memcontrol.c 190.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
B
Balbir Singh 已提交
2 3 4 5 6
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
7 8 9
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
10 11 12 13
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
14 15 16 17
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
B
Balbir Singh 已提交
23 24
 */

25
#include <linux/page_counter.h>
B
Balbir Singh 已提交
26 27
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
28
#include <linux/pagewalk.h>
29
#include <linux/sched/mm.h>
30
#include <linux/shmem_fs.h>
31
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
32
#include <linux/pagemap.h>
33
#include <linux/vm_event_item.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/swap_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
59
#include <linux/tracehook.h>
60
#include <linux/psi.h>
61
#include <linux/seq_buf.h>
K
KAMEZAWA Hiroyuki 已提交
62
#include "internal.h"
G
Glauber Costa 已提交
63
#include <net/sock.h>
M
Michal Hocko 已提交
64
#include <net/ip.h>
65
#include "slab.h"
B
Balbir Singh 已提交
66

67
#include <linux/uaccess.h>
68

69 70
#include <trace/events/vmscan.h>

71 72
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
73

74 75
struct mem_cgroup *root_mem_cgroup __read_mostly;

76 77 78
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

79 80 81
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

82
/* Whether the swap controller is active */
A
Andrew Morton 已提交
83
#ifdef CONFIG_MEMCG_SWAP
84
bool cgroup_memory_noswap __read_mostly;
85
#else
86
#define cgroup_memory_noswap		1
87
#endif
88

89 90 91 92
#ifdef CONFIG_CGROUP_WRITEBACK
static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
#endif

93 94 95
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
96
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
97 98
}

99 100
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
101

102 103 104 105 106
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

107
struct mem_cgroup_tree_per_node {
108
	struct rb_root rb_root;
109
	struct rb_node *rb_rightmost;
110 111 112 113 114 115 116 117 118
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
119 120 121 122 123
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
124

125 126 127
/*
 * cgroup_event represents events which userspace want to receive.
 */
128
struct mem_cgroup_event {
129
	/*
130
	 * memcg which the event belongs to.
131
	 */
132
	struct mem_cgroup *memcg;
133 134 135 136 137 138 139 140
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
141 142 143 144 145
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
146
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
147
			      struct eventfd_ctx *eventfd, const char *args);
148 149 150 151 152
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
153
	void (*unregister_event)(struct mem_cgroup *memcg,
154
				 struct eventfd_ctx *eventfd);
155 156 157 158 159 160
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
161
	wait_queue_entry_t wait;
162 163 164
	struct work_struct remove;
};

165 166
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
167

168 169
/* Stuffs for move charges at task migration. */
/*
170
 * Types of charges to be moved.
171
 */
172 173 174
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
175

176 177
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
178
	spinlock_t	  lock; /* for from, to */
179
	struct mm_struct  *mm;
180 181
	struct mem_cgroup *from;
	struct mem_cgroup *to;
182
	unsigned long flags;
183
	unsigned long precharge;
184
	unsigned long moved_charge;
185
	unsigned long moved_swap;
186 187 188
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
189
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
190 191
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
192

193 194 195 196
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
197
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
198
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
199

200 201
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
202
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
203
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
204
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
205 206 207
	NR_CHARGE_TYPE,
};

208
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
209 210 211 212
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
213
	_KMEM,
V
Vladimir Davydov 已提交
214
	_TCP,
G
Glauber Costa 已提交
215 216
};

217 218
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
219
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
220 221
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
222

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(root, iter, NULL))

#define for_each_mem_cgroup(iter)			\
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(NULL, iter, NULL))

238 239 240 241 242 243
static inline bool should_force_charge(void)
{
	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
		(current->flags & PF_EXITING);
}

244 245 246 247 248 249 250 251 252 253 254 255 256
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

257
#ifdef CONFIG_MEMCG_KMEM
R
Roman Gushchin 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
extern spinlock_t css_set_lock;

static void obj_cgroup_release(struct percpu_ref *ref)
{
	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
	struct mem_cgroup *memcg;
	unsigned int nr_bytes;
	unsigned int nr_pages;
	unsigned long flags;

	/*
	 * At this point all allocated objects are freed, and
	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
	 *
	 * The following sequence can lead to it:
	 * 1) CPU0: objcg == stock->cached_objcg
	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
	 *          PAGE_SIZE bytes are charged
	 * 3) CPU1: a process from another memcg is allocating something,
	 *          the stock if flushed,
	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
	 * 5) CPU0: we do release this object,
	 *          92 bytes are added to stock->nr_bytes
	 * 6) CPU0: stock is flushed,
	 *          92 bytes are added to objcg->nr_charged_bytes
	 *
	 * In the result, nr_charged_bytes == PAGE_SIZE.
	 * This page will be uncharged in obj_cgroup_release().
	 */
	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
	nr_pages = nr_bytes >> PAGE_SHIFT;

	spin_lock_irqsave(&css_set_lock, flags);
	memcg = obj_cgroup_memcg(objcg);
	if (nr_pages)
		__memcg_kmem_uncharge(memcg, nr_pages);
	list_del(&objcg->list);
	mem_cgroup_put(memcg);
	spin_unlock_irqrestore(&css_set_lock, flags);

	percpu_ref_exit(ref);
	kfree_rcu(objcg, rcu);
}

static struct obj_cgroup *obj_cgroup_alloc(void)
{
	struct obj_cgroup *objcg;
	int ret;

	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
	if (!objcg)
		return NULL;

	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
			      GFP_KERNEL);
	if (ret) {
		kfree(objcg);
		return NULL;
	}
	INIT_LIST_HEAD(&objcg->list);
	return objcg;
}

static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
				  struct mem_cgroup *parent)
{
	struct obj_cgroup *objcg, *iter;

	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);

	spin_lock_irq(&css_set_lock);

	/* Move active objcg to the parent's list */
	xchg(&objcg->memcg, parent);
	css_get(&parent->css);
	list_add(&objcg->list, &parent->objcg_list);

	/* Move already reparented objcgs to the parent's list */
	list_for_each_entry(iter, &memcg->objcg_list, list) {
		css_get(&parent->css);
		xchg(&iter->memcg, parent);
		css_put(&memcg->css);
	}
	list_splice(&memcg->objcg_list, &parent->objcg_list);

	spin_unlock_irq(&css_set_lock);

	percpu_ref_kill(&objcg->refcnt);
}

350
/*
351
 * This will be used as a shrinker list's index.
L
Li Zefan 已提交
352 353 354 355 356
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
357
 *
358 359
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
360
 */
361 362
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
363

364 365 366 367 368 369 370 371 372 373 374 375 376
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

377 378 379 380 381 382
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
383
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
384 385
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
386
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
387 388 389
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
390
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
391

392 393
/*
 * A lot of the calls to the cache allocation functions are expected to be
394
 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
395 396 397
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
398
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
399
EXPORT_SYMBOL(memcg_kmem_enabled_key);
400
#endif
401

402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
static int memcg_shrinker_map_size;
static DEFINE_MUTEX(memcg_shrinker_map_mutex);

static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
{
	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
}

static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
					 int size, int old_size)
{
	struct memcg_shrinker_map *new, *old;
	int nid;

	lockdep_assert_held(&memcg_shrinker_map_mutex);

	for_each_node(nid) {
		old = rcu_dereference_protected(
			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
		/* Not yet online memcg */
		if (!old)
			return 0;

425
		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
		if (!new)
			return -ENOMEM;

		/* Set all old bits, clear all new bits */
		memset(new->map, (int)0xff, old_size);
		memset((void *)new->map + old_size, 0, size - old_size);

		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
	}

	return 0;
}

static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *pn;
	struct memcg_shrinker_map *map;
	int nid;

	if (mem_cgroup_is_root(memcg))
		return;

	for_each_node(nid) {
		pn = mem_cgroup_nodeinfo(memcg, nid);
		map = rcu_dereference_protected(pn->shrinker_map, true);
		if (map)
			kvfree(map);
		rcu_assign_pointer(pn->shrinker_map, NULL);
	}
}

static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	struct memcg_shrinker_map *map;
	int nid, size, ret = 0;

	if (mem_cgroup_is_root(memcg))
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	size = memcg_shrinker_map_size;
	for_each_node(nid) {
469
		map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
		if (!map) {
			memcg_free_shrinker_maps(memcg);
			ret = -ENOMEM;
			break;
		}
		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
	}
	mutex_unlock(&memcg_shrinker_map_mutex);

	return ret;
}

int memcg_expand_shrinker_maps(int new_id)
{
	int size, old_size, ret = 0;
	struct mem_cgroup *memcg;

	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
	old_size = memcg_shrinker_map_size;
	if (size <= old_size)
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	if (!root_mem_cgroup)
		goto unlock;

	for_each_mem_cgroup(memcg) {
		if (mem_cgroup_is_root(memcg))
			continue;
		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
500 501
		if (ret) {
			mem_cgroup_iter_break(NULL, memcg);
502
			goto unlock;
503
		}
504 505 506 507 508 509 510
	}
unlock:
	if (!ret)
		memcg_shrinker_map_size = size;
	mutex_unlock(&memcg_shrinker_map_mutex);
	return ret;
}
511 512 513 514 515 516 517 518

void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
{
	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
		struct memcg_shrinker_map *map;

		rcu_read_lock();
		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
519 520
		/* Pairs with smp mb in shrink_slab() */
		smp_mb__before_atomic();
521 522 523 524 525
		set_bit(shrinker_id, map->map);
		rcu_read_unlock();
	}
}

526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

543
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
544 545 546 547 548
		memcg = root_mem_cgroup;

	return &memcg->css;
}

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
568
	memcg = page->mem_cgroup;
569

570 571 572 573 574 575 576 577
	/*
	 * The lowest bit set means that memcg isn't a valid
	 * memcg pointer, but a obj_cgroups pointer.
	 * In this case the page is shared and doesn't belong
	 * to any specific memory cgroup.
	 */
	if ((unsigned long) memcg & 0x1UL)
		memcg = NULL;
578

579 580 581 582 583 584 585 586
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

587 588
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
589
{
590
	int nid = page_to_nid(page);
591

592
	return memcg->nodeinfo[nid];
593 594
}

595 596
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
597
{
598
	return soft_limit_tree.rb_tree_per_node[nid];
599 600
}

601
static struct mem_cgroup_tree_per_node *
602 603 604 605
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

606
	return soft_limit_tree.rb_tree_per_node[nid];
607 608
}

609 610
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
611
					 unsigned long new_usage_in_excess)
612 613 614
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
615
	struct mem_cgroup_per_node *mz_node;
616
	bool rightmost = true;
617 618 619 620 621 622 623 624 625

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
626
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
627
					tree_node);
628
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
629
			p = &(*p)->rb_left;
630 631 632
			rightmost = false;
		}

633 634 635 636 637 638 639
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
640 641 642 643

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

644 645 646 647 648
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

649 650
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
651 652 653
{
	if (!mz->on_tree)
		return;
654 655 656 657

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

658 659 660 661
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

662 663
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
664
{
665 666 667
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
668
	__mem_cgroup_remove_exceeded(mz, mctz);
669
	spin_unlock_irqrestore(&mctz->lock, flags);
670 671
}

672 673 674
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
675
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
676 677 678 679 680 681 682
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
683 684 685

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
686
	unsigned long excess;
687 688
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
689

690
	mctz = soft_limit_tree_from_page(page);
691 692
	if (!mctz)
		return;
693 694 695 696 697
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
698
		mz = mem_cgroup_page_nodeinfo(memcg, page);
699
		excess = soft_limit_excess(memcg);
700 701 702 703 704
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
705 706 707
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
708 709
			/* if on-tree, remove it */
			if (mz->on_tree)
710
				__mem_cgroup_remove_exceeded(mz, mctz);
711 712 713 714
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
715
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
716
			spin_unlock_irqrestore(&mctz->lock, flags);
717 718 719 720 721 722
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
723 724 725
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
726

727
	for_each_node(nid) {
728 729
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
730 731
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
732 733 734
	}
}

735 736
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
737
{
738
	struct mem_cgroup_per_node *mz;
739 740 741

retry:
	mz = NULL;
742
	if (!mctz->rb_rightmost)
743 744
		goto done;		/* Nothing to reclaim from */

745 746
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
747 748 749 750 751
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
752
	__mem_cgroup_remove_exceeded(mz, mctz);
753
	if (!soft_limit_excess(mz->memcg) ||
S
Shakeel Butt 已提交
754
	    !css_tryget(&mz->memcg->css))
755 756 757 758 759
		goto retry;
done:
	return mz;
}

760 761
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
762
{
763
	struct mem_cgroup_per_node *mz;
764

765
	spin_lock_irq(&mctz->lock);
766
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
767
	spin_unlock_irq(&mctz->lock);
768 769 770
	return mz;
}

771 772 773 774 775 776 777 778
/**
 * __mod_memcg_state - update cgroup memory statistics
 * @memcg: the memory cgroup
 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 * @val: delta to add to the counter, can be negative
 */
void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
{
779
	long x, threshold = MEMCG_CHARGE_BATCH;
780 781 782 783

	if (mem_cgroup_disabled())
		return;

784
	if (memcg_stat_item_in_bytes(idx))
785 786
		threshold <<= PAGE_SHIFT;

787
	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
788
	if (unlikely(abs(x) > threshold)) {
789 790
		struct mem_cgroup *mi;

791 792 793 794 795
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
796 797
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmstats[idx]);
798 799 800 801 802
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
}

803 804 805 806 807 808 809 810 811 812 813
static struct mem_cgroup_per_node *
parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
{
	struct mem_cgroup *parent;

	parent = parent_mem_cgroup(pn->memcg);
	if (!parent)
		return NULL;
	return mem_cgroup_nodeinfo(parent, nid);
}

814 815
void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			      int val)
816 817
{
	struct mem_cgroup_per_node *pn;
818
	struct mem_cgroup *memcg;
819
	long x, threshold = MEMCG_CHARGE_BATCH;
820 821

	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
822
	memcg = pn->memcg;
823 824

	/* Update memcg */
825
	__mod_memcg_state(memcg, idx, val);
826

827 828 829
	/* Update lruvec */
	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);

830 831 832
	if (vmstat_item_in_bytes(idx))
		threshold <<= PAGE_SHIFT;

833
	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
834
	if (unlikely(abs(x) > threshold)) {
835
		pg_data_t *pgdat = lruvec_pgdat(lruvec);
836 837 838 839
		struct mem_cgroup_per_node *pi;

		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
			atomic_long_add(x, &pi->lruvec_stat[idx]);
840 841 842 843 844
		x = 0;
	}
	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
}

845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
/**
 * __mod_lruvec_state - update lruvec memory statistics
 * @lruvec: the lruvec
 * @idx: the stat item
 * @val: delta to add to the counter, can be negative
 *
 * The lruvec is the intersection of the NUMA node and a cgroup. This
 * function updates the all three counters that are affected by a
 * change of state at this level: per-node, per-cgroup, per-lruvec.
 */
void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
			int val)
{
	/* Update node */
	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);

	/* Update memcg and lruvec */
	if (!mem_cgroup_disabled())
		__mod_memcg_lruvec_state(lruvec, idx, val);
}

866 867
void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
{
868
	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
869 870 871 872
	struct mem_cgroup *memcg;
	struct lruvec *lruvec;

	rcu_read_lock();
873
	memcg = mem_cgroup_from_obj(p);
874 875 876 877 878

	/* Untracked pages have no memcg, no lruvec. Update only the node */
	if (!memcg || memcg == root_mem_cgroup) {
		__mod_node_page_state(pgdat, idx, val);
	} else {
879
		lruvec = mem_cgroup_lruvec(memcg, pgdat);
880 881 882 883 884
		__mod_lruvec_state(lruvec, idx, val);
	}
	rcu_read_unlock();
}

885 886 887 888 889 890 891 892 893 894 895
void mod_memcg_obj_state(void *p, int idx, int val)
{
	struct mem_cgroup *memcg;

	rcu_read_lock();
	memcg = mem_cgroup_from_obj(p);
	if (memcg)
		mod_memcg_state(memcg, idx, val);
	rcu_read_unlock();
}

896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
/**
 * __count_memcg_events - account VM events in a cgroup
 * @memcg: the memory cgroup
 * @idx: the event item
 * @count: the number of events that occured
 */
void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
			  unsigned long count)
{
	unsigned long x;

	if (mem_cgroup_disabled())
		return;

	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
912 913
		struct mem_cgroup *mi;

914 915 916 917 918
		/*
		 * Batch local counters to keep them in sync with
		 * the hierarchical ones.
		 */
		__this_cpu_add(memcg->vmstats_local->events[idx], x);
919 920
		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
			atomic_long_add(x, &mi->vmevents[idx]);
921 922 923 924 925
		x = 0;
	}
	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
}

926
static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
927
{
928
	return atomic_long_read(&memcg->vmevents[event]);
929 930
}

931 932
static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
{
933 934 935 936 937 938
	long x = 0;
	int cpu;

	for_each_possible_cpu(cpu)
		x += per_cpu(memcg->vmstats_local->events[event], cpu);
	return x;
939 940
}

941
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
942
					 struct page *page,
943
					 int nr_pages)
944
{
945 946
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
947
		__count_memcg_events(memcg, PGPGIN, 1);
948
	else {
949
		__count_memcg_events(memcg, PGPGOUT, 1);
950 951
		nr_pages = -nr_pages; /* for event */
	}
952

953
	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
954 955
}

956 957
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
958 959 960
{
	unsigned long val, next;

961 962
	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
963
	/* from time_after() in jiffies.h */
964
	if ((long)(next - val) < 0) {
965 966 967 968
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
969 970 971
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
972 973 974
		default:
			break;
		}
975
		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
976
		return true;
977
	}
978
	return false;
979 980 981 982 983 984
}

/*
 * Check events in order.
 *
 */
985
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
986 987
{
	/* threshold event is triggered in finer grain than soft limit */
988 989
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
990
		bool do_softlimit;
991

992 993
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
994
		mem_cgroup_threshold(memcg);
995 996
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
997
	}
998 999
}

1000
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1001
{
1002 1003 1004 1005 1006 1007 1008 1009
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1010
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1011
}
M
Michal Hocko 已提交
1012
EXPORT_SYMBOL(mem_cgroup_from_task);
1013

1014 1015 1016 1017 1018 1019 1020 1021 1022
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
 * returned.
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1023
{
1024 1025 1026 1027
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
1028

1029 1030
	rcu_read_lock();
	do {
1031 1032 1033 1034 1035 1036
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1037
			memcg = root_mem_cgroup;
1038 1039 1040 1041 1042
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1043
	} while (!css_tryget(&memcg->css));
1044
	rcu_read_unlock();
1045
	return memcg;
1046
}
1047 1048
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
/**
 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
 * @page: page from which memcg should be extracted.
 *
 * Obtain a reference on page->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned.
 */
struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
{
	struct mem_cgroup *memcg = page->mem_cgroup;

	if (mem_cgroup_disabled())
		return NULL;

	rcu_read_lock();
S
Shakeel Butt 已提交
1064 1065
	/* Page should not get uncharged and freed memcg under us. */
	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1066 1067 1068 1069 1070 1071
		memcg = root_mem_cgroup;
	rcu_read_unlock();
	return memcg;
}
EXPORT_SYMBOL(get_mem_cgroup_from_page);

1072 1073 1074 1075 1076 1077
/**
 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
 */
static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
{
	if (unlikely(current->active_memcg)) {
S
Shakeel Butt 已提交
1078
		struct mem_cgroup *memcg;
1079 1080

		rcu_read_lock();
S
Shakeel Butt 已提交
1081 1082 1083 1084
		/* current->active_memcg must hold a ref. */
		if (WARN_ON_ONCE(!css_tryget(&current->active_memcg->css)))
			memcg = root_mem_cgroup;
		else
1085 1086 1087 1088 1089 1090
			memcg = current->active_memcg;
		rcu_read_unlock();
		return memcg;
	}
	return get_mem_cgroup_from_mm(current->mm);
}
1091

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
1105
 * Reclaimers can specify a node and a priority level in @reclaim to
1106
 * divide up the memcgs in the hierarchy among all concurrent
1107
 * reclaimers operating on the same node and priority.
1108
 */
1109
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1110
				   struct mem_cgroup *prev,
1111
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1112
{
1113
	struct mem_cgroup_reclaim_iter *iter;
1114
	struct cgroup_subsys_state *css = NULL;
1115
	struct mem_cgroup *memcg = NULL;
1116
	struct mem_cgroup *pos = NULL;
1117

1118 1119
	if (mem_cgroup_disabled())
		return NULL;
1120

1121 1122
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1123

1124
	if (prev && !reclaim)
1125
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1126

1127 1128
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1129
			goto out;
1130
		return root;
1131
	}
K
KAMEZAWA Hiroyuki 已提交
1132

1133
	rcu_read_lock();
M
Michal Hocko 已提交
1134

1135
	if (reclaim) {
1136
		struct mem_cgroup_per_node *mz;
1137

1138
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1139
		iter = &mz->iter;
1140 1141 1142 1143

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

1144
		while (1) {
1145
			pos = READ_ONCE(iter->position);
1146 1147
			if (!pos || css_tryget(&pos->css))
				break;
1148
			/*
1149 1150 1151 1152 1153 1154
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
1155
			 */
1156 1157
			(void)cmpxchg(&iter->position, pos, NULL);
		}
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1175
		}
K
KAMEZAWA Hiroyuki 已提交
1176

1177 1178 1179 1180 1181 1182
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1183

1184 1185
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1186

1187 1188
		if (css_tryget(css))
			break;
1189

1190
		memcg = NULL;
1191
	}
1192 1193 1194

	if (reclaim) {
		/*
1195 1196 1197
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
1198
		 */
1199 1200
		(void)cmpxchg(&iter->position, pos, memcg);

1201 1202 1203 1204 1205 1206 1207
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1208
	}
1209

1210 1211
out_unlock:
	rcu_read_unlock();
1212
out:
1213 1214 1215
	if (prev && prev != root)
		css_put(&prev->css);

1216
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1217
}
K
KAMEZAWA Hiroyuki 已提交
1218

1219 1220 1221 1222 1223 1224 1225
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1226 1227 1228 1229 1230 1231
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1232

1233 1234
static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
					struct mem_cgroup *dead_memcg)
1235 1236
{
	struct mem_cgroup_reclaim_iter *iter;
1237 1238
	struct mem_cgroup_per_node *mz;
	int nid;
1239

1240 1241
	for_each_node(nid) {
		mz = mem_cgroup_nodeinfo(from, nid);
1242 1243
		iter = &mz->iter;
		cmpxchg(&iter->position, dead_memcg, NULL);
1244 1245 1246
	}
}

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup *last;

	do {
		__invalidate_reclaim_iterators(memcg, dead_memcg);
		last = memcg;
	} while ((memcg = parent_mem_cgroup(memcg)));

	/*
	 * When cgruop1 non-hierarchy mode is used,
	 * parent_mem_cgroup() does not walk all the way up to the
	 * cgroup root (root_mem_cgroup). So we have to handle
	 * dead_memcg from cgroup root separately.
	 */
	if (last != root_mem_cgroup)
		__invalidate_reclaim_iterators(root_mem_cgroup,
						dead_memcg);
}

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

1293
		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

1305
/**
1306
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1307
 * @page: the page
1308
 * @pgdat: pgdat of the page
1309
 *
1310 1311
 * This function relies on page->mem_cgroup being stable - see the
 * access rules in commit_charge().
1312
 */
M
Mel Gorman 已提交
1313
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
1314
{
1315
	struct mem_cgroup_per_node *mz;
1316
	struct mem_cgroup *memcg;
1317
	struct lruvec *lruvec;
1318

1319
	if (mem_cgroup_disabled()) {
1320
		lruvec = &pgdat->__lruvec;
1321 1322
		goto out;
	}
1323

1324
	memcg = page->mem_cgroup;
1325
	/*
1326
	 * Swapcache readahead pages are added to the LRU - and
1327
	 * possibly migrated - before they are charged.
1328
	 */
1329 1330
	if (!memcg)
		memcg = root_mem_cgroup;
1331

1332
	mz = mem_cgroup_page_nodeinfo(memcg, page);
1333 1334 1335 1336 1337 1338 1339
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
1340 1341
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
1342
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1343
}
1344

1345
/**
1346 1347 1348
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1349
 * @zid: zone id of the accounted pages
1350
 * @nr_pages: positive when adding or negative when removing
1351
 *
1352 1353 1354
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1355
 */
1356
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1357
				int zid, int nr_pages)
1358
{
1359
	struct mem_cgroup_per_node *mz;
1360
	unsigned long *lru_size;
1361
	long size;
1362 1363 1364 1365

	if (mem_cgroup_disabled())
		return;

1366
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1367
	lru_size = &mz->lru_zone_size[zid][lru];
1368 1369 1370 1371 1372

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1373 1374 1375
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1376 1377 1378 1379 1380 1381
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1382
}
1383

1384
/**
1385
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1386
 * @memcg: the memory cgroup
1387
 *
1388
 * Returns the maximum amount of memory @mem can be charged with, in
1389
 * pages.
1390
 */
1391
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1392
{
1393 1394 1395
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1396

1397
	count = page_counter_read(&memcg->memory);
1398
	limit = READ_ONCE(memcg->memory.max);
1399 1400 1401
	if (count < limit)
		margin = limit - count;

1402
	if (do_memsw_account()) {
1403
		count = page_counter_read(&memcg->memsw);
1404
		limit = READ_ONCE(memcg->memsw.max);
1405
		if (count < limit)
1406
			margin = min(margin, limit - count);
1407 1408
		else
			margin = 0;
1409 1410 1411
	}

	return margin;
1412 1413
}

1414
/*
Q
Qiang Huang 已提交
1415
 * A routine for checking "mem" is under move_account() or not.
1416
 *
Q
Qiang Huang 已提交
1417 1418 1419
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1420
 */
1421
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1422
{
1423 1424
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1425
	bool ret = false;
1426 1427 1428 1429 1430 1431 1432 1433 1434
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1435

1436 1437
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1438 1439
unlock:
	spin_unlock(&mc.lock);
1440 1441 1442
	return ret;
}

1443
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1444 1445
{
	if (mc.moving_task && current != mc.moving_task) {
1446
		if (mem_cgroup_under_move(memcg)) {
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1459 1460 1461 1462
static char *memory_stat_format(struct mem_cgroup *memcg)
{
	struct seq_buf s;
	int i;
1463

1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
	if (!s.buffer)
		return NULL;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

	seq_buf_printf(&s, "anon %llu\n",
1480
		       (u64)memcg_page_state(memcg, NR_ANON_MAPPED) *
1481 1482
		       PAGE_SIZE);
	seq_buf_printf(&s, "file %llu\n",
1483
		       (u64)memcg_page_state(memcg, NR_FILE_PAGES) *
1484 1485
		       PAGE_SIZE);
	seq_buf_printf(&s, "kernel_stack %llu\n",
1486
		       (u64)memcg_page_state(memcg, NR_KERNEL_STACK_KB) *
1487 1488
		       1024);
	seq_buf_printf(&s, "slab %llu\n",
1489 1490
		       (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
			     memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B)));
1491 1492
	seq_buf_printf(&s, "percpu %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_PERCPU_B));
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
	seq_buf_printf(&s, "sock %llu\n",
		       (u64)memcg_page_state(memcg, MEMCG_SOCK) *
		       PAGE_SIZE);

	seq_buf_printf(&s, "shmem %llu\n",
		       (u64)memcg_page_state(memcg, NR_SHMEM) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_mapped %llu\n",
		       (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_dirty %llu\n",
		       (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
		       PAGE_SIZE);
	seq_buf_printf(&s, "file_writeback %llu\n",
		       (u64)memcg_page_state(memcg, NR_WRITEBACK) *
		       PAGE_SIZE);

1510
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1511
	seq_buf_printf(&s, "anon_thp %llu\n",
1512 1513 1514
		       (u64)memcg_page_state(memcg, NR_ANON_THPS) *
		       HPAGE_PMD_SIZE);
#endif
1515 1516

	for (i = 0; i < NR_LRU_LISTS; i++)
1517
		seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1518 1519 1520 1521
			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			       PAGE_SIZE);

	seq_buf_printf(&s, "slab_reclaimable %llu\n",
1522
		       (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B));
1523
	seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1524
		       (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B));
1525 1526 1527

	/* Accumulated memory events */

1528 1529 1530 1531
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
		       memcg_events(memcg, PGFAULT));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
		       memcg_events(memcg, PGMAJFAULT));
1532

1533 1534 1535 1536 1537 1538 1539 1540
	seq_buf_printf(&s, "workingset_refault_anon %lu\n",
		       memcg_page_state(memcg, WORKINGSET_REFAULT_ANON));
	seq_buf_printf(&s, "workingset_refault_file %lu\n",
		       memcg_page_state(memcg, WORKINGSET_REFAULT_FILE));
	seq_buf_printf(&s, "workingset_activate_anon %lu\n",
		       memcg_page_state(memcg, WORKINGSET_ACTIVATE_ANON));
	seq_buf_printf(&s, "workingset_activate_file %lu\n",
		       memcg_page_state(memcg, WORKINGSET_ACTIVATE_FILE));
1541
	seq_buf_printf(&s, "workingset_restore %lu\n",
1542 1543 1544
		       memcg_page_state(memcg, WORKINGSET_RESTORE_ANON));
	seq_buf_printf(&s, "workingset_restore %lu\n",
		       memcg_page_state(memcg, WORKINGSET_RESTORE_FILE));
1545 1546 1547
	seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
		       memcg_page_state(memcg, WORKINGSET_NODERECLAIM));

1548 1549
	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
		       memcg_events(memcg, PGREFILL));
1550 1551 1552 1553 1554 1555
	seq_buf_printf(&s, "pgscan %lu\n",
		       memcg_events(memcg, PGSCAN_KSWAPD) +
		       memcg_events(memcg, PGSCAN_DIRECT));
	seq_buf_printf(&s, "pgsteal %lu\n",
		       memcg_events(memcg, PGSTEAL_KSWAPD) +
		       memcg_events(memcg, PGSTEAL_DIRECT));
1556 1557 1558 1559 1560 1561 1562 1563
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
		       memcg_events(memcg, PGACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
		       memcg_events(memcg, PGDEACTIVATE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
		       memcg_events(memcg, PGLAZYFREE));
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
		       memcg_events(memcg, PGLAZYFREED));
1564 1565

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1566
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1567
		       memcg_events(memcg, THP_FAULT_ALLOC));
1568
	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1569 1570 1571 1572 1573 1574 1575 1576
		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

	/* The above should easily fit into one page */
	WARN_ON_ONCE(seq_buf_has_overflowed(&s));

	return s.buffer;
}
1577

1578
#define K(x) ((x) << (PAGE_SHIFT-10))
1579
/**
1580 1581
 * mem_cgroup_print_oom_context: Print OOM information relevant to
 * memory controller.
1582 1583 1584 1585 1586 1587
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
1588
void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1589 1590 1591
{
	rcu_read_lock();

1592 1593 1594 1595 1596
	if (memcg) {
		pr_cont(",oom_memcg=");
		pr_cont_cgroup_path(memcg->css.cgroup);
	} else
		pr_cont(",global_oom");
1597
	if (p) {
1598
		pr_cont(",task_memcg=");
1599 1600
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	}
1601
	rcu_read_unlock();
1602 1603 1604 1605 1606 1607 1608 1609 1610
}

/**
 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
 * memory controller.
 * @memcg: The memory cgroup that went over limit
 */
void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
1611
	char *buf;
1612

1613 1614
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1615
		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1616 1617 1618
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->swap)),
1619
			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1620 1621 1622 1623 1624 1625 1626
	else {
		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->memsw)),
			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
			K((u64)page_counter_read(&memcg->kmem)),
			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1627
	}
1628 1629 1630 1631 1632 1633 1634 1635 1636

	pr_info("Memory cgroup stats for ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(":");
	buf = memory_stat_format(memcg);
	if (!buf)
		return;
	pr_info("%s", buf);
	kfree(buf);
1637 1638
}

D
David Rientjes 已提交
1639 1640 1641
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1642
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1643
{
1644
	unsigned long max;
1645

1646
	max = READ_ONCE(memcg->memory.max);
1647
	if (mem_cgroup_swappiness(memcg)) {
1648 1649
		unsigned long memsw_max;
		unsigned long swap_max;
1650

1651
		memsw_max = memcg->memsw.max;
1652
		swap_max = READ_ONCE(memcg->swap.max);
1653 1654
		swap_max = min(swap_max, (unsigned long)total_swap_pages);
		max = min(max + swap_max, memsw_max);
1655
	}
1656
	return max;
D
David Rientjes 已提交
1657 1658
}

1659 1660 1661 1662 1663
unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
{
	return page_counter_read(&memcg->memory);
}

1664
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1665
				     int order)
1666
{
1667 1668 1669
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1670
		.memcg = memcg,
1671 1672 1673
		.gfp_mask = gfp_mask,
		.order = order,
	};
1674
	bool ret = true;
1675

1676 1677
	if (mutex_lock_killable(&oom_lock))
		return true;
1678 1679 1680 1681

	if (mem_cgroup_margin(memcg) >= (1 << order))
		goto unlock;

1682 1683 1684 1685 1686
	/*
	 * A few threads which were not waiting at mutex_lock_killable() can
	 * fail to bail out. Therefore, check again after holding oom_lock.
	 */
	ret = should_force_charge() || out_of_memory(&oc);
1687 1688

unlock:
1689
	mutex_unlock(&oom_lock);
1690
	return ret;
1691 1692
}

1693
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1694
				   pg_data_t *pgdat,
1695 1696 1697 1698 1699 1700 1701 1702 1703
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1704
		.pgdat = pgdat,
1705 1706
	};

1707
	excess = soft_limit_excess(root_memcg);
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1733
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1734
					pgdat, &nr_scanned);
1735
		*total_scanned += nr_scanned;
1736
		if (!soft_limit_excess(root_memcg))
1737
			break;
1738
	}
1739 1740
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1741 1742
}

1743 1744 1745 1746 1747 1748
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1749 1750
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1751 1752 1753 1754
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1755
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1756
{
1757
	struct mem_cgroup *iter, *failed = NULL;
1758

1759 1760
	spin_lock(&memcg_oom_lock);

1761
	for_each_mem_cgroup_tree(iter, memcg) {
1762
		if (iter->oom_lock) {
1763 1764 1765 1766 1767
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1768 1769
			mem_cgroup_iter_break(memcg, iter);
			break;
1770 1771
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1772
	}
K
KAMEZAWA Hiroyuki 已提交
1773

1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1785
		}
1786 1787
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1788 1789 1790 1791

	spin_unlock(&memcg_oom_lock);

	return !failed;
1792
}
1793

1794
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1795
{
K
KAMEZAWA Hiroyuki 已提交
1796 1797
	struct mem_cgroup *iter;

1798
	spin_lock(&memcg_oom_lock);
1799
	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1800
	for_each_mem_cgroup_tree(iter, memcg)
1801
		iter->oom_lock = false;
1802
	spin_unlock(&memcg_oom_lock);
1803 1804
}

1805
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1806 1807 1808
{
	struct mem_cgroup *iter;

1809
	spin_lock(&memcg_oom_lock);
1810
	for_each_mem_cgroup_tree(iter, memcg)
1811 1812
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1813 1814
}

1815
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1816 1817 1818
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1819 1820
	/*
	 * When a new child is created while the hierarchy is under oom,
1821
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1822
	 */
1823
	spin_lock(&memcg_oom_lock);
1824
	for_each_mem_cgroup_tree(iter, memcg)
1825 1826 1827
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1828 1829
}

K
KAMEZAWA Hiroyuki 已提交
1830 1831
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1832
struct oom_wait_info {
1833
	struct mem_cgroup *memcg;
1834
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1835 1836
};

1837
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1838 1839
	unsigned mode, int sync, void *arg)
{
1840 1841
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1842 1843 1844
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1845
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1846

1847 1848
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1849 1850 1851 1852
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1853
static void memcg_oom_recover(struct mem_cgroup *memcg)
1854
{
1855 1856 1857 1858 1859 1860 1861 1862 1863
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1864
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1865 1866
}

1867 1868 1869 1870 1871 1872 1873 1874
enum oom_status {
	OOM_SUCCESS,
	OOM_FAILED,
	OOM_ASYNC,
	OOM_SKIPPED
};

static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1875
{
1876 1877 1878
	enum oom_status ret;
	bool locked;

1879 1880 1881
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		return OOM_SKIPPED;

1882 1883
	memcg_memory_event(memcg, MEMCG_OOM);

K
KAMEZAWA Hiroyuki 已提交
1884
	/*
1885 1886 1887 1888
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1889 1890 1891 1892
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1893
	 *
1894 1895 1896 1897 1898 1899 1900
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
K
KAMEZAWA Hiroyuki 已提交
1901
	 */
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
	if (memcg->oom_kill_disable) {
		if (!current->in_user_fault)
			return OOM_SKIPPED;
		css_get(&memcg->css);
		current->memcg_in_oom = memcg;
		current->memcg_oom_gfp_mask = mask;
		current->memcg_oom_order = order;

		return OOM_ASYNC;
	}

1913 1914 1915 1916 1917 1918 1919 1920
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	mem_cgroup_unmark_under_oom(memcg);
1921
	if (mem_cgroup_out_of_memory(memcg, mask, order))
1922 1923 1924 1925 1926 1927
		ret = OOM_SUCCESS;
	else
		ret = OOM_FAILED;

	if (locked)
		mem_cgroup_oom_unlock(memcg);
1928

1929
	return ret;
1930 1931 1932 1933
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1934
 * @handle: actually kill/wait or just clean up the OOM state
1935
 *
1936 1937
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1938
 *
1939
 * Memcg supports userspace OOM handling where failed allocations must
1940 1941 1942 1943
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1944
 * the end of the page fault to complete the OOM handling.
1945 1946
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1947
 * completed, %false otherwise.
1948
 */
1949
bool mem_cgroup_oom_synchronize(bool handle)
1950
{
T
Tejun Heo 已提交
1951
	struct mem_cgroup *memcg = current->memcg_in_oom;
1952
	struct oom_wait_info owait;
1953
	bool locked;
1954 1955 1956

	/* OOM is global, do not handle */
	if (!memcg)
1957
		return false;
1958

1959
	if (!handle)
1960
		goto cleanup;
1961 1962 1963 1964 1965

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
1966
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
1967

1968
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1979 1980
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1981
	} else {
1982
		schedule();
1983 1984 1985 1986 1987
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1988 1989 1990 1991 1992 1993 1994 1995
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1996
cleanup:
T
Tejun Heo 已提交
1997
	current->memcg_in_oom = NULL;
1998
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1999
	return true;
2000 2001
}

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
/**
 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 * @victim: task to be killed by the OOM killer
 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 *
 * Returns a pointer to a memory cgroup, which has to be cleaned up
 * by killing all belonging OOM-killable tasks.
 *
 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 */
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
					    struct mem_cgroup *oom_domain)
{
	struct mem_cgroup *oom_group = NULL;
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return NULL;

	if (!oom_domain)
		oom_domain = root_mem_cgroup;

	rcu_read_lock();

	memcg = mem_cgroup_from_task(victim);
	if (memcg == root_mem_cgroup)
		goto out;

2030 2031 2032 2033 2034 2035 2036 2037
	/*
	 * If the victim task has been asynchronously moved to a different
	 * memory cgroup, we might end up killing tasks outside oom_domain.
	 * In this case it's better to ignore memory.group.oom.
	 */
	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
		goto out;

2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
	/*
	 * Traverse the memory cgroup hierarchy from the victim task's
	 * cgroup up to the OOMing cgroup (or root) to find the
	 * highest-level memory cgroup with oom.group set.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		if (memcg->oom_group)
			oom_group = memcg;

		if (memcg == oom_domain)
			break;
	}

	if (oom_group)
		css_get(&oom_group->css);
out:
	rcu_read_unlock();

	return oom_group;
}

void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
	pr_info("Tasks in ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(" are going to be killed due to memory.oom.group set\n");
}

2066
/**
2067 2068
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
2069
 *
2070
 * This function protects unlocked LRU pages from being moved to
2071 2072 2073 2074 2075
 * another cgroup.
 *
 * It ensures lifetime of the returned memcg. Caller is responsible
 * for the lifetime of the page; __unlock_page_memcg() is available
 * when @page might get freed inside the locked section.
2076
 */
2077
struct mem_cgroup *lock_page_memcg(struct page *page)
2078
{
2079
	struct page *head = compound_head(page); /* rmap on tail pages */
2080
	struct mem_cgroup *memcg;
2081
	unsigned long flags;
2082

2083 2084 2085 2086
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
2087 2088 2089 2090 2091 2092 2093
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page itself from being freed. E.g. writeback
	 * doesn't hold a page reference and relies on PG_writeback to
	 * keep off truncation, migration and so forth.
         */
2094 2095 2096
	rcu_read_lock();

	if (mem_cgroup_disabled())
2097
		return NULL;
2098
again:
2099
	memcg = head->mem_cgroup;
2100
	if (unlikely(!memcg))
2101
		return NULL;
2102

Q
Qiang Huang 已提交
2103
	if (atomic_read(&memcg->moving_account) <= 0)
2104
		return memcg;
2105

2106
	spin_lock_irqsave(&memcg->move_lock, flags);
2107
	if (memcg != head->mem_cgroup) {
2108
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2109 2110
		goto again;
	}
2111 2112 2113 2114

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
2115
	 * the task who has the lock for unlock_page_memcg().
2116 2117 2118
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2119

2120
	return memcg;
2121
}
2122
EXPORT_SYMBOL(lock_page_memcg);
2123

2124
/**
2125 2126 2127 2128
 * __unlock_page_memcg - unlock and unpin a memcg
 * @memcg: the memcg
 *
 * Unlock and unpin a memcg returned by lock_page_memcg().
2129
 */
2130
void __unlock_page_memcg(struct mem_cgroup *memcg)
2131
{
2132 2133 2134 2135 2136 2137 2138 2139
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2140

2141
	rcu_read_unlock();
2142
}
2143 2144 2145 2146 2147 2148 2149

/**
 * unlock_page_memcg - unlock a page->mem_cgroup binding
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
2150 2151 2152
	struct page *head = compound_head(page);

	__unlock_page_memcg(head->mem_cgroup);
2153
}
2154
EXPORT_SYMBOL(unlock_page_memcg);
2155

2156 2157
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2158
	unsigned int nr_pages;
R
Roman Gushchin 已提交
2159 2160 2161 2162 2163 2164

#ifdef CONFIG_MEMCG_KMEM
	struct obj_cgroup *cached_objcg;
	unsigned int nr_bytes;
#endif

2165
	struct work_struct work;
2166
	unsigned long flags;
2167
#define FLUSHING_CACHED_CHARGE	0
2168 2169
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2170
static DEFINE_MUTEX(percpu_charge_mutex);
2171

R
Roman Gushchin 已提交
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
#ifdef CONFIG_MEMCG_KMEM
static void drain_obj_stock(struct memcg_stock_pcp *stock);
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg);

#else
static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
{
}
static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	return false;
}
#endif

2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2198
 */
2199
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2200 2201
{
	struct memcg_stock_pcp *stock;
2202
	unsigned long flags;
2203
	bool ret = false;
2204

2205
	if (nr_pages > MEMCG_CHARGE_BATCH)
2206
		return ret;
2207

2208 2209 2210
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2211
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2212
		stock->nr_pages -= nr_pages;
2213 2214
		ret = true;
	}
2215 2216 2217

	local_irq_restore(flags);

2218 2219 2220 2221
	return ret;
}

/*
2222
 * Returns stocks cached in percpu and reset cached information.
2223 2224 2225 2226 2227
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2228 2229 2230
	if (!old)
		return;

2231
	if (stock->nr_pages) {
2232
		page_counter_uncharge(&old->memory, stock->nr_pages);
2233
		if (do_memsw_account())
2234
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2235
		stock->nr_pages = 0;
2236
	}
2237 2238

	css_put(&old->css);
2239 2240 2241 2242 2243
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
2244 2245 2246
	struct memcg_stock_pcp *stock;
	unsigned long flags;

2247 2248 2249 2250
	/*
	 * The only protection from memory hotplug vs. drain_stock races is
	 * that we always operate on local CPU stock here with IRQ disabled
	 */
2251 2252 2253
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
R
Roman Gushchin 已提交
2254
	drain_obj_stock(stock);
2255
	drain_stock(stock);
2256
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2257 2258

	local_irq_restore(flags);
2259 2260 2261
}

/*
2262
 * Cache charges(val) to local per_cpu area.
2263
 * This will be consumed by consume_stock() function, later.
2264
 */
2265
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2266
{
2267 2268 2269 2270
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
2271

2272
	stock = this_cpu_ptr(&memcg_stock);
2273
	if (stock->cached != memcg) { /* reset if necessary */
2274
		drain_stock(stock);
2275
		css_get(&memcg->css);
2276
		stock->cached = memcg;
2277
	}
2278
	stock->nr_pages += nr_pages;
2279

2280
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2281 2282
		drain_stock(stock);

2283
	local_irq_restore(flags);
2284 2285 2286
}

/*
2287
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2288
 * of the hierarchy under it.
2289
 */
2290
static void drain_all_stock(struct mem_cgroup *root_memcg)
2291
{
2292
	int cpu, curcpu;
2293

2294 2295 2296
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2297 2298 2299 2300 2301 2302
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
2303
	curcpu = get_cpu();
2304 2305
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2306
		struct mem_cgroup *memcg;
2307
		bool flush = false;
2308

2309
		rcu_read_lock();
2310
		memcg = stock->cached;
2311 2312 2313
		if (memcg && stock->nr_pages &&
		    mem_cgroup_is_descendant(memcg, root_memcg))
			flush = true;
R
Roman Gushchin 已提交
2314 2315
		if (obj_stock_flush_required(stock, root_memcg))
			flush = true;
2316 2317 2318 2319
		rcu_read_unlock();

		if (flush &&
		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2320 2321 2322 2323 2324
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2325
	}
2326
	put_cpu();
2327
	mutex_unlock(&percpu_charge_mutex);
2328 2329
}

2330
static int memcg_hotplug_cpu_dead(unsigned int cpu)
2331 2332
{
	struct memcg_stock_pcp *stock;
2333
	struct mem_cgroup *memcg, *mi;
2334 2335 2336

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
2337 2338 2339 2340 2341 2342 2343 2344

	for_each_mem_cgroup(memcg) {
		int i;

		for (i = 0; i < MEMCG_NR_STAT; i++) {
			int nid;
			long x;

2345
			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2346
			if (x)
2347 2348
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmstats[i]);
2349 2350 2351 2352 2353 2354 2355 2356 2357

			if (i >= NR_VM_NODE_STAT_ITEMS)
				continue;

			for_each_node(nid) {
				struct mem_cgroup_per_node *pn;

				pn = mem_cgroup_nodeinfo(memcg, nid);
				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2358
				if (x)
2359 2360 2361
					do {
						atomic_long_add(x, &pn->lruvec_stat[i]);
					} while ((pn = parent_nodeinfo(pn, nid)));
2362 2363 2364
			}
		}

2365
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2366 2367
			long x;

2368
			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2369
			if (x)
2370 2371
				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
					atomic_long_add(x, &memcg->vmevents[i]);
2372 2373 2374
		}
	}

2375
	return 0;
2376 2377
}

2378 2379 2380
static unsigned long reclaim_high(struct mem_cgroup *memcg,
				  unsigned int nr_pages,
				  gfp_t gfp_mask)
2381
{
2382 2383
	unsigned long nr_reclaimed = 0;

2384
	do {
2385 2386
		unsigned long pflags;

2387 2388
		if (page_counter_read(&memcg->memory) <=
		    READ_ONCE(memcg->memory.high))
2389
			continue;
2390

2391
		memcg_memory_event(memcg, MEMCG_HIGH);
2392 2393

		psi_memstall_enter(&pflags);
2394 2395
		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
							     gfp_mask, true);
2396
		psi_memstall_leave(&pflags);
2397 2398
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));
2399 2400

	return nr_reclaimed;
2401 2402 2403 2404 2405 2406 2407
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
2408
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2409 2410
}

2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
/*
 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
 * enough to still cause a significant slowdown in most cases, while still
 * allowing diagnostics and tracing to proceed without becoming stuck.
 */
#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)

/*
 * When calculating the delay, we use these either side of the exponentiation to
 * maintain precision and scale to a reasonable number of jiffies (see the table
 * below.
 *
 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
 *   overage ratio to a delay.
 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
 *   proposed penalty in order to reduce to a reasonable number of jiffies, and
 *   to produce a reasonable delay curve.
 *
 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
 * reasonable delay curve compared to precision-adjusted overage, not
 * penalising heavily at first, but still making sure that growth beyond the
 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
 * example, with a high of 100 megabytes:
 *
 *  +-------+------------------------+
 *  | usage | time to allocate in ms |
 *  +-------+------------------------+
 *  | 100M  |                      0 |
 *  | 101M  |                      6 |
 *  | 102M  |                     25 |
 *  | 103M  |                     57 |
 *  | 104M  |                    102 |
 *  | 105M  |                    159 |
 *  | 106M  |                    230 |
 *  | 107M  |                    313 |
 *  | 108M  |                    409 |
 *  | 109M  |                    518 |
 *  | 110M  |                    639 |
 *  | 111M  |                    774 |
 *  | 112M  |                    921 |
 *  | 113M  |                   1081 |
 *  | 114M  |                   1254 |
 *  | 115M  |                   1439 |
 *  | 116M  |                   1638 |
 *  | 117M  |                   1849 |
 *  | 118M  |                   2000 |
 *  | 119M  |                   2000 |
 *  | 120M  |                   2000 |
 *  +-------+------------------------+
 */
 #define MEMCG_DELAY_PRECISION_SHIFT 20
 #define MEMCG_DELAY_SCALING_SHIFT 14

2464
static u64 calculate_overage(unsigned long usage, unsigned long high)
2465
{
2466
	u64 overage;
2467

2468 2469
	if (usage <= high)
		return 0;
2470

2471 2472 2473 2474 2475
	/*
	 * Prevent division by 0 in overage calculation by acting as if
	 * it was a threshold of 1 page
	 */
	high = max(high, 1UL);
2476

2477 2478 2479 2480
	overage = usage - high;
	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
	return div64_u64(overage, high);
}
2481

2482 2483 2484
static u64 mem_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;
2485

2486 2487
	do {
		overage = calculate_overage(page_counter_read(&memcg->memory),
2488
					    READ_ONCE(memcg->memory.high));
2489
		max_overage = max(overage, max_overage);
2490 2491 2492
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

2493 2494 2495
	return max_overage;
}

2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
static u64 swap_find_max_overage(struct mem_cgroup *memcg)
{
	u64 overage, max_overage = 0;

	do {
		overage = calculate_overage(page_counter_read(&memcg->swap),
					    READ_ONCE(memcg->swap.high));
		if (overage)
			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
		max_overage = max(overage, max_overage);
	} while ((memcg = parent_mem_cgroup(memcg)) &&
		 !mem_cgroup_is_root(memcg));

	return max_overage;
}

2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
/*
 * Get the number of jiffies that we should penalise a mischievous cgroup which
 * is exceeding its memory.high by checking both it and its ancestors.
 */
static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
					  unsigned int nr_pages,
					  u64 max_overage)
{
	unsigned long penalty_jiffies;

2522 2523
	if (!max_overage)
		return 0;
2524 2525 2526 2527 2528 2529 2530 2531 2532

	/*
	 * We use overage compared to memory.high to calculate the number of
	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
	 * fairly lenient on small overages, and increasingly harsh when the
	 * memcg in question makes it clear that it has no intention of stopping
	 * its crazy behaviour, so we exponentially increase the delay based on
	 * overage amount.
	 */
2533 2534 2535
	penalty_jiffies = max_overage * max_overage * HZ;
	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2536 2537 2538 2539 2540 2541 2542 2543 2544

	/*
	 * Factor in the task's own contribution to the overage, such that four
	 * N-sized allocations are throttled approximately the same as one
	 * 4N-sized allocation.
	 *
	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
	 * larger the current charge patch is than that.
	 */
2545
	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
}

/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned long penalty_jiffies;
	unsigned long pflags;
2556
	unsigned long nr_reclaimed;
2557
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2558
	int nr_retries = MAX_RECLAIM_RETRIES;
2559
	struct mem_cgroup *memcg;
2560
	bool in_retry = false;
2561 2562 2563 2564 2565 2566 2567

	if (likely(!nr_pages))
		return;

	memcg = get_mem_cgroup_from_mm(current->mm);
	current->memcg_nr_pages_over_high = 0;

2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
retry_reclaim:
	/*
	 * The allocating task should reclaim at least the batch size, but for
	 * subsequent retries we only want to do what's necessary to prevent oom
	 * or breaching resource isolation.
	 *
	 * This is distinct from memory.max or page allocator behaviour because
	 * memory.high is currently batched, whereas memory.max and the page
	 * allocator run every time an allocation is made.
	 */
	nr_reclaimed = reclaim_high(memcg,
				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
				    GFP_KERNEL);

2582 2583 2584 2585
	/*
	 * memory.high is breached and reclaim is unable to keep up. Throttle
	 * allocators proactively to slow down excessive growth.
	 */
2586 2587
	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
					       mem_find_max_overage(memcg));
2588

2589 2590 2591
	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
						swap_find_max_overage(memcg));

2592 2593 2594 2595 2596 2597 2598
	/*
	 * Clamp the max delay per usermode return so as to still keep the
	 * application moving forwards and also permit diagnostics, albeit
	 * extremely slowly.
	 */
	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);

2599 2600 2601 2602 2603 2604 2605 2606 2607
	/*
	 * Don't sleep if the amount of jiffies this memcg owes us is so low
	 * that it's not even worth doing, in an attempt to be nice to those who
	 * go only a small amount over their memory.high value and maybe haven't
	 * been aggressively reclaimed enough yet.
	 */
	if (penalty_jiffies <= HZ / 100)
		goto out;

2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
	/*
	 * If reclaim is making forward progress but we're still over
	 * memory.high, we want to encourage that rather than doing allocator
	 * throttling.
	 */
	if (nr_reclaimed || nr_retries--) {
		in_retry = true;
		goto retry_reclaim;
	}

2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
	/*
	 * If we exit early, we're guaranteed to die (since
	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
	 * need to account for any ill-begotten jiffies to pay them off later.
	 */
	psi_memstall_enter(&pflags);
	schedule_timeout_killable(penalty_jiffies);
	psi_memstall_leave(&pflags);

out:
	css_put(&memcg->css);
2629 2630
}

2631 2632
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2633
{
2634
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2635
	int nr_retries = MAX_RECLAIM_RETRIES;
2636
	struct mem_cgroup *mem_over_limit;
2637
	struct page_counter *counter;
2638
	enum oom_status oom_status;
2639
	unsigned long nr_reclaimed;
2640 2641
	bool may_swap = true;
	bool drained = false;
2642
	unsigned long pflags;
2643

2644
	if (mem_cgroup_is_root(memcg))
2645
		return 0;
2646
retry:
2647
	if (consume_stock(memcg, nr_pages))
2648
		return 0;
2649

2650
	if (!do_memsw_account() ||
2651 2652
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2653
			goto done_restock;
2654
		if (do_memsw_account())
2655 2656
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2657
	} else {
2658
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2659
		may_swap = false;
2660
	}
2661

2662 2663 2664 2665
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2666

2667 2668 2669 2670 2671 2672 2673 2674 2675
	/*
	 * Memcg doesn't have a dedicated reserve for atomic
	 * allocations. But like the global atomic pool, we need to
	 * put the burden of reclaim on regular allocation requests
	 * and let these go through as privileged allocations.
	 */
	if (gfp_mask & __GFP_ATOMIC)
		goto force;

2676 2677 2678 2679 2680 2681
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
2682
	if (unlikely(should_force_charge()))
2683
		goto force;
2684

2685 2686 2687 2688 2689 2690 2691 2692 2693
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2694 2695 2696
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2697
	if (!gfpflags_allow_blocking(gfp_mask))
2698
		goto nomem;
2699

2700
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2701

2702
	psi_memstall_enter(&pflags);
2703 2704
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2705
	psi_memstall_leave(&pflags);
2706

2707
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2708
		goto retry;
2709

2710
	if (!drained) {
2711
		drain_all_stock(mem_over_limit);
2712 2713 2714 2715
		drained = true;
		goto retry;
	}

2716 2717
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2718 2719 2720 2721 2722 2723 2724 2725 2726
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2727
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2728 2729 2730 2731 2732 2733 2734 2735
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2736 2737 2738
	if (nr_retries--)
		goto retry;

2739
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2740 2741
		goto nomem;

2742
	if (gfp_mask & __GFP_NOFAIL)
2743
		goto force;
2744

2745
	if (fatal_signal_pending(current))
2746
		goto force;
2747

2748 2749 2750 2751 2752 2753
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2754
		       get_order(nr_pages * PAGE_SIZE));
2755 2756
	switch (oom_status) {
	case OOM_SUCCESS:
2757
		nr_retries = MAX_RECLAIM_RETRIES;
2758 2759 2760 2761 2762 2763
		goto retry;
	case OOM_FAILED:
		goto force;
	default:
		goto nomem;
	}
2764
nomem:
2765
	if (!(gfp_mask & __GFP_NOFAIL))
2766
		return -ENOMEM;
2767 2768 2769 2770 2771 2772 2773
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2774
	if (do_memsw_account())
2775 2776 2777
		page_counter_charge(&memcg->memsw, nr_pages);

	return 0;
2778 2779 2780 2781

done_restock:
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2782

2783
	/*
2784 2785
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2786
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2787 2788 2789 2790
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2791 2792
	 */
	do {
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
		bool mem_high, swap_high;

		mem_high = page_counter_read(&memcg->memory) >
			READ_ONCE(memcg->memory.high);
		swap_high = page_counter_read(&memcg->swap) >
			READ_ONCE(memcg->swap.high);

		/* Don't bother a random interrupted task */
		if (in_interrupt()) {
			if (mem_high) {
2803 2804 2805
				schedule_work(&memcg->high_work);
				break;
			}
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
			continue;
		}

		if (mem_high || swap_high) {
			/*
			 * The allocating tasks in this cgroup will need to do
			 * reclaim or be throttled to prevent further growth
			 * of the memory or swap footprints.
			 *
			 * Target some best-effort fairness between the tasks,
			 * and distribute reclaim work and delay penalties
			 * based on how much each task is actually allocating.
			 */
V
Vladimir Davydov 已提交
2819
			current->memcg_nr_pages_over_high += batch;
2820 2821 2822
			set_notify_resume(current);
			break;
		}
2823
	} while ((memcg = parent_mem_cgroup(memcg)));
2824 2825

	return 0;
2826
}
2827

2828
#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2829
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2830
{
2831 2832 2833
	if (mem_cgroup_is_root(memcg))
		return;

2834
	page_counter_uncharge(&memcg->memory, nr_pages);
2835
	if (do_memsw_account())
2836
		page_counter_uncharge(&memcg->memsw, nr_pages);
2837
}
2838
#endif
2839

2840
static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2841
{
2842
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2843
	/*
2844
	 * Any of the following ensures page->mem_cgroup stability:
2845
	 *
2846 2847 2848 2849
	 * - the page lock
	 * - LRU isolation
	 * - lock_page_memcg()
	 * - exclusive reference
2850
	 */
2851
	page->mem_cgroup = memcg;
2852
}
2853

2854
#ifdef CONFIG_MEMCG_KMEM
2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
				 gfp_t gfp)
{
	unsigned int objects = objs_per_slab_page(s, page);
	void *vec;

	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
			   page_to_nid(page));
	if (!vec)
		return -ENOMEM;

	if (cmpxchg(&page->obj_cgroups, NULL,
		    (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
		kfree(vec);
	else
		kmemleak_not_leak(vec);

	return 0;
}

2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
/*
 * Returns a pointer to the memory cgroup to which the kernel object is charged.
 *
 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
 * cgroup_mutex, etc.
 */
struct mem_cgroup *mem_cgroup_from_obj(void *p)
{
	struct page *page;

	if (mem_cgroup_disabled())
		return NULL;

	page = virt_to_head_page(p);

	/*
2891 2892 2893
	 * Slab objects are accounted individually, not per-page.
	 * Memcg membership data for each individual object is saved in
	 * the page->obj_cgroups.
2894
	 */
2895 2896 2897 2898 2899 2900
	if (page_has_obj_cgroups(page)) {
		struct obj_cgroup *objcg;
		unsigned int off;

		off = obj_to_index(page->slab_cache, page, p);
		objcg = page_obj_cgroups(page)[off];
2901 2902 2903 2904
		if (objcg)
			return obj_cgroup_memcg(objcg);

		return NULL;
2905
	}
2906 2907 2908 2909 2910

	/* All other pages use page->mem_cgroup */
	return page->mem_cgroup;
}

R
Roman Gushchin 已提交
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
{
	struct obj_cgroup *objcg = NULL;
	struct mem_cgroup *memcg;

	if (unlikely(!current->mm && !current->active_memcg))
		return NULL;

	rcu_read_lock();
	if (unlikely(current->active_memcg))
		memcg = rcu_dereference(current->active_memcg);
	else
		memcg = mem_cgroup_from_task(current);

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		objcg = rcu_dereference(memcg->objcg);
		if (objcg && obj_cgroup_tryget(objcg))
			break;
	}
	rcu_read_unlock();

	return objcg;
}

2935
static int memcg_alloc_cache_id(void)
2936
{
2937 2938 2939
	int id, size;
	int err;

2940
	id = ida_simple_get(&memcg_cache_ida,
2941 2942 2943
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2944

2945
	if (id < memcg_nr_cache_ids)
2946 2947 2948 2949 2950 2951
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2952
	down_write(&memcg_cache_ids_sem);
2953 2954

	size = 2 * (id + 1);
2955 2956 2957 2958 2959
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2960
	err = memcg_update_all_list_lrus(size);
2961 2962 2963 2964 2965
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2966
	if (err) {
2967
		ida_simple_remove(&memcg_cache_ida, id);
2968 2969 2970 2971 2972 2973 2974
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2975
	ida_simple_remove(&memcg_cache_ida, id);
2976 2977
}

2978
/**
2979
 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
2980
 * @memcg: memory cgroup to charge
2981
 * @gfp: reclaim mode
2982
 * @nr_pages: number of pages to charge
2983 2984 2985
 *
 * Returns 0 on success, an error code on failure.
 */
2986 2987
int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
			unsigned int nr_pages)
2988
{
2989
	struct page_counter *counter;
2990 2991
	int ret;

2992
	ret = try_charge(memcg, gfp, nr_pages);
2993
	if (ret)
2994
		return ret;
2995 2996 2997

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007

		/*
		 * Enforce __GFP_NOFAIL allocation because callers are not
		 * prepared to see failures and likely do not have any failure
		 * handling code.
		 */
		if (gfp & __GFP_NOFAIL) {
			page_counter_charge(&memcg->kmem, nr_pages);
			return 0;
		}
3008 3009
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
3010
	}
3011
	return 0;
3012 3013
}

3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
/**
 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
 */
void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
{
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

	page_counter_uncharge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_uncharge(&memcg->memsw, nr_pages);
}

3029
/**
3030
 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3031 3032 3033 3034 3035 3036
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
3037
int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3038
{
3039
	struct mem_cgroup *memcg;
3040
	int ret = 0;
3041

3042
	if (memcg_kmem_bypass())
3043 3044
		return 0;

3045
	memcg = get_mem_cgroup_from_current();
3046
	if (!mem_cgroup_is_root(memcg)) {
3047
		ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3048 3049
		if (!ret) {
			page->mem_cgroup = memcg;
3050
			__SetPageKmemcg(page);
3051
			return 0;
3052
		}
3053
	}
3054
	css_put(&memcg->css);
3055
	return ret;
3056
}
3057

3058
/**
3059
 * __memcg_kmem_uncharge_page: uncharge a kmem page
3060 3061 3062
 * @page: page to uncharge
 * @order: allocation order
 */
3063
void __memcg_kmem_uncharge_page(struct page *page, int order)
3064
{
3065
	struct mem_cgroup *memcg = page->mem_cgroup;
3066
	unsigned int nr_pages = 1 << order;
3067 3068 3069 3070

	if (!memcg)
		return;

3071
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3072
	__memcg_kmem_uncharge(memcg, nr_pages);
3073
	page->mem_cgroup = NULL;
3074
	css_put(&memcg->css);
3075 3076 3077 3078

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);
3079
}
R
Roman Gushchin 已提交
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213

static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
{
	struct memcg_stock_pcp *stock;
	unsigned long flags;
	bool ret = false;

	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
		stock->nr_bytes -= nr_bytes;
		ret = true;
	}

	local_irq_restore(flags);

	return ret;
}

static void drain_obj_stock(struct memcg_stock_pcp *stock)
{
	struct obj_cgroup *old = stock->cached_objcg;

	if (!old)
		return;

	if (stock->nr_bytes) {
		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);

		if (nr_pages) {
			rcu_read_lock();
			__memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
			rcu_read_unlock();
		}

		/*
		 * The leftover is flushed to the centralized per-memcg value.
		 * On the next attempt to refill obj stock it will be moved
		 * to a per-cpu stock (probably, on an other CPU), see
		 * refill_obj_stock().
		 *
		 * How often it's flushed is a trade-off between the memory
		 * limit enforcement accuracy and potential CPU contention,
		 * so it might be changed in the future.
		 */
		atomic_add(nr_bytes, &old->nr_charged_bytes);
		stock->nr_bytes = 0;
	}

	obj_cgroup_put(old);
	stock->cached_objcg = NULL;
}

static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
				     struct mem_cgroup *root_memcg)
{
	struct mem_cgroup *memcg;

	if (stock->cached_objcg) {
		memcg = obj_cgroup_memcg(stock->cached_objcg);
		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
			return true;
	}

	return false;
}

static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
{
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
	if (stock->cached_objcg != objcg) { /* reset if necessary */
		drain_obj_stock(stock);
		obj_cgroup_get(objcg);
		stock->cached_objcg = objcg;
		stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
	}
	stock->nr_bytes += nr_bytes;

	if (stock->nr_bytes > PAGE_SIZE)
		drain_obj_stock(stock);

	local_irq_restore(flags);
}

int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
{
	struct mem_cgroup *memcg;
	unsigned int nr_pages, nr_bytes;
	int ret;

	if (consume_obj_stock(objcg, size))
		return 0;

	/*
	 * In theory, memcg->nr_charged_bytes can have enough
	 * pre-charged bytes to satisfy the allocation. However,
	 * flushing memcg->nr_charged_bytes requires two atomic
	 * operations, and memcg->nr_charged_bytes can't be big,
	 * so it's better to ignore it and try grab some new pages.
	 * memcg->nr_charged_bytes will be flushed in
	 * refill_obj_stock(), called from this function or
	 * independently later.
	 */
	rcu_read_lock();
	memcg = obj_cgroup_memcg(objcg);
	css_get(&memcg->css);
	rcu_read_unlock();

	nr_pages = size >> PAGE_SHIFT;
	nr_bytes = size & (PAGE_SIZE - 1);

	if (nr_bytes)
		nr_pages += 1;

	ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
	if (!ret && nr_bytes)
		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);

	css_put(&memcg->css);
	return ret;
}

void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
{
	refill_obj_stock(objcg, size);
}

3214
#endif /* CONFIG_MEMCG_KMEM */
3215

3216 3217 3218 3219
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
3220
 * pgdat->lru_lock and migration entries setup in all page mappings.
3221
 */
3222
void mem_cgroup_split_huge_fixup(struct page *head)
3223
{
3224
	struct mem_cgroup *memcg = head->mem_cgroup;
3225
	int i;
3226

3227 3228
	if (mem_cgroup_disabled())
		return;
3229

3230 3231 3232 3233
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		css_get(&memcg->css);
		head[i].mem_cgroup = memcg;
	}
3234
}
3235
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3236

A
Andrew Morton 已提交
3237
#ifdef CONFIG_MEMCG_SWAP
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
3249
 * The caller must have charged to @to, IOW, called page_counter_charge() about
3250 3251 3252
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3253
				struct mem_cgroup *from, struct mem_cgroup *to)
3254 3255 3256
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
3257 3258
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3259 3260

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3261 3262
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
3263 3264 3265 3266 3267 3268
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3269
				struct mem_cgroup *from, struct mem_cgroup *to)
3270 3271 3272
{
	return -EINVAL;
}
3273
#endif
K
KAMEZAWA Hiroyuki 已提交
3274

3275
static DEFINE_MUTEX(memcg_max_mutex);
3276

3277 3278
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
3279
{
3280
	bool enlarge = false;
3281
	bool drained = false;
3282
	int ret;
3283 3284
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3285

3286
	do {
3287 3288 3289 3290
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3291

3292
		mutex_lock(&memcg_max_mutex);
3293 3294
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
3295
		 * break our basic invariant rule memory.max <= memsw.max.
3296
		 */
3297
		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3298
					   max <= memcg->memsw.max;
3299
		if (!limits_invariant) {
3300
			mutex_unlock(&memcg_max_mutex);
3301 3302 3303
			ret = -EINVAL;
			break;
		}
3304
		if (max > counter->max)
3305
			enlarge = true;
3306 3307
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
3308 3309 3310 3311

		if (!ret)
			break;

3312 3313 3314 3315 3316 3317
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

3318 3319 3320 3321 3322 3323
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
3324

3325 3326
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3327

3328 3329 3330
	return ret;
}

3331
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3332 3333 3334 3335
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
3336
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3337 3338
	unsigned long reclaimed;
	int loop = 0;
3339
	struct mem_cgroup_tree_per_node *mctz;
3340
	unsigned long excess;
3341 3342 3343 3344 3345
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

3346
	mctz = soft_limit_tree_node(pgdat->node_id);
3347 3348 3349 3350 3351 3352

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
3353
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3354 3355
		return 0;

3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
3370
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3371 3372 3373
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3374
		spin_lock_irq(&mctz->lock);
3375
		__mem_cgroup_remove_exceeded(mz, mctz);
3376 3377 3378 3379 3380 3381

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3382 3383 3384
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3385
		excess = soft_limit_excess(mz->memcg);
3386 3387 3388 3389 3390 3391 3392 3393 3394
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3395
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3396
		spin_unlock_irq(&mctz->lock);
3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3414 3415 3416 3417
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
3418
 * hierarchy.  Testing use_hierarchy is the caller's responsibility.
3419
 */
3420 3421
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3422 3423 3424 3425 3426 3427
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3428 3429
}

3430
/*
3431
 * Reclaims as many pages from the given memcg as possible.
3432 3433 3434 3435 3436
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
3437
	int nr_retries = MAX_RECLAIM_RETRIES;
3438

3439 3440
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3441 3442 3443

	drain_all_stock(memcg);

3444
	/* try to free all pages in this cgroup */
3445
	while (nr_retries && page_counter_read(&memcg->memory)) {
3446
		int progress;
3447

3448 3449 3450
		if (signal_pending(current))
			return -EINTR;

3451 3452
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3453
		if (!progress) {
3454
			nr_retries--;
3455
			/* maybe some writeback is necessary */
3456
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3457
		}
3458 3459

	}
3460 3461

	return 0;
3462 3463
}

3464 3465 3466
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3467
{
3468
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3469

3470 3471
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3472
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3473 3474
}

3475 3476
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3477
{
3478
	return mem_cgroup_from_css(css)->use_hierarchy;
3479 3480
}

3481 3482
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3483 3484
{
	int retval = 0;
3485
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3486
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3487

3488
	if (memcg->use_hierarchy == val)
3489
		return 0;
3490

3491
	/*
3492
	 * If parent's use_hierarchy is set, we can't make any modifications
3493 3494 3495 3496 3497 3498
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3499
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3500
				(val == 1 || val == 0)) {
3501
		if (!memcg_has_children(memcg))
3502
			memcg->use_hierarchy = val;
3503 3504 3505 3506
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3507

3508 3509 3510
	return retval;
}

3511
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3512
{
3513
	unsigned long val;
3514

3515
	if (mem_cgroup_is_root(memcg)) {
3516
		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3517
			memcg_page_state(memcg, NR_ANON_MAPPED);
3518 3519
		if (swap)
			val += memcg_page_state(memcg, MEMCG_SWAP);
3520
	} else {
3521
		if (!swap)
3522
			val = page_counter_read(&memcg->memory);
3523
		else
3524
			val = page_counter_read(&memcg->memsw);
3525
	}
3526
	return val;
3527 3528
}

3529 3530 3531 3532 3533 3534 3535
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3536

3537
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3538
			       struct cftype *cft)
B
Balbir Singh 已提交
3539
{
3540
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3541
	struct page_counter *counter;
3542

3543
	switch (MEMFILE_TYPE(cft->private)) {
3544
	case _MEM:
3545 3546
		counter = &memcg->memory;
		break;
3547
	case _MEMSWAP:
3548 3549
		counter = &memcg->memsw;
		break;
3550
	case _KMEM:
3551
		counter = &memcg->kmem;
3552
		break;
V
Vladimir Davydov 已提交
3553
	case _TCP:
3554
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3555
		break;
3556 3557 3558
	default:
		BUG();
	}
3559 3560 3561 3562

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
3563
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3564
		if (counter == &memcg->memsw)
3565
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3566 3567
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
3568
		return (u64)counter->max * PAGE_SIZE;
3569 3570 3571 3572 3573 3574 3575 3576 3577
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3578
}
3579

3580
static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3581
{
3582
	unsigned long stat[MEMCG_NR_STAT] = {0};
3583 3584 3585 3586
	struct mem_cgroup *mi;
	int node, cpu, i;

	for_each_online_cpu(cpu)
3587
		for (i = 0; i < MEMCG_NR_STAT; i++)
3588
			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3589 3590

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3591
		for (i = 0; i < MEMCG_NR_STAT; i++)
3592 3593 3594 3595 3596 3597
			atomic_long_add(stat[i], &mi->vmstats[i]);

	for_each_node(node) {
		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
		struct mem_cgroup_per_node *pi;

3598
		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3599 3600 3601
			stat[i] = 0;

		for_each_online_cpu(cpu)
3602
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3603 3604
				stat[i] += per_cpu(
					pn->lruvec_stat_cpu->count[i], cpu);
3605 3606

		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3607
			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3608 3609 3610 3611
				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
	}
}

3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622
static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
{
	unsigned long events[NR_VM_EVENT_ITEMS];
	struct mem_cgroup *mi;
	int cpu, i;

	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
		events[i] = 0;

	for_each_online_cpu(cpu)
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3623 3624
			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
					     cpu);
3625 3626 3627 3628 3629 3630

	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
			atomic_long_add(events[i], &mi->vmevents[i]);
}

3631
#ifdef CONFIG_MEMCG_KMEM
3632
static int memcg_online_kmem(struct mem_cgroup *memcg)
3633
{
R
Roman Gushchin 已提交
3634
	struct obj_cgroup *objcg;
3635 3636
	int memcg_id;

3637 3638 3639
	if (cgroup_memory_nokmem)
		return 0;

3640
	BUG_ON(memcg->kmemcg_id >= 0);
3641
	BUG_ON(memcg->kmem_state);
3642

3643
	memcg_id = memcg_alloc_cache_id();
3644 3645
	if (memcg_id < 0)
		return memcg_id;
3646

R
Roman Gushchin 已提交
3647 3648 3649 3650 3651 3652 3653 3654
	objcg = obj_cgroup_alloc();
	if (!objcg) {
		memcg_free_cache_id(memcg_id);
		return -ENOMEM;
	}
	objcg->memcg = memcg;
	rcu_assign_pointer(memcg->objcg, objcg);

3655 3656
	static_branch_enable(&memcg_kmem_enabled_key);

3657
	/*
3658
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
3659
	 * kmemcg_id. Setting the id after enabling static branching will
3660 3661 3662
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3663
	memcg->kmemcg_id = memcg_id;
3664
	memcg->kmem_state = KMEM_ONLINE;
3665 3666

	return 0;
3667 3668
}

3669 3670 3671 3672 3673 3674 3675 3676
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
3677

3678 3679 3680 3681 3682 3683
	memcg->kmem_state = KMEM_ALLOCATED;

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

R
Roman Gushchin 已提交
3684
	memcg_reparent_objcgs(memcg, parent);
3685 3686 3687 3688

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

3689 3690 3691 3692 3693 3694 3695 3696
	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
3697
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3698 3699 3700 3701 3702 3703 3704
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
3705 3706
	rcu_read_unlock();

3707
	memcg_drain_all_list_lrus(kmemcg_id, parent);
3708 3709 3710 3711 3712 3713

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
3714 3715 3716
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);
3717
}
3718
#else
3719
static int memcg_online_kmem(struct mem_cgroup *memcg)
3720 3721 3722 3723 3724 3725 3726 3727 3728
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
3729
#endif /* CONFIG_MEMCG_KMEM */
3730

3731 3732
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
3733
{
3734
	int ret;
3735

3736 3737 3738
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
3739
	return ret;
3740
}
3741

3742
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
3743 3744 3745
{
	int ret;

3746
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3747

3748
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
3749 3750 3751
	if (ret)
		goto out;

3752
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3753 3754 3755
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3756 3757 3758
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
3759 3760 3761 3762 3763 3764
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3765
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
3766 3767 3768 3769
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3770
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3771 3772
	}
out:
3773
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3774 3775 3776
	return ret;
}

3777 3778 3779 3780
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3781 3782
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3783
{
3784
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3785
	unsigned long nr_pages;
3786 3787
	int ret;

3788
	buf = strstrip(buf);
3789
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3790 3791
	if (ret)
		return ret;
3792

3793
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3794
	case RES_LIMIT:
3795 3796 3797 3798
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3799 3800
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3801
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3802
			break;
3803
		case _MEMSWAP:
3804
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3805
			break;
3806
		case _KMEM:
3807 3808 3809
			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
				     "Please report your usecase to linux-mm@kvack.org if you "
				     "depend on this functionality.\n");
3810
			ret = memcg_update_kmem_max(memcg, nr_pages);
3811
			break;
V
Vladimir Davydov 已提交
3812
		case _TCP:
3813
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
3814
			break;
3815
		}
3816
		break;
3817 3818 3819
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3820 3821
		break;
	}
3822
	return ret ?: nbytes;
B
Balbir Singh 已提交
3823 3824
}

3825 3826
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3827
{
3828
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3829
	struct page_counter *counter;
3830

3831 3832 3833 3834 3835 3836 3837 3838 3839 3840
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3841
	case _TCP:
3842
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3843
		break;
3844 3845 3846
	default:
		BUG();
	}
3847

3848
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3849
	case RES_MAX_USAGE:
3850
		page_counter_reset_watermark(counter);
3851 3852
		break;
	case RES_FAILCNT:
3853
		counter->failcnt = 0;
3854
		break;
3855 3856
	default:
		BUG();
3857
	}
3858

3859
	return nbytes;
3860 3861
}

3862
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3863 3864
					struct cftype *cft)
{
3865
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3866 3867
}

3868
#ifdef CONFIG_MMU
3869
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3870 3871
					struct cftype *cft, u64 val)
{
3872
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3873

3874
	if (val & ~MOVE_MASK)
3875
		return -EINVAL;
3876

3877
	/*
3878 3879 3880 3881
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3882
	 */
3883
	memcg->move_charge_at_immigrate = val;
3884 3885
	return 0;
}
3886
#else
3887
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3888 3889 3890 3891 3892
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3893

3894
#ifdef CONFIG_NUMA
3895 3896 3897 3898 3899 3900

#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
#define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)

static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3901
				int nid, unsigned int lru_mask, bool tree)
3902
{
3903
	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3904 3905 3906 3907 3908 3909 3910 3911
	unsigned long nr = 0;
	enum lru_list lru;

	VM_BUG_ON((unsigned)nid >= nr_node_ids);

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3912 3913 3914 3915
		if (tree)
			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
		else
			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3916 3917 3918 3919 3920
	}
	return nr;
}

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3921 3922
					     unsigned int lru_mask,
					     bool tree)
3923 3924 3925 3926 3927 3928 3929
{
	unsigned long nr = 0;
	enum lru_list lru;

	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
3930 3931 3932 3933
		if (tree)
			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
		else
			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3934 3935 3936 3937
	}
	return nr;
}

3938
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3939
{
3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3952
	int nid;
3953
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3954

3955
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3956 3957 3958 3959 3960 3961 3962
		seq_printf(m, "%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   false));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, false));
3963
		seq_putc(m, '\n');
3964 3965
	}

3966
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3967 3968 3969 3970 3971 3972 3973 3974

		seq_printf(m, "hierarchical_%s=%lu", stat->name,
			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
						   true));
		for_each_node_state(nid, N_MEMORY)
			seq_printf(m, " N%d=%lu", nid,
				   mem_cgroup_node_nr_lru_pages(memcg, nid,
							stat->lru_mask, true));
3975
		seq_putc(m, '\n');
3976 3977 3978 3979 3980 3981
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3982
static const unsigned int memcg1_stats[] = {
3983
	NR_FILE_PAGES,
3984
	NR_ANON_MAPPED,
3985 3986 3987
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	NR_ANON_THPS,
#endif
3988 3989 3990 3991 3992 3993 3994 3995 3996 3997
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
3998
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3999
	"rss_huge",
4000
#endif
4001 4002 4003 4004 4005 4006 4007
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

4008
/* Universal VM events cgroup1 shows, original sort order */
4009
static const unsigned int memcg1_events[] = {
4010 4011 4012 4013 4014 4015
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

4016
static int memcg_stat_show(struct seq_file *m, void *v)
4017
{
4018
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4019
	unsigned long memory, memsw;
4020 4021
	struct mem_cgroup *mi;
	unsigned int i;
4022

4023
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4024

4025
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4026 4027
		unsigned long nr;

4028
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4029
			continue;
4030 4031 4032 4033 4034 4035
		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
		if (memcg1_stats[i] == NR_ANON_THPS)
			nr *= HPAGE_PMD_NR;
#endif
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4036
	}
L
Lee Schermerhorn 已提交
4037

4038
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4039
		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4040
			   memcg_events_local(memcg, memcg1_events[i]));
4041 4042

	for (i = 0; i < NR_LRU_LISTS; i++)
4043
		seq_printf(m, "%s %lu\n", lru_list_name(i),
4044
			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4045
			   PAGE_SIZE);
4046

K
KAMEZAWA Hiroyuki 已提交
4047
	/* Hierarchical information */
4048 4049
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4050 4051
		memory = min(memory, READ_ONCE(mi->memory.max));
		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4052
	}
4053 4054
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
4055
	if (do_memsw_account())
4056 4057
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
4058

4059
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4060
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4061
			continue;
4062
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4063 4064
			   (u64)memcg_page_state(memcg, memcg1_stats[i]) *
			   PAGE_SIZE);
4065 4066
	}

4067
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4068 4069
		seq_printf(m, "total_%s %llu\n",
			   vm_event_name(memcg1_events[i]),
4070
			   (u64)memcg_events(memcg, memcg1_events[i]));
4071

4072
	for (i = 0; i < NR_LRU_LISTS; i++)
4073
		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4074 4075
			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
			   PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
4076

K
KOSAKI Motohiro 已提交
4077 4078
#ifdef CONFIG_DEBUG_VM
	{
4079 4080
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
4081 4082
		unsigned long anon_cost = 0;
		unsigned long file_cost = 0;
K
KOSAKI Motohiro 已提交
4083

4084 4085
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
K
KOSAKI Motohiro 已提交
4086

4087 4088
			anon_cost += mz->lruvec.anon_cost;
			file_cost += mz->lruvec.file_cost;
4089
		}
4090 4091
		seq_printf(m, "anon_cost %lu\n", anon_cost);
		seq_printf(m, "file_cost %lu\n", file_cost);
K
KOSAKI Motohiro 已提交
4092 4093 4094
	}
#endif

4095 4096 4097
	return 0;
}

4098 4099
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
4100
{
4101
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4102

4103
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
4104 4105
}

4106 4107
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
4108
{
4109
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
4110

4111
	if (val > 100)
K
KOSAKI Motohiro 已提交
4112 4113
		return -EINVAL;

4114
	if (css->parent)
4115 4116 4117
		memcg->swappiness = val;
	else
		vm_swappiness = val;
4118

K
KOSAKI Motohiro 已提交
4119 4120 4121
	return 0;
}

4122 4123 4124
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
4125
	unsigned long usage;
4126 4127 4128 4129
	int i;

	rcu_read_lock();
	if (!swap)
4130
		t = rcu_dereference(memcg->thresholds.primary);
4131
	else
4132
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4133 4134 4135 4136

	if (!t)
		goto unlock;

4137
	usage = mem_cgroup_usage(memcg, swap);
4138 4139

	/*
4140
	 * current_threshold points to threshold just below or equal to usage.
4141 4142 4143
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4144
	i = t->current_threshold;
4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4168
	t->current_threshold = i - 1;
4169 4170 4171 4172 4173 4174
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4175 4176
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
4177
		if (do_memsw_account())
4178 4179 4180 4181
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4182 4183 4184 4185 4186 4187 4188
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

4189 4190 4191 4192 4193 4194 4195
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
4196 4197
}

4198
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4199 4200 4201
{
	struct mem_cgroup_eventfd_list *ev;

4202 4203
	spin_lock(&memcg_oom_lock);

4204
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4205
		eventfd_signal(ev->eventfd, 1);
4206 4207

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4208 4209 4210
	return 0;
}

4211
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4212
{
K
KAMEZAWA Hiroyuki 已提交
4213 4214
	struct mem_cgroup *iter;

4215
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4216
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4217 4218
}

4219
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4220
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4221
{
4222 4223
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4224 4225
	unsigned long threshold;
	unsigned long usage;
4226
	int i, size, ret;
4227

4228
	ret = page_counter_memparse(args, "-1", &threshold);
4229 4230 4231 4232
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4233

4234
	if (type == _MEM) {
4235
		thresholds = &memcg->thresholds;
4236
		usage = mem_cgroup_usage(memcg, false);
4237
	} else if (type == _MEMSWAP) {
4238
		thresholds = &memcg->memsw_thresholds;
4239
		usage = mem_cgroup_usage(memcg, true);
4240
	} else
4241 4242 4243
		BUG();

	/* Check if a threshold crossed before adding a new one */
4244
	if (thresholds->primary)
4245 4246
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4247
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4248 4249

	/* Allocate memory for new array of thresholds */
4250
	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4251
	if (!new) {
4252 4253 4254
		ret = -ENOMEM;
		goto unlock;
	}
4255
	new->size = size;
4256 4257

	/* Copy thresholds (if any) to new array */
4258 4259
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4260
				sizeof(struct mem_cgroup_threshold));
4261 4262
	}

4263
	/* Add new threshold */
4264 4265
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4266 4267

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4268
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4269 4270 4271
			compare_thresholds, NULL);

	/* Find current threshold */
4272
	new->current_threshold = -1;
4273
	for (i = 0; i < size; i++) {
4274
		if (new->entries[i].threshold <= usage) {
4275
			/*
4276 4277
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4278 4279
			 * it here.
			 */
4280
			++new->current_threshold;
4281 4282
		} else
			break;
4283 4284
	}

4285 4286 4287 4288 4289
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4290

4291
	/* To be sure that nobody uses thresholds */
4292 4293 4294 4295 4296 4297 4298 4299
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4300
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4301 4302
	struct eventfd_ctx *eventfd, const char *args)
{
4303
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4304 4305
}

4306
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4307 4308
	struct eventfd_ctx *eventfd, const char *args)
{
4309
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4310 4311
}

4312
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4313
	struct eventfd_ctx *eventfd, enum res_type type)
4314
{
4315 4316
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4317
	unsigned long usage;
4318
	int i, j, size, entries;
4319 4320

	mutex_lock(&memcg->thresholds_lock);
4321 4322

	if (type == _MEM) {
4323
		thresholds = &memcg->thresholds;
4324
		usage = mem_cgroup_usage(memcg, false);
4325
	} else if (type == _MEMSWAP) {
4326
		thresholds = &memcg->memsw_thresholds;
4327
		usage = mem_cgroup_usage(memcg, true);
4328
	} else
4329 4330
		BUG();

4331 4332 4333
	if (!thresholds->primary)
		goto unlock;

4334 4335 4336 4337
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4338
	size = entries = 0;
4339 4340
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4341
			size++;
4342 4343
		else
			entries++;
4344 4345
	}

4346
	new = thresholds->spare;
4347

4348 4349 4350 4351
	/* If no items related to eventfd have been cleared, nothing to do */
	if (!entries)
		goto unlock;

4352 4353
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4354 4355
		kfree(new);
		new = NULL;
4356
		goto swap_buffers;
4357 4358
	}

4359
	new->size = size;
4360 4361

	/* Copy thresholds and find current threshold */
4362 4363 4364
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4365 4366
			continue;

4367
		new->entries[j] = thresholds->primary->entries[i];
4368
		if (new->entries[j].threshold <= usage) {
4369
			/*
4370
			 * new->current_threshold will not be used
4371 4372 4373
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4374
			++new->current_threshold;
4375 4376 4377 4378
		}
		j++;
	}

4379
swap_buffers:
4380 4381
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4382

4383
	rcu_assign_pointer(thresholds->primary, new);
4384

4385
	/* To be sure that nobody uses thresholds */
4386
	synchronize_rcu();
4387 4388 4389 4390 4391 4392

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
4393
unlock:
4394 4395
	mutex_unlock(&memcg->thresholds_lock);
}
4396

4397
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4398 4399
	struct eventfd_ctx *eventfd)
{
4400
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4401 4402
}

4403
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4404 4405
	struct eventfd_ctx *eventfd)
{
4406
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4407 4408
}

4409
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4410
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4411 4412 4413 4414 4415 4416 4417
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4418
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4419 4420 4421 4422 4423

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4424
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
4425
		eventfd_signal(eventfd, 1);
4426
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4427 4428 4429 4430

	return 0;
}

4431
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4432
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4433 4434 4435
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4436
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4437

4438
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4439 4440 4441 4442 4443 4444
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4445
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4446 4447
}

4448
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4449
{
4450
	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4451

4452
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4453
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
R
Roman Gushchin 已提交
4454 4455
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4456 4457 4458
	return 0;
}

4459
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4460 4461
	struct cftype *cft, u64 val)
{
4462
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4463 4464

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4465
	if (!css->parent || !((val == 0) || (val == 1)))
4466 4467
		return -EINVAL;

4468
	memcg->oom_kill_disable = val;
4469
	if (!val)
4470
		memcg_oom_recover(memcg);
4471

4472 4473 4474
	return 0;
}

4475 4476
#ifdef CONFIG_CGROUP_WRITEBACK

4477 4478
#include <trace/events/writeback.h>

T
Tejun Heo 已提交
4479 4480 4481 4482 4483 4484 4485 4486 4487 4488
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

4489 4490 4491 4492 4493
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
4494 4495 4496 4497 4498 4499 4500 4501 4502 4503
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

4504 4505 4506 4507 4508 4509
/*
 * idx can be of type enum memcg_stat_item or node_stat_item.
 * Keep in sync with memcg_exact_page().
 */
static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
{
4510
	long x = atomic_long_read(&memcg->vmstats[idx]);
4511 4512 4513
	int cpu;

	for_each_online_cpu(cpu)
4514
		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4515 4516 4517 4518 4519
	if (x < 0)
		x = 0;
	return x;
}

4520 4521 4522
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
4523 4524
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
4525 4526 4527
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
4528 4529 4530
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
4531
 *
4532 4533 4534 4535 4536
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
4537
 */
4538 4539 4540
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
4541 4542 4543 4544
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

4545
	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4546

4547
	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4548 4549
	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4550
	*pheadroom = PAGE_COUNTER_MAX;
4551 4552

	while ((parent = parent_mem_cgroup(memcg))) {
4553
		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4554
					    READ_ONCE(memcg->memory.high));
4555 4556
		unsigned long used = page_counter_read(&memcg->memory);

4557
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4558 4559 4560 4561
		memcg = parent;
	}
}

4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615
/*
 * Foreign dirty flushing
 *
 * There's an inherent mismatch between memcg and writeback.  The former
 * trackes ownership per-page while the latter per-inode.  This was a
 * deliberate design decision because honoring per-page ownership in the
 * writeback path is complicated, may lead to higher CPU and IO overheads
 * and deemed unnecessary given that write-sharing an inode across
 * different cgroups isn't a common use-case.
 *
 * Combined with inode majority-writer ownership switching, this works well
 * enough in most cases but there are some pathological cases.  For
 * example, let's say there are two cgroups A and B which keep writing to
 * different but confined parts of the same inode.  B owns the inode and
 * A's memory is limited far below B's.  A's dirty ratio can rise enough to
 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
 * triggering background writeback.  A will be slowed down without a way to
 * make writeback of the dirty pages happen.
 *
 * Conditions like the above can lead to a cgroup getting repatedly and
 * severely throttled after making some progress after each
 * dirty_expire_interval while the underyling IO device is almost
 * completely idle.
 *
 * Solving this problem completely requires matching the ownership tracking
 * granularities between memcg and writeback in either direction.  However,
 * the more egregious behaviors can be avoided by simply remembering the
 * most recent foreign dirtying events and initiating remote flushes on
 * them when local writeback isn't enough to keep the memory clean enough.
 *
 * The following two functions implement such mechanism.  When a foreign
 * page - a page whose memcg and writeback ownerships don't match - is
 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
 * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
 * decides that the memcg needs to sleep due to high dirty ratio, it calls
 * mem_cgroup_flush_foreign() which queues writeback on the recorded
 * foreign bdi_writebacks which haven't expired.  Both the numbers of
 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
 * limited to MEMCG_CGWB_FRN_CNT.
 *
 * The mechanism only remembers IDs and doesn't hold any object references.
 * As being wrong occasionally doesn't matter, updates and accesses to the
 * records are lockless and racy.
 */
void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
					     struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = page->mem_cgroup;
	struct memcg_cgwb_frn *frn;
	u64 now = get_jiffies_64();
	u64 oldest_at = now;
	int oldest = -1;
	int i;

4616 4617
	trace_track_foreign_dirty(page, wb);

4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677
	/*
	 * Pick the slot to use.  If there is already a slot for @wb, keep
	 * using it.  If not replace the oldest one which isn't being
	 * written out.
	 */
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		frn = &memcg->cgwb_frn[i];
		if (frn->bdi_id == wb->bdi->id &&
		    frn->memcg_id == wb->memcg_css->id)
			break;
		if (time_before64(frn->at, oldest_at) &&
		    atomic_read(&frn->done.cnt) == 1) {
			oldest = i;
			oldest_at = frn->at;
		}
	}

	if (i < MEMCG_CGWB_FRN_CNT) {
		/*
		 * Re-using an existing one.  Update timestamp lazily to
		 * avoid making the cacheline hot.  We want them to be
		 * reasonably up-to-date and significantly shorter than
		 * dirty_expire_interval as that's what expires the record.
		 * Use the shorter of 1s and dirty_expire_interval / 8.
		 */
		unsigned long update_intv =
			min_t(unsigned long, HZ,
			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);

		if (time_before64(frn->at, now - update_intv))
			frn->at = now;
	} else if (oldest >= 0) {
		/* replace the oldest free one */
		frn = &memcg->cgwb_frn[oldest];
		frn->bdi_id = wb->bdi->id;
		frn->memcg_id = wb->memcg_css->id;
		frn->at = now;
	}
}

/* issue foreign writeback flushes for recorded foreign dirtying events */
void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
	u64 now = jiffies_64;
	int i;

	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];

		/*
		 * If the record is older than dirty_expire_interval,
		 * writeback on it has already started.  No need to kick it
		 * off again.  Also, don't start a new one if there's
		 * already one in flight.
		 */
		if (time_after64(frn->at, now - intv) &&
		    atomic_read(&frn->done.cnt) == 1) {
			frn->at = 0;
4678
			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4679 4680 4681 4682 4683 4684 4685
			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
					       WB_REASON_FOREIGN_FLUSH,
					       &frn->done);
		}
	}
}

T
Tejun Heo 已提交
4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

4697 4698 4699 4700
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

4701 4702
#endif	/* CONFIG_CGROUP_WRITEBACK */

4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4716 4717 4718 4719 4720
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4721
static void memcg_event_remove(struct work_struct *work)
4722
{
4723 4724
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4725
	struct mem_cgroup *memcg = event->memcg;
4726 4727 4728

	remove_wait_queue(event->wqh, &event->wait);

4729
	event->unregister_event(memcg, event->eventfd);
4730 4731 4732 4733 4734 4735

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4736
	css_put(&memcg->css);
4737 4738 4739
}

/*
4740
 * Gets called on EPOLLHUP on eventfd when user closes it.
4741 4742 4743
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4744
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4745
			    int sync, void *key)
4746
{
4747 4748
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4749
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
4750
	__poll_t flags = key_to_poll(key);
4751

4752
	if (flags & EPOLLHUP) {
4753 4754 4755 4756 4757 4758 4759 4760 4761
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4762
		spin_lock(&memcg->event_list_lock);
4763 4764 4765 4766 4767 4768 4769 4770
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4771
		spin_unlock(&memcg->event_list_lock);
4772 4773 4774 4775 4776
	}

	return 0;
}

4777
static void memcg_event_ptable_queue_proc(struct file *file,
4778 4779
		wait_queue_head_t *wqh, poll_table *pt)
{
4780 4781
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4782 4783 4784 4785 4786 4787

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4788 4789
 * DO NOT USE IN NEW FILES.
 *
4790 4791 4792 4793 4794
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4795 4796
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4797
{
4798
	struct cgroup_subsys_state *css = of_css(of);
4799
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4800
	struct mem_cgroup_event *event;
4801 4802 4803 4804
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4805
	const char *name;
4806 4807 4808
	char *endp;
	int ret;

4809 4810 4811
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4812 4813
	if (*endp != ' ')
		return -EINVAL;
4814
	buf = endp + 1;
4815

4816
	cfd = simple_strtoul(buf, &endp, 10);
4817 4818
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4819
	buf = endp + 1;
4820 4821 4822 4823 4824

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4825
	event->memcg = memcg;
4826
	INIT_LIST_HEAD(&event->list);
4827 4828 4829
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4855 4856 4857 4858 4859
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4860 4861
	 *
	 * DO NOT ADD NEW FILES.
4862
	 */
A
Al Viro 已提交
4863
	name = cfile.file->f_path.dentry->d_name.name;
4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4875 4876
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4877 4878 4879 4880 4881
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4882
	/*
4883 4884 4885
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4886
	 */
A
Al Viro 已提交
4887
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4888
					       &memory_cgrp_subsys);
4889
	ret = -EINVAL;
4890
	if (IS_ERR(cfile_css))
4891
		goto out_put_cfile;
4892 4893
	if (cfile_css != css) {
		css_put(cfile_css);
4894
		goto out_put_cfile;
4895
	}
4896

4897
	ret = event->register_event(memcg, event->eventfd, buf);
4898 4899 4900
	if (ret)
		goto out_put_css;

4901
	vfs_poll(efile.file, &event->pt);
4902

4903 4904 4905
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4906 4907 4908 4909

	fdput(cfile);
	fdput(efile);

4910
	return nbytes;
4911 4912

out_put_css:
4913
	css_put(css);
4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4926
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4927
	{
4928
		.name = "usage_in_bytes",
4929
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4930
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4931
	},
4932 4933
	{
		.name = "max_usage_in_bytes",
4934
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4935
		.write = mem_cgroup_reset,
4936
		.read_u64 = mem_cgroup_read_u64,
4937
	},
B
Balbir Singh 已提交
4938
	{
4939
		.name = "limit_in_bytes",
4940
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4941
		.write = mem_cgroup_write,
4942
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4943
	},
4944 4945 4946
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4947
		.write = mem_cgroup_write,
4948
		.read_u64 = mem_cgroup_read_u64,
4949
	},
B
Balbir Singh 已提交
4950 4951
	{
		.name = "failcnt",
4952
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4953
		.write = mem_cgroup_reset,
4954
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4955
	},
4956 4957
	{
		.name = "stat",
4958
		.seq_show = memcg_stat_show,
4959
	},
4960 4961
	{
		.name = "force_empty",
4962
		.write = mem_cgroup_force_empty_write,
4963
	},
4964 4965 4966 4967 4968
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4969
	{
4970
		.name = "cgroup.event_control",		/* XXX: for compat */
4971
		.write = memcg_write_event_control,
4972
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4973
	},
K
KOSAKI Motohiro 已提交
4974 4975 4976 4977 4978
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4979 4980 4981 4982 4983
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4984 4985
	{
		.name = "oom_control",
4986
		.seq_show = mem_cgroup_oom_control_read,
4987
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4988 4989
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4990 4991 4992
	{
		.name = "pressure_level",
	},
4993 4994 4995
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4996
		.seq_show = memcg_numa_stat_show,
4997 4998
	},
#endif
4999 5000 5001
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5002
		.write = mem_cgroup_write,
5003
		.read_u64 = mem_cgroup_read_u64,
5004 5005 5006 5007
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5008
		.read_u64 = mem_cgroup_read_u64,
5009 5010 5011 5012
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5013
		.write = mem_cgroup_reset,
5014
		.read_u64 = mem_cgroup_read_u64,
5015 5016 5017 5018
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5019
		.write = mem_cgroup_reset,
5020
		.read_u64 = mem_cgroup_read_u64,
5021
	},
5022 5023
#if defined(CONFIG_MEMCG_KMEM) && \
	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5024 5025
	{
		.name = "kmem.slabinfo",
5026
		.seq_show = memcg_slab_show,
5027 5028
	},
#endif
V
Vladimir Davydov 已提交
5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
5052
	{ },	/* terminate */
5053
};
5054

5055 5056 5057 5058 5059 5060 5061 5062
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
5063
 * However, there usually are many references to the offline CSS after
5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

5081 5082 5083 5084 5085 5086 5087 5088
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

5089 5090
static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
						  unsigned int n)
5091
{
5092
	refcount_add(n, &memcg->id.ref);
5093 5094
}

5095
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5096
{
5097
	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5098
		mem_cgroup_id_remove(memcg);
5099 5100 5101 5102 5103 5104

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

5105 5106 5107 5108 5109
static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

5122
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5123 5124
{
	struct mem_cgroup_per_node *pn;
5125
	int tmp = node;
5126 5127 5128 5129 5130 5131 5132 5133
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
5134 5135
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
5136
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5137 5138
	if (!pn)
		return 1;
5139

5140 5141 5142 5143 5144
	/* We charge the parent cgroup, never the current task */
	WARN_ON_ONCE(!current->active_memcg);

	pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
						 GFP_KERNEL_ACCOUNT);
5145 5146 5147 5148 5149
	if (!pn->lruvec_stat_local) {
		kfree(pn);
		return 1;
	}

5150 5151
	pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
					       GFP_KERNEL_ACCOUNT);
5152
	if (!pn->lruvec_stat_cpu) {
5153
		free_percpu(pn->lruvec_stat_local);
5154 5155 5156 5157
		kfree(pn);
		return 1;
	}

5158 5159 5160 5161 5162
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

5163
	memcg->nodeinfo[node] = pn;
5164 5165 5166
	return 0;
}

5167
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5168
{
5169 5170
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
5171 5172 5173
	if (!pn)
		return;

5174
	free_percpu(pn->lruvec_stat_cpu);
5175
	free_percpu(pn->lruvec_stat_local);
5176
	kfree(pn);
5177 5178
}

5179
static void __mem_cgroup_free(struct mem_cgroup *memcg)
5180
{
5181
	int node;
5182

5183
	for_each_node(node)
5184
		free_mem_cgroup_per_node_info(memcg, node);
5185
	free_percpu(memcg->vmstats_percpu);
5186
	free_percpu(memcg->vmstats_local);
5187
	kfree(memcg);
5188
}
5189

5190 5191 5192
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
5193 5194 5195 5196
	/*
	 * Flush percpu vmstats and vmevents to guarantee the value correctness
	 * on parent's and all ancestor levels.
	 */
5197
	memcg_flush_percpu_vmstats(memcg);
5198
	memcg_flush_percpu_vmevents(memcg);
5199 5200 5201
	__mem_cgroup_free(memcg);
}

5202
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
5203
{
5204
	struct mem_cgroup *memcg;
5205
	unsigned int size;
5206
	int node;
5207
	int __maybe_unused i;
5208
	long error = -ENOMEM;
B
Balbir Singh 已提交
5209

5210 5211 5212 5213
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
5214
	if (!memcg)
5215
		return ERR_PTR(error);
5216

5217 5218 5219
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
5220 5221
	if (memcg->id.id < 0) {
		error = memcg->id.id;
5222
		goto fail;
5223
	}
5224

5225 5226 5227 5228 5229
	/* We charge the parent cgroup, never the current task */
	WARN_ON_ONCE(!current->active_memcg);

	memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
						GFP_KERNEL_ACCOUNT);
5230 5231 5232
	if (!memcg->vmstats_local)
		goto fail;

5233 5234
	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
						 GFP_KERNEL_ACCOUNT);
5235
	if (!memcg->vmstats_percpu)
5236
		goto fail;
5237

B
Bob Liu 已提交
5238
	for_each_node(node)
5239
		if (alloc_mem_cgroup_per_node_info(memcg, node))
5240
			goto fail;
5241

5242 5243
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
5244

5245
	INIT_WORK(&memcg->high_work, high_work_func);
5246 5247 5248
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
5249
	vmpressure_init(&memcg->vmpressure);
5250 5251
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
5252
	memcg->socket_pressure = jiffies;
5253
#ifdef CONFIG_MEMCG_KMEM
V
Vladimir Davydov 已提交
5254
	memcg->kmemcg_id = -1;
R
Roman Gushchin 已提交
5255
	INIT_LIST_HEAD(&memcg->objcg_list);
V
Vladimir Davydov 已提交
5256
#endif
5257 5258
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
5259 5260 5261
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		memcg->cgwb_frn[i].done =
			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5262 5263 5264 5265 5266
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
	memcg->deferred_split_queue.split_queue_len = 0;
5267
#endif
5268
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5269 5270
	return memcg;
fail:
5271
	mem_cgroup_id_remove(memcg);
5272
	__mem_cgroup_free(memcg);
5273
	return ERR_PTR(error);
5274 5275
}

5276 5277
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5278
{
5279 5280 5281
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
5282

5283
	memalloc_use_memcg(parent);
5284
	memcg = mem_cgroup_alloc();
5285
	memalloc_unuse_memcg();
5286 5287
	if (IS_ERR(memcg))
		return ERR_CAST(memcg);
5288

5289
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5290
	memcg->soft_limit = PAGE_COUNTER_MAX;
5291
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5292 5293 5294 5295 5296 5297
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
5298
		page_counter_init(&memcg->memory, &parent->memory);
5299
		page_counter_init(&memcg->swap, &parent->swap);
5300 5301
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
5302
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5303
	} else {
5304
		page_counter_init(&memcg->memory, NULL);
5305
		page_counter_init(&memcg->swap, NULL);
5306 5307
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
5308
		page_counter_init(&memcg->tcpmem, NULL);
5309 5310 5311 5312 5313
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
5314
		if (parent != root_mem_cgroup)
5315
			memory_cgrp_subsys.broken_hierarchy = true;
5316
	}
5317

5318 5319 5320 5321 5322 5323
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

5324
	error = memcg_online_kmem(memcg);
5325 5326
	if (error)
		goto fail;
5327

5328
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5329
		static_branch_inc(&memcg_sockets_enabled_key);
5330

5331 5332
	return &memcg->css;
fail:
5333
	mem_cgroup_id_remove(memcg);
5334
	mem_cgroup_free(memcg);
5335
	return ERR_PTR(error);
5336 5337
}

5338
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5339
{
5340 5341
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5342 5343 5344 5345 5346 5347 5348 5349 5350 5351
	/*
	 * A memcg must be visible for memcg_expand_shrinker_maps()
	 * by the time the maps are allocated. So, we allocate maps
	 * here, when for_each_mem_cgroup() can't skip it.
	 */
	if (memcg_alloc_shrinker_maps(memcg)) {
		mem_cgroup_id_remove(memcg);
		return -ENOMEM;
	}

5352
	/* Online state pins memcg ID, memcg ID pins CSS */
5353
	refcount_set(&memcg->id.ref, 1);
5354
	css_get(css);
5355
	return 0;
B
Balbir Singh 已提交
5356 5357
}

5358
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5359
{
5360
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5361
	struct mem_cgroup_event *event, *tmp;
5362 5363 5364 5365 5366 5367

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
5368 5369
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5370 5371 5372
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
5373
	spin_unlock(&memcg->event_list_lock);
5374

R
Roman Gushchin 已提交
5375
	page_counter_set_min(&memcg->memory, 0);
5376
	page_counter_set_low(&memcg->memory, 0);
5377

5378
	memcg_offline_kmem(memcg);
5379
	wb_memcg_offline(memcg);
5380

5381 5382
	drain_all_stock(memcg);

5383
	mem_cgroup_id_put(memcg);
5384 5385
}

5386 5387 5388 5389 5390 5391 5392
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

5393
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
5394
{
5395
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5396
	int __maybe_unused i;
5397

5398 5399 5400 5401
#ifdef CONFIG_CGROUP_WRITEBACK
	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
#endif
5402
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5403
		static_branch_dec(&memcg_sockets_enabled_key);
5404

5405
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
5406
		static_branch_dec(&memcg_sockets_enabled_key);
5407

5408 5409 5410
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
5411
	memcg_free_shrinker_maps(memcg);
5412
	memcg_free_kmem(memcg);
5413
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
5414 5415
}

5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

5433 5434 5435 5436 5437
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
R
Roman Gushchin 已提交
5438
	page_counter_set_min(&memcg->memory, 0);
5439
	page_counter_set_low(&memcg->memory, 0);
5440
	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5441
	memcg->soft_limit = PAGE_COUNTER_MAX;
5442
	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5443
	memcg_wb_domain_size_changed(memcg);
5444 5445
}

5446
#ifdef CONFIG_MMU
5447
/* Handlers for move charge at task migration. */
5448
static int mem_cgroup_do_precharge(unsigned long count)
5449
{
5450
	int ret;
5451

5452 5453
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5454
	if (!ret) {
5455 5456 5457
		mc.precharge += count;
		return ret;
	}
5458

5459
	/* Try charges one by one with reclaim, but do not retry */
5460
	while (count--) {
5461
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5462 5463
		if (ret)
			return ret;
5464
		mc.precharge++;
5465
		cond_resched();
5466
	}
5467
	return 0;
5468 5469 5470 5471
}

union mc_target {
	struct page	*page;
5472
	swp_entry_t	ent;
5473 5474 5475
};

enum mc_target_type {
5476
	MC_TARGET_NONE = 0,
5477
	MC_TARGET_PAGE,
5478
	MC_TARGET_SWAP,
5479
	MC_TARGET_DEVICE,
5480 5481
};

D
Daisuke Nishimura 已提交
5482 5483
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5484
{
5485
	struct page *page = vm_normal_page(vma, addr, ptent);
5486

D
Daisuke Nishimura 已提交
5487 5488 5489
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
5490
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
5491
			return NULL;
5492 5493 5494 5495
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
5496 5497 5498 5499 5500 5501
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5502
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
5503
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5504
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
5505 5506 5507 5508
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

5509
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
5510
		return NULL;
5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
		page = device_private_entry_to_page(ent);
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

5528 5529 5530 5531
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5532
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5533
	entry->val = ent.val;
D
Daisuke Nishimura 已提交
5534 5535 5536

	return page;
}
5537 5538
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5539
			pte_t ptent, swp_entry_t *entry)
5540 5541 5542 5543
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5544

5545 5546 5547 5548 5549 5550 5551 5552 5553
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
5554
	if (!(mc.flags & MOVE_FILE))
5555 5556 5557
		return NULL;

	mapping = vma->vm_file->f_mapping;
5558
	pgoff = linear_page_index(vma, addr);
5559 5560

	/* page is moved even if it's not RSS of this task(page-faulted). */
5561 5562
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
5563 5564
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
5565
		if (xa_is_value(page)) {
5566
			swp_entry_t swp = radix_to_swp_entry(page);
5567
			*entry = swp;
5568 5569
			page = find_get_page(swap_address_space(swp),
					     swp_offset(swp));
5570 5571 5572 5573 5574
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
5575
#endif
5576 5577 5578
	return page;
}

5579 5580 5581
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
5582
 * @compound: charge the page as compound or small page
5583 5584 5585
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
5586
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5587 5588 5589 5590 5591
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
5592
				   bool compound,
5593 5594 5595
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
5596 5597
	struct lruvec *from_vec, *to_vec;
	struct pglist_data *pgdat;
5598
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5599 5600 5601 5602
	int ret;

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
5603
	VM_BUG_ON(compound && !PageTransHuge(page));
5604 5605

	/*
5606
	 * Prevent mem_cgroup_migrate() from looking at
5607
	 * page->mem_cgroup of its source page while we change it.
5608
	 */
5609
	ret = -EBUSY;
5610 5611 5612 5613 5614 5615 5616
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

5617
	pgdat = page_pgdat(page);
5618 5619
	from_vec = mem_cgroup_lruvec(from, pgdat);
	to_vec = mem_cgroup_lruvec(to, pgdat);
5620

5621
	lock_page_memcg(page);
5622

5623 5624 5625 5626
	if (PageAnon(page)) {
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5627 5628 5629 5630 5631 5632 5633
			if (PageTransHuge(page)) {
				__mod_lruvec_state(from_vec, NR_ANON_THPS,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_ANON_THPS,
						   nr_pages);
			}

5634 5635
		}
	} else {
5636 5637 5638 5639 5640 5641 5642 5643
		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);

		if (PageSwapBacked(page)) {
			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
		}

5644 5645 5646 5647
		if (page_mapped(page)) {
			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
		}
5648

5649 5650
		if (PageDirty(page)) {
			struct address_space *mapping = page_mapping(page);
5651

5652 5653 5654 5655 5656 5657
			if (mapping_cap_account_dirty(mapping)) {
				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
						   -nr_pages);
				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
						   nr_pages);
			}
5658 5659 5660
		}
	}

5661
	if (PageWriteback(page)) {
5662 5663
		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5664 5665 5666
	}

	/*
5667 5668
	 * All state has been migrated, let's switch to the new memcg.
	 *
5669
	 * It is safe to change page->mem_cgroup here because the page
5670 5671 5672 5673 5674 5675 5676 5677
	 * is referenced, charged, isolated, and locked: we can't race
	 * with (un)charging, migration, LRU putback, or anything else
	 * that would rely on a stable page->mem_cgroup.
	 *
	 * Note that lock_page_memcg is a memcg lock, not a page lock,
	 * to save space. As soon as we switch page->mem_cgroup to a
	 * new memcg that isn't locked, the above state can change
	 * concurrently again. Make sure we're truly done with it.
5678
	 */
5679
	smp_mb();
5680

5681 5682 5683 5684
	css_get(&to->css);
	css_put(&from->css);

	page->mem_cgroup = to;
5685

5686
	__unlock_page_memcg(from);
5687 5688 5689 5690

	ret = 0;

	local_irq_disable();
5691
	mem_cgroup_charge_statistics(to, page, nr_pages);
5692
	memcg_check_events(to, page);
5693
	mem_cgroup_charge_statistics(from, page, -nr_pages);
5694 5695 5696 5697 5698 5699 5700 5701
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5717 5718
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
 *     (so ZONE_DEVICE page and thus not on the lru).
5719 5720 5721
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
5722 5723
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5724 5725 5726 5727
 *
 * Called with pte lock held.
 */

5728
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5729 5730 5731
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
5732
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5733 5734 5735 5736 5737
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
5738
		page = mc_handle_swap_pte(vma, ptent, &ent);
5739
	else if (pte_none(ptent))
5740
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5741 5742

	if (!page && !ent.val)
5743
		return ret;
5744 5745
	if (page) {
		/*
5746
		 * Do only loose check w/o serialization.
5747
		 * mem_cgroup_move_account() checks the page is valid or
5748
		 * not under LRU exclusion.
5749
		 */
5750
		if (page->mem_cgroup == mc.from) {
5751
			ret = MC_TARGET_PAGE;
5752
			if (is_device_private_page(page))
5753
				ret = MC_TARGET_DEVICE;
5754 5755 5756 5757 5758 5759
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
5760 5761 5762 5763 5764
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
5765
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5766 5767 5768
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5769 5770 5771 5772
	}
	return ret;
}

5773 5774
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
5775 5776
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
5777 5778 5779 5780 5781 5782 5783 5784
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

5785 5786 5787 5788 5789
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
5790
	page = pmd_page(pmd);
5791
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5792
	if (!(mc.flags & MOVE_ANON))
5793
		return ret;
5794
	if (page->mem_cgroup == mc.from) {
5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5811 5812 5813 5814
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
5815
	struct vm_area_struct *vma = walk->vma;
5816 5817 5818
	pte_t *pte;
	spinlock_t *ptl;

5819 5820
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5821 5822
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5823 5824
		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
		 * this might change.
5825
		 */
5826 5827
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5828
		spin_unlock(ptl);
5829
		return 0;
5830
	}
5831

5832 5833
	if (pmd_trans_unstable(pmd))
		return 0;
5834 5835
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5836
		if (get_mctgt_type(vma, addr, *pte, NULL))
5837 5838 5839 5840
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5841 5842 5843
	return 0;
}

5844 5845 5846 5847
static const struct mm_walk_ops precharge_walk_ops = {
	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
};

5848 5849 5850 5851
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

5852
	mmap_read_lock(mm);
5853
	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5854
	mmap_read_unlock(mm);
5855 5856 5857 5858 5859 5860 5861 5862 5863

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5864 5865 5866 5867 5868
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5869 5870
}

5871 5872
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5873
{
5874 5875 5876
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5877
	/* we must uncharge all the leftover precharges from mc.to */
5878
	if (mc.precharge) {
5879
		cancel_charge(mc.to, mc.precharge);
5880 5881 5882 5883 5884 5885 5886
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5887
		cancel_charge(mc.from, mc.moved_charge);
5888
		mc.moved_charge = 0;
5889
	}
5890 5891 5892
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5893
		if (!mem_cgroup_is_root(mc.from))
5894
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5895

5896 5897
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

5898
		/*
5899 5900
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5901
		 */
5902
		if (!mem_cgroup_is_root(mc.to))
5903 5904
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5905 5906
		mc.moved_swap = 0;
	}
5907 5908 5909 5910 5911 5912 5913
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
5914 5915
	struct mm_struct *mm = mc.mm;

5916 5917 5918 5919 5920 5921
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5922
	spin_lock(&mc.lock);
5923 5924
	mc.from = NULL;
	mc.to = NULL;
5925
	mc.mm = NULL;
5926
	spin_unlock(&mc.lock);
5927 5928

	mmput(mm);
5929 5930
}

5931
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5932
{
5933
	struct cgroup_subsys_state *css;
5934
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5935
	struct mem_cgroup *from;
5936
	struct task_struct *leader, *p;
5937
	struct mm_struct *mm;
5938
	unsigned long move_flags;
5939
	int ret = 0;
5940

5941 5942
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5943 5944
		return 0;

5945 5946 5947 5948 5949 5950 5951
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
5952
	cgroup_taskset_for_each_leader(leader, css, tset) {
5953 5954
		WARN_ON_ONCE(p);
		p = leader;
5955
		memcg = mem_cgroup_from_css(css);
5956 5957 5958 5959
	}
	if (!p)
		return 0;

5960 5961 5962 5963 5964 5965 5966 5967 5968
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
5985
		mc.mm = mm;
5986 5987 5988 5989 5990 5991 5992 5993 5994
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
5995 5996
	} else {
		mmput(mm);
5997 5998 5999 6000
	}
	return ret;
}

6001
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6002
{
6003 6004
	if (mc.to)
		mem_cgroup_clear_mc();
6005 6006
}

6007 6008 6009
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6010
{
6011
	int ret = 0;
6012
	struct vm_area_struct *vma = walk->vma;
6013 6014
	pte_t *pte;
	spinlock_t *ptl;
6015 6016 6017
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
6018

6019 6020
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
6021
		if (mc.precharge < HPAGE_PMD_NR) {
6022
			spin_unlock(ptl);
6023 6024 6025 6026 6027 6028
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
6029
				if (!mem_cgroup_move_account(page, true,
6030
							     mc.from, mc.to)) {
6031 6032 6033 6034 6035 6036
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
6037 6038 6039 6040 6041 6042 6043 6044
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
6045
		}
6046
		spin_unlock(ptl);
6047
		return 0;
6048 6049
	}

6050 6051
	if (pmd_trans_unstable(pmd))
		return 0;
6052 6053 6054 6055
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6056
		bool device = false;
6057
		swp_entry_t ent;
6058 6059 6060 6061

		if (!mc.precharge)
			break;

6062
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6063 6064
		case MC_TARGET_DEVICE:
			device = true;
J
Joe Perches 已提交
6065
			fallthrough;
6066 6067
		case MC_TARGET_PAGE:
			page = target.page;
6068 6069 6070 6071 6072 6073 6074 6075
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
6076
			if (!device && isolate_lru_page(page))
6077
				goto put;
6078 6079
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
6080
				mc.precharge--;
6081 6082
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6083
			}
6084 6085
			if (!device)
				putback_lru_page(page);
6086
put:			/* get_mctgt_type() gets the page */
6087 6088
			put_page(page);
			break;
6089 6090
		case MC_TARGET_SWAP:
			ent = target.ent;
6091
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6092
				mc.precharge--;
6093 6094
				mem_cgroup_id_get_many(mc.to, 1);
				/* we fixup other refcnts and charges later. */
6095 6096
				mc.moved_swap++;
			}
6097
			break;
6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6112
		ret = mem_cgroup_do_precharge(1);
6113 6114 6115 6116 6117 6118 6119
		if (!ret)
			goto retry;
	}

	return ret;
}

6120 6121 6122 6123
static const struct mm_walk_ops charge_walk_ops = {
	.pmd_entry	= mem_cgroup_move_charge_pte_range,
};

6124
static void mem_cgroup_move_charge(void)
6125 6126
{
	lru_add_drain_all();
6127
	/*
6128 6129 6130
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
6131 6132 6133
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
6134
retry:
6135
	if (unlikely(!mmap_read_trylock(mc.mm))) {
6136
		/*
6137
		 * Someone who are holding the mmap_lock might be waiting in
6138 6139 6140 6141 6142 6143 6144 6145 6146
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6147 6148 6149 6150
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
6151 6152
	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
			NULL);
6153

6154
	mmap_read_unlock(mc.mm);
6155
	atomic_dec(&mc.from->moving_account);
6156 6157
}

6158
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
6159
{
6160 6161
	if (mc.to) {
		mem_cgroup_move_charge();
6162
		mem_cgroup_clear_mc();
6163
	}
B
Balbir Singh 已提交
6164
}
6165
#else	/* !CONFIG_MMU */
6166
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6167 6168 6169
{
	return 0;
}
6170
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6171 6172
{
}
6173
static void mem_cgroup_move_task(void)
6174 6175 6176
{
}
#endif
B
Balbir Singh 已提交
6177

6178 6179
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6180 6181
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
6182
 */
6183
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6184 6185
{
	/*
6186
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
6187 6188 6189
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
6190
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6191 6192 6193
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
6194 6195
}

6196 6197 6198 6199 6200 6201 6202 6203 6204 6205
static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
{
	if (value == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);

	return 0;
}

6206 6207 6208
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
6209 6210 6211
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6212 6213
}

R
Roman Gushchin 已提交
6214 6215
static int memory_min_show(struct seq_file *m, void *v)
{
6216 6217
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
R
Roman Gushchin 已提交
6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

6237 6238
static int memory_low_show(struct seq_file *m, void *v)
{
6239 6240
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6241 6242 6243 6244 6245 6246 6247 6248 6249 6250
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
6251
	err = page_counter_memparse(buf, "max", &low);
6252 6253 6254
	if (err)
		return err;

6255
	page_counter_set_low(&memcg->memory, low);
6256 6257 6258 6259 6260 6261

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
6262 6263
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6264 6265 6266 6267 6268 6269
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6270
	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6271
	bool drained = false;
6272 6273 6274 6275
	unsigned long high;
	int err;

	buf = strstrip(buf);
6276
	err = page_counter_memparse(buf, "max", &high);
6277 6278 6279
	if (err)
		return err;

6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301
	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);
		unsigned long reclaimed;

		if (nr_pages <= high)
			break;

		if (signal_pending(current))
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
							 GFP_KERNEL, true);

		if (!reclaimed && !nr_retries--)
			break;
	}
6302

6303 6304
	page_counter_set_high(&memcg->memory, high);

6305 6306
	memcg_wb_domain_size_changed(memcg);

6307 6308 6309 6310 6311
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
6312 6313
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6314 6315 6316 6317 6318 6319
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6320
	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6321
	bool drained = false;
6322 6323 6324 6325
	unsigned long max;
	int err;

	buf = strstrip(buf);
6326
	err = page_counter_memparse(buf, "max", &max);
6327 6328 6329
	if (err)
		return err;

6330
	xchg(&memcg->memory.max, max);
6331 6332 6333 6334 6335 6336 6337

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

6338
		if (signal_pending(current))
6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353
			break;

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

6354
		memcg_memory_event(memcg, MEMCG_OOM);
6355 6356 6357
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
6358

6359
	memcg_wb_domain_size_changed(memcg);
6360 6361 6362
	return nbytes;
}

6363 6364 6365 6366 6367 6368 6369 6370 6371 6372
static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
{
	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&events[MEMCG_OOM_KILL]));
}

6373 6374
static int memory_events_show(struct seq_file *m, void *v)
{
6375
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6376

6377 6378 6379 6380 6381 6382 6383
	__memory_events_show(m, memcg->memory_events);
	return 0;
}

static int memory_events_local_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6384

6385
	__memory_events_show(m, memcg->memory_events_local);
6386 6387 6388
	return 0;
}

6389 6390
static int memory_stat_show(struct seq_file *m, void *v)
{
6391
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6392
	char *buf;
6393

6394 6395 6396 6397 6398
	buf = memory_stat_format(memcg);
	if (!buf)
		return -ENOMEM;
	seq_puts(m, buf);
	kfree(buf);
6399 6400 6401
	return 0;
}

6402 6403
static int memory_oom_group_show(struct seq_file *m, void *v)
{
6404
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432

	seq_printf(m, "%d\n", memcg->oom_group);

	return 0;
}

static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
				      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	int ret, oom_group;

	buf = strstrip(buf);
	if (!buf)
		return -EINVAL;

	ret = kstrtoint(buf, 0, &oom_group);
	if (ret)
		return ret;

	if (oom_group != 0 && oom_group != 1)
		return -EINVAL;

	memcg->oom_group = oom_group;

	return nbytes;
}

6433 6434 6435
static struct cftype memory_files[] = {
	{
		.name = "current",
6436
		.flags = CFTYPE_NOT_ON_ROOT,
6437 6438
		.read_u64 = memory_current_read,
	},
R
Roman Gushchin 已提交
6439 6440 6441 6442 6443 6444
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
6466
		.file_offset = offsetof(struct mem_cgroup, events_file),
6467 6468
		.seq_show = memory_events_show,
	},
6469 6470 6471 6472 6473 6474
	{
		.name = "events.local",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, events_local_file),
		.seq_show = memory_events_local_show,
	},
6475 6476 6477 6478
	{
		.name = "stat",
		.seq_show = memory_stat_show,
	},
6479 6480 6481 6482 6483 6484
	{
		.name = "oom.group",
		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
		.seq_show = memory_oom_group_show,
		.write = memory_oom_group_write,
	},
6485 6486 6487
	{ }	/* terminate */
};

6488
struct cgroup_subsys memory_cgrp_subsys = {
6489
	.css_alloc = mem_cgroup_css_alloc,
6490
	.css_online = mem_cgroup_css_online,
6491
	.css_offline = mem_cgroup_css_offline,
6492
	.css_released = mem_cgroup_css_released,
6493
	.css_free = mem_cgroup_css_free,
6494
	.css_reset = mem_cgroup_css_reset,
6495 6496
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
6497
	.post_attach = mem_cgroup_move_task,
6498
	.bind = mem_cgroup_bind,
6499 6500
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
6501
	.early_init = 0,
B
Balbir Singh 已提交
6502
};
6503

6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533
/*
 * This function calculates an individual cgroup's effective
 * protection which is derived from its own memory.min/low, its
 * parent's and siblings' settings, as well as the actual memory
 * distribution in the tree.
 *
 * The following rules apply to the effective protection values:
 *
 * 1. At the first level of reclaim, effective protection is equal to
 *    the declared protection in memory.min and memory.low.
 *
 * 2. To enable safe delegation of the protection configuration, at
 *    subsequent levels the effective protection is capped to the
 *    parent's effective protection.
 *
 * 3. To make complex and dynamic subtrees easier to configure, the
 *    user is allowed to overcommit the declared protection at a given
 *    level. If that is the case, the parent's effective protection is
 *    distributed to the children in proportion to how much protection
 *    they have declared and how much of it they are utilizing.
 *
 *    This makes distribution proportional, but also work-conserving:
 *    if one cgroup claims much more protection than it uses memory,
 *    the unused remainder is available to its siblings.
 *
 * 4. Conversely, when the declared protection is undercommitted at a
 *    given level, the distribution of the larger parental protection
 *    budget is NOT proportional. A cgroup's protection from a sibling
 *    is capped to its own memory.min/low setting.
 *
6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545
 * 5. However, to allow protecting recursive subtrees from each other
 *    without having to declare each individual cgroup's fixed share
 *    of the ancestor's claim to protection, any unutilized -
 *    "floating" - protection from up the tree is distributed in
 *    proportion to each cgroup's *usage*. This makes the protection
 *    neutral wrt sibling cgroups and lets them compete freely over
 *    the shared parental protection budget, but it protects the
 *    subtree as a whole from neighboring subtrees.
 *
 * Note that 4. and 5. are not in conflict: 4. is about protecting
 * against immediate siblings whereas 5. is about protecting against
 * neighboring subtrees.
6546 6547
 */
static unsigned long effective_protection(unsigned long usage,
6548
					  unsigned long parent_usage,
6549 6550 6551 6552 6553
					  unsigned long setting,
					  unsigned long parent_effective,
					  unsigned long siblings_protected)
{
	unsigned long protected;
6554
	unsigned long ep;
6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584

	protected = min(usage, setting);
	/*
	 * If all cgroups at this level combined claim and use more
	 * protection then what the parent affords them, distribute
	 * shares in proportion to utilization.
	 *
	 * We are using actual utilization rather than the statically
	 * claimed protection in order to be work-conserving: claimed
	 * but unused protection is available to siblings that would
	 * otherwise get a smaller chunk than what they claimed.
	 */
	if (siblings_protected > parent_effective)
		return protected * parent_effective / siblings_protected;

	/*
	 * Ok, utilized protection of all children is within what the
	 * parent affords them, so we know whatever this child claims
	 * and utilizes is effectively protected.
	 *
	 * If there is unprotected usage beyond this value, reclaim
	 * will apply pressure in proportion to that amount.
	 *
	 * If there is unutilized protection, the cgroup will be fully
	 * shielded from reclaim, but we do return a smaller value for
	 * protection than what the group could enjoy in theory. This
	 * is okay. With the overcommit distribution above, effective
	 * protection is always dependent on how memory is actually
	 * consumed among the siblings anyway.
	 */
6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597
	ep = protected;

	/*
	 * If the children aren't claiming (all of) the protection
	 * afforded to them by the parent, distribute the remainder in
	 * proportion to the (unprotected) memory of each cgroup. That
	 * way, cgroups that aren't explicitly prioritized wrt each
	 * other compete freely over the allowance, but they are
	 * collectively protected from neighboring trees.
	 *
	 * We're using unprotected memory for the weight so that if
	 * some cgroups DO claim explicit protection, we don't protect
	 * the same bytes twice.
6598 6599 6600 6601
	 *
	 * Check both usage and parent_usage against the respective
	 * protected values. One should imply the other, but they
	 * aren't read atomically - make sure the division is sane.
6602 6603 6604
	 */
	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
		return ep;
6605 6606 6607
	if (parent_effective > siblings_protected &&
	    parent_usage > siblings_protected &&
	    usage > protected) {
6608 6609 6610 6611 6612 6613 6614 6615 6616 6617
		unsigned long unclaimed;

		unclaimed = parent_effective - siblings_protected;
		unclaimed *= usage - protected;
		unclaimed /= parent_usage - siblings_protected;

		ep += unclaimed;
	}

	return ep;
6618 6619
}

6620
/**
R
Roman Gushchin 已提交
6621
 * mem_cgroup_protected - check if memory consumption is in the normal range
6622
 * @root: the top ancestor of the sub-tree being checked
6623 6624
 * @memcg: the memory cgroup to check
 *
6625 6626
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
6627
 */
6628 6629
void mem_cgroup_calculate_protection(struct mem_cgroup *root,
				     struct mem_cgroup *memcg)
6630
{
6631
	unsigned long usage, parent_usage;
6632 6633
	struct mem_cgroup *parent;

6634
	if (mem_cgroup_disabled())
6635
		return;
6636

6637 6638
	if (!root)
		root = root_mem_cgroup;
6639 6640 6641 6642 6643 6644 6645 6646

	/*
	 * Effective values of the reclaim targets are ignored so they
	 * can be stale. Have a look at mem_cgroup_protection for more
	 * details.
	 * TODO: calculation should be more robust so that we do not need
	 * that special casing.
	 */
6647
	if (memcg == root)
6648
		return;
6649

6650
	usage = page_counter_read(&memcg->memory);
R
Roman Gushchin 已提交
6651
	if (!usage)
6652
		return;
R
Roman Gushchin 已提交
6653 6654

	parent = parent_mem_cgroup(memcg);
6655 6656
	/* No parent means a non-hierarchical mode on v1 memcg */
	if (!parent)
6657
		return;
6658

6659
	if (parent == root) {
6660
		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6661
		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6662
		return;
R
Roman Gushchin 已提交
6663 6664
	}

6665 6666
	parent_usage = page_counter_read(&parent->memory);

6667
	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6668 6669
			READ_ONCE(memcg->memory.min),
			READ_ONCE(parent->memory.emin),
6670
			atomic_long_read(&parent->memory.children_min_usage)));
6671

6672
	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6673 6674
			READ_ONCE(memcg->memory.low),
			READ_ONCE(parent->memory.elow),
6675
			atomic_long_read(&parent->memory.children_low_usage)));
6676 6677
}

6678
/**
6679
 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6680 6681 6682 6683 6684 6685 6686
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
6687
 * Returns 0 on success. Otherwise, an error code is returned.
6688
 */
6689
int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6690
{
6691
	unsigned int nr_pages = hpage_nr_pages(page);
6692 6693 6694 6695 6696 6697 6698
	struct mem_cgroup *memcg = NULL;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
6699 6700 6701
		swp_entry_t ent = { .val = page_private(page), };
		unsigned short id;

6702 6703 6704
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
6705 6706
		 * already charged pages, too.  page->mem_cgroup is protected
		 * by the page lock, which serializes swap cache removal, which
6707 6708
		 * in turn serializes uncharging.
		 */
6709
		VM_BUG_ON_PAGE(!PageLocked(page), page);
6710
		if (compound_head(page)->mem_cgroup)
6711
			goto out;
6712

6713 6714 6715 6716 6717 6718
		id = lookup_swap_cgroup_id(ent);
		rcu_read_lock();
		memcg = mem_cgroup_from_id(id);
		if (memcg && !css_tryget_online(&memcg->css))
			memcg = NULL;
		rcu_read_unlock();
6719 6720 6721 6722 6723 6724
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);
6725 6726
	if (ret)
		goto out_put;
6727

6728
	css_get(&memcg->css);
6729
	commit_charge(page, memcg);
6730 6731

	local_irq_disable();
6732
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6733 6734
	memcg_check_events(memcg, page);
	local_irq_enable();
6735

6736
	if (PageSwapCache(page)) {
6737 6738 6739 6740 6741 6742
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
6743
		mem_cgroup_uncharge_swap(entry, nr_pages);
6744 6745
	}

6746 6747 6748 6749
out_put:
	css_put(&memcg->css);
out:
	return ret;
6750 6751
}

6752 6753
struct uncharge_gather {
	struct mem_cgroup *memcg;
6754
	unsigned long nr_pages;
6755 6756 6757 6758 6759 6760
	unsigned long pgpgout;
	unsigned long nr_kmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6761
{
6762 6763 6764 6765 6766
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
6767 6768
	unsigned long flags;

6769
	if (!mem_cgroup_is_root(ug->memcg)) {
6770
		page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6771
		if (do_memsw_account())
6772
			page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6773 6774 6775
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
6776
	}
6777 6778

	local_irq_save(flags);
6779
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6780
	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6781
	memcg_check_events(ug->memcg, ug->dummy_page);
6782
	local_irq_restore(flags);
6783 6784 6785 6786
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
6787 6788
	unsigned long nr_pages;

6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807
	VM_BUG_ON_PAGE(PageLRU(page), page);

	if (!page->mem_cgroup)
		return;

	/*
	 * Nobody should be changing or seriously looking at
	 * page->mem_cgroup at this point, we have fully
	 * exclusive access to the page.
	 */

	if (ug->memcg != page->mem_cgroup) {
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
		ug->memcg = page->mem_cgroup;
	}

6808 6809
	nr_pages = compound_nr(page);
	ug->nr_pages += nr_pages;
6810

6811
	if (!PageKmemcg(page)) {
6812 6813
		ug->pgpgout++;
	} else {
6814
		ug->nr_kmem += nr_pages;
6815 6816 6817 6818 6819
		__ClearPageKmemcg(page);
	}

	ug->dummy_page = page;
	page->mem_cgroup = NULL;
6820
	css_put(&ug->memcg->css);
6821 6822 6823 6824
}

static void uncharge_list(struct list_head *page_list)
{
6825
	struct uncharge_gather ug;
6826
	struct list_head *next;
6827 6828

	uncharge_gather_clear(&ug);
6829

6830 6831 6832 6833
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
6834 6835
	next = page_list->next;
	do {
6836 6837
		struct page *page;

6838 6839 6840
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

6841
		uncharge_page(page, &ug);
6842 6843
	} while (next != page_list);

6844 6845
	if (ug.memcg)
		uncharge_batch(&ug);
6846 6847
}

6848 6849 6850 6851
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
6852
 * Uncharge a page previously charged with mem_cgroup_charge().
6853 6854 6855
 */
void mem_cgroup_uncharge(struct page *page)
{
6856 6857
	struct uncharge_gather ug;

6858 6859 6860
	if (mem_cgroup_disabled())
		return;

6861
	/* Don't touch page->lru of any random page, pre-check: */
6862
	if (!page->mem_cgroup)
6863 6864
		return;

6865 6866 6867
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
6868
}
6869

6870 6871 6872 6873 6874
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
6875
 * mem_cgroup_charge().
6876 6877 6878 6879 6880
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
6881

6882 6883
	if (!list_empty(page_list))
		uncharge_list(page_list);
6884 6885 6886
}

/**
6887 6888 6889
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
6890
 *
6891 6892
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
6893 6894 6895
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
6896
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6897
{
6898
	struct mem_cgroup *memcg;
6899
	unsigned int nr_pages;
6900
	unsigned long flags;
6901 6902 6903 6904

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6905 6906
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6907 6908 6909 6910 6911

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
6912
	if (newpage->mem_cgroup)
6913 6914
		return;

6915
	/* Swapcache readahead pages can get replaced before being charged */
6916
	memcg = oldpage->mem_cgroup;
6917
	if (!memcg)
6918 6919
		return;

6920
	/* Force-charge the new page. The old one will be freed soon */
6921
	nr_pages = hpage_nr_pages(newpage);
6922 6923 6924 6925

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
6926

6927
	css_get(&memcg->css);
6928
	commit_charge(newpage, memcg);
6929

6930
	local_irq_save(flags);
6931
	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6932
	memcg_check_events(memcg, newpage);
6933
	local_irq_restore(flags);
6934 6935
}

6936
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6937 6938
EXPORT_SYMBOL(memcg_sockets_enabled_key);

6939
void mem_cgroup_sk_alloc(struct sock *sk)
6940 6941 6942
{
	struct mem_cgroup *memcg;

6943 6944 6945
	if (!mem_cgroup_sockets_enabled)
		return;

6946 6947 6948 6949
	/* Do not associate the sock with unrelated interrupted task's memcg. */
	if (in_interrupt())
		return;

6950 6951
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
6952 6953
	if (memcg == root_mem_cgroup)
		goto out;
6954
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6955
		goto out;
S
Shakeel Butt 已提交
6956
	if (css_tryget(&memcg->css))
6957
		sk->sk_memcg = memcg;
6958
out:
6959 6960 6961
	rcu_read_unlock();
}

6962
void mem_cgroup_sk_free(struct sock *sk)
6963
{
6964 6965
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6978
	gfp_t gfp_mask = GFP_KERNEL;
6979

6980
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6981
		struct page_counter *fail;
6982

6983 6984
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
6985 6986
			return true;
		}
6987 6988
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
6989
		return false;
6990
	}
6991

6992 6993 6994 6995
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

6996
	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6997

6998 6999 7000 7001
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7002 7003 7004 7005 7006
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
7007 7008
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
7009 7010 7011
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
7012
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7013
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7014 7015
		return;
	}
7016

7017
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7018

7019
	refill_stock(memcg, nr_pages);
7020 7021
}

7022 7023 7024 7025 7026 7027 7028 7029 7030
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
7031 7032
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
7033 7034 7035 7036
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
7037

7038
/*
7039 7040
 * subsys_initcall() for memory controller.
 *
7041 7042 7043 7044
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
7045 7046 7047
 */
static int __init mem_cgroup_init(void)
{
7048 7049
	int cpu, node;

7050 7051
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

7063
		rtpn->rb_root = RB_ROOT;
7064
		rtpn->rb_rightmost = NULL;
7065
		spin_lock_init(&rtpn->lock);
7066 7067 7068
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

7069 7070 7071
	return 0;
}
subsys_initcall(mem_cgroup_init);
7072 7073

#ifdef CONFIG_MEMCG_SWAP
7074 7075
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
7076
	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

7092 7093 7094 7095 7096 7097 7098 7099 7100
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
7101
	struct mem_cgroup *memcg, *swap_memcg;
7102
	unsigned int nr_entries;
7103 7104 7105 7106 7107
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

7108
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7109 7110 7111 7112 7113 7114 7115 7116
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

7117 7118 7119 7120 7121 7122
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
7123 7124 7125 7126 7127 7128
	nr_entries = hpage_nr_pages(page);
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
7129
	VM_BUG_ON_PAGE(oldid, page);
7130
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7131 7132 7133 7134

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
7135
		page_counter_uncharge(&memcg->memory, nr_entries);
7136

7137
	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7138
		if (!mem_cgroup_is_root(swap_memcg))
7139 7140
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
7141 7142
	}

7143 7144
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
7145
	 * i_pages lock which is taken with interrupts-off. It is
7146
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
7147
	 * only synchronisation we have for updating the per-CPU variables.
7148 7149
	 */
	VM_BUG_ON(!irqs_disabled());
7150
	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7151
	memcg_check_events(memcg, page);
7152

7153
	css_put(&memcg->css);
7154 7155
}

7156 7157
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
7158 7159 7160
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
7161
 * Try to charge @page's memcg for the swap space at @entry.
7162 7163 7164 7165 7166
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
7167
	unsigned int nr_pages = hpage_nr_pages(page);
7168
	struct page_counter *counter;
7169
	struct mem_cgroup *memcg;
7170 7171
	unsigned short oldid;

7172
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7173 7174 7175 7176 7177 7178 7179 7180
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

7181 7182
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7183
		return 0;
7184
	}
7185

7186 7187
	memcg = mem_cgroup_id_get_online(memcg);

7188
	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7189
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7190 7191
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7192
		mem_cgroup_id_put(memcg);
7193
		return -ENOMEM;
7194
	}
7195

7196 7197 7198 7199
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7200
	VM_BUG_ON_PAGE(oldid, page);
7201
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7202 7203 7204 7205

	return 0;
}

7206
/**
7207
 * mem_cgroup_uncharge_swap - uncharge swap space
7208
 * @entry: swap entry to uncharge
7209
 * @nr_pages: the amount of swap space to uncharge
7210
 */
7211
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7212 7213 7214 7215
{
	struct mem_cgroup *memcg;
	unsigned short id;

7216
	id = swap_cgroup_record(entry, 0, nr_pages);
7217
	rcu_read_lock();
7218
	memcg = mem_cgroup_from_id(id);
7219
	if (memcg) {
7220
		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7221
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7222
				page_counter_uncharge(&memcg->swap, nr_pages);
7223
			else
7224
				page_counter_uncharge(&memcg->memsw, nr_pages);
7225
		}
7226
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7227
		mem_cgroup_id_put_many(memcg, nr_pages);
7228 7229 7230 7231
	}
	rcu_read_unlock();
}

7232 7233 7234 7235
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

7236
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7237 7238 7239
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
7240
				      READ_ONCE(memcg->swap.max) -
7241 7242 7243 7244
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

7245 7246 7247 7248 7249 7250 7251 7252
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
7253
	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7254 7255 7256 7257 7258 7259
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

7260 7261 7262 7263 7264
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
		unsigned long usage = page_counter_read(&memcg->swap);

		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
		    usage * 2 >= READ_ONCE(memcg->swap.max))
7265
			return true;
7266
	}
7267 7268 7269 7270

	return false;
}

7271
static int __init setup_swap_account(char *s)
7272 7273
{
	if (!strcmp(s, "1"))
7274
		cgroup_memory_noswap = 0;
7275
	else if (!strcmp(s, "0"))
7276
		cgroup_memory_noswap = 1;
7277 7278
	return 1;
}
7279
__setup("swapaccount=", setup_swap_account);
7280

7281 7282 7283 7284 7285 7286 7287 7288
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311
static int swap_high_show(struct seq_file *m, void *v)
{
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
}

static ssize_t swap_high_write(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &high);
	if (err)
		return err;

	page_counter_set_high(&memcg->swap, high);

	return nbytes;
}

7312 7313
static int swap_max_show(struct seq_file *m, void *v)
{
7314 7315
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

7330
	xchg(&memcg->swap.max, max);
7331 7332 7333 7334

	return nbytes;
}

7335 7336
static int swap_events_show(struct seq_file *m, void *v)
{
7337
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7338

7339 7340
	seq_printf(m, "high %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7341 7342 7343 7344 7345 7346 7347 7348
	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

7349 7350 7351 7352 7353 7354
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
7355 7356 7357 7358 7359 7360
	{
		.name = "swap.high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_high_show,
		.write = swap_high_write,
	},
7361 7362 7363 7364 7365 7366
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
7367 7368 7369 7370 7371 7372
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
7373 7374 7375
	{ }	/* terminate */
};

7376
static struct cftype memsw_files[] = {
7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

7403 7404 7405 7406 7407 7408 7409
/*
 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
 * boot parameter. This may result in premature OOPS inside
 * mem_cgroup_get_nr_swap_pages() function in corner cases.
 */
7410 7411
static int __init mem_cgroup_swap_init(void)
{
7412 7413 7414 7415 7416
	/* No memory control -> no swap control */
	if (mem_cgroup_disabled())
		cgroup_memory_noswap = true;

	if (cgroup_memory_noswap)
7417 7418 7419 7420 7421
		return 0;

	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));

7422 7423
	return 0;
}
7424
core_initcall(mem_cgroup_swap_init);
7425 7426

#endif /* CONFIG_MEMCG_SWAP */