memcontrol.c 151.4 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include <linux/pagemap.h>
40
#include <linux/smp.h>
41
#include <linux/page-flags.h>
42
#include <linux/backing-dev.h>
43 44
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
45
#include <linux/limits.h>
46
#include <linux/export.h>
47
#include <linux/mutex.h>
48
#include <linux/rbtree.h>
49
#include <linux/slab.h>
50
#include <linux/swap.h>
51
#include <linux/swapops.h>
52
#include <linux/spinlock.h>
53
#include <linux/eventfd.h>
54
#include <linux/poll.h>
55
#include <linux/sort.h>
56
#include <linux/fs.h>
57
#include <linux/seq_file.h>
58
#include <linux/vmpressure.h>
59
#include <linux/mm_inline.h>
60
#include <linux/swap_cgroup.h>
61
#include <linux/cpu.h>
62
#include <linux/oom.h>
63
#include <linux/lockdep.h>
64
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
65
#include "internal.h"
G
Glauber Costa 已提交
66
#include <net/sock.h>
M
Michal Hocko 已提交
67
#include <net/ip.h>
G
Glauber Costa 已提交
68
#include <net/tcp_memcontrol.h>
69
#include "slab.h"
B
Balbir Singh 已提交
70

71 72
#include <asm/uaccess.h>

73 74
#include <trace/events/vmscan.h>

75 76
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
77

78
#define MEM_CGROUP_RECLAIM_RETRIES	5
79
static struct mem_cgroup *root_mem_cgroup __read_mostly;
T
Tejun Heo 已提交
80
struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
B
Balbir Singh 已提交
81

82
/* Whether the swap controller is active */
A
Andrew Morton 已提交
83
#ifdef CONFIG_MEMCG_SWAP
84 85
int do_swap_account __read_mostly;
#else
86
#define do_swap_account		0
87 88
#endif

89 90 91
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
92
	"rss_huge",
93
	"mapped_file",
94
	"dirty",
95
	"writeback",
96 97 98 99 100 101 102 103 104 105
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

106 107 108 109 110 111 112 113
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

114 115 116 117 118 119 120 121
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
122
	MEM_CGROUP_TARGET_SOFTLIMIT,
123
	MEM_CGROUP_TARGET_NUMAINFO,
124 125
	MEM_CGROUP_NTARGETS,
};
126 127 128
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
129

130
struct mem_cgroup_stat_cpu {
131
	long count[MEM_CGROUP_STAT_NSTATS];
132
	unsigned long events[MEMCG_NR_EVENTS];
133
	unsigned long nr_page_events;
134
	unsigned long targets[MEM_CGROUP_NTARGETS];
135 136
};

137 138
struct reclaim_iter {
	struct mem_cgroup *position;
139 140 141 142
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

143 144 145 146
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
147
	struct lruvec		lruvec;
148
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
149

150
	struct reclaim_iter	iter[DEF_PRIORITY + 1];
151

152
	struct rb_node		tree_node;	/* RB tree node */
153
	unsigned long		usage_in_excess;/* Set to the value by which */
154 155
						/* the soft limit is exceeded*/
	bool			on_tree;
156
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
157
						/* use container_of	   */
158 159 160 161 162 163
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

184 185
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
186
	unsigned long threshold;
187 188
};

K
KAMEZAWA Hiroyuki 已提交
189
/* For threshold */
190
struct mem_cgroup_threshold_ary {
191
	/* An array index points to threshold just below or equal to usage. */
192
	int current_threshold;
193 194 195 196 197
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
198 199 200 201 202 203 204 205 206 207 208 209

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
210 211 212 213 214
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
215

216 217 218
/*
 * cgroup_event represents events which userspace want to receive.
 */
219
struct mem_cgroup_event {
220
	/*
221
	 * memcg which the event belongs to.
222
	 */
223
	struct mem_cgroup *memcg;
224 225 226 227 228 229 230 231
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
232 233 234 235 236
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
237
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
238
			      struct eventfd_ctx *eventfd, const char *args);
239 240 241 242 243
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
244
	void (*unregister_event)(struct mem_cgroup *memcg,
245
				 struct eventfd_ctx *eventfd);
246 247 248 249 250 251 252 253 254 255
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

256 257
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
258

B
Balbir Singh 已提交
259 260 261 262 263 264 265 266
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
267 268 269 270 271 272

	/* Accounted resources */
	struct page_counter memory;
	struct page_counter memsw;
	struct page_counter kmem;

273 274 275 276
	/* Normal memory consumption range */
	unsigned long low;
	unsigned long high;

277
	unsigned long soft_limit;
278

279 280 281
	/* vmpressure notifications */
	struct vmpressure vmpressure;

282 283 284
	/* css_online() has been completed */
	int initialized;

285 286 287 288
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
289 290 291

	bool		oom_lock;
	atomic_t	under_oom;
292
	atomic_t	oom_wakeups;
293

294
	int	swappiness;
295 296
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
297

298 299 300 301
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
302
	struct mem_cgroup_thresholds thresholds;
303

304
	/* thresholds for mem+swap usage. RCU-protected */
305
	struct mem_cgroup_thresholds memsw_thresholds;
306

K
KAMEZAWA Hiroyuki 已提交
307 308
	/* For oom notifier event fd */
	struct list_head oom_notify;
309

310 311 312 313
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
314
	unsigned long move_charge_at_immigrate;
315 316 317
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
318
	atomic_t		moving_account;
319
	/* taken only while moving_account > 0 */
320 321 322
	spinlock_t		move_lock;
	struct task_struct	*move_lock_task;
	unsigned long		move_lock_flags;
323
	/*
324
	 * percpu counter.
325
	 */
326
	struct mem_cgroup_stat_cpu __percpu *stat;
327
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
328

M
Michal Hocko 已提交
329
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
330
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
331
#endif
332
#if defined(CONFIG_MEMCG_KMEM)
333
        /* Index in the kmem_cache->memcg_params.memcg_caches array */
334
	int kmemcg_id;
335
	bool kmem_acct_activated;
336
	bool kmem_acct_active;
337
#endif
338 339 340 341 342 343 344

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
345

346 347
#ifdef CONFIG_CGROUP_WRITEBACK
	struct list_head cgwb_list;
T
Tejun Heo 已提交
348
	struct wb_domain cgwb_domain;
349 350
#endif

351 352 353 354
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

355 356
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
357 358
};

359
#ifdef CONFIG_MEMCG_KMEM
360
bool memcg_kmem_is_active(struct mem_cgroup *memcg)
361
{
362
	return memcg->kmem_acct_active;
363
}
364 365
#endif

366 367
/* Stuffs for move charges at task migration. */
/*
368
 * Types of charges to be moved.
369
 */
370 371 372
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
373

374 375
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
376
	spinlock_t	  lock; /* for from, to */
377 378
	struct mem_cgroup *from;
	struct mem_cgroup *to;
379
	unsigned long flags;
380
	unsigned long precharge;
381
	unsigned long moved_charge;
382
	unsigned long moved_swap;
383 384 385
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
386
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
387 388
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
389

390 391 392 393
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
394
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
395
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
396

397 398
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
399
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
400
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
401
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
402 403 404
	NR_CHARGE_TYPE,
};

405
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
406 407 408 409
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
410
	_KMEM,
G
Glauber Costa 已提交
411 412
};

413 414
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
415
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
416 417
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
418

419 420 421 422 423 424 425
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

426 427
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
428
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
429 430
}

431 432 433 434 435 436 437 438 439 440 441 442 443
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

444 445 446 447 448
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

449 450 451 452 453 454
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
455 456
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
457
	return memcg->css.id;
L
Li Zefan 已提交
458 459
}

460 461 462 463 464 465
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
 */
L
Li Zefan 已提交
466 467 468 469
static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

470
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
471 472 473
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
474
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
475
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
476 477 478

void sock_update_memcg(struct sock *sk)
{
479
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
480
		struct mem_cgroup *memcg;
481
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
482 483 484

		BUG_ON(!sk->sk_prot->proto_cgroup);

485 486 487 488 489 490 491 492 493 494
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
495
			css_get(&sk->sk_cgrp->memcg->css);
496 497 498
			return;
		}

G
Glauber Costa 已提交
499 500
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
501
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
502
		if (!mem_cgroup_is_root(memcg) &&
503 504
		    memcg_proto_active(cg_proto) &&
		    css_tryget_online(&memcg->css)) {
505
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
506 507 508 509 510 511 512 513
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
514
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
515 516 517
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
518
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
519 520
	}
}
G
Glauber Costa 已提交
521 522 523 524 525 526

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

527
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
528 529
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
530

531 532
#endif

533
#ifdef CONFIG_MEMCG_KMEM
534
/*
535
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
536 537 538 539 540
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
541
 *
542 543
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
544
 */
545 546
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
547

548 549 550 551 552 553 554 555 556 557 558 559 560
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

561 562 563 564 565 566
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
567
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
568 569
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
570
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
571 572 573
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
574
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
575

576 577 578 579 580 581
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
582
struct static_key memcg_kmem_enabled_key;
583
EXPORT_SYMBOL(memcg_kmem_enabled_key);
584 585 586

#endif /* CONFIG_MEMCG_KMEM */

587
static struct mem_cgroup_per_zone *
588
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
589
{
590 591 592
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

593
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
594 595
}

596
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
597
{
598
	return &memcg->css;
599 600
}

601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 *
 * XXX: The above description of behavior on the default hierarchy isn't
 * strictly true yet as replace_page_cache_page() can modify the
 * association before @page is released even on the default hierarchy;
 * however, the current and planned usages don't mix the the two functions
 * and replace_page_cache_page() will soon be updated to make the invariant
 * actually true.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	rcu_read_lock();

	memcg = page->mem_cgroup;

	if (!memcg || !cgroup_on_dfl(memcg->css.cgroup))
		memcg = root_mem_cgroup;

	rcu_read_unlock();
	return &memcg->css;
}

634
static struct mem_cgroup_per_zone *
635
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
636
{
637 638
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
639

640
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
641 642
}

643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

658 659
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
660
					 unsigned long new_usage_in_excess)
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

690 691
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
692 693 694 695 696 697 698
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

699 700
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
701
{
702 703 704
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
705
	__mem_cgroup_remove_exceeded(mz, mctz);
706
	spin_unlock_irqrestore(&mctz->lock, flags);
707 708
}

709 710 711
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
712
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
713 714 715 716 717 718 719
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
720 721 722

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
723
	unsigned long excess;
724 725 726
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

727
	mctz = soft_limit_tree_from_page(page);
728 729 730 731 732
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
733
		mz = mem_cgroup_page_zoneinfo(memcg, page);
734
		excess = soft_limit_excess(memcg);
735 736 737 738 739
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
740 741 742
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
743 744
			/* if on-tree, remove it */
			if (mz->on_tree)
745
				__mem_cgroup_remove_exceeded(mz, mctz);
746 747 748 749
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
750
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
751
			spin_unlock_irqrestore(&mctz->lock, flags);
752 753 754 755 756 757 758
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
759 760
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
761

762 763 764 765
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
766
			mem_cgroup_remove_exceeded(mz, mctz);
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
789
	__mem_cgroup_remove_exceeded(mz, mctz);
790
	if (!soft_limit_excess(mz->memcg) ||
791
	    !css_tryget_online(&mz->memcg->css))
792 793 794 795 796 797 798 799 800 801
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

802
	spin_lock_irq(&mctz->lock);
803
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
804
	spin_unlock_irq(&mctz->lock);
805 806 807
	return mz;
}

808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
827
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
828
				 enum mem_cgroup_stat_index idx)
829
{
830
	long val = 0;
831 832
	int cpu;

833
	for_each_possible_cpu(cpu)
834
		val += per_cpu(memcg->stat->count[idx], cpu);
835 836 837
	return val;
}

838
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
839 840 841 842 843
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

844
	for_each_possible_cpu(cpu)
845
		val += per_cpu(memcg->stat->events[idx], cpu);
846 847 848
	return val;
}

849
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
850
					 struct page *page,
851
					 int nr_pages)
852
{
853 854 855 856
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
857
	if (PageAnon(page))
858
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
859
				nr_pages);
860
	else
861
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
862
				nr_pages);
863

864 865 866 867
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

868 869
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
870
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
871
	else {
872
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
873 874
		nr_pages = -nr_pages; /* for event */
	}
875

876
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
877 878
}

879
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
880 881 882 883 884 885 886
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

887 888 889
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
890
{
891
	unsigned long nr = 0;
892 893
	int zid;

894
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
895

896 897 898 899 900 901 902 903 904 905 906 907
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
908
}
909

910
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
911
			unsigned int lru_mask)
912
{
913
	unsigned long nr = 0;
914
	int nid;
915

916
	for_each_node_state(nid, N_MEMORY)
917 918
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
919 920
}

921 922
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
923 924 925
{
	unsigned long val, next;

926
	val = __this_cpu_read(memcg->stat->nr_page_events);
927
	next = __this_cpu_read(memcg->stat->targets[target]);
928
	/* from time_after() in jiffies.h */
929 930 931 932 933
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
934 935 936
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
937 938 939 940 941 942 943 944
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
945
	}
946
	return false;
947 948 949 950 951 952
}

/*
 * Check events in order.
 *
 */
953
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
954 955
{
	/* threshold event is triggered in finer grain than soft limit */
956 957
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
958
		bool do_softlimit;
959
		bool do_numainfo __maybe_unused;
960

961 962
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
963 964 965 966
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
967
		mem_cgroup_threshold(memcg);
968 969
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
970
#if MAX_NUMNODES > 1
971
		if (unlikely(do_numainfo))
972
			atomic_inc(&memcg->numainfo_events);
973
#endif
974
	}
975 976
}

977
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
978
{
979 980 981 982 983 984 985 986
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

987
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
988 989
}

990
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
991
{
992
	struct mem_cgroup *memcg = NULL;
993

994 995
	rcu_read_lock();
	do {
996 997 998 999 1000 1001
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1002
			memcg = root_mem_cgroup;
1003 1004 1005 1006 1007
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1008
	} while (!css_tryget_online(&memcg->css));
1009
	rcu_read_unlock();
1010
	return memcg;
1011 1012
}

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1030
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1031
				   struct mem_cgroup *prev,
1032
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1033
{
1034 1035
	struct reclaim_iter *uninitialized_var(iter);
	struct cgroup_subsys_state *css = NULL;
1036
	struct mem_cgroup *memcg = NULL;
1037
	struct mem_cgroup *pos = NULL;
1038

1039 1040
	if (mem_cgroup_disabled())
		return NULL;
1041

1042 1043
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1044

1045
	if (prev && !reclaim)
1046
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1047

1048 1049
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1050
			goto out;
1051
		return root;
1052
	}
K
KAMEZAWA Hiroyuki 已提交
1053

1054
	rcu_read_lock();
M
Michal Hocko 已提交
1055

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

		do {
1066
			pos = READ_ONCE(iter->position);
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
			/*
			 * A racing update may change the position and
			 * put the last reference, hence css_tryget(),
			 * or retry to see the updated position.
			 */
		} while (pos && !css_tryget(&pos->css));
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1090
		}
K
KAMEZAWA Hiroyuki 已提交
1091

1092 1093 1094 1095 1096 1097
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1098

1099 1100
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
1101

1102
		if (css_tryget(css)) {
1103 1104 1105 1106 1107 1108 1109
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				break;
1110

1111
			css_put(css);
1112
		}
1113

1114
		memcg = NULL;
1115
	}
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135

	if (reclaim) {
		if (cmpxchg(&iter->position, pos, memcg) == pos) {
			if (memcg)
				css_get(&memcg->css);
			if (pos)
				css_put(&pos->css);
		}

		/*
		 * pairs with css_tryget when dereferencing iter->position
		 * above.
		 */
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1136
	}
1137

1138 1139
out_unlock:
	rcu_read_unlock();
1140
out:
1141 1142 1143
	if (prev && prev != root)
		css_put(&prev->css);

1144
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1145
}
K
KAMEZAWA Hiroyuki 已提交
1146

1147 1148 1149 1150 1151 1152 1153
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1154 1155 1156 1157 1158 1159
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1160

1161 1162 1163 1164 1165 1166
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1167
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1168
	     iter != NULL;				\
1169
	     iter = mem_cgroup_iter(root, iter, NULL))
1170

1171
#define for_each_mem_cgroup(iter)			\
1172
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1173
	     iter != NULL;				\
1174
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1175

1176
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1177
{
1178
	struct mem_cgroup *memcg;
1179 1180

	rcu_read_lock();
1181 1182
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1183 1184 1185 1186
		goto out;

	switch (idx) {
	case PGFAULT:
1187 1188 1189 1190
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1191 1192 1193 1194 1195 1196 1197
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1198
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1199

1200 1201 1202
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1203
 * @memcg: memcg of the wanted lruvec
1204 1205 1206 1207 1208 1209 1210 1211 1212
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1213
	struct lruvec *lruvec;
1214

1215 1216 1217 1218
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1219

1220
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1231 1232 1233
}

/**
1234
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1235
 * @page: the page
1236
 * @zone: zone of the page
1237 1238 1239 1240
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1241
 */
1242
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1243 1244
{
	struct mem_cgroup_per_zone *mz;
1245
	struct mem_cgroup *memcg;
1246
	struct lruvec *lruvec;
1247

1248 1249 1250 1251
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1252

1253
	memcg = page->mem_cgroup;
1254
	/*
1255
	 * Swapcache readahead pages are added to the LRU - and
1256
	 * possibly migrated - before they are charged.
1257
	 */
1258 1259
	if (!memcg)
		memcg = root_mem_cgroup;
1260

1261
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1272
}
1273

1274
/**
1275 1276 1277 1278
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1279
 *
1280 1281
 * This function must be called when a page is added to or removed from an
 * lru list.
1282
 */
1283 1284
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1285 1286
{
	struct mem_cgroup_per_zone *mz;
1287
	unsigned long *lru_size;
1288 1289 1290 1291

	if (mem_cgroup_disabled())
		return;

1292 1293 1294 1295
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1296
}
1297

1298
bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
1299
{
1300
	if (root == memcg)
1301
		return true;
1302
	if (!root->use_hierarchy)
1303
		return false;
1304
	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
1305 1306
}

1307
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1308
{
1309
	struct mem_cgroup *task_memcg;
1310
	struct task_struct *p;
1311
	bool ret;
1312

1313
	p = find_lock_task_mm(task);
1314
	if (p) {
1315
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1316 1317 1318 1319 1320 1321 1322
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1323
		rcu_read_lock();
1324 1325
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1326
		rcu_read_unlock();
1327
	}
1328 1329
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1330 1331 1332
	return ret;
}

1333
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1334
{
1335
	unsigned long inactive_ratio;
1336
	unsigned long inactive;
1337
	unsigned long active;
1338
	unsigned long gb;
1339

1340 1341
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1342

1343 1344 1345 1346 1347 1348
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1349
	return inactive * inactive_ratio < active;
1350 1351
}

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
{
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return true;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	memcg = mz->memcg;

	return !!(memcg->css.flags & CSS_ONLINE);
}

1366
#define mem_cgroup_from_counter(counter, member)	\
1367 1368
	container_of(counter, struct mem_cgroup, member)

1369
/**
1370
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1371
 * @memcg: the memory cgroup
1372
 *
1373
 * Returns the maximum amount of memory @mem can be charged with, in
1374
 * pages.
1375
 */
1376
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1377
{
1378 1379 1380
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1381

1382
	count = page_counter_read(&memcg->memory);
1383
	limit = READ_ONCE(memcg->memory.limit);
1384 1385 1386 1387 1388
	if (count < limit)
		margin = limit - count;

	if (do_swap_account) {
		count = page_counter_read(&memcg->memsw);
1389
		limit = READ_ONCE(memcg->memsw.limit);
1390 1391 1392 1393 1394
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1395 1396
}

1397
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1398 1399
{
	/* root ? */
1400
	if (mem_cgroup_disabled() || !memcg->css.parent)
K
KOSAKI Motohiro 已提交
1401 1402
		return vm_swappiness;

1403
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1404 1405
}

1406
/*
Q
Qiang Huang 已提交
1407
 * A routine for checking "mem" is under move_account() or not.
1408
 *
Q
Qiang Huang 已提交
1409 1410 1411
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1412
 */
1413
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1414
{
1415 1416
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1417
	bool ret = false;
1418 1419 1420 1421 1422 1423 1424 1425 1426
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1427

1428 1429
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1430 1431
unlock:
	spin_unlock(&mc.lock);
1432 1433 1434
	return ret;
}

1435
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1436 1437
{
	if (mc.moving_task && current != mc.moving_task) {
1438
		if (mem_cgroup_under_move(memcg)) {
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1451
#define K(x) ((x) << (PAGE_SHIFT-10))
1452
/**
1453
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1454 1455 1456 1457 1458 1459 1460 1461
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1462
	/* oom_info_lock ensures that parallel ooms do not interleave */
1463
	static DEFINE_MUTEX(oom_info_lock);
1464 1465
	struct mem_cgroup *iter;
	unsigned int i;
1466

1467
	mutex_lock(&oom_info_lock);
1468 1469
	rcu_read_lock();

1470 1471 1472 1473 1474 1475 1476 1477
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1478
	pr_cont_cgroup_path(memcg->css.cgroup);
1479
	pr_cont("\n");
1480 1481 1482

	rcu_read_unlock();

1483 1484 1485 1486 1487 1488 1489 1490 1491
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1492 1493

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1494 1495
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1511
	mutex_unlock(&oom_info_lock);
1512 1513
}

1514 1515 1516 1517
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1518
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1519 1520
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1521 1522
	struct mem_cgroup *iter;

1523
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1524
		num++;
1525 1526 1527
	return num;
}

D
David Rientjes 已提交
1528 1529 1530
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1531
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1532
{
1533
	unsigned long limit;
1534

1535
	limit = memcg->memory.limit;
1536
	if (mem_cgroup_swappiness(memcg)) {
1537
		unsigned long memsw_limit;
1538

1539 1540
		memsw_limit = memcg->memsw.limit;
		limit = min(limit + total_swap_pages, memsw_limit);
1541 1542
	}
	return limit;
D
David Rientjes 已提交
1543 1544
}

1545 1546
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1547 1548 1549 1550 1551 1552 1553
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1554
	/*
1555 1556 1557
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1558
	 */
1559
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1560
		mark_tsk_oom_victim(current);
1561 1562 1563
		return;
	}

1564
	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL, memcg);
1565
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1566
	for_each_mem_cgroup_tree(iter, memcg) {
1567
		struct css_task_iter it;
1568 1569
		struct task_struct *task;

1570 1571
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1584
				css_task_iter_end(&it);
1585 1586 1587 1588 1589 1590 1591 1592
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1605
		}
1606
		css_task_iter_end(&it);
1607 1608 1609 1610 1611 1612 1613 1614 1615
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1616 1617
#if MAX_NUMNODES > 1

1618 1619
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1620
 * @memcg: the target memcg
1621 1622 1623 1624 1625 1626 1627
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1628
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1629 1630
		int nid, bool noswap)
{
1631
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1632 1633 1634
		return true;
	if (noswap || !total_swap_pages)
		return false;
1635
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1636 1637 1638 1639
		return true;
	return false;

}
1640 1641 1642 1643 1644 1645 1646

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1647
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1648 1649
{
	int nid;
1650 1651 1652 1653
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1654
	if (!atomic_read(&memcg->numainfo_events))
1655
		return;
1656
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1657 1658 1659
		return;

	/* make a nodemask where this memcg uses memory from */
1660
	memcg->scan_nodes = node_states[N_MEMORY];
1661

1662
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1663

1664 1665
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1666
	}
1667

1668 1669
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1684
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1685 1686 1687
{
	int node;

1688 1689
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1690

1691
	node = next_node(node, memcg->scan_nodes);
1692
	if (node == MAX_NUMNODES)
1693
		node = first_node(memcg->scan_nodes);
1694 1695 1696 1697 1698 1699 1700 1701 1702
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1703
	memcg->last_scanned_node = node;
1704 1705 1706
	return node;
}
#else
1707
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1708 1709 1710 1711 1712
{
	return 0;
}
#endif

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1728
	excess = soft_limit_excess(root_memcg);
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1757
		if (!soft_limit_excess(root_memcg))
1758
			break;
1759
	}
1760 1761
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1762 1763
}

1764 1765 1766 1767 1768 1769
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1770 1771
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1772 1773 1774 1775
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1776
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1777
{
1778
	struct mem_cgroup *iter, *failed = NULL;
1779

1780 1781
	spin_lock(&memcg_oom_lock);

1782
	for_each_mem_cgroup_tree(iter, memcg) {
1783
		if (iter->oom_lock) {
1784 1785 1786 1787 1788
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1789 1790
			mem_cgroup_iter_break(memcg, iter);
			break;
1791 1792
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1793
	}
K
KAMEZAWA Hiroyuki 已提交
1794

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1806
		}
1807 1808
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1809 1810 1811 1812

	spin_unlock(&memcg_oom_lock);

	return !failed;
1813
}
1814

1815
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1816
{
K
KAMEZAWA Hiroyuki 已提交
1817 1818
	struct mem_cgroup *iter;

1819
	spin_lock(&memcg_oom_lock);
1820
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1821
	for_each_mem_cgroup_tree(iter, memcg)
1822
		iter->oom_lock = false;
1823
	spin_unlock(&memcg_oom_lock);
1824 1825
}

1826
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1827 1828 1829
{
	struct mem_cgroup *iter;

1830
	for_each_mem_cgroup_tree(iter, memcg)
1831 1832 1833
		atomic_inc(&iter->under_oom);
}

1834
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1835 1836 1837
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1838 1839 1840 1841 1842
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1843
	for_each_mem_cgroup_tree(iter, memcg)
1844
		atomic_add_unless(&iter->under_oom, -1, 0);
1845 1846
}

K
KAMEZAWA Hiroyuki 已提交
1847 1848
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1849
struct oom_wait_info {
1850
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1851 1852 1853 1854 1855 1856
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1857 1858
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1859 1860 1861
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1862
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1863

1864 1865
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1866 1867 1868 1869
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1870
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1871
{
1872
	atomic_inc(&memcg->oom_wakeups);
1873 1874
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1875 1876
}

1877
static void memcg_oom_recover(struct mem_cgroup *memcg)
1878
{
1879 1880
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1881 1882
}

1883
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1884
{
1885 1886
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
1887
	/*
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1900
	 */
1901 1902 1903 1904
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
1905 1906 1907 1908
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1909
 * @handle: actually kill/wait or just clean up the OOM state
1910
 *
1911 1912
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1913
 *
1914
 * Memcg supports userspace OOM handling where failed allocations must
1915 1916 1917 1918
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1919
 * the end of the page fault to complete the OOM handling.
1920 1921
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1922
 * completed, %false otherwise.
1923
 */
1924
bool mem_cgroup_oom_synchronize(bool handle)
1925
{
1926
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
1927
	struct oom_wait_info owait;
1928
	bool locked;
1929 1930 1931

	/* OOM is global, do not handle */
	if (!memcg)
1932
		return false;
1933

1934
	if (!handle || oom_killer_disabled)
1935
		goto cleanup;
1936 1937 1938 1939 1940 1941

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1942

1943
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
1957
		schedule();
1958 1959 1960 1961 1962
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1963 1964 1965 1966 1967 1968 1969 1970
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1971 1972
cleanup:
	current->memcg_oom.memcg = NULL;
1973
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1974
	return true;
1975 1976
}

1977 1978 1979
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
1980
 *
1981 1982 1983
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
1984
 *
1985
 *   memcg = mem_cgroup_begin_page_stat(page);
1986 1987
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
1988
 *   mem_cgroup_end_page_stat(memcg);
1989
 */
1990
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1991 1992
{
	struct mem_cgroup *memcg;
1993
	unsigned long flags;
1994

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page from being uncharged.
	 * E.g. end-writeback clearing PageWriteback(), which allows
	 * migration to go ahead and uncharge the page before the
	 * account transaction might be complete.
	 */
2007 2008 2009 2010
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;
2011
again:
2012
	memcg = page->mem_cgroup;
2013
	if (unlikely(!memcg))
2014 2015
		return NULL;

Q
Qiang Huang 已提交
2016
	if (atomic_read(&memcg->moving_account) <= 0)
2017
		return memcg;
2018

2019
	spin_lock_irqsave(&memcg->move_lock, flags);
2020
	if (memcg != page->mem_cgroup) {
2021
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2022 2023
		goto again;
	}
2024 2025 2026 2027 2028 2029 2030 2031

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
	 * the task who has the lock for mem_cgroup_end_page_stat().
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
2032 2033

	return memcg;
2034
}
2035
EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
2036

2037 2038 2039 2040
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 */
2041
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
2042
{
2043 2044 2045 2046 2047 2048 2049 2050
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
2051

2052
	rcu_read_unlock();
2053
}
2054
EXPORT_SYMBOL(mem_cgroup_end_page_stat);
2055

2056 2057 2058 2059 2060 2061 2062 2063 2064
/**
 * mem_cgroup_update_page_stat - update page state statistics
 * @memcg: memcg to account against
 * @idx: page state item to account
 * @val: number of pages (positive or negative)
 *
 * See mem_cgroup_begin_page_stat() for locking requirements.
 */
void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
S
Sha Zhengju 已提交
2065
				 enum mem_cgroup_stat_index idx, int val)
2066
{
2067
	VM_BUG_ON(!rcu_read_lock_held());
2068

2069 2070
	if (memcg)
		this_cpu_add(memcg->stat->count[idx], val);
2071
}
2072

2073 2074 2075 2076
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2077
#define CHARGE_BATCH	32U
2078 2079
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2080
	unsigned int nr_pages;
2081
	struct work_struct work;
2082
	unsigned long flags;
2083
#define FLUSHING_CACHED_CHARGE	0
2084 2085
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2086
static DEFINE_MUTEX(percpu_charge_mutex);
2087

2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2098
 */
2099
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2100 2101
{
	struct memcg_stock_pcp *stock;
2102
	bool ret = false;
2103

2104
	if (nr_pages > CHARGE_BATCH)
2105
		return ret;
2106

2107
	stock = &get_cpu_var(memcg_stock);
2108
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2109
		stock->nr_pages -= nr_pages;
2110 2111
		ret = true;
	}
2112 2113 2114 2115 2116
	put_cpu_var(memcg_stock);
	return ret;
}

/*
2117
 * Returns stocks cached in percpu and reset cached information.
2118 2119 2120 2121 2122
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2123
	if (stock->nr_pages) {
2124
		page_counter_uncharge(&old->memory, stock->nr_pages);
2125
		if (do_swap_account)
2126
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2127
		css_put_many(&old->css, stock->nr_pages);
2128
		stock->nr_pages = 0;
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
2139
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2140
	drain_stock(stock);
2141
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2142 2143 2144
}

/*
2145
 * Cache charges(val) to local per_cpu area.
2146
 * This will be consumed by consume_stock() function, later.
2147
 */
2148
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2149 2150 2151
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2152
	if (stock->cached != memcg) { /* reset if necessary */
2153
		drain_stock(stock);
2154
		stock->cached = memcg;
2155
	}
2156
	stock->nr_pages += nr_pages;
2157 2158 2159 2160
	put_cpu_var(memcg_stock);
}

/*
2161
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2162
 * of the hierarchy under it.
2163
 */
2164
static void drain_all_stock(struct mem_cgroup *root_memcg)
2165
{
2166
	int cpu, curcpu;
2167

2168 2169 2170
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2171 2172
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2173
	curcpu = get_cpu();
2174 2175
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2176
		struct mem_cgroup *memcg;
2177

2178 2179
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2180
			continue;
2181
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
2182
			continue;
2183 2184 2185 2186 2187 2188
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2189
	}
2190
	put_cpu();
A
Andrew Morton 已提交
2191
	put_online_cpus();
2192
	mutex_unlock(&percpu_charge_mutex);
2193 2194
}

2195
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2196 2197 2198 2199 2200 2201
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

2202
	if (action == CPU_ONLINE)
2203 2204
		return NOTIFY_OK;

2205
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2206
		return NOTIFY_OK;
2207

2208 2209 2210 2211 2212
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2213 2214
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2215
{
2216
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2217
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2218
	struct mem_cgroup *mem_over_limit;
2219
	struct page_counter *counter;
2220
	unsigned long nr_reclaimed;
2221 2222
	bool may_swap = true;
	bool drained = false;
2223
	int ret = 0;
2224

2225 2226
	if (mem_cgroup_is_root(memcg))
		goto done;
2227
retry:
2228 2229
	if (consume_stock(memcg, nr_pages))
		goto done;
2230

2231
	if (!do_swap_account ||
2232 2233
	    !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2234
			goto done_restock;
2235
		if (do_swap_account)
2236 2237
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2238
	} else {
2239
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2240
		may_swap = false;
2241
	}
2242

2243 2244 2245 2246
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2247

2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
		goto bypass;

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2262 2263
	if (!(gfp_mask & __GFP_WAIT))
		goto nomem;
2264

2265 2266
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

2267 2268
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2269

2270
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2271
		goto retry;
2272

2273
	if (!drained) {
2274
		drain_all_stock(mem_over_limit);
2275 2276 2277 2278
		drained = true;
		goto retry;
	}

2279 2280
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2281 2282 2283 2284 2285 2286 2287 2288 2289
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2290
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2291 2292 2293 2294 2295 2296 2297 2298
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2299 2300 2301
	if (nr_retries--)
		goto retry;

2302 2303 2304
	if (gfp_mask & __GFP_NOFAIL)
		goto bypass;

2305 2306 2307
	if (fatal_signal_pending(current))
		goto bypass;

2308 2309
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2310
	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2311
nomem:
2312
	if (!(gfp_mask & __GFP_NOFAIL))
2313
		return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2314
bypass:
2315
	return -EINTR;
2316 2317

done_restock:
2318
	css_get_many(&memcg->css, batch);
2319 2320
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
	/*
	 * If the hierarchy is above the normal consumption range,
	 * make the charging task trim their excess contribution.
	 */
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
2331
done:
2332
	return ret;
2333
}
2334

2335
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2336
{
2337 2338 2339
	if (mem_cgroup_is_root(memcg))
		return;

2340
	page_counter_uncharge(&memcg->memory, nr_pages);
2341
	if (do_swap_account)
2342
		page_counter_uncharge(&memcg->memsw, nr_pages);
2343

2344
	css_put_many(&memcg->css, nr_pages);
2345 2346
}

2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
/*
 * try_get_mem_cgroup_from_page - look up page's memcg association
 * @page: the page
 *
 * Look up, get a css reference, and return the memcg that owns @page.
 *
 * The page must be locked to prevent racing with swap-in and page
 * cache charges.  If coming from an unlocked page table, the caller
 * must ensure the page is on the LRU or this can race with charging.
 */
2357
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2358
{
2359
	struct mem_cgroup *memcg;
2360
	unsigned short id;
2361 2362
	swp_entry_t ent;

2363
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2364

2365
	memcg = page->mem_cgroup;
2366 2367
	if (memcg) {
		if (!css_tryget_online(&memcg->css))
2368
			memcg = NULL;
2369
	} else if (PageSwapCache(page)) {
2370
		ent.val = page_private(page);
2371
		id = lookup_swap_cgroup_id(ent);
2372
		rcu_read_lock();
2373
		memcg = mem_cgroup_from_id(id);
2374
		if (memcg && !css_tryget_online(&memcg->css))
2375
			memcg = NULL;
2376
		rcu_read_unlock();
2377
	}
2378
	return memcg;
2379 2380
}

2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2412
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2413
			  bool lrucare)
2414
{
2415
	int isolated;
2416

2417
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2418 2419 2420 2421 2422

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2423 2424
	if (lrucare)
		lock_page_lru(page, &isolated);
2425

2426 2427
	/*
	 * Nobody should be changing or seriously looking at
2428
	 * page->mem_cgroup at this point:
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2440
	page->mem_cgroup = memcg;
2441

2442 2443
	if (lrucare)
		unlock_page_lru(page, isolated);
2444
}
2445

2446
#ifdef CONFIG_MEMCG_KMEM
2447 2448
int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
		      unsigned long nr_pages)
2449
{
2450
	struct page_counter *counter;
2451 2452
	int ret = 0;

2453 2454
	ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
	if (ret < 0)
2455 2456
		return ret;

2457
	ret = try_charge(memcg, gfp, nr_pages);
2458 2459
	if (ret == -EINTR)  {
		/*
2460 2461 2462 2463 2464 2465
		 * try_charge() chose to bypass to root due to OOM kill or
		 * fatal signal.  Since our only options are to either fail
		 * the allocation or charge it to this cgroup, do it as a
		 * temporary condition. But we can't fail. From a kmem/slab
		 * perspective, the cache has already been selected, by
		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2466 2467 2468
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
2469 2470 2471
		 * memcg_charge_kmem in a sane state, but was OOM-killed
		 * during try_charge() above. Tasks that were already dying
		 * when the allocation triggers should have been already
2472 2473
		 * directed to the root cgroup in memcontrol.h
		 */
2474
		page_counter_charge(&memcg->memory, nr_pages);
2475
		if (do_swap_account)
2476
			page_counter_charge(&memcg->memsw, nr_pages);
2477
		css_get_many(&memcg->css, nr_pages);
2478 2479
		ret = 0;
	} else if (ret)
2480
		page_counter_uncharge(&memcg->kmem, nr_pages);
2481 2482 2483 2484

	return ret;
}

2485
void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2486
{
2487
	page_counter_uncharge(&memcg->memory, nr_pages);
2488
	if (do_swap_account)
2489
		page_counter_uncharge(&memcg->memsw, nr_pages);
2490

2491
	page_counter_uncharge(&memcg->kmem, nr_pages);
2492

2493
	css_put_many(&memcg->css, nr_pages);
2494 2495
}

2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2506
static int memcg_alloc_cache_id(void)
2507
{
2508 2509 2510
	int id, size;
	int err;

2511
	id = ida_simple_get(&memcg_cache_ida,
2512 2513 2514
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2515

2516
	if (id < memcg_nr_cache_ids)
2517 2518 2519 2520 2521 2522
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2523
	down_write(&memcg_cache_ids_sem);
2524 2525

	size = 2 * (id + 1);
2526 2527 2528 2529 2530
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2531
	err = memcg_update_all_caches(size);
2532 2533
	if (!err)
		err = memcg_update_all_list_lrus(size);
2534 2535 2536 2537 2538
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2539
	if (err) {
2540
		ida_simple_remove(&memcg_cache_ida, id);
2541 2542 2543 2544 2545 2546 2547
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2548
	ida_simple_remove(&memcg_cache_ida, id);
2549 2550
}

2551
struct memcg_kmem_cache_create_work {
2552 2553 2554 2555 2556
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2557
static void memcg_kmem_cache_create_func(struct work_struct *w)
2558
{
2559 2560
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2561 2562
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2563

2564
	memcg_create_kmem_cache(memcg, cachep);
2565

2566
	css_put(&memcg->css);
2567 2568 2569 2570 2571 2572
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2573 2574
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2575
{
2576
	struct memcg_kmem_cache_create_work *cw;
2577

2578
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2579
	if (!cw)
2580
		return;
2581 2582

	css_get(&memcg->css);
2583 2584 2585

	cw->memcg = memcg;
	cw->cachep = cachep;
2586
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2587 2588 2589 2590

	schedule_work(&cw->work);
}

2591 2592
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2593 2594 2595 2596
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2597
	 * in __memcg_schedule_kmem_cache_create will recurse.
2598 2599 2600 2601 2602 2603 2604
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2605
	current->memcg_kmem_skip_account = 1;
2606
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2607
	current->memcg_kmem_skip_account = 0;
2608
}
2609

2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
2623
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2624 2625
{
	struct mem_cgroup *memcg;
2626
	struct kmem_cache *memcg_cachep;
2627
	int kmemcg_id;
2628

2629
	VM_BUG_ON(!is_root_cache(cachep));
2630

2631
	if (current->memcg_kmem_skip_account)
2632 2633
		return cachep;

2634
	memcg = get_mem_cgroup_from_mm(current->mm);
2635
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2636
	if (kmemcg_id < 0)
2637
		goto out;
2638

2639
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2640 2641
	if (likely(memcg_cachep))
		return memcg_cachep;
2642 2643 2644 2645 2646 2647 2648 2649 2650

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2651 2652 2653
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2654
	 */
2655
	memcg_schedule_kmem_cache_create(memcg, cachep);
2656
out:
2657
	css_put(&memcg->css);
2658
	return cachep;
2659 2660
}

2661 2662 2663
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
2664
		css_put(&cachep->memcg_params.memcg->css);
2665 2666
}

2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
2688

2689
	memcg = get_mem_cgroup_from_mm(current->mm);
2690

2691
	if (!memcg_kmem_is_active(memcg)) {
2692 2693 2694 2695
		css_put(&memcg->css);
		return true;
	}

2696
	ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
2711
		memcg_uncharge_kmem(memcg, 1 << order);
2712 2713
		return;
	}
2714
	page->mem_cgroup = memcg;
2715 2716 2717 2718
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
2719
	struct mem_cgroup *memcg = page->mem_cgroup;
2720 2721 2722 2723

	if (!memcg)
		return;

2724
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2725

2726
	memcg_uncharge_kmem(memcg, 1 << order);
2727
	page->mem_cgroup = NULL;
2728
}
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739

struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
{
	struct mem_cgroup *memcg = NULL;
	struct kmem_cache *cachep;
	struct page *page;

	page = virt_to_head_page(ptr);
	if (PageSlab(page)) {
		cachep = page->slab_cache;
		if (!is_root_cache(cachep))
2740
			memcg = cachep->memcg_params.memcg;
2741 2742 2743 2744 2745 2746
	} else
		/* page allocated by alloc_kmem_pages */
		memcg = page->mem_cgroup;

	return memcg;
}
2747 2748
#endif /* CONFIG_MEMCG_KMEM */

2749 2750 2751 2752
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2753 2754 2755
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2756
 */
2757
void mem_cgroup_split_huge_fixup(struct page *head)
2758
{
2759
	int i;
2760

2761 2762
	if (mem_cgroup_disabled())
		return;
2763

2764
	for (i = 1; i < HPAGE_PMD_NR; i++)
2765
		head[i].mem_cgroup = head->mem_cgroup;
2766

2767
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2768
		       HPAGE_PMD_NR);
2769
}
2770
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2771

A
Andrew Morton 已提交
2772
#ifdef CONFIG_MEMCG_SWAP
2773 2774
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2775
{
2776 2777
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2778
}
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2791
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2792 2793 2794
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2795
				struct mem_cgroup *from, struct mem_cgroup *to)
2796 2797 2798
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2799 2800
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2801 2802 2803

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2804
		mem_cgroup_swap_statistics(to, true);
2805 2806 2807 2808 2809 2810
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2811
				struct mem_cgroup *from, struct mem_cgroup *to)
2812 2813 2814
{
	return -EINVAL;
}
2815
#endif
K
KAMEZAWA Hiroyuki 已提交
2816

2817
static DEFINE_MUTEX(memcg_limit_mutex);
2818

2819
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2820
				   unsigned long limit)
2821
{
2822 2823 2824
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2825
	int retry_count;
2826
	int ret;
2827 2828 2829 2830 2831 2832

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2833 2834
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2835

2836
	oldusage = page_counter_read(&memcg->memory);
2837

2838
	do {
2839 2840 2841 2842
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2843 2844 2845 2846

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2847
			ret = -EINVAL;
2848 2849
			break;
		}
2850 2851 2852 2853
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2854 2855 2856 2857

		if (!ret)
			break;

2858 2859
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2860
		curusage = page_counter_read(&memcg->memory);
2861
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2862
		if (curusage >= oldusage)
2863 2864 2865
			retry_count--;
		else
			oldusage = curusage;
2866 2867
	} while (retry_count);

2868 2869
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2870

2871 2872 2873
	return ret;
}

L
Li Zefan 已提交
2874
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2875
					 unsigned long limit)
2876
{
2877 2878 2879
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2880
	int retry_count;
2881
	int ret;
2882

2883
	/* see mem_cgroup_resize_res_limit */
2884 2885 2886 2887 2888 2889
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2890 2891 2892 2893
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2894 2895 2896 2897

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2898 2899 2900
			ret = -EINVAL;
			break;
		}
2901 2902 2903 2904
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2905 2906 2907 2908

		if (!ret)
			break;

2909 2910
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2911
		curusage = page_counter_read(&memcg->memsw);
2912
		/* Usage is reduced ? */
2913
		if (curusage >= oldusage)
2914
			retry_count--;
2915 2916
		else
			oldusage = curusage;
2917 2918
	} while (retry_count);

2919 2920
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2921

2922 2923 2924
	return ret;
}

2925 2926 2927 2928 2929 2930 2931 2932 2933
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2934
	unsigned long excess;
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2959
		spin_lock_irq(&mctz->lock);
2960
		__mem_cgroup_remove_exceeded(mz, mctz);
2961 2962 2963 2964 2965 2966

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2967 2968 2969
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2970
		excess = soft_limit_excess(mz->memcg);
2971 2972 2973 2974 2975 2976 2977 2978 2979
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2980
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2981
		spin_unlock_irq(&mctz->lock);
2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2999 3000 3001 3002 3003 3004
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
3005 3006
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3007 3008
	bool ret;

3009
	/*
3010 3011 3012 3013
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
3014
	 */
3015 3016 3017 3018 3019 3020
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3021 3022
}

3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

3033 3034
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3035
	/* try to free all pages in this cgroup */
3036
	while (nr_retries && page_counter_read(&memcg->memory)) {
3037
		int progress;
3038

3039 3040 3041
		if (signal_pending(current))
			return -EINTR;

3042 3043
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3044
		if (!progress) {
3045
			nr_retries--;
3046
			/* maybe some writeback is necessary */
3047
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3048
		}
3049 3050

	}
3051 3052

	return 0;
3053 3054
}

3055 3056 3057
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3058
{
3059
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3060

3061 3062
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3063
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3064 3065
}

3066 3067
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3068
{
3069
	return mem_cgroup_from_css(css)->use_hierarchy;
3070 3071
}

3072 3073
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3074 3075
{
	int retval = 0;
3076
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3077
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3078

3079
	mutex_lock(&memcg_create_mutex);
3080 3081 3082 3083

	if (memcg->use_hierarchy == val)
		goto out;

3084
	/*
3085
	 * If parent's use_hierarchy is set, we can't make any modifications
3086 3087 3088 3089 3090 3091
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3092
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3093
				(val == 1 || val == 0)) {
3094
		if (!memcg_has_children(memcg))
3095
			memcg->use_hierarchy = val;
3096 3097 3098 3099
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3100 3101

out:
3102
	mutex_unlock(&memcg_create_mutex);
3103 3104 3105 3106

	return retval;
}

3107 3108
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
{
	struct mem_cgroup *iter;
	long val = 0;

	/* Per-cpu values can be negative, use a signed accumulator */
	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
}

static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
{
	u64 val;

3126 3127 3128 3129 3130 3131
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
3132
		if (!swap)
3133
			val = page_counter_read(&memcg->memory);
3134
		else
3135
			val = page_counter_read(&memcg->memsw);
3136 3137 3138 3139
	}
	return val << PAGE_SHIFT;
}

3140 3141 3142 3143 3144 3145 3146
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3147

3148
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3149
			       struct cftype *cft)
B
Balbir Singh 已提交
3150
{
3151
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3152
	struct page_counter *counter;
3153

3154
	switch (MEMFILE_TYPE(cft->private)) {
3155
	case _MEM:
3156 3157
		counter = &memcg->memory;
		break;
3158
	case _MEMSWAP:
3159 3160
		counter = &memcg->memsw;
		break;
3161
	case _KMEM:
3162
		counter = &memcg->kmem;
3163
		break;
3164 3165 3166
	default:
		BUG();
	}
3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
			return mem_cgroup_usage(memcg, false);
		if (counter == &memcg->memsw)
			return mem_cgroup_usage(memcg, true);
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3186
}
3187 3188

#ifdef CONFIG_MEMCG_KMEM
3189 3190
static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long nr_pages)
3191 3192 3193 3194
{
	int err = 0;
	int memcg_id;

3195
	BUG_ON(memcg->kmemcg_id >= 0);
3196
	BUG_ON(memcg->kmem_acct_activated);
3197
	BUG_ON(memcg->kmem_acct_active);
3198

3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
3211
	mutex_lock(&memcg_create_mutex);
3212 3213
	if (cgroup_has_tasks(memcg->css.cgroup) ||
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
3214 3215 3216 3217
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
3218

3219
	memcg_id = memcg_alloc_cache_id();
3220 3221 3222 3223 3224 3225
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
V
Vladimir Davydov 已提交
3226 3227
	 * We couldn't have accounted to this cgroup, because it hasn't got
	 * activated yet, so this should succeed.
3228
	 */
3229
	err = page_counter_limit(&memcg->kmem, nr_pages);
3230 3231 3232 3233
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
V
Vladimir Davydov 已提交
3234 3235
	 * A memory cgroup is considered kmem-active as soon as it gets
	 * kmemcg_id. Setting the id after enabling static branching will
3236 3237 3238
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3239
	memcg->kmemcg_id = memcg_id;
3240
	memcg->kmem_acct_activated = true;
3241
	memcg->kmem_acct_active = true;
3242
out:
3243 3244 3245 3246
	return err;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3247
				   unsigned long limit)
3248 3249 3250
{
	int ret;

3251
	mutex_lock(&memcg_limit_mutex);
3252
	if (!memcg_kmem_is_active(memcg))
3253
		ret = memcg_activate_kmem(memcg, limit);
3254
	else
3255 3256
		ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
3257 3258 3259
	return ret;
}

3260
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3261
{
3262
	int ret = 0;
3263
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3264

3265 3266
	if (!parent)
		return 0;
3267

3268
	mutex_lock(&memcg_limit_mutex);
3269
	/*
3270 3271
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
3272
	 */
3273
	if (memcg_kmem_is_active(parent))
3274 3275
		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
	mutex_unlock(&memcg_limit_mutex);
3276
	return ret;
3277
}
3278 3279
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3280
				   unsigned long limit)
3281 3282 3283
{
	return -EINVAL;
}
3284
#endif /* CONFIG_MEMCG_KMEM */
3285

3286 3287 3288 3289
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3290 3291
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3292
{
3293
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3294
	unsigned long nr_pages;
3295 3296
	int ret;

3297
	buf = strstrip(buf);
3298
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3299 3300
	if (ret)
		return ret;
3301

3302
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3303
	case RES_LIMIT:
3304 3305 3306 3307
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3308 3309 3310
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3311
			break;
3312 3313
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3314
			break;
3315 3316 3317 3318
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
		}
3319
		break;
3320 3321 3322
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3323 3324
		break;
	}
3325
	return ret ?: nbytes;
B
Balbir Singh 已提交
3326 3327
}

3328 3329
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3330
{
3331
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3332
	struct page_counter *counter;
3333

3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
	default:
		BUG();
	}
3347

3348
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3349
	case RES_MAX_USAGE:
3350
		page_counter_reset_watermark(counter);
3351 3352
		break;
	case RES_FAILCNT:
3353
		counter->failcnt = 0;
3354
		break;
3355 3356
	default:
		BUG();
3357
	}
3358

3359
	return nbytes;
3360 3361
}

3362
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3363 3364
					struct cftype *cft)
{
3365
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3366 3367
}

3368
#ifdef CONFIG_MMU
3369
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3370 3371
					struct cftype *cft, u64 val)
{
3372
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3373

3374
	if (val & ~MOVE_MASK)
3375
		return -EINVAL;
3376

3377
	/*
3378 3379 3380 3381
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3382
	 */
3383
	memcg->move_charge_at_immigrate = val;
3384 3385
	return 0;
}
3386
#else
3387
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3388 3389 3390 3391 3392
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3393

3394
#ifdef CONFIG_NUMA
3395
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3396
{
3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3409
	int nid;
3410
	unsigned long nr;
3411
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3412

3413 3414 3415 3416 3417 3418 3419 3420 3421
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3422 3423
	}

3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3439 3440 3441 3442 3443 3444
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3445
static int memcg_stat_show(struct seq_file *m, void *v)
3446
{
3447
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3448
	unsigned long memory, memsw;
3449 3450
	struct mem_cgroup *mi;
	unsigned int i;
3451

3452 3453 3454 3455
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3456 3457
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3458
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3459
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3460
			continue;
3461 3462
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3463
	}
L
Lee Schermerhorn 已提交
3464

3465 3466 3467 3468 3469 3470 3471 3472
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3473
	/* Hierarchical information */
3474 3475 3476 3477
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3478
	}
3479 3480 3481 3482 3483
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
	if (do_swap_account)
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3484

3485 3486 3487
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

3488
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3489
			continue;
3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3510
	}
K
KAMEZAWA Hiroyuki 已提交
3511

K
KOSAKI Motohiro 已提交
3512 3513 3514 3515
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3516
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3517 3518 3519 3520 3521
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3522
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3523
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3524

3525 3526 3527 3528
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3529
			}
3530 3531 3532 3533
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3534 3535 3536
	}
#endif

3537 3538 3539
	return 0;
}

3540 3541
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3542
{
3543
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3544

3545
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3546 3547
}

3548 3549
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3550
{
3551
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3552

3553
	if (val > 100)
K
KOSAKI Motohiro 已提交
3554 3555
		return -EINVAL;

3556
	if (css->parent)
3557 3558 3559
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3560

K
KOSAKI Motohiro 已提交
3561 3562 3563
	return 0;
}

3564 3565 3566
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3567
	unsigned long usage;
3568 3569 3570 3571
	int i;

	rcu_read_lock();
	if (!swap)
3572
		t = rcu_dereference(memcg->thresholds.primary);
3573
	else
3574
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3575 3576 3577 3578

	if (!t)
		goto unlock;

3579
	usage = mem_cgroup_usage(memcg, swap);
3580 3581

	/*
3582
	 * current_threshold points to threshold just below or equal to usage.
3583 3584 3585
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3586
	i = t->current_threshold;
3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3610
	t->current_threshold = i - 1;
3611 3612 3613 3614 3615 3616
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3617 3618 3619 3620 3621 3622 3623
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3624 3625 3626 3627 3628 3629 3630
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3631 3632 3633 3634 3635 3636 3637
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3638 3639
}

3640
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3641 3642 3643
{
	struct mem_cgroup_eventfd_list *ev;

3644 3645
	spin_lock(&memcg_oom_lock);

3646
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3647
		eventfd_signal(ev->eventfd, 1);
3648 3649

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3650 3651 3652
	return 0;
}

3653
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3654
{
K
KAMEZAWA Hiroyuki 已提交
3655 3656
	struct mem_cgroup *iter;

3657
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3658
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3659 3660
}

3661
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3662
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3663
{
3664 3665
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3666 3667
	unsigned long threshold;
	unsigned long usage;
3668
	int i, size, ret;
3669

3670
	ret = page_counter_memparse(args, "-1", &threshold);
3671 3672 3673 3674
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3675

3676
	if (type == _MEM) {
3677
		thresholds = &memcg->thresholds;
3678
		usage = mem_cgroup_usage(memcg, false);
3679
	} else if (type == _MEMSWAP) {
3680
		thresholds = &memcg->memsw_thresholds;
3681
		usage = mem_cgroup_usage(memcg, true);
3682
	} else
3683 3684 3685
		BUG();

	/* Check if a threshold crossed before adding a new one */
3686
	if (thresholds->primary)
3687 3688
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3689
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3690 3691

	/* Allocate memory for new array of thresholds */
3692
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3693
			GFP_KERNEL);
3694
	if (!new) {
3695 3696 3697
		ret = -ENOMEM;
		goto unlock;
	}
3698
	new->size = size;
3699 3700

	/* Copy thresholds (if any) to new array */
3701 3702
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3703
				sizeof(struct mem_cgroup_threshold));
3704 3705
	}

3706
	/* Add new threshold */
3707 3708
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3709 3710

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3711
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3712 3713 3714
			compare_thresholds, NULL);

	/* Find current threshold */
3715
	new->current_threshold = -1;
3716
	for (i = 0; i < size; i++) {
3717
		if (new->entries[i].threshold <= usage) {
3718
			/*
3719 3720
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3721 3722
			 * it here.
			 */
3723
			++new->current_threshold;
3724 3725
		} else
			break;
3726 3727
	}

3728 3729 3730 3731 3732
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3733

3734
	/* To be sure that nobody uses thresholds */
3735 3736 3737 3738 3739 3740 3741 3742
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3743
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3744 3745
	struct eventfd_ctx *eventfd, const char *args)
{
3746
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3747 3748
}

3749
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3750 3751
	struct eventfd_ctx *eventfd, const char *args)
{
3752
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3753 3754
}

3755
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3756
	struct eventfd_ctx *eventfd, enum res_type type)
3757
{
3758 3759
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3760
	unsigned long usage;
3761
	int i, j, size;
3762 3763

	mutex_lock(&memcg->thresholds_lock);
3764 3765

	if (type == _MEM) {
3766
		thresholds = &memcg->thresholds;
3767
		usage = mem_cgroup_usage(memcg, false);
3768
	} else if (type == _MEMSWAP) {
3769
		thresholds = &memcg->memsw_thresholds;
3770
		usage = mem_cgroup_usage(memcg, true);
3771
	} else
3772 3773
		BUG();

3774 3775 3776
	if (!thresholds->primary)
		goto unlock;

3777 3778 3779 3780
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3781 3782 3783
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3784 3785 3786
			size++;
	}

3787
	new = thresholds->spare;
3788

3789 3790
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3791 3792
		kfree(new);
		new = NULL;
3793
		goto swap_buffers;
3794 3795
	}

3796
	new->size = size;
3797 3798

	/* Copy thresholds and find current threshold */
3799 3800 3801
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3802 3803
			continue;

3804
		new->entries[j] = thresholds->primary->entries[i];
3805
		if (new->entries[j].threshold <= usage) {
3806
			/*
3807
			 * new->current_threshold will not be used
3808 3809 3810
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3811
			++new->current_threshold;
3812 3813 3814 3815
		}
		j++;
	}

3816
swap_buffers:
3817 3818
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3819 3820 3821 3822 3823 3824
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

3825
	rcu_assign_pointer(thresholds->primary, new);
3826

3827
	/* To be sure that nobody uses thresholds */
3828
	synchronize_rcu();
3829
unlock:
3830 3831
	mutex_unlock(&memcg->thresholds_lock);
}
3832

3833
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3834 3835
	struct eventfd_ctx *eventfd)
{
3836
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3837 3838
}

3839
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3840 3841
	struct eventfd_ctx *eventfd)
{
3842
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3843 3844
}

3845
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3846
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3847 3848 3849 3850 3851 3852 3853
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3854
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3855 3856 3857 3858 3859

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3860
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
3861
		eventfd_signal(eventfd, 1);
3862
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3863 3864 3865 3866

	return 0;
}

3867
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3868
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3869 3870 3871
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3872
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3873

3874
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3875 3876 3877 3878 3879 3880
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3881
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3882 3883
}

3884
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3885
{
3886
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3887

3888 3889
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3890 3891 3892
	return 0;
}

3893
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3894 3895
	struct cftype *cft, u64 val)
{
3896
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3897 3898

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3899
	if (!css->parent || !((val == 0) || (val == 1)))
3900 3901
		return -EINVAL;

3902
	memcg->oom_kill_disable = val;
3903
	if (!val)
3904
		memcg_oom_recover(memcg);
3905

3906 3907 3908
	return 0;
}

A
Andrew Morton 已提交
3909
#ifdef CONFIG_MEMCG_KMEM
3910
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3911
{
3912 3913 3914 3915 3916
	int ret;

	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
3917

3918
	return mem_cgroup_sockets_init(memcg, ss);
3919
}
3920

3921 3922
static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
{
3923 3924 3925 3926
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
	if (!memcg->kmem_acct_active)
		return;

	/*
	 * Clear the 'active' flag before clearing memcg_caches arrays entries.
	 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
	 * guarantees no cache will be created for this cgroup after we are
	 * done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_acct_active = false;

	memcg_deactivate_kmem_caches(memcg);
3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
3965 3966
}

3967
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
3968
{
3969 3970 3971 3972 3973
	if (memcg->kmem_acct_activated) {
		memcg_destroy_kmem_caches(memcg);
		static_key_slow_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
3974
	mem_cgroup_sockets_destroy(memcg);
3975
}
3976
#else
3977
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3978 3979 3980
{
	return 0;
}
G
Glauber Costa 已提交
3981

3982 3983 3984 3985
static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
{
}

3986 3987 3988
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}
3989 3990
#endif

3991 3992 3993 3994 3995 3996 3997
#ifdef CONFIG_CGROUP_WRITEBACK

struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
{
	return &memcg->cgwb_list;
}

T
Tejun Heo 已提交
3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

4008 4009 4010 4011 4012
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

4034 4035 4036 4037
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

4038 4039
#endif	/* CONFIG_CGROUP_WRITEBACK */

4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4053 4054 4055 4056 4057
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4058
static void memcg_event_remove(struct work_struct *work)
4059
{
4060 4061
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4062
	struct mem_cgroup *memcg = event->memcg;
4063 4064 4065

	remove_wait_queue(event->wqh, &event->wait);

4066
	event->unregister_event(memcg, event->eventfd);
4067 4068 4069 4070 4071 4072

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4073
	css_put(&memcg->css);
4074 4075 4076 4077 4078 4079 4080
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4081 4082
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
4083
{
4084 4085
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4086
	struct mem_cgroup *memcg = event->memcg;
4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4099
		spin_lock(&memcg->event_list_lock);
4100 4101 4102 4103 4104 4105 4106 4107
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4108
		spin_unlock(&memcg->event_list_lock);
4109 4110 4111 4112 4113
	}

	return 0;
}

4114
static void memcg_event_ptable_queue_proc(struct file *file,
4115 4116
		wait_queue_head_t *wqh, poll_table *pt)
{
4117 4118
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4119 4120 4121 4122 4123 4124

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4125 4126
 * DO NOT USE IN NEW FILES.
 *
4127 4128 4129 4130 4131
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4132 4133
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4134
{
4135
	struct cgroup_subsys_state *css = of_css(of);
4136
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4137
	struct mem_cgroup_event *event;
4138 4139 4140 4141
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4142
	const char *name;
4143 4144 4145
	char *endp;
	int ret;

4146 4147 4148
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4149 4150
	if (*endp != ' ')
		return -EINVAL;
4151
	buf = endp + 1;
4152

4153
	cfd = simple_strtoul(buf, &endp, 10);
4154 4155
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4156
	buf = endp + 1;
4157 4158 4159 4160 4161

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4162
	event->memcg = memcg;
4163
	INIT_LIST_HEAD(&event->list);
4164 4165 4166
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4192 4193 4194 4195 4196
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4197 4198
	 *
	 * DO NOT ADD NEW FILES.
4199
	 */
A
Al Viro 已提交
4200
	name = cfile.file->f_path.dentry->d_name.name;
4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4212 4213
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4214 4215 4216 4217 4218
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4219
	/*
4220 4221 4222
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4223
	 */
A
Al Viro 已提交
4224
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4225
					       &memory_cgrp_subsys);
4226
	ret = -EINVAL;
4227
	if (IS_ERR(cfile_css))
4228
		goto out_put_cfile;
4229 4230
	if (cfile_css != css) {
		css_put(cfile_css);
4231
		goto out_put_cfile;
4232
	}
4233

4234
	ret = event->register_event(memcg, event->eventfd, buf);
4235 4236 4237 4238 4239
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

4240 4241 4242
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4243 4244 4245 4246

	fdput(cfile);
	fdput(efile);

4247
	return nbytes;
4248 4249

out_put_css:
4250
	css_put(css);
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4263
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4264
	{
4265
		.name = "usage_in_bytes",
4266
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4267
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4268
	},
4269 4270
	{
		.name = "max_usage_in_bytes",
4271
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4272
		.write = mem_cgroup_reset,
4273
		.read_u64 = mem_cgroup_read_u64,
4274
	},
B
Balbir Singh 已提交
4275
	{
4276
		.name = "limit_in_bytes",
4277
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4278
		.write = mem_cgroup_write,
4279
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4280
	},
4281 4282 4283
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4284
		.write = mem_cgroup_write,
4285
		.read_u64 = mem_cgroup_read_u64,
4286
	},
B
Balbir Singh 已提交
4287 4288
	{
		.name = "failcnt",
4289
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4290
		.write = mem_cgroup_reset,
4291
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4292
	},
4293 4294
	{
		.name = "stat",
4295
		.seq_show = memcg_stat_show,
4296
	},
4297 4298
	{
		.name = "force_empty",
4299
		.write = mem_cgroup_force_empty_write,
4300
	},
4301 4302 4303 4304 4305
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4306
	{
4307
		.name = "cgroup.event_control",		/* XXX: for compat */
4308
		.write = memcg_write_event_control,
4309 4310 4311
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
4312 4313 4314 4315 4316
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4317 4318 4319 4320 4321
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4322 4323
	{
		.name = "oom_control",
4324
		.seq_show = mem_cgroup_oom_control_read,
4325
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4326 4327
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4328 4329 4330
	{
		.name = "pressure_level",
	},
4331 4332 4333
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4334
		.seq_show = memcg_numa_stat_show,
4335 4336
	},
#endif
4337 4338 4339 4340
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4341
		.write = mem_cgroup_write,
4342
		.read_u64 = mem_cgroup_read_u64,
4343 4344 4345 4346
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4347
		.read_u64 = mem_cgroup_read_u64,
4348 4349 4350 4351
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4352
		.write = mem_cgroup_reset,
4353
		.read_u64 = mem_cgroup_read_u64,
4354 4355 4356 4357
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4358
		.write = mem_cgroup_reset,
4359
		.read_u64 = mem_cgroup_read_u64,
4360
	},
4361 4362 4363
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4364 4365 4366 4367
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4368 4369
	},
#endif
4370
#endif
4371
	{ },	/* terminate */
4372
};
4373

4374
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4375 4376
{
	struct mem_cgroup_per_node *pn;
4377
	struct mem_cgroup_per_zone *mz;
4378
	int zone, tmp = node;
4379 4380 4381 4382 4383 4384 4385 4386
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4387 4388
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4389
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4390 4391
	if (!pn)
		return 1;
4392 4393 4394

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4395
		lruvec_init(&mz->lruvec);
4396 4397
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4398
		mz->memcg = memcg;
4399
	}
4400
	memcg->nodeinfo[node] = pn;
4401 4402 4403
	return 0;
}

4404
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4405
{
4406
	kfree(memcg->nodeinfo[node]);
4407 4408
}

4409 4410
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4411
	struct mem_cgroup *memcg;
4412
	size_t size;
4413

4414 4415
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4416

4417
	memcg = kzalloc(size, GFP_KERNEL);
4418
	if (!memcg)
4419 4420
		return NULL;

4421 4422
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4423
		goto out_free;
T
Tejun Heo 已提交
4424 4425 4426 4427

	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto out_free_stat;

4428 4429
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4430

T
Tejun Heo 已提交
4431 4432
out_free_stat:
	free_percpu(memcg->stat);
4433
out_free:
4434
	kfree(memcg);
4435
	return NULL;
4436 4437
}

4438
/*
4439 4440 4441 4442 4443 4444 4445 4446
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
4447
 */
4448 4449

static void __mem_cgroup_free(struct mem_cgroup *memcg)
4450
{
4451
	int node;
4452

4453
	mem_cgroup_remove_from_trees(memcg);
4454 4455 4456 4457 4458

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);
T
Tejun Heo 已提交
4459
	memcg_wb_domain_exit(memcg);
4460
	kfree(memcg);
4461
}
4462

4463 4464 4465
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4466
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4467
{
4468
	if (!memcg->memory.parent)
4469
		return NULL;
4470
	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4471
}
G
Glauber Costa 已提交
4472
EXPORT_SYMBOL(parent_mem_cgroup);
4473

L
Li Zefan 已提交
4474
static struct cgroup_subsys_state * __ref
4475
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
4476
{
4477
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4478
	long error = -ENOMEM;
4479
	int node;
B
Balbir Singh 已提交
4480

4481 4482
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4483
		return ERR_PTR(error);
4484

B
Bob Liu 已提交
4485
	for_each_node(node)
4486
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4487
			goto free_out;
4488

4489
	/* root ? */
4490
	if (parent_css == NULL) {
4491
		root_mem_cgroup = memcg;
T
Tejun Heo 已提交
4492
		mem_cgroup_root_css = &memcg->css;
4493
		page_counter_init(&memcg->memory, NULL);
4494
		memcg->high = PAGE_COUNTER_MAX;
4495
		memcg->soft_limit = PAGE_COUNTER_MAX;
4496 4497
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4498
	}
4499

4500 4501 4502 4503 4504
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4505
	vmpressure_init(&memcg->vmpressure);
4506 4507
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
V
Vladimir Davydov 已提交
4508 4509 4510
#ifdef CONFIG_MEMCG_KMEM
	memcg->kmemcg_id = -1;
#endif
4511 4512 4513
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4514 4515 4516 4517 4518 4519 4520 4521
	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
4522
mem_cgroup_css_online(struct cgroup_subsys_state *css)
4523
{
4524
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4525
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4526
	int ret;
4527

4528
	if (css->id > MEM_CGROUP_ID_MAX)
4529 4530
		return -ENOSPC;

T
Tejun Heo 已提交
4531
	if (!parent)
4532 4533
		return 0;

4534
	mutex_lock(&memcg_create_mutex);
4535 4536 4537 4538 4539 4540

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
4541
		page_counter_init(&memcg->memory, &parent->memory);
4542
		memcg->high = PAGE_COUNTER_MAX;
4543
		memcg->soft_limit = PAGE_COUNTER_MAX;
4544 4545
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4546

4547
		/*
4548 4549
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
4550
		 */
4551
	} else {
4552
		page_counter_init(&memcg->memory, NULL);
4553
		memcg->high = PAGE_COUNTER_MAX;
4554
		memcg->soft_limit = PAGE_COUNTER_MAX;
4555 4556
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4557 4558 4559 4560 4561
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4562
		if (parent != root_mem_cgroup)
4563
			memory_cgrp_subsys.broken_hierarchy = true;
4564
	}
4565
	mutex_unlock(&memcg_create_mutex);
4566

4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
	if (ret)
		return ret;

	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
4579 4580
}

4581
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4582
{
4583
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4584
	struct mem_cgroup_event *event, *tmp;
4585 4586 4587 4588 4589 4590

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4591 4592
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4593 4594 4595
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4596
	spin_unlock(&memcg->event_list_lock);
4597

4598
	vmpressure_cleanup(&memcg->vmpressure);
4599 4600

	memcg_deactivate_kmem(memcg);
4601 4602

	wb_memcg_offline(memcg);
4603 4604
}

4605
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4606
{
4607
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4608

4609
	memcg_destroy_kmem(memcg);
4610
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4611 4612
}

4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4630 4631 4632
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4633 4634
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4635
	memcg->soft_limit = PAGE_COUNTER_MAX;
4636
	memcg_wb_domain_size_changed(memcg);
4637 4638
}

4639
#ifdef CONFIG_MMU
4640
/* Handlers for move charge at task migration. */
4641
static int mem_cgroup_do_precharge(unsigned long count)
4642
{
4643
	int ret;
4644 4645

	/* Try a single bulk charge without reclaim first */
4646
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4647
	if (!ret) {
4648 4649 4650
		mc.precharge += count;
		return ret;
	}
4651
	if (ret == -EINTR) {
4652
		cancel_charge(root_mem_cgroup, count);
4653 4654
		return ret;
	}
4655 4656

	/* Try charges one by one with reclaim */
4657
	while (count--) {
4658
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4659 4660 4661
		/*
		 * In case of failure, any residual charges against
		 * mc.to will be dropped by mem_cgroup_clear_mc()
4662 4663
		 * later on.  However, cancel any charges that are
		 * bypassed to root right away or they'll be lost.
4664
		 */
4665
		if (ret == -EINTR)
4666
			cancel_charge(root_mem_cgroup, 1);
4667 4668
		if (ret)
			return ret;
4669
		mc.precharge++;
4670
		cond_resched();
4671
	}
4672
	return 0;
4673 4674 4675
}

/**
4676
 * get_mctgt_type - get target type of moving charge
4677 4678 4679
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4680
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4681 4682 4683 4684 4685 4686
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4687 4688 4689
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4690 4691 4692 4693 4694
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4695
	swp_entry_t	ent;
4696 4697 4698
};

enum mc_target_type {
4699
	MC_TARGET_NONE = 0,
4700
	MC_TARGET_PAGE,
4701
	MC_TARGET_SWAP,
4702 4703
};

D
Daisuke Nishimura 已提交
4704 4705
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4706
{
D
Daisuke Nishimura 已提交
4707
	struct page *page = vm_normal_page(vma, addr, ptent);
4708

D
Daisuke Nishimura 已提交
4709 4710 4711
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4712
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4713
			return NULL;
4714 4715 4716 4717
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4718 4719 4720 4721 4722 4723
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4724
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4725 4726 4727 4728 4729 4730
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4731
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4732
		return NULL;
4733 4734 4735 4736
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4737
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
4738 4739 4740 4741 4742
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
4743 4744 4745 4746 4747 4748 4749
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4750

4751 4752 4753 4754 4755 4756 4757 4758 4759
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4760
	if (!(mc.flags & MOVE_FILE))
4761 4762 4763
		return NULL;

	mapping = vma->vm_file->f_mapping;
4764
	pgoff = linear_page_index(vma, addr);
4765 4766

	/* page is moved even if it's not RSS of this task(page-faulted). */
4767 4768
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4781
#endif
4782 4783 4784
	return page;
}

4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
 * @nr_pages: number of regular pages (>1 for huge pages)
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
 * - page is not on LRU (isolate_page() is useful.)
 * - compound_lock is held when nr_pages > 1
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
	int ret;
4806
	bool anon;
4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
	if (nr_pages > 1 && !PageTransHuge(page))
		goto out;

	/*
	 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
	 * of its source page while we change it: page migration takes
	 * both pages off the LRU, but page cache replacement doesn't.
	 */
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4832 4833
	anon = PageAnon(page);

4834 4835
	spin_lock_irqsave(&from->move_lock, flags);

4836
	if (!anon && page_mapped(page)) {
4837 4838 4839 4840 4841 4842
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
		}
	}

4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
	memcg_check_events(to, page);
	mem_cgroup_charge_statistics(from, page, -nr_pages);
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4890
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4891 4892 4893
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4894
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4895 4896 4897 4898 4899 4900
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4901
	else if (pte_none(ptent))
4902
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4903 4904

	if (!page && !ent.val)
4905
		return ret;
4906 4907
	if (page) {
		/*
4908
		 * Do only loose check w/o serialization.
4909
		 * mem_cgroup_move_account() checks the page is valid or
4910
		 * not under LRU exclusion.
4911
		 */
4912
		if (page->mem_cgroup == mc.from) {
4913 4914 4915 4916 4917 4918 4919
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4920 4921
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4922
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4923 4924 4925
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4926 4927 4928 4929
	}
	return ret;
}

4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4943
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4944
	if (!(mc.flags & MOVE_ANON))
4945
		return ret;
4946
	if (page->mem_cgroup == mc.from) {
4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4963 4964 4965 4966
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4967
	struct vm_area_struct *vma = walk->vma;
4968 4969 4970
	pte_t *pte;
	spinlock_t *ptl;

4971
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4972 4973
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4974
		spin_unlock(ptl);
4975
		return 0;
4976
	}
4977

4978 4979
	if (pmd_trans_unstable(pmd))
		return 0;
4980 4981
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4982
		if (get_mctgt_type(vma, addr, *pte, NULL))
4983 4984 4985 4986
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4987 4988 4989
	return 0;
}

4990 4991 4992 4993
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4994 4995 4996 4997
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4998
	down_read(&mm->mmap_sem);
4999
	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
5000
	up_read(&mm->mmap_sem);
5001 5002 5003 5004 5005 5006 5007 5008 5009

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5010 5011 5012 5013 5014
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5015 5016
}

5017 5018
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5019
{
5020 5021 5022
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5023
	/* we must uncharge all the leftover precharges from mc.to */
5024
	if (mc.precharge) {
5025
		cancel_charge(mc.to, mc.precharge);
5026 5027 5028 5029 5030 5031 5032
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5033
		cancel_charge(mc.from, mc.moved_charge);
5034
		mc.moved_charge = 0;
5035
	}
5036 5037 5038
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5039
		if (!mem_cgroup_is_root(mc.from))
5040
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5041

5042
		/*
5043 5044
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5045
		 */
5046
		if (!mem_cgroup_is_root(mc.to))
5047 5048
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5049
		css_put_many(&mc.from->css, mc.moved_swap);
5050

L
Li Zefan 已提交
5051
		/* we've already done css_get(mc.to) */
5052 5053
		mc.moved_swap = 0;
	}
5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5067
	spin_lock(&mc.lock);
5068 5069
	mc.from = NULL;
	mc.to = NULL;
5070
	spin_unlock(&mc.lock);
5071 5072
}

5073
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5074
				 struct cgroup_taskset *tset)
5075
{
5076
	struct task_struct *p = cgroup_taskset_first(tset);
5077
	int ret = 0;
5078
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5079
	unsigned long move_flags;
5080

5081 5082 5083 5084 5085
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
5086
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5087
	if (move_flags) {
5088 5089 5090
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5091
		VM_BUG_ON(from == memcg);
5092 5093 5094 5095 5096

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5097 5098 5099 5100
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5101
			VM_BUG_ON(mc.moved_charge);
5102
			VM_BUG_ON(mc.moved_swap);
5103

5104
			spin_lock(&mc.lock);
5105
			mc.from = from;
5106
			mc.to = memcg;
5107
			mc.flags = move_flags;
5108
			spin_unlock(&mc.lock);
5109
			/* We set mc.moving_task later */
5110 5111 5112 5113

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5114 5115
		}
		mmput(mm);
5116 5117 5118 5119
	}
	return ret;
}

5120
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5121
				     struct cgroup_taskset *tset)
5122
{
5123 5124
	if (mc.to)
		mem_cgroup_clear_mc();
5125 5126
}

5127 5128 5129
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5130
{
5131
	int ret = 0;
5132
	struct vm_area_struct *vma = walk->vma;
5133 5134
	pte_t *pte;
	spinlock_t *ptl;
5135 5136 5137
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5138

5139 5140 5141 5142 5143 5144 5145 5146 5147 5148
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
5149
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5150
		if (mc.precharge < HPAGE_PMD_NR) {
5151
			spin_unlock(ptl);
5152 5153 5154 5155 5156 5157 5158
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5159
							     mc.from, mc.to)) {
5160 5161 5162 5163 5164 5165 5166
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
5167
		spin_unlock(ptl);
5168
		return 0;
5169 5170
	}

5171 5172
	if (pmd_trans_unstable(pmd))
		return 0;
5173 5174 5175 5176
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5177
		swp_entry_t ent;
5178 5179 5180 5181

		if (!mc.precharge)
			break;

5182
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5183 5184 5185 5186
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
5187
			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5188
				mc.precharge--;
5189 5190
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5191 5192
			}
			putback_lru_page(page);
5193
put:			/* get_mctgt_type() gets the page */
5194 5195
			put_page(page);
			break;
5196 5197
		case MC_TARGET_SWAP:
			ent = target.ent;
5198
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5199
				mc.precharge--;
5200 5201 5202
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5203
			break;
5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5218
		ret = mem_cgroup_do_precharge(1);
5219 5220 5221 5222 5223 5224 5225 5226 5227
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
5228 5229 5230 5231
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
		.mm = mm,
	};
5232 5233

	lru_add_drain_all();
5234 5235 5236 5237 5238 5239 5240
	/*
	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
	 * move_lock while we're moving its pages to another memcg.
	 * Then wait for already started RCU-only updates to finish.
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5254 5255 5256 5257 5258
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5259
	up_read(&mm->mmap_sem);
5260
	atomic_dec(&mc.from->moving_account);
5261 5262
}

5263
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5264
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5265
{
5266
	struct task_struct *p = cgroup_taskset_first(tset);
5267
	struct mm_struct *mm = get_task_mm(p);
5268 5269

	if (mm) {
5270 5271
		if (mc.to)
			mem_cgroup_move_charge(mm);
5272 5273
		mmput(mm);
	}
5274 5275
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5276
}
5277
#else	/* !CONFIG_MMU */
5278
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5279
				 struct cgroup_taskset *tset)
5280 5281 5282
{
	return 0;
}
5283
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5284
				     struct cgroup_taskset *tset)
5285 5286
{
}
5287
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5288
				 struct cgroup_taskset *tset)
5289 5290 5291
{
}
#endif
B
Balbir Singh 已提交
5292

5293 5294
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5295 5296
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5297
 */
5298
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5299 5300
{
	/*
5301
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5302 5303 5304
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5305
	if (cgroup_on_dfl(root_css->cgroup))
5306 5307 5308
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5309 5310
}

5311 5312 5313 5314 5315 5316 5317 5318 5319
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
	return mem_cgroup_usage(mem_cgroup_from_css(css), false);
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5320
	unsigned long low = READ_ONCE(memcg->low);
5321 5322

	if (low == PAGE_COUNTER_MAX)
5323
		seq_puts(m, "max\n");
5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5338
	err = page_counter_memparse(buf, "max", &low);
5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5350
	unsigned long high = READ_ONCE(memcg->high);
5351 5352

	if (high == PAGE_COUNTER_MAX)
5353
		seq_puts(m, "max\n");
5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
5368
	err = page_counter_memparse(buf, "max", &high);
5369 5370 5371 5372 5373
	if (err)
		return err;

	memcg->high = high;

5374
	memcg_wb_domain_size_changed(memcg);
5375 5376 5377 5378 5379 5380
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5381
	unsigned long max = READ_ONCE(memcg->memory.limit);
5382 5383

	if (max == PAGE_COUNTER_MAX)
5384
		seq_puts(m, "max\n");
5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
5399
	err = page_counter_memparse(buf, "max", &max);
5400 5401 5402 5403 5404 5405 5406
	if (err)
		return err;

	err = mem_cgroup_resize_limit(memcg, max);
	if (err)
		return err;

5407
	memcg_wb_domain_size_changed(memcg);
5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

static struct cftype memory_files[] = {
	{
		.name = "current",
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_events_show,
	},
	{ }	/* terminate */
};

5454
struct cgroup_subsys memory_cgrp_subsys = {
5455
	.css_alloc = mem_cgroup_css_alloc,
5456
	.css_online = mem_cgroup_css_online,
5457 5458
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
5459
	.css_reset = mem_cgroup_css_reset,
5460 5461
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5462
	.attach = mem_cgroup_move_task,
5463
	.bind = mem_cgroup_bind,
5464 5465
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5466
	.early_init = 0,
B
Balbir Singh 已提交
5467
};
5468

5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503
/**
 * mem_cgroup_events - count memory events against a cgroup
 * @memcg: the memory cgroup
 * @idx: the event index
 * @nr: the number of events to account for
 */
void mem_cgroup_events(struct mem_cgroup *memcg,
		       enum mem_cgroup_events_index idx,
		       unsigned int nr)
{
	this_cpu_add(memcg->stat->events[idx], nr);
}

/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5504
	if (page_counter_read(&memcg->memory) >= memcg->low)
5505 5506 5507 5508 5509 5510 5511 5512
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5513
		if (page_counter_read(&memcg->memory) >= memcg->low)
5514 5515 5516 5517 5518
			return false;
	}
	return true;
}

5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5554
		if (page->mem_cgroup)
5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614
			goto out;
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (do_swap_account && PageSwapCache(page))
		memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);

	if (ret == -EINTR) {
		memcg = root_mem_cgroup;
		ret = 0;
	}
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5615 5616
	commit_charge(page, memcg, lrucare);

5617 5618 5619 5620 5621
	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

5622 5623 5624 5625
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666

	if (do_swap_account && PageSwapCache(page)) {
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

5667 5668 5669 5670
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5671
	unsigned long nr_pages = nr_anon + nr_file;
5672 5673
	unsigned long flags;

5674
	if (!mem_cgroup_is_root(memcg)) {
5675 5676 5677
		page_counter_uncharge(&memcg->memory, nr_pages);
		if (do_swap_account)
			page_counter_uncharge(&memcg->memsw, nr_pages);
5678 5679
		memcg_oom_recover(memcg);
	}
5680 5681 5682 5683 5684 5685

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5686
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5687 5688
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5689 5690

	if (!mem_cgroup_is_root(memcg))
5691
		css_put_many(&memcg->css, nr_pages);
5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5714
		if (!page->mem_cgroup)
5715 5716 5717 5718
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5719
		 * page->mem_cgroup at this point, we have fully
5720
		 * exclusive access to the page.
5721 5722
		 */

5723
		if (memcg != page->mem_cgroup) {
5724
			if (memcg) {
5725 5726 5727
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5728
			}
5729
			memcg = page->mem_cgroup;
5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5743
		page->mem_cgroup = NULL;
5744 5745 5746 5747 5748

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5749 5750
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5751 5752
}

5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5765
	/* Don't touch page->lru of any random page, pre-check: */
5766
	if (!page->mem_cgroup)
5767 5768
		return;

5769 5770 5771
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5772

5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5784

5785 5786
	if (!list_empty(page_list))
		uncharge_list(page_list);
5787 5788 5789 5790 5791 5792
}

/**
 * mem_cgroup_migrate - migrate a charge to another page
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
5793
 * @lrucare: either or both pages might be on the LRU already
5794 5795 5796 5797 5798 5799 5800 5801
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
			bool lrucare)
{
5802
	struct mem_cgroup *memcg;
5803 5804 5805 5806 5807 5808 5809
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5810 5811
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5812 5813 5814 5815 5816

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5817
	if (newpage->mem_cgroup)
5818 5819
		return;

5820 5821 5822 5823 5824 5825
	/*
	 * Swapcache readahead pages can get migrated before being
	 * charged, and migration from compaction can happen to an
	 * uncharged page when the PFN walker finds a page that
	 * reclaim just put back on the LRU but has not released yet.
	 */
5826
	memcg = oldpage->mem_cgroup;
5827
	if (!memcg)
5828 5829 5830 5831 5832
		return;

	if (lrucare)
		lock_page_lru(oldpage, &isolated);

5833
	oldpage->mem_cgroup = NULL;
5834 5835 5836 5837

	if (lrucare)
		unlock_page_lru(oldpage, isolated);

5838
	commit_charge(newpage, memcg, lrucare);
5839 5840
}

5841
/*
5842 5843 5844 5845 5846 5847
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5848 5849 5850
 */
static int __init mem_cgroup_init(void)
{
5851 5852
	int cpu, node;

5853
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;
		int zone;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			struct mem_cgroup_tree_per_zone *rtpz;

			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5876 5877 5878
	return 0;
}
subsys_initcall(mem_cgroup_init);
5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936

#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

	if (!do_swap_account)
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

	/* XXX: caller holds IRQ-safe mapping->tree_lock */
	VM_BUG_ON(!irqs_disabled());

	mem_cgroup_charge_statistics(memcg, page, -1);
	memcg_check_events(memcg, page);
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

	if (!do_swap_account)
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
5937
	memcg = mem_cgroup_from_id(id);
5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002
	if (memcg) {
		if (!mem_cgroup_is_root(memcg))
			page_counter_uncharge(&memcg->memsw, 1);
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}

/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */