memcontrol.c 154.4 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include <linux/pagemap.h>
40
#include <linux/smp.h>
41
#include <linux/page-flags.h>
42
#include <linux/backing-dev.h>
43 44
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
45
#include <linux/limits.h>
46
#include <linux/export.h>
47
#include <linux/mutex.h>
48
#include <linux/rbtree.h>
49
#include <linux/slab.h>
50
#include <linux/swap.h>
51
#include <linux/swapops.h>
52
#include <linux/spinlock.h>
53
#include <linux/eventfd.h>
54
#include <linux/poll.h>
55
#include <linux/sort.h>
56
#include <linux/fs.h>
57
#include <linux/seq_file.h>
58
#include <linux/vmpressure.h>
59
#include <linux/mm_inline.h>
60
#include <linux/swap_cgroup.h>
61
#include <linux/cpu.h>
62
#include <linux/oom.h>
63
#include <linux/lockdep.h>
64
#include <linux/file.h>
65
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
66
#include "internal.h"
G
Glauber Costa 已提交
67
#include <net/sock.h>
M
Michal Hocko 已提交
68
#include <net/ip.h>
69
#include "slab.h"
B
Balbir Singh 已提交
70

71 72
#include <asm/uaccess.h>

73 74
#include <trace/events/vmscan.h>

75 76
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
77

78 79
struct mem_cgroup *root_mem_cgroup __read_mostly;

80
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
81

82 83 84
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

85 86 87
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

88
/* Whether the swap controller is active */
A
Andrew Morton 已提交
89
#ifdef CONFIG_MEMCG_SWAP
90 91
int do_swap_account __read_mostly;
#else
92
#define do_swap_account		0
93 94
#endif

95 96 97 98 99 100
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

101 102 103
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
104
	"rss_huge",
105
	"mapped_file",
106
	"dirty",
107
	"writeback",
108 109 110 111 112 113 114 115 116 117
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

118 119 120 121 122 123 124 125
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

126 127 128
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
129

130 131 132 133 134
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

135
struct mem_cgroup_tree_per_node {
136 137 138 139 140 141 142 143 144 145
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
146 147 148 149 150
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
151

152 153 154
/*
 * cgroup_event represents events which userspace want to receive.
 */
155
struct mem_cgroup_event {
156
	/*
157
	 * memcg which the event belongs to.
158
	 */
159
	struct mem_cgroup *memcg;
160 161 162 163 164 165 166 167
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
168 169 170 171 172
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
173
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
174
			      struct eventfd_ctx *eventfd, const char *args);
175 176 177 178 179
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
180
	void (*unregister_event)(struct mem_cgroup *memcg,
181
				 struct eventfd_ctx *eventfd);
182 183 184 185 186 187 188 189 190 191
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

192 193
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
194

195 196
/* Stuffs for move charges at task migration. */
/*
197
 * Types of charges to be moved.
198
 */
199 200 201
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
202

203 204
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
205
	spinlock_t	  lock; /* for from, to */
206
	struct mm_struct  *mm;
207 208
	struct mem_cgroup *from;
	struct mem_cgroup *to;
209
	unsigned long flags;
210
	unsigned long precharge;
211
	unsigned long moved_charge;
212
	unsigned long moved_swap;
213 214 215
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
216
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
217 218
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
219

220 221 222 223
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
224
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
225
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
226

227 228
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
229
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
230
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
231
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
232 233 234
	NR_CHARGE_TYPE,
};

235
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
236 237 238 239
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
240
	_KMEM,
V
Vladimir Davydov 已提交
241
	_TCP,
G
Glauber Costa 已提交
242 243
};

244 245
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
246
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
247 248
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
249

250 251 252 253 254 255 256 257 258 259 260 261 262
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

263 264 265 266 267
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

268
#ifndef CONFIG_SLOB
269
/*
270
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
271 272 273 274 275
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
276
 *
277 278
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
279
 */
280 281
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
282

283 284 285 286 287 288 289 290 291 292 293 294 295
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

296 297 298 299 300 301
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
302
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
303 304
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
305
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
306 307 308
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
309
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
310

311 312 313 314 315 316
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
317
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
318
EXPORT_SYMBOL(memcg_kmem_enabled_key);
319

320
#endif /* !CONFIG_SLOB */
321

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

339
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
340 341 342 343 344
		memcg = root_mem_cgroup;

	return &memcg->css;
}

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

373 374
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
375
{
376
	int nid = page_to_nid(page);
377

378
	return memcg->nodeinfo[nid];
379 380
}

381 382
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
383
{
384
	return soft_limit_tree.rb_tree_per_node[nid];
385 386
}

387
static struct mem_cgroup_tree_per_node *
388 389 390 391
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

392
	return soft_limit_tree.rb_tree_per_node[nid];
393 394
}

395 396
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
397
					 unsigned long new_usage_in_excess)
398 399 400
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
401
	struct mem_cgroup_per_node *mz_node;
402 403 404 405 406 407 408 409 410

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
411
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

427 428
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
429 430 431 432 433 434 435
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

436 437
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
438
{
439 440 441
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
442
	__mem_cgroup_remove_exceeded(mz, mctz);
443
	spin_unlock_irqrestore(&mctz->lock, flags);
444 445
}

446 447 448
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
449
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
450 451 452 453 454 455 456
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
457 458 459

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
460
	unsigned long excess;
461 462
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
463

464
	mctz = soft_limit_tree_from_page(page);
465 466 467 468 469
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
470
		mz = mem_cgroup_page_nodeinfo(memcg, page);
471
		excess = soft_limit_excess(memcg);
472 473 474 475 476
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
477 478 479
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
480 481
			/* if on-tree, remove it */
			if (mz->on_tree)
482
				__mem_cgroup_remove_exceeded(mz, mctz);
483 484 485 486
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
487
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
488
			spin_unlock_irqrestore(&mctz->lock, flags);
489 490 491 492 493 494
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
495 496 497
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
498

499
	for_each_node(nid) {
500 501 502
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
		mem_cgroup_remove_exceeded(mz, mctz);
503 504 505
	}
}

506 507
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
508 509
{
	struct rb_node *rightmost = NULL;
510
	struct mem_cgroup_per_node *mz;
511 512 513 514 515 516 517

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

518
	mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
519 520 521 522 523
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
524
	__mem_cgroup_remove_exceeded(mz, mctz);
525
	if (!soft_limit_excess(mz->memcg) ||
526
	    !css_tryget_online(&mz->memcg->css))
527 528 529 530 531
		goto retry;
done:
	return mz;
}

532 533
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
534
{
535
	struct mem_cgroup_per_node *mz;
536

537
	spin_lock_irq(&mctz->lock);
538
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
539
	spin_unlock_irq(&mctz->lock);
540 541 542
	return mz;
}

543
/*
544 545
 * Return page count for single (non recursive) @memcg.
 *
546 547 548 549 550
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
551
 * a periodic synchronization of counter in memcg's counter.
552 553 554 555 556 557 558 559 560
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
561
 * common workload, threshold and synchronization as vmstat[] should be
562 563
 * implemented.
 */
564 565
static unsigned long
mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
566
{
567
	long val = 0;
568 569
	int cpu;

570
	/* Per-cpu values can be negative, use a signed accumulator */
571
	for_each_possible_cpu(cpu)
572
		val += per_cpu(memcg->stat->count[idx], cpu);
573 574 575 576 577 578
	/*
	 * Summing races with updates, so val may be negative.  Avoid exposing
	 * transient negative values.
	 */
	if (val < 0)
		val = 0;
579 580 581
	return val;
}

582
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
583 584 585 586 587
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

588
	for_each_possible_cpu(cpu)
589
		val += per_cpu(memcg->stat->events[idx], cpu);
590 591 592
	return val;
}

593
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
594
					 struct page *page,
595
					 bool compound, int nr_pages)
596
{
597 598 599 600
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
601
	if (PageAnon(page))
602
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
603
				nr_pages);
604
	else
605
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
606
				nr_pages);
607

608 609
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
610 611
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);
612
	}
613

614 615
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
616
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
617
	else {
618
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
619 620
		nr_pages = -nr_pages; /* for event */
	}
621

622
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
623 624
}

625 626
unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
					   int nid, unsigned int lru_mask)
627
{
628
	unsigned long nr = 0;
629 630
	struct mem_cgroup_per_node *mz;
	enum lru_list lru;
631

632
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
633

634 635 636 637 638
	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
		mz = mem_cgroup_nodeinfo(memcg, nid);
		nr += mz->lru_size[lru];
639 640
	}
	return nr;
641
}
642

643
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
644
			unsigned int lru_mask)
645
{
646
	unsigned long nr = 0;
647
	int nid;
648

649
	for_each_node_state(nid, N_MEMORY)
650 651
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
652 653
}

654 655
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
656 657 658
{
	unsigned long val, next;

659
	val = __this_cpu_read(memcg->stat->nr_page_events);
660
	next = __this_cpu_read(memcg->stat->targets[target]);
661
	/* from time_after() in jiffies.h */
662 663 664 665 666
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
667 668 669
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
670 671 672 673 674 675 676 677
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
678
	}
679
	return false;
680 681 682 683 684 685
}

/*
 * Check events in order.
 *
 */
686
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
687 688
{
	/* threshold event is triggered in finer grain than soft limit */
689 690
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
691
		bool do_softlimit;
692
		bool do_numainfo __maybe_unused;
693

694 695
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
696 697 698 699
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
700
		mem_cgroup_threshold(memcg);
701 702
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
703
#if MAX_NUMNODES > 1
704
		if (unlikely(do_numainfo))
705
			atomic_inc(&memcg->numainfo_events);
706
#endif
707
	}
708 709
}

710
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
711
{
712 713 714 715 716 717 718 719
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

720
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
721
}
M
Michal Hocko 已提交
722
EXPORT_SYMBOL(mem_cgroup_from_task);
723

724
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
725
{
726
	struct mem_cgroup *memcg = NULL;
727

728 729
	rcu_read_lock();
	do {
730 731 732 733 734 735
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
736
			memcg = root_mem_cgroup;
737 738 739 740 741
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
742
	} while (!css_tryget_online(&memcg->css));
743
	rcu_read_unlock();
744
	return memcg;
745 746
}

747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
764
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
765
				   struct mem_cgroup *prev,
766
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
767
{
M
Michal Hocko 已提交
768
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
769
	struct cgroup_subsys_state *css = NULL;
770
	struct mem_cgroup *memcg = NULL;
771
	struct mem_cgroup *pos = NULL;
772

773 774
	if (mem_cgroup_disabled())
		return NULL;
775

776 777
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
778

779
	if (prev && !reclaim)
780
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
781

782 783
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
784
			goto out;
785
		return root;
786
	}
K
KAMEZAWA Hiroyuki 已提交
787

788
	rcu_read_lock();
M
Michal Hocko 已提交
789

790
	if (reclaim) {
791
		struct mem_cgroup_per_node *mz;
792

793
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
794 795 796 797 798
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

799
		while (1) {
800
			pos = READ_ONCE(iter->position);
801 802
			if (!pos || css_tryget(&pos->css))
				break;
803
			/*
804 805 806 807 808 809
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
810
			 */
811 812
			(void)cmpxchg(&iter->position, pos, NULL);
		}
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
830
		}
K
KAMEZAWA Hiroyuki 已提交
831

832 833 834 835 836 837
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
838

839 840
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
841

842 843
		if (css_tryget(css))
			break;
844

845
		memcg = NULL;
846
	}
847 848 849

	if (reclaim) {
		/*
850 851 852
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
853
		 */
854 855
		(void)cmpxchg(&iter->position, pos, memcg);

856 857 858 859 860 861 862
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
863
	}
864

865 866
out_unlock:
	rcu_read_unlock();
867
out:
868 869 870
	if (prev && prev != root)
		css_put(&prev->css);

871
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
872
}
K
KAMEZAWA Hiroyuki 已提交
873

874 875 876 877 878 879 880
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
881 882 883 884 885 886
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
887

888 889 890 891
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
892 893
	struct mem_cgroup_per_node *mz;
	int nid;
894 895 896 897
	int i;

	while ((memcg = parent_mem_cgroup(memcg))) {
		for_each_node(nid) {
898 899 900 901 902
			mz = mem_cgroup_nodeinfo(memcg, nid);
			for (i = 0; i <= DEF_PRIORITY; i++) {
				iter = &mz->iter[i];
				cmpxchg(&iter->position,
					dead_memcg, NULL);
903 904 905 906 907
			}
		}
	}
}

908 909 910 911 912 913
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
914
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
915
	     iter != NULL;				\
916
	     iter = mem_cgroup_iter(root, iter, NULL))
917

918
#define for_each_mem_cgroup(iter)			\
919
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
920
	     iter != NULL;				\
921
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
922

923
/**
924
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925
 * @page: the page
926
 * @zone: zone of the page
927 928 929 930
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
931
 */
M
Mel Gorman 已提交
932
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
933
{
934
	struct mem_cgroup_per_node *mz;
935
	struct mem_cgroup *memcg;
936
	struct lruvec *lruvec;
937

938
	if (mem_cgroup_disabled()) {
M
Mel Gorman 已提交
939
		lruvec = &pgdat->lruvec;
940 941
		goto out;
	}
942

943
	memcg = page->mem_cgroup;
944
	/*
945
	 * Swapcache readahead pages are added to the LRU - and
946
	 * possibly migrated - before they are charged.
947
	 */
948 949
	if (!memcg)
		memcg = root_mem_cgroup;
950

951
	mz = mem_cgroup_page_nodeinfo(memcg, page);
952 953 954 955 956 957 958
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
959 960
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
961
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
962
}
963

964
/**
965 966 967 968
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
969
 *
970 971 972
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
973
 */
974
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
975
				int nr_pages)
976
{
977
	struct mem_cgroup_per_node *mz;
978
	unsigned long *lru_size;
979 980
	long size;
	bool empty;
981 982 983 984

	if (mem_cgroup_disabled())
		return;

985
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
986
	lru_size = mz->lru_size + lru;
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
	empty = list_empty(lruvec->lists + lru);

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
	if (WARN_ONCE(size < 0 || empty != !size,
		"%s(%p, %d, %d): lru_size %ld but %sempty\n",
		__func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1002
}
1003

1004
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1005
{
1006
	struct mem_cgroup *task_memcg;
1007
	struct task_struct *p;
1008
	bool ret;
1009

1010
	p = find_lock_task_mm(task);
1011
	if (p) {
1012
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1013 1014 1015 1016 1017 1018 1019
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1020
		rcu_read_lock();
1021 1022
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1023
		rcu_read_unlock();
1024
	}
1025 1026
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1027 1028 1029
	return ret;
}

1030
/**
1031
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1032
 * @memcg: the memory cgroup
1033
 *
1034
 * Returns the maximum amount of memory @mem can be charged with, in
1035
 * pages.
1036
 */
1037
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1038
{
1039 1040 1041
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1042

1043
	count = page_counter_read(&memcg->memory);
1044
	limit = READ_ONCE(memcg->memory.limit);
1045 1046 1047
	if (count < limit)
		margin = limit - count;

1048
	if (do_memsw_account()) {
1049
		count = page_counter_read(&memcg->memsw);
1050
		limit = READ_ONCE(memcg->memsw.limit);
1051 1052
		if (count <= limit)
			margin = min(margin, limit - count);
1053 1054
		else
			margin = 0;
1055 1056 1057
	}

	return margin;
1058 1059
}

1060
/*
Q
Qiang Huang 已提交
1061
 * A routine for checking "mem" is under move_account() or not.
1062
 *
Q
Qiang Huang 已提交
1063 1064 1065
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1066
 */
1067
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1068
{
1069 1070
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1071
	bool ret = false;
1072 1073 1074 1075 1076 1077 1078 1079 1080
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1081

1082 1083
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1084 1085
unlock:
	spin_unlock(&mc.lock);
1086 1087 1088
	return ret;
}

1089
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1090 1091
{
	if (mc.moving_task && current != mc.moving_task) {
1092
		if (mem_cgroup_under_move(memcg)) {
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1105
#define K(x) ((x) << (PAGE_SHIFT-10))
1106
/**
1107
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1108 1109 1110 1111 1112 1113 1114 1115
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
1116 1117
	struct mem_cgroup *iter;
	unsigned int i;
1118 1119 1120

	rcu_read_lock();

1121 1122 1123 1124 1125 1126 1127 1128
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1129
	pr_cont_cgroup_path(memcg->css.cgroup);
1130
	pr_cont("\n");
1131 1132 1133

	rcu_read_unlock();

1134 1135 1136 1137 1138 1139 1140 1141 1142
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1143 1144

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1145 1146
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1147 1148 1149
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1150
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1151
				continue;
1152
			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1153 1154 1155 1156 1157 1158 1159 1160 1161
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1162 1163
}

1164 1165 1166 1167
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1168
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1169 1170
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1171 1172
	struct mem_cgroup *iter;

1173
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1174
		num++;
1175 1176 1177
	return num;
}

D
David Rientjes 已提交
1178 1179 1180
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1181
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1182
{
1183
	unsigned long limit;
1184

1185
	limit = memcg->memory.limit;
1186
	if (mem_cgroup_swappiness(memcg)) {
1187
		unsigned long memsw_limit;
1188
		unsigned long swap_limit;
1189

1190
		memsw_limit = memcg->memsw.limit;
1191 1192 1193
		swap_limit = memcg->swap.limit;
		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
		limit = min(limit + swap_limit, memsw_limit);
1194 1195
	}
	return limit;
D
David Rientjes 已提交
1196 1197
}

1198
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1199
				     int order)
1200
{
1201 1202 1203
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1204
		.memcg = memcg,
1205 1206 1207
		.gfp_mask = gfp_mask,
		.order = order,
	};
1208 1209 1210 1211 1212 1213
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1214 1215
	mutex_lock(&oom_lock);

1216
	/*
1217 1218 1219
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1220
	 */
1221
	if (task_will_free_mem(current)) {
1222
		mark_oom_victim(current);
1223
		wake_oom_reaper(current);
1224
		goto unlock;
1225 1226
	}

1227
	check_panic_on_oom(&oc, CONSTRAINT_MEMCG);
1228
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1229
	for_each_mem_cgroup_tree(iter, memcg) {
1230
		struct css_task_iter it;
1231 1232
		struct task_struct *task;

1233 1234
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1235
			switch (oom_scan_process_thread(&oc, task)) {
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1246
				css_task_iter_end(&it);
1247 1248 1249
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
1250 1251
				/* Set a dummy value to return "true". */
				chosen = (void *) 1;
1252
				goto unlock;
1253 1254 1255 1256
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1269
		}
1270
		css_task_iter_end(&it);
1271 1272
	}

1273 1274
	if (chosen) {
		points = chosen_points * 1000 / totalpages;
1275
		oom_kill_process(&oc, chosen, points, totalpages,
1276
				 "Memory cgroup out of memory");
1277 1278 1279
	}
unlock:
	mutex_unlock(&oom_lock);
1280
	return chosen;
1281 1282
}

1283 1284
#if MAX_NUMNODES > 1

1285 1286
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1287
 * @memcg: the target memcg
1288 1289 1290 1291 1292 1293 1294
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1295
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1296 1297
		int nid, bool noswap)
{
1298
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1299 1300 1301
		return true;
	if (noswap || !total_swap_pages)
		return false;
1302
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1303 1304 1305 1306
		return true;
	return false;

}
1307 1308 1309 1310 1311 1312 1313

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1314
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1315 1316
{
	int nid;
1317 1318 1319 1320
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1321
	if (!atomic_read(&memcg->numainfo_events))
1322
		return;
1323
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1324 1325 1326
		return;

	/* make a nodemask where this memcg uses memory from */
1327
	memcg->scan_nodes = node_states[N_MEMORY];
1328

1329
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1330

1331 1332
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1333
	}
1334

1335 1336
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1351
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1352 1353 1354
{
	int node;

1355 1356
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1357

1358
	node = next_node_in(node, memcg->scan_nodes);
1359
	/*
1360 1361 1362
	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
	 * last time it really checked all the LRUs due to rate limiting.
	 * Fallback to the current node in that case for simplicity.
1363 1364 1365 1366
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1367
	memcg->last_scanned_node = node;
1368 1369 1370
	return node;
}
#else
1371
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1372 1373 1374 1375 1376
{
	return 0;
}
#endif

1377
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1378
				   pg_data_t *pgdat,
1379 1380 1381 1382 1383 1384 1385 1386 1387
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1388
		.pgdat = pgdat,
1389 1390 1391
		.priority = 0,
	};

1392
	excess = soft_limit_excess(root_memcg);
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1418
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1419
					pgdat, &nr_scanned);
1420
		*total_scanned += nr_scanned;
1421
		if (!soft_limit_excess(root_memcg))
1422
			break;
1423
	}
1424 1425
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1426 1427
}

1428 1429 1430 1431 1432 1433
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1434 1435
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1436 1437 1438 1439
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1440
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1441
{
1442
	struct mem_cgroup *iter, *failed = NULL;
1443

1444 1445
	spin_lock(&memcg_oom_lock);

1446
	for_each_mem_cgroup_tree(iter, memcg) {
1447
		if (iter->oom_lock) {
1448 1449 1450 1451 1452
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1453 1454
			mem_cgroup_iter_break(memcg, iter);
			break;
1455 1456
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1457
	}
K
KAMEZAWA Hiroyuki 已提交
1458

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1470
		}
1471 1472
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1473 1474 1475 1476

	spin_unlock(&memcg_oom_lock);

	return !failed;
1477
}
1478

1479
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1480
{
K
KAMEZAWA Hiroyuki 已提交
1481 1482
	struct mem_cgroup *iter;

1483
	spin_lock(&memcg_oom_lock);
1484
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1485
	for_each_mem_cgroup_tree(iter, memcg)
1486
		iter->oom_lock = false;
1487
	spin_unlock(&memcg_oom_lock);
1488 1489
}

1490
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1491 1492 1493
{
	struct mem_cgroup *iter;

1494
	spin_lock(&memcg_oom_lock);
1495
	for_each_mem_cgroup_tree(iter, memcg)
1496 1497
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1498 1499
}

1500
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1501 1502 1503
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1504 1505
	/*
	 * When a new child is created while the hierarchy is under oom,
1506
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1507
	 */
1508
	spin_lock(&memcg_oom_lock);
1509
	for_each_mem_cgroup_tree(iter, memcg)
1510 1511 1512
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1513 1514
}

K
KAMEZAWA Hiroyuki 已提交
1515 1516
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1517
struct oom_wait_info {
1518
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1519 1520 1521 1522 1523 1524
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1525 1526
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1527 1528 1529
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1530
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1531

1532 1533
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1534 1535 1536 1537
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1538
static void memcg_oom_recover(struct mem_cgroup *memcg)
1539
{
1540 1541 1542 1543 1544 1545 1546 1547 1548
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1549
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1550 1551
}

1552
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1553
{
1554
	if (!current->memcg_may_oom)
1555
		return;
K
KAMEZAWA Hiroyuki 已提交
1556
	/*
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1569
	 */
1570
	css_get(&memcg->css);
T
Tejun Heo 已提交
1571 1572 1573
	current->memcg_in_oom = memcg;
	current->memcg_oom_gfp_mask = mask;
	current->memcg_oom_order = order;
1574 1575 1576 1577
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1578
 * @handle: actually kill/wait or just clean up the OOM state
1579
 *
1580 1581
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1582
 *
1583
 * Memcg supports userspace OOM handling where failed allocations must
1584 1585 1586 1587
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1588
 * the end of the page fault to complete the OOM handling.
1589 1590
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1591
 * completed, %false otherwise.
1592
 */
1593
bool mem_cgroup_oom_synchronize(bool handle)
1594
{
T
Tejun Heo 已提交
1595
	struct mem_cgroup *memcg = current->memcg_in_oom;
1596
	struct oom_wait_info owait;
1597
	bool locked;
1598 1599 1600

	/* OOM is global, do not handle */
	if (!memcg)
1601
		return false;
1602

1603
	if (!handle || oom_killer_disabled)
1604
		goto cleanup;
1605 1606 1607 1608 1609 1610

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1611

1612
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1623 1624
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1625
	} else {
1626
		schedule();
1627 1628 1629 1630 1631
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1632 1633 1634 1635 1636 1637 1638 1639
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1640
cleanup:
T
Tejun Heo 已提交
1641
	current->memcg_in_oom = NULL;
1642
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1643
	return true;
1644 1645
}

1646
/**
1647 1648
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1649
 *
1650 1651
 * This function protects unlocked LRU pages from being moved to
 * another cgroup and stabilizes their page->mem_cgroup binding.
1652
 */
J
Johannes Weiner 已提交
1653
void lock_page_memcg(struct page *page)
1654 1655
{
	struct mem_cgroup *memcg;
1656
	unsigned long flags;
1657

1658 1659 1660 1661 1662
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 */
1663 1664 1665
	rcu_read_lock();

	if (mem_cgroup_disabled())
J
Johannes Weiner 已提交
1666
		return;
1667
again:
1668
	memcg = page->mem_cgroup;
1669
	if (unlikely(!memcg))
J
Johannes Weiner 已提交
1670
		return;
1671

Q
Qiang Huang 已提交
1672
	if (atomic_read(&memcg->moving_account) <= 0)
J
Johannes Weiner 已提交
1673
		return;
1674

1675
	spin_lock_irqsave(&memcg->move_lock, flags);
1676
	if (memcg != page->mem_cgroup) {
1677
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1678 1679
		goto again;
	}
1680 1681 1682 1683

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
1684
	 * the task who has the lock for unlock_page_memcg().
1685 1686 1687
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1688

J
Johannes Weiner 已提交
1689
	return;
1690
}
1691
EXPORT_SYMBOL(lock_page_memcg);
1692

1693
/**
1694
 * unlock_page_memcg - unlock a page->mem_cgroup binding
J
Johannes Weiner 已提交
1695
 * @page: the page
1696
 */
J
Johannes Weiner 已提交
1697
void unlock_page_memcg(struct page *page)
1698
{
J
Johannes Weiner 已提交
1699 1700
	struct mem_cgroup *memcg = page->mem_cgroup;

1701 1702 1703 1704 1705 1706 1707 1708
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1709

1710
	rcu_read_unlock();
1711
}
1712
EXPORT_SYMBOL(unlock_page_memcg);
1713

1714 1715 1716 1717
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1718
#define CHARGE_BATCH	32U
1719 1720
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1721
	unsigned int nr_pages;
1722
	struct work_struct work;
1723
	unsigned long flags;
1724
#define FLUSHING_CACHED_CHARGE	0
1725 1726
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1727
static DEFINE_MUTEX(percpu_charge_mutex);
1728

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1739
 */
1740
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1741 1742
{
	struct memcg_stock_pcp *stock;
1743
	bool ret = false;
1744

1745
	if (nr_pages > CHARGE_BATCH)
1746
		return ret;
1747

1748
	stock = &get_cpu_var(memcg_stock);
1749
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1750
		stock->nr_pages -= nr_pages;
1751 1752
		ret = true;
	}
1753 1754 1755 1756 1757
	put_cpu_var(memcg_stock);
	return ret;
}

/*
1758
 * Returns stocks cached in percpu and reset cached information.
1759 1760 1761 1762 1763
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1764
	if (stock->nr_pages) {
1765
		page_counter_uncharge(&old->memory, stock->nr_pages);
1766
		if (do_memsw_account())
1767
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1768
		css_put_many(&old->css, stock->nr_pages);
1769
		stock->nr_pages = 0;
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
1780
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1781
	drain_stock(stock);
1782
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1783 1784 1785
}

/*
1786
 * Cache charges(val) to local per_cpu area.
1787
 * This will be consumed by consume_stock() function, later.
1788
 */
1789
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1790 1791 1792
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

1793
	if (stock->cached != memcg) { /* reset if necessary */
1794
		drain_stock(stock);
1795
		stock->cached = memcg;
1796
	}
1797
	stock->nr_pages += nr_pages;
1798 1799 1800 1801
	put_cpu_var(memcg_stock);
}

/*
1802
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1803
 * of the hierarchy under it.
1804
 */
1805
static void drain_all_stock(struct mem_cgroup *root_memcg)
1806
{
1807
	int cpu, curcpu;
1808

1809 1810 1811
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1812 1813
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1814
	curcpu = get_cpu();
1815 1816
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1817
		struct mem_cgroup *memcg;
1818

1819 1820
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
1821
			continue;
1822
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1823
			continue;
1824 1825 1826 1827 1828 1829
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1830
	}
1831
	put_cpu();
A
Andrew Morton 已提交
1832
	put_online_cpus();
1833
	mutex_unlock(&percpu_charge_mutex);
1834 1835
}

1836
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1837 1838 1839 1840 1841 1842
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

1843
	if (action == CPU_ONLINE)
1844 1845
		return NOTIFY_OK;

1846
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1847
		return NOTIFY_OK;
1848

1849 1850 1851 1852 1853
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
}

1874 1875 1876 1877 1878 1879 1880
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1881
	struct mem_cgroup *memcg;
1882 1883 1884 1885

	if (likely(!nr_pages))
		return;

1886 1887
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1888 1889 1890 1891
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

1892 1893
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
1894
{
1895
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1896
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1897
	struct mem_cgroup *mem_over_limit;
1898
	struct page_counter *counter;
1899
	unsigned long nr_reclaimed;
1900 1901
	bool may_swap = true;
	bool drained = false;
1902

1903
	if (mem_cgroup_is_root(memcg))
1904
		return 0;
1905
retry:
1906
	if (consume_stock(memcg, nr_pages))
1907
		return 0;
1908

1909
	if (!do_memsw_account() ||
1910 1911
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1912
			goto done_restock;
1913
		if (do_memsw_account())
1914 1915
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1916
	} else {
1917
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1918
		may_swap = false;
1919
	}
1920

1921 1922 1923 1924
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
1925

1926 1927 1928 1929 1930 1931 1932 1933 1934
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
1935
		goto force;
1936 1937 1938 1939

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

1940
	if (!gfpflags_allow_blocking(gfp_mask))
1941
		goto nomem;
1942

1943 1944
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

1945 1946
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
1947

1948
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1949
		goto retry;
1950

1951
	if (!drained) {
1952
		drain_all_stock(mem_over_limit);
1953 1954 1955 1956
		drained = true;
		goto retry;
	}

1957 1958
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
1959 1960 1961 1962 1963 1964 1965 1966 1967
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
1968
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1969 1970 1971 1972 1973 1974 1975 1976
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

1977 1978 1979
	if (nr_retries--)
		goto retry;

1980
	if (gfp_mask & __GFP_NOFAIL)
1981
		goto force;
1982

1983
	if (fatal_signal_pending(current))
1984
		goto force;
1985

1986 1987
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

1988 1989
	mem_cgroup_oom(mem_over_limit, gfp_mask,
		       get_order(nr_pages * PAGE_SIZE));
1990
nomem:
1991
	if (!(gfp_mask & __GFP_NOFAIL))
1992
		return -ENOMEM;
1993 1994 1995 1996 1997 1998 1999
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2000
	if (do_memsw_account())
2001 2002 2003 2004
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2005 2006

done_restock:
2007
	css_get_many(&memcg->css, batch);
2008 2009
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2010

2011
	/*
2012 2013
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2014
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2015 2016 2017 2018
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2019 2020
	 */
	do {
2021
		if (page_counter_read(&memcg->memory) > memcg->high) {
2022 2023 2024 2025 2026
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2027
			current->memcg_nr_pages_over_high += batch;
2028 2029 2030
			set_notify_resume(current);
			break;
		}
2031
	} while ((memcg = parent_mem_cgroup(memcg)));
2032 2033

	return 0;
2034
}
2035

2036
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2037
{
2038 2039 2040
	if (mem_cgroup_is_root(memcg))
		return;

2041
	page_counter_uncharge(&memcg->memory, nr_pages);
2042
	if (do_memsw_account())
2043
		page_counter_uncharge(&memcg->memsw, nr_pages);
2044

2045
	css_put_many(&memcg->css, nr_pages);
2046 2047
}

2048 2049 2050 2051
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

2052
	spin_lock_irq(zone_lru_lock(zone));
2053 2054 2055
	if (PageLRU(page)) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2056
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

M
Mel Gorman 已提交
2071
		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2072 2073 2074 2075
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
2076
	spin_unlock_irq(zone_lru_lock(zone));
2077 2078
}

2079
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2080
			  bool lrucare)
2081
{
2082
	int isolated;
2083

2084
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2085 2086 2087 2088 2089

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2090 2091
	if (lrucare)
		lock_page_lru(page, &isolated);
2092

2093 2094
	/*
	 * Nobody should be changing or seriously looking at
2095
	 * page->mem_cgroup at this point:
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2107
	page->mem_cgroup = memcg;
2108

2109 2110
	if (lrucare)
		unlock_page_lru(page, isolated);
2111
}
2112

2113
#ifndef CONFIG_SLOB
2114
static int memcg_alloc_cache_id(void)
2115
{
2116 2117 2118
	int id, size;
	int err;

2119
	id = ida_simple_get(&memcg_cache_ida,
2120 2121 2122
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2123

2124
	if (id < memcg_nr_cache_ids)
2125 2126 2127 2128 2129 2130
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2131
	down_write(&memcg_cache_ids_sem);
2132 2133

	size = 2 * (id + 1);
2134 2135 2136 2137 2138
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2139
	err = memcg_update_all_caches(size);
2140 2141
	if (!err)
		err = memcg_update_all_list_lrus(size);
2142 2143 2144 2145 2146
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2147
	if (err) {
2148
		ida_simple_remove(&memcg_cache_ida, id);
2149 2150 2151 2152 2153 2154 2155
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2156
	ida_simple_remove(&memcg_cache_ida, id);
2157 2158
}

2159
struct memcg_kmem_cache_create_work {
2160 2161 2162 2163 2164
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2165
static void memcg_kmem_cache_create_func(struct work_struct *w)
2166
{
2167 2168
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2169 2170
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2171

2172
	memcg_create_kmem_cache(memcg, cachep);
2173

2174
	css_put(&memcg->css);
2175 2176 2177 2178 2179 2180
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2181 2182
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2183
{
2184
	struct memcg_kmem_cache_create_work *cw;
2185

2186
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2187
	if (!cw)
2188
		return;
2189 2190

	css_get(&memcg->css);
2191 2192 2193

	cw->memcg = memcg;
	cw->cachep = cachep;
2194
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2195 2196 2197 2198

	schedule_work(&cw->work);
}

2199 2200
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2201 2202 2203 2204
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2205
	 * in __memcg_schedule_kmem_cache_create will recurse.
2206 2207 2208 2209 2210 2211 2212
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2213
	current->memcg_kmem_skip_account = 1;
2214
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2215
	current->memcg_kmem_skip_account = 0;
2216
}
2217

2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
static inline bool memcg_kmem_bypass(void)
{
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;
	return false;
}

/**
 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
 * @cachep: the original global kmem cache
 *
2229 2230 2231
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
2232 2233 2234
 * If the cache does not exist yet, if we are the first user of it, we
 * create it asynchronously in a workqueue and let the current allocation
 * go through with the original cache.
2235
 *
2236 2237 2238 2239
 * This function takes a reference to the cache it returns to assure it
 * won't get destroyed while we are working with it. Once the caller is
 * done with it, memcg_kmem_put_cache() must be called to release the
 * reference.
2240
 */
2241
struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2242 2243
{
	struct mem_cgroup *memcg;
2244
	struct kmem_cache *memcg_cachep;
2245
	int kmemcg_id;
2246

2247
	VM_BUG_ON(!is_root_cache(cachep));
2248

2249
	if (memcg_kmem_bypass())
V
Vladimir Davydov 已提交
2250 2251
		return cachep;

2252
	if (current->memcg_kmem_skip_account)
2253 2254
		return cachep;

2255
	memcg = get_mem_cgroup_from_mm(current->mm);
2256
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2257
	if (kmemcg_id < 0)
2258
		goto out;
2259

2260
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2261 2262
	if (likely(memcg_cachep))
		return memcg_cachep;
2263 2264 2265 2266 2267 2268 2269 2270 2271

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2272 2273 2274
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2275
	 */
2276
	memcg_schedule_kmem_cache_create(memcg, cachep);
2277
out:
2278
	css_put(&memcg->css);
2279
	return cachep;
2280 2281
}

2282 2283 2284 2285 2286
/**
 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
 * @cachep: the cache returned by memcg_kmem_get_cache
 */
void memcg_kmem_put_cache(struct kmem_cache *cachep)
2287 2288
{
	if (!is_root_cache(cachep))
2289
		css_put(&cachep->memcg_params.memcg->css);
2290 2291
}

2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
/**
 * memcg_kmem_charge: charge a kmem page
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 * @memcg: memory cgroup to charge
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			    struct mem_cgroup *memcg)
2303
{
2304 2305
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2306 2307
	int ret;

2308
	ret = try_charge(memcg, gfp, nr_pages);
2309
	if (ret)
2310
		return ret;
2311 2312 2313 2314 2315

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2316 2317
	}

2318
	page->mem_cgroup = memcg;
2319

2320
	return 0;
2321 2322
}

2323 2324 2325 2326 2327 2328 2329 2330 2331
/**
 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2332
{
2333
	struct mem_cgroup *memcg;
2334
	int ret = 0;
2335

2336 2337 2338
	if (memcg_kmem_bypass())
		return 0;

2339
	memcg = get_mem_cgroup_from_mm(current->mm);
2340
	if (!mem_cgroup_is_root(memcg)) {
2341
		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2342 2343 2344
		if (!ret)
			__SetPageKmemcg(page);
	}
2345
	css_put(&memcg->css);
2346
	return ret;
2347
}
2348 2349 2350 2351 2352 2353
/**
 * memcg_kmem_uncharge: uncharge a kmem page
 * @page: page to uncharge
 * @order: allocation order
 */
void memcg_kmem_uncharge(struct page *page, int order)
2354
{
2355
	struct mem_cgroup *memcg = page->mem_cgroup;
2356
	unsigned int nr_pages = 1 << order;
2357 2358 2359 2360

	if (!memcg)
		return;

2361
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2362

2363 2364 2365
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

2366
	page_counter_uncharge(&memcg->memory, nr_pages);
2367
	if (do_memsw_account())
2368
		page_counter_uncharge(&memcg->memsw, nr_pages);
2369

2370
	page->mem_cgroup = NULL;
2371 2372 2373 2374 2375

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);

2376
	css_put_many(&memcg->css, nr_pages);
2377
}
2378
#endif /* !CONFIG_SLOB */
2379

2380 2381 2382 2383
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2384
 * zone_lru_lock and migration entries setup in all page mappings.
2385
 */
2386
void mem_cgroup_split_huge_fixup(struct page *head)
2387
{
2388
	int i;
2389

2390 2391
	if (mem_cgroup_disabled())
		return;
2392

2393
	for (i = 1; i < HPAGE_PMD_NR; i++)
2394
		head[i].mem_cgroup = head->mem_cgroup;
2395

2396
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2397
		       HPAGE_PMD_NR);
2398
}
2399
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2400

A
Andrew Morton 已提交
2401
#ifdef CONFIG_MEMCG_SWAP
2402 2403
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2404
{
2405 2406
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2407
}
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2420
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2421 2422 2423
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2424
				struct mem_cgroup *from, struct mem_cgroup *to)
2425 2426 2427
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2428 2429
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2430 2431 2432

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2433
		mem_cgroup_swap_statistics(to, true);
2434 2435 2436 2437 2438 2439
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2440
				struct mem_cgroup *from, struct mem_cgroup *to)
2441 2442 2443
{
	return -EINVAL;
}
2444
#endif
K
KAMEZAWA Hiroyuki 已提交
2445

2446
static DEFINE_MUTEX(memcg_limit_mutex);
2447

2448
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2449
				   unsigned long limit)
2450
{
2451 2452 2453
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2454
	int retry_count;
2455
	int ret;
2456 2457 2458 2459 2460 2461

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2462 2463
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2464

2465
	oldusage = page_counter_read(&memcg->memory);
2466

2467
	do {
2468 2469 2470 2471
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2472 2473 2474 2475

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2476
			ret = -EINVAL;
2477 2478
			break;
		}
2479 2480 2481 2482
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2483 2484 2485 2486

		if (!ret)
			break;

2487 2488
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2489
		curusage = page_counter_read(&memcg->memory);
2490
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2491
		if (curusage >= oldusage)
2492 2493 2494
			retry_count--;
		else
			oldusage = curusage;
2495 2496
	} while (retry_count);

2497 2498
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2499

2500 2501 2502
	return ret;
}

L
Li Zefan 已提交
2503
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2504
					 unsigned long limit)
2505
{
2506 2507 2508
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2509
	int retry_count;
2510
	int ret;
2511

2512
	/* see mem_cgroup_resize_res_limit */
2513 2514 2515 2516 2517 2518
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2519 2520 2521 2522
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2523 2524 2525 2526

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2527 2528 2529
			ret = -EINVAL;
			break;
		}
2530 2531 2532 2533
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2534 2535 2536 2537

		if (!ret)
			break;

2538 2539
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2540
		curusage = page_counter_read(&memcg->memsw);
2541
		/* Usage is reduced ? */
2542
		if (curusage >= oldusage)
2543
			retry_count--;
2544 2545
		else
			oldusage = curusage;
2546 2547
	} while (retry_count);

2548 2549
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2550

2551 2552 2553
	return ret;
}

2554
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2555 2556 2557 2558
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
2559
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2560 2561
	unsigned long reclaimed;
	int loop = 0;
2562
	struct mem_cgroup_tree_per_node *mctz;
2563
	unsigned long excess;
2564 2565 2566 2567 2568
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

2569
	mctz = soft_limit_tree_node(pgdat->node_id);
2570 2571 2572 2573 2574 2575 2576 2577 2578

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
	if (RB_EMPTY_ROOT(&mctz->rb_root))
		return 0;

2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
2593
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2594 2595 2596
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2597
		spin_lock_irq(&mctz->lock);
2598
		__mem_cgroup_remove_exceeded(mz, mctz);
2599 2600 2601 2602 2603 2604

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2605 2606 2607
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2608
		excess = soft_limit_excess(mz->memcg);
2609 2610 2611 2612 2613 2614 2615 2616 2617
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2618
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2619
		spin_unlock_irq(&mctz->lock);
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2637 2638 2639 2640 2641 2642
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2643 2644
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2645 2646 2647 2648 2649 2650
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2651 2652
}

2653
/*
2654
 * Reclaims as many pages from the given memcg as possible.
2655 2656 2657 2658 2659 2660 2661
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2662 2663
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2664
	/* try to free all pages in this cgroup */
2665
	while (nr_retries && page_counter_read(&memcg->memory)) {
2666
		int progress;
2667

2668 2669 2670
		if (signal_pending(current))
			return -EINTR;

2671 2672
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2673
		if (!progress) {
2674
			nr_retries--;
2675
			/* maybe some writeback is necessary */
2676
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2677
		}
2678 2679

	}
2680 2681

	return 0;
2682 2683
}

2684 2685 2686
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2687
{
2688
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2689

2690 2691
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2692
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2693 2694
}

2695 2696
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2697
{
2698
	return mem_cgroup_from_css(css)->use_hierarchy;
2699 2700
}

2701 2702
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2703 2704
{
	int retval = 0;
2705
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2706
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2707

2708
	if (memcg->use_hierarchy == val)
2709
		return 0;
2710

2711
	/*
2712
	 * If parent's use_hierarchy is set, we can't make any modifications
2713 2714 2715 2716 2717 2718
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2719
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2720
				(val == 1 || val == 0)) {
2721
		if (!memcg_has_children(memcg))
2722
			memcg->use_hierarchy = val;
2723 2724 2725 2726
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2727

2728 2729 2730
	return retval;
}

2731
static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2732 2733
{
	struct mem_cgroup *iter;
2734
	int i;
2735

2736
	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2737

2738 2739 2740 2741
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_STAT; i++)
			stat[i] += mem_cgroup_read_stat(iter, i);
	}
2742 2743
}

2744
static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2745 2746
{
	struct mem_cgroup *iter;
2747
	int i;
2748

2749
	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2750

2751 2752 2753 2754
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_EVENTS; i++)
			events[i] += mem_cgroup_read_events(iter, i);
	}
2755 2756
}

2757
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2758
{
2759
	unsigned long val = 0;
2760

2761
	if (mem_cgroup_is_root(memcg)) {
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
		struct mem_cgroup *iter;

		for_each_mem_cgroup_tree(iter, memcg) {
			val += mem_cgroup_read_stat(iter,
					MEM_CGROUP_STAT_CACHE);
			val += mem_cgroup_read_stat(iter,
					MEM_CGROUP_STAT_RSS);
			if (swap)
				val += mem_cgroup_read_stat(iter,
						MEM_CGROUP_STAT_SWAP);
		}
2773
	} else {
2774
		if (!swap)
2775
			val = page_counter_read(&memcg->memory);
2776
		else
2777
			val = page_counter_read(&memcg->memsw);
2778
	}
2779
	return val;
2780 2781
}

2782 2783 2784 2785 2786 2787 2788
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2789

2790
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2791
			       struct cftype *cft)
B
Balbir Singh 已提交
2792
{
2793
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2794
	struct page_counter *counter;
2795

2796
	switch (MEMFILE_TYPE(cft->private)) {
2797
	case _MEM:
2798 2799
		counter = &memcg->memory;
		break;
2800
	case _MEMSWAP:
2801 2802
		counter = &memcg->memsw;
		break;
2803
	case _KMEM:
2804
		counter = &memcg->kmem;
2805
		break;
V
Vladimir Davydov 已提交
2806
	case _TCP:
2807
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
2808
		break;
2809 2810 2811
	default:
		BUG();
	}
2812 2813 2814 2815

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
2816
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2817
		if (counter == &memcg->memsw)
2818
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2831
}
2832

2833
#ifndef CONFIG_SLOB
2834
static int memcg_online_kmem(struct mem_cgroup *memcg)
2835 2836 2837
{
	int memcg_id;

2838 2839 2840
	if (cgroup_memory_nokmem)
		return 0;

2841
	BUG_ON(memcg->kmemcg_id >= 0);
2842
	BUG_ON(memcg->kmem_state);
2843

2844
	memcg_id = memcg_alloc_cache_id();
2845 2846
	if (memcg_id < 0)
		return memcg_id;
2847

2848
	static_branch_inc(&memcg_kmem_enabled_key);
2849
	/*
2850
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
2851
	 * kmemcg_id. Setting the id after enabling static branching will
2852 2853 2854
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2855
	memcg->kmemcg_id = memcg_id;
2856
	memcg->kmem_state = KMEM_ONLINE;
2857 2858

	return 0;
2859 2860
}

2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	memcg_deactivate_kmem_caches(memcg);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
2894
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2895 2896 2897 2898 2899 2900 2901
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
2902 2903
	rcu_read_unlock();

2904 2905 2906 2907 2908 2909 2910
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
2911 2912 2913 2914
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

2915 2916 2917 2918 2919 2920
	if (memcg->kmem_state == KMEM_ALLOCATED) {
		memcg_destroy_kmem_caches(memcg);
		static_branch_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
}
2921
#else
2922
static int memcg_online_kmem(struct mem_cgroup *memcg)
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
#endif /* !CONFIG_SLOB */

2934
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2935
				   unsigned long limit)
2936
{
2937
	int ret;
2938 2939 2940 2941 2942

	mutex_lock(&memcg_limit_mutex);
	ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
	return ret;
2943
}
2944

V
Vladimir Davydov 已提交
2945 2946 2947 2948 2949 2950
static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
{
	int ret;

	mutex_lock(&memcg_limit_mutex);

2951
	ret = page_counter_limit(&memcg->tcpmem, limit);
V
Vladimir Davydov 已提交
2952 2953 2954
	if (ret)
		goto out;

2955
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
		 * function is the last one to run. See sock_update_memcg() for
		 * details, and note that we don't mark any socket as belonging
		 * to this memcg until that flag is up.
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
		 * We never race with the readers in sock_update_memcg(),
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
2973
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
2974 2975 2976 2977 2978 2979
	}
out:
	mutex_unlock(&memcg_limit_mutex);
	return ret;
}

2980 2981 2982 2983
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2984 2985
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
2986
{
2987
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2988
	unsigned long nr_pages;
2989 2990
	int ret;

2991
	buf = strstrip(buf);
2992
	ret = page_counter_memparse(buf, "-1", &nr_pages);
2993 2994
	if (ret)
		return ret;
2995

2996
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2997
	case RES_LIMIT:
2998 2999 3000 3001
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3002 3003 3004
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3005
			break;
3006 3007
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3008
			break;
3009 3010 3011
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
V
Vladimir Davydov 已提交
3012 3013 3014
		case _TCP:
			ret = memcg_update_tcp_limit(memcg, nr_pages);
			break;
3015
		}
3016
		break;
3017 3018 3019
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3020 3021
		break;
	}
3022
	return ret ?: nbytes;
B
Balbir Singh 已提交
3023 3024
}

3025 3026
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3027
{
3028
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3029
	struct page_counter *counter;
3030

3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3041
	case _TCP:
3042
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3043
		break;
3044 3045 3046
	default:
		BUG();
	}
3047

3048
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3049
	case RES_MAX_USAGE:
3050
		page_counter_reset_watermark(counter);
3051 3052
		break;
	case RES_FAILCNT:
3053
		counter->failcnt = 0;
3054
		break;
3055 3056
	default:
		BUG();
3057
	}
3058

3059
	return nbytes;
3060 3061
}

3062
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3063 3064
					struct cftype *cft)
{
3065
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3066 3067
}

3068
#ifdef CONFIG_MMU
3069
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3070 3071
					struct cftype *cft, u64 val)
{
3072
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3073

3074
	if (val & ~MOVE_MASK)
3075
		return -EINVAL;
3076

3077
	/*
3078 3079 3080 3081
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3082
	 */
3083
	memcg->move_charge_at_immigrate = val;
3084 3085
	return 0;
}
3086
#else
3087
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3088 3089 3090 3091 3092
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3093

3094
#ifdef CONFIG_NUMA
3095
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3096
{
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3109
	int nid;
3110
	unsigned long nr;
3111
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3112

3113 3114 3115 3116 3117 3118 3119 3120 3121
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3122 3123
	}

3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3139 3140 3141 3142 3143 3144
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3145
static int memcg_stat_show(struct seq_file *m, void *v)
3146
{
3147
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3148
	unsigned long memory, memsw;
3149 3150
	struct mem_cgroup *mi;
	unsigned int i;
3151

3152 3153 3154 3155
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3156 3157
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3158
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3159
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3160
			continue;
3161
		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3162
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3163
	}
L
Lee Schermerhorn 已提交
3164

3165 3166 3167 3168 3169 3170 3171 3172
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3173
	/* Hierarchical information */
3174 3175 3176 3177
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3178
	}
3179 3180
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3181
	if (do_memsw_account())
3182 3183
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3184

3185
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3186
		unsigned long long val = 0;
3187

3188
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3189
			continue;
3190 3191
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3192
		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3210
	}
K
KAMEZAWA Hiroyuki 已提交
3211

K
KOSAKI Motohiro 已提交
3212 3213
#ifdef CONFIG_DEBUG_VM
	{
3214 3215
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
3216
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3217 3218 3219
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

3220 3221 3222
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
			rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3223

3224 3225 3226 3227 3228
			recent_rotated[0] += rstat->recent_rotated[0];
			recent_rotated[1] += rstat->recent_rotated[1];
			recent_scanned[0] += rstat->recent_scanned[0];
			recent_scanned[1] += rstat->recent_scanned[1];
		}
3229 3230 3231 3232
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3233 3234 3235
	}
#endif

3236 3237 3238
	return 0;
}

3239 3240
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3241
{
3242
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3243

3244
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3245 3246
}

3247 3248
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3249
{
3250
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3251

3252
	if (val > 100)
K
KOSAKI Motohiro 已提交
3253 3254
		return -EINVAL;

3255
	if (css->parent)
3256 3257 3258
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3259

K
KOSAKI Motohiro 已提交
3260 3261 3262
	return 0;
}

3263 3264 3265
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3266
	unsigned long usage;
3267 3268 3269 3270
	int i;

	rcu_read_lock();
	if (!swap)
3271
		t = rcu_dereference(memcg->thresholds.primary);
3272
	else
3273
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3274 3275 3276 3277

	if (!t)
		goto unlock;

3278
	usage = mem_cgroup_usage(memcg, swap);
3279 3280

	/*
3281
	 * current_threshold points to threshold just below or equal to usage.
3282 3283 3284
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3285
	i = t->current_threshold;
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3309
	t->current_threshold = i - 1;
3310 3311 3312 3313 3314 3315
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3316 3317
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3318
		if (do_memsw_account())
3319 3320 3321 3322
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3323 3324 3325 3326 3327 3328 3329
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3330 3331 3332 3333 3334 3335 3336
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3337 3338
}

3339
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3340 3341 3342
{
	struct mem_cgroup_eventfd_list *ev;

3343 3344
	spin_lock(&memcg_oom_lock);

3345
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3346
		eventfd_signal(ev->eventfd, 1);
3347 3348

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3349 3350 3351
	return 0;
}

3352
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3353
{
K
KAMEZAWA Hiroyuki 已提交
3354 3355
	struct mem_cgroup *iter;

3356
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3357
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3358 3359
}

3360
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3361
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3362
{
3363 3364
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3365 3366
	unsigned long threshold;
	unsigned long usage;
3367
	int i, size, ret;
3368

3369
	ret = page_counter_memparse(args, "-1", &threshold);
3370 3371 3372 3373
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3374

3375
	if (type == _MEM) {
3376
		thresholds = &memcg->thresholds;
3377
		usage = mem_cgroup_usage(memcg, false);
3378
	} else if (type == _MEMSWAP) {
3379
		thresholds = &memcg->memsw_thresholds;
3380
		usage = mem_cgroup_usage(memcg, true);
3381
	} else
3382 3383 3384
		BUG();

	/* Check if a threshold crossed before adding a new one */
3385
	if (thresholds->primary)
3386 3387
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3388
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3389 3390

	/* Allocate memory for new array of thresholds */
3391
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3392
			GFP_KERNEL);
3393
	if (!new) {
3394 3395 3396
		ret = -ENOMEM;
		goto unlock;
	}
3397
	new->size = size;
3398 3399

	/* Copy thresholds (if any) to new array */
3400 3401
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3402
				sizeof(struct mem_cgroup_threshold));
3403 3404
	}

3405
	/* Add new threshold */
3406 3407
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3408 3409

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3410
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3411 3412 3413
			compare_thresholds, NULL);

	/* Find current threshold */
3414
	new->current_threshold = -1;
3415
	for (i = 0; i < size; i++) {
3416
		if (new->entries[i].threshold <= usage) {
3417
			/*
3418 3419
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3420 3421
			 * it here.
			 */
3422
			++new->current_threshold;
3423 3424
		} else
			break;
3425 3426
	}

3427 3428 3429 3430 3431
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3432

3433
	/* To be sure that nobody uses thresholds */
3434 3435 3436 3437 3438 3439 3440 3441
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3442
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3443 3444
	struct eventfd_ctx *eventfd, const char *args)
{
3445
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3446 3447
}

3448
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3449 3450
	struct eventfd_ctx *eventfd, const char *args)
{
3451
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3452 3453
}

3454
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3455
	struct eventfd_ctx *eventfd, enum res_type type)
3456
{
3457 3458
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3459
	unsigned long usage;
3460
	int i, j, size;
3461 3462

	mutex_lock(&memcg->thresholds_lock);
3463 3464

	if (type == _MEM) {
3465
		thresholds = &memcg->thresholds;
3466
		usage = mem_cgroup_usage(memcg, false);
3467
	} else if (type == _MEMSWAP) {
3468
		thresholds = &memcg->memsw_thresholds;
3469
		usage = mem_cgroup_usage(memcg, true);
3470
	} else
3471 3472
		BUG();

3473 3474 3475
	if (!thresholds->primary)
		goto unlock;

3476 3477 3478 3479
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3480 3481 3482
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3483 3484 3485
			size++;
	}

3486
	new = thresholds->spare;
3487

3488 3489
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3490 3491
		kfree(new);
		new = NULL;
3492
		goto swap_buffers;
3493 3494
	}

3495
	new->size = size;
3496 3497

	/* Copy thresholds and find current threshold */
3498 3499 3500
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3501 3502
			continue;

3503
		new->entries[j] = thresholds->primary->entries[i];
3504
		if (new->entries[j].threshold <= usage) {
3505
			/*
3506
			 * new->current_threshold will not be used
3507 3508 3509
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3510
			++new->current_threshold;
3511 3512 3513 3514
		}
		j++;
	}

3515
swap_buffers:
3516 3517
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3518

3519
	rcu_assign_pointer(thresholds->primary, new);
3520

3521
	/* To be sure that nobody uses thresholds */
3522
	synchronize_rcu();
3523 3524 3525 3526 3527 3528

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
3529
unlock:
3530 3531
	mutex_unlock(&memcg->thresholds_lock);
}
3532

3533
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3534 3535
	struct eventfd_ctx *eventfd)
{
3536
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3537 3538
}

3539
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3540 3541
	struct eventfd_ctx *eventfd)
{
3542
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3543 3544
}

3545
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3546
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3547 3548 3549 3550 3551 3552 3553
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3554
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3555 3556 3557 3558 3559

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3560
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3561
		eventfd_signal(eventfd, 1);
3562
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3563 3564 3565 3566

	return 0;
}

3567
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3568
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3569 3570 3571
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3572
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3573

3574
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3575 3576 3577 3578 3579 3580
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3581
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3582 3583
}

3584
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3585
{
3586
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3587

3588
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3589
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3590 3591 3592
	return 0;
}

3593
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3594 3595
	struct cftype *cft, u64 val)
{
3596
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3597 3598

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3599
	if (!css->parent || !((val == 0) || (val == 1)))
3600 3601
		return -EINVAL;

3602
	memcg->oom_kill_disable = val;
3603
	if (!val)
3604
		memcg_oom_recover(memcg);
3605

3606 3607 3608
	return 0;
}

3609 3610 3611 3612 3613 3614 3615
#ifdef CONFIG_CGROUP_WRITEBACK

struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
{
	return &memcg->cgwb_list;
}

T
Tejun Heo 已提交
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3626 3627 3628 3629 3630
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3641 3642 3643
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3644 3645
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3646 3647 3648
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3649 3650 3651
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3652
 *
3653 3654 3655 3656 3657
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3658
 */
3659 3660 3661
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3662 3663 3664 3665 3666 3667 3668 3669
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);

	/* this should eventually include NR_UNSTABLE_NFS */
	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3670 3671 3672
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3673 3674 3675 3676 3677

	while ((parent = parent_mem_cgroup(memcg))) {
		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
		unsigned long used = page_counter_read(&memcg->memory);

3678
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3679 3680 3681 3682
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3694 3695 3696 3697
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3698 3699
#endif	/* CONFIG_CGROUP_WRITEBACK */

3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3713 3714 3715 3716 3717
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3718
static void memcg_event_remove(struct work_struct *work)
3719
{
3720 3721
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3722
	struct mem_cgroup *memcg = event->memcg;
3723 3724 3725

	remove_wait_queue(event->wqh, &event->wait);

3726
	event->unregister_event(memcg, event->eventfd);
3727 3728 3729 3730 3731 3732

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3733
	css_put(&memcg->css);
3734 3735 3736 3737 3738 3739 3740
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3741 3742
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
3743
{
3744 3745
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3746
	struct mem_cgroup *memcg = event->memcg;
3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3759
		spin_lock(&memcg->event_list_lock);
3760 3761 3762 3763 3764 3765 3766 3767
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3768
		spin_unlock(&memcg->event_list_lock);
3769 3770 3771 3772 3773
	}

	return 0;
}

3774
static void memcg_event_ptable_queue_proc(struct file *file,
3775 3776
		wait_queue_head_t *wqh, poll_table *pt)
{
3777 3778
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3779 3780 3781 3782 3783 3784

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3785 3786
 * DO NOT USE IN NEW FILES.
 *
3787 3788 3789 3790 3791
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3792 3793
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3794
{
3795
	struct cgroup_subsys_state *css = of_css(of);
3796
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3797
	struct mem_cgroup_event *event;
3798 3799 3800 3801
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3802
	const char *name;
3803 3804 3805
	char *endp;
	int ret;

3806 3807 3808
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3809 3810
	if (*endp != ' ')
		return -EINVAL;
3811
	buf = endp + 1;
3812

3813
	cfd = simple_strtoul(buf, &endp, 10);
3814 3815
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3816
	buf = endp + 1;
3817 3818 3819 3820 3821

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3822
	event->memcg = memcg;
3823
	INIT_LIST_HEAD(&event->list);
3824 3825 3826
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3852 3853 3854 3855 3856
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3857 3858
	 *
	 * DO NOT ADD NEW FILES.
3859
	 */
A
Al Viro 已提交
3860
	name = cfile.file->f_path.dentry->d_name.name;
3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3872 3873
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3874 3875 3876 3877 3878
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3879
	/*
3880 3881 3882
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
3883
	 */
A
Al Viro 已提交
3884
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3885
					       &memory_cgrp_subsys);
3886
	ret = -EINVAL;
3887
	if (IS_ERR(cfile_css))
3888
		goto out_put_cfile;
3889 3890
	if (cfile_css != css) {
		css_put(cfile_css);
3891
		goto out_put_cfile;
3892
	}
3893

3894
	ret = event->register_event(memcg, event->eventfd, buf);
3895 3896 3897 3898 3899
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

3900 3901 3902
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
3903 3904 3905 3906

	fdput(cfile);
	fdput(efile);

3907
	return nbytes;
3908 3909

out_put_css:
3910
	css_put(css);
3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

3923
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
3924
	{
3925
		.name = "usage_in_bytes",
3926
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3927
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3928
	},
3929 3930
	{
		.name = "max_usage_in_bytes",
3931
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3932
		.write = mem_cgroup_reset,
3933
		.read_u64 = mem_cgroup_read_u64,
3934
	},
B
Balbir Singh 已提交
3935
	{
3936
		.name = "limit_in_bytes",
3937
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3938
		.write = mem_cgroup_write,
3939
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3940
	},
3941 3942 3943
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3944
		.write = mem_cgroup_write,
3945
		.read_u64 = mem_cgroup_read_u64,
3946
	},
B
Balbir Singh 已提交
3947 3948
	{
		.name = "failcnt",
3949
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3950
		.write = mem_cgroup_reset,
3951
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3952
	},
3953 3954
	{
		.name = "stat",
3955
		.seq_show = memcg_stat_show,
3956
	},
3957 3958
	{
		.name = "force_empty",
3959
		.write = mem_cgroup_force_empty_write,
3960
	},
3961 3962 3963 3964 3965
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
3966
	{
3967
		.name = "cgroup.event_control",		/* XXX: for compat */
3968
		.write = memcg_write_event_control,
3969
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3970
	},
K
KOSAKI Motohiro 已提交
3971 3972 3973 3974 3975
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3976 3977 3978 3979 3980
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
3981 3982
	{
		.name = "oom_control",
3983
		.seq_show = mem_cgroup_oom_control_read,
3984
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
3985 3986
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
3987 3988 3989
	{
		.name = "pressure_level",
	},
3990 3991 3992
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
3993
		.seq_show = memcg_numa_stat_show,
3994 3995
	},
#endif
3996 3997 3998
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3999
		.write = mem_cgroup_write,
4000
		.read_u64 = mem_cgroup_read_u64,
4001 4002 4003 4004
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4005
		.read_u64 = mem_cgroup_read_u64,
4006 4007 4008 4009
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4010
		.write = mem_cgroup_reset,
4011
		.read_u64 = mem_cgroup_read_u64,
4012 4013 4014 4015
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4016
		.write = mem_cgroup_reset,
4017
		.read_u64 = mem_cgroup_read_u64,
4018
	},
4019 4020 4021
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4022 4023 4024 4025
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4026 4027
	},
#endif
V
Vladimir Davydov 已提交
4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4051
	{ },	/* terminate */
4052
};
4053

4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
 * However, there usually are many references to the oflline CSS after
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

4080
static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4081
{
4082
	atomic_add(n, &memcg->id.ref);
4083 4084
}

4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
	while (!atomic_inc_not_zero(&memcg->id.ref)) {
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

4103
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4104
{
4105
	if (atomic_sub_and_test(n, &memcg->id.ref)) {
4106 4107 4108 4109 4110 4111 4112 4113
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
{
	mem_cgroup_id_get_many(memcg, 1);
}

static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

4136
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4137 4138
{
	struct mem_cgroup_per_node *pn;
4139
	int tmp = node;
4140 4141 4142 4143 4144 4145 4146 4147
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4148 4149
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4150
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4151 4152
	if (!pn)
		return 1;
4153

4154 4155 4156 4157 4158
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

4159
	memcg->nodeinfo[node] = pn;
4160 4161 4162
	return 0;
}

4163
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4164
{
4165
	kfree(memcg->nodeinfo[node]);
4166 4167
}

4168
static void mem_cgroup_free(struct mem_cgroup *memcg)
4169
{
4170
	int node;
4171

4172
	memcg_wb_domain_exit(memcg);
4173
	for_each_node(node)
4174
		free_mem_cgroup_per_node_info(memcg, node);
4175
	free_percpu(memcg->stat);
4176
	kfree(memcg);
4177
}
4178

4179
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4180
{
4181
	struct mem_cgroup *memcg;
4182
	size_t size;
4183
	int node;
B
Balbir Singh 已提交
4184

4185 4186 4187 4188
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4189
	if (!memcg)
4190 4191
		return NULL;

4192 4193 4194 4195 4196 4197
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
	if (memcg->id.id < 0)
		goto fail;

4198 4199 4200
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
		goto fail;
4201

B
Bob Liu 已提交
4202
	for_each_node(node)
4203
		if (alloc_mem_cgroup_per_node_info(memcg, node))
4204
			goto fail;
4205

4206 4207
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4208

4209
	INIT_WORK(&memcg->high_work, high_work_func);
4210 4211 4212 4213
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4214
	vmpressure_init(&memcg->vmpressure);
4215 4216
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4217
	memcg->socket_pressure = jiffies;
4218
#ifndef CONFIG_SLOB
V
Vladimir Davydov 已提交
4219 4220
	memcg->kmemcg_id = -1;
#endif
4221 4222 4223
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4224
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4225 4226
	return memcg;
fail:
4227 4228
	if (memcg->id.id > 0)
		idr_remove(&mem_cgroup_idr, memcg->id.id);
4229 4230
	mem_cgroup_free(memcg);
	return NULL;
4231 4232
}

4233 4234
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4235
{
4236 4237 4238
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
4239

4240 4241 4242
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
4243

4244 4245 4246 4247 4248 4249 4250 4251
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
4252
		page_counter_init(&memcg->memory, &parent->memory);
4253
		page_counter_init(&memcg->swap, &parent->swap);
4254 4255
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4256
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4257
	} else {
4258
		page_counter_init(&memcg->memory, NULL);
4259
		page_counter_init(&memcg->swap, NULL);
4260 4261
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4262
		page_counter_init(&memcg->tcpmem, NULL);
4263 4264 4265 4266 4267
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4268
		if (parent != root_mem_cgroup)
4269
			memory_cgrp_subsys.broken_hierarchy = true;
4270
	}
4271

4272 4273 4274 4275 4276 4277
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

4278
	error = memcg_online_kmem(memcg);
4279 4280
	if (error)
		goto fail;
4281

4282
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4283
		static_branch_inc(&memcg_sockets_enabled_key);
4284

4285 4286 4287
	return &memcg->css;
fail:
	mem_cgroup_free(memcg);
4288
	return ERR_PTR(-ENOMEM);
4289 4290
}

4291
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4292
{
4293 4294 4295
	/* Online state pins memcg ID, memcg ID pins CSS */
	mem_cgroup_id_get(mem_cgroup_from_css(css));
	css_get(css);
4296
	return 0;
B
Balbir Singh 已提交
4297 4298
}

4299
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4300
{
4301
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4302
	struct mem_cgroup_event *event, *tmp;
4303 4304 4305 4306 4307 4308

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4309 4310
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4311 4312 4313
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4314
	spin_unlock(&memcg->event_list_lock);
4315

4316
	memcg_offline_kmem(memcg);
4317
	wb_memcg_offline(memcg);
4318 4319

	mem_cgroup_id_put(memcg);
4320 4321
}

4322 4323 4324 4325 4326 4327 4328
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4329
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4330
{
4331
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4332

4333
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4334
		static_branch_dec(&memcg_sockets_enabled_key);
4335

4336
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
4337
		static_branch_dec(&memcg_sockets_enabled_key);
4338

4339 4340 4341
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
4342
	memcg_free_kmem(memcg);
4343
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4344 4345
}

4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4363 4364 4365 4366 4367
	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4368 4369
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4370
	memcg->soft_limit = PAGE_COUNTER_MAX;
4371
	memcg_wb_domain_size_changed(memcg);
4372 4373
}

4374
#ifdef CONFIG_MMU
4375
/* Handlers for move charge at task migration. */
4376
static int mem_cgroup_do_precharge(unsigned long count)
4377
{
4378
	int ret;
4379

4380 4381
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4382
	if (!ret) {
4383 4384 4385
		mc.precharge += count;
		return ret;
	}
4386 4387

	/* Try charges one by one with reclaim */
4388
	while (count--) {
4389
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4390 4391
		if (ret)
			return ret;
4392
		mc.precharge++;
4393
		cond_resched();
4394
	}
4395
	return 0;
4396 4397 4398 4399
}

union mc_target {
	struct page	*page;
4400
	swp_entry_t	ent;
4401 4402 4403
};

enum mc_target_type {
4404
	MC_TARGET_NONE = 0,
4405
	MC_TARGET_PAGE,
4406
	MC_TARGET_SWAP,
4407 4408
};

D
Daisuke Nishimura 已提交
4409 4410
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4411
{
D
Daisuke Nishimura 已提交
4412
	struct page *page = vm_normal_page(vma, addr, ptent);
4413

D
Daisuke Nishimura 已提交
4414 4415 4416
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4417
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4418
			return NULL;
4419 4420 4421 4422
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4423 4424 4425 4426 4427 4428
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4429
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4430
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4431
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
4432 4433 4434 4435
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4436
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4437
		return NULL;
4438 4439 4440 4441
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4442
	page = find_get_page(swap_address_space(ent), ent.val);
4443
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4444 4445 4446 4447
		entry->val = ent.val;

	return page;
}
4448 4449
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4450
			pte_t ptent, swp_entry_t *entry)
4451 4452 4453 4454
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4455

4456 4457 4458 4459 4460 4461 4462 4463 4464
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4465
	if (!(mc.flags & MOVE_FILE))
4466 4467 4468
		return NULL;

	mapping = vma->vm_file->f_mapping;
4469
	pgoff = linear_page_index(vma, addr);
4470 4471

	/* page is moved even if it's not RSS of this task(page-faulted). */
4472 4473
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4474 4475 4476 4477
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
4478
			if (do_memsw_account())
4479 4480 4481 4482 4483 4484 4485
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4486
#endif
4487 4488 4489
	return page;
}

4490 4491 4492
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
4493
 * @compound: charge the page as compound or small page
4494 4495 4496
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
4497
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4498 4499 4500 4501 4502
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
4503
				   bool compound,
4504 4505 4506 4507
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
4508
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4509
	int ret;
4510
	bool anon;
4511 4512 4513

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
4514
	VM_BUG_ON(compound && !PageTransHuge(page));
4515 4516

	/*
4517
	 * Prevent mem_cgroup_migrate() from looking at
4518
	 * page->mem_cgroup of its source page while we change it.
4519
	 */
4520
	ret = -EBUSY;
4521 4522 4523 4524 4525 4526 4527
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4528 4529
	anon = PageAnon(page);

4530 4531
	spin_lock_irqsave(&from->move_lock, flags);

4532
	if (!anon && page_mapped(page)) {
4533 4534 4535 4536 4537 4538
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
		}
	}

4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
4575
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4576
	memcg_check_events(to, page);
4577
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4578 4579 4580 4581 4582 4583 4584 4585
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
 *
 * Called with pte lock held.
 */

4605
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4606 4607 4608
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4609
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4610 4611 4612 4613 4614
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
4615
		page = mc_handle_swap_pte(vma, ptent, &ent);
4616
	else if (pte_none(ptent))
4617
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4618 4619

	if (!page && !ent.val)
4620
		return ret;
4621 4622
	if (page) {
		/*
4623
		 * Do only loose check w/o serialization.
4624
		 * mem_cgroup_move_account() checks the page is valid or
4625
		 * not under LRU exclusion.
4626
		 */
4627
		if (page->mem_cgroup == mc.from) {
4628 4629 4630 4631 4632 4633 4634
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4635 4636
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4637
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4638 4639 4640
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4641 4642 4643 4644
	}
	return ret;
}

4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4658
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4659
	if (!(mc.flags & MOVE_ANON))
4660
		return ret;
4661
	if (page->mem_cgroup == mc.from) {
4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4678 4679 4680 4681
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4682
	struct vm_area_struct *vma = walk->vma;
4683 4684 4685
	pte_t *pte;
	spinlock_t *ptl;

4686 4687
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4688 4689
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4690
		spin_unlock(ptl);
4691
		return 0;
4692
	}
4693

4694 4695
	if (pmd_trans_unstable(pmd))
		return 0;
4696 4697
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4698
		if (get_mctgt_type(vma, addr, *pte, NULL))
4699 4700 4701 4702
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4703 4704 4705
	return 0;
}

4706 4707 4708 4709
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4710 4711 4712 4713
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4714
	down_read(&mm->mmap_sem);
4715
	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4716
	up_read(&mm->mmap_sem);
4717 4718 4719 4720 4721 4722 4723 4724 4725

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4726 4727 4728 4729 4730
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4731 4732
}

4733 4734
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4735
{
4736 4737 4738
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4739
	/* we must uncharge all the leftover precharges from mc.to */
4740
	if (mc.precharge) {
4741
		cancel_charge(mc.to, mc.precharge);
4742 4743 4744 4745 4746 4747 4748
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4749
		cancel_charge(mc.from, mc.moved_charge);
4750
		mc.moved_charge = 0;
4751
	}
4752 4753 4754
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4755
		if (!mem_cgroup_is_root(mc.from))
4756
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4757

4758 4759
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

4760
		/*
4761 4762
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4763
		 */
4764
		if (!mem_cgroup_is_root(mc.to))
4765 4766
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4767 4768
		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
		css_put_many(&mc.to->css, mc.moved_swap);
4769

4770 4771
		mc.moved_swap = 0;
	}
4772 4773 4774 4775 4776 4777 4778
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
4779 4780
	struct mm_struct *mm = mc.mm;

4781 4782 4783 4784 4785 4786
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4787
	spin_lock(&mc.lock);
4788 4789
	mc.from = NULL;
	mc.to = NULL;
4790
	mc.mm = NULL;
4791
	spin_unlock(&mc.lock);
4792 4793

	mmput(mm);
4794 4795
}

4796
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4797
{
4798
	struct cgroup_subsys_state *css;
4799
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4800
	struct mem_cgroup *from;
4801
	struct task_struct *leader, *p;
4802
	struct mm_struct *mm;
4803
	unsigned long move_flags;
4804
	int ret = 0;
4805

4806 4807
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4808 4809
		return 0;

4810 4811 4812 4813 4814 4815 4816
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
4817
	cgroup_taskset_for_each_leader(leader, css, tset) {
4818 4819
		WARN_ON_ONCE(p);
		p = leader;
4820
		memcg = mem_cgroup_from_css(css);
4821 4822 4823 4824
	}
	if (!p)
		return 0;

4825 4826 4827 4828 4829 4830 4831 4832 4833
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
4850
		mc.mm = mm;
4851 4852 4853 4854 4855 4856 4857 4858 4859
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
4860 4861
	} else {
		mmput(mm);
4862 4863 4864 4865
	}
	return ret;
}

4866
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4867
{
4868 4869
	if (mc.to)
		mem_cgroup_clear_mc();
4870 4871
}

4872 4873 4874
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4875
{
4876
	int ret = 0;
4877
	struct vm_area_struct *vma = walk->vma;
4878 4879
	pte_t *pte;
	spinlock_t *ptl;
4880 4881 4882
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4883

4884 4885
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4886
		if (mc.precharge < HPAGE_PMD_NR) {
4887
			spin_unlock(ptl);
4888 4889 4890 4891 4892 4893
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
4894
				if (!mem_cgroup_move_account(page, true,
4895
							     mc.from, mc.to)) {
4896 4897 4898 4899 4900 4901 4902
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
4903
		spin_unlock(ptl);
4904
		return 0;
4905 4906
	}

4907 4908
	if (pmd_trans_unstable(pmd))
		return 0;
4909 4910 4911 4912
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
4913
		swp_entry_t ent;
4914 4915 4916 4917

		if (!mc.precharge)
			break;

4918
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4919 4920
		case MC_TARGET_PAGE:
			page = target.page;
4921 4922 4923 4924 4925 4926 4927 4928
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
4929 4930
			if (isolate_lru_page(page))
				goto put;
4931 4932
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
4933
				mc.precharge--;
4934 4935
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4936 4937
			}
			putback_lru_page(page);
4938
put:			/* get_mctgt_type() gets the page */
4939 4940
			put_page(page);
			break;
4941 4942
		case MC_TARGET_SWAP:
			ent = target.ent;
4943
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4944
				mc.precharge--;
4945 4946 4947
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4948
			break;
4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4963
		ret = mem_cgroup_do_precharge(1);
4964 4965 4966 4967 4968 4969 4970
		if (!ret)
			goto retry;
	}

	return ret;
}

4971
static void mem_cgroup_move_charge(void)
4972
{
4973 4974
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
4975
		.mm = mc.mm,
4976
	};
4977 4978

	lru_add_drain_all();
4979
	/*
4980 4981 4982
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
4983 4984 4985
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
4986
retry:
4987
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
4999 5000 5001 5002 5003
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5004
	up_read(&mc.mm->mmap_sem);
5005
	atomic_dec(&mc.from->moving_account);
5006 5007
}

5008
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
5009
{
5010 5011
	if (mc.to) {
		mem_cgroup_move_charge();
5012
		mem_cgroup_clear_mc();
5013
	}
B
Balbir Singh 已提交
5014
}
5015
#else	/* !CONFIG_MMU */
5016
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5017 5018 5019
{
	return 0;
}
5020
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5021 5022
{
}
5023
static void mem_cgroup_move_task(void)
5024 5025 5026
{
}
#endif
B
Balbir Singh 已提交
5027

5028 5029
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5030 5031
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5032
 */
5033
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5034 5035
{
	/*
5036
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5037 5038 5039
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5040
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5041 5042 5043
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5044 5045
}

5046 5047 5048
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5049 5050 5051
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5052 5053 5054 5055 5056
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5057
	unsigned long low = READ_ONCE(memcg->low);
5058 5059

	if (low == PAGE_COUNTER_MAX)
5060
		seq_puts(m, "max\n");
5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5075
	err = page_counter_memparse(buf, "max", &low);
5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5087
	unsigned long high = READ_ONCE(memcg->high);
5088 5089

	if (high == PAGE_COUNTER_MAX)
5090
		seq_puts(m, "max\n");
5091 5092 5093 5094 5095 5096 5097 5098 5099 5100
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5101
	unsigned long nr_pages;
5102 5103 5104 5105
	unsigned long high;
	int err;

	buf = strstrip(buf);
5106
	err = page_counter_memparse(buf, "max", &high);
5107 5108 5109 5110 5111
	if (err)
		return err;

	memcg->high = high;

5112 5113 5114 5115 5116
	nr_pages = page_counter_read(&memcg->memory);
	if (nr_pages > high)
		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
					     GFP_KERNEL, true);

5117
	memcg_wb_domain_size_changed(memcg);
5118 5119 5120 5121 5122 5123
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5124
	unsigned long max = READ_ONCE(memcg->memory.limit);
5125 5126

	if (max == PAGE_COUNTER_MAX)
5127
		seq_puts(m, "max\n");
5128 5129 5130 5131 5132 5133 5134 5135 5136 5137
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5138 5139
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
5140 5141 5142 5143
	unsigned long max;
	int err;

	buf = strstrip(buf);
5144
	err = page_counter_memparse(buf, "max", &max);
5145 5146 5147
	if (err)
		return err;

5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177
	xchg(&memcg->memory.limit, max);

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

		if (signal_pending(current)) {
			err = -EINTR;
			break;
		}

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

		mem_cgroup_events(memcg, MEMCG_OOM, 1);
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
5178

5179
	memcg_wb_domain_size_changed(memcg);
5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

5195 5196 5197
static int memory_stat_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5198 5199
	unsigned long stat[MEMCG_NR_STAT];
	unsigned long events[MEMCG_NR_EVENTS];
5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212
	int i;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

5213 5214 5215
	tree_stat(memcg, stat);
	tree_events(memcg, events);

5216
	seq_printf(m, "anon %llu\n",
5217
		   (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5218
	seq_printf(m, "file %llu\n",
5219
		   (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5220
	seq_printf(m, "kernel_stack %llu\n",
5221
		   (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5222 5223 5224
	seq_printf(m, "slab %llu\n",
		   (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
			 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5225
	seq_printf(m, "sock %llu\n",
5226
		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5227 5228

	seq_printf(m, "file_mapped %llu\n",
5229
		   (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5230
	seq_printf(m, "file_dirty %llu\n",
5231
		   (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5232
	seq_printf(m, "file_writeback %llu\n",
5233
		   (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244

	for (i = 0; i < NR_LRU_LISTS; i++) {
		struct mem_cgroup *mi;
		unsigned long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
		seq_printf(m, "%s %llu\n",
			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
	}

5245 5246 5247 5248 5249
	seq_printf(m, "slab_reclaimable %llu\n",
		   (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
	seq_printf(m, "slab_unreclaimable %llu\n",
		   (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);

5250 5251 5252
	/* Accumulated memory events */

	seq_printf(m, "pgfault %lu\n",
5253
		   events[MEM_CGROUP_EVENTS_PGFAULT]);
5254
	seq_printf(m, "pgmajfault %lu\n",
5255
		   events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5256 5257 5258 5259

	return 0;
}

5260 5261 5262
static struct cftype memory_files[] = {
	{
		.name = "current",
5263
		.flags = CFTYPE_NOT_ON_ROOT,
5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5287
		.file_offset = offsetof(struct mem_cgroup, events_file),
5288 5289
		.seq_show = memory_events_show,
	},
5290 5291 5292 5293 5294
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
5295 5296 5297
	{ }	/* terminate */
};

5298
struct cgroup_subsys memory_cgrp_subsys = {
5299
	.css_alloc = mem_cgroup_css_alloc,
5300
	.css_online = mem_cgroup_css_online,
5301
	.css_offline = mem_cgroup_css_offline,
5302
	.css_released = mem_cgroup_css_released,
5303
	.css_free = mem_cgroup_css_free,
5304
	.css_reset = mem_cgroup_css_reset,
5305 5306
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
5307
	.post_attach = mem_cgroup_move_task,
5308
	.bind = mem_cgroup_bind,
5309 5310
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5311
	.early_init = 0,
B
Balbir Singh 已提交
5312
};
5313

5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335
/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5336
	if (page_counter_read(&memcg->memory) >= memcg->low)
5337 5338 5339 5340 5341 5342 5343 5344
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5345
		if (page_counter_read(&memcg->memory) >= memcg->low)
5346 5347 5348 5349 5350
			return false;
	}
	return true;
}

5351 5352 5353 5354 5355 5356
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
5357
 * @compound: charge the page as compound or small page
5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5370 5371
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
5372 5373
{
	struct mem_cgroup *memcg = NULL;
5374
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5388
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5389
		if (page->mem_cgroup)
5390
			goto out;
5391

5392
		if (do_swap_account) {
5393 5394 5395 5396 5397 5398 5399 5400 5401
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
5420
 * @compound: charge the page as compound or small page
5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5433
			      bool lrucare, bool compound)
5434
{
5435
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5450 5451 5452
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
5453
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5454 5455
	memcg_check_events(memcg, page);
	local_irq_enable();
5456

5457
	if (do_memsw_account() && PageSwapCache(page)) {
5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
5472
 * @compound: charge the page as compound or small page
5473 5474 5475
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
5476 5477
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
5478
{
5479
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

5494 5495
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
5496 5497
			   unsigned long nr_huge, unsigned long nr_kmem,
			   struct page *dummy_page)
5498
{
5499
	unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5500 5501
	unsigned long flags;

5502
	if (!mem_cgroup_is_root(memcg)) {
5503
		page_counter_uncharge(&memcg->memory, nr_pages);
5504
		if (do_memsw_account())
5505
			page_counter_uncharge(&memcg->memsw, nr_pages);
5506 5507
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
			page_counter_uncharge(&memcg->kmem, nr_kmem);
5508 5509
		memcg_oom_recover(memcg);
	}
5510 5511 5512 5513 5514 5515

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5516
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5517 5518
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5519 5520

	if (!mem_cgroup_is_root(memcg))
5521
		css_put_many(&memcg->css, nr_pages);
5522 5523 5524 5525 5526 5527 5528 5529
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
5530
	unsigned long nr_kmem = 0;
5531 5532 5533 5534
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

5535 5536 5537 5538
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
5539 5540 5541 5542 5543 5544 5545 5546
	next = page_list->next;
	do {
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5547
		if (!page->mem_cgroup)
5548 5549 5550 5551
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5552
		 * page->mem_cgroup at this point, we have fully
5553
		 * exclusive access to the page.
5554 5555
		 */

5556
		if (memcg != page->mem_cgroup) {
5557
			if (memcg) {
5558
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5559 5560 5561
					       nr_huge, nr_kmem, page);
				pgpgout = nr_anon = nr_file =
					nr_huge = nr_kmem = 0;
5562
			}
5563
			memcg = page->mem_cgroup;
5564 5565
		}

5566 5567
		if (!PageKmemcg(page)) {
			unsigned int nr_pages = 1;
5568

5569 5570 5571 5572 5573 5574 5575 5576 5577
			if (PageTransHuge(page)) {
				nr_pages <<= compound_order(page);
				nr_huge += nr_pages;
			}
			if (PageAnon(page))
				nr_anon += nr_pages;
			else
				nr_file += nr_pages;
			pgpgout++;
5578
		} else {
5579
			nr_kmem += 1 << compound_order(page);
5580 5581
			__ClearPageKmemcg(page);
		}
5582

5583
		page->mem_cgroup = NULL;
5584 5585 5586
	} while (next != page_list);

	if (memcg)
5587
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5588
			       nr_huge, nr_kmem, page);
5589 5590
}

5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5603
	/* Don't touch page->lru of any random page, pre-check: */
5604
	if (!page->mem_cgroup)
5605 5606
		return;

5607 5608 5609
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5610

5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5622

5623 5624
	if (!list_empty(page_list))
		uncharge_list(page_list);
5625 5626 5627
}

/**
5628 5629 5630
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
5631
 *
5632 5633
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
5634 5635 5636
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
5637
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5638
{
5639
	struct mem_cgroup *memcg;
5640 5641
	unsigned int nr_pages;
	bool compound;
5642
	unsigned long flags;
5643 5644 5645 5646

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5647 5648
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5649 5650 5651 5652 5653

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5654
	if (newpage->mem_cgroup)
5655 5656
		return;

5657
	/* Swapcache readahead pages can get replaced before being charged */
5658
	memcg = oldpage->mem_cgroup;
5659
	if (!memcg)
5660 5661
		return;

5662 5663 5664 5665 5666 5667 5668 5669
	/* Force-charge the new page. The old one will be freed soon */
	compound = PageTransHuge(newpage);
	nr_pages = compound ? hpage_nr_pages(newpage) : 1;

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
5670

5671
	commit_charge(newpage, memcg, false);
5672

5673
	local_irq_save(flags);
5674 5675
	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
	memcg_check_events(memcg, newpage);
5676
	local_irq_restore(flags);
5677 5678
}

5679
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701
EXPORT_SYMBOL(memcg_sockets_enabled_key);

void sock_update_memcg(struct sock *sk)
{
	struct mem_cgroup *memcg;

	/* Socket cloning can throw us here with sk_cgrp already
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
		css_get(&sk->sk_memcg->css);
		return;
	}

	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
5702 5703
	if (memcg == root_mem_cgroup)
		goto out;
5704
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5705 5706
		goto out;
	if (css_tryget_online(&memcg->css))
5707
		sk->sk_memcg = memcg;
5708
out:
5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728
	rcu_read_unlock();
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
	WARN_ON(!sk->sk_memcg);
	css_put(&sk->sk_memcg->css);
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5729
	gfp_t gfp_mask = GFP_KERNEL;
5730

5731
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5732
		struct page_counter *fail;
5733

5734 5735
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
5736 5737
			return true;
		}
5738 5739
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
5740
		return false;
5741
	}
5742

5743 5744 5745 5746
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

5747 5748
	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);

5749 5750 5751 5752
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5753 5754 5755 5756 5757 5758 5759 5760 5761 5762
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
 * @memcg - memcg to uncharge
 * @nr_pages - number of pages to uncharge
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5763
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5764
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5765 5766
		return;
	}
5767

5768 5769
	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);

5770 5771
	page_counter_uncharge(&memcg->memory, nr_pages);
	css_put_many(&memcg->css, nr_pages);
5772 5773
}

5774 5775 5776 5777 5778 5779 5780 5781 5782
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
5783 5784
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
5785 5786 5787 5788
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
5789

5790
/*
5791 5792 5793 5794 5795 5796
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5797 5798 5799
 */
static int __init mem_cgroup_init(void)
{
5800 5801
	int cpu, node;

5802
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

5814 5815
		rtpn->rb_root = RB_ROOT;
		spin_lock_init(&rtpn->lock);
5816 5817 5818
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5819 5820 5821
	return 0;
}
subsys_initcall(mem_cgroup_init);
5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832

#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
5833
	struct mem_cgroup *memcg, *swap_memcg;
5834 5835 5836 5837 5838
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

5839
	if (!do_memsw_account())
5840 5841 5842 5843 5844 5845 5846 5847
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

5848 5849 5850 5851 5852 5853 5854
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
5855
	VM_BUG_ON_PAGE(oldid, page);
5856
	mem_cgroup_swap_statistics(swap_memcg, true);
5857 5858 5859 5860 5861 5862

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

5863 5864 5865 5866 5867 5868
	if (memcg != swap_memcg) {
		if (!mem_cgroup_is_root(swap_memcg))
			page_counter_charge(&swap_memcg->memsw, 1);
		page_counter_uncharge(&memcg->memsw, 1);
	}

5869 5870 5871 5872 5873 5874 5875
	/*
	 * Interrupts should be disabled here because the caller holds the
	 * mapping->tree_lock lock which is taken with interrupts-off. It is
	 * important here to have the interrupts disabled because it is the
	 * only synchronisation we have for udpating the per-CPU variables.
	 */
	VM_BUG_ON(!irqs_disabled());
5876
	mem_cgroup_charge_statistics(memcg, page, false, -1);
5877
	memcg_check_events(memcg, page);
5878 5879 5880

	if (!mem_cgroup_is_root(memcg))
		css_put(&memcg->css);
5881 5882
}

5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906
/*
 * mem_cgroup_try_charge_swap - try charging a swap entry
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
 * Try to charge @entry to the memcg that @page belongs to.
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	struct page_counter *counter;
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

5907 5908
	memcg = mem_cgroup_id_get_online(memcg);

5909
	if (!mem_cgroup_is_root(memcg) &&
5910 5911
	    !page_counter_try_charge(&memcg->swap, 1, &counter)) {
		mem_cgroup_id_put(memcg);
5912
		return -ENOMEM;
5913
	}
5914 5915 5916 5917 5918 5919 5920 5921

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	return 0;
}

5922 5923 5924 5925
/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
5926
 * Drop the swap charge associated with @entry.
5927 5928 5929 5930 5931 5932
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

5933
	if (!do_swap_account)
5934 5935 5936 5937
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
5938
	memcg = mem_cgroup_from_id(id);
5939
	if (memcg) {
5940 5941 5942 5943 5944 5945
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
				page_counter_uncharge(&memcg->swap, 1);
			else
				page_counter_uncharge(&memcg->memsw, 1);
		}
5946
		mem_cgroup_swap_statistics(memcg, false);
5947
		mem_cgroup_id_put(memcg);
5948 5949 5950 5951
	}
	rcu_read_unlock();
}

5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
				      READ_ONCE(memcg->swap.limit) -
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
			return true;

	return false;
}

5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long max = READ_ONCE(memcg->swap.limit);

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

	mutex_lock(&memcg_limit_mutex);
	err = page_counter_limit(&memcg->swap, max);
	mutex_unlock(&memcg_limit_mutex);
	if (err)
		return err;

	return nbytes;
}

static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
	{ }	/* terminate */
};

6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
6092 6093
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
6094 6095 6096 6097 6098 6099 6100 6101
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */