memcontrol.c 154.9 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

28
#include <linux/page_counter.h>
B
Balbir Singh 已提交
29 30
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47
#include <linux/eventfd.h>
48
#include <linux/poll.h>
49
#include <linux/sort.h>
50
#include <linux/fs.h>
51
#include <linux/seq_file.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/page_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
58
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
59
#include "internal.h"
G
Glauber Costa 已提交
60
#include <net/sock.h>
M
Michal Hocko 已提交
61
#include <net/ip.h>
G
Glauber Costa 已提交
62
#include <net/tcp_memcontrol.h>
63
#include "slab.h"
B
Balbir Singh 已提交
64

65 66
#include <asm/uaccess.h>

67 68
#include <trace/events/vmscan.h>

69 70
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
71

72
#define MEM_CGROUP_RECLAIM_RETRIES	5
73
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
74

A
Andrew Morton 已提交
75
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
76
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77
int do_swap_account __read_mostly;
78 79

/* for remember boot option*/
A
Andrew Morton 已提交
80
#ifdef CONFIG_MEMCG_SWAP_ENABLED
81 82
static int really_do_swap_account __initdata = 1;
#else
83
static int really_do_swap_account __initdata;
84 85
#endif

86
#else
87
#define do_swap_account		0
88 89 90
#endif


91 92 93
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
94
	"rss_huge",
95
	"mapped_file",
96
	"writeback",
97 98 99
	"swap",
};

100 101 102
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
103 104
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
105 106
	MEM_CGROUP_EVENTS_NSTATS,
};
107 108 109 110 111 112 113 114

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

115 116 117 118 119 120 121 122
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

123 124 125 126 127 128 129 130
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
131
	MEM_CGROUP_TARGET_SOFTLIMIT,
132
	MEM_CGROUP_TARGET_NUMAINFO,
133 134
	MEM_CGROUP_NTARGETS,
};
135 136 137
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
138

139
struct mem_cgroup_stat_cpu {
140
	long count[MEM_CGROUP_STAT_NSTATS];
141
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142
	unsigned long nr_page_events;
143
	unsigned long targets[MEM_CGROUP_NTARGETS];
144 145
};

146 147
struct reclaim_iter {
	struct mem_cgroup *position;
148 149 150 151
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

152 153 154 155
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
156
	struct lruvec		lruvec;
157
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
158

159
	struct reclaim_iter	iter[DEF_PRIORITY + 1];
160

161
	struct rb_node		tree_node;	/* RB tree node */
162
	unsigned long		usage_in_excess;/* Set to the value by which */
163 164
						/* the soft limit is exceeded*/
	bool			on_tree;
165
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
166
						/* use container_of	   */
167 168 169 170 171 172
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

193 194
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
195
	unsigned long threshold;
196 197
};

K
KAMEZAWA Hiroyuki 已提交
198
/* For threshold */
199
struct mem_cgroup_threshold_ary {
200
	/* An array index points to threshold just below or equal to usage. */
201
	int current_threshold;
202 203 204 205 206
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
207 208 209 210 211 212 213 214 215 216 217 218

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
219 220 221 222 223
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
224

225 226 227
/*
 * cgroup_event represents events which userspace want to receive.
 */
228
struct mem_cgroup_event {
229
	/*
230
	 * memcg which the event belongs to.
231
	 */
232
	struct mem_cgroup *memcg;
233 234 235 236 237 238 239 240
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
241 242 243 244 245
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
246
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
247
			      struct eventfd_ctx *eventfd, const char *args);
248 249 250 251 252
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
253
	void (*unregister_event)(struct mem_cgroup *memcg,
254
				 struct eventfd_ctx *eventfd);
255 256 257 258 259 260 261 262 263 264
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

265 266
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
267

B
Balbir Singh 已提交
268 269 270 271 272 273 274
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
275 276 277
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
278 279 280
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
281 282 283 284 285 286 287

	/* Accounted resources */
	struct page_counter memory;
	struct page_counter memsw;
	struct page_counter kmem;

	unsigned long soft_limit;
288

289 290 291
	/* vmpressure notifications */
	struct vmpressure vmpressure;

292 293 294
	/* css_online() has been completed */
	int initialized;

295 296 297 298
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
299
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
300 301 302

	bool		oom_lock;
	atomic_t	under_oom;
303
	atomic_t	oom_wakeups;
304

305
	int	swappiness;
306 307
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
308

309 310 311 312
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
313
	struct mem_cgroup_thresholds thresholds;
314

315
	/* thresholds for mem+swap usage. RCU-protected */
316
	struct mem_cgroup_thresholds memsw_thresholds;
317

K
KAMEZAWA Hiroyuki 已提交
318 319
	/* For oom notifier event fd */
	struct list_head oom_notify;
320

321 322 323 324
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
325
	unsigned long move_charge_at_immigrate;
326 327 328 329
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
330 331
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
332
	/*
333
	 * percpu counter.
334
	 */
335
	struct mem_cgroup_stat_cpu __percpu *stat;
336 337 338 339 340 341
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
342

M
Michal Hocko 已提交
343
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
344
	struct cg_proto tcp_mem;
G
Glauber Costa 已提交
345
#endif
346
#if defined(CONFIG_MEMCG_KMEM)
347 348
	/* analogous to slab_common's slab_caches list, but per-memcg;
	 * protected by memcg_slab_mutex */
349 350 351 352
	struct list_head memcg_slab_caches;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
353 354 355 356 357 358 359

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
360

361 362 363 364
	/* List of events which userspace want to receive */
	struct list_head event_list;
	spinlock_t event_list_lock;

365 366
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
367 368
};

369 370
/* internal only representation about the status of kmem accounting. */
enum {
371
	KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
372 373 374 375 376 377 378
};

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
379 380 381 382 383 384

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

385 386
#endif

387 388
/* Stuffs for move charges at task migration. */
/*
389 390
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
391 392
 */
enum move_type {
393
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
394
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
395 396 397
	NR_MOVE_TYPE,
};

398 399
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
400
	spinlock_t	  lock; /* for from, to */
401 402
	struct mem_cgroup *from;
	struct mem_cgroup *to;
403
	unsigned long immigrate_flags;
404
	unsigned long precharge;
405
	unsigned long moved_charge;
406
	unsigned long moved_swap;
407 408 409
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
410
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
411 412
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
413

D
Daisuke Nishimura 已提交
414 415
static bool move_anon(void)
{
416
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
417 418
}

419 420
static bool move_file(void)
{
421
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
422 423
}

424 425 426 427
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
428
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
429
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
430

431 432
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
433
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
434
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
435
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
436 437 438
	NR_CHARGE_TYPE,
};

439
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
440 441 442 443
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
444
	_KMEM,
G
Glauber Costa 已提交
445 446
};

447 448
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
449
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
450 451
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
452

453 454 455 456 457 458 459
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

460 461
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
462
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
463 464
}

465 466 467 468 469 470 471 472 473 474 475 476 477
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

478 479 480 481 482
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

483 484 485 486 487 488
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
489 490
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
491
	return memcg->css.id;
L
Li Zefan 已提交
492 493 494 495 496 497
}

static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

498
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
499 500 501
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
502
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
503
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
504 505 506

void sock_update_memcg(struct sock *sk)
{
507
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
508
		struct mem_cgroup *memcg;
509
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
510 511 512

		BUG_ON(!sk->sk_prot->proto_cgroup);

513 514 515 516 517 518 519 520 521 522
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
523
			css_get(&sk->sk_cgrp->memcg->css);
524 525 526
			return;
		}

G
Glauber Costa 已提交
527 528
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
529
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
530
		if (!mem_cgroup_is_root(memcg) &&
531 532
		    memcg_proto_active(cg_proto) &&
		    css_tryget_online(&memcg->css)) {
533
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
534 535 536 537 538 539 540 541
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
542
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
543 544 545
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
546
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
547 548
	}
}
G
Glauber Costa 已提交
549 550 551 552 553 554

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

555
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
556 557
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
558

559 560
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
561
	if (!memcg_proto_activated(&memcg->tcp_mem))
562 563 564 565 566 567 568 569 570
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

571
#ifdef CONFIG_MEMCG_KMEM
572 573
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
L
Li Zefan 已提交
574 575 576 577 578
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
579 580 581 582 583 584
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
585 586
int memcg_limited_groups_array_size;

587 588 589 590 591 592
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
593
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
594 595
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
596
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
597 598 599
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
600
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
601

602 603 604 605 606 607
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
608
struct static_key memcg_kmem_enabled_key;
609
EXPORT_SYMBOL(memcg_kmem_enabled_key);
610

611 612
static void memcg_free_cache_id(int id);

613 614
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
615
	if (memcg_kmem_is_active(memcg)) {
616
		static_key_slow_dec(&memcg_kmem_enabled_key);
617
		memcg_free_cache_id(memcg->kmemcg_id);
618
	}
619 620 621 622
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
623
	WARN_ON(page_counter_read(&memcg->kmem));
624 625 626 627 628 629 630 631 632 633 634 635 636
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

637
static struct mem_cgroup_per_zone *
638
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
639
{
640 641 642
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

643
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
644 645
}

646
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
647
{
648
	return &memcg->css;
649 650
}

651
static struct mem_cgroup_per_zone *
652
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
653
{
654 655
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
656

657
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
658 659
}

660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

675 676
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
677
					 unsigned long new_usage_in_excess)
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

707 708
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
709 710 711 712 713 714 715
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

716 717
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
718
{
719 720 721
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
722
	__mem_cgroup_remove_exceeded(mz, mctz);
723
	spin_unlock_irqrestore(&mctz->lock, flags);
724 725
}

726 727 728 729 730 731 732 733 734 735 736
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
	unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
737 738 739

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
740
	unsigned long excess;
741 742 743
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

744
	mctz = soft_limit_tree_from_page(page);
745 746 747 748 749
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
750
		mz = mem_cgroup_page_zoneinfo(memcg, page);
751
		excess = soft_limit_excess(memcg);
752 753 754 755 756
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
757 758 759
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
760 761
			/* if on-tree, remove it */
			if (mz->on_tree)
762
				__mem_cgroup_remove_exceeded(mz, mctz);
763 764 765 766
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
767
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
768
			spin_unlock_irqrestore(&mctz->lock, flags);
769 770 771 772 773 774 775
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
776 777
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
778

779 780 781 782
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
783
			mem_cgroup_remove_exceeded(mz, mctz);
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
806
	__mem_cgroup_remove_exceeded(mz, mctz);
807
	if (!soft_limit_excess(mz->memcg) ||
808
	    !css_tryget_online(&mz->memcg->css))
809 810 811 812 813 814 815 816 817 818
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

819
	spin_lock_irq(&mctz->lock);
820
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
821
	spin_unlock_irq(&mctz->lock);
822 823 824
	return mz;
}

825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
844
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
845
				 enum mem_cgroup_stat_index idx)
846
{
847
	long val = 0;
848 849
	int cpu;

850 851
	get_online_cpus();
	for_each_online_cpu(cpu)
852
		val += per_cpu(memcg->stat->count[idx], cpu);
853
#ifdef CONFIG_HOTPLUG_CPU
854 855 856
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
857 858
#endif
	put_online_cpus();
859 860 861
	return val;
}

862
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
863 864 865 866 867
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

868
	get_online_cpus();
869
	for_each_online_cpu(cpu)
870
		val += per_cpu(memcg->stat->events[idx], cpu);
871
#ifdef CONFIG_HOTPLUG_CPU
872 873 874
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
875
#endif
876
	put_online_cpus();
877 878 879
	return val;
}

880
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
881
					 struct page *page,
882
					 int nr_pages)
883
{
884 885 886 887
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
888
	if (PageAnon(page))
889
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
890
				nr_pages);
891
	else
892
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
893
				nr_pages);
894

895 896 897 898
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

899 900
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
901
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
902
	else {
903
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
904 905
		nr_pages = -nr_pages; /* for event */
	}
906

907
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
908 909
}

910
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
911 912 913 914 915 916 917
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

918 919 920
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
921
{
922
	unsigned long nr = 0;
923 924
	int zid;

925
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
926

927 928 929 930 931 932 933 934 935 936 937 938
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
939
}
940

941
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
942
			unsigned int lru_mask)
943
{
944
	unsigned long nr = 0;
945
	int nid;
946

947
	for_each_node_state(nid, N_MEMORY)
948 949
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
950 951
}

952 953
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
954 955 956
{
	unsigned long val, next;

957
	val = __this_cpu_read(memcg->stat->nr_page_events);
958
	next = __this_cpu_read(memcg->stat->targets[target]);
959
	/* from time_after() in jiffies.h */
960 961 962 963 964
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
965 966 967
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
968 969 970 971 972 973 974 975
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
976
	}
977
	return false;
978 979 980 981 982 983
}

/*
 * Check events in order.
 *
 */
984
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
985 986
{
	/* threshold event is triggered in finer grain than soft limit */
987 988
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
989
		bool do_softlimit;
990
		bool do_numainfo __maybe_unused;
991

992 993
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
994 995 996 997
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
998
		mem_cgroup_threshold(memcg);
999 1000
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
1001
#if MAX_NUMNODES > 1
1002
		if (unlikely(do_numainfo))
1003
			atomic_inc(&memcg->numainfo_events);
1004
#endif
1005
	}
1006 1007
}

1008
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1009
{
1010 1011 1012 1013 1014 1015 1016 1017
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1018
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1019 1020
}

1021
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1022
{
1023
	struct mem_cgroup *memcg = NULL;
1024

1025 1026
	rcu_read_lock();
	do {
1027 1028 1029 1030 1031 1032
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
1033
			memcg = root_mem_cgroup;
1034 1035 1036 1037 1038
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
1039
	} while (!css_tryget_online(&memcg->css));
1040
	rcu_read_unlock();
1041
	return memcg;
1042 1043
}

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1061
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1062
				   struct mem_cgroup *prev,
1063
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1064
{
1065 1066
	struct reclaim_iter *uninitialized_var(iter);
	struct cgroup_subsys_state *css = NULL;
1067
	struct mem_cgroup *memcg = NULL;
1068
	struct mem_cgroup *pos = NULL;
1069

1070 1071
	if (mem_cgroup_disabled())
		return NULL;
1072

1073 1074
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1075

1076
	if (prev && !reclaim)
1077
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
1078

1079 1080
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1081
			goto out;
1082
		return root;
1083
	}
K
KAMEZAWA Hiroyuki 已提交
1084

1085
	rcu_read_lock();
M
Michal Hocko 已提交
1086

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

		do {
			pos = ACCESS_ONCE(iter->position);
			/*
			 * A racing update may change the position and
			 * put the last reference, hence css_tryget(),
			 * or retry to see the updated position.
			 */
		} while (pos && !css_tryget(&pos->css));
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
1121
		}
K
KAMEZAWA Hiroyuki 已提交
1122

1123 1124 1125 1126 1127 1128
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
1129

1130 1131
		if (css == &root->css)
			break;
1132

1133
		if (css_tryget(css)) {
1134 1135 1136 1137 1138 1139 1140 1141 1142
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				break;

			css_put(css);
1143
		}
1144

1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
		memcg = NULL;
	}

	if (reclaim) {
		if (cmpxchg(&iter->position, pos, memcg) == pos) {
			if (memcg)
				css_get(&memcg->css);
			if (pos)
				css_put(&pos->css);
		}

		/*
		 * pairs with css_tryget when dereferencing iter->position
		 * above.
		 */
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1167
	}
1168

1169 1170
out_unlock:
	rcu_read_unlock();
1171
out:
1172 1173 1174
	if (prev && prev != root)
		css_put(&prev->css);

1175
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1176
}
K
KAMEZAWA Hiroyuki 已提交
1177

1178 1179 1180 1181 1182 1183 1184
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1185 1186 1187 1188 1189 1190
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1191

1192 1193 1194 1195 1196 1197
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1198
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1199
	     iter != NULL;				\
1200
	     iter = mem_cgroup_iter(root, iter, NULL))
1201

1202
#define for_each_mem_cgroup(iter)			\
1203
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1204
	     iter != NULL;				\
1205
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1206

1207
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1208
{
1209
	struct mem_cgroup *memcg;
1210 1211

	rcu_read_lock();
1212 1213
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1214 1215 1216 1217
		goto out;

	switch (idx) {
	case PGFAULT:
1218 1219 1220 1221
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1222 1223 1224 1225 1226 1227 1228
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1229
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1230

1231 1232 1233
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1234
 * @memcg: memcg of the wanted lruvec
1235 1236 1237 1238 1239 1240 1241 1242 1243
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1244
	struct lruvec *lruvec;
1245

1246 1247 1248 1249
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1250

1251
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1262 1263 1264
}

/**
1265
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1266
 * @page: the page
1267
 * @zone: zone of the page
1268 1269 1270 1271
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1272
 */
1273
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1274 1275
{
	struct mem_cgroup_per_zone *mz;
1276 1277
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1278
	struct lruvec *lruvec;
1279

1280 1281 1282 1283
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1284

K
KAMEZAWA Hiroyuki 已提交
1285
	pc = lookup_page_cgroup(page);
1286
	memcg = pc->mem_cgroup;
1287
	/*
1288
	 * Swapcache readahead pages are added to the LRU - and
1289
	 * possibly migrated - before they are charged.
1290
	 */
1291 1292
	if (!memcg)
		memcg = root_mem_cgroup;
1293

1294
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1305
}
1306

1307
/**
1308 1309 1310 1311
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1312
 *
1313 1314
 * This function must be called when a page is added to or removed from an
 * lru list.
1315
 */
1316 1317
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1318 1319
{
	struct mem_cgroup_per_zone *mz;
1320
	unsigned long *lru_size;
1321 1322 1323 1324

	if (mem_cgroup_disabled())
		return;

1325 1326 1327 1328
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1329
}
1330

1331
/*
1332
 * Checks whether given mem is same or in the root_mem_cgroup's
1333 1334
 * hierarchy subtree
 */
1335 1336
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1337
{
1338 1339
	if (root_memcg == memcg)
		return true;
1340
	if (!root_memcg->use_hierarchy || !memcg)
1341
		return false;
1342
	return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1343 1344 1345 1346 1347 1348 1349
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1350
	rcu_read_lock();
1351
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1352 1353
	rcu_read_unlock();
	return ret;
1354 1355
}

1356 1357
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1358
{
1359
	struct mem_cgroup *curr = NULL;
1360
	struct task_struct *p;
1361
	bool ret;
1362

1363
	p = find_lock_task_mm(task);
1364
	if (p) {
1365
		curr = get_mem_cgroup_from_mm(p->mm);
1366 1367 1368 1369 1370 1371 1372
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1373
		rcu_read_lock();
1374 1375 1376
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1377
		rcu_read_unlock();
1378
	}
1379
	/*
1380
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1381
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1382 1383
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1384
	 */
1385
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1386
	css_put(&curr->css);
1387 1388 1389
	return ret;
}

1390
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1391
{
1392
	unsigned long inactive_ratio;
1393
	unsigned long inactive;
1394
	unsigned long active;
1395
	unsigned long gb;
1396

1397 1398
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1399

1400 1401 1402 1403 1404 1405
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1406
	return inactive * inactive_ratio < active;
1407 1408
}

1409
#define mem_cgroup_from_counter(counter, member)	\
1410 1411
	container_of(counter, struct mem_cgroup, member)

1412
/**
1413
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1414
 * @memcg: the memory cgroup
1415
 *
1416
 * Returns the maximum amount of memory @mem can be charged with, in
1417
 * pages.
1418
 */
1419
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1420
{
1421 1422 1423
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1424

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	count = page_counter_read(&memcg->memory);
	limit = ACCESS_ONCE(memcg->memory.limit);
	if (count < limit)
		margin = limit - count;

	if (do_swap_account) {
		count = page_counter_read(&memcg->memsw);
		limit = ACCESS_ONCE(memcg->memsw.limit);
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1438 1439
}

1440
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1441 1442
{
	/* root ? */
1443
	if (mem_cgroup_disabled() || !memcg->css.parent)
K
KOSAKI Motohiro 已提交
1444 1445
		return vm_swappiness;

1446
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1447 1448
}

1449
/*
Q
Qiang Huang 已提交
1450
 * A routine for checking "mem" is under move_account() or not.
1451
 *
Q
Qiang Huang 已提交
1452 1453 1454
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1455
 */
1456
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1457
{
1458 1459
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1460
	bool ret = false;
1461 1462 1463 1464 1465 1466 1467 1468 1469
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1470

1471 1472
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1473 1474
unlock:
	spin_unlock(&mc.lock);
1475 1476 1477
	return ret;
}

1478
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1479 1480
{
	if (mc.moving_task && current != mc.moving_task) {
1481
		if (mem_cgroup_under_move(memcg)) {
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1494
#define K(x) ((x) << (PAGE_SHIFT-10))
1495
/**
1496
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1497 1498 1499 1500 1501 1502 1503 1504
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1505
	/* oom_info_lock ensures that parallel ooms do not interleave */
1506
	static DEFINE_MUTEX(oom_info_lock);
1507 1508
	struct mem_cgroup *iter;
	unsigned int i;
1509

1510
	if (!p)
1511 1512
		return;

1513
	mutex_lock(&oom_info_lock);
1514 1515
	rcu_read_lock();

T
Tejun Heo 已提交
1516 1517 1518 1519 1520
	pr_info("Task in ");
	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	pr_info(" killed as a result of limit of ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_info("\n");
1521 1522 1523

	rcu_read_unlock();

1524 1525 1526 1527 1528 1529 1530 1531 1532
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1533 1534

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1535 1536
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1552
	mutex_unlock(&oom_info_lock);
1553 1554
}

1555 1556 1557 1558
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1559
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1560 1561
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1562 1563
	struct mem_cgroup *iter;

1564
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1565
		num++;
1566 1567 1568
	return num;
}

D
David Rientjes 已提交
1569 1570 1571
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1572
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1573
{
1574
	unsigned long limit;
D
David Rientjes 已提交
1575

1576
	limit = memcg->memory.limit;
1577
	if (mem_cgroup_swappiness(memcg)) {
1578
		unsigned long memsw_limit;
1579

1580 1581
		memsw_limit = memcg->memsw.limit;
		limit = min(limit + total_swap_pages, memsw_limit);
1582 1583
	}
	return limit;
D
David Rientjes 已提交
1584 1585
}

1586 1587
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1588 1589 1590 1591 1592 1593 1594
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1595
	/*
1596 1597 1598
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1599
	 */
1600
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1601 1602 1603 1604 1605
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1606
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1607
	for_each_mem_cgroup_tree(iter, memcg) {
1608
		struct css_task_iter it;
1609 1610
		struct task_struct *task;

1611 1612
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1625
				css_task_iter_end(&it);
1626 1627 1628 1629 1630 1631 1632 1633
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1646
		}
1647
		css_task_iter_end(&it);
1648 1649 1650 1651 1652 1653 1654 1655 1656
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1657 1658
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1659
 * @memcg: the target memcg
1660 1661 1662 1663 1664 1665 1666
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1667
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1668 1669
		int nid, bool noswap)
{
1670
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1671 1672 1673
		return true;
	if (noswap || !total_swap_pages)
		return false;
1674
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1675 1676 1677 1678
		return true;
	return false;

}
1679
#if MAX_NUMNODES > 1
1680 1681 1682 1683 1684 1685 1686

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1687
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1688 1689
{
	int nid;
1690 1691 1692 1693
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1694
	if (!atomic_read(&memcg->numainfo_events))
1695
		return;
1696
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1697 1698 1699
		return;

	/* make a nodemask where this memcg uses memory from */
1700
	memcg->scan_nodes = node_states[N_MEMORY];
1701

1702
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1703

1704 1705
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1706
	}
1707

1708 1709
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1724
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1725 1726 1727
{
	int node;

1728 1729
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1730

1731
	node = next_node(node, memcg->scan_nodes);
1732
	if (node == MAX_NUMNODES)
1733
		node = first_node(memcg->scan_nodes);
1734 1735 1736 1737 1738 1739 1740 1741 1742
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1743
	memcg->last_scanned_node = node;
1744 1745 1746
	return node;
}
#else
1747
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1748 1749 1750 1751 1752
{
	return 0;
}
#endif

1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1768
	excess = soft_limit_excess(root_memcg);
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1797
		if (!soft_limit_excess(root_memcg))
1798
			break;
1799
	}
1800 1801
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1802 1803
}

1804 1805 1806 1807 1808 1809
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1810 1811
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1812 1813 1814 1815
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1816
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1817
{
1818
	struct mem_cgroup *iter, *failed = NULL;
1819

1820 1821
	spin_lock(&memcg_oom_lock);

1822
	for_each_mem_cgroup_tree(iter, memcg) {
1823
		if (iter->oom_lock) {
1824 1825 1826 1827 1828
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1829 1830
			mem_cgroup_iter_break(memcg, iter);
			break;
1831 1832
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1833
	}
K
KAMEZAWA Hiroyuki 已提交
1834

1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1846
		}
1847 1848
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1849 1850 1851 1852

	spin_unlock(&memcg_oom_lock);

	return !failed;
1853
}
1854

1855
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1856
{
K
KAMEZAWA Hiroyuki 已提交
1857 1858
	struct mem_cgroup *iter;

1859
	spin_lock(&memcg_oom_lock);
1860
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1861
	for_each_mem_cgroup_tree(iter, memcg)
1862
		iter->oom_lock = false;
1863
	spin_unlock(&memcg_oom_lock);
1864 1865
}

1866
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1867 1868 1869
{
	struct mem_cgroup *iter;

1870
	for_each_mem_cgroup_tree(iter, memcg)
1871 1872 1873
		atomic_inc(&iter->under_oom);
}

1874
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1875 1876 1877
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1878 1879 1880 1881 1882
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
1883
	for_each_mem_cgroup_tree(iter, memcg)
1884
		atomic_add_unless(&iter->under_oom, -1, 0);
1885 1886
}

K
KAMEZAWA Hiroyuki 已提交
1887 1888
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1889
struct oom_wait_info {
1890
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1891 1892 1893 1894 1895 1896
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1897 1898
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1899 1900 1901
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1902
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1903 1904

	/*
1905
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
1906 1907
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
1908 1909
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
1910 1911 1912 1913
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1914
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1915
{
1916
	atomic_inc(&memcg->oom_wakeups);
1917 1918
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
1919 1920
}

1921
static void memcg_oom_recover(struct mem_cgroup *memcg)
1922
{
1923 1924
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
1925 1926
}

1927
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1928
{
1929 1930
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
1931
	/*
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1944
	 */
1945 1946 1947 1948
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
1949 1950 1951 1952
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1953
 * @handle: actually kill/wait or just clean up the OOM state
1954
 *
1955 1956
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1957
 *
1958
 * Memcg supports userspace OOM handling where failed allocations must
1959 1960 1961 1962
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1963
 * the end of the page fault to complete the OOM handling.
1964 1965
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1966
 * completed, %false otherwise.
1967
 */
1968
bool mem_cgroup_oom_synchronize(bool handle)
1969
{
1970
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
1971
	struct oom_wait_info owait;
1972
	bool locked;
1973 1974 1975

	/* OOM is global, do not handle */
	if (!memcg)
1976
		return false;
1977

1978 1979
	if (!handle)
		goto cleanup;
1980 1981 1982 1983 1984 1985

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1986

1987
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
2001
		schedule();
2002 2003 2004 2005 2006
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
2007 2008 2009 2010 2011 2012 2013 2014
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2015 2016
cleanup:
	current->memcg_oom.memcg = NULL;
2017
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2018
	return true;
2019 2020
}

2021 2022 2023 2024 2025
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
 * @locked: &memcg->move_lock slowpath was taken
 * @flags: IRQ-state flags for &memcg->move_lock
2026
 *
2027 2028 2029
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
2030
 *
2031 2032 2033 2034
 *   memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
 *   mem_cgroup_end_page_stat(memcg, locked, flags);
2035
 *
2036 2037 2038
 * The RCU lock is held throughout the transaction.  The fast path can
 * get away without acquiring the memcg->move_lock (@locked is false)
 * because page moving starts with an RCU grace period.
2039
 *
2040 2041 2042 2043 2044
 * The RCU lock also protects the memcg from being freed when the page
 * state that is going to change is the only thing preventing the page
 * from being uncharged.  E.g. end-writeback clearing PageWriteback(),
 * which allows migration to go ahead and uncharge the page before the
 * account transaction might be complete.
2045
 */
2046 2047 2048
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
					      bool *locked,
					      unsigned long *flags)
2049 2050 2051 2052
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

2053 2054 2055 2056 2057
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;

2058 2059 2060
	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
2061
	if (unlikely(!memcg))
2062 2063 2064
		return NULL;

	*locked = false;
Q
Qiang Huang 已提交
2065
	if (atomic_read(&memcg->moving_account) <= 0)
2066
		return memcg;
2067

2068
	spin_lock_irqsave(&memcg->move_lock, *flags);
2069
	if (memcg != pc->mem_cgroup) {
2070
		spin_unlock_irqrestore(&memcg->move_lock, *flags);
2071 2072 2073
		goto again;
	}
	*locked = true;
2074 2075

	return memcg;
2076 2077
}

2078 2079 2080 2081 2082 2083 2084 2085
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 * @locked: value received from mem_cgroup_begin_page_stat()
 * @flags: value received from mem_cgroup_begin_page_stat()
 */
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool locked,
			      unsigned long flags)
2086
{
2087
	if (memcg && locked)
2088
		spin_unlock_irqrestore(&memcg->move_lock, flags);
2089

2090
	rcu_read_unlock();
2091 2092
}

2093 2094 2095 2096 2097 2098 2099 2100 2101
/**
 * mem_cgroup_update_page_stat - update page state statistics
 * @memcg: memcg to account against
 * @idx: page state item to account
 * @val: number of pages (positive or negative)
 *
 * See mem_cgroup_begin_page_stat() for locking requirements.
 */
void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
S
Sha Zhengju 已提交
2102
				 enum mem_cgroup_stat_index idx, int val)
2103
{
2104
	VM_BUG_ON(!rcu_read_lock_held());
2105

2106 2107
	if (memcg)
		this_cpu_add(memcg->stat->count[idx], val);
2108
}
2109

2110 2111 2112 2113
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2114
#define CHARGE_BATCH	32U
2115 2116
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2117
	unsigned int nr_pages;
2118
	struct work_struct work;
2119
	unsigned long flags;
2120
#define FLUSHING_CACHED_CHARGE	0
2121 2122
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2123
static DEFINE_MUTEX(percpu_charge_mutex);
2124

2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2135
 */
2136
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2137 2138
{
	struct memcg_stock_pcp *stock;
2139
	bool ret = false;
2140

2141
	if (nr_pages > CHARGE_BATCH)
2142
		return ret;
2143

2144
	stock = &get_cpu_var(memcg_stock);
2145
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2146
		stock->nr_pages -= nr_pages;
2147 2148
		ret = true;
	}
2149 2150 2151 2152 2153
	put_cpu_var(memcg_stock);
	return ret;
}

/*
2154
 * Returns stocks cached in percpu and reset cached information.
2155 2156 2157 2158 2159
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2160
	if (stock->nr_pages) {
2161
		page_counter_uncharge(&old->memory, stock->nr_pages);
2162
		if (do_swap_account)
2163
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2164
		css_put_many(&old->css, stock->nr_pages);
2165
		stock->nr_pages = 0;
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
2176
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2177
	drain_stock(stock);
2178
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2179 2180
}

2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2192
/*
2193
 * Cache charges(val) to local per_cpu area.
2194
 * This will be consumed by consume_stock() function, later.
2195
 */
2196
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2197 2198 2199
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2200
	if (stock->cached != memcg) { /* reset if necessary */
2201
		drain_stock(stock);
2202
		stock->cached = memcg;
2203
	}
2204
	stock->nr_pages += nr_pages;
2205 2206 2207 2208
	put_cpu_var(memcg_stock);
}

/*
2209
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2210
 * of the hierarchy under it.
2211
 */
2212
static void drain_all_stock(struct mem_cgroup *root_memcg)
2213
{
2214
	int cpu, curcpu;
2215

2216 2217 2218
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2219 2220
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2221
	curcpu = get_cpu();
2222 2223
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2224
		struct mem_cgroup *memcg;
2225

2226 2227
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2228
			continue;
2229
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2230
			continue;
2231 2232 2233 2234 2235 2236
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2237
	}
2238
	put_cpu();
A
Andrew Morton 已提交
2239
	put_online_cpus();
2240
	mutex_unlock(&percpu_charge_mutex);
2241 2242
}

2243 2244 2245 2246
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2247
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2248 2249 2250
{
	int i;

2251
	spin_lock(&memcg->pcp_counter_lock);
2252
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2253
		long x = per_cpu(memcg->stat->count[i], cpu);
2254

2255 2256
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2257
	}
2258
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2259
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2260

2261 2262
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2263
	}
2264
	spin_unlock(&memcg->pcp_counter_lock);
2265 2266
}

2267
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2268 2269 2270 2271 2272
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2273
	struct mem_cgroup *iter;
2274

2275
	if (action == CPU_ONLINE)
2276 2277
		return NOTIFY_OK;

2278
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2279
		return NOTIFY_OK;
2280

2281
	for_each_mem_cgroup(iter)
2282 2283
		mem_cgroup_drain_pcp_counter(iter, cpu);

2284 2285 2286 2287 2288
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2289 2290
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2291
{
2292
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2293
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2294
	struct mem_cgroup *mem_over_limit;
2295
	struct page_counter *counter;
2296
	unsigned long nr_reclaimed;
2297 2298
	bool may_swap = true;
	bool drained = false;
2299
	int ret = 0;
2300

2301 2302
	if (mem_cgroup_is_root(memcg))
		goto done;
2303
retry:
2304 2305
	if (consume_stock(memcg, nr_pages))
		goto done;
2306

2307
	if (!do_swap_account ||
2308 2309
	    !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2310
			goto done_restock;
2311
		if (do_swap_account)
2312 2313
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2314
	} else {
2315
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2316
		may_swap = false;
2317
	}
2318

2319 2320 2321 2322
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2323

2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
		goto bypass;

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2338 2339
	if (!(gfp_mask & __GFP_WAIT))
		goto nomem;
2340

2341 2342
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2343

2344
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2345
		goto retry;
2346

2347
	if (!drained) {
2348
		drain_all_stock(mem_over_limit);
2349 2350 2351 2352
		drained = true;
		goto retry;
	}

2353 2354
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2355 2356 2357 2358 2359 2360 2361 2362 2363
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2364
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2365 2366 2367 2368 2369 2370 2371 2372
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2373 2374 2375
	if (nr_retries--)
		goto retry;

2376 2377 2378
	if (gfp_mask & __GFP_NOFAIL)
		goto bypass;

2379 2380 2381
	if (fatal_signal_pending(current))
		goto bypass;

2382
	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2383
nomem:
2384
	if (!(gfp_mask & __GFP_NOFAIL))
2385
		return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2386
bypass:
2387
	return -EINTR;
2388 2389

done_restock:
2390
	css_get_many(&memcg->css, batch);
2391 2392 2393
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
done:
2394
	return ret;
2395
}
2396

2397
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2398
{
2399 2400 2401
	if (mem_cgroup_is_root(memcg))
		return;

2402
	page_counter_uncharge(&memcg->memory, nr_pages);
2403
	if (do_swap_account)
2404
		page_counter_uncharge(&memcg->memsw, nr_pages);
2405 2406

	css_put_many(&memcg->css, nr_pages);
2407 2408
}

2409 2410
/*
 * A helper function to get mem_cgroup from ID. must be called under
2411 2412 2413
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
2414 2415 2416 2417 2418 2419
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	/* ID 0 is unused ID */
	if (!id)
		return NULL;
L
Li Zefan 已提交
2420
	return mem_cgroup_from_id(id);
2421 2422
}

2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
/*
 * try_get_mem_cgroup_from_page - look up page's memcg association
 * @page: the page
 *
 * Look up, get a css reference, and return the memcg that owns @page.
 *
 * The page must be locked to prevent racing with swap-in and page
 * cache charges.  If coming from an unlocked page table, the caller
 * must ensure the page is on the LRU or this can race with charging.
 */
2433
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2434
{
2435
	struct mem_cgroup *memcg;
2436
	struct page_cgroup *pc;
2437
	unsigned short id;
2438 2439
	swp_entry_t ent;

2440
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2441 2442

	pc = lookup_page_cgroup(page);
2443 2444 2445 2446
	memcg = pc->mem_cgroup;

	if (memcg) {
		if (!css_tryget_online(&memcg->css))
2447
			memcg = NULL;
2448
	} else if (PageSwapCache(page)) {
2449
		ent.val = page_private(page);
2450
		id = lookup_swap_cgroup_id(ent);
2451
		rcu_read_lock();
2452
		memcg = mem_cgroup_lookup(id);
2453
		if (memcg && !css_tryget_online(&memcg->css))
2454
			memcg = NULL;
2455
		rcu_read_unlock();
2456
	}
2457
	return memcg;
2458 2459
}

2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2491
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2492
			  bool lrucare)
2493
{
2494
	struct page_cgroup *pc = lookup_page_cgroup(page);
2495
	int isolated;
2496

2497
	VM_BUG_ON_PAGE(pc->mem_cgroup, page);
2498 2499 2500 2501
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2502 2503 2504 2505 2506

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2507 2508
	if (lrucare)
		lock_page_lru(page, &isolated);
2509

2510 2511
	/*
	 * Nobody should be changing or seriously looking at
2512
	 * pc->mem_cgroup at this point:
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2524
	pc->mem_cgroup = memcg;
2525

2526 2527
	if (lrucare)
		unlock_page_lru(page, isolated);
2528
}
2529

2530
#ifdef CONFIG_MEMCG_KMEM
2531 2532 2533 2534 2535 2536
/*
 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
 */
static DEFINE_MUTEX(memcg_slab_mutex);

G
Glauber Costa 已提交
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
2547
	return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
G
Glauber Costa 已提交
2548 2549
}

2550 2551
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
			     unsigned long nr_pages)
2552
{
2553
	struct page_counter *counter;
2554 2555
	int ret = 0;

2556 2557
	ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
	if (ret < 0)
2558 2559
		return ret;

2560
	ret = try_charge(memcg, gfp, nr_pages);
2561 2562
	if (ret == -EINTR)  {
		/*
2563 2564 2565 2566 2567 2568
		 * try_charge() chose to bypass to root due to OOM kill or
		 * fatal signal.  Since our only options are to either fail
		 * the allocation or charge it to this cgroup, do it as a
		 * temporary condition. But we can't fail. From a kmem/slab
		 * perspective, the cache has already been selected, by
		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2569 2570 2571
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
2572 2573 2574
		 * memcg_charge_kmem in a sane state, but was OOM-killed
		 * during try_charge() above. Tasks that were already dying
		 * when the allocation triggers should have been already
2575 2576
		 * directed to the root cgroup in memcontrol.h
		 */
2577
		page_counter_charge(&memcg->memory, nr_pages);
2578
		if (do_swap_account)
2579
			page_counter_charge(&memcg->memsw, nr_pages);
2580
		css_get_many(&memcg->css, nr_pages);
2581 2582
		ret = 0;
	} else if (ret)
2583
		page_counter_uncharge(&memcg->kmem, nr_pages);
2584 2585 2586 2587

	return ret;
}

2588 2589
static void memcg_uncharge_kmem(struct mem_cgroup *memcg,
				unsigned long nr_pages)
2590
{
2591
	page_counter_uncharge(&memcg->memory, nr_pages);
2592
	if (do_swap_account)
2593
		page_counter_uncharge(&memcg->memsw, nr_pages);
2594

2595
	page_counter_uncharge(&memcg->kmem, nr_pages);
2596 2597

	css_put_many(&memcg->css, nr_pages);
2598 2599
}

2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

2610
static int memcg_alloc_cache_id(void)
2611
{
2612 2613 2614 2615 2616 2617 2618
	int id, size;
	int err;

	id = ida_simple_get(&kmem_limited_groups,
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2619

2620 2621 2622 2623 2624 2625 2626 2627 2628
	if (id < memcg_limited_groups_array_size)
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */

	size = 2 * (id + 1);
2629 2630 2631 2632 2633
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
	mutex_lock(&memcg_slab_mutex);
	err = memcg_update_all_caches(size);
	mutex_unlock(&memcg_slab_mutex);

	if (err) {
		ida_simple_remove(&kmem_limited_groups, id);
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
	ida_simple_remove(&kmem_limited_groups, id);
2648 2649 2650 2651 2652 2653 2654 2655 2656
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
2657
	memcg_limited_groups_array_size = num;
2658 2659
}

2660 2661
static void memcg_register_cache(struct mem_cgroup *memcg,
				 struct kmem_cache *root_cache)
2662
{
2663 2664
	static char memcg_name_buf[NAME_MAX + 1]; /* protected by
						     memcg_slab_mutex */
2665
	struct kmem_cache *cachep;
2666 2667
	int id;

2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
	lockdep_assert_held(&memcg_slab_mutex);

	id = memcg_cache_id(memcg);

	/*
	 * Since per-memcg caches are created asynchronously on first
	 * allocation (see memcg_kmem_get_cache()), several threads can try to
	 * create the same cache, but only one of them may succeed.
	 */
	if (cache_from_memcg_idx(root_cache, id))
2678 2679
		return;

2680
	cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
2681
	cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2682
	/*
2683 2684 2685
	 * If we could not create a memcg cache, do not complain, because
	 * that's not critical at all as we can always proceed with the root
	 * cache.
2686
	 */
2687 2688
	if (!cachep)
		return;
2689

2690
	css_get(&memcg->css);
2691
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2692

2693
	/*
2694 2695 2696
	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
	 * barrier here to ensure nobody will see the kmem_cache partially
	 * initialized.
2697
	 */
2698 2699
	smp_wmb();

2700 2701
	BUG_ON(root_cache->memcg_params->memcg_caches[id]);
	root_cache->memcg_params->memcg_caches[id] = cachep;
2702
}
2703

2704
static void memcg_unregister_cache(struct kmem_cache *cachep)
2705
{
2706
	struct kmem_cache *root_cache;
2707 2708 2709
	struct mem_cgroup *memcg;
	int id;

2710
	lockdep_assert_held(&memcg_slab_mutex);
2711

2712
	BUG_ON(is_root_cache(cachep));
2713

2714 2715
	root_cache = cachep->memcg_params->root_cache;
	memcg = cachep->memcg_params->memcg;
2716
	id = memcg_cache_id(memcg);
2717

2718 2719
	BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
	root_cache->memcg_params->memcg_caches[id] = NULL;
2720

2721 2722 2723
	list_del(&cachep->memcg_params->list);

	kmem_cache_destroy(cachep);
2724 2725 2726

	/* drop the reference taken in memcg_register_cache */
	css_put(&memcg->css);
2727 2728
}

2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

2760
int __memcg_cleanup_cache_params(struct kmem_cache *s)
2761 2762
{
	struct kmem_cache *c;
2763
	int i, failed = 0;
2764

2765
	mutex_lock(&memcg_slab_mutex);
2766 2767
	for_each_memcg_cache_index(i) {
		c = cache_from_memcg_idx(s, i);
2768 2769 2770
		if (!c)
			continue;

2771
		memcg_unregister_cache(c);
2772 2773 2774

		if (cache_from_memcg_idx(s, i))
			failed++;
2775
	}
2776
	mutex_unlock(&memcg_slab_mutex);
2777
	return failed;
2778 2779
}

2780
static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
2781 2782
{
	struct kmem_cache *cachep;
2783
	struct memcg_cache_params *params, *tmp;
G
Glauber Costa 已提交
2784 2785 2786 2787

	if (!memcg_kmem_is_active(memcg))
		return;

2788 2789
	mutex_lock(&memcg_slab_mutex);
	list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
G
Glauber Costa 已提交
2790
		cachep = memcg_params_to_cache(params);
2791 2792
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
2793
			memcg_unregister_cache(cachep);
G
Glauber Costa 已提交
2794
	}
2795
	mutex_unlock(&memcg_slab_mutex);
G
Glauber Costa 已提交
2796 2797
}

2798
struct memcg_register_cache_work {
2799 2800 2801 2802 2803
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2804
static void memcg_register_cache_func(struct work_struct *w)
2805
{
2806 2807
	struct memcg_register_cache_work *cw =
		container_of(w, struct memcg_register_cache_work, work);
2808 2809
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2810

2811
	mutex_lock(&memcg_slab_mutex);
2812
	memcg_register_cache(memcg, cachep);
2813 2814
	mutex_unlock(&memcg_slab_mutex);

2815
	css_put(&memcg->css);
2816 2817 2818 2819 2820 2821
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2822 2823
static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
					    struct kmem_cache *cachep)
2824
{
2825
	struct memcg_register_cache_work *cw;
2826

2827
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2828 2829
	if (cw == NULL) {
		css_put(&memcg->css);
2830 2831 2832 2833 2834 2835
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

2836
	INIT_WORK(&cw->work, memcg_register_cache_func);
2837 2838 2839
	schedule_work(&cw->work);
}

2840 2841
static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
					  struct kmem_cache *cachep)
2842 2843 2844 2845
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2846
	 * in __memcg_schedule_register_cache will recurse.
2847 2848 2849 2850 2851 2852 2853 2854
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
2855
	__memcg_schedule_register_cache(memcg, cachep);
2856 2857
	memcg_resume_kmem_account();
}
2858 2859 2860

int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
{
2861
	unsigned int nr_pages = 1 << order;
2862 2863
	int res;

2864
	res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp, nr_pages);
2865
	if (!res)
2866
		atomic_add(nr_pages, &cachep->memcg_params->nr_pages);
2867 2868 2869 2870 2871
	return res;
}

void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
{
2872 2873 2874 2875
	unsigned int nr_pages = 1 << order;

	memcg_uncharge_kmem(cachep->memcg_params->memcg, nr_pages);
	atomic_sub(nr_pages, &cachep->memcg_params->nr_pages);
2876 2877
}

2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
2895
	struct kmem_cache *memcg_cachep;
2896 2897 2898 2899

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

2900 2901 2902
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

2903 2904 2905
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

2906
	if (!memcg_kmem_is_active(memcg))
2907
		goto out;
2908

2909 2910 2911
	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
	if (likely(memcg_cachep)) {
		cachep = memcg_cachep;
2912
		goto out;
2913 2914
	}

2915
	/* The corresponding put will be done in the workqueue. */
2916
	if (!css_tryget_online(&memcg->css))
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2928 2929 2930
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2931
	 */
2932
	memcg_schedule_register_cache(memcg, cachep);
2933 2934 2935 2936
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
2937 2938
}

2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
2960 2961 2962 2963

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
V
Vladimir Davydov 已提交
2964 2965 2966 2967 2968 2969
	 * check here, since direct calls to the page allocator that are
	 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
	 * outside memcg core. We are mostly concerned with cache allocations,
	 * and by having this test at memcg_kmem_get_cache, we are already able
	 * to relay the allocation to the root cache and bypass the memcg cache
	 * altogether.
2970 2971 2972 2973 2974 2975
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
A
Andrew Morton 已提交
2976 2977 2978
	 *	memcg_stop_kmem_account();
	 *	kmalloc(<large_number>)
	 *	memcg_resume_kmem_account();
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

2989
	memcg = get_mem_cgroup_from_mm(current->mm);
2990

2991
	if (!memcg_kmem_is_active(memcg)) {
2992 2993 2994 2995
		css_put(&memcg->css);
		return true;
	}

2996
	ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
3013
		memcg_uncharge_kmem(memcg, 1 << order);
3014 3015 3016 3017 3018 3019 3020 3021
		return;
	}
	pc = lookup_page_cgroup(page);
	pc->mem_cgroup = memcg;
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
3022 3023
	struct page_cgroup *pc = lookup_page_cgroup(page);
	struct mem_cgroup *memcg = pc->mem_cgroup;
3024 3025 3026 3027

	if (!memcg)
		return;

3028
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3029

3030
	memcg_uncharge_kmem(memcg, 1 << order);
3031
	pc->mem_cgroup = NULL;
3032
}
G
Glauber Costa 已提交
3033
#else
3034
static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
3035 3036
{
}
3037 3038
#endif /* CONFIG_MEMCG_KMEM */

3039 3040 3041 3042
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
3043 3044 3045
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3046
 */
3047
void mem_cgroup_split_huge_fixup(struct page *head)
3048
{
3049
	struct page_cgroup *pc = lookup_page_cgroup(head);
3050
	int i;
3051

3052 3053
	if (mem_cgroup_disabled())
		return;
3054

3055 3056
	for (i = 1; i < HPAGE_PMD_NR; i++)
		pc[i].mem_cgroup = pc[0].mem_cgroup;
3057

3058
	__this_cpu_sub(pc[0].mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3059
		       HPAGE_PMD_NR);
3060
}
3061
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3062

3063
/**
3064
 * mem_cgroup_move_account - move account of the page
3065
 * @page: the page
3066
 * @nr_pages: number of regular pages (>1 for huge pages)
3067 3068 3069 3070 3071
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3072
 * - page is not on LRU (isolate_page() is useful.)
3073
 * - compound_lock is held when nr_pages > 1
3074
 *
3075 3076
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3077
 */
3078 3079 3080 3081
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3082
				   struct mem_cgroup *to)
3083
{
3084 3085
	unsigned long flags;
	int ret;
3086

3087
	VM_BUG_ON(from == to);
3088
	VM_BUG_ON_PAGE(PageLRU(page), page);
3089 3090 3091 3092 3093 3094 3095
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3096
	if (nr_pages > 1 && !PageTransHuge(page))
3097 3098
		goto out;

3099 3100 3101 3102 3103 3104 3105
	/*
	 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
	 * of its source page while we change it: page migration takes
	 * both pages off the LRU, but page cache replacement doesn't.
	 */
	if (!trylock_page(page))
		goto out;
3106 3107

	ret = -EINVAL;
3108
	if (pc->mem_cgroup != from)
3109
		goto out_unlock;
3110

3111
	spin_lock_irqsave(&from->move_lock, flags);
3112

3113
	if (!PageAnon(page) && page_mapped(page)) {
3114 3115 3116 3117 3118
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}
3119

3120 3121 3122 3123 3124 3125
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}
3126

3127 3128 3129 3130 3131
	/*
	 * It is safe to change pc->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */
3132

3133
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3134
	pc->mem_cgroup = to;
3135 3136
	spin_unlock_irqrestore(&from->move_lock, flags);

3137
	ret = 0;
3138 3139 3140

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
3141
	memcg_check_events(to, page);
3142
	mem_cgroup_charge_statistics(from, page, -nr_pages);
3143
	memcg_check_events(from, page);
3144 3145 3146
	local_irq_enable();
out_unlock:
	unlock_page(page);
3147
out:
3148 3149 3150
	return ret;
}

A
Andrew Morton 已提交
3151
#ifdef CONFIG_MEMCG_SWAP
3152 3153
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
3154
{
3155 3156
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
3157
}
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
3170
 * The caller must have charged to @to, IOW, called page_counter_charge() about
3171 3172 3173
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3174
				struct mem_cgroup *from, struct mem_cgroup *to)
3175 3176 3177
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
3178 3179
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
3180 3181 3182

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3183
		mem_cgroup_swap_statistics(to, true);
3184
		/*
3185
		 * This function is only called from task migration context now.
3186
		 * It postpones page_counter and refcount handling till the end
3187
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
3188 3189 3190 3191 3192 3193
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
3194
		 */
L
Li Zefan 已提交
3195
		css_get(&to->css);
3196 3197 3198 3199 3200 3201
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3202
				struct mem_cgroup *from, struct mem_cgroup *to)
3203 3204 3205
{
	return -EINVAL;
}
3206
#endif
K
KAMEZAWA Hiroyuki 已提交
3207

3208 3209 3210 3211 3212 3213
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
3214 3215 3216 3217 3218
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
3219
	if (likely(pc) && pc->mem_cgroup)
3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
3237 3238
	if (pc)
		pr_alert("pc:%p pc->mem_cgroup:%p\n", pc, pc->mem_cgroup);
3239 3240 3241
}
#endif

3242 3243
static DEFINE_MUTEX(memcg_limit_mutex);

3244
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3245
				   unsigned long limit)
3246
{
3247 3248 3249
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
3250
	int retry_count;
3251
	int ret;
3252 3253 3254 3255 3256 3257

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
3258 3259
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
3260

3261
	oldusage = page_counter_read(&memcg->memory);
3262

3263
	do {
3264 3265 3266 3267
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3268 3269 3270 3271

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
3272
			ret = -EINVAL;
3273 3274
			break;
		}
3275 3276 3277 3278
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
3279 3280 3281 3282

		if (!ret)
			break;

3283 3284
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

3285
		curusage = page_counter_read(&memcg->memory);
3286
		/* Usage is reduced ? */
A
Andrew Morton 已提交
3287
		if (curusage >= oldusage)
3288 3289 3290
			retry_count--;
		else
			oldusage = curusage;
3291 3292
	} while (retry_count);

3293 3294
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3295

3296 3297 3298
	return ret;
}

L
Li Zefan 已提交
3299
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3300
					 unsigned long limit)
3301
{
3302 3303 3304
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
3305
	int retry_count;
3306
	int ret;
3307

3308
	/* see mem_cgroup_resize_res_limit */
3309 3310 3311 3312 3313 3314
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
3315 3316 3317 3318
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3319 3320 3321 3322

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
3323 3324 3325
			ret = -EINVAL;
			break;
		}
3326 3327 3328 3329
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
3330 3331 3332 3333

		if (!ret)
			break;

3334 3335
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

3336
		curusage = page_counter_read(&memcg->memsw);
3337
		/* Usage is reduced ? */
3338
		if (curusage >= oldusage)
3339
			retry_count--;
3340 3341
		else
			oldusage = curusage;
3342 3343
	} while (retry_count);

3344 3345
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3346

3347 3348 3349
	return ret;
}

3350 3351 3352 3353 3354 3355 3356 3357 3358
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3359
	unsigned long excess;
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
3384
		spin_lock_irq(&mctz->lock);
3385
		__mem_cgroup_remove_exceeded(mz, mctz);
3386 3387 3388 3389 3390 3391

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
3392 3393 3394
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

3395
		excess = soft_limit_excess(mz->memcg);
3396 3397 3398 3399 3400 3401 3402 3403 3404
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
3405
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3406
		spin_unlock_irq(&mctz->lock);
3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

3424 3425 3426 3427 3428 3429
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
3430 3431
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
3432 3433
	bool ret;

3434
	/*
3435 3436 3437 3438
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
3439
	 */
3440 3441 3442 3443 3444 3445
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
3446 3447
}

3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

3458 3459
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3460
	/* try to free all pages in this cgroup */
3461
	while (nr_retries && page_counter_read(&memcg->memory)) {
3462
		int progress;
3463

3464 3465 3466
		if (signal_pending(current))
			return -EINTR;

3467 3468
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
3469
		if (!progress) {
3470
			nr_retries--;
3471
			/* maybe some writeback is necessary */
3472
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3473
		}
3474 3475

	}
3476 3477

	return 0;
3478 3479
}

3480 3481 3482
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
3483
{
3484
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3485

3486 3487
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
3488
	return mem_cgroup_force_empty(memcg) ?: nbytes;
3489 3490
}

3491 3492
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
3493
{
3494
	return mem_cgroup_from_css(css)->use_hierarchy;
3495 3496
}

3497 3498
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
3499 3500
{
	int retval = 0;
3501
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
3502
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3503

3504
	mutex_lock(&memcg_create_mutex);
3505 3506 3507 3508

	if (memcg->use_hierarchy == val)
		goto out;

3509
	/*
3510
	 * If parent's use_hierarchy is set, we can't make any modifications
3511 3512 3513 3514 3515 3516
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
3517
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3518
				(val == 1 || val == 0)) {
3519
		if (!memcg_has_children(memcg))
3520
			memcg->use_hierarchy = val;
3521 3522 3523 3524
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
3525 3526

out:
3527
	mutex_unlock(&memcg_create_mutex);
3528 3529 3530 3531

	return retval;
}

3532 3533
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
{
	struct mem_cgroup *iter;
	long val = 0;

	/* Per-cpu values can be negative, use a signed accumulator */
	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
}

static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
{
	u64 val;

3551 3552 3553 3554 3555 3556
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
3557
		if (!swap)
3558
			val = page_counter_read(&memcg->memory);
3559
		else
3560
			val = page_counter_read(&memcg->memsw);
3561 3562 3563 3564
	}
	return val << PAGE_SHIFT;
}

3565 3566 3567 3568 3569 3570 3571
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3572

3573
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3574
			       struct cftype *cft)
B
Balbir Singh 已提交
3575
{
3576
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3577
	struct page_counter *counter;
3578

3579
	switch (MEMFILE_TYPE(cft->private)) {
3580
	case _MEM:
3581 3582
		counter = &memcg->memory;
		break;
3583
	case _MEMSWAP:
3584 3585
		counter = &memcg->memsw;
		break;
3586
	case _KMEM:
3587
		counter = &memcg->kmem;
3588
		break;
3589 3590 3591
	default:
		BUG();
	}
3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
			return mem_cgroup_usage(memcg, false);
		if (counter == &memcg->memsw)
			return mem_cgroup_usage(memcg, true);
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3611
}
3612 3613

#ifdef CONFIG_MEMCG_KMEM
3614 3615
static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long nr_pages)
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628
{
	int err = 0;
	int memcg_id;

	if (memcg_kmem_is_active(memcg))
		return 0;

	/*
	 * We are going to allocate memory for data shared by all memory
	 * cgroups so let's stop accounting here.
	 */
	memcg_stop_kmem_account();

3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
3641
	mutex_lock(&memcg_create_mutex);
3642 3643
	if (cgroup_has_tasks(memcg->css.cgroup) ||
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
3644 3645 3646 3647
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
3648

3649
	memcg_id = memcg_alloc_cache_id();
3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	memcg->kmemcg_id = memcg_id;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);

	/*
	 * We couldn't have accounted to this cgroup, because it hasn't got the
	 * active bit set yet, so this should succeed.
	 */
3662
	err = page_counter_limit(&memcg->kmem, nr_pages);
3663 3664 3665 3666 3667 3668 3669 3670 3671
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
	 * Setting the active bit after enabling static branching will
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
	memcg_kmem_set_active(memcg);
3672
out:
3673 3674 3675 3676 3677
	memcg_resume_kmem_account();
	return err;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3678
				   unsigned long limit)
3679 3680 3681
{
	int ret;

3682
	mutex_lock(&memcg_limit_mutex);
3683
	if (!memcg_kmem_is_active(memcg))
3684
		ret = memcg_activate_kmem(memcg, limit);
3685
	else
3686 3687
		ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
3688 3689 3690
	return ret;
}

3691
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3692
{
3693
	int ret = 0;
3694
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3695

3696 3697
	if (!parent)
		return 0;
3698

3699
	mutex_lock(&memcg_limit_mutex);
3700
	/*
3701 3702
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
3703
	 */
3704
	if (memcg_kmem_is_active(parent))
3705 3706
		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
	mutex_unlock(&memcg_limit_mutex);
3707
	return ret;
3708
}
3709 3710
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3711
				   unsigned long limit)
3712 3713 3714
{
	return -EINVAL;
}
3715
#endif /* CONFIG_MEMCG_KMEM */
3716

3717 3718 3719 3720
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3721 3722
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3723
{
3724
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3725
	unsigned long nr_pages;
3726 3727
	int ret;

3728
	buf = strstrip(buf);
3729 3730 3731
	ret = page_counter_memparse(buf, &nr_pages);
	if (ret)
		return ret;
3732

3733
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3734
	case RES_LIMIT:
3735 3736 3737 3738
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3739 3740 3741
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3742
			break;
3743 3744
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3745
			break;
3746 3747 3748 3749
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
		}
3750
		break;
3751 3752 3753
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3754 3755
		break;
	}
3756
	return ret ?: nbytes;
B
Balbir Singh 已提交
3757 3758
}

3759 3760
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3761
{
3762
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3763
	struct page_counter *counter;
3764

3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
	default:
		BUG();
	}
3778

3779
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3780
	case RES_MAX_USAGE:
3781
		page_counter_reset_watermark(counter);
3782 3783
		break;
	case RES_FAILCNT:
3784
		counter->failcnt = 0;
3785
		break;
3786 3787
	default:
		BUG();
3788
	}
3789

3790
	return nbytes;
3791 3792
}

3793
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3794 3795
					struct cftype *cft)
{
3796
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3797 3798
}

3799
#ifdef CONFIG_MMU
3800
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3801 3802
					struct cftype *cft, u64 val)
{
3803
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3804 3805 3806

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
3807

3808
	/*
3809 3810 3811 3812
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3813
	 */
3814
	memcg->move_charge_at_immigrate = val;
3815 3816
	return 0;
}
3817
#else
3818
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3819 3820 3821 3822 3823
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3824

3825
#ifdef CONFIG_NUMA
3826
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3827
{
3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3840
	int nid;
3841
	unsigned long nr;
3842
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3843

3844 3845 3846 3847 3848 3849 3850 3851 3852
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3853 3854
	}

3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3870 3871 3872 3873 3874 3875
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3876 3877 3878 3879 3880
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

3881
static int memcg_stat_show(struct seq_file *m, void *v)
3882
{
3883
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3884
	unsigned long memory, memsw;
3885 3886
	struct mem_cgroup *mi;
	unsigned int i;
3887

3888
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3889
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3890
			continue;
3891 3892
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3893
	}
L
Lee Schermerhorn 已提交
3894

3895 3896 3897 3898 3899 3900 3901 3902
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3903
	/* Hierarchical information */
3904 3905 3906 3907
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3908
	}
3909 3910 3911 3912 3913
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
	if (do_swap_account)
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3914

3915 3916 3917
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

3918
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3919
			continue;
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3940
	}
K
KAMEZAWA Hiroyuki 已提交
3941

K
KOSAKI Motohiro 已提交
3942 3943 3944 3945
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3946
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3947 3948 3949 3950 3951
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3952
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3953
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3954

3955 3956 3957 3958
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3959
			}
3960 3961 3962 3963
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3964 3965 3966
	}
#endif

3967 3968 3969
	return 0;
}

3970 3971
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3972
{
3973
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3974

3975
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3976 3977
}

3978 3979
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3980
{
3981
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3982

3983
	if (val > 100)
K
KOSAKI Motohiro 已提交
3984 3985
		return -EINVAL;

3986
	if (css->parent)
3987 3988 3989
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3990

K
KOSAKI Motohiro 已提交
3991 3992 3993
	return 0;
}

3994 3995 3996
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3997
	unsigned long usage;
3998 3999 4000 4001
	int i;

	rcu_read_lock();
	if (!swap)
4002
		t = rcu_dereference(memcg->thresholds.primary);
4003
	else
4004
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4005 4006 4007 4008

	if (!t)
		goto unlock;

4009
	usage = mem_cgroup_usage(memcg, swap);
4010 4011

	/*
4012
	 * current_threshold points to threshold just below or equal to usage.
4013 4014 4015
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4016
	i = t->current_threshold;
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4040
	t->current_threshold = i - 1;
4041 4042 4043 4044 4045 4046
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4047 4048 4049 4050 4051 4052 4053
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4054 4055 4056 4057 4058 4059 4060
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

4061 4062 4063 4064 4065 4066 4067
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
4068 4069
}

4070
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4071 4072 4073
{
	struct mem_cgroup_eventfd_list *ev;

4074 4075
	spin_lock(&memcg_oom_lock);

4076
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
4077
		eventfd_signal(ev->eventfd, 1);
4078 4079

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4080 4081 4082
	return 0;
}

4083
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
4084
{
K
KAMEZAWA Hiroyuki 已提交
4085 4086
	struct mem_cgroup *iter;

4087
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
4088
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4089 4090
}

4091
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4092
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4093
{
4094 4095
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4096 4097
	unsigned long threshold;
	unsigned long usage;
4098
	int i, size, ret;
4099

4100
	ret = page_counter_memparse(args, &threshold);
4101 4102 4103 4104
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4105

4106
	if (type == _MEM) {
4107
		thresholds = &memcg->thresholds;
4108
		usage = mem_cgroup_usage(memcg, false);
4109
	} else if (type == _MEMSWAP) {
4110
		thresholds = &memcg->memsw_thresholds;
4111
		usage = mem_cgroup_usage(memcg, true);
4112
	} else
4113 4114 4115
		BUG();

	/* Check if a threshold crossed before adding a new one */
4116
	if (thresholds->primary)
4117 4118
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4119
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4120 4121

	/* Allocate memory for new array of thresholds */
4122
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4123
			GFP_KERNEL);
4124
	if (!new) {
4125 4126 4127
		ret = -ENOMEM;
		goto unlock;
	}
4128
	new->size = size;
4129 4130

	/* Copy thresholds (if any) to new array */
4131 4132
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4133
				sizeof(struct mem_cgroup_threshold));
4134 4135
	}

4136
	/* Add new threshold */
4137 4138
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4139 4140

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4141
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4142 4143 4144
			compare_thresholds, NULL);

	/* Find current threshold */
4145
	new->current_threshold = -1;
4146
	for (i = 0; i < size; i++) {
4147
		if (new->entries[i].threshold <= usage) {
4148
			/*
4149 4150
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4151 4152
			 * it here.
			 */
4153
			++new->current_threshold;
4154 4155
		} else
			break;
4156 4157
	}

4158 4159 4160 4161 4162
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4163

4164
	/* To be sure that nobody uses thresholds */
4165 4166 4167 4168 4169 4170 4171 4172
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4173
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4174 4175
	struct eventfd_ctx *eventfd, const char *args)
{
4176
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
4177 4178
}

4179
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4180 4181
	struct eventfd_ctx *eventfd, const char *args)
{
4182
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
4183 4184
}

4185
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4186
	struct eventfd_ctx *eventfd, enum res_type type)
4187
{
4188 4189
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4190
	unsigned long usage;
4191
	int i, j, size;
4192 4193

	mutex_lock(&memcg->thresholds_lock);
4194 4195

	if (type == _MEM) {
4196
		thresholds = &memcg->thresholds;
4197
		usage = mem_cgroup_usage(memcg, false);
4198
	} else if (type == _MEMSWAP) {
4199
		thresholds = &memcg->memsw_thresholds;
4200
		usage = mem_cgroup_usage(memcg, true);
4201
	} else
4202 4203
		BUG();

4204 4205 4206
	if (!thresholds->primary)
		goto unlock;

4207 4208 4209 4210
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4211 4212 4213
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4214 4215 4216
			size++;
	}

4217
	new = thresholds->spare;
4218

4219 4220
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4221 4222
		kfree(new);
		new = NULL;
4223
		goto swap_buffers;
4224 4225
	}

4226
	new->size = size;
4227 4228

	/* Copy thresholds and find current threshold */
4229 4230 4231
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4232 4233
			continue;

4234
		new->entries[j] = thresholds->primary->entries[i];
4235
		if (new->entries[j].threshold <= usage) {
4236
			/*
4237
			 * new->current_threshold will not be used
4238 4239 4240
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4241
			++new->current_threshold;
4242 4243 4244 4245
		}
		j++;
	}

4246
swap_buffers:
4247 4248
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
4249 4250 4251 4252 4253 4254
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

4255
	rcu_assign_pointer(thresholds->primary, new);
4256

4257
	/* To be sure that nobody uses thresholds */
4258
	synchronize_rcu();
4259
unlock:
4260 4261
	mutex_unlock(&memcg->thresholds_lock);
}
4262

4263
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4264 4265
	struct eventfd_ctx *eventfd)
{
4266
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
4267 4268
}

4269
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4270 4271
	struct eventfd_ctx *eventfd)
{
4272
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
4273 4274
}

4275
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4276
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
4277 4278 4279 4280 4281 4282 4283
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4284
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4285 4286 4287 4288 4289

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
4290
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
4291
		eventfd_signal(eventfd, 1);
4292
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4293 4294 4295 4296

	return 0;
}

4297
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
4298
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
4299 4300 4301
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

4302
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4303

4304
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
4305 4306 4307 4308 4309 4310
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

4311
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
4312 4313
}

4314
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4315
{
4316
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4317

4318 4319
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
4320 4321 4322
	return 0;
}

4323
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4324 4325
	struct cftype *cft, u64 val)
{
4326
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4327 4328

	/* cannot set to root cgroup and only 0 and 1 are allowed */
4329
	if (!css->parent || !((val == 0) || (val == 1)))
4330 4331
		return -EINVAL;

4332
	memcg->oom_kill_disable = val;
4333
	if (!val)
4334
		memcg_oom_recover(memcg);
4335

4336 4337 4338
	return 0;
}

A
Andrew Morton 已提交
4339
#ifdef CONFIG_MEMCG_KMEM
4340
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4341
{
4342 4343
	int ret;

4344
	memcg->kmemcg_id = -1;
4345 4346 4347
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
4348

4349
	return mem_cgroup_sockets_init(memcg, ss);
4350
}
4351

4352
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
4353
{
4354
	mem_cgroup_sockets_destroy(memcg);
4355
}
4356
#else
4357
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4358 4359 4360
{
	return 0;
}
G
Glauber Costa 已提交
4361

4362 4363 4364
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}
4365 4366
#endif

4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

4380 4381 4382 4383 4384
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
4385
static void memcg_event_remove(struct work_struct *work)
4386
{
4387 4388
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
4389
	struct mem_cgroup *memcg = event->memcg;
4390 4391 4392

	remove_wait_queue(event->wqh, &event->wait);

4393
	event->unregister_event(memcg, event->eventfd);
4394 4395 4396 4397 4398 4399

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
4400
	css_put(&memcg->css);
4401 4402 4403 4404 4405 4406 4407
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4408 4409
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
4410
{
4411 4412
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4413
	struct mem_cgroup *memcg = event->memcg;
4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4426
		spin_lock(&memcg->event_list_lock);
4427 4428 4429 4430 4431 4432 4433 4434
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4435
		spin_unlock(&memcg->event_list_lock);
4436 4437 4438 4439 4440
	}

	return 0;
}

4441
static void memcg_event_ptable_queue_proc(struct file *file,
4442 4443
		wait_queue_head_t *wqh, poll_table *pt)
{
4444 4445
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4446 4447 4448 4449 4450 4451

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4452 4453
 * DO NOT USE IN NEW FILES.
 *
4454 4455 4456 4457 4458
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4459 4460
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4461
{
4462
	struct cgroup_subsys_state *css = of_css(of);
4463
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4464
	struct mem_cgroup_event *event;
4465 4466 4467 4468
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4469
	const char *name;
4470 4471 4472
	char *endp;
	int ret;

4473 4474 4475
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4476 4477
	if (*endp != ' ')
		return -EINVAL;
4478
	buf = endp + 1;
4479

4480
	cfd = simple_strtoul(buf, &endp, 10);
4481 4482
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4483
	buf = endp + 1;
4484 4485 4486 4487 4488

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4489
	event->memcg = memcg;
4490
	INIT_LIST_HEAD(&event->list);
4491 4492 4493
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4519 4520 4521 4522 4523
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4524 4525
	 *
	 * DO NOT ADD NEW FILES.
4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538
	 */
	name = cfile.file->f_dentry->d_name.name;

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4539 4540
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4541 4542 4543 4544 4545
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4546
	/*
4547 4548 4549
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4550
	 */
4551 4552
	cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
					       &memory_cgrp_subsys);
4553
	ret = -EINVAL;
4554
	if (IS_ERR(cfile_css))
4555
		goto out_put_cfile;
4556 4557
	if (cfile_css != css) {
		css_put(cfile_css);
4558
		goto out_put_cfile;
4559
	}
4560

4561
	ret = event->register_event(memcg, event->eventfd, buf);
4562 4563 4564 4565 4566
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

4567 4568 4569
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4570 4571 4572 4573

	fdput(cfile);
	fdput(efile);

4574
	return nbytes;
4575 4576

out_put_css:
4577
	css_put(css);
4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

B
Balbir Singh 已提交
4590 4591
static struct cftype mem_cgroup_files[] = {
	{
4592
		.name = "usage_in_bytes",
4593
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4594
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4595
	},
4596 4597
	{
		.name = "max_usage_in_bytes",
4598
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4599
		.write = mem_cgroup_reset,
4600
		.read_u64 = mem_cgroup_read_u64,
4601
	},
B
Balbir Singh 已提交
4602
	{
4603
		.name = "limit_in_bytes",
4604
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4605
		.write = mem_cgroup_write,
4606
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4607
	},
4608 4609 4610
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4611
		.write = mem_cgroup_write,
4612
		.read_u64 = mem_cgroup_read_u64,
4613
	},
B
Balbir Singh 已提交
4614 4615
	{
		.name = "failcnt",
4616
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4617
		.write = mem_cgroup_reset,
4618
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4619
	},
4620 4621
	{
		.name = "stat",
4622
		.seq_show = memcg_stat_show,
4623
	},
4624 4625
	{
		.name = "force_empty",
4626
		.write = mem_cgroup_force_empty_write,
4627
	},
4628 4629 4630 4631 4632
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4633
	{
4634
		.name = "cgroup.event_control",		/* XXX: for compat */
4635
		.write = memcg_write_event_control,
4636 4637 4638
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
4639 4640 4641 4642 4643
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4644 4645 4646 4647 4648
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4649 4650
	{
		.name = "oom_control",
4651
		.seq_show = mem_cgroup_oom_control_read,
4652
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4653 4654
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4655 4656 4657
	{
		.name = "pressure_level",
	},
4658 4659 4660
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4661
		.seq_show = memcg_numa_stat_show,
4662 4663
	},
#endif
4664 4665 4666 4667
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4668
		.write = mem_cgroup_write,
4669
		.read_u64 = mem_cgroup_read_u64,
4670 4671 4672 4673
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4674
		.read_u64 = mem_cgroup_read_u64,
4675 4676 4677 4678
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4679
		.write = mem_cgroup_reset,
4680
		.read_u64 = mem_cgroup_read_u64,
4681 4682 4683 4684
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4685
		.write = mem_cgroup_reset,
4686
		.read_u64 = mem_cgroup_read_u64,
4687
	},
4688 4689 4690
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4691 4692 4693 4694
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4695 4696
	},
#endif
4697
#endif
4698
	{ },	/* terminate */
4699
};
4700

4701 4702 4703 4704 4705
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4706
		.read_u64 = mem_cgroup_read_u64,
4707 4708 4709 4710
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4711
		.write = mem_cgroup_reset,
4712
		.read_u64 = mem_cgroup_read_u64,
4713 4714 4715 4716
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4717
		.write = mem_cgroup_write,
4718
		.read_u64 = mem_cgroup_read_u64,
4719 4720 4721 4722
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4723
		.write = mem_cgroup_reset,
4724
		.read_u64 = mem_cgroup_read_u64,
4725 4726 4727 4728
	},
	{ },	/* terminate */
};
#endif
4729
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4730 4731
{
	struct mem_cgroup_per_node *pn;
4732
	struct mem_cgroup_per_zone *mz;
4733
	int zone, tmp = node;
4734 4735 4736 4737 4738 4739 4740 4741
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4742 4743
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4744
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4745 4746
	if (!pn)
		return 1;
4747 4748 4749

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4750
		lruvec_init(&mz->lruvec);
4751 4752
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4753
		mz->memcg = memcg;
4754
	}
4755
	memcg->nodeinfo[node] = pn;
4756 4757 4758
	return 0;
}

4759
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4760
{
4761
	kfree(memcg->nodeinfo[node]);
4762 4763
}

4764 4765
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4766
	struct mem_cgroup *memcg;
4767
	size_t size;
4768

4769 4770
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4771

4772
	memcg = kzalloc(size, GFP_KERNEL);
4773
	if (!memcg)
4774 4775
		return NULL;

4776 4777
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4778
		goto out_free;
4779 4780
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4781 4782

out_free:
4783
	kfree(memcg);
4784
	return NULL;
4785 4786
}

4787
/*
4788 4789 4790 4791 4792 4793 4794 4795
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
4796
 */
4797 4798

static void __mem_cgroup_free(struct mem_cgroup *memcg)
4799
{
4800
	int node;
4801

4802
	mem_cgroup_remove_from_trees(memcg);
4803 4804 4805 4806 4807 4808

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
4820
	disarm_static_keys(memcg);
4821
	kfree(memcg);
4822
}
4823

4824 4825 4826
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4827
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4828
{
4829
	if (!memcg->memory.parent)
4830
		return NULL;
4831
	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4832
}
G
Glauber Costa 已提交
4833
EXPORT_SYMBOL(parent_mem_cgroup);
4834

4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857
static void __init mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node(node) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		BUG_ON(!rtpn);

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
4858
static struct cgroup_subsys_state * __ref
4859
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
4860
{
4861
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4862
	long error = -ENOMEM;
4863
	int node;
B
Balbir Singh 已提交
4864

4865 4866
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4867
		return ERR_PTR(error);
4868

B
Bob Liu 已提交
4869
	for_each_node(node)
4870
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4871
			goto free_out;
4872

4873
	/* root ? */
4874
	if (parent_css == NULL) {
4875
		root_mem_cgroup = memcg;
4876 4877 4878
		page_counter_init(&memcg->memory, NULL);
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4879
	}
4880

4881 4882 4883 4884 4885
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4886
	vmpressure_init(&memcg->vmpressure);
4887 4888
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4889 4890 4891 4892 4893 4894 4895 4896 4897

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
4898
mem_cgroup_css_online(struct cgroup_subsys_state *css)
4899
{
4900
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4901
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4902
	int ret;
4903

4904
	if (css->id > MEM_CGROUP_ID_MAX)
4905 4906
		return -ENOSPC;

T
Tejun Heo 已提交
4907
	if (!parent)
4908 4909
		return 0;

4910
	mutex_lock(&memcg_create_mutex);
4911 4912 4913 4914 4915 4916

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
4917 4918 4919
		page_counter_init(&memcg->memory, &parent->memory);
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4920

4921
		/*
4922 4923
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
4924
		 */
4925
	} else {
4926 4927 4928
		page_counter_init(&memcg->memory, NULL);
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4929 4930 4931 4932 4933
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4934
		if (parent != root_mem_cgroup)
4935
			memory_cgrp_subsys.broken_hierarchy = true;
4936
	}
4937
	mutex_unlock(&memcg_create_mutex);
4938

4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
	if (ret)
		return ret;

	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
4951 4952
}

4953
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4954
{
4955
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4956
	struct mem_cgroup_event *event, *tmp;
4957 4958 4959 4960 4961 4962

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4963 4964
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4965 4966 4967
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4968
	spin_unlock(&memcg->event_list_lock);
4969

4970
	memcg_unregister_all_caches(memcg);
4971
	vmpressure_cleanup(&memcg->vmpressure);
4972 4973
}

4974
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4975
{
4976
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4977

4978
	memcg_destroy_kmem(memcg);
4979
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4980 4981
}

4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4999 5000 5001 5002
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
	memcg->soft_limit = 0;
5003 5004
}

5005
#ifdef CONFIG_MMU
5006
/* Handlers for move charge at task migration. */
5007
static int mem_cgroup_do_precharge(unsigned long count)
5008
{
5009
	int ret;
5010 5011

	/* Try a single bulk charge without reclaim first */
5012
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
5013
	if (!ret) {
5014 5015 5016
		mc.precharge += count;
		return ret;
	}
5017
	if (ret == -EINTR) {
5018
		cancel_charge(root_mem_cgroup, count);
5019 5020
		return ret;
	}
5021 5022

	/* Try charges one by one with reclaim */
5023
	while (count--) {
5024
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
5025 5026 5027
		/*
		 * In case of failure, any residual charges against
		 * mc.to will be dropped by mem_cgroup_clear_mc()
5028 5029
		 * later on.  However, cancel any charges that are
		 * bypassed to root right away or they'll be lost.
5030
		 */
5031
		if (ret == -EINTR)
5032
			cancel_charge(root_mem_cgroup, 1);
5033 5034
		if (ret)
			return ret;
5035
		mc.precharge++;
5036
		cond_resched();
5037
	}
5038
	return 0;
5039 5040 5041
}

/**
5042
 * get_mctgt_type - get target type of moving charge
5043 5044 5045
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5046
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5047 5048 5049 5050 5051 5052
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5053 5054 5055
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5056 5057 5058 5059 5060
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5061
	swp_entry_t	ent;
5062 5063 5064
};

enum mc_target_type {
5065
	MC_TARGET_NONE = 0,
5066
	MC_TARGET_PAGE,
5067
	MC_TARGET_SWAP,
5068 5069
};

D
Daisuke Nishimura 已提交
5070 5071
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5072
{
D
Daisuke Nishimura 已提交
5073
	struct page *page = vm_normal_page(vma, addr, ptent);
5074

D
Daisuke Nishimura 已提交
5075 5076 5077 5078
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
5079
		if (!move_anon())
D
Daisuke Nishimura 已提交
5080
			return NULL;
5081 5082
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5083 5084 5085 5086 5087 5088 5089
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

5090
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
5091 5092 5093 5094 5095 5096 5097 5098
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
5099 5100 5101 5102
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
5103
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
5104 5105 5106 5107 5108
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
5109 5110 5111 5112 5113 5114 5115
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
5116

5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
5136 5137
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
5150
#endif
5151 5152 5153
	return page;
}

5154
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
5155 5156 5157 5158
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
5159
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
5160 5161 5162 5163 5164 5165
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5166 5167
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5168 5169

	if (!page && !ent.val)
5170
		return ret;
5171 5172 5173
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
5174 5175 5176
		 * Do only loose check w/o serialization.
		 * mem_cgroup_move_account() checks the pc is valid or
		 * not under LRU exclusion.
5177
		 */
5178
		if (pc->mem_cgroup == mc.from) {
5179 5180 5181 5182 5183 5184 5185
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5186 5187
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
5188
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5189 5190 5191
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5192 5193 5194 5195
	}
	return ret;
}

5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
5210
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5211 5212 5213
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
5214
	if (pc->mem_cgroup == mc.from) {
5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

5231 5232 5233 5234 5235 5236 5237 5238
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5239
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5240 5241
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5242
		spin_unlock(ptl);
5243
		return 0;
5244
	}
5245

5246 5247
	if (pmd_trans_unstable(pmd))
		return 0;
5248 5249
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5250
		if (get_mctgt_type(vma, addr, *pte, NULL))
5251 5252 5253 5254
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5255 5256 5257
	return 0;
}

5258 5259 5260 5261 5262
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5263
	down_read(&mm->mmap_sem);
5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5275
	up_read(&mm->mmap_sem);
5276 5277 5278 5279 5280 5281 5282 5283 5284

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5285 5286 5287 5288 5289
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5290 5291
}

5292 5293
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5294
{
5295 5296 5297
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5298
	/* we must uncharge all the leftover precharges from mc.to */
5299
	if (mc.precharge) {
5300
		cancel_charge(mc.to, mc.precharge);
5301 5302 5303 5304 5305 5306 5307
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5308
		cancel_charge(mc.from, mc.moved_charge);
5309
		mc.moved_charge = 0;
5310
	}
5311 5312 5313
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5314
		if (!mem_cgroup_is_root(mc.from))
5315
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5316

5317
		/*
5318 5319
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5320
		 */
5321
		if (!mem_cgroup_is_root(mc.to))
5322 5323
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5324
		css_put_many(&mc.from->css, mc.moved_swap);
5325

L
Li Zefan 已提交
5326
		/* we've already done css_get(mc.to) */
5327 5328
		mc.moved_swap = 0;
	}
5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5344
	spin_lock(&mc.lock);
5345 5346
	mc.from = NULL;
	mc.to = NULL;
5347
	spin_unlock(&mc.lock);
5348 5349

	atomic_dec(&from->moving_account);
5350 5351
}

5352
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5353
				 struct cgroup_taskset *tset)
5354
{
5355
	struct task_struct *p = cgroup_taskset_first(tset);
5356
	int ret = 0;
5357
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5358
	unsigned long move_charge_at_immigrate;
5359

5360 5361 5362 5363 5364 5365 5366
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
5367 5368 5369
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

5370
		VM_BUG_ON(from == memcg);
5371 5372 5373 5374 5375

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5376 5377 5378 5379
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5380
			VM_BUG_ON(mc.moved_charge);
5381
			VM_BUG_ON(mc.moved_swap);
5382 5383 5384 5385 5386 5387 5388 5389 5390 5391

			/*
			 * Signal mem_cgroup_begin_page_stat() to take
			 * the memcg's move_lock while we're moving
			 * its pages to another memcg.  Then wait for
			 * already started RCU-only updates to finish.
			 */
			atomic_inc(&from->moving_account);
			synchronize_rcu();

5392
			spin_lock(&mc.lock);
5393
			mc.from = from;
5394
			mc.to = memcg;
5395
			mc.immigrate_flags = move_charge_at_immigrate;
5396
			spin_unlock(&mc.lock);
5397
			/* We set mc.moving_task later */
5398 5399 5400 5401

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5402 5403
		}
		mmput(mm);
5404 5405 5406 5407
	}
	return ret;
}

5408
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5409
				     struct cgroup_taskset *tset)
5410
{
5411 5412
	if (mc.to)
		mem_cgroup_clear_mc();
5413 5414
}

5415 5416 5417
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5418
{
5419 5420 5421 5422
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
5423 5424 5425 5426
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
5427

5428 5429 5430 5431 5432 5433 5434 5435 5436 5437
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
5438
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5439
		if (mc.precharge < HPAGE_PMD_NR) {
5440
			spin_unlock(ptl);
5441 5442 5443 5444 5445 5446 5447 5448
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5449
							pc, mc.from, mc.to)) {
5450 5451 5452 5453 5454 5455 5456
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
5457
		spin_unlock(ptl);
5458
		return 0;
5459 5460
	}

5461 5462
	if (pmd_trans_unstable(pmd))
		return 0;
5463 5464 5465 5466
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5467
		swp_entry_t ent;
5468 5469 5470 5471

		if (!mc.precharge)
			break;

5472
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5473 5474 5475 5476 5477
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5478
			if (!mem_cgroup_move_account(page, 1, pc,
5479
						     mc.from, mc.to)) {
5480
				mc.precharge--;
5481 5482
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5483 5484
			}
			putback_lru_page(page);
5485
put:			/* get_mctgt_type() gets the page */
5486 5487
			put_page(page);
			break;
5488 5489
		case MC_TARGET_SWAP:
			ent = target.ent;
5490
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5491
				mc.precharge--;
5492 5493 5494
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5495
			break;
5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5510
		ret = mem_cgroup_do_precharge(1);
5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5554
	up_read(&mm->mmap_sem);
5555 5556
}

5557
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5558
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5559
{
5560
	struct task_struct *p = cgroup_taskset_first(tset);
5561
	struct mm_struct *mm = get_task_mm(p);
5562 5563

	if (mm) {
5564 5565
		if (mc.to)
			mem_cgroup_move_charge(mm);
5566 5567
		mmput(mm);
	}
5568 5569
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5570
}
5571
#else	/* !CONFIG_MMU */
5572
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5573
				 struct cgroup_taskset *tset)
5574 5575 5576
{
	return 0;
}
5577
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5578
				     struct cgroup_taskset *tset)
5579 5580
{
}
5581
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5582
				 struct cgroup_taskset *tset)
5583 5584 5585
{
}
#endif
B
Balbir Singh 已提交
5586

5587 5588
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5589 5590
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5591
 */
5592
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5593 5594
{
	/*
5595
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5596 5597 5598
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5599
	if (cgroup_on_dfl(root_css->cgroup))
5600
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
5601 5602
}

5603
struct cgroup_subsys memory_cgrp_subsys = {
5604
	.css_alloc = mem_cgroup_css_alloc,
5605
	.css_online = mem_cgroup_css_online,
5606 5607
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
5608
	.css_reset = mem_cgroup_css_reset,
5609 5610
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5611
	.attach = mem_cgroup_move_task,
5612
	.bind = mem_cgroup_bind,
5613
	.legacy_cftypes = mem_cgroup_files,
5614
	.early_init = 0,
B
Balbir Singh 已提交
5615
};
5616

A
Andrew Morton 已提交
5617
#ifdef CONFIG_MEMCG_SWAP
5618 5619
static int __init enable_swap_account(char *s)
{
5620
	if (!strcmp(s, "1"))
5621
		really_do_swap_account = 1;
5622
	else if (!strcmp(s, "0"))
5623 5624 5625
		really_do_swap_account = 0;
	return 1;
}
5626
__setup("swapaccount=", enable_swap_account);
5627

5628 5629
static void __init memsw_file_init(void)
{
5630 5631
	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
					  memsw_cgroup_files));
5632 5633 5634 5635 5636 5637 5638 5639
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
5640
}
5641

5642
#else
5643
static void __init enable_swap_cgroup(void)
5644 5645
{
}
5646
#endif
5647

5648 5649 5650 5651 5652 5653 5654 5655 5656 5657
#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
5658
	struct mem_cgroup *memcg;
5659 5660 5661 5662 5663 5664 5665 5666 5667 5668
	struct page_cgroup *pc;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

	if (!do_swap_account)
		return;

	pc = lookup_page_cgroup(page);
5669
	memcg = pc->mem_cgroup;
5670 5671

	/* Readahead page, never charged */
5672
	if (!memcg)
5673 5674
		return;

5675
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5676
	VM_BUG_ON_PAGE(oldid, page);
5677 5678
	mem_cgroup_swap_statistics(memcg, true);

5679
	pc->mem_cgroup = NULL;
5680 5681 5682 5683 5684 5685

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

	/* XXX: caller holds IRQ-safe mapping->tree_lock */
	VM_BUG_ON(!irqs_disabled());
5686

5687 5688
	mem_cgroup_charge_statistics(memcg, page, -1);
	memcg_check_events(memcg, page);
5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

	if (!do_swap_account)
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
	if (memcg) {
5709
		if (!mem_cgroup_is_root(memcg))
5710
			page_counter_uncharge(&memcg->memsw, 1);
5711 5712 5713 5714 5715 5716 5717
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}
#endif

5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		struct page_cgroup *pc = lookup_page_cgroup(page);
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5754
		if (pc->mem_cgroup)
5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814
			goto out;
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (do_swap_account && PageSwapCache(page))
		memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);

	if (ret == -EINTR) {
		memcg = root_mem_cgroup;
		ret = 0;
	}
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5815 5816
	commit_charge(page, memcg, lrucare);

5817 5818 5819 5820 5821
	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

5822 5823 5824 5825
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866

	if (do_swap_account && PageSwapCache(page)) {
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

5867 5868 5869 5870
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5871
	unsigned long nr_pages = nr_anon + nr_file;
5872 5873
	unsigned long flags;

5874
	if (!mem_cgroup_is_root(memcg)) {
5875 5876 5877
		page_counter_uncharge(&memcg->memory, nr_pages);
		if (do_swap_account)
			page_counter_uncharge(&memcg->memsw, nr_pages);
5878 5879
		memcg_oom_recover(memcg);
	}
5880 5881 5882 5883 5884 5885

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5886
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5887 5888
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5889 5890

	if (!mem_cgroup_is_root(memcg))
5891
		css_put_many(&memcg->css, nr_pages);
5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;
		struct page_cgroup *pc;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

		pc = lookup_page_cgroup(page);
5916
		if (!pc->mem_cgroup)
5917 5918 5919 5920
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5921 5922
		 * pc->mem_cgroup at this point, we have fully
		 * exclusive access to the page.
5923 5924 5925 5926
		 */

		if (memcg != pc->mem_cgroup) {
			if (memcg) {
5927 5928 5929
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944
			}
			memcg = pc->mem_cgroup;
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5945
		pc->mem_cgroup = NULL;
5946 5947 5948 5949 5950

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5951 5952
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5953 5954
}

5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	struct page_cgroup *pc;

	if (mem_cgroup_disabled())
		return;

5969
	/* Don't touch page->lru of any random page, pre-check: */
5970
	pc = lookup_page_cgroup(page);
5971
	if (!pc->mem_cgroup)
5972 5973
		return;

5974 5975 5976
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5977

5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5989

5990 5991
	if (!list_empty(page_list))
		uncharge_list(page_list);
5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006
}

/**
 * mem_cgroup_migrate - migrate a charge to another page
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
 * @lrucare: both pages might be on the LRU already
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
			bool lrucare)
{
6007
	struct mem_cgroup *memcg;
6008 6009 6010 6011 6012 6013 6014 6015
	struct page_cgroup *pc;
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6016 6017
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6018 6019 6020 6021 6022 6023

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
	pc = lookup_page_cgroup(newpage);
6024
	if (pc->mem_cgroup)
6025 6026
		return;

6027 6028 6029 6030 6031 6032
	/*
	 * Swapcache readahead pages can get migrated before being
	 * charged, and migration from compaction can happen to an
	 * uncharged page when the PFN walker finds a page that
	 * reclaim just put back on the LRU but has not released yet.
	 */
6033
	pc = lookup_page_cgroup(oldpage);
6034 6035
	memcg = pc->mem_cgroup;
	if (!memcg)
6036 6037 6038 6039 6040
		return;

	if (lrucare)
		lock_page_lru(oldpage, &isolated);

6041
	pc->mem_cgroup = NULL;
6042 6043 6044 6045

	if (lrucare)
		unlock_page_lru(oldpage, isolated);

6046
	commit_charge(newpage, memcg, lrucare);
6047 6048
}

6049
/*
6050 6051 6052 6053 6054 6055
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
6056 6057 6058 6059
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6060
	enable_swap_cgroup();
6061
	mem_cgroup_soft_limit_tree_init();
6062
	memcg_stock_init();
6063 6064 6065
	return 0;
}
subsys_initcall(mem_cgroup_init);