbir Singh 已提交
3526 3527
}

3528 3529
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3530
{
3531
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3532
	struct page_counter *counter;
3533

3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3544
	case _TCP:
3545
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3546
		break;
3547 3548 3549
	default:
		BUG();
	}
3550

3551
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3552
	case RES_MAX_USAGE:
3553
		page_counter_reset_watermark(counter);
3554 3555
		break;
	case RES_FAILCNT:
3556
		counter->failcnt = 0;
3557
		break;
3558 3559
	default:
		BUG();
3560
	}
3561

3562
	return nbytes;
3563 3564
}

3565
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3566 3567
					struct cftype *cft)
{
3568
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3569 3570
}

3571
#ifdef CONFIG_MMU
3572
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3573 3574
					struct cftype *cft, u64 val)
{
3575
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3576

3577
	if (val & ~MOVE_MASK)
3578
		return -EINVAL;
3579

3580
	/*
3581 3582 3583 3584
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3585
	 */
3586
	memcg->move_charge_at_immigrate = val;
3587 3588
	return 0;
}
3589
#else
3590
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3591 3592 3593 3594 3595
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3596

3597
#ifdef CONFIG_NUMA
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614

#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)

static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
					   int nid, unsigned int lru_mask)
{
	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
	unsigned long nr = 0;
	enum lru_list lru;

	VM_BUG_ON((unsigned)nid >= nr_node_ids);

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3615
		nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628
	}
	return nr;
}

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
					     unsigned int lru_mask)
{
	unsigned long nr = 0;
	enum lru_list lru;

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3629
		nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3630 3631 3632 3633
	}
	return nr;
}

3634
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3635
{
3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3648
	int nid;
3649
	unsigned long nr;
3650
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3651

3652 3653 3654 3655 3656 3657 3658 3659 3660
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3661 3662
	}

3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3678 3679 3680 3681 3682 3683
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
static const unsigned int memcg1_stats[] = {
	MEMCG_CACHE,
	MEMCG_RSS,
	MEMCG_RSS_HUGE,
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
	"rss_huge",
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

3706
/* Universal VM events cgroup1 shows, original sort order */
3707
static const unsigned int memcg1_events[] = {
3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

static const char *const memcg1_event_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

3721
static int memcg_stat_show(struct seq_file *m, void *v)
3722
{
3723
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3724
	unsigned long memory, memsw;
3725 3726
	struct mem_cgroup *mi;
	unsigned int i;
3727

3728
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3729 3730
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3731 3732
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3733
			continue;
3734
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3735
			   memcg_page_state_local(memcg, memcg1_stats[i]) *
3736
			   PAGE_SIZE);
3737
	}
L
Lee Schermerhorn 已提交
3738

3739 3740
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3741
			   memcg_events_local(memcg, memcg1_events[i]));
3742 3743 3744

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3745
			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3746
			   PAGE_SIZE);
3747

K
KAMEZAWA Hiroyuki 已提交
3748
	/* Hierarchical information */
3749 3750
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3751 3752
		memory = min(memory, mi->memory.max);
		memsw = min(memsw, mi->memsw.max);
3753
	}
3754 3755
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3756
	if (do_memsw_account())
3757 3758
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3759

3760
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3761
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3762
			continue;
3763
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3764 3765
			   (u64)memcg_page_state(memcg, memcg1_stats[i]) *
			   PAGE_SIZE);
3766 3767
	}

3768 3769
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3770
			   (u64)memcg_events(memcg, memcg1_events[i]));
3771

3772 3773
	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3774 3775
			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			   PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
3776

K
KOSAKI Motohiro 已提交
3777 3778
#ifdef CONFIG_DEBUG_VM
	{
3779 3780
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
3781
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3782 3783 3784
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

3785 3786 3787
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
			rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3788

3789 3790 3791 3792 3793
			recent_rotated[0] += rstat->recent_rotated[0];
			recent_rotated[1] += rstat->recent_rotated[1];
			recent_scanned[0] += rstat->recent_scanned[0];
			recent_scanned[1] += rstat->recent_scanned[1];
		}
3794 3795 3796 3797
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3798 3799 3800
	}
#endif

3801 3802 3803
	return 0;
}

3804 3805
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3806
{
3807
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3808

3809
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3810 3811
}

3812 3813
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3814
{
3815
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3816

3817
	if (val > 100)
K
KOSAKI Motohiro 已提交
3818 3819
		return -EINVAL;

3820
	if (css->parent)
3821 3822 3823
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3824

K
KOSAKI Motohiro 已提交
3825 3826 3827
	return 0;
}

3828 3829 3830
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3831
	unsigned long usage;
3832 3833 3834 3835
	int i;

	rcu_read_lock();
	if (!swap)
3836
		t = rcu_dereference(memcg->thresholds.primary);
3837
	else
3838
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3839 3840 3841 3842

	if (!t)
		goto unlock;

3843
	usage = mem_cgroup_usage(memcg, swap);
3844 3845

	/*
3846
	 * current_threshold points to threshold just below or equal to usage.
3847 3848 3849
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3850
	i = t->current_threshold;
3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3874
	t->current_threshold = i - 1;
3875 3876 3877 3878 3879 3880
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3881 3882
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3883
		if (do_memsw_account())
3884 3885 3886 3887
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3888 3889 3890 3891 3892 3893 3894
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3895 3896 3897 3898 3899 3900 3901
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3902 3903
}

3904
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3905 3906 3907
{
	struct mem_cgroup_eventfd_list *ev;

3908 3909
	spin_lock(&memcg_oom_lock);

3910
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3911
		eventfd_signal(ev->eventfd, 1);
3912 3913

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3914 3915 3916
	return 0;
}

3917
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3918
{
K
KAMEZAWA Hiroyuki 已提交
3919 3920
	struct mem_cgroup *iter;

3921
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3922
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3923 3924
}

3925
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3926
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3927
{
3928 3929
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3930 3931
	unsigned long threshold;
	unsigned long usage;
3932
	int i, size, ret;
3933

3934
	ret = page_counter_memparse(args, "-1", &threshold);
3935 3936 3937 3938
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3939

3940
	if (type == _MEM) {
3941
		thresholds = &memcg->thresholds;
3942
		usage = mem_cgroup_usage(memcg, false);
3943
	} else if (type == _MEMSWAP) {
3944
		thresholds = &memcg->memsw_thresholds;
3945
		usage = mem_cgroup_usage(memcg, true);
3946
	} else
3947 3948 3949
		BUG();

	/* Check if a threshold crossed before adding a new one */
3950
	if (thresholds->primary)
3951 3952
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3953
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3954 3955

	/* Allocate memory for new array of thresholds */
3956
	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
3957
	if (!new) {
3958 3959 3960
		ret = -ENOMEM;
		goto unlock;
	}
3961
	new->size = size;
3962 3963

	/* Copy thresholds (if any) to new array */
3964 3965
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3966
				sizeof(struct mem_cgroup_threshold));
3967 3968
	}

3969
	/* Add new threshold */
3970 3971
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3972 3973

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3974
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3975 3976 3977
			compare_thresholds, NULL);

	/* Find current threshold */
3978
	new->current_threshold = -1;
3979
	for (i = 0; i < size; i++) {
3980
		if (new->entries[i].threshold <= usage) {
3981
			/*
3982 3983
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3984 3985
			 * it here.
			 */
3986
			++new->current_threshold;
3987 3988
		} else
			break;
3989 3990
	}

3991 3992 3993 3994 3995
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3996

3997
	/* To be sure that nobody uses thresholds */
3998 3999 4000 4001 4002 4003 4004 4005
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4006
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4007 4008
	struct eventfd_ctx *eventfd, const char *args)
{
4009
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4010 4011
}

4012
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4013 4014
	struct eventfd_ctx *eventfd, const char *args)
{
4015
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4016 4017
}

4018
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4019
	struct eventfd_ctx *eventfd, enum res_type type)
4020
{
4021 4022
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4023
	unsigned long usage;
4024
	int i, j, size;
4025 4026

	mutex_lock(&memcg->thresholds_lock);
4027 4028

	if (type == _MEM) {
4029
		thresholds = &memcg->thresholds;
4030
		usage = mem_cgroup_usage(memcg, false);
4031
	} else if (type == _MEMSWAP) {
4032
		thresholds = &memcg->memsw_thresholds;
4033
		usage = mem_cgroup_usage(memcg, true);
4034
	} else
4035 4036
		BUG();

4037 4038 4039
	if (!thresholds->primary)
		goto unlock;

4040 4041 4042 4043
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4044 4045 4046
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4047 4048 4049
			size++;
	}

4050
	new = thresholds->spare;
4051

4052 4053
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4054 4055
		kfree(new);
		new = NULL;
4056
		goto swap_buffers;
4057 4058
	}

4059
	new->size = size;
4060 4061

	/* Copy thresholds and find current threshold */
4062 4063 4064
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4065 4066
			continue;

4067
		new->entries[j] = thresholds->primary->entries[i];
4068
		if (new->entries[j].threshold <= usage) {
4069
			/*
4070
			 * new->current_threshold will not be used
4071 4072 4073
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4074
			++new->current_threshold;
4075 4076 4077 4078
		}
		j++;
	}

4079
swap_buffers:
4080 4081
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4082

4083
	rcu_assign_pointer(thresholds->primary, new);
4084

4085
	/* To be sure that nobody uses thresholds */
4086
	synchronize_rcu();
4087 4088 4089 4090 4091 4092

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
4093
unlock:
4094 4095
	mutex_unlock(&memcg->thresholds_lock);
}
4096

4097
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4098 4099
	struct eventfd_ctx *eventfd)
{
4100
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4101 4102
}

4103
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4104 4105
	struct eventfd_ctx *eventfd)
{
4106
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4107 4108
}

4109
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4110
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4111 4112 4113 4114 4115 4116 4117
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4118
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4119 4120 4121 4122 4123

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4124
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
4125
		eventfd_signal(eventfd, 1);
4126
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4127 4128 4129 4130

	return 0;
}

4131
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4132
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4133 4134 4135
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4136
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4137

4138
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4139 4140 4141 4142 4143 4144
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4145
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4146 4147
}

4148
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4149
{
4150
	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4151

4152
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4153
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
R
Roman Gushchin 已提交
4154 4155
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4156 4157 4158
	return 0;
}

4159
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4160 4161
	struct cftype *cft, u64 val)
{
4162
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4163 4164

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4165
	if (!css->parent || !((val == 0) || (val == 1)))
4166 4167
		return -EINVAL;

4168
	memcg->oom_kill_disable = val;
4169
	if (!val)
4170
		memcg_oom_recover(memcg);
4171

4172 4173 4174
	return 0;
}

4175 4176
#ifdef CONFIG_CGROUP_WRITEBACK

T
Tejun Heo 已提交
4177 4178 4179 4180 4181 4182 4183 4184 4185 4186
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

4187 4188 4189 4190 4191
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
4192 4193 4194 4195 4196 4197 4198 4199 4200 4201
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

4202 4203 4204 4205 4206 4207
/*
 * idx can be of type enum memcg_stat_item or node_stat_item.
 * Keep in sync with memcg_exact_page().
 */
static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
{
4208
	long x = atomic_long_read(&memcg->vmstats[idx]);
4209 4210 4211
	int cpu;

	for_each_online_cpu(cpu)
4212
		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4213 4214 4215 4216 4217
	if (x < 0)
		x = 0;
	return x;
}

4218 4219 4220
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
4221 4222
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
4223 4224 4225
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
4226 4227 4228
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
4229
 *
4230 4231 4232 4233 4234
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
4235
 */
4236 4237 4238
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
4239 4240 4241 4242
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

4243
	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4244 4245

	/* this should eventually include NR_UNSTABLE_NFS */
4246
	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4247 4248
	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4249
	*pheadroom = PAGE_COUNTER_MAX;
4250 4251

	while ((parent = parent_mem_cgroup(memcg))) {
4252
		unsigned long ceiling = min(memcg->memory.max, memcg->high);
4253 4254
		unsigned long used = page_counter_read(&memcg->memory);

4255
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4256 4257 4258 4259
		memcg = parent;
	}
}

T
Tejun Heo 已提交
4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

4271 4272 4273 4274
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

4275 4276
#endif	/* CONFIG_CGROUP_WRITEBACK */

4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4290 4291 4292 4293 4294
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4295
static void memcg_event_remove(struct work_struct *work)
4296
{
4297 4298
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4299
	struct mem_cgroup *memcg = event->memcg;
4300 4301 4302

	remove_wait_queue(event->wqh, &event->wait);

4303
	event->unregister_event(memcg, event->eventfd);
4304 4305 4306 4307 4308 4309

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4310
	css_put(&memcg->css);
4311 4312 4313
}

/*
4314
 * Gets called on EPOLLHUP on eventfd when user closes it.
4315 4316 4317
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4318
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4319
			    int sync, void *key)
4320
{
4321 4322
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4323
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
4324
	__poll_t flags = key_to_poll(key);
4325

4326
	if (flags & EPOLLHUP) {
4327 4328 4329 4330 4331 4332 4333 4334 4335
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4336
		spin_lock(&memcg->event_list_lock);
4337 4338 4339 4340 4341 4342 4343 4344
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4345
		spin_unlock(&memcg->event_list_lock);
4346 4347 4348 4349 4350
	}

	return 0;
}

4351
static void memcg_event_ptable_queue_proc(struct file *file,
4352 4353
		wait_queue_head_t *wqh, poll_table *pt)
{
4354 4355
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4356 4357 4358 4359 4360 4361

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4362 4363
 * DO NOT USE IN NEW FILES.
 *
4364 4365 4366 4367 4368
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4369 4370
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4371
{
4372
	struct cgroup_subsys_state *css = of_css(of);
4373
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4374
	struct mem_cgroup_event *event;
4375 4376 4377 4378
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4379
	const char *name;
4380 4381 4382
	char *endp;
	int ret;

4383 4384 4385
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4386 4387
	if (*endp != ' ')
		return -EINVAL;
4388
	buf = endp + 1;
4389

4390
	cfd = simple_strtoul(buf, &endp, 10);
4391 4392
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4393
	buf = endp + 1;
4394 4395 4396 4397 4398

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4399
	event->memcg = memcg;
4400
	INIT_LIST_HEAD(&event->list);
4401 4402 4403
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4429 4430 4431 4432 4433
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4434 4435
	 *
	 * DO NOT ADD NEW FILES.
4436
	 */
A
Al Viro 已提交
4437
	name = cfile.file->f_path.dentry->d_name.name;
4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4449 4450
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4451 4452 4453 4454 4455
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4456
	/*
4457 4458 4459
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4460
	 */
A
Al Viro 已提交
4461
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4462
					       &memory_cgrp_subsys);
4463
	ret = -EINVAL;
4464
	if (IS_ERR(cfile_css))
4465
		goto out_put_cfile;
4466 4467
	if (cfile_css != css) {
		css_put(cfile_css);
4468
		goto out_put_cfile;
4469
	}
4470

4471
	ret = event->register_event(memcg, event->eventfd, buf);
4472 4473 4474
	if (ret)
		goto out_put_css;

4475
	vfs_poll(efile.file, &event->pt);
4476

4477 4478 4479
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4480 4481 4482 4483

	fdput(cfile);
	fdput(efile);

4484
	return nbytes;
4485 4486

out_put_css:
4487
	css_put(css);
4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4500
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4501
	{
4502
		.name = "usage_in_bytes",
4503
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4504
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4505
	},
4506 4507
	{
		.name = "max_usage_in_bytes",
4508
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4509
		.write = mem_cgroup_reset,
4510
		.read_u64 = mem_cgroup_read_u64,
4511
	},
B
Balbir Singh 已提交
4512
	{
4513
		.name = "limit_in_bytes",
4514
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4515
		.write = mem_cgroup_write,
4516
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4517
	},
4518 4519 4520
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4521
		.write = mem_cgroup_write,
4522
		.read_u64 = mem_cgroup_read_u64,
4523
	},
B
Balbir Singh 已提交
4524 4525
	{
		.name = "failcnt",
4526
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4527
		.write = mem_cgroup_reset,
4528
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4529
	},
4530 4531
	{
		.name = "stat",
4532
		.seq_show = memcg_stat_show,
4533
	},
4534 4535
	{
		.name = "force_empty",
4536
		.write = mem_cgroup_force_empty_write,
4537
	},
4538 4539 4540 4541 4542
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4543
	{
4544
		.name = "cgroup.event_control",		/* XXX: for compat */
4545
		.write = memcg_write_event_control,
4546
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4547
	},
K
KOSAKI Motohiro 已提交
4548 4549 4550 4551 4552
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4553 4554 4555 4556 4557
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4558 4559
	{
		.name = "oom_control",
4560
		.seq_show = mem_cgroup_oom_control_read,
4561
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4562 4563
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4564 4565 4566
	{
		.name = "pressure_level",
	},
4567 4568 4569
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4570
		.seq_show = memcg_numa_stat_show,
4571 4572
	},
#endif
4573 4574 4575
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4576
		.write = mem_cgroup_write,
4577
		.read_u64 = mem_cgroup_read_u64,
4578 4579 4580 4581
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4582
		.read_u64 = mem_cgroup_read_u64,
4583 4584 4585 4586
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4587
		.write = mem_cgroup_reset,
4588
		.read_u64 = mem_cgroup_read_u64,
4589 4590 4591 4592
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4593
		.write = mem_cgroup_reset,
4594
		.read_u64 = mem_cgroup_read_u64,
4595
	},
Y
Yang Shi 已提交
4596
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4597 4598
	{
		.name = "kmem.slabinfo",
4599 4600 4601
		.seq_start = memcg_slab_start,
		.seq_next = memcg_slab_next,
		.seq_stop = memcg_slab_stop,
4602
		.seq_show = memcg_slab_show,
4603 4604
	},
#endif
V
Vladimir Davydov 已提交
4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4628
	{ },	/* terminate */
4629
};
4630

4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
 * However, there usually are many references to the oflline CSS after
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

4657 4658 4659 4660 4661 4662 4663 4664
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

4665
static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4666
{
4667
	refcount_add(n, &memcg->id.ref);
4668 4669
}

4670
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4671
{
4672
	if (refcount_sub_and_test(n, &memcg->id.ref)) {
4673
		mem_cgroup_id_remove(memcg);
4674 4675 4676 4677 4678 4679

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

4680 4681 4682 4683 4684 4685 4686 4687 4688 4689
static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
{
	mem_cgroup_id_get_many(memcg, 1);
}

static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

4702
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4703 4704
{
	struct mem_cgroup_per_node *pn;
4705
	int tmp = node;
4706 4707 4708 4709 4710 4711 4712 4713
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4714 4715
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4716
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4717 4718
	if (!pn)
		return 1;
4719

4720 4721 4722 4723 4724 4725
	pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat_local) {
		kfree(pn);
		return 1;
	}

4726 4727
	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat_cpu) {
4728
		free_percpu(pn->lruvec_stat_local);
4729 4730 4731 4732
		kfree(pn);
		return 1;
	}

4733 4734 4735 4736 4737
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

4738
	memcg->nodeinfo[node] = pn;
4739 4740 4741
	return 0;
}

4742
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4743
{
4744 4745
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
4746 4747 4748
	if (!pn)
		return;

4749
	free_percpu(pn->lruvec_stat_cpu);
4750
	free_percpu(pn->lruvec_stat_local);
4751
	kfree(pn);
4752 4753
}

4754
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4755
{
4756
	int node;
4757

4758
	/*
4759
	 * Flush percpu vmstats and vmevents to guarantee the value correctness
4760 4761
	 * on parent's and all ancestor levels.
	 */
4762
	memcg_flush_percpu_vmstats(memcg, false);
4763
	memcg_flush_percpu_vmevents(memcg);
4764
	for_each_node(node)
4765
		free_mem_cgroup_per_node_info(memcg, node);
4766
	free_percpu(memcg->vmstats_percpu);
4767
	free_percpu(memcg->vmstats_local);
4768
	kfree(memcg);
4769
}
4770

4771 4772 4773 4774 4775 4776
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
	__mem_cgroup_free(memcg);
}

4777
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4778
{
4779
	struct mem_cgroup *memcg;
4780
	unsigned int size;
4781
	int node;
B
Balbir Singh 已提交
4782

4783 4784 4785 4786
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4787
	if (!memcg)
4788 4789
		return NULL;

4790 4791 4792 4793 4794 4795
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
	if (memcg->id.id < 0)
		goto fail;

4796 4797 4798 4799
	memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
	if (!memcg->vmstats_local)
		goto fail;

4800 4801
	memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
	if (!memcg->vmstats_percpu)
4802
		goto fail;
4803

B
Bob Liu 已提交
4804
	for_each_node(node)
4805
		if (alloc_mem_cgroup_per_node_info(memcg, node))
4806
			goto fail;
4807

4808 4809
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4810

4811
	INIT_WORK(&memcg->high_work, high_work_func);
4812 4813 4814 4815
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4816
	vmpressure_init(&memcg->vmpressure);
4817 4818
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4819
	memcg->socket_pressure = jiffies;
4820
#ifdef CONFIG_MEMCG_KMEM
V
Vladimir Davydov 已提交
4821 4822
	memcg->kmemcg_id = -1;
#endif
4823 4824 4825
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4826
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4827 4828
	return memcg;
fail:
4829
	mem_cgroup_id_remove(memcg);
4830
	__mem_cgroup_free(memcg);
4831
	return NULL;
4832 4833
}

4834 4835
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4836
{
4837 4838 4839
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
4840

4841 4842 4843
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
4844

4845 4846 4847 4848 4849 4850 4851 4852
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
4853
		page_counter_init(&memcg->memory, &parent->memory);
4854
		page_counter_init(&memcg->swap, &parent->swap);
4855 4856
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4857
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4858
	} else {
4859
		page_counter_init(&memcg->memory, NULL);
4860
		page_counter_init(&memcg->swap, NULL);
4861 4862
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4863
		page_counter_init(&memcg->tcpmem, NULL);
4864 4865 4866 4867 4868
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4869
		if (parent != root_mem_cgroup)
4870
			memory_cgrp_subsys.broken_hierarchy = true;
4871
	}
4872

4873 4874
	/* The following stuff does not apply to the root */
	if (!parent) {
4875 4876 4877
#ifdef CONFIG_MEMCG_KMEM
		INIT_LIST_HEAD(&memcg->kmem_caches);
#endif
4878 4879 4880 4881
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

4882
	error = memcg_online_kmem(memcg);
4883 4884
	if (error)
		goto fail;
4885

4886
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4887
		static_branch_inc(&memcg_sockets_enabled_key);
4888

4889 4890
	return &memcg->css;
fail:
4891
	mem_cgroup_id_remove(memcg);
4892
	mem_cgroup_free(memcg);
4893
	return ERR_PTR(-ENOMEM);
4894 4895
}

4896
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4897
{
4898 4899
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4900 4901 4902 4903 4904 4905 4906 4907 4908 4909
	/*
	 * A memcg must be visible for memcg_expand_shrinker_maps()
	 * by the time the maps are allocated. So, we allocate maps
	 * here, when for_each_mem_cgroup() can't skip it.
	 */
	if (memcg_alloc_shrinker_maps(memcg)) {
		mem_cgroup_id_remove(memcg);
		return -ENOMEM;
	}

4910
	/* Online state pins memcg ID, memcg ID pins CSS */
4911
	refcount_set(&memcg->id.ref, 1);
4912
	css_get(css);
4913
	return 0;
B
Balbir Singh 已提交
4914 4915
}

4916
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4917
{
4918
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4919
	struct mem_cgroup_event *event, *tmp;
4920 4921 4922 4923 4924 4925

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4926 4927
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4928 4929 4930
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4931
	spin_unlock(&memcg->event_list_lock);
4932

R
Roman Gushchin 已提交
4933
	page_counter_set_min(&memcg->memory, 0);
4934
	page_counter_set_low(&memcg->memory, 0);
4935

4936
	memcg_offline_kmem(memcg);
4937
	wb_memcg_offline(memcg);
4938

4939 4940
	drain_all_stock(memcg);

4941
	mem_cgroup_id_put(memcg);
4942 4943
}

4944 4945 4946 4947 4948 4949 4950
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4951
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4952
{
4953
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4954

4955
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4956
		static_branch_dec(&memcg_sockets_enabled_key);
4957

4958
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
4959
		static_branch_dec(&memcg_sockets_enabled_key);
4960

4961 4962 4963
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
4964
	memcg_free_shrinker_maps(memcg);
4965
	memcg_free_kmem(memcg);
4966
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4967 4968
}

4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4986 4987 4988 4989 4990
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
R
Roman Gushchin 已提交
4991
	page_counter_set_min(&memcg->memory, 0);
4992
	page_counter_set_low(&memcg->memory, 0);
4993
	memcg->high = PAGE_COUNTER_MAX;
4994
	memcg->soft_limit = PAGE_COUNTER_MAX;
4995
	memcg_wb_domain_size_changed(memcg);
4996 4997
}

4998
#ifdef CONFIG_MMU
4999
/* Handlers for move charge at task migration. */
5000
static int mem_cgroup_do_precharge(unsigned long count)
5001
{
5002
	int ret;
5003

5004 5005
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5006
	if (!ret) {
5007 5008 5009
		mc.precharge += count;
		return ret;
	}
5010

5011
	/* Try charges one by one with reclaim, but do not retry */
5012
	while (count--) {
5013
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5014 5015
		if (ret)
			return ret;
5016
		mc.precharge++;
5017
		cond_resched();
5018
	}
5019
	return 0;
5020 5021 5022 5023
}

union mc_target {
	struct page	*page;
5024
	swp_entry_t	ent;
5025 5026 5027
};

enum mc_target_type {
5028
	MC_TARGET_NONE = 0,
5029
	MC_TARGET_PAGE,
5030
	MC_TARGET_SWAP,
5031
	MC_TARGET_DEVICE,
5032 5033
};

D
Daisuke Nishimura 已提交
5034 5035
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5036
{
5037
	struct page *page = vm_normal_page(vma, addr, ptent);
5038

D
Daisuke Nishimura 已提交
5039 5040 5041
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
5042
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5043
			return NULL;
5044 5045 5046 5047
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
5048 5049 5050 5051 5052 5053
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5054
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
5055
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5056
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
5057 5058 5059 5060
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

5061
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
5062
		return NULL;
5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
		page = device_private_entry_to_page(ent);
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

5080 5081 5082 5083
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5084
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5085
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
5086 5087 5088 5089
		entry->val = ent.val;

	return page;
}
5090 5091
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5092
			pte_t ptent, swp_entry_t *entry)
5093 5094 5095 5096
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5097

5098 5099 5100 5101 5102 5103 5104 5105 5106
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
5107
	if (!(mc.flags & MOVE_FILE))
5108 5109 5110
		return NULL;

	mapping = vma->vm_file->f_mapping;
5111
	pgoff = linear_page_index(vma, addr);
5112 5113

	/* page is moved even if it's not RSS of this task(page-faulted). */
5114 5115
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
5116 5117
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
5118
		if (xa_is_value(page)) {
5119
			swp_entry_t swp = radix_to_swp_entry(page);
5120
			if (do_memsw_account())
5121
				*entry = swp;
5122 5123
			page = find_get_page(swap_address_space(swp),
					     swp_offset(swp));
5124 5125 5126 5127 5128
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
5129
#endif
5130 5131 5132
	return page;
}

5133 5134 5135
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
5136
 * @compound: charge the page as compound or small page
5137 5138 5139
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
5140
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5141 5142 5143 5144 5145
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
5146
				   bool compound,
5147 5148 5149 5150
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
5151
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5152
	int ret;
5153
	bool anon;
5154 5155 5156

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
5157
	VM_BUG_ON(compound && !PageTransHuge(page));
5158 5159

	/*
5160
	 * Prevent mem_cgroup_migrate() from looking at
5161
	 * page->mem_cgroup of its source page while we change it.
5162
	 */
5163
	ret = -EBUSY;
5164 5165 5166 5167 5168 5169 5170
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

5171 5172
	anon = PageAnon(page);

5173 5174
	spin_lock_irqsave(&from->move_lock, flags);

5175
	if (!anon && page_mapped(page)) {
5176 5177
		__mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
		__mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
5178 5179
	}

5180 5181
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
5182
	 * mod_memcg_page_state will serialize updates to PageDirty.
5183 5184 5185 5186 5187 5188
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
5189 5190
			__mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
			__mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
5191 5192 5193
		}
	}

5194
	if (PageWriteback(page)) {
5195 5196
		__mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
		__mod_memcg_state(to, NR_WRITEBACK, nr_pages);
5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
5212
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5213
	memcg_check_events(to, page);
5214
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5215 5216 5217 5218 5219 5220 5221 5222
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5238 5239
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
 *     (so ZONE_DEVICE page and thus not on the lru).
5240 5241 5242
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
5243 5244
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5245 5246 5247 5248
 *
 * Called with pte lock held.
 */

5249
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5250 5251 5252
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
5253
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5254 5255 5256 5257 5258
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
5259
		page = mc_handle_swap_pte(vma, ptent, &ent);
5260
	else if (pte_none(ptent))
5261
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5262 5263

	if (!page && !ent.val)
5264
		return ret;
5265 5266
	if (page) {
		/*
5267
		 * Do only loose check w/o serialization.
5268
		 * mem_cgroup_move_account() checks the page is valid or
5269
		 * not under LRU exclusion.
5270
		 */
5271
		if (page->mem_cgroup == mc.from) {
5272
			ret = MC_TARGET_PAGE;
5273
			if (is_device_private_page(page))
5274
				ret = MC_TARGET_DEVICE;
5275 5276 5277 5278 5279 5280
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
5281 5282 5283 5284 5285
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
5286
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5287 5288 5289
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5290 5291 5292 5293
	}
	return ret;
}

5294 5295
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
5296 5297
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
5298 5299 5300 5301 5302 5303 5304 5305
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

5306 5307 5308 5309 5310
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
5311
	page = pmd_page(pmd);
5312
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5313
	if (!(mc.flags & MOVE_ANON))
5314
		return ret;
5315
	if (page->mem_cgroup == mc.from) {
5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5332 5333 5334 5335
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
5336
	struct vm_area_struct *vma = walk->vma;
5337 5338 5339
	pte_t *pte;
	spinlock_t *ptl;

5340 5341
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5342 5343
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5344 5345
		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
		 * this might change.
5346
		 */
5347 5348
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5349
		spin_unlock(ptl);
5350
		return 0;
5351
	}
5352

5353 5354
	if (pmd_trans_unstable(pmd))
		return 0;
5355 5356
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5357
		if (get_mctgt_type(vma, addr, *pte, NULL))
5358 5359 5360 5361
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5362 5363 5364
	return 0;
}

5365 5366 5367 5368
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

5369 5370 5371 5372
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
5373
	down_read(&mm->mmap_sem);
5374 5375
	walk_page_range(0, mm->highest_vm_end,
			&mem_cgroup_count_precharge_walk);
5376
	up_read(&mm->mmap_sem);
5377 5378 5379 5380 5381 5382 5383 5384 5385

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5386 5387 5388 5389 5390
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5391 5392
}

5393 5394
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5395
{
5396 5397 5398
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5399
	/* we must uncharge all the leftover precharges from mc.to */
5400
	if (mc.precharge) {
5401
		cancel_charge(mc.to, mc.precharge);
5402 5403 5404 5405 5406 5407 5408
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5409
		cancel_charge(mc.from, mc.moved_charge);
5410
		mc.moved_charge = 0;
5411
	}
5412 5413 5414
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5415
		if (!mem_cgroup_is_root(mc.from))
5416
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5417

5418 5419
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

5420
		/*
5421 5422
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5423
		 */
5424
		if (!mem_cgroup_is_root(mc.to))
5425 5426
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5427 5428
		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
		css_put_many(&mc.to->css, mc.moved_swap);
5429

5430 5431
		mc.moved_swap = 0;
	}
5432 5433 5434 5435 5436 5437 5438
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
5439 5440
	struct mm_struct *mm = mc.mm;

5441 5442 5443 5444 5445 5446
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5447
	spin_lock(&mc.lock);
5448 5449
	mc.from = NULL;
	mc.to = NULL;
5450
	mc.mm = NULL;
5451
	spin_unlock(&mc.lock);
5452 5453

	mmput(mm);
5454 5455
}

5456
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5457
{
5458
	struct cgroup_subsys_state *css;
5459
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5460
	struct mem_cgroup *from;
5461
	struct task_struct *leader, *p;
5462
	struct mm_struct *mm;
5463
	unsigned long move_flags;
5464
	int ret = 0;
5465

5466 5467
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5468 5469
		return 0;

5470 5471 5472 5473 5474 5475 5476
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
5477
	cgroup_taskset_for_each_leader(leader, css, tset) {
5478 5479
		WARN_ON_ONCE(p);
		p = leader;
5480
		memcg = mem_cgroup_from_css(css);
5481 5482 5483 5484
	}
	if (!p)
		return 0;

5485 5486 5487 5488 5489 5490 5491 5492 5493
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
5510
		mc.mm = mm;
5511 5512 5513 5514 5515 5516 5517 5518 5519
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
5520 5521
	} else {
		mmput(mm);
5522 5523 5524 5525
	}
	return ret;
}

5526
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5527
{
5528 5529
	if (mc.to)
		mem_cgroup_clear_mc();
5530 5531
}

5532 5533 5534
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5535
{
5536
	int ret = 0;
5537
	struct vm_area_struct *vma = walk->vma;
5538 5539
	pte_t *pte;
	spinlock_t *ptl;
5540 5541 5542
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5543

5544 5545
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5546
		if (mc.precharge < HPAGE_PMD_NR) {
5547
			spin_unlock(ptl);
5548 5549 5550 5551 5552 5553
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
5554
				if (!mem_cgroup_move_account(page, true,
5555
							     mc.from, mc.to)) {
5556 5557 5558 5559 5560 5561
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
5562 5563 5564 5565 5566 5567 5568 5569
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
5570
		}
5571
		spin_unlock(ptl);
5572
		return 0;
5573 5574
	}

5575 5576
	if (pmd_trans_unstable(pmd))
		return 0;
5577 5578 5579 5580
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5581
		bool device = false;
5582
		swp_entry_t ent;
5583 5584 5585 5586

		if (!mc.precharge)
			break;

5587
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5588 5589 5590
		case MC_TARGET_DEVICE:
			device = true;
			/* fall through */
5591 5592
		case MC_TARGET_PAGE:
			page = target.page;
5593 5594 5595 5596 5597 5598 5599 5600
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
5601
			if (!device && isolate_lru_page(page))
5602
				goto put;
5603 5604
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
5605
				mc.precharge--;
5606 5607
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5608
			}
5609 5610
			if (!device)
				putback_lru_page(page);
5611
put:			/* get_mctgt_type() gets the page */
5612 5613
			put_page(page);
			break;
5614 5615
		case MC_TARGET_SWAP:
			ent = target.ent;
5616
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5617
				mc.precharge--;
5618 5619 5620
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5621
			break;
5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5636
		ret = mem_cgroup_do_precharge(1);
5637 5638 5639 5640 5641 5642 5643
		if (!ret)
			goto retry;
	}

	return ret;
}

5644
static void mem_cgroup_move_charge(void)
5645
{
5646 5647
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
5648
		.mm = mc.mm,
5649
	};
5650 5651

	lru_add_drain_all();
5652
	/*
5653 5654 5655
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
5656 5657 5658
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5659
retry:
5660
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5672 5673 5674 5675
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
5676 5677
	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);

5678
	up_read(&mc.mm->mmap_sem);
5679
	atomic_dec(&mc.from->moving_account);
5680 5681
}

5682
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
5683
{
5684 5685
	if (mc.to) {
		mem_cgroup_move_charge();
5686
		mem_cgroup_clear_mc();
5687
	}
B
Balbir Singh 已提交
5688
}
5689
#else	/* !CONFIG_MMU */
5690
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5691 5692 5693
{
	return 0;
}
5694
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5695 5696
{
}
5697
static void mem_cgroup_move_task(void)
5698 5699 5700
{
}
#endif
B
Balbir Singh 已提交
5701

5702 5703
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5704 5705
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5706
 */
5707
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5708 5709
{
	/*
5710
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5711 5712 5713
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5714
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5715 5716 5717
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5718 5719
}

5720 5721 5722 5723 5724 5725 5726 5727 5728 5729
static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
{
	if (value == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);

	return 0;
}

5730 5731 5732
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5733 5734 5735
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5736 5737
}

R
Roman Gushchin 已提交
5738 5739
static int memory_min_show(struct seq_file *m, void *v)
{
5740 5741
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
R
Roman Gushchin 已提交
5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

5761 5762
static int memory_low_show(struct seq_file *m, void *v)
{
5763 5764
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5765 5766 5767 5768 5769 5770 5771 5772 5773 5774
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5775
	err = page_counter_memparse(buf, "max", &low);
5776 5777 5778
	if (err)
		return err;

5779
	page_counter_set_low(&memcg->memory, low);
5780 5781 5782 5783 5784 5785

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
5786
	return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
5787 5788 5789 5790 5791 5792
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5793
	unsigned long nr_pages;
5794 5795 5796 5797
	unsigned long high;
	int err;

	buf = strstrip(buf);
5798
	err = page_counter_memparse(buf, "max", &high);
5799 5800 5801 5802 5803
	if (err)
		return err;

	memcg->high = high;

5804 5805 5806 5807 5808
	nr_pages = page_counter_read(&memcg->memory);
	if (nr_pages > high)
		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
					     GFP_KERNEL, true);

5809
	memcg_wb_domain_size_changed(memcg);
5810 5811 5812 5813 5814
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
5815 5816
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
5817 5818 5819 5820 5821 5822
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5823 5824
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
5825 5826 5827 5828
	unsigned long max;
	int err;

	buf = strstrip(buf);
5829
	err = page_counter_memparse(buf, "max", &max);
5830 5831 5832
	if (err)
		return err;

5833
	xchg(&memcg->memory.max, max);
5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

		if (signal_pending(current)) {
			err = -EINTR;
			break;
		}

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

5859
		memcg_memory_event(memcg, MEMCG_OOM);
5860 5861 5862
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
5863

5864
	memcg_wb_domain_size_changed(memcg);
5865 5866 5867
	return nbytes;
}

5868 5869 5870 5871 5872 5873 5874 5875 5876 5877
static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
{
	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&events[MEMCG_OOM_KILL]));
}

5878 5879
static int memory_events_show(struct seq_file *m, void *v)
{
5880
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5881

5882 5883 5884 5885 5886 5887 5888
	__memory_events_show(m, memcg->memory_events);
	return 0;
}

static int memory_events_local_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5889

5890
	__memory_events_show(m, memcg->memory_events_local);
5891 5892 5893
	return 0;
}

5894 5895
static int memory_stat_show(struct seq_file *m, void *v)
{
5896
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5897
	char *buf;
5898

5899 5900 5901 5902 5903
	buf = memory_stat_format(memcg);
	if (!buf)
		return -ENOMEM;
	seq_puts(m, buf);
	kfree(buf);
5904 5905 5906
	return 0;
}

5907 5908
static int memory_oom_group_show(struct seq_file *m, void *v)
{
5909
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937

	seq_printf(m, "%d\n", memcg->oom_group);

	return 0;
}

static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
				      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	int ret, oom_group;

	buf = strstrip(buf);
	if (!buf)
		return -EINVAL;

	ret = kstrtoint(buf, 0, &oom_group);
	if (ret)
		return ret;

	if (oom_group != 0 && oom_group != 1)
		return -EINVAL;

	memcg->oom_group = oom_group;

	return nbytes;
}

5938 5939 5940
static struct cftype memory_files[] = {
	{
		.name = "current",
5941
		.flags = CFTYPE_NOT_ON_ROOT,
5942 5943
		.read_u64 = memory_current_read,
	},
R
Roman Gushchin 已提交
5944 5945 5946 5947 5948 5949
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5971
		.file_offset = offsetof(struct mem_cgroup, events_file),
5972 5973
		.seq_show = memory_events_show,
	},
5974 5975 5976 5977 5978 5979
	{
		.name = "events.local",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, events_local_file),
		.seq_show = memory_events_local_show,
	},
5980 5981 5982 5983 5984
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
5985 5986 5987 5988 5989 5990
	{
		.name = "oom.group",
		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
		.seq_show = memory_oom_group_show,
		.write = memory_oom_group_write,
	},
5991 5992 5993
	{ }	/* terminate */
};

5994
struct cgroup_subsys memory_cgrp_subsys = {
5995
	.css_alloc = mem_cgroup_css_alloc,
5996
	.css_online = mem_cgroup_css_online,
5997
	.css_offline = mem_cgroup_css_offline,
5998
	.css_released = mem_cgroup_css_released,
5999
	.css_free = mem_cgroup_css_free,
6000
	.css_reset = mem_cgroup_css_reset,
6001 6002
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
6003
	.post_attach = mem_cgroup_move_task,
6004
	.bind = mem_cgroup_bind,
6005 6006
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
6007
	.early_init = 0,
B
Balbir Singh 已提交
6008
};
6009

6010
/**
R
Roman Gushchin 已提交
6011
 * mem_cgroup_protected - check if memory consumption is in the normal range
6012
 * @root: the top ancestor of the sub-tree being checked
6013 6014
 * @memcg: the memory cgroup to check
 *
6015 6016
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
6017
 *
R
Roman Gushchin 已提交
6018 6019 6020 6021 6022
 * Returns one of the following:
 *   MEMCG_PROT_NONE: cgroup memory is not protected
 *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
 *     an unprotected supply of reclaimable memory from other cgroups.
 *   MEMCG_PROT_MIN: cgroup memory is protected
6023
 *
R
Roman Gushchin 已提交
6024
 * @root is exclusive; it is never protected when looked at directly
6025
 *
R
Roman Gushchin 已提交
6026 6027 6028
 * To provide a proper hierarchical behavior, effective memory.min/low values
 * are used. Below is the description of how effective memory.low is calculated.
 * Effective memory.min values is calculated in the same way.
6029
 *
6030 6031 6032 6033 6034 6035 6036
 * Effective memory.low is always equal or less than the original memory.low.
 * If there is no memory.low overcommittment (which is always true for
 * top-level memory cgroups), these two values are equal.
 * Otherwise, it's a part of parent's effective memory.low,
 * calculated as a cgroup's memory.low usage divided by sum of sibling's
 * memory.low usages, where memory.low usage is the size of actually
 * protected memory.
6037
 *
6038 6039 6040
 *                                             low_usage
 * elow = min( memory.low, parent->elow * ------------------ ),
 *                                        siblings_low_usage
6041
 *
6042 6043
 *             | memory.current, if memory.current < memory.low
 * low_usage = |
6044
 *	       | 0, otherwise.
6045
 *
6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072
 *
 * Such definition of the effective memory.low provides the expected
 * hierarchical behavior: parent's memory.low value is limiting
 * children, unprotected memory is reclaimed first and cgroups,
 * which are not using their guarantee do not affect actual memory
 * distribution.
 *
 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
 *
 *     A      A/memory.low = 2G, A/memory.current = 6G
 *    //\\
 *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
 *            C/memory.low = 1G  C/memory.current = 2G
 *            D/memory.low = 0   D/memory.current = 2G
 *            E/memory.low = 10G E/memory.current = 0
 *
 * and the memory pressure is applied, the following memory distribution
 * is expected (approximately):
 *
 *     A/memory.current = 2G
 *
 *     B/memory.current = 1.3G
 *     C/memory.current = 0.6G
 *     D/memory.current = 0
 *     E/memory.current = 0
 *
 * These calculations require constant tracking of the actual low usages
R
Roman Gushchin 已提交
6073 6074
 * (see propagate_protected_usage()), as well as recursive calculation of
 * effective memory.low values. But as we do call mem_cgroup_protected()
6075 6076 6077 6078
 * path for each memory cgroup top-down from the reclaim,
 * it's possible to optimize this part, and save calculated elow
 * for next usage. This part is intentionally racy, but it's ok,
 * as memory.low is a best-effort mechanism.
6079
 */
R
Roman Gushchin 已提交
6080 6081
enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
						struct mem_cgroup *memcg)
6082
{
6083
	struct mem_cgroup *parent;
R
Roman Gushchin 已提交
6084 6085 6086
	unsigned long emin, parent_emin;
	unsigned long elow, parent_elow;
	unsigned long usage;
6087

6088
	if (mem_cgroup_disabled())
R
Roman Gushchin 已提交
6089
		return MEMCG_PROT_NONE;
6090

6091 6092 6093
	if (!root)
		root = root_mem_cgroup;
	if (memcg == root)
R
Roman Gushchin 已提交
6094
		return MEMCG_PROT_NONE;
6095

6096
	usage = page_counter_read(&memcg->memory);
R
Roman Gushchin 已提交
6097 6098 6099 6100 6101
	if (!usage)
		return MEMCG_PROT_NONE;

	emin = memcg->memory.min;
	elow = memcg->memory.low;
6102

R
Roman Gushchin 已提交
6103
	parent = parent_mem_cgroup(memcg);
6104 6105 6106 6107
	/* No parent means a non-hierarchical mode on v1 memcg */
	if (!parent)
		return MEMCG_PROT_NONE;

6108 6109 6110
	if (parent == root)
		goto exit;

R
Roman Gushchin 已提交
6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124
	parent_emin = READ_ONCE(parent->memory.emin);
	emin = min(emin, parent_emin);
	if (emin && parent_emin) {
		unsigned long min_usage, siblings_min_usage;

		min_usage = min(usage, memcg->memory.min);
		siblings_min_usage = atomic_long_read(
			&parent->memory.children_min_usage);

		if (min_usage && siblings_min_usage)
			emin = min(emin, parent_emin * min_usage /
				   siblings_min_usage);
	}

6125 6126
	parent_elow = READ_ONCE(parent->memory.elow);
	elow = min(elow, parent_elow);
R
Roman Gushchin 已提交
6127 6128
	if (elow && parent_elow) {
		unsigned long low_usage, siblings_low_usage;
6129

R
Roman Gushchin 已提交
6130 6131 6132
		low_usage = min(usage, memcg->memory.low);
		siblings_low_usage = atomic_long_read(
			&parent->memory.children_low_usage);
6133

R
Roman Gushchin 已提交
6134 6135 6136 6137
		if (low_usage && siblings_low_usage)
			elow = min(elow, parent_elow * low_usage /
				   siblings_low_usage);
	}
6138 6139

exit:
R
Roman Gushchin 已提交
6140
	memcg->memory.emin = emin;
6141
	memcg->memory.elow = elow;
R
Roman Gushchin 已提交
6142 6143 6144 6145 6146 6147 6148

	if (usage <= emin)
		return MEMCG_PROT_MIN;
	else if (usage <= elow)
		return MEMCG_PROT_LOW;
	else
		return MEMCG_PROT_NONE;
6149 6150
}

6151 6152 6153 6154 6155 6156
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
6157
 * @compound: charge the page as compound or small page
6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6170 6171
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
6172 6173
{
	struct mem_cgroup *memcg = NULL;
6174
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
6188
		VM_BUG_ON_PAGE(!PageLocked(page), page);
6189
		if (compound_head(page)->mem_cgroup)
6190
			goto out;
6191

6192
		if (do_swap_account) {
6193 6194 6195 6196 6197 6198 6199 6200 6201
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227
int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
{
	struct mem_cgroup *memcg;
	int ret;

	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
	memcg = *memcgp;
	mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
	return ret;
}

6228 6229 6230 6231 6232
/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
6233
 * @compound: charge the page as compound or small page
6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6246
			      bool lrucare, bool compound)
6247
{
6248
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

6263 6264 6265
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
6266
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6267 6268
	memcg_check_events(memcg, page);
	local_irq_enable();
6269

6270
	if (do_memsw_account() && PageSwapCache(page)) {
6271 6272 6273 6274 6275 6276
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
6277
		mem_cgroup_uncharge_swap(entry, nr_pages);
6278 6279 6280 6281 6282 6283 6284
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
6285
 * @compound: charge the page as compound or small page
6286 6287 6288
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
6289 6290
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
6291
{
6292
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318
struct uncharge_gather {
	struct mem_cgroup *memcg;
	unsigned long pgpgout;
	unsigned long nr_anon;
	unsigned long nr_file;
	unsigned long nr_kmem;
	unsigned long nr_huge;
	unsigned long nr_shmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6319
{
6320 6321 6322 6323 6324 6325
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6326 6327
	unsigned long flags;

6328 6329
	if (!mem_cgroup_is_root(ug->memcg)) {
		page_counter_uncharge(&ug->memcg->memory, nr_pages);
6330
		if (do_memsw_account())
6331 6332 6333 6334
			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
6335
	}
6336 6337

	local_irq_save(flags);
6338 6339 6340 6341 6342
	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6343
	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6344
	memcg_check_events(ug->memcg, ug->dummy_page);
6345
	local_irq_restore(flags);
6346

6347 6348 6349 6350 6351 6352 6353
	if (!mem_cgroup_is_root(ug->memcg))
		css_put_many(&ug->memcg->css, nr_pages);
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
	VM_BUG_ON_PAGE(PageLRU(page), page);
6354 6355
	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
			!PageHWPoison(page) , page);
6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395

	if (!page->mem_cgroup)
		return;

	/*
	 * Nobody should be changing or seriously looking at
	 * page->mem_cgroup at this point, we have fully
	 * exclusive access to the page.
	 */

	if (ug->memcg != page->mem_cgroup) {
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
		ug->memcg = page->mem_cgroup;
	}

	if (!PageKmemcg(page)) {
		unsigned int nr_pages = 1;

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			ug->nr_huge += nr_pages;
		}
		if (PageAnon(page))
			ug->nr_anon += nr_pages;
		else {
			ug->nr_file += nr_pages;
			if (PageSwapBacked(page))
				ug->nr_shmem += nr_pages;
		}
		ug->pgpgout++;
	} else {
		ug->nr_kmem += 1 << compound_order(page);
		__ClearPageKmemcg(page);
	}

	ug->dummy_page = page;
	page->mem_cgroup = NULL;
6396 6397 6398 6399
}

static void uncharge_list(struct list_head *page_list)
{
6400
	struct uncharge_gather ug;
6401
	struct list_head *next;
6402 6403

	uncharge_gather_clear(&ug);
6404

6405 6406 6407 6408
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
6409 6410
	next = page_list->next;
	do {
6411 6412
		struct page *page;

6413 6414 6415
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

6416
		uncharge_page(page, &ug);
6417 6418
	} while (next != page_list);

6419 6420
	if (ug.memcg)
		uncharge_batch(&ug);
6421 6422
}

6423 6424 6425 6426 6427 6428 6429 6430 6431
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
6432 6433
	struct uncharge_gather ug;

6434 6435 6436
	if (mem_cgroup_disabled())
		return;

6437
	/* Don't touch page->lru of any random page, pre-check: */
6438
	if (!page->mem_cgroup)
6439 6440
		return;

6441 6442 6443
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
6444
}
6445

6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
6457

6458 6459
	if (!list_empty(page_list))
		uncharge_list(page_list);
6460 6461 6462
}

/**
6463 6464 6465
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
6466
 *
6467 6468
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
6469 6470 6471
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
6472
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6473
{
6474
	struct mem_cgroup *memcg;
6475 6476
	unsigned int nr_pages;
	bool compound;
6477
	unsigned long flags;
6478 6479 6480 6481

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6482 6483
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6484 6485 6486 6487 6488

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
6489
	if (newpage->mem_cgroup)
6490 6491
		return;

6492
	/* Swapcache readahead pages can get replaced before being charged */
6493
	memcg = oldpage->mem_cgroup;
6494
	if (!memcg)
6495 6496
		return;

6497 6498 6499 6500 6501 6502 6503 6504
	/* Force-charge the new page. The old one will be freed soon */
	compound = PageTransHuge(newpage);
	nr_pages = compound ? hpage_nr_pages(newpage) : 1;

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
6505

6506
	commit_charge(newpage, memcg, false);
6507

6508
	local_irq_save(flags);
6509 6510
	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
	memcg_check_events(memcg, newpage);
6511
	local_irq_restore(flags);
6512 6513
}

6514
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6515 6516
EXPORT_SYMBOL(memcg_sockets_enabled_key);

6517
void mem_cgroup_sk_alloc(struct sock *sk)
6518 6519 6520
{
	struct mem_cgroup *memcg;

6521 6522 6523
	if (!mem_cgroup_sockets_enabled)
		return;

6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537
	/*
	 * Socket cloning can throw us here with sk_memcg already
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		css_get(&sk->sk_memcg->css);
		return;
	}

6538 6539
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
6540 6541
	if (memcg == root_mem_cgroup)
		goto out;
6542
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6543 6544
		goto out;
	if (css_tryget_online(&memcg->css))
6545
		sk->sk_memcg = memcg;
6546
out:
6547 6548 6549
	rcu_read_unlock();
}

6550
void mem_cgroup_sk_free(struct sock *sk)
6551
{
6552 6553
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6566
	gfp_t gfp_mask = GFP_KERNEL;
6567

6568
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6569
		struct page_counter *fail;
6570

6571 6572
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
6573 6574
			return true;
		}
6575 6576
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
6577
		return false;
6578
	}
6579

6580 6581 6582 6583
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

6584
	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6585

6586 6587 6588 6589
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6590 6591 6592 6593 6594
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
6595 6596
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
6597 6598 6599
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6600
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6601
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6602 6603
		return;
	}
6604

6605
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6606

6607
	refill_stock(memcg, nr_pages);
6608 6609
}

6610 6611 6612 6613 6614 6615 6616 6617 6618
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
6619 6620
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
6621 6622 6623 6624
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
6625

6626
/*
6627 6628
 * subsys_initcall() for memory controller.
 *
6629 6630 6631 6632
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
6633 6634 6635
 */
static int __init mem_cgroup_init(void)
{
6636 6637
	int cpu, node;

6638
#ifdef CONFIG_MEMCG_KMEM
6639 6640
	/*
	 * Kmem cache creation is mostly done with the slab_mutex held,
6641 6642 6643
	 * so use a workqueue with limited concurrency to avoid stalling
	 * all worker threads in case lots of cgroups are created and
	 * destroyed simultaneously.
6644
	 */
6645 6646
	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
	BUG_ON(!memcg_kmem_cache_wq);
6647 6648
#endif

6649 6650
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

6662
		rtpn->rb_root = RB_ROOT;
6663
		rtpn->rb_rightmost = NULL;
6664
		spin_lock_init(&rtpn->lock);
6665 6666 6667
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

6668 6669 6670
	return 0;
}
subsys_initcall(mem_cgroup_init);
6671 6672

#ifdef CONFIG_MEMCG_SWAP
6673 6674
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
6675
	while (!refcount_inc_not_zero(&memcg->id.ref)) {
6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

6691 6692 6693 6694 6695 6696 6697 6698 6699
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
6700
	struct mem_cgroup *memcg, *swap_memcg;
6701
	unsigned int nr_entries;
6702 6703 6704 6705 6706
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

6707
	if (!do_memsw_account())
6708 6709 6710 6711 6712 6713 6714 6715
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

6716 6717 6718 6719 6720 6721
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
6722 6723 6724 6725 6726 6727
	nr_entries = hpage_nr_pages(page);
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
6728
	VM_BUG_ON_PAGE(oldid, page);
6729
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6730 6731 6732 6733

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
6734
		page_counter_uncharge(&memcg->memory, nr_entries);
6735

6736 6737
	if (memcg != swap_memcg) {
		if (!mem_cgroup_is_root(swap_memcg))
6738 6739
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
6740 6741
	}

6742 6743
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
6744
	 * i_pages lock which is taken with interrupts-off. It is
6745
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
6746
	 * only synchronisation we have for updating the per-CPU variables.
6747 6748
	 */
	VM_BUG_ON(!irqs_disabled());
6749 6750
	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
				     -nr_entries);
6751
	memcg_check_events(memcg, page);
6752 6753

	if (!mem_cgroup_is_root(memcg))
6754
		css_put_many(&memcg->css, nr_entries);
6755 6756
}

6757 6758
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
6759 6760 6761
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
6762
 * Try to charge @page's memcg for the swap space at @entry.
6763 6764 6765 6766 6767
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
6768
	unsigned int nr_pages = hpage_nr_pages(page);
6769
	struct page_counter *counter;
6770
	struct mem_cgroup *memcg;
6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

6782 6783
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6784
		return 0;
6785
	}
6786

6787 6788
	memcg = mem_cgroup_id_get_online(memcg);

6789
	if (!mem_cgroup_is_root(memcg) &&
6790
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6791 6792
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6793
		mem_cgroup_id_put(memcg);
6794
		return -ENOMEM;
6795
	}
6796

6797 6798 6799 6800
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6801
	VM_BUG_ON_PAGE(oldid, page);
6802
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6803 6804 6805 6806

	return 0;
}

6807
/**
6808
 * mem_cgroup_uncharge_swap - uncharge swap space
6809
 * @entry: swap entry to uncharge
6810
 * @nr_pages: the amount of swap space to uncharge
6811
 */
6812
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6813 6814 6815 6816
{
	struct mem_cgroup *memcg;
	unsigned short id;

6817
	if (!do_swap_account)
6818 6819
		return;

6820
	id = swap_cgroup_record(entry, 0, nr_pages);
6821
	rcu_read_lock();
6822
	memcg = mem_cgroup_from_id(id);
6823
	if (memcg) {
6824 6825
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6826
				page_counter_uncharge(&memcg->swap, nr_pages);
6827
			else
6828
				page_counter_uncharge(&memcg->memsw, nr_pages);
6829
		}
6830
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6831
		mem_cgroup_id_put_many(memcg, nr_pages);
6832 6833 6834 6835
	}
	rcu_read_unlock();
}

6836 6837 6838 6839 6840 6841 6842 6843
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
6844
				      READ_ONCE(memcg->swap.max) -
6845 6846 6847 6848
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6865
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6866 6867 6868 6869 6870
			return true;

	return false;
}

6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

6888 6889 6890 6891 6892 6893 6894 6895 6896 6897
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
6898 6899
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

6914
	xchg(&memcg->swap.max, max);
6915 6916 6917 6918

	return nbytes;
}

6919 6920
static int swap_events_show(struct seq_file *m, void *v)
{
6921
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6922 6923 6924 6925 6926 6927 6928 6929 6930

	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
6943 6944 6945 6946 6947 6948
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
6949 6950 6951
	{ }	/* terminate */
};

6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
6983 6984
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
6985 6986 6987 6988 6989 6990 6991 6992
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */